1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 56 struct btrfs_iget_args { 57 u64 ino; 58 struct btrfs_root *root; 59 }; 60 61 struct btrfs_dio_data { 62 u64 reserve; 63 loff_t length; 64 ssize_t submitted; 65 struct extent_changeset *data_reserved; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_special_inode_operations; 71 static const struct inode_operations btrfs_file_inode_operations; 72 static const struct address_space_operations btrfs_aops; 73 static const struct file_operations btrfs_dir_file_operations; 74 75 static struct kmem_cache *btrfs_inode_cachep; 76 struct kmem_cache *btrfs_trans_handle_cachep; 77 struct kmem_cache *btrfs_path_cachep; 78 struct kmem_cache *btrfs_free_space_cachep; 79 struct kmem_cache *btrfs_free_space_bitmap_cachep; 80 81 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 82 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 84 static noinline int cow_file_range(struct btrfs_inode *inode, 85 struct page *locked_page, 86 u64 start, u64 end, int *page_started, 87 unsigned long *nr_written, int unlock); 88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 89 u64 len, u64 orig_start, u64 block_start, 90 u64 block_len, u64 orig_block_len, 91 u64 ram_bytes, int compress_type, 92 int type); 93 94 static void __endio_write_update_ordered(struct btrfs_inode *inode, 95 const u64 offset, const u64 bytes, 96 const bool uptodate); 97 98 /* 99 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 100 * 101 * ilock_flags can have the following bit set: 102 * 103 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 104 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 105 * return -EAGAIN 106 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 107 */ 108 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 109 { 110 if (ilock_flags & BTRFS_ILOCK_SHARED) { 111 if (ilock_flags & BTRFS_ILOCK_TRY) { 112 if (!inode_trylock_shared(inode)) 113 return -EAGAIN; 114 else 115 return 0; 116 } 117 inode_lock_shared(inode); 118 } else { 119 if (ilock_flags & BTRFS_ILOCK_TRY) { 120 if (!inode_trylock(inode)) 121 return -EAGAIN; 122 else 123 return 0; 124 } 125 inode_lock(inode); 126 } 127 if (ilock_flags & BTRFS_ILOCK_MMAP) 128 down_write(&BTRFS_I(inode)->i_mmap_lock); 129 return 0; 130 } 131 132 /* 133 * btrfs_inode_unlock - unock inode i_rwsem 134 * 135 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 136 * to decide whether the lock acquired is shared or exclusive. 137 */ 138 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 139 { 140 if (ilock_flags & BTRFS_ILOCK_MMAP) 141 up_write(&BTRFS_I(inode)->i_mmap_lock); 142 if (ilock_flags & BTRFS_ILOCK_SHARED) 143 inode_unlock_shared(inode); 144 else 145 inode_unlock(inode); 146 } 147 148 /* 149 * Cleanup all submitted ordered extents in specified range to handle errors 150 * from the btrfs_run_delalloc_range() callback. 151 * 152 * NOTE: caller must ensure that when an error happens, it can not call 153 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 154 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 155 * to be released, which we want to happen only when finishing the ordered 156 * extent (btrfs_finish_ordered_io()). 157 */ 158 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 159 struct page *locked_page, 160 u64 offset, u64 bytes) 161 { 162 unsigned long index = offset >> PAGE_SHIFT; 163 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 164 u64 page_start = page_offset(locked_page); 165 u64 page_end = page_start + PAGE_SIZE - 1; 166 167 struct page *page; 168 169 while (index <= end_index) { 170 /* 171 * For locked page, we will call end_extent_writepage() on it 172 * in run_delalloc_range() for the error handling. That 173 * end_extent_writepage() function will call 174 * btrfs_mark_ordered_io_finished() to clear page Ordered and 175 * run the ordered extent accounting. 176 * 177 * Here we can't just clear the Ordered bit, or 178 * btrfs_mark_ordered_io_finished() would skip the accounting 179 * for the page range, and the ordered extent will never finish. 180 */ 181 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) { 182 index++; 183 continue; 184 } 185 page = find_get_page(inode->vfs_inode.i_mapping, index); 186 index++; 187 if (!page) 188 continue; 189 190 /* 191 * Here we just clear all Ordered bits for every page in the 192 * range, then __endio_write_update_ordered() will handle 193 * the ordered extent accounting for the range. 194 */ 195 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 196 offset, bytes); 197 put_page(page); 198 } 199 200 /* The locked page covers the full range, nothing needs to be done */ 201 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE) 202 return; 203 /* 204 * In case this page belongs to the delalloc range being instantiated 205 * then skip it, since the first page of a range is going to be 206 * properly cleaned up by the caller of run_delalloc_range 207 */ 208 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 209 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 210 offset = page_offset(locked_page) + PAGE_SIZE; 211 } 212 213 return __endio_write_update_ordered(inode, offset, bytes, false); 214 } 215 216 static int btrfs_dirty_inode(struct inode *inode); 217 218 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 219 struct inode *inode, struct inode *dir, 220 const struct qstr *qstr) 221 { 222 int err; 223 224 err = btrfs_init_acl(trans, inode, dir); 225 if (!err) 226 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 227 return err; 228 } 229 230 /* 231 * this does all the hard work for inserting an inline extent into 232 * the btree. The caller should have done a btrfs_drop_extents so that 233 * no overlapping inline items exist in the btree 234 */ 235 static int insert_inline_extent(struct btrfs_trans_handle *trans, 236 struct btrfs_path *path, bool extent_inserted, 237 struct btrfs_root *root, struct inode *inode, 238 u64 start, size_t size, size_t compressed_size, 239 int compress_type, 240 struct page **compressed_pages) 241 { 242 struct extent_buffer *leaf; 243 struct page *page = NULL; 244 char *kaddr; 245 unsigned long ptr; 246 struct btrfs_file_extent_item *ei; 247 int ret; 248 size_t cur_size = size; 249 unsigned long offset; 250 251 ASSERT((compressed_size > 0 && compressed_pages) || 252 (compressed_size == 0 && !compressed_pages)); 253 254 if (compressed_size && compressed_pages) 255 cur_size = compressed_size; 256 257 if (!extent_inserted) { 258 struct btrfs_key key; 259 size_t datasize; 260 261 key.objectid = btrfs_ino(BTRFS_I(inode)); 262 key.offset = start; 263 key.type = BTRFS_EXTENT_DATA_KEY; 264 265 datasize = btrfs_file_extent_calc_inline_size(cur_size); 266 ret = btrfs_insert_empty_item(trans, root, path, &key, 267 datasize); 268 if (ret) 269 goto fail; 270 } 271 leaf = path->nodes[0]; 272 ei = btrfs_item_ptr(leaf, path->slots[0], 273 struct btrfs_file_extent_item); 274 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 275 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 276 btrfs_set_file_extent_encryption(leaf, ei, 0); 277 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 278 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 279 ptr = btrfs_file_extent_inline_start(ei); 280 281 if (compress_type != BTRFS_COMPRESS_NONE) { 282 struct page *cpage; 283 int i = 0; 284 while (compressed_size > 0) { 285 cpage = compressed_pages[i]; 286 cur_size = min_t(unsigned long, compressed_size, 287 PAGE_SIZE); 288 289 kaddr = kmap_atomic(cpage); 290 write_extent_buffer(leaf, kaddr, ptr, cur_size); 291 kunmap_atomic(kaddr); 292 293 i++; 294 ptr += cur_size; 295 compressed_size -= cur_size; 296 } 297 btrfs_set_file_extent_compression(leaf, ei, 298 compress_type); 299 } else { 300 page = find_get_page(inode->i_mapping, 301 start >> PAGE_SHIFT); 302 btrfs_set_file_extent_compression(leaf, ei, 0); 303 kaddr = kmap_atomic(page); 304 offset = offset_in_page(start); 305 write_extent_buffer(leaf, kaddr + offset, ptr, size); 306 kunmap_atomic(kaddr); 307 put_page(page); 308 } 309 btrfs_mark_buffer_dirty(leaf); 310 btrfs_release_path(path); 311 312 /* 313 * We align size to sectorsize for inline extents just for simplicity 314 * sake. 315 */ 316 size = ALIGN(size, root->fs_info->sectorsize); 317 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 318 if (ret) 319 goto fail; 320 321 /* 322 * we're an inline extent, so nobody can 323 * extend the file past i_size without locking 324 * a page we already have locked. 325 * 326 * We must do any isize and inode updates 327 * before we unlock the pages. Otherwise we 328 * could end up racing with unlink. 329 */ 330 BTRFS_I(inode)->disk_i_size = inode->i_size; 331 fail: 332 return ret; 333 } 334 335 336 /* 337 * conditionally insert an inline extent into the file. This 338 * does the checks required to make sure the data is small enough 339 * to fit as an inline extent. 340 */ 341 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 342 u64 end, size_t compressed_size, 343 int compress_type, 344 struct page **compressed_pages) 345 { 346 struct btrfs_drop_extents_args drop_args = { 0 }; 347 struct btrfs_root *root = inode->root; 348 struct btrfs_fs_info *fs_info = root->fs_info; 349 struct btrfs_trans_handle *trans; 350 u64 isize = i_size_read(&inode->vfs_inode); 351 u64 actual_end = min(end + 1, isize); 352 u64 inline_len = actual_end - start; 353 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 354 u64 data_len = inline_len; 355 int ret; 356 struct btrfs_path *path; 357 358 if (compressed_size) 359 data_len = compressed_size; 360 361 if (start > 0 || 362 actual_end > fs_info->sectorsize || 363 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 364 (!compressed_size && 365 (actual_end & (fs_info->sectorsize - 1)) == 0) || 366 end + 1 < isize || 367 data_len > fs_info->max_inline) { 368 return 1; 369 } 370 371 path = btrfs_alloc_path(); 372 if (!path) 373 return -ENOMEM; 374 375 trans = btrfs_join_transaction(root); 376 if (IS_ERR(trans)) { 377 btrfs_free_path(path); 378 return PTR_ERR(trans); 379 } 380 trans->block_rsv = &inode->block_rsv; 381 382 drop_args.path = path; 383 drop_args.start = start; 384 drop_args.end = aligned_end; 385 drop_args.drop_cache = true; 386 drop_args.replace_extent = true; 387 388 if (compressed_size && compressed_pages) 389 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 390 compressed_size); 391 else 392 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 393 inline_len); 394 395 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 396 if (ret) { 397 btrfs_abort_transaction(trans, ret); 398 goto out; 399 } 400 401 if (isize > actual_end) 402 inline_len = min_t(u64, isize, actual_end); 403 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 404 root, &inode->vfs_inode, start, 405 inline_len, compressed_size, 406 compress_type, compressed_pages); 407 if (ret && ret != -ENOSPC) { 408 btrfs_abort_transaction(trans, ret); 409 goto out; 410 } else if (ret == -ENOSPC) { 411 ret = 1; 412 goto out; 413 } 414 415 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 416 ret = btrfs_update_inode(trans, root, inode); 417 if (ret && ret != -ENOSPC) { 418 btrfs_abort_transaction(trans, ret); 419 goto out; 420 } else if (ret == -ENOSPC) { 421 ret = 1; 422 goto out; 423 } 424 425 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 426 out: 427 /* 428 * Don't forget to free the reserved space, as for inlined extent 429 * it won't count as data extent, free them directly here. 430 * And at reserve time, it's always aligned to page size, so 431 * just free one page here. 432 */ 433 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 434 btrfs_free_path(path); 435 btrfs_end_transaction(trans); 436 return ret; 437 } 438 439 struct async_extent { 440 u64 start; 441 u64 ram_size; 442 u64 compressed_size; 443 struct page **pages; 444 unsigned long nr_pages; 445 int compress_type; 446 struct list_head list; 447 }; 448 449 struct async_chunk { 450 struct inode *inode; 451 struct page *locked_page; 452 u64 start; 453 u64 end; 454 unsigned int write_flags; 455 struct list_head extents; 456 struct cgroup_subsys_state *blkcg_css; 457 struct btrfs_work work; 458 atomic_t *pending; 459 }; 460 461 struct async_cow { 462 /* Number of chunks in flight; must be first in the structure */ 463 atomic_t num_chunks; 464 struct async_chunk chunks[]; 465 }; 466 467 static noinline int add_async_extent(struct async_chunk *cow, 468 u64 start, u64 ram_size, 469 u64 compressed_size, 470 struct page **pages, 471 unsigned long nr_pages, 472 int compress_type) 473 { 474 struct async_extent *async_extent; 475 476 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 477 BUG_ON(!async_extent); /* -ENOMEM */ 478 async_extent->start = start; 479 async_extent->ram_size = ram_size; 480 async_extent->compressed_size = compressed_size; 481 async_extent->pages = pages; 482 async_extent->nr_pages = nr_pages; 483 async_extent->compress_type = compress_type; 484 list_add_tail(&async_extent->list, &cow->extents); 485 return 0; 486 } 487 488 /* 489 * Check if the inode has flags compatible with compression 490 */ 491 static inline bool inode_can_compress(struct btrfs_inode *inode) 492 { 493 if (inode->flags & BTRFS_INODE_NODATACOW || 494 inode->flags & BTRFS_INODE_NODATASUM) 495 return false; 496 return true; 497 } 498 499 /* 500 * Check if the inode needs to be submitted to compression, based on mount 501 * options, defragmentation, properties or heuristics. 502 */ 503 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 504 u64 end) 505 { 506 struct btrfs_fs_info *fs_info = inode->root->fs_info; 507 508 if (!inode_can_compress(inode)) { 509 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 510 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 511 btrfs_ino(inode)); 512 return 0; 513 } 514 /* force compress */ 515 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 516 return 1; 517 /* defrag ioctl */ 518 if (inode->defrag_compress) 519 return 1; 520 /* bad compression ratios */ 521 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 522 return 0; 523 if (btrfs_test_opt(fs_info, COMPRESS) || 524 inode->flags & BTRFS_INODE_COMPRESS || 525 inode->prop_compress) 526 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 527 return 0; 528 } 529 530 static inline void inode_should_defrag(struct btrfs_inode *inode, 531 u64 start, u64 end, u64 num_bytes, u64 small_write) 532 { 533 /* If this is a small write inside eof, kick off a defrag */ 534 if (num_bytes < small_write && 535 (start > 0 || end + 1 < inode->disk_i_size)) 536 btrfs_add_inode_defrag(NULL, inode); 537 } 538 539 /* 540 * we create compressed extents in two phases. The first 541 * phase compresses a range of pages that have already been 542 * locked (both pages and state bits are locked). 543 * 544 * This is done inside an ordered work queue, and the compression 545 * is spread across many cpus. The actual IO submission is step 546 * two, and the ordered work queue takes care of making sure that 547 * happens in the same order things were put onto the queue by 548 * writepages and friends. 549 * 550 * If this code finds it can't get good compression, it puts an 551 * entry onto the work queue to write the uncompressed bytes. This 552 * makes sure that both compressed inodes and uncompressed inodes 553 * are written in the same order that the flusher thread sent them 554 * down. 555 */ 556 static noinline int compress_file_range(struct async_chunk *async_chunk) 557 { 558 struct inode *inode = async_chunk->inode; 559 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 560 u64 blocksize = fs_info->sectorsize; 561 u64 start = async_chunk->start; 562 u64 end = async_chunk->end; 563 u64 actual_end; 564 u64 i_size; 565 int ret = 0; 566 struct page **pages = NULL; 567 unsigned long nr_pages; 568 unsigned long total_compressed = 0; 569 unsigned long total_in = 0; 570 int i; 571 int will_compress; 572 int compress_type = fs_info->compress_type; 573 int compressed_extents = 0; 574 int redirty = 0; 575 576 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 577 SZ_16K); 578 579 /* 580 * We need to save i_size before now because it could change in between 581 * us evaluating the size and assigning it. This is because we lock and 582 * unlock the page in truncate and fallocate, and then modify the i_size 583 * later on. 584 * 585 * The barriers are to emulate READ_ONCE, remove that once i_size_read 586 * does that for us. 587 */ 588 barrier(); 589 i_size = i_size_read(inode); 590 barrier(); 591 actual_end = min_t(u64, i_size, end + 1); 592 again: 593 will_compress = 0; 594 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 595 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 596 nr_pages = min_t(unsigned long, nr_pages, 597 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 598 599 /* 600 * we don't want to send crud past the end of i_size through 601 * compression, that's just a waste of CPU time. So, if the 602 * end of the file is before the start of our current 603 * requested range of bytes, we bail out to the uncompressed 604 * cleanup code that can deal with all of this. 605 * 606 * It isn't really the fastest way to fix things, but this is a 607 * very uncommon corner. 608 */ 609 if (actual_end <= start) 610 goto cleanup_and_bail_uncompressed; 611 612 total_compressed = actual_end - start; 613 614 /* 615 * skip compression for a small file range(<=blocksize) that 616 * isn't an inline extent, since it doesn't save disk space at all. 617 */ 618 if (total_compressed <= blocksize && 619 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 620 goto cleanup_and_bail_uncompressed; 621 622 total_compressed = min_t(unsigned long, total_compressed, 623 BTRFS_MAX_UNCOMPRESSED); 624 total_in = 0; 625 ret = 0; 626 627 /* 628 * we do compression for mount -o compress and when the 629 * inode has not been flagged as nocompress. This flag can 630 * change at any time if we discover bad compression ratios. 631 */ 632 if (nr_pages > 1 && inode_need_compress(BTRFS_I(inode), start, end)) { 633 WARN_ON(pages); 634 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 635 if (!pages) { 636 /* just bail out to the uncompressed code */ 637 nr_pages = 0; 638 goto cont; 639 } 640 641 if (BTRFS_I(inode)->defrag_compress) 642 compress_type = BTRFS_I(inode)->defrag_compress; 643 else if (BTRFS_I(inode)->prop_compress) 644 compress_type = BTRFS_I(inode)->prop_compress; 645 646 /* 647 * we need to call clear_page_dirty_for_io on each 648 * page in the range. Otherwise applications with the file 649 * mmap'd can wander in and change the page contents while 650 * we are compressing them. 651 * 652 * If the compression fails for any reason, we set the pages 653 * dirty again later on. 654 * 655 * Note that the remaining part is redirtied, the start pointer 656 * has moved, the end is the original one. 657 */ 658 if (!redirty) { 659 extent_range_clear_dirty_for_io(inode, start, end); 660 redirty = 1; 661 } 662 663 /* Compression level is applied here and only here */ 664 ret = btrfs_compress_pages( 665 compress_type | (fs_info->compress_level << 4), 666 inode->i_mapping, start, 667 pages, 668 &nr_pages, 669 &total_in, 670 &total_compressed); 671 672 if (!ret) { 673 unsigned long offset = offset_in_page(total_compressed); 674 struct page *page = pages[nr_pages - 1]; 675 676 /* zero the tail end of the last page, we might be 677 * sending it down to disk 678 */ 679 if (offset) 680 memzero_page(page, offset, PAGE_SIZE - offset); 681 will_compress = 1; 682 } 683 } 684 cont: 685 if (start == 0) { 686 /* lets try to make an inline extent */ 687 if (ret || total_in < actual_end) { 688 /* we didn't compress the entire range, try 689 * to make an uncompressed inline extent. 690 */ 691 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 692 0, BTRFS_COMPRESS_NONE, 693 NULL); 694 } else { 695 /* try making a compressed inline extent */ 696 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 697 total_compressed, 698 compress_type, pages); 699 } 700 if (ret <= 0) { 701 unsigned long clear_flags = EXTENT_DELALLOC | 702 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 703 EXTENT_DO_ACCOUNTING; 704 unsigned long page_error_op; 705 706 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 707 708 /* 709 * inline extent creation worked or returned error, 710 * we don't need to create any more async work items. 711 * Unlock and free up our temp pages. 712 * 713 * We use DO_ACCOUNTING here because we need the 714 * delalloc_release_metadata to be done _after_ we drop 715 * our outstanding extent for clearing delalloc for this 716 * range. 717 */ 718 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 719 NULL, 720 clear_flags, 721 PAGE_UNLOCK | 722 PAGE_START_WRITEBACK | 723 page_error_op | 724 PAGE_END_WRITEBACK); 725 726 /* 727 * Ensure we only free the compressed pages if we have 728 * them allocated, as we can still reach here with 729 * inode_need_compress() == false. 730 */ 731 if (pages) { 732 for (i = 0; i < nr_pages; i++) { 733 WARN_ON(pages[i]->mapping); 734 put_page(pages[i]); 735 } 736 kfree(pages); 737 } 738 return 0; 739 } 740 } 741 742 if (will_compress) { 743 /* 744 * we aren't doing an inline extent round the compressed size 745 * up to a block size boundary so the allocator does sane 746 * things 747 */ 748 total_compressed = ALIGN(total_compressed, blocksize); 749 750 /* 751 * one last check to make sure the compression is really a 752 * win, compare the page count read with the blocks on disk, 753 * compression must free at least one sector size 754 */ 755 total_in = ALIGN(total_in, PAGE_SIZE); 756 if (total_compressed + blocksize <= total_in) { 757 compressed_extents++; 758 759 /* 760 * The async work queues will take care of doing actual 761 * allocation on disk for these compressed pages, and 762 * will submit them to the elevator. 763 */ 764 add_async_extent(async_chunk, start, total_in, 765 total_compressed, pages, nr_pages, 766 compress_type); 767 768 if (start + total_in < end) { 769 start += total_in; 770 pages = NULL; 771 cond_resched(); 772 goto again; 773 } 774 return compressed_extents; 775 } 776 } 777 if (pages) { 778 /* 779 * the compression code ran but failed to make things smaller, 780 * free any pages it allocated and our page pointer array 781 */ 782 for (i = 0; i < nr_pages; i++) { 783 WARN_ON(pages[i]->mapping); 784 put_page(pages[i]); 785 } 786 kfree(pages); 787 pages = NULL; 788 total_compressed = 0; 789 nr_pages = 0; 790 791 /* flag the file so we don't compress in the future */ 792 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 793 !(BTRFS_I(inode)->prop_compress)) { 794 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 795 } 796 } 797 cleanup_and_bail_uncompressed: 798 /* 799 * No compression, but we still need to write the pages in the file 800 * we've been given so far. redirty the locked page if it corresponds 801 * to our extent and set things up for the async work queue to run 802 * cow_file_range to do the normal delalloc dance. 803 */ 804 if (async_chunk->locked_page && 805 (page_offset(async_chunk->locked_page) >= start && 806 page_offset(async_chunk->locked_page)) <= end) { 807 __set_page_dirty_nobuffers(async_chunk->locked_page); 808 /* unlocked later on in the async handlers */ 809 } 810 811 if (redirty) 812 extent_range_redirty_for_io(inode, start, end); 813 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 814 BTRFS_COMPRESS_NONE); 815 compressed_extents++; 816 817 return compressed_extents; 818 } 819 820 static void free_async_extent_pages(struct async_extent *async_extent) 821 { 822 int i; 823 824 if (!async_extent->pages) 825 return; 826 827 for (i = 0; i < async_extent->nr_pages; i++) { 828 WARN_ON(async_extent->pages[i]->mapping); 829 put_page(async_extent->pages[i]); 830 } 831 kfree(async_extent->pages); 832 async_extent->nr_pages = 0; 833 async_extent->pages = NULL; 834 } 835 836 /* 837 * phase two of compressed writeback. This is the ordered portion 838 * of the code, which only gets called in the order the work was 839 * queued. We walk all the async extents created by compress_file_range 840 * and send them down to the disk. 841 */ 842 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 843 { 844 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 845 struct btrfs_fs_info *fs_info = inode->root->fs_info; 846 struct async_extent *async_extent; 847 u64 alloc_hint = 0; 848 struct btrfs_key ins; 849 struct extent_map *em; 850 struct btrfs_root *root = inode->root; 851 struct extent_io_tree *io_tree = &inode->io_tree; 852 int ret = 0; 853 854 again: 855 while (!list_empty(&async_chunk->extents)) { 856 async_extent = list_entry(async_chunk->extents.next, 857 struct async_extent, list); 858 list_del(&async_extent->list); 859 860 retry: 861 lock_extent(io_tree, async_extent->start, 862 async_extent->start + async_extent->ram_size - 1); 863 /* did the compression code fall back to uncompressed IO? */ 864 if (!async_extent->pages) { 865 int page_started = 0; 866 unsigned long nr_written = 0; 867 868 /* allocate blocks */ 869 ret = cow_file_range(inode, async_chunk->locked_page, 870 async_extent->start, 871 async_extent->start + 872 async_extent->ram_size - 1, 873 &page_started, &nr_written, 0); 874 875 /* JDM XXX */ 876 877 /* 878 * if page_started, cow_file_range inserted an 879 * inline extent and took care of all the unlocking 880 * and IO for us. Otherwise, we need to submit 881 * all those pages down to the drive. 882 */ 883 if (!page_started && !ret) 884 extent_write_locked_range(&inode->vfs_inode, 885 async_extent->start, 886 async_extent->start + 887 async_extent->ram_size - 1, 888 WB_SYNC_ALL); 889 else if (ret && async_chunk->locked_page) 890 unlock_page(async_chunk->locked_page); 891 kfree(async_extent); 892 cond_resched(); 893 continue; 894 } 895 896 ret = btrfs_reserve_extent(root, async_extent->ram_size, 897 async_extent->compressed_size, 898 async_extent->compressed_size, 899 0, alloc_hint, &ins, 1, 1); 900 if (ret) { 901 free_async_extent_pages(async_extent); 902 903 if (ret == -ENOSPC) { 904 unlock_extent(io_tree, async_extent->start, 905 async_extent->start + 906 async_extent->ram_size - 1); 907 908 /* 909 * we need to redirty the pages if we decide to 910 * fallback to uncompressed IO, otherwise we 911 * will not submit these pages down to lower 912 * layers. 913 */ 914 extent_range_redirty_for_io(&inode->vfs_inode, 915 async_extent->start, 916 async_extent->start + 917 async_extent->ram_size - 1); 918 919 goto retry; 920 } 921 goto out_free; 922 } 923 /* 924 * here we're doing allocation and writeback of the 925 * compressed pages 926 */ 927 em = create_io_em(inode, async_extent->start, 928 async_extent->ram_size, /* len */ 929 async_extent->start, /* orig_start */ 930 ins.objectid, /* block_start */ 931 ins.offset, /* block_len */ 932 ins.offset, /* orig_block_len */ 933 async_extent->ram_size, /* ram_bytes */ 934 async_extent->compress_type, 935 BTRFS_ORDERED_COMPRESSED); 936 if (IS_ERR(em)) 937 /* ret value is not necessary due to void function */ 938 goto out_free_reserve; 939 free_extent_map(em); 940 941 ret = btrfs_add_ordered_extent_compress(inode, 942 async_extent->start, 943 ins.objectid, 944 async_extent->ram_size, 945 ins.offset, 946 async_extent->compress_type); 947 if (ret) { 948 btrfs_drop_extent_cache(inode, async_extent->start, 949 async_extent->start + 950 async_extent->ram_size - 1, 0); 951 goto out_free_reserve; 952 } 953 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 954 955 /* 956 * clear dirty, set writeback and unlock the pages. 957 */ 958 extent_clear_unlock_delalloc(inode, async_extent->start, 959 async_extent->start + 960 async_extent->ram_size - 1, 961 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 962 PAGE_UNLOCK | PAGE_START_WRITEBACK); 963 if (btrfs_submit_compressed_write(inode, async_extent->start, 964 async_extent->ram_size, 965 ins.objectid, 966 ins.offset, async_extent->pages, 967 async_extent->nr_pages, 968 async_chunk->write_flags, 969 async_chunk->blkcg_css)) { 970 struct page *p = async_extent->pages[0]; 971 const u64 start = async_extent->start; 972 const u64 end = start + async_extent->ram_size - 1; 973 974 p->mapping = inode->vfs_inode.i_mapping; 975 btrfs_writepage_endio_finish_ordered(inode, p, start, 976 end, 0); 977 978 p->mapping = NULL; 979 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 980 PAGE_END_WRITEBACK | 981 PAGE_SET_ERROR); 982 free_async_extent_pages(async_extent); 983 } 984 alloc_hint = ins.objectid + ins.offset; 985 kfree(async_extent); 986 cond_resched(); 987 } 988 return; 989 out_free_reserve: 990 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 991 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 992 out_free: 993 extent_clear_unlock_delalloc(inode, async_extent->start, 994 async_extent->start + 995 async_extent->ram_size - 1, 996 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 997 EXTENT_DELALLOC_NEW | 998 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 999 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1000 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1001 free_async_extent_pages(async_extent); 1002 kfree(async_extent); 1003 goto again; 1004 } 1005 1006 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1007 u64 num_bytes) 1008 { 1009 struct extent_map_tree *em_tree = &inode->extent_tree; 1010 struct extent_map *em; 1011 u64 alloc_hint = 0; 1012 1013 read_lock(&em_tree->lock); 1014 em = search_extent_mapping(em_tree, start, num_bytes); 1015 if (em) { 1016 /* 1017 * if block start isn't an actual block number then find the 1018 * first block in this inode and use that as a hint. If that 1019 * block is also bogus then just don't worry about it. 1020 */ 1021 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1022 free_extent_map(em); 1023 em = search_extent_mapping(em_tree, 0, 0); 1024 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1025 alloc_hint = em->block_start; 1026 if (em) 1027 free_extent_map(em); 1028 } else { 1029 alloc_hint = em->block_start; 1030 free_extent_map(em); 1031 } 1032 } 1033 read_unlock(&em_tree->lock); 1034 1035 return alloc_hint; 1036 } 1037 1038 /* 1039 * when extent_io.c finds a delayed allocation range in the file, 1040 * the call backs end up in this code. The basic idea is to 1041 * allocate extents on disk for the range, and create ordered data structs 1042 * in ram to track those extents. 1043 * 1044 * locked_page is the page that writepage had locked already. We use 1045 * it to make sure we don't do extra locks or unlocks. 1046 * 1047 * *page_started is set to one if we unlock locked_page and do everything 1048 * required to start IO on it. It may be clean and already done with 1049 * IO when we return. 1050 */ 1051 static noinline int cow_file_range(struct btrfs_inode *inode, 1052 struct page *locked_page, 1053 u64 start, u64 end, int *page_started, 1054 unsigned long *nr_written, int unlock) 1055 { 1056 struct btrfs_root *root = inode->root; 1057 struct btrfs_fs_info *fs_info = root->fs_info; 1058 u64 alloc_hint = 0; 1059 u64 num_bytes; 1060 unsigned long ram_size; 1061 u64 cur_alloc_size = 0; 1062 u64 min_alloc_size; 1063 u64 blocksize = fs_info->sectorsize; 1064 struct btrfs_key ins; 1065 struct extent_map *em; 1066 unsigned clear_bits; 1067 unsigned long page_ops; 1068 bool extent_reserved = false; 1069 int ret = 0; 1070 1071 if (btrfs_is_free_space_inode(inode)) { 1072 WARN_ON_ONCE(1); 1073 ret = -EINVAL; 1074 goto out_unlock; 1075 } 1076 1077 num_bytes = ALIGN(end - start + 1, blocksize); 1078 num_bytes = max(blocksize, num_bytes); 1079 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1080 1081 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1082 1083 if (start == 0) { 1084 /* lets try to make an inline extent */ 1085 ret = cow_file_range_inline(inode, start, end, 0, 1086 BTRFS_COMPRESS_NONE, NULL); 1087 if (ret == 0) { 1088 /* 1089 * We use DO_ACCOUNTING here because we need the 1090 * delalloc_release_metadata to be run _after_ we drop 1091 * our outstanding extent for clearing delalloc for this 1092 * range. 1093 */ 1094 extent_clear_unlock_delalloc(inode, start, end, 1095 locked_page, 1096 EXTENT_LOCKED | EXTENT_DELALLOC | 1097 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1098 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1099 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1100 *nr_written = *nr_written + 1101 (end - start + PAGE_SIZE) / PAGE_SIZE; 1102 *page_started = 1; 1103 /* 1104 * locked_page is locked by the caller of 1105 * writepage_delalloc(), not locked by 1106 * __process_pages_contig(). 1107 * 1108 * We can't let __process_pages_contig() to unlock it, 1109 * as it doesn't have any subpage::writers recorded. 1110 * 1111 * Here we manually unlock the page, since the caller 1112 * can't use page_started to determine if it's an 1113 * inline extent or a compressed extent. 1114 */ 1115 unlock_page(locked_page); 1116 goto out; 1117 } else if (ret < 0) { 1118 goto out_unlock; 1119 } 1120 } 1121 1122 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1123 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1124 1125 /* 1126 * Relocation relies on the relocated extents to have exactly the same 1127 * size as the original extents. Normally writeback for relocation data 1128 * extents follows a NOCOW path because relocation preallocates the 1129 * extents. However, due to an operation such as scrub turning a block 1130 * group to RO mode, it may fallback to COW mode, so we must make sure 1131 * an extent allocated during COW has exactly the requested size and can 1132 * not be split into smaller extents, otherwise relocation breaks and 1133 * fails during the stage where it updates the bytenr of file extent 1134 * items. 1135 */ 1136 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1137 min_alloc_size = num_bytes; 1138 else 1139 min_alloc_size = fs_info->sectorsize; 1140 1141 while (num_bytes > 0) { 1142 cur_alloc_size = num_bytes; 1143 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1144 min_alloc_size, 0, alloc_hint, 1145 &ins, 1, 1); 1146 if (ret < 0) 1147 goto out_unlock; 1148 cur_alloc_size = ins.offset; 1149 extent_reserved = true; 1150 1151 ram_size = ins.offset; 1152 em = create_io_em(inode, start, ins.offset, /* len */ 1153 start, /* orig_start */ 1154 ins.objectid, /* block_start */ 1155 ins.offset, /* block_len */ 1156 ins.offset, /* orig_block_len */ 1157 ram_size, /* ram_bytes */ 1158 BTRFS_COMPRESS_NONE, /* compress_type */ 1159 BTRFS_ORDERED_REGULAR /* type */); 1160 if (IS_ERR(em)) { 1161 ret = PTR_ERR(em); 1162 goto out_reserve; 1163 } 1164 free_extent_map(em); 1165 1166 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1167 ram_size, cur_alloc_size, 1168 BTRFS_ORDERED_REGULAR); 1169 if (ret) 1170 goto out_drop_extent_cache; 1171 1172 if (root->root_key.objectid == 1173 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1174 ret = btrfs_reloc_clone_csums(inode, start, 1175 cur_alloc_size); 1176 /* 1177 * Only drop cache here, and process as normal. 1178 * 1179 * We must not allow extent_clear_unlock_delalloc() 1180 * at out_unlock label to free meta of this ordered 1181 * extent, as its meta should be freed by 1182 * btrfs_finish_ordered_io(). 1183 * 1184 * So we must continue until @start is increased to 1185 * skip current ordered extent. 1186 */ 1187 if (ret) 1188 btrfs_drop_extent_cache(inode, start, 1189 start + ram_size - 1, 0); 1190 } 1191 1192 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1193 1194 /* 1195 * We're not doing compressed IO, don't unlock the first page 1196 * (which the caller expects to stay locked), don't clear any 1197 * dirty bits and don't set any writeback bits 1198 * 1199 * Do set the Ordered (Private2) bit so we know this page was 1200 * properly setup for writepage. 1201 */ 1202 page_ops = unlock ? PAGE_UNLOCK : 0; 1203 page_ops |= PAGE_SET_ORDERED; 1204 1205 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1206 locked_page, 1207 EXTENT_LOCKED | EXTENT_DELALLOC, 1208 page_ops); 1209 if (num_bytes < cur_alloc_size) 1210 num_bytes = 0; 1211 else 1212 num_bytes -= cur_alloc_size; 1213 alloc_hint = ins.objectid + ins.offset; 1214 start += cur_alloc_size; 1215 extent_reserved = false; 1216 1217 /* 1218 * btrfs_reloc_clone_csums() error, since start is increased 1219 * extent_clear_unlock_delalloc() at out_unlock label won't 1220 * free metadata of current ordered extent, we're OK to exit. 1221 */ 1222 if (ret) 1223 goto out_unlock; 1224 } 1225 out: 1226 return ret; 1227 1228 out_drop_extent_cache: 1229 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1230 out_reserve: 1231 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1232 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1233 out_unlock: 1234 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1235 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1236 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1237 /* 1238 * If we reserved an extent for our delalloc range (or a subrange) and 1239 * failed to create the respective ordered extent, then it means that 1240 * when we reserved the extent we decremented the extent's size from 1241 * the data space_info's bytes_may_use counter and incremented the 1242 * space_info's bytes_reserved counter by the same amount. We must make 1243 * sure extent_clear_unlock_delalloc() does not try to decrement again 1244 * the data space_info's bytes_may_use counter, therefore we do not pass 1245 * it the flag EXTENT_CLEAR_DATA_RESV. 1246 */ 1247 if (extent_reserved) { 1248 extent_clear_unlock_delalloc(inode, start, 1249 start + cur_alloc_size - 1, 1250 locked_page, 1251 clear_bits, 1252 page_ops); 1253 start += cur_alloc_size; 1254 if (start >= end) 1255 goto out; 1256 } 1257 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1258 clear_bits | EXTENT_CLEAR_DATA_RESV, 1259 page_ops); 1260 goto out; 1261 } 1262 1263 /* 1264 * work queue call back to started compression on a file and pages 1265 */ 1266 static noinline void async_cow_start(struct btrfs_work *work) 1267 { 1268 struct async_chunk *async_chunk; 1269 int compressed_extents; 1270 1271 async_chunk = container_of(work, struct async_chunk, work); 1272 1273 compressed_extents = compress_file_range(async_chunk); 1274 if (compressed_extents == 0) { 1275 btrfs_add_delayed_iput(async_chunk->inode); 1276 async_chunk->inode = NULL; 1277 } 1278 } 1279 1280 /* 1281 * work queue call back to submit previously compressed pages 1282 */ 1283 static noinline void async_cow_submit(struct btrfs_work *work) 1284 { 1285 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1286 work); 1287 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1288 unsigned long nr_pages; 1289 1290 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1291 PAGE_SHIFT; 1292 1293 /* atomic_sub_return implies a barrier */ 1294 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1295 5 * SZ_1M) 1296 cond_wake_up_nomb(&fs_info->async_submit_wait); 1297 1298 /* 1299 * ->inode could be NULL if async_chunk_start has failed to compress, 1300 * in which case we don't have anything to submit, yet we need to 1301 * always adjust ->async_delalloc_pages as its paired with the init 1302 * happening in cow_file_range_async 1303 */ 1304 if (async_chunk->inode) 1305 submit_compressed_extents(async_chunk); 1306 } 1307 1308 static noinline void async_cow_free(struct btrfs_work *work) 1309 { 1310 struct async_chunk *async_chunk; 1311 1312 async_chunk = container_of(work, struct async_chunk, work); 1313 if (async_chunk->inode) 1314 btrfs_add_delayed_iput(async_chunk->inode); 1315 if (async_chunk->blkcg_css) 1316 css_put(async_chunk->blkcg_css); 1317 /* 1318 * Since the pointer to 'pending' is at the beginning of the array of 1319 * async_chunk's, freeing it ensures the whole array has been freed. 1320 */ 1321 if (atomic_dec_and_test(async_chunk->pending)) 1322 kvfree(async_chunk->pending); 1323 } 1324 1325 static int cow_file_range_async(struct btrfs_inode *inode, 1326 struct writeback_control *wbc, 1327 struct page *locked_page, 1328 u64 start, u64 end, int *page_started, 1329 unsigned long *nr_written) 1330 { 1331 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1332 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1333 struct async_cow *ctx; 1334 struct async_chunk *async_chunk; 1335 unsigned long nr_pages; 1336 u64 cur_end; 1337 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1338 int i; 1339 bool should_compress; 1340 unsigned nofs_flag; 1341 const unsigned int write_flags = wbc_to_write_flags(wbc); 1342 1343 unlock_extent(&inode->io_tree, start, end); 1344 1345 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1346 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1347 num_chunks = 1; 1348 should_compress = false; 1349 } else { 1350 should_compress = true; 1351 } 1352 1353 nofs_flag = memalloc_nofs_save(); 1354 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1355 memalloc_nofs_restore(nofs_flag); 1356 1357 if (!ctx) { 1358 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1359 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1360 EXTENT_DO_ACCOUNTING; 1361 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1362 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1363 1364 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1365 clear_bits, page_ops); 1366 return -ENOMEM; 1367 } 1368 1369 async_chunk = ctx->chunks; 1370 atomic_set(&ctx->num_chunks, num_chunks); 1371 1372 for (i = 0; i < num_chunks; i++) { 1373 if (should_compress) 1374 cur_end = min(end, start + SZ_512K - 1); 1375 else 1376 cur_end = end; 1377 1378 /* 1379 * igrab is called higher up in the call chain, take only the 1380 * lightweight reference for the callback lifetime 1381 */ 1382 ihold(&inode->vfs_inode); 1383 async_chunk[i].pending = &ctx->num_chunks; 1384 async_chunk[i].inode = &inode->vfs_inode; 1385 async_chunk[i].start = start; 1386 async_chunk[i].end = cur_end; 1387 async_chunk[i].write_flags = write_flags; 1388 INIT_LIST_HEAD(&async_chunk[i].extents); 1389 1390 /* 1391 * The locked_page comes all the way from writepage and its 1392 * the original page we were actually given. As we spread 1393 * this large delalloc region across multiple async_chunk 1394 * structs, only the first struct needs a pointer to locked_page 1395 * 1396 * This way we don't need racey decisions about who is supposed 1397 * to unlock it. 1398 */ 1399 if (locked_page) { 1400 /* 1401 * Depending on the compressibility, the pages might or 1402 * might not go through async. We want all of them to 1403 * be accounted against wbc once. Let's do it here 1404 * before the paths diverge. wbc accounting is used 1405 * only for foreign writeback detection and doesn't 1406 * need full accuracy. Just account the whole thing 1407 * against the first page. 1408 */ 1409 wbc_account_cgroup_owner(wbc, locked_page, 1410 cur_end - start); 1411 async_chunk[i].locked_page = locked_page; 1412 locked_page = NULL; 1413 } else { 1414 async_chunk[i].locked_page = NULL; 1415 } 1416 1417 if (blkcg_css != blkcg_root_css) { 1418 css_get(blkcg_css); 1419 async_chunk[i].blkcg_css = blkcg_css; 1420 } else { 1421 async_chunk[i].blkcg_css = NULL; 1422 } 1423 1424 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1425 async_cow_submit, async_cow_free); 1426 1427 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1428 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1429 1430 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1431 1432 *nr_written += nr_pages; 1433 start = cur_end + 1; 1434 } 1435 *page_started = 1; 1436 return 0; 1437 } 1438 1439 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1440 struct page *locked_page, u64 start, 1441 u64 end, int *page_started, 1442 unsigned long *nr_written) 1443 { 1444 int ret; 1445 1446 ret = cow_file_range(inode, locked_page, start, end, page_started, 1447 nr_written, 0); 1448 if (ret) 1449 return ret; 1450 1451 if (*page_started) 1452 return 0; 1453 1454 __set_page_dirty_nobuffers(locked_page); 1455 account_page_redirty(locked_page); 1456 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); 1457 *page_started = 1; 1458 1459 return 0; 1460 } 1461 1462 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1463 u64 bytenr, u64 num_bytes) 1464 { 1465 int ret; 1466 struct btrfs_ordered_sum *sums; 1467 LIST_HEAD(list); 1468 1469 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1470 bytenr + num_bytes - 1, &list, 0); 1471 if (ret == 0 && list_empty(&list)) 1472 return 0; 1473 1474 while (!list_empty(&list)) { 1475 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1476 list_del(&sums->list); 1477 kfree(sums); 1478 } 1479 if (ret < 0) 1480 return ret; 1481 return 1; 1482 } 1483 1484 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1485 const u64 start, const u64 end, 1486 int *page_started, unsigned long *nr_written) 1487 { 1488 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1489 const bool is_reloc_ino = (inode->root->root_key.objectid == 1490 BTRFS_DATA_RELOC_TREE_OBJECTID); 1491 const u64 range_bytes = end + 1 - start; 1492 struct extent_io_tree *io_tree = &inode->io_tree; 1493 u64 range_start = start; 1494 u64 count; 1495 1496 /* 1497 * If EXTENT_NORESERVE is set it means that when the buffered write was 1498 * made we had not enough available data space and therefore we did not 1499 * reserve data space for it, since we though we could do NOCOW for the 1500 * respective file range (either there is prealloc extent or the inode 1501 * has the NOCOW bit set). 1502 * 1503 * However when we need to fallback to COW mode (because for example the 1504 * block group for the corresponding extent was turned to RO mode by a 1505 * scrub or relocation) we need to do the following: 1506 * 1507 * 1) We increment the bytes_may_use counter of the data space info. 1508 * If COW succeeds, it allocates a new data extent and after doing 1509 * that it decrements the space info's bytes_may_use counter and 1510 * increments its bytes_reserved counter by the same amount (we do 1511 * this at btrfs_add_reserved_bytes()). So we need to increment the 1512 * bytes_may_use counter to compensate (when space is reserved at 1513 * buffered write time, the bytes_may_use counter is incremented); 1514 * 1515 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1516 * that if the COW path fails for any reason, it decrements (through 1517 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1518 * data space info, which we incremented in the step above. 1519 * 1520 * If we need to fallback to cow and the inode corresponds to a free 1521 * space cache inode or an inode of the data relocation tree, we must 1522 * also increment bytes_may_use of the data space_info for the same 1523 * reason. Space caches and relocated data extents always get a prealloc 1524 * extent for them, however scrub or balance may have set the block 1525 * group that contains that extent to RO mode and therefore force COW 1526 * when starting writeback. 1527 */ 1528 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1529 EXTENT_NORESERVE, 0); 1530 if (count > 0 || is_space_ino || is_reloc_ino) { 1531 u64 bytes = count; 1532 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1533 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1534 1535 if (is_space_ino || is_reloc_ino) 1536 bytes = range_bytes; 1537 1538 spin_lock(&sinfo->lock); 1539 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1540 spin_unlock(&sinfo->lock); 1541 1542 if (count > 0) 1543 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1544 0, 0, NULL); 1545 } 1546 1547 return cow_file_range(inode, locked_page, start, end, page_started, 1548 nr_written, 1); 1549 } 1550 1551 /* 1552 * when nowcow writeback call back. This checks for snapshots or COW copies 1553 * of the extents that exist in the file, and COWs the file as required. 1554 * 1555 * If no cow copies or snapshots exist, we write directly to the existing 1556 * blocks on disk 1557 */ 1558 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1559 struct page *locked_page, 1560 const u64 start, const u64 end, 1561 int *page_started, 1562 unsigned long *nr_written) 1563 { 1564 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1565 struct btrfs_root *root = inode->root; 1566 struct btrfs_path *path; 1567 u64 cow_start = (u64)-1; 1568 u64 cur_offset = start; 1569 int ret; 1570 bool check_prev = true; 1571 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1572 u64 ino = btrfs_ino(inode); 1573 bool nocow = false; 1574 u64 disk_bytenr = 0; 1575 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1576 1577 path = btrfs_alloc_path(); 1578 if (!path) { 1579 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1580 EXTENT_LOCKED | EXTENT_DELALLOC | 1581 EXTENT_DO_ACCOUNTING | 1582 EXTENT_DEFRAG, PAGE_UNLOCK | 1583 PAGE_START_WRITEBACK | 1584 PAGE_END_WRITEBACK); 1585 return -ENOMEM; 1586 } 1587 1588 while (1) { 1589 struct btrfs_key found_key; 1590 struct btrfs_file_extent_item *fi; 1591 struct extent_buffer *leaf; 1592 u64 extent_end; 1593 u64 extent_offset; 1594 u64 num_bytes = 0; 1595 u64 disk_num_bytes; 1596 u64 ram_bytes; 1597 int extent_type; 1598 1599 nocow = false; 1600 1601 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1602 cur_offset, 0); 1603 if (ret < 0) 1604 goto error; 1605 1606 /* 1607 * If there is no extent for our range when doing the initial 1608 * search, then go back to the previous slot as it will be the 1609 * one containing the search offset 1610 */ 1611 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1612 leaf = path->nodes[0]; 1613 btrfs_item_key_to_cpu(leaf, &found_key, 1614 path->slots[0] - 1); 1615 if (found_key.objectid == ino && 1616 found_key.type == BTRFS_EXTENT_DATA_KEY) 1617 path->slots[0]--; 1618 } 1619 check_prev = false; 1620 next_slot: 1621 /* Go to next leaf if we have exhausted the current one */ 1622 leaf = path->nodes[0]; 1623 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1624 ret = btrfs_next_leaf(root, path); 1625 if (ret < 0) { 1626 if (cow_start != (u64)-1) 1627 cur_offset = cow_start; 1628 goto error; 1629 } 1630 if (ret > 0) 1631 break; 1632 leaf = path->nodes[0]; 1633 } 1634 1635 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1636 1637 /* Didn't find anything for our INO */ 1638 if (found_key.objectid > ino) 1639 break; 1640 /* 1641 * Keep searching until we find an EXTENT_ITEM or there are no 1642 * more extents for this inode 1643 */ 1644 if (WARN_ON_ONCE(found_key.objectid < ino) || 1645 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1646 path->slots[0]++; 1647 goto next_slot; 1648 } 1649 1650 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1651 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1652 found_key.offset > end) 1653 break; 1654 1655 /* 1656 * If the found extent starts after requested offset, then 1657 * adjust extent_end to be right before this extent begins 1658 */ 1659 if (found_key.offset > cur_offset) { 1660 extent_end = found_key.offset; 1661 extent_type = 0; 1662 goto out_check; 1663 } 1664 1665 /* 1666 * Found extent which begins before our range and potentially 1667 * intersect it 1668 */ 1669 fi = btrfs_item_ptr(leaf, path->slots[0], 1670 struct btrfs_file_extent_item); 1671 extent_type = btrfs_file_extent_type(leaf, fi); 1672 1673 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1674 if (extent_type == BTRFS_FILE_EXTENT_REG || 1675 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1676 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1677 extent_offset = btrfs_file_extent_offset(leaf, fi); 1678 extent_end = found_key.offset + 1679 btrfs_file_extent_num_bytes(leaf, fi); 1680 disk_num_bytes = 1681 btrfs_file_extent_disk_num_bytes(leaf, fi); 1682 /* 1683 * If the extent we got ends before our current offset, 1684 * skip to the next extent. 1685 */ 1686 if (extent_end <= cur_offset) { 1687 path->slots[0]++; 1688 goto next_slot; 1689 } 1690 /* Skip holes */ 1691 if (disk_bytenr == 0) 1692 goto out_check; 1693 /* Skip compressed/encrypted/encoded extents */ 1694 if (btrfs_file_extent_compression(leaf, fi) || 1695 btrfs_file_extent_encryption(leaf, fi) || 1696 btrfs_file_extent_other_encoding(leaf, fi)) 1697 goto out_check; 1698 /* 1699 * If extent is created before the last volume's snapshot 1700 * this implies the extent is shared, hence we can't do 1701 * nocow. This is the same check as in 1702 * btrfs_cross_ref_exist but without calling 1703 * btrfs_search_slot. 1704 */ 1705 if (!freespace_inode && 1706 btrfs_file_extent_generation(leaf, fi) <= 1707 btrfs_root_last_snapshot(&root->root_item)) 1708 goto out_check; 1709 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1710 goto out_check; 1711 1712 /* 1713 * The following checks can be expensive, as they need to 1714 * take other locks and do btree or rbtree searches, so 1715 * release the path to avoid blocking other tasks for too 1716 * long. 1717 */ 1718 btrfs_release_path(path); 1719 1720 ret = btrfs_cross_ref_exist(root, ino, 1721 found_key.offset - 1722 extent_offset, disk_bytenr, false); 1723 if (ret) { 1724 /* 1725 * ret could be -EIO if the above fails to read 1726 * metadata. 1727 */ 1728 if (ret < 0) { 1729 if (cow_start != (u64)-1) 1730 cur_offset = cow_start; 1731 goto error; 1732 } 1733 1734 WARN_ON_ONCE(freespace_inode); 1735 goto out_check; 1736 } 1737 disk_bytenr += extent_offset; 1738 disk_bytenr += cur_offset - found_key.offset; 1739 num_bytes = min(end + 1, extent_end) - cur_offset; 1740 /* 1741 * If there are pending snapshots for this root, we 1742 * fall into common COW way 1743 */ 1744 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1745 goto out_check; 1746 /* 1747 * force cow if csum exists in the range. 1748 * this ensure that csum for a given extent are 1749 * either valid or do not exist. 1750 */ 1751 ret = csum_exist_in_range(fs_info, disk_bytenr, 1752 num_bytes); 1753 if (ret) { 1754 /* 1755 * ret could be -EIO if the above fails to read 1756 * metadata. 1757 */ 1758 if (ret < 0) { 1759 if (cow_start != (u64)-1) 1760 cur_offset = cow_start; 1761 goto error; 1762 } 1763 WARN_ON_ONCE(freespace_inode); 1764 goto out_check; 1765 } 1766 /* If the extent's block group is RO, we must COW */ 1767 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1768 goto out_check; 1769 nocow = true; 1770 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1771 extent_end = found_key.offset + ram_bytes; 1772 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1773 /* Skip extents outside of our requested range */ 1774 if (extent_end <= start) { 1775 path->slots[0]++; 1776 goto next_slot; 1777 } 1778 } else { 1779 /* If this triggers then we have a memory corruption */ 1780 BUG(); 1781 } 1782 out_check: 1783 /* 1784 * If nocow is false then record the beginning of the range 1785 * that needs to be COWed 1786 */ 1787 if (!nocow) { 1788 if (cow_start == (u64)-1) 1789 cow_start = cur_offset; 1790 cur_offset = extent_end; 1791 if (cur_offset > end) 1792 break; 1793 if (!path->nodes[0]) 1794 continue; 1795 path->slots[0]++; 1796 goto next_slot; 1797 } 1798 1799 /* 1800 * COW range from cow_start to found_key.offset - 1. As the key 1801 * will contain the beginning of the first extent that can be 1802 * NOCOW, following one which needs to be COW'ed 1803 */ 1804 if (cow_start != (u64)-1) { 1805 ret = fallback_to_cow(inode, locked_page, 1806 cow_start, found_key.offset - 1, 1807 page_started, nr_written); 1808 if (ret) 1809 goto error; 1810 cow_start = (u64)-1; 1811 } 1812 1813 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1814 u64 orig_start = found_key.offset - extent_offset; 1815 struct extent_map *em; 1816 1817 em = create_io_em(inode, cur_offset, num_bytes, 1818 orig_start, 1819 disk_bytenr, /* block_start */ 1820 num_bytes, /* block_len */ 1821 disk_num_bytes, /* orig_block_len */ 1822 ram_bytes, BTRFS_COMPRESS_NONE, 1823 BTRFS_ORDERED_PREALLOC); 1824 if (IS_ERR(em)) { 1825 ret = PTR_ERR(em); 1826 goto error; 1827 } 1828 free_extent_map(em); 1829 ret = btrfs_add_ordered_extent(inode, cur_offset, 1830 disk_bytenr, num_bytes, 1831 num_bytes, 1832 BTRFS_ORDERED_PREALLOC); 1833 if (ret) { 1834 btrfs_drop_extent_cache(inode, cur_offset, 1835 cur_offset + num_bytes - 1, 1836 0); 1837 goto error; 1838 } 1839 } else { 1840 ret = btrfs_add_ordered_extent(inode, cur_offset, 1841 disk_bytenr, num_bytes, 1842 num_bytes, 1843 BTRFS_ORDERED_NOCOW); 1844 if (ret) 1845 goto error; 1846 } 1847 1848 if (nocow) 1849 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1850 nocow = false; 1851 1852 if (root->root_key.objectid == 1853 BTRFS_DATA_RELOC_TREE_OBJECTID) 1854 /* 1855 * Error handled later, as we must prevent 1856 * extent_clear_unlock_delalloc() in error handler 1857 * from freeing metadata of created ordered extent. 1858 */ 1859 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1860 num_bytes); 1861 1862 extent_clear_unlock_delalloc(inode, cur_offset, 1863 cur_offset + num_bytes - 1, 1864 locked_page, EXTENT_LOCKED | 1865 EXTENT_DELALLOC | 1866 EXTENT_CLEAR_DATA_RESV, 1867 PAGE_UNLOCK | PAGE_SET_ORDERED); 1868 1869 cur_offset = extent_end; 1870 1871 /* 1872 * btrfs_reloc_clone_csums() error, now we're OK to call error 1873 * handler, as metadata for created ordered extent will only 1874 * be freed by btrfs_finish_ordered_io(). 1875 */ 1876 if (ret) 1877 goto error; 1878 if (cur_offset > end) 1879 break; 1880 } 1881 btrfs_release_path(path); 1882 1883 if (cur_offset <= end && cow_start == (u64)-1) 1884 cow_start = cur_offset; 1885 1886 if (cow_start != (u64)-1) { 1887 cur_offset = end; 1888 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1889 page_started, nr_written); 1890 if (ret) 1891 goto error; 1892 } 1893 1894 error: 1895 if (nocow) 1896 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1897 1898 if (ret && cur_offset < end) 1899 extent_clear_unlock_delalloc(inode, cur_offset, end, 1900 locked_page, EXTENT_LOCKED | 1901 EXTENT_DELALLOC | EXTENT_DEFRAG | 1902 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1903 PAGE_START_WRITEBACK | 1904 PAGE_END_WRITEBACK); 1905 btrfs_free_path(path); 1906 return ret; 1907 } 1908 1909 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1910 { 1911 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1912 if (inode->defrag_bytes && 1913 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1914 0, NULL)) 1915 return false; 1916 return true; 1917 } 1918 return false; 1919 } 1920 1921 /* 1922 * Function to process delayed allocation (create CoW) for ranges which are 1923 * being touched for the first time. 1924 */ 1925 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1926 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1927 struct writeback_control *wbc) 1928 { 1929 int ret; 1930 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1931 1932 if (should_nocow(inode, start, end)) { 1933 ASSERT(!zoned); 1934 ret = run_delalloc_nocow(inode, locked_page, start, end, 1935 page_started, nr_written); 1936 } else if (!inode_can_compress(inode) || 1937 !inode_need_compress(inode, start, end)) { 1938 if (zoned) 1939 ret = run_delalloc_zoned(inode, locked_page, start, end, 1940 page_started, nr_written); 1941 else 1942 ret = cow_file_range(inode, locked_page, start, end, 1943 page_started, nr_written, 1); 1944 } else { 1945 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1946 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1947 page_started, nr_written); 1948 } 1949 if (ret) 1950 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1951 end - start + 1); 1952 return ret; 1953 } 1954 1955 void btrfs_split_delalloc_extent(struct inode *inode, 1956 struct extent_state *orig, u64 split) 1957 { 1958 u64 size; 1959 1960 /* not delalloc, ignore it */ 1961 if (!(orig->state & EXTENT_DELALLOC)) 1962 return; 1963 1964 size = orig->end - orig->start + 1; 1965 if (size > BTRFS_MAX_EXTENT_SIZE) { 1966 u32 num_extents; 1967 u64 new_size; 1968 1969 /* 1970 * See the explanation in btrfs_merge_delalloc_extent, the same 1971 * applies here, just in reverse. 1972 */ 1973 new_size = orig->end - split + 1; 1974 num_extents = count_max_extents(new_size); 1975 new_size = split - orig->start; 1976 num_extents += count_max_extents(new_size); 1977 if (count_max_extents(size) >= num_extents) 1978 return; 1979 } 1980 1981 spin_lock(&BTRFS_I(inode)->lock); 1982 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1983 spin_unlock(&BTRFS_I(inode)->lock); 1984 } 1985 1986 /* 1987 * Handle merged delayed allocation extents so we can keep track of new extents 1988 * that are just merged onto old extents, such as when we are doing sequential 1989 * writes, so we can properly account for the metadata space we'll need. 1990 */ 1991 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1992 struct extent_state *other) 1993 { 1994 u64 new_size, old_size; 1995 u32 num_extents; 1996 1997 /* not delalloc, ignore it */ 1998 if (!(other->state & EXTENT_DELALLOC)) 1999 return; 2000 2001 if (new->start > other->start) 2002 new_size = new->end - other->start + 1; 2003 else 2004 new_size = other->end - new->start + 1; 2005 2006 /* we're not bigger than the max, unreserve the space and go */ 2007 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 2008 spin_lock(&BTRFS_I(inode)->lock); 2009 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2010 spin_unlock(&BTRFS_I(inode)->lock); 2011 return; 2012 } 2013 2014 /* 2015 * We have to add up either side to figure out how many extents were 2016 * accounted for before we merged into one big extent. If the number of 2017 * extents we accounted for is <= the amount we need for the new range 2018 * then we can return, otherwise drop. Think of it like this 2019 * 2020 * [ 4k][MAX_SIZE] 2021 * 2022 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2023 * need 2 outstanding extents, on one side we have 1 and the other side 2024 * we have 1 so they are == and we can return. But in this case 2025 * 2026 * [MAX_SIZE+4k][MAX_SIZE+4k] 2027 * 2028 * Each range on their own accounts for 2 extents, but merged together 2029 * they are only 3 extents worth of accounting, so we need to drop in 2030 * this case. 2031 */ 2032 old_size = other->end - other->start + 1; 2033 num_extents = count_max_extents(old_size); 2034 old_size = new->end - new->start + 1; 2035 num_extents += count_max_extents(old_size); 2036 if (count_max_extents(new_size) >= num_extents) 2037 return; 2038 2039 spin_lock(&BTRFS_I(inode)->lock); 2040 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2041 spin_unlock(&BTRFS_I(inode)->lock); 2042 } 2043 2044 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2045 struct inode *inode) 2046 { 2047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2048 2049 spin_lock(&root->delalloc_lock); 2050 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2051 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2052 &root->delalloc_inodes); 2053 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2054 &BTRFS_I(inode)->runtime_flags); 2055 root->nr_delalloc_inodes++; 2056 if (root->nr_delalloc_inodes == 1) { 2057 spin_lock(&fs_info->delalloc_root_lock); 2058 BUG_ON(!list_empty(&root->delalloc_root)); 2059 list_add_tail(&root->delalloc_root, 2060 &fs_info->delalloc_roots); 2061 spin_unlock(&fs_info->delalloc_root_lock); 2062 } 2063 } 2064 spin_unlock(&root->delalloc_lock); 2065 } 2066 2067 2068 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2069 struct btrfs_inode *inode) 2070 { 2071 struct btrfs_fs_info *fs_info = root->fs_info; 2072 2073 if (!list_empty(&inode->delalloc_inodes)) { 2074 list_del_init(&inode->delalloc_inodes); 2075 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2076 &inode->runtime_flags); 2077 root->nr_delalloc_inodes--; 2078 if (!root->nr_delalloc_inodes) { 2079 ASSERT(list_empty(&root->delalloc_inodes)); 2080 spin_lock(&fs_info->delalloc_root_lock); 2081 BUG_ON(list_empty(&root->delalloc_root)); 2082 list_del_init(&root->delalloc_root); 2083 spin_unlock(&fs_info->delalloc_root_lock); 2084 } 2085 } 2086 } 2087 2088 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2089 struct btrfs_inode *inode) 2090 { 2091 spin_lock(&root->delalloc_lock); 2092 __btrfs_del_delalloc_inode(root, inode); 2093 spin_unlock(&root->delalloc_lock); 2094 } 2095 2096 /* 2097 * Properly track delayed allocation bytes in the inode and to maintain the 2098 * list of inodes that have pending delalloc work to be done. 2099 */ 2100 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2101 unsigned *bits) 2102 { 2103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2104 2105 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2106 WARN_ON(1); 2107 /* 2108 * set_bit and clear bit hooks normally require _irqsave/restore 2109 * but in this case, we are only testing for the DELALLOC 2110 * bit, which is only set or cleared with irqs on 2111 */ 2112 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2113 struct btrfs_root *root = BTRFS_I(inode)->root; 2114 u64 len = state->end + 1 - state->start; 2115 u32 num_extents = count_max_extents(len); 2116 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2117 2118 spin_lock(&BTRFS_I(inode)->lock); 2119 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2120 spin_unlock(&BTRFS_I(inode)->lock); 2121 2122 /* For sanity tests */ 2123 if (btrfs_is_testing(fs_info)) 2124 return; 2125 2126 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2127 fs_info->delalloc_batch); 2128 spin_lock(&BTRFS_I(inode)->lock); 2129 BTRFS_I(inode)->delalloc_bytes += len; 2130 if (*bits & EXTENT_DEFRAG) 2131 BTRFS_I(inode)->defrag_bytes += len; 2132 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2133 &BTRFS_I(inode)->runtime_flags)) 2134 btrfs_add_delalloc_inodes(root, inode); 2135 spin_unlock(&BTRFS_I(inode)->lock); 2136 } 2137 2138 if (!(state->state & EXTENT_DELALLOC_NEW) && 2139 (*bits & EXTENT_DELALLOC_NEW)) { 2140 spin_lock(&BTRFS_I(inode)->lock); 2141 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2142 state->start; 2143 spin_unlock(&BTRFS_I(inode)->lock); 2144 } 2145 } 2146 2147 /* 2148 * Once a range is no longer delalloc this function ensures that proper 2149 * accounting happens. 2150 */ 2151 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2152 struct extent_state *state, unsigned *bits) 2153 { 2154 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2155 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2156 u64 len = state->end + 1 - state->start; 2157 u32 num_extents = count_max_extents(len); 2158 2159 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2160 spin_lock(&inode->lock); 2161 inode->defrag_bytes -= len; 2162 spin_unlock(&inode->lock); 2163 } 2164 2165 /* 2166 * set_bit and clear bit hooks normally require _irqsave/restore 2167 * but in this case, we are only testing for the DELALLOC 2168 * bit, which is only set or cleared with irqs on 2169 */ 2170 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2171 struct btrfs_root *root = inode->root; 2172 bool do_list = !btrfs_is_free_space_inode(inode); 2173 2174 spin_lock(&inode->lock); 2175 btrfs_mod_outstanding_extents(inode, -num_extents); 2176 spin_unlock(&inode->lock); 2177 2178 /* 2179 * We don't reserve metadata space for space cache inodes so we 2180 * don't need to call delalloc_release_metadata if there is an 2181 * error. 2182 */ 2183 if (*bits & EXTENT_CLEAR_META_RESV && 2184 root != fs_info->tree_root) 2185 btrfs_delalloc_release_metadata(inode, len, false); 2186 2187 /* For sanity tests. */ 2188 if (btrfs_is_testing(fs_info)) 2189 return; 2190 2191 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2192 do_list && !(state->state & EXTENT_NORESERVE) && 2193 (*bits & EXTENT_CLEAR_DATA_RESV)) 2194 btrfs_free_reserved_data_space_noquota(fs_info, len); 2195 2196 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2197 fs_info->delalloc_batch); 2198 spin_lock(&inode->lock); 2199 inode->delalloc_bytes -= len; 2200 if (do_list && inode->delalloc_bytes == 0 && 2201 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2202 &inode->runtime_flags)) 2203 btrfs_del_delalloc_inode(root, inode); 2204 spin_unlock(&inode->lock); 2205 } 2206 2207 if ((state->state & EXTENT_DELALLOC_NEW) && 2208 (*bits & EXTENT_DELALLOC_NEW)) { 2209 spin_lock(&inode->lock); 2210 ASSERT(inode->new_delalloc_bytes >= len); 2211 inode->new_delalloc_bytes -= len; 2212 if (*bits & EXTENT_ADD_INODE_BYTES) 2213 inode_add_bytes(&inode->vfs_inode, len); 2214 spin_unlock(&inode->lock); 2215 } 2216 } 2217 2218 /* 2219 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2220 * in a chunk's stripe. This function ensures that bios do not span a 2221 * stripe/chunk 2222 * 2223 * @page - The page we are about to add to the bio 2224 * @size - size we want to add to the bio 2225 * @bio - bio we want to ensure is smaller than a stripe 2226 * @bio_flags - flags of the bio 2227 * 2228 * return 1 if page cannot be added to the bio 2229 * return 0 if page can be added to the bio 2230 * return error otherwise 2231 */ 2232 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2233 unsigned long bio_flags) 2234 { 2235 struct inode *inode = page->mapping->host; 2236 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2237 u64 logical = bio->bi_iter.bi_sector << 9; 2238 u32 bio_len = bio->bi_iter.bi_size; 2239 struct extent_map *em; 2240 int ret = 0; 2241 struct btrfs_io_geometry geom; 2242 2243 if (bio_flags & EXTENT_BIO_COMPRESSED) 2244 return 0; 2245 2246 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 2247 if (IS_ERR(em)) 2248 return PTR_ERR(em); 2249 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, &geom); 2250 if (ret < 0) 2251 goto out; 2252 2253 if (geom.len < bio_len + size) 2254 ret = 1; 2255 out: 2256 free_extent_map(em); 2257 return ret; 2258 } 2259 2260 /* 2261 * in order to insert checksums into the metadata in large chunks, 2262 * we wait until bio submission time. All the pages in the bio are 2263 * checksummed and sums are attached onto the ordered extent record. 2264 * 2265 * At IO completion time the cums attached on the ordered extent record 2266 * are inserted into the btree 2267 */ 2268 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2269 u64 dio_file_offset) 2270 { 2271 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2272 } 2273 2274 /* 2275 * Split an extent_map at [start, start + len] 2276 * 2277 * This function is intended to be used only for extract_ordered_extent(). 2278 */ 2279 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, 2280 u64 pre, u64 post) 2281 { 2282 struct extent_map_tree *em_tree = &inode->extent_tree; 2283 struct extent_map *em; 2284 struct extent_map *split_pre = NULL; 2285 struct extent_map *split_mid = NULL; 2286 struct extent_map *split_post = NULL; 2287 int ret = 0; 2288 int modified; 2289 unsigned long flags; 2290 2291 /* Sanity check */ 2292 if (pre == 0 && post == 0) 2293 return 0; 2294 2295 split_pre = alloc_extent_map(); 2296 if (pre) 2297 split_mid = alloc_extent_map(); 2298 if (post) 2299 split_post = alloc_extent_map(); 2300 if (!split_pre || (pre && !split_mid) || (post && !split_post)) { 2301 ret = -ENOMEM; 2302 goto out; 2303 } 2304 2305 ASSERT(pre + post < len); 2306 2307 lock_extent(&inode->io_tree, start, start + len - 1); 2308 write_lock(&em_tree->lock); 2309 em = lookup_extent_mapping(em_tree, start, len); 2310 if (!em) { 2311 ret = -EIO; 2312 goto out_unlock; 2313 } 2314 2315 ASSERT(em->len == len); 2316 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2317 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2318 2319 flags = em->flags; 2320 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2321 clear_bit(EXTENT_FLAG_LOGGING, &flags); 2322 modified = !list_empty(&em->list); 2323 2324 /* First, replace the em with a new extent_map starting from * em->start */ 2325 split_pre->start = em->start; 2326 split_pre->len = (pre ? pre : em->len - post); 2327 split_pre->orig_start = split_pre->start; 2328 split_pre->block_start = em->block_start; 2329 split_pre->block_len = split_pre->len; 2330 split_pre->orig_block_len = split_pre->block_len; 2331 split_pre->ram_bytes = split_pre->len; 2332 split_pre->flags = flags; 2333 split_pre->compress_type = em->compress_type; 2334 split_pre->generation = em->generation; 2335 2336 replace_extent_mapping(em_tree, em, split_pre, modified); 2337 2338 /* 2339 * Now we only have an extent_map at: 2340 * [em->start, em->start + pre] if pre != 0 2341 * [em->start, em->start + em->len - post] if pre == 0 2342 */ 2343 2344 if (pre) { 2345 /* Insert the middle extent_map */ 2346 split_mid->start = em->start + pre; 2347 split_mid->len = em->len - pre - post; 2348 split_mid->orig_start = split_mid->start; 2349 split_mid->block_start = em->block_start + pre; 2350 split_mid->block_len = split_mid->len; 2351 split_mid->orig_block_len = split_mid->block_len; 2352 split_mid->ram_bytes = split_mid->len; 2353 split_mid->flags = flags; 2354 split_mid->compress_type = em->compress_type; 2355 split_mid->generation = em->generation; 2356 add_extent_mapping(em_tree, split_mid, modified); 2357 } 2358 2359 if (post) { 2360 split_post->start = em->start + em->len - post; 2361 split_post->len = post; 2362 split_post->orig_start = split_post->start; 2363 split_post->block_start = em->block_start + em->len - post; 2364 split_post->block_len = split_post->len; 2365 split_post->orig_block_len = split_post->block_len; 2366 split_post->ram_bytes = split_post->len; 2367 split_post->flags = flags; 2368 split_post->compress_type = em->compress_type; 2369 split_post->generation = em->generation; 2370 add_extent_mapping(em_tree, split_post, modified); 2371 } 2372 2373 /* Once for us */ 2374 free_extent_map(em); 2375 /* Once for the tree */ 2376 free_extent_map(em); 2377 2378 out_unlock: 2379 write_unlock(&em_tree->lock); 2380 unlock_extent(&inode->io_tree, start, start + len - 1); 2381 out: 2382 free_extent_map(split_pre); 2383 free_extent_map(split_mid); 2384 free_extent_map(split_post); 2385 2386 return ret; 2387 } 2388 2389 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2390 struct bio *bio, loff_t file_offset) 2391 { 2392 struct btrfs_ordered_extent *ordered; 2393 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2394 u64 file_len; 2395 u64 len = bio->bi_iter.bi_size; 2396 u64 end = start + len; 2397 u64 ordered_end; 2398 u64 pre, post; 2399 int ret = 0; 2400 2401 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2402 if (WARN_ON_ONCE(!ordered)) 2403 return BLK_STS_IOERR; 2404 2405 /* No need to split */ 2406 if (ordered->disk_num_bytes == len) 2407 goto out; 2408 2409 /* We cannot split once end_bio'd ordered extent */ 2410 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2411 ret = -EINVAL; 2412 goto out; 2413 } 2414 2415 /* We cannot split a compressed ordered extent */ 2416 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2417 ret = -EINVAL; 2418 goto out; 2419 } 2420 2421 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2422 /* bio must be in one ordered extent */ 2423 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2424 ret = -EINVAL; 2425 goto out; 2426 } 2427 2428 /* Checksum list should be empty */ 2429 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2430 ret = -EINVAL; 2431 goto out; 2432 } 2433 2434 file_len = ordered->num_bytes; 2435 pre = start - ordered->disk_bytenr; 2436 post = ordered_end - end; 2437 2438 ret = btrfs_split_ordered_extent(ordered, pre, post); 2439 if (ret) 2440 goto out; 2441 ret = split_zoned_em(inode, file_offset, file_len, pre, post); 2442 2443 out: 2444 btrfs_put_ordered_extent(ordered); 2445 2446 return errno_to_blk_status(ret); 2447 } 2448 2449 /* 2450 * extent_io.c submission hook. This does the right thing for csum calculation 2451 * on write, or reading the csums from the tree before a read. 2452 * 2453 * Rules about async/sync submit, 2454 * a) read: sync submit 2455 * 2456 * b) write without checksum: sync submit 2457 * 2458 * c) write with checksum: 2459 * c-1) if bio is issued by fsync: sync submit 2460 * (sync_writers != 0) 2461 * 2462 * c-2) if root is reloc root: sync submit 2463 * (only in case of buffered IO) 2464 * 2465 * c-3) otherwise: async submit 2466 */ 2467 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2468 int mirror_num, unsigned long bio_flags) 2469 2470 { 2471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2472 struct btrfs_root *root = BTRFS_I(inode)->root; 2473 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2474 blk_status_t ret = 0; 2475 int skip_sum; 2476 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2477 2478 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2479 !fs_info->csum_root; 2480 2481 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2482 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2483 2484 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2485 struct page *page = bio_first_bvec_all(bio)->bv_page; 2486 loff_t file_offset = page_offset(page); 2487 2488 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2489 if (ret) 2490 goto out; 2491 } 2492 2493 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2494 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2495 if (ret) 2496 goto out; 2497 2498 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2499 ret = btrfs_submit_compressed_read(inode, bio, 2500 mirror_num, 2501 bio_flags); 2502 goto out; 2503 } else { 2504 /* 2505 * Lookup bio sums does extra checks around whether we 2506 * need to csum or not, which is why we ignore skip_sum 2507 * here. 2508 */ 2509 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2510 if (ret) 2511 goto out; 2512 } 2513 goto mapit; 2514 } else if (async && !skip_sum) { 2515 /* csum items have already been cloned */ 2516 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2517 goto mapit; 2518 /* we're doing a write, do the async checksumming */ 2519 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2520 0, btrfs_submit_bio_start); 2521 goto out; 2522 } else if (!skip_sum) { 2523 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2524 if (ret) 2525 goto out; 2526 } 2527 2528 mapit: 2529 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2530 2531 out: 2532 if (ret) { 2533 bio->bi_status = ret; 2534 bio_endio(bio); 2535 } 2536 return ret; 2537 } 2538 2539 /* 2540 * given a list of ordered sums record them in the inode. This happens 2541 * at IO completion time based on sums calculated at bio submission time. 2542 */ 2543 static int add_pending_csums(struct btrfs_trans_handle *trans, 2544 struct list_head *list) 2545 { 2546 struct btrfs_ordered_sum *sum; 2547 int ret; 2548 2549 list_for_each_entry(sum, list, list) { 2550 trans->adding_csums = true; 2551 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2552 trans->adding_csums = false; 2553 if (ret) 2554 return ret; 2555 } 2556 return 0; 2557 } 2558 2559 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2560 const u64 start, 2561 const u64 len, 2562 struct extent_state **cached_state) 2563 { 2564 u64 search_start = start; 2565 const u64 end = start + len - 1; 2566 2567 while (search_start < end) { 2568 const u64 search_len = end - search_start + 1; 2569 struct extent_map *em; 2570 u64 em_len; 2571 int ret = 0; 2572 2573 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2574 if (IS_ERR(em)) 2575 return PTR_ERR(em); 2576 2577 if (em->block_start != EXTENT_MAP_HOLE) 2578 goto next; 2579 2580 em_len = em->len; 2581 if (em->start < search_start) 2582 em_len -= search_start - em->start; 2583 if (em_len > search_len) 2584 em_len = search_len; 2585 2586 ret = set_extent_bit(&inode->io_tree, search_start, 2587 search_start + em_len - 1, 2588 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2589 GFP_NOFS, NULL); 2590 next: 2591 search_start = extent_map_end(em); 2592 free_extent_map(em); 2593 if (ret) 2594 return ret; 2595 } 2596 return 0; 2597 } 2598 2599 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2600 unsigned int extra_bits, 2601 struct extent_state **cached_state) 2602 { 2603 WARN_ON(PAGE_ALIGNED(end)); 2604 2605 if (start >= i_size_read(&inode->vfs_inode) && 2606 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2607 /* 2608 * There can't be any extents following eof in this case so just 2609 * set the delalloc new bit for the range directly. 2610 */ 2611 extra_bits |= EXTENT_DELALLOC_NEW; 2612 } else { 2613 int ret; 2614 2615 ret = btrfs_find_new_delalloc_bytes(inode, start, 2616 end + 1 - start, 2617 cached_state); 2618 if (ret) 2619 return ret; 2620 } 2621 2622 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2623 cached_state); 2624 } 2625 2626 /* see btrfs_writepage_start_hook for details on why this is required */ 2627 struct btrfs_writepage_fixup { 2628 struct page *page; 2629 struct inode *inode; 2630 struct btrfs_work work; 2631 }; 2632 2633 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2634 { 2635 struct btrfs_writepage_fixup *fixup; 2636 struct btrfs_ordered_extent *ordered; 2637 struct extent_state *cached_state = NULL; 2638 struct extent_changeset *data_reserved = NULL; 2639 struct page *page; 2640 struct btrfs_inode *inode; 2641 u64 page_start; 2642 u64 page_end; 2643 int ret = 0; 2644 bool free_delalloc_space = true; 2645 2646 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2647 page = fixup->page; 2648 inode = BTRFS_I(fixup->inode); 2649 page_start = page_offset(page); 2650 page_end = page_offset(page) + PAGE_SIZE - 1; 2651 2652 /* 2653 * This is similar to page_mkwrite, we need to reserve the space before 2654 * we take the page lock. 2655 */ 2656 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2657 PAGE_SIZE); 2658 again: 2659 lock_page(page); 2660 2661 /* 2662 * Before we queued this fixup, we took a reference on the page. 2663 * page->mapping may go NULL, but it shouldn't be moved to a different 2664 * address space. 2665 */ 2666 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2667 /* 2668 * Unfortunately this is a little tricky, either 2669 * 2670 * 1) We got here and our page had already been dealt with and 2671 * we reserved our space, thus ret == 0, so we need to just 2672 * drop our space reservation and bail. This can happen the 2673 * first time we come into the fixup worker, or could happen 2674 * while waiting for the ordered extent. 2675 * 2) Our page was already dealt with, but we happened to get an 2676 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2677 * this case we obviously don't have anything to release, but 2678 * because the page was already dealt with we don't want to 2679 * mark the page with an error, so make sure we're resetting 2680 * ret to 0. This is why we have this check _before_ the ret 2681 * check, because we do not want to have a surprise ENOSPC 2682 * when the page was already properly dealt with. 2683 */ 2684 if (!ret) { 2685 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2686 btrfs_delalloc_release_space(inode, data_reserved, 2687 page_start, PAGE_SIZE, 2688 true); 2689 } 2690 ret = 0; 2691 goto out_page; 2692 } 2693 2694 /* 2695 * We can't mess with the page state unless it is locked, so now that 2696 * it is locked bail if we failed to make our space reservation. 2697 */ 2698 if (ret) 2699 goto out_page; 2700 2701 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2702 2703 /* already ordered? We're done */ 2704 if (PageOrdered(page)) 2705 goto out_reserved; 2706 2707 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2708 if (ordered) { 2709 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2710 &cached_state); 2711 unlock_page(page); 2712 btrfs_start_ordered_extent(ordered, 1); 2713 btrfs_put_ordered_extent(ordered); 2714 goto again; 2715 } 2716 2717 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2718 &cached_state); 2719 if (ret) 2720 goto out_reserved; 2721 2722 /* 2723 * Everything went as planned, we're now the owner of a dirty page with 2724 * delayed allocation bits set and space reserved for our COW 2725 * destination. 2726 * 2727 * The page was dirty when we started, nothing should have cleaned it. 2728 */ 2729 BUG_ON(!PageDirty(page)); 2730 free_delalloc_space = false; 2731 out_reserved: 2732 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2733 if (free_delalloc_space) 2734 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2735 PAGE_SIZE, true); 2736 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2737 &cached_state); 2738 out_page: 2739 if (ret) { 2740 /* 2741 * We hit ENOSPC or other errors. Update the mapping and page 2742 * to reflect the errors and clean the page. 2743 */ 2744 mapping_set_error(page->mapping, ret); 2745 end_extent_writepage(page, ret, page_start, page_end); 2746 clear_page_dirty_for_io(page); 2747 SetPageError(page); 2748 } 2749 ClearPageChecked(page); 2750 unlock_page(page); 2751 put_page(page); 2752 kfree(fixup); 2753 extent_changeset_free(data_reserved); 2754 /* 2755 * As a precaution, do a delayed iput in case it would be the last iput 2756 * that could need flushing space. Recursing back to fixup worker would 2757 * deadlock. 2758 */ 2759 btrfs_add_delayed_iput(&inode->vfs_inode); 2760 } 2761 2762 /* 2763 * There are a few paths in the higher layers of the kernel that directly 2764 * set the page dirty bit without asking the filesystem if it is a 2765 * good idea. This causes problems because we want to make sure COW 2766 * properly happens and the data=ordered rules are followed. 2767 * 2768 * In our case any range that doesn't have the ORDERED bit set 2769 * hasn't been properly setup for IO. We kick off an async process 2770 * to fix it up. The async helper will wait for ordered extents, set 2771 * the delalloc bit and make it safe to write the page. 2772 */ 2773 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2774 { 2775 struct inode *inode = page->mapping->host; 2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2777 struct btrfs_writepage_fixup *fixup; 2778 2779 /* This page has ordered extent covering it already */ 2780 if (PageOrdered(page)) 2781 return 0; 2782 2783 /* 2784 * PageChecked is set below when we create a fixup worker for this page, 2785 * don't try to create another one if we're already PageChecked() 2786 * 2787 * The extent_io writepage code will redirty the page if we send back 2788 * EAGAIN. 2789 */ 2790 if (PageChecked(page)) 2791 return -EAGAIN; 2792 2793 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2794 if (!fixup) 2795 return -EAGAIN; 2796 2797 /* 2798 * We are already holding a reference to this inode from 2799 * write_cache_pages. We need to hold it because the space reservation 2800 * takes place outside of the page lock, and we can't trust 2801 * page->mapping outside of the page lock. 2802 */ 2803 ihold(inode); 2804 SetPageChecked(page); 2805 get_page(page); 2806 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2807 fixup->page = page; 2808 fixup->inode = inode; 2809 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2810 2811 return -EAGAIN; 2812 } 2813 2814 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2815 struct btrfs_inode *inode, u64 file_pos, 2816 struct btrfs_file_extent_item *stack_fi, 2817 const bool update_inode_bytes, 2818 u64 qgroup_reserved) 2819 { 2820 struct btrfs_root *root = inode->root; 2821 const u64 sectorsize = root->fs_info->sectorsize; 2822 struct btrfs_path *path; 2823 struct extent_buffer *leaf; 2824 struct btrfs_key ins; 2825 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2826 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2827 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2828 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2829 struct btrfs_drop_extents_args drop_args = { 0 }; 2830 int ret; 2831 2832 path = btrfs_alloc_path(); 2833 if (!path) 2834 return -ENOMEM; 2835 2836 /* 2837 * we may be replacing one extent in the tree with another. 2838 * The new extent is pinned in the extent map, and we don't want 2839 * to drop it from the cache until it is completely in the btree. 2840 * 2841 * So, tell btrfs_drop_extents to leave this extent in the cache. 2842 * the caller is expected to unpin it and allow it to be merged 2843 * with the others. 2844 */ 2845 drop_args.path = path; 2846 drop_args.start = file_pos; 2847 drop_args.end = file_pos + num_bytes; 2848 drop_args.replace_extent = true; 2849 drop_args.extent_item_size = sizeof(*stack_fi); 2850 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2851 if (ret) 2852 goto out; 2853 2854 if (!drop_args.extent_inserted) { 2855 ins.objectid = btrfs_ino(inode); 2856 ins.offset = file_pos; 2857 ins.type = BTRFS_EXTENT_DATA_KEY; 2858 2859 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2860 sizeof(*stack_fi)); 2861 if (ret) 2862 goto out; 2863 } 2864 leaf = path->nodes[0]; 2865 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2866 write_extent_buffer(leaf, stack_fi, 2867 btrfs_item_ptr_offset(leaf, path->slots[0]), 2868 sizeof(struct btrfs_file_extent_item)); 2869 2870 btrfs_mark_buffer_dirty(leaf); 2871 btrfs_release_path(path); 2872 2873 /* 2874 * If we dropped an inline extent here, we know the range where it is 2875 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2876 * number of bytes only for that range containing the inline extent. 2877 * The remaining of the range will be processed when clearning the 2878 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2879 */ 2880 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2881 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2882 2883 inline_size = drop_args.bytes_found - inline_size; 2884 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2885 drop_args.bytes_found -= inline_size; 2886 num_bytes -= sectorsize; 2887 } 2888 2889 if (update_inode_bytes) 2890 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2891 2892 ins.objectid = disk_bytenr; 2893 ins.offset = disk_num_bytes; 2894 ins.type = BTRFS_EXTENT_ITEM_KEY; 2895 2896 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2897 if (ret) 2898 goto out; 2899 2900 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2901 file_pos, qgroup_reserved, &ins); 2902 out: 2903 btrfs_free_path(path); 2904 2905 return ret; 2906 } 2907 2908 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2909 u64 start, u64 len) 2910 { 2911 struct btrfs_block_group *cache; 2912 2913 cache = btrfs_lookup_block_group(fs_info, start); 2914 ASSERT(cache); 2915 2916 spin_lock(&cache->lock); 2917 cache->delalloc_bytes -= len; 2918 spin_unlock(&cache->lock); 2919 2920 btrfs_put_block_group(cache); 2921 } 2922 2923 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2924 struct btrfs_ordered_extent *oe) 2925 { 2926 struct btrfs_file_extent_item stack_fi; 2927 u64 logical_len; 2928 bool update_inode_bytes; 2929 2930 memset(&stack_fi, 0, sizeof(stack_fi)); 2931 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2932 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2933 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2934 oe->disk_num_bytes); 2935 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2936 logical_len = oe->truncated_len; 2937 else 2938 logical_len = oe->num_bytes; 2939 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2940 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2941 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2942 /* Encryption and other encoding is reserved and all 0 */ 2943 2944 /* 2945 * For delalloc, when completing an ordered extent we update the inode's 2946 * bytes when clearing the range in the inode's io tree, so pass false 2947 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2948 * except if the ordered extent was truncated. 2949 */ 2950 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2951 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2952 2953 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2954 oe->file_offset, &stack_fi, 2955 update_inode_bytes, oe->qgroup_rsv); 2956 } 2957 2958 /* 2959 * As ordered data IO finishes, this gets called so we can finish 2960 * an ordered extent if the range of bytes in the file it covers are 2961 * fully written. 2962 */ 2963 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2964 { 2965 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2966 struct btrfs_root *root = inode->root; 2967 struct btrfs_fs_info *fs_info = root->fs_info; 2968 struct btrfs_trans_handle *trans = NULL; 2969 struct extent_io_tree *io_tree = &inode->io_tree; 2970 struct extent_state *cached_state = NULL; 2971 u64 start, end; 2972 int compress_type = 0; 2973 int ret = 0; 2974 u64 logical_len = ordered_extent->num_bytes; 2975 bool freespace_inode; 2976 bool truncated = false; 2977 bool clear_reserved_extent = true; 2978 unsigned int clear_bits = EXTENT_DEFRAG; 2979 2980 start = ordered_extent->file_offset; 2981 end = start + ordered_extent->num_bytes - 1; 2982 2983 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2984 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2985 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2986 clear_bits |= EXTENT_DELALLOC_NEW; 2987 2988 freespace_inode = btrfs_is_free_space_inode(inode); 2989 2990 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2991 ret = -EIO; 2992 goto out; 2993 } 2994 2995 if (ordered_extent->bdev) 2996 btrfs_rewrite_logical_zoned(ordered_extent); 2997 2998 btrfs_free_io_failure_record(inode, start, end); 2999 3000 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3001 truncated = true; 3002 logical_len = ordered_extent->truncated_len; 3003 /* Truncated the entire extent, don't bother adding */ 3004 if (!logical_len) 3005 goto out; 3006 } 3007 3008 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3009 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3010 3011 btrfs_inode_safe_disk_i_size_write(inode, 0); 3012 if (freespace_inode) 3013 trans = btrfs_join_transaction_spacecache(root); 3014 else 3015 trans = btrfs_join_transaction(root); 3016 if (IS_ERR(trans)) { 3017 ret = PTR_ERR(trans); 3018 trans = NULL; 3019 goto out; 3020 } 3021 trans->block_rsv = &inode->block_rsv; 3022 ret = btrfs_update_inode_fallback(trans, root, inode); 3023 if (ret) /* -ENOMEM or corruption */ 3024 btrfs_abort_transaction(trans, ret); 3025 goto out; 3026 } 3027 3028 clear_bits |= EXTENT_LOCKED; 3029 lock_extent_bits(io_tree, start, end, &cached_state); 3030 3031 if (freespace_inode) 3032 trans = btrfs_join_transaction_spacecache(root); 3033 else 3034 trans = btrfs_join_transaction(root); 3035 if (IS_ERR(trans)) { 3036 ret = PTR_ERR(trans); 3037 trans = NULL; 3038 goto out; 3039 } 3040 3041 trans->block_rsv = &inode->block_rsv; 3042 3043 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3044 compress_type = ordered_extent->compress_type; 3045 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3046 BUG_ON(compress_type); 3047 ret = btrfs_mark_extent_written(trans, inode, 3048 ordered_extent->file_offset, 3049 ordered_extent->file_offset + 3050 logical_len); 3051 } else { 3052 BUG_ON(root == fs_info->tree_root); 3053 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3054 if (!ret) { 3055 clear_reserved_extent = false; 3056 btrfs_release_delalloc_bytes(fs_info, 3057 ordered_extent->disk_bytenr, 3058 ordered_extent->disk_num_bytes); 3059 } 3060 } 3061 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3062 ordered_extent->num_bytes, trans->transid); 3063 if (ret < 0) { 3064 btrfs_abort_transaction(trans, ret); 3065 goto out; 3066 } 3067 3068 ret = add_pending_csums(trans, &ordered_extent->list); 3069 if (ret) { 3070 btrfs_abort_transaction(trans, ret); 3071 goto out; 3072 } 3073 3074 /* 3075 * If this is a new delalloc range, clear its new delalloc flag to 3076 * update the inode's number of bytes. This needs to be done first 3077 * before updating the inode item. 3078 */ 3079 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3080 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3081 clear_extent_bit(&inode->io_tree, start, end, 3082 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3083 0, 0, &cached_state); 3084 3085 btrfs_inode_safe_disk_i_size_write(inode, 0); 3086 ret = btrfs_update_inode_fallback(trans, root, inode); 3087 if (ret) { /* -ENOMEM or corruption */ 3088 btrfs_abort_transaction(trans, ret); 3089 goto out; 3090 } 3091 ret = 0; 3092 out: 3093 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3094 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3095 &cached_state); 3096 3097 if (trans) 3098 btrfs_end_transaction(trans); 3099 3100 if (ret || truncated) { 3101 u64 unwritten_start = start; 3102 3103 /* 3104 * If we failed to finish this ordered extent for any reason we 3105 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3106 * extent, and mark the inode with the error if it wasn't 3107 * already set. Any error during writeback would have already 3108 * set the mapping error, so we need to set it if we're the ones 3109 * marking this ordered extent as failed. 3110 */ 3111 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3112 &ordered_extent->flags)) 3113 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3114 3115 if (truncated) 3116 unwritten_start += logical_len; 3117 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3118 3119 /* Drop the cache for the part of the extent we didn't write. */ 3120 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3121 3122 /* 3123 * If the ordered extent had an IOERR or something else went 3124 * wrong we need to return the space for this ordered extent 3125 * back to the allocator. We only free the extent in the 3126 * truncated case if we didn't write out the extent at all. 3127 * 3128 * If we made it past insert_reserved_file_extent before we 3129 * errored out then we don't need to do this as the accounting 3130 * has already been done. 3131 */ 3132 if ((ret || !logical_len) && 3133 clear_reserved_extent && 3134 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3135 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3136 /* 3137 * Discard the range before returning it back to the 3138 * free space pool 3139 */ 3140 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3141 btrfs_discard_extent(fs_info, 3142 ordered_extent->disk_bytenr, 3143 ordered_extent->disk_num_bytes, 3144 NULL); 3145 btrfs_free_reserved_extent(fs_info, 3146 ordered_extent->disk_bytenr, 3147 ordered_extent->disk_num_bytes, 1); 3148 } 3149 } 3150 3151 /* 3152 * This needs to be done to make sure anybody waiting knows we are done 3153 * updating everything for this ordered extent. 3154 */ 3155 btrfs_remove_ordered_extent(inode, ordered_extent); 3156 3157 /* once for us */ 3158 btrfs_put_ordered_extent(ordered_extent); 3159 /* once for the tree */ 3160 btrfs_put_ordered_extent(ordered_extent); 3161 3162 return ret; 3163 } 3164 3165 static void finish_ordered_fn(struct btrfs_work *work) 3166 { 3167 struct btrfs_ordered_extent *ordered_extent; 3168 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3169 btrfs_finish_ordered_io(ordered_extent); 3170 } 3171 3172 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3173 struct page *page, u64 start, 3174 u64 end, int uptodate) 3175 { 3176 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3177 3178 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, 3179 finish_ordered_fn, uptodate); 3180 } 3181 3182 /* 3183 * check_data_csum - verify checksum of one sector of uncompressed data 3184 * @inode: inode 3185 * @io_bio: btrfs_io_bio which contains the csum 3186 * @bio_offset: offset to the beginning of the bio (in bytes) 3187 * @page: page where is the data to be verified 3188 * @pgoff: offset inside the page 3189 * @start: logical offset in the file 3190 * 3191 * The length of such check is always one sector size. 3192 */ 3193 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 3194 u32 bio_offset, struct page *page, u32 pgoff, 3195 u64 start) 3196 { 3197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3198 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3199 char *kaddr; 3200 u32 len = fs_info->sectorsize; 3201 const u32 csum_size = fs_info->csum_size; 3202 unsigned int offset_sectors; 3203 u8 *csum_expected; 3204 u8 csum[BTRFS_CSUM_SIZE]; 3205 3206 ASSERT(pgoff + len <= PAGE_SIZE); 3207 3208 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3209 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; 3210 3211 kaddr = kmap_atomic(page); 3212 shash->tfm = fs_info->csum_shash; 3213 3214 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3215 3216 if (memcmp(csum, csum_expected, csum_size)) 3217 goto zeroit; 3218 3219 kunmap_atomic(kaddr); 3220 return 0; 3221 zeroit: 3222 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3223 io_bio->mirror_num); 3224 if (io_bio->device) 3225 btrfs_dev_stat_inc_and_print(io_bio->device, 3226 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3227 memset(kaddr + pgoff, 1, len); 3228 flush_dcache_page(page); 3229 kunmap_atomic(kaddr); 3230 return -EIO; 3231 } 3232 3233 /* 3234 * When reads are done, we need to check csums to verify the data is correct. 3235 * if there's a match, we allow the bio to finish. If not, the code in 3236 * extent_io.c will try to find good copies for us. 3237 * 3238 * @bio_offset: offset to the beginning of the bio (in bytes) 3239 * @start: file offset of the range start 3240 * @end: file offset of the range end (inclusive) 3241 * 3242 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3243 * csum match. 3244 */ 3245 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3246 struct page *page, u64 start, u64 end) 3247 { 3248 struct inode *inode = page->mapping->host; 3249 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3250 struct btrfs_root *root = BTRFS_I(inode)->root; 3251 const u32 sectorsize = root->fs_info->sectorsize; 3252 u32 pg_off; 3253 unsigned int result = 0; 3254 3255 if (PageChecked(page)) { 3256 ClearPageChecked(page); 3257 return 0; 3258 } 3259 3260 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3261 return 0; 3262 3263 if (!root->fs_info->csum_root) 3264 return 0; 3265 3266 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3267 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3268 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3269 return 0; 3270 } 3271 3272 ASSERT(page_offset(page) <= start && 3273 end <= page_offset(page) + PAGE_SIZE - 1); 3274 for (pg_off = offset_in_page(start); 3275 pg_off < offset_in_page(end); 3276 pg_off += sectorsize, bio_offset += sectorsize) { 3277 int ret; 3278 3279 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off, 3280 page_offset(page) + pg_off); 3281 if (ret < 0) { 3282 const int nr_bit = (pg_off - offset_in_page(start)) >> 3283 root->fs_info->sectorsize_bits; 3284 3285 result |= (1U << nr_bit); 3286 } 3287 } 3288 return result; 3289 } 3290 3291 /* 3292 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3293 * 3294 * @inode: The inode we want to perform iput on 3295 * 3296 * This function uses the generic vfs_inode::i_count to track whether we should 3297 * just decrement it (in case it's > 1) or if this is the last iput then link 3298 * the inode to the delayed iput machinery. Delayed iputs are processed at 3299 * transaction commit time/superblock commit/cleaner kthread. 3300 */ 3301 void btrfs_add_delayed_iput(struct inode *inode) 3302 { 3303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3304 struct btrfs_inode *binode = BTRFS_I(inode); 3305 3306 if (atomic_add_unless(&inode->i_count, -1, 1)) 3307 return; 3308 3309 atomic_inc(&fs_info->nr_delayed_iputs); 3310 spin_lock(&fs_info->delayed_iput_lock); 3311 ASSERT(list_empty(&binode->delayed_iput)); 3312 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3313 spin_unlock(&fs_info->delayed_iput_lock); 3314 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3315 wake_up_process(fs_info->cleaner_kthread); 3316 } 3317 3318 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3319 struct btrfs_inode *inode) 3320 { 3321 list_del_init(&inode->delayed_iput); 3322 spin_unlock(&fs_info->delayed_iput_lock); 3323 iput(&inode->vfs_inode); 3324 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3325 wake_up(&fs_info->delayed_iputs_wait); 3326 spin_lock(&fs_info->delayed_iput_lock); 3327 } 3328 3329 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3330 struct btrfs_inode *inode) 3331 { 3332 if (!list_empty(&inode->delayed_iput)) { 3333 spin_lock(&fs_info->delayed_iput_lock); 3334 if (!list_empty(&inode->delayed_iput)) 3335 run_delayed_iput_locked(fs_info, inode); 3336 spin_unlock(&fs_info->delayed_iput_lock); 3337 } 3338 } 3339 3340 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3341 { 3342 3343 spin_lock(&fs_info->delayed_iput_lock); 3344 while (!list_empty(&fs_info->delayed_iputs)) { 3345 struct btrfs_inode *inode; 3346 3347 inode = list_first_entry(&fs_info->delayed_iputs, 3348 struct btrfs_inode, delayed_iput); 3349 run_delayed_iput_locked(fs_info, inode); 3350 cond_resched_lock(&fs_info->delayed_iput_lock); 3351 } 3352 spin_unlock(&fs_info->delayed_iput_lock); 3353 } 3354 3355 /** 3356 * Wait for flushing all delayed iputs 3357 * 3358 * @fs_info: the filesystem 3359 * 3360 * This will wait on any delayed iputs that are currently running with KILLABLE 3361 * set. Once they are all done running we will return, unless we are killed in 3362 * which case we return EINTR. This helps in user operations like fallocate etc 3363 * that might get blocked on the iputs. 3364 * 3365 * Return EINTR if we were killed, 0 if nothing's pending 3366 */ 3367 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3368 { 3369 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3370 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3371 if (ret) 3372 return -EINTR; 3373 return 0; 3374 } 3375 3376 /* 3377 * This creates an orphan entry for the given inode in case something goes wrong 3378 * in the middle of an unlink. 3379 */ 3380 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3381 struct btrfs_inode *inode) 3382 { 3383 int ret; 3384 3385 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3386 if (ret && ret != -EEXIST) { 3387 btrfs_abort_transaction(trans, ret); 3388 return ret; 3389 } 3390 3391 return 0; 3392 } 3393 3394 /* 3395 * We have done the delete so we can go ahead and remove the orphan item for 3396 * this particular inode. 3397 */ 3398 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3399 struct btrfs_inode *inode) 3400 { 3401 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3402 } 3403 3404 /* 3405 * this cleans up any orphans that may be left on the list from the last use 3406 * of this root. 3407 */ 3408 int btrfs_orphan_cleanup(struct btrfs_root *root) 3409 { 3410 struct btrfs_fs_info *fs_info = root->fs_info; 3411 struct btrfs_path *path; 3412 struct extent_buffer *leaf; 3413 struct btrfs_key key, found_key; 3414 struct btrfs_trans_handle *trans; 3415 struct inode *inode; 3416 u64 last_objectid = 0; 3417 int ret = 0, nr_unlink = 0; 3418 3419 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3420 return 0; 3421 3422 path = btrfs_alloc_path(); 3423 if (!path) { 3424 ret = -ENOMEM; 3425 goto out; 3426 } 3427 path->reada = READA_BACK; 3428 3429 key.objectid = BTRFS_ORPHAN_OBJECTID; 3430 key.type = BTRFS_ORPHAN_ITEM_KEY; 3431 key.offset = (u64)-1; 3432 3433 while (1) { 3434 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3435 if (ret < 0) 3436 goto out; 3437 3438 /* 3439 * if ret == 0 means we found what we were searching for, which 3440 * is weird, but possible, so only screw with path if we didn't 3441 * find the key and see if we have stuff that matches 3442 */ 3443 if (ret > 0) { 3444 ret = 0; 3445 if (path->slots[0] == 0) 3446 break; 3447 path->slots[0]--; 3448 } 3449 3450 /* pull out the item */ 3451 leaf = path->nodes[0]; 3452 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3453 3454 /* make sure the item matches what we want */ 3455 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3456 break; 3457 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3458 break; 3459 3460 /* release the path since we're done with it */ 3461 btrfs_release_path(path); 3462 3463 /* 3464 * this is where we are basically btrfs_lookup, without the 3465 * crossing root thing. we store the inode number in the 3466 * offset of the orphan item. 3467 */ 3468 3469 if (found_key.offset == last_objectid) { 3470 btrfs_err(fs_info, 3471 "Error removing orphan entry, stopping orphan cleanup"); 3472 ret = -EINVAL; 3473 goto out; 3474 } 3475 3476 last_objectid = found_key.offset; 3477 3478 found_key.objectid = found_key.offset; 3479 found_key.type = BTRFS_INODE_ITEM_KEY; 3480 found_key.offset = 0; 3481 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3482 ret = PTR_ERR_OR_ZERO(inode); 3483 if (ret && ret != -ENOENT) 3484 goto out; 3485 3486 if (ret == -ENOENT && root == fs_info->tree_root) { 3487 struct btrfs_root *dead_root; 3488 int is_dead_root = 0; 3489 3490 /* 3491 * This is an orphan in the tree root. Currently these 3492 * could come from 2 sources: 3493 * a) a root (snapshot/subvolume) deletion in progress 3494 * b) a free space cache inode 3495 * We need to distinguish those two, as the orphan item 3496 * for a root must not get deleted before the deletion 3497 * of the snapshot/subvolume's tree completes. 3498 * 3499 * btrfs_find_orphan_roots() ran before us, which has 3500 * found all deleted roots and loaded them into 3501 * fs_info->fs_roots_radix. So here we can find if an 3502 * orphan item corresponds to a deleted root by looking 3503 * up the root from that radix tree. 3504 */ 3505 3506 spin_lock(&fs_info->fs_roots_radix_lock); 3507 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3508 (unsigned long)found_key.objectid); 3509 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3510 is_dead_root = 1; 3511 spin_unlock(&fs_info->fs_roots_radix_lock); 3512 3513 if (is_dead_root) { 3514 /* prevent this orphan from being found again */ 3515 key.offset = found_key.objectid - 1; 3516 continue; 3517 } 3518 3519 } 3520 3521 /* 3522 * If we have an inode with links, there are a couple of 3523 * possibilities. Old kernels (before v3.12) used to create an 3524 * orphan item for truncate indicating that there were possibly 3525 * extent items past i_size that needed to be deleted. In v3.12, 3526 * truncate was changed to update i_size in sync with the extent 3527 * items, but the (useless) orphan item was still created. Since 3528 * v4.18, we don't create the orphan item for truncate at all. 3529 * 3530 * So, this item could mean that we need to do a truncate, but 3531 * only if this filesystem was last used on a pre-v3.12 kernel 3532 * and was not cleanly unmounted. The odds of that are quite 3533 * slim, and it's a pain to do the truncate now, so just delete 3534 * the orphan item. 3535 * 3536 * It's also possible that this orphan item was supposed to be 3537 * deleted but wasn't. The inode number may have been reused, 3538 * but either way, we can delete the orphan item. 3539 */ 3540 if (ret == -ENOENT || inode->i_nlink) { 3541 if (!ret) 3542 iput(inode); 3543 trans = btrfs_start_transaction(root, 1); 3544 if (IS_ERR(trans)) { 3545 ret = PTR_ERR(trans); 3546 goto out; 3547 } 3548 btrfs_debug(fs_info, "auto deleting %Lu", 3549 found_key.objectid); 3550 ret = btrfs_del_orphan_item(trans, root, 3551 found_key.objectid); 3552 btrfs_end_transaction(trans); 3553 if (ret) 3554 goto out; 3555 continue; 3556 } 3557 3558 nr_unlink++; 3559 3560 /* this will do delete_inode and everything for us */ 3561 iput(inode); 3562 } 3563 /* release the path since we're done with it */ 3564 btrfs_release_path(path); 3565 3566 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3567 3568 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3569 trans = btrfs_join_transaction(root); 3570 if (!IS_ERR(trans)) 3571 btrfs_end_transaction(trans); 3572 } 3573 3574 if (nr_unlink) 3575 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3576 3577 out: 3578 if (ret) 3579 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3580 btrfs_free_path(path); 3581 return ret; 3582 } 3583 3584 /* 3585 * very simple check to peek ahead in the leaf looking for xattrs. If we 3586 * don't find any xattrs, we know there can't be any acls. 3587 * 3588 * slot is the slot the inode is in, objectid is the objectid of the inode 3589 */ 3590 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3591 int slot, u64 objectid, 3592 int *first_xattr_slot) 3593 { 3594 u32 nritems = btrfs_header_nritems(leaf); 3595 struct btrfs_key found_key; 3596 static u64 xattr_access = 0; 3597 static u64 xattr_default = 0; 3598 int scanned = 0; 3599 3600 if (!xattr_access) { 3601 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3602 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3603 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3604 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3605 } 3606 3607 slot++; 3608 *first_xattr_slot = -1; 3609 while (slot < nritems) { 3610 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3611 3612 /* we found a different objectid, there must not be acls */ 3613 if (found_key.objectid != objectid) 3614 return 0; 3615 3616 /* we found an xattr, assume we've got an acl */ 3617 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3618 if (*first_xattr_slot == -1) 3619 *first_xattr_slot = slot; 3620 if (found_key.offset == xattr_access || 3621 found_key.offset == xattr_default) 3622 return 1; 3623 } 3624 3625 /* 3626 * we found a key greater than an xattr key, there can't 3627 * be any acls later on 3628 */ 3629 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3630 return 0; 3631 3632 slot++; 3633 scanned++; 3634 3635 /* 3636 * it goes inode, inode backrefs, xattrs, extents, 3637 * so if there are a ton of hard links to an inode there can 3638 * be a lot of backrefs. Don't waste time searching too hard, 3639 * this is just an optimization 3640 */ 3641 if (scanned >= 8) 3642 break; 3643 } 3644 /* we hit the end of the leaf before we found an xattr or 3645 * something larger than an xattr. We have to assume the inode 3646 * has acls 3647 */ 3648 if (*first_xattr_slot == -1) 3649 *first_xattr_slot = slot; 3650 return 1; 3651 } 3652 3653 /* 3654 * read an inode from the btree into the in-memory inode 3655 */ 3656 static int btrfs_read_locked_inode(struct inode *inode, 3657 struct btrfs_path *in_path) 3658 { 3659 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3660 struct btrfs_path *path = in_path; 3661 struct extent_buffer *leaf; 3662 struct btrfs_inode_item *inode_item; 3663 struct btrfs_root *root = BTRFS_I(inode)->root; 3664 struct btrfs_key location; 3665 unsigned long ptr; 3666 int maybe_acls; 3667 u32 rdev; 3668 int ret; 3669 bool filled = false; 3670 int first_xattr_slot; 3671 3672 ret = btrfs_fill_inode(inode, &rdev); 3673 if (!ret) 3674 filled = true; 3675 3676 if (!path) { 3677 path = btrfs_alloc_path(); 3678 if (!path) 3679 return -ENOMEM; 3680 } 3681 3682 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3683 3684 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3685 if (ret) { 3686 if (path != in_path) 3687 btrfs_free_path(path); 3688 return ret; 3689 } 3690 3691 leaf = path->nodes[0]; 3692 3693 if (filled) 3694 goto cache_index; 3695 3696 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3697 struct btrfs_inode_item); 3698 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3699 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3700 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3701 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3702 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3703 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3704 round_up(i_size_read(inode), fs_info->sectorsize)); 3705 3706 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3707 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3708 3709 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3710 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3711 3712 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3713 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3714 3715 BTRFS_I(inode)->i_otime.tv_sec = 3716 btrfs_timespec_sec(leaf, &inode_item->otime); 3717 BTRFS_I(inode)->i_otime.tv_nsec = 3718 btrfs_timespec_nsec(leaf, &inode_item->otime); 3719 3720 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3721 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3722 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3723 3724 inode_set_iversion_queried(inode, 3725 btrfs_inode_sequence(leaf, inode_item)); 3726 inode->i_generation = BTRFS_I(inode)->generation; 3727 inode->i_rdev = 0; 3728 rdev = btrfs_inode_rdev(leaf, inode_item); 3729 3730 BTRFS_I(inode)->index_cnt = (u64)-1; 3731 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3732 3733 cache_index: 3734 /* 3735 * If we were modified in the current generation and evicted from memory 3736 * and then re-read we need to do a full sync since we don't have any 3737 * idea about which extents were modified before we were evicted from 3738 * cache. 3739 * 3740 * This is required for both inode re-read from disk and delayed inode 3741 * in delayed_nodes_tree. 3742 */ 3743 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3744 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3745 &BTRFS_I(inode)->runtime_flags); 3746 3747 /* 3748 * We don't persist the id of the transaction where an unlink operation 3749 * against the inode was last made. So here we assume the inode might 3750 * have been evicted, and therefore the exact value of last_unlink_trans 3751 * lost, and set it to last_trans to avoid metadata inconsistencies 3752 * between the inode and its parent if the inode is fsync'ed and the log 3753 * replayed. For example, in the scenario: 3754 * 3755 * touch mydir/foo 3756 * ln mydir/foo mydir/bar 3757 * sync 3758 * unlink mydir/bar 3759 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3760 * xfs_io -c fsync mydir/foo 3761 * <power failure> 3762 * mount fs, triggers fsync log replay 3763 * 3764 * We must make sure that when we fsync our inode foo we also log its 3765 * parent inode, otherwise after log replay the parent still has the 3766 * dentry with the "bar" name but our inode foo has a link count of 1 3767 * and doesn't have an inode ref with the name "bar" anymore. 3768 * 3769 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3770 * but it guarantees correctness at the expense of occasional full 3771 * transaction commits on fsync if our inode is a directory, or if our 3772 * inode is not a directory, logging its parent unnecessarily. 3773 */ 3774 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3775 3776 /* 3777 * Same logic as for last_unlink_trans. We don't persist the generation 3778 * of the last transaction where this inode was used for a reflink 3779 * operation, so after eviction and reloading the inode we must be 3780 * pessimistic and assume the last transaction that modified the inode. 3781 */ 3782 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3783 3784 path->slots[0]++; 3785 if (inode->i_nlink != 1 || 3786 path->slots[0] >= btrfs_header_nritems(leaf)) 3787 goto cache_acl; 3788 3789 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3790 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3791 goto cache_acl; 3792 3793 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3794 if (location.type == BTRFS_INODE_REF_KEY) { 3795 struct btrfs_inode_ref *ref; 3796 3797 ref = (struct btrfs_inode_ref *)ptr; 3798 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3799 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3800 struct btrfs_inode_extref *extref; 3801 3802 extref = (struct btrfs_inode_extref *)ptr; 3803 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3804 extref); 3805 } 3806 cache_acl: 3807 /* 3808 * try to precache a NULL acl entry for files that don't have 3809 * any xattrs or acls 3810 */ 3811 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3812 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3813 if (first_xattr_slot != -1) { 3814 path->slots[0] = first_xattr_slot; 3815 ret = btrfs_load_inode_props(inode, path); 3816 if (ret) 3817 btrfs_err(fs_info, 3818 "error loading props for ino %llu (root %llu): %d", 3819 btrfs_ino(BTRFS_I(inode)), 3820 root->root_key.objectid, ret); 3821 } 3822 if (path != in_path) 3823 btrfs_free_path(path); 3824 3825 if (!maybe_acls) 3826 cache_no_acl(inode); 3827 3828 switch (inode->i_mode & S_IFMT) { 3829 case S_IFREG: 3830 inode->i_mapping->a_ops = &btrfs_aops; 3831 inode->i_fop = &btrfs_file_operations; 3832 inode->i_op = &btrfs_file_inode_operations; 3833 break; 3834 case S_IFDIR: 3835 inode->i_fop = &btrfs_dir_file_operations; 3836 inode->i_op = &btrfs_dir_inode_operations; 3837 break; 3838 case S_IFLNK: 3839 inode->i_op = &btrfs_symlink_inode_operations; 3840 inode_nohighmem(inode); 3841 inode->i_mapping->a_ops = &btrfs_aops; 3842 break; 3843 default: 3844 inode->i_op = &btrfs_special_inode_operations; 3845 init_special_inode(inode, inode->i_mode, rdev); 3846 break; 3847 } 3848 3849 btrfs_sync_inode_flags_to_i_flags(inode); 3850 return 0; 3851 } 3852 3853 /* 3854 * given a leaf and an inode, copy the inode fields into the leaf 3855 */ 3856 static void fill_inode_item(struct btrfs_trans_handle *trans, 3857 struct extent_buffer *leaf, 3858 struct btrfs_inode_item *item, 3859 struct inode *inode) 3860 { 3861 struct btrfs_map_token token; 3862 3863 btrfs_init_map_token(&token, leaf); 3864 3865 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3866 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3867 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3868 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3869 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3870 3871 btrfs_set_token_timespec_sec(&token, &item->atime, 3872 inode->i_atime.tv_sec); 3873 btrfs_set_token_timespec_nsec(&token, &item->atime, 3874 inode->i_atime.tv_nsec); 3875 3876 btrfs_set_token_timespec_sec(&token, &item->mtime, 3877 inode->i_mtime.tv_sec); 3878 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3879 inode->i_mtime.tv_nsec); 3880 3881 btrfs_set_token_timespec_sec(&token, &item->ctime, 3882 inode->i_ctime.tv_sec); 3883 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3884 inode->i_ctime.tv_nsec); 3885 3886 btrfs_set_token_timespec_sec(&token, &item->otime, 3887 BTRFS_I(inode)->i_otime.tv_sec); 3888 btrfs_set_token_timespec_nsec(&token, &item->otime, 3889 BTRFS_I(inode)->i_otime.tv_nsec); 3890 3891 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3892 btrfs_set_token_inode_generation(&token, item, 3893 BTRFS_I(inode)->generation); 3894 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3895 btrfs_set_token_inode_transid(&token, item, trans->transid); 3896 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3897 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3898 btrfs_set_token_inode_block_group(&token, item, 0); 3899 } 3900 3901 /* 3902 * copy everything in the in-memory inode into the btree. 3903 */ 3904 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3905 struct btrfs_root *root, 3906 struct btrfs_inode *inode) 3907 { 3908 struct btrfs_inode_item *inode_item; 3909 struct btrfs_path *path; 3910 struct extent_buffer *leaf; 3911 int ret; 3912 3913 path = btrfs_alloc_path(); 3914 if (!path) 3915 return -ENOMEM; 3916 3917 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3918 if (ret) { 3919 if (ret > 0) 3920 ret = -ENOENT; 3921 goto failed; 3922 } 3923 3924 leaf = path->nodes[0]; 3925 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3926 struct btrfs_inode_item); 3927 3928 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3929 btrfs_mark_buffer_dirty(leaf); 3930 btrfs_set_inode_last_trans(trans, inode); 3931 ret = 0; 3932 failed: 3933 btrfs_free_path(path); 3934 return ret; 3935 } 3936 3937 /* 3938 * copy everything in the in-memory inode into the btree. 3939 */ 3940 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3941 struct btrfs_root *root, 3942 struct btrfs_inode *inode) 3943 { 3944 struct btrfs_fs_info *fs_info = root->fs_info; 3945 int ret; 3946 3947 /* 3948 * If the inode is a free space inode, we can deadlock during commit 3949 * if we put it into the delayed code. 3950 * 3951 * The data relocation inode should also be directly updated 3952 * without delay 3953 */ 3954 if (!btrfs_is_free_space_inode(inode) 3955 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3956 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3957 btrfs_update_root_times(trans, root); 3958 3959 ret = btrfs_delayed_update_inode(trans, root, inode); 3960 if (!ret) 3961 btrfs_set_inode_last_trans(trans, inode); 3962 return ret; 3963 } 3964 3965 return btrfs_update_inode_item(trans, root, inode); 3966 } 3967 3968 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3969 struct btrfs_root *root, struct btrfs_inode *inode) 3970 { 3971 int ret; 3972 3973 ret = btrfs_update_inode(trans, root, inode); 3974 if (ret == -ENOSPC) 3975 return btrfs_update_inode_item(trans, root, inode); 3976 return ret; 3977 } 3978 3979 /* 3980 * unlink helper that gets used here in inode.c and in the tree logging 3981 * recovery code. It remove a link in a directory with a given name, and 3982 * also drops the back refs in the inode to the directory 3983 */ 3984 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3985 struct btrfs_root *root, 3986 struct btrfs_inode *dir, 3987 struct btrfs_inode *inode, 3988 const char *name, int name_len) 3989 { 3990 struct btrfs_fs_info *fs_info = root->fs_info; 3991 struct btrfs_path *path; 3992 int ret = 0; 3993 struct btrfs_dir_item *di; 3994 u64 index; 3995 u64 ino = btrfs_ino(inode); 3996 u64 dir_ino = btrfs_ino(dir); 3997 3998 path = btrfs_alloc_path(); 3999 if (!path) { 4000 ret = -ENOMEM; 4001 goto out; 4002 } 4003 4004 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4005 name, name_len, -1); 4006 if (IS_ERR_OR_NULL(di)) { 4007 ret = di ? PTR_ERR(di) : -ENOENT; 4008 goto err; 4009 } 4010 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4011 if (ret) 4012 goto err; 4013 btrfs_release_path(path); 4014 4015 /* 4016 * If we don't have dir index, we have to get it by looking up 4017 * the inode ref, since we get the inode ref, remove it directly, 4018 * it is unnecessary to do delayed deletion. 4019 * 4020 * But if we have dir index, needn't search inode ref to get it. 4021 * Since the inode ref is close to the inode item, it is better 4022 * that we delay to delete it, and just do this deletion when 4023 * we update the inode item. 4024 */ 4025 if (inode->dir_index) { 4026 ret = btrfs_delayed_delete_inode_ref(inode); 4027 if (!ret) { 4028 index = inode->dir_index; 4029 goto skip_backref; 4030 } 4031 } 4032 4033 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4034 dir_ino, &index); 4035 if (ret) { 4036 btrfs_info(fs_info, 4037 "failed to delete reference to %.*s, inode %llu parent %llu", 4038 name_len, name, ino, dir_ino); 4039 btrfs_abort_transaction(trans, ret); 4040 goto err; 4041 } 4042 skip_backref: 4043 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4044 if (ret) { 4045 btrfs_abort_transaction(trans, ret); 4046 goto err; 4047 } 4048 4049 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4050 dir_ino); 4051 if (ret != 0 && ret != -ENOENT) { 4052 btrfs_abort_transaction(trans, ret); 4053 goto err; 4054 } 4055 4056 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4057 index); 4058 if (ret == -ENOENT) 4059 ret = 0; 4060 else if (ret) 4061 btrfs_abort_transaction(trans, ret); 4062 4063 /* 4064 * If we have a pending delayed iput we could end up with the final iput 4065 * being run in btrfs-cleaner context. If we have enough of these built 4066 * up we can end up burning a lot of time in btrfs-cleaner without any 4067 * way to throttle the unlinks. Since we're currently holding a ref on 4068 * the inode we can run the delayed iput here without any issues as the 4069 * final iput won't be done until after we drop the ref we're currently 4070 * holding. 4071 */ 4072 btrfs_run_delayed_iput(fs_info, inode); 4073 err: 4074 btrfs_free_path(path); 4075 if (ret) 4076 goto out; 4077 4078 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4079 inode_inc_iversion(&inode->vfs_inode); 4080 inode_inc_iversion(&dir->vfs_inode); 4081 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4082 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4083 ret = btrfs_update_inode(trans, root, dir); 4084 out: 4085 return ret; 4086 } 4087 4088 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4089 struct btrfs_root *root, 4090 struct btrfs_inode *dir, struct btrfs_inode *inode, 4091 const char *name, int name_len) 4092 { 4093 int ret; 4094 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4095 if (!ret) { 4096 drop_nlink(&inode->vfs_inode); 4097 ret = btrfs_update_inode(trans, root, inode); 4098 } 4099 return ret; 4100 } 4101 4102 /* 4103 * helper to start transaction for unlink and rmdir. 4104 * 4105 * unlink and rmdir are special in btrfs, they do not always free space, so 4106 * if we cannot make our reservations the normal way try and see if there is 4107 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4108 * allow the unlink to occur. 4109 */ 4110 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4111 { 4112 struct btrfs_root *root = BTRFS_I(dir)->root; 4113 4114 /* 4115 * 1 for the possible orphan item 4116 * 1 for the dir item 4117 * 1 for the dir index 4118 * 1 for the inode ref 4119 * 1 for the inode 4120 */ 4121 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4122 } 4123 4124 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4125 { 4126 struct btrfs_root *root = BTRFS_I(dir)->root; 4127 struct btrfs_trans_handle *trans; 4128 struct inode *inode = d_inode(dentry); 4129 int ret; 4130 4131 trans = __unlink_start_trans(dir); 4132 if (IS_ERR(trans)) 4133 return PTR_ERR(trans); 4134 4135 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4136 0); 4137 4138 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4139 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4140 dentry->d_name.len); 4141 if (ret) 4142 goto out; 4143 4144 if (inode->i_nlink == 0) { 4145 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4146 if (ret) 4147 goto out; 4148 } 4149 4150 out: 4151 btrfs_end_transaction(trans); 4152 btrfs_btree_balance_dirty(root->fs_info); 4153 return ret; 4154 } 4155 4156 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4157 struct inode *dir, struct dentry *dentry) 4158 { 4159 struct btrfs_root *root = BTRFS_I(dir)->root; 4160 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4161 struct btrfs_path *path; 4162 struct extent_buffer *leaf; 4163 struct btrfs_dir_item *di; 4164 struct btrfs_key key; 4165 const char *name = dentry->d_name.name; 4166 int name_len = dentry->d_name.len; 4167 u64 index; 4168 int ret; 4169 u64 objectid; 4170 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4171 4172 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4173 objectid = inode->root->root_key.objectid; 4174 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4175 objectid = inode->location.objectid; 4176 } else { 4177 WARN_ON(1); 4178 return -EINVAL; 4179 } 4180 4181 path = btrfs_alloc_path(); 4182 if (!path) 4183 return -ENOMEM; 4184 4185 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4186 name, name_len, -1); 4187 if (IS_ERR_OR_NULL(di)) { 4188 ret = di ? PTR_ERR(di) : -ENOENT; 4189 goto out; 4190 } 4191 4192 leaf = path->nodes[0]; 4193 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4194 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4195 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4196 if (ret) { 4197 btrfs_abort_transaction(trans, ret); 4198 goto out; 4199 } 4200 btrfs_release_path(path); 4201 4202 /* 4203 * This is a placeholder inode for a subvolume we didn't have a 4204 * reference to at the time of the snapshot creation. In the meantime 4205 * we could have renamed the real subvol link into our snapshot, so 4206 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4207 * Instead simply lookup the dir_index_item for this entry so we can 4208 * remove it. Otherwise we know we have a ref to the root and we can 4209 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4210 */ 4211 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4212 di = btrfs_search_dir_index_item(root, path, dir_ino, 4213 name, name_len); 4214 if (IS_ERR_OR_NULL(di)) { 4215 if (!di) 4216 ret = -ENOENT; 4217 else 4218 ret = PTR_ERR(di); 4219 btrfs_abort_transaction(trans, ret); 4220 goto out; 4221 } 4222 4223 leaf = path->nodes[0]; 4224 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4225 index = key.offset; 4226 btrfs_release_path(path); 4227 } else { 4228 ret = btrfs_del_root_ref(trans, objectid, 4229 root->root_key.objectid, dir_ino, 4230 &index, name, name_len); 4231 if (ret) { 4232 btrfs_abort_transaction(trans, ret); 4233 goto out; 4234 } 4235 } 4236 4237 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4238 if (ret) { 4239 btrfs_abort_transaction(trans, ret); 4240 goto out; 4241 } 4242 4243 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4244 inode_inc_iversion(dir); 4245 dir->i_mtime = dir->i_ctime = current_time(dir); 4246 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4247 if (ret) 4248 btrfs_abort_transaction(trans, ret); 4249 out: 4250 btrfs_free_path(path); 4251 return ret; 4252 } 4253 4254 /* 4255 * Helper to check if the subvolume references other subvolumes or if it's 4256 * default. 4257 */ 4258 static noinline int may_destroy_subvol(struct btrfs_root *root) 4259 { 4260 struct btrfs_fs_info *fs_info = root->fs_info; 4261 struct btrfs_path *path; 4262 struct btrfs_dir_item *di; 4263 struct btrfs_key key; 4264 u64 dir_id; 4265 int ret; 4266 4267 path = btrfs_alloc_path(); 4268 if (!path) 4269 return -ENOMEM; 4270 4271 /* Make sure this root isn't set as the default subvol */ 4272 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4273 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4274 dir_id, "default", 7, 0); 4275 if (di && !IS_ERR(di)) { 4276 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4277 if (key.objectid == root->root_key.objectid) { 4278 ret = -EPERM; 4279 btrfs_err(fs_info, 4280 "deleting default subvolume %llu is not allowed", 4281 key.objectid); 4282 goto out; 4283 } 4284 btrfs_release_path(path); 4285 } 4286 4287 key.objectid = root->root_key.objectid; 4288 key.type = BTRFS_ROOT_REF_KEY; 4289 key.offset = (u64)-1; 4290 4291 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4292 if (ret < 0) 4293 goto out; 4294 BUG_ON(ret == 0); 4295 4296 ret = 0; 4297 if (path->slots[0] > 0) { 4298 path->slots[0]--; 4299 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4300 if (key.objectid == root->root_key.objectid && 4301 key.type == BTRFS_ROOT_REF_KEY) 4302 ret = -ENOTEMPTY; 4303 } 4304 out: 4305 btrfs_free_path(path); 4306 return ret; 4307 } 4308 4309 /* Delete all dentries for inodes belonging to the root */ 4310 static void btrfs_prune_dentries(struct btrfs_root *root) 4311 { 4312 struct btrfs_fs_info *fs_info = root->fs_info; 4313 struct rb_node *node; 4314 struct rb_node *prev; 4315 struct btrfs_inode *entry; 4316 struct inode *inode; 4317 u64 objectid = 0; 4318 4319 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4320 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4321 4322 spin_lock(&root->inode_lock); 4323 again: 4324 node = root->inode_tree.rb_node; 4325 prev = NULL; 4326 while (node) { 4327 prev = node; 4328 entry = rb_entry(node, struct btrfs_inode, rb_node); 4329 4330 if (objectid < btrfs_ino(entry)) 4331 node = node->rb_left; 4332 else if (objectid > btrfs_ino(entry)) 4333 node = node->rb_right; 4334 else 4335 break; 4336 } 4337 if (!node) { 4338 while (prev) { 4339 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4340 if (objectid <= btrfs_ino(entry)) { 4341 node = prev; 4342 break; 4343 } 4344 prev = rb_next(prev); 4345 } 4346 } 4347 while (node) { 4348 entry = rb_entry(node, struct btrfs_inode, rb_node); 4349 objectid = btrfs_ino(entry) + 1; 4350 inode = igrab(&entry->vfs_inode); 4351 if (inode) { 4352 spin_unlock(&root->inode_lock); 4353 if (atomic_read(&inode->i_count) > 1) 4354 d_prune_aliases(inode); 4355 /* 4356 * btrfs_drop_inode will have it removed from the inode 4357 * cache when its usage count hits zero. 4358 */ 4359 iput(inode); 4360 cond_resched(); 4361 spin_lock(&root->inode_lock); 4362 goto again; 4363 } 4364 4365 if (cond_resched_lock(&root->inode_lock)) 4366 goto again; 4367 4368 node = rb_next(node); 4369 } 4370 spin_unlock(&root->inode_lock); 4371 } 4372 4373 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4374 { 4375 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4376 struct btrfs_root *root = BTRFS_I(dir)->root; 4377 struct inode *inode = d_inode(dentry); 4378 struct btrfs_root *dest = BTRFS_I(inode)->root; 4379 struct btrfs_trans_handle *trans; 4380 struct btrfs_block_rsv block_rsv; 4381 u64 root_flags; 4382 int ret; 4383 4384 /* 4385 * Don't allow to delete a subvolume with send in progress. This is 4386 * inside the inode lock so the error handling that has to drop the bit 4387 * again is not run concurrently. 4388 */ 4389 spin_lock(&dest->root_item_lock); 4390 if (dest->send_in_progress) { 4391 spin_unlock(&dest->root_item_lock); 4392 btrfs_warn(fs_info, 4393 "attempt to delete subvolume %llu during send", 4394 dest->root_key.objectid); 4395 return -EPERM; 4396 } 4397 root_flags = btrfs_root_flags(&dest->root_item); 4398 btrfs_set_root_flags(&dest->root_item, 4399 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4400 spin_unlock(&dest->root_item_lock); 4401 4402 down_write(&fs_info->subvol_sem); 4403 4404 ret = may_destroy_subvol(dest); 4405 if (ret) 4406 goto out_up_write; 4407 4408 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4409 /* 4410 * One for dir inode, 4411 * two for dir entries, 4412 * two for root ref/backref. 4413 */ 4414 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4415 if (ret) 4416 goto out_up_write; 4417 4418 trans = btrfs_start_transaction(root, 0); 4419 if (IS_ERR(trans)) { 4420 ret = PTR_ERR(trans); 4421 goto out_release; 4422 } 4423 trans->block_rsv = &block_rsv; 4424 trans->bytes_reserved = block_rsv.size; 4425 4426 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4427 4428 ret = btrfs_unlink_subvol(trans, dir, dentry); 4429 if (ret) { 4430 btrfs_abort_transaction(trans, ret); 4431 goto out_end_trans; 4432 } 4433 4434 ret = btrfs_record_root_in_trans(trans, dest); 4435 if (ret) { 4436 btrfs_abort_transaction(trans, ret); 4437 goto out_end_trans; 4438 } 4439 4440 memset(&dest->root_item.drop_progress, 0, 4441 sizeof(dest->root_item.drop_progress)); 4442 btrfs_set_root_drop_level(&dest->root_item, 0); 4443 btrfs_set_root_refs(&dest->root_item, 0); 4444 4445 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4446 ret = btrfs_insert_orphan_item(trans, 4447 fs_info->tree_root, 4448 dest->root_key.objectid); 4449 if (ret) { 4450 btrfs_abort_transaction(trans, ret); 4451 goto out_end_trans; 4452 } 4453 } 4454 4455 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4456 BTRFS_UUID_KEY_SUBVOL, 4457 dest->root_key.objectid); 4458 if (ret && ret != -ENOENT) { 4459 btrfs_abort_transaction(trans, ret); 4460 goto out_end_trans; 4461 } 4462 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4463 ret = btrfs_uuid_tree_remove(trans, 4464 dest->root_item.received_uuid, 4465 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4466 dest->root_key.objectid); 4467 if (ret && ret != -ENOENT) { 4468 btrfs_abort_transaction(trans, ret); 4469 goto out_end_trans; 4470 } 4471 } 4472 4473 free_anon_bdev(dest->anon_dev); 4474 dest->anon_dev = 0; 4475 out_end_trans: 4476 trans->block_rsv = NULL; 4477 trans->bytes_reserved = 0; 4478 ret = btrfs_end_transaction(trans); 4479 inode->i_flags |= S_DEAD; 4480 out_release: 4481 btrfs_subvolume_release_metadata(root, &block_rsv); 4482 out_up_write: 4483 up_write(&fs_info->subvol_sem); 4484 if (ret) { 4485 spin_lock(&dest->root_item_lock); 4486 root_flags = btrfs_root_flags(&dest->root_item); 4487 btrfs_set_root_flags(&dest->root_item, 4488 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4489 spin_unlock(&dest->root_item_lock); 4490 } else { 4491 d_invalidate(dentry); 4492 btrfs_prune_dentries(dest); 4493 ASSERT(dest->send_in_progress == 0); 4494 } 4495 4496 return ret; 4497 } 4498 4499 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4500 { 4501 struct inode *inode = d_inode(dentry); 4502 int err = 0; 4503 struct btrfs_root *root = BTRFS_I(dir)->root; 4504 struct btrfs_trans_handle *trans; 4505 u64 last_unlink_trans; 4506 4507 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4508 return -ENOTEMPTY; 4509 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4510 return btrfs_delete_subvolume(dir, dentry); 4511 4512 trans = __unlink_start_trans(dir); 4513 if (IS_ERR(trans)) 4514 return PTR_ERR(trans); 4515 4516 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4517 err = btrfs_unlink_subvol(trans, dir, dentry); 4518 goto out; 4519 } 4520 4521 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4522 if (err) 4523 goto out; 4524 4525 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4526 4527 /* now the directory is empty */ 4528 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4529 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4530 dentry->d_name.len); 4531 if (!err) { 4532 btrfs_i_size_write(BTRFS_I(inode), 0); 4533 /* 4534 * Propagate the last_unlink_trans value of the deleted dir to 4535 * its parent directory. This is to prevent an unrecoverable 4536 * log tree in the case we do something like this: 4537 * 1) create dir foo 4538 * 2) create snapshot under dir foo 4539 * 3) delete the snapshot 4540 * 4) rmdir foo 4541 * 5) mkdir foo 4542 * 6) fsync foo or some file inside foo 4543 */ 4544 if (last_unlink_trans >= trans->transid) 4545 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4546 } 4547 out: 4548 btrfs_end_transaction(trans); 4549 btrfs_btree_balance_dirty(root->fs_info); 4550 4551 return err; 4552 } 4553 4554 /* 4555 * Return this if we need to call truncate_block for the last bit of the 4556 * truncate. 4557 */ 4558 #define NEED_TRUNCATE_BLOCK 1 4559 4560 /* 4561 * Remove inode items from a given root. 4562 * 4563 * @trans: A transaction handle. 4564 * @root: The root from which to remove items. 4565 * @inode: The inode whose items we want to remove. 4566 * @new_size: The new i_size for the inode. This is only applicable when 4567 * @min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise. 4568 * @min_type: The minimum key type to remove. All keys with a type 4569 * greater than this value are removed and all keys with 4570 * this type are removed only if their offset is >= @new_size. 4571 * @extents_found: Output parameter that will contain the number of file 4572 * extent items that were removed or adjusted to the new 4573 * inode i_size. The caller is responsible for initializing 4574 * the counter. Also, it can be NULL if the caller does not 4575 * need this counter. 4576 * 4577 * Remove all keys associated with the inode from the given root that have a key 4578 * with a type greater than or equals to @min_type. When @min_type has a value of 4579 * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value 4580 * greater than or equals to @new_size. If a file extent item that starts before 4581 * @new_size and ends after it is found, its length is adjusted. 4582 * 4583 * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is 4584 * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block. 4585 */ 4586 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4587 struct btrfs_root *root, 4588 struct btrfs_inode *inode, 4589 u64 new_size, u32 min_type, 4590 u64 *extents_found) 4591 { 4592 struct btrfs_fs_info *fs_info = root->fs_info; 4593 struct btrfs_path *path; 4594 struct extent_buffer *leaf; 4595 struct btrfs_file_extent_item *fi; 4596 struct btrfs_key key; 4597 struct btrfs_key found_key; 4598 u64 extent_start = 0; 4599 u64 extent_num_bytes = 0; 4600 u64 extent_offset = 0; 4601 u64 item_end = 0; 4602 u64 last_size = new_size; 4603 u32 found_type = (u8)-1; 4604 int found_extent; 4605 int del_item; 4606 int pending_del_nr = 0; 4607 int pending_del_slot = 0; 4608 int extent_type = -1; 4609 int ret; 4610 u64 ino = btrfs_ino(inode); 4611 u64 bytes_deleted = 0; 4612 bool be_nice = false; 4613 bool should_throttle = false; 4614 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4615 struct extent_state *cached_state = NULL; 4616 4617 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4618 4619 /* 4620 * For non-free space inodes and non-shareable roots, we want to back 4621 * off from time to time. This means all inodes in subvolume roots, 4622 * reloc roots, and data reloc roots. 4623 */ 4624 if (!btrfs_is_free_space_inode(inode) && 4625 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4626 be_nice = true; 4627 4628 path = btrfs_alloc_path(); 4629 if (!path) 4630 return -ENOMEM; 4631 path->reada = READA_BACK; 4632 4633 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4634 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4635 &cached_state); 4636 4637 /* 4638 * We want to drop from the next block forward in case this 4639 * new size is not block aligned since we will be keeping the 4640 * last block of the extent just the way it is. 4641 */ 4642 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4643 fs_info->sectorsize), 4644 (u64)-1, 0); 4645 } 4646 4647 /* 4648 * This function is also used to drop the items in the log tree before 4649 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4650 * it is used to drop the logged items. So we shouldn't kill the delayed 4651 * items. 4652 */ 4653 if (min_type == 0 && root == inode->root) 4654 btrfs_kill_delayed_inode_items(inode); 4655 4656 key.objectid = ino; 4657 key.offset = (u64)-1; 4658 key.type = (u8)-1; 4659 4660 search_again: 4661 /* 4662 * with a 16K leaf size and 128MB extents, you can actually queue 4663 * up a huge file in a single leaf. Most of the time that 4664 * bytes_deleted is > 0, it will be huge by the time we get here 4665 */ 4666 if (be_nice && bytes_deleted > SZ_32M && 4667 btrfs_should_end_transaction(trans)) { 4668 ret = -EAGAIN; 4669 goto out; 4670 } 4671 4672 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4673 if (ret < 0) 4674 goto out; 4675 4676 if (ret > 0) { 4677 ret = 0; 4678 /* there are no items in the tree for us to truncate, we're 4679 * done 4680 */ 4681 if (path->slots[0] == 0) 4682 goto out; 4683 path->slots[0]--; 4684 } 4685 4686 while (1) { 4687 u64 clear_start = 0, clear_len = 0; 4688 4689 fi = NULL; 4690 leaf = path->nodes[0]; 4691 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4692 found_type = found_key.type; 4693 4694 if (found_key.objectid != ino) 4695 break; 4696 4697 if (found_type < min_type) 4698 break; 4699 4700 item_end = found_key.offset; 4701 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4702 fi = btrfs_item_ptr(leaf, path->slots[0], 4703 struct btrfs_file_extent_item); 4704 extent_type = btrfs_file_extent_type(leaf, fi); 4705 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4706 item_end += 4707 btrfs_file_extent_num_bytes(leaf, fi); 4708 4709 trace_btrfs_truncate_show_fi_regular( 4710 inode, leaf, fi, found_key.offset); 4711 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4712 item_end += btrfs_file_extent_ram_bytes(leaf, 4713 fi); 4714 4715 trace_btrfs_truncate_show_fi_inline( 4716 inode, leaf, fi, path->slots[0], 4717 found_key.offset); 4718 } 4719 item_end--; 4720 } 4721 if (found_type > min_type) { 4722 del_item = 1; 4723 } else { 4724 if (item_end < new_size) 4725 break; 4726 if (found_key.offset >= new_size) 4727 del_item = 1; 4728 else 4729 del_item = 0; 4730 } 4731 found_extent = 0; 4732 /* FIXME, shrink the extent if the ref count is only 1 */ 4733 if (found_type != BTRFS_EXTENT_DATA_KEY) 4734 goto delete; 4735 4736 if (extents_found != NULL) 4737 (*extents_found)++; 4738 4739 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4740 u64 num_dec; 4741 4742 clear_start = found_key.offset; 4743 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4744 if (!del_item) { 4745 u64 orig_num_bytes = 4746 btrfs_file_extent_num_bytes(leaf, fi); 4747 extent_num_bytes = ALIGN(new_size - 4748 found_key.offset, 4749 fs_info->sectorsize); 4750 clear_start = ALIGN(new_size, fs_info->sectorsize); 4751 btrfs_set_file_extent_num_bytes(leaf, fi, 4752 extent_num_bytes); 4753 num_dec = (orig_num_bytes - 4754 extent_num_bytes); 4755 if (test_bit(BTRFS_ROOT_SHAREABLE, 4756 &root->state) && 4757 extent_start != 0) 4758 inode_sub_bytes(&inode->vfs_inode, 4759 num_dec); 4760 btrfs_mark_buffer_dirty(leaf); 4761 } else { 4762 extent_num_bytes = 4763 btrfs_file_extent_disk_num_bytes(leaf, 4764 fi); 4765 extent_offset = found_key.offset - 4766 btrfs_file_extent_offset(leaf, fi); 4767 4768 /* FIXME blocksize != 4096 */ 4769 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4770 if (extent_start != 0) { 4771 found_extent = 1; 4772 if (test_bit(BTRFS_ROOT_SHAREABLE, 4773 &root->state)) 4774 inode_sub_bytes(&inode->vfs_inode, 4775 num_dec); 4776 } 4777 } 4778 clear_len = num_dec; 4779 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4780 /* 4781 * we can't truncate inline items that have had 4782 * special encodings 4783 */ 4784 if (!del_item && 4785 btrfs_file_extent_encryption(leaf, fi) == 0 && 4786 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4787 btrfs_file_extent_compression(leaf, fi) == 0) { 4788 u32 size = (u32)(new_size - found_key.offset); 4789 4790 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4791 size = btrfs_file_extent_calc_inline_size(size); 4792 btrfs_truncate_item(path, size, 1); 4793 } else if (!del_item) { 4794 /* 4795 * We have to bail so the last_size is set to 4796 * just before this extent. 4797 */ 4798 ret = NEED_TRUNCATE_BLOCK; 4799 break; 4800 } else { 4801 /* 4802 * Inline extents are special, we just treat 4803 * them as a full sector worth in the file 4804 * extent tree just for simplicity sake. 4805 */ 4806 clear_len = fs_info->sectorsize; 4807 } 4808 4809 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4810 inode_sub_bytes(&inode->vfs_inode, 4811 item_end + 1 - new_size); 4812 } 4813 delete: 4814 /* 4815 * We use btrfs_truncate_inode_items() to clean up log trees for 4816 * multiple fsyncs, and in this case we don't want to clear the 4817 * file extent range because it's just the log. 4818 */ 4819 if (root == inode->root) { 4820 ret = btrfs_inode_clear_file_extent_range(inode, 4821 clear_start, clear_len); 4822 if (ret) { 4823 btrfs_abort_transaction(trans, ret); 4824 break; 4825 } 4826 } 4827 4828 if (del_item) 4829 last_size = found_key.offset; 4830 else 4831 last_size = new_size; 4832 if (del_item) { 4833 if (!pending_del_nr) { 4834 /* no pending yet, add ourselves */ 4835 pending_del_slot = path->slots[0]; 4836 pending_del_nr = 1; 4837 } else if (pending_del_nr && 4838 path->slots[0] + 1 == pending_del_slot) { 4839 /* hop on the pending chunk */ 4840 pending_del_nr++; 4841 pending_del_slot = path->slots[0]; 4842 } else { 4843 BUG(); 4844 } 4845 } else { 4846 break; 4847 } 4848 should_throttle = false; 4849 4850 if (found_extent && 4851 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4852 struct btrfs_ref ref = { 0 }; 4853 4854 bytes_deleted += extent_num_bytes; 4855 4856 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4857 extent_start, extent_num_bytes, 0); 4858 ref.real_root = root->root_key.objectid; 4859 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4860 ino, extent_offset); 4861 ret = btrfs_free_extent(trans, &ref); 4862 if (ret) { 4863 btrfs_abort_transaction(trans, ret); 4864 break; 4865 } 4866 if (be_nice) { 4867 if (btrfs_should_throttle_delayed_refs(trans)) 4868 should_throttle = true; 4869 } 4870 } 4871 4872 if (found_type == BTRFS_INODE_ITEM_KEY) 4873 break; 4874 4875 if (path->slots[0] == 0 || 4876 path->slots[0] != pending_del_slot || 4877 should_throttle) { 4878 if (pending_del_nr) { 4879 ret = btrfs_del_items(trans, root, path, 4880 pending_del_slot, 4881 pending_del_nr); 4882 if (ret) { 4883 btrfs_abort_transaction(trans, ret); 4884 break; 4885 } 4886 pending_del_nr = 0; 4887 } 4888 btrfs_release_path(path); 4889 4890 /* 4891 * We can generate a lot of delayed refs, so we need to 4892 * throttle every once and a while and make sure we're 4893 * adding enough space to keep up with the work we are 4894 * generating. Since we hold a transaction here we 4895 * can't flush, and we don't want to FLUSH_LIMIT because 4896 * we could have generated too many delayed refs to 4897 * actually allocate, so just bail if we're short and 4898 * let the normal reservation dance happen higher up. 4899 */ 4900 if (should_throttle) { 4901 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4902 BTRFS_RESERVE_NO_FLUSH); 4903 if (ret) { 4904 ret = -EAGAIN; 4905 break; 4906 } 4907 } 4908 goto search_again; 4909 } else { 4910 path->slots[0]--; 4911 } 4912 } 4913 out: 4914 if (ret >= 0 && pending_del_nr) { 4915 int err; 4916 4917 err = btrfs_del_items(trans, root, path, pending_del_slot, 4918 pending_del_nr); 4919 if (err) { 4920 btrfs_abort_transaction(trans, err); 4921 ret = err; 4922 } 4923 } 4924 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4925 ASSERT(last_size >= new_size); 4926 if (!ret && last_size > new_size) 4927 last_size = new_size; 4928 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4929 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4930 &cached_state); 4931 } 4932 4933 btrfs_free_path(path); 4934 return ret; 4935 } 4936 4937 /* 4938 * btrfs_truncate_block - read, zero a chunk and write a block 4939 * @inode - inode that we're zeroing 4940 * @from - the offset to start zeroing 4941 * @len - the length to zero, 0 to zero the entire range respective to the 4942 * offset 4943 * @front - zero up to the offset instead of from the offset on 4944 * 4945 * This will find the block for the "from" offset and cow the block and zero the 4946 * part we want to zero. This is used with truncate and hole punching. 4947 */ 4948 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4949 int front) 4950 { 4951 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4952 struct address_space *mapping = inode->vfs_inode.i_mapping; 4953 struct extent_io_tree *io_tree = &inode->io_tree; 4954 struct btrfs_ordered_extent *ordered; 4955 struct extent_state *cached_state = NULL; 4956 struct extent_changeset *data_reserved = NULL; 4957 bool only_release_metadata = false; 4958 u32 blocksize = fs_info->sectorsize; 4959 pgoff_t index = from >> PAGE_SHIFT; 4960 unsigned offset = from & (blocksize - 1); 4961 struct page *page; 4962 gfp_t mask = btrfs_alloc_write_mask(mapping); 4963 size_t write_bytes = blocksize; 4964 int ret = 0; 4965 u64 block_start; 4966 u64 block_end; 4967 4968 if (IS_ALIGNED(offset, blocksize) && 4969 (!len || IS_ALIGNED(len, blocksize))) 4970 goto out; 4971 4972 block_start = round_down(from, blocksize); 4973 block_end = block_start + blocksize - 1; 4974 4975 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4976 blocksize); 4977 if (ret < 0) { 4978 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4979 /* For nocow case, no need to reserve data space */ 4980 only_release_metadata = true; 4981 } else { 4982 goto out; 4983 } 4984 } 4985 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 4986 if (ret < 0) { 4987 if (!only_release_metadata) 4988 btrfs_free_reserved_data_space(inode, data_reserved, 4989 block_start, blocksize); 4990 goto out; 4991 } 4992 again: 4993 page = find_or_create_page(mapping, index, mask); 4994 if (!page) { 4995 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4996 blocksize, true); 4997 btrfs_delalloc_release_extents(inode, blocksize); 4998 ret = -ENOMEM; 4999 goto out; 5000 } 5001 ret = set_page_extent_mapped(page); 5002 if (ret < 0) 5003 goto out_unlock; 5004 5005 if (!PageUptodate(page)) { 5006 ret = btrfs_readpage(NULL, page); 5007 lock_page(page); 5008 if (page->mapping != mapping) { 5009 unlock_page(page); 5010 put_page(page); 5011 goto again; 5012 } 5013 if (!PageUptodate(page)) { 5014 ret = -EIO; 5015 goto out_unlock; 5016 } 5017 } 5018 wait_on_page_writeback(page); 5019 5020 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 5021 5022 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5023 if (ordered) { 5024 unlock_extent_cached(io_tree, block_start, block_end, 5025 &cached_state); 5026 unlock_page(page); 5027 put_page(page); 5028 btrfs_start_ordered_extent(ordered, 1); 5029 btrfs_put_ordered_extent(ordered); 5030 goto again; 5031 } 5032 5033 clear_extent_bit(&inode->io_tree, block_start, block_end, 5034 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5035 0, 0, &cached_state); 5036 5037 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5038 &cached_state); 5039 if (ret) { 5040 unlock_extent_cached(io_tree, block_start, block_end, 5041 &cached_state); 5042 goto out_unlock; 5043 } 5044 5045 if (offset != blocksize) { 5046 if (!len) 5047 len = blocksize - offset; 5048 if (front) 5049 memzero_page(page, (block_start - page_offset(page)), 5050 offset); 5051 else 5052 memzero_page(page, (block_start - page_offset(page)) + offset, 5053 len); 5054 flush_dcache_page(page); 5055 } 5056 ClearPageChecked(page); 5057 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 5058 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 5059 5060 if (only_release_metadata) 5061 set_extent_bit(&inode->io_tree, block_start, block_end, 5062 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 5063 5064 out_unlock: 5065 if (ret) { 5066 if (only_release_metadata) 5067 btrfs_delalloc_release_metadata(inode, blocksize, true); 5068 else 5069 btrfs_delalloc_release_space(inode, data_reserved, 5070 block_start, blocksize, true); 5071 } 5072 btrfs_delalloc_release_extents(inode, blocksize); 5073 unlock_page(page); 5074 put_page(page); 5075 out: 5076 if (only_release_metadata) 5077 btrfs_check_nocow_unlock(inode); 5078 extent_changeset_free(data_reserved); 5079 return ret; 5080 } 5081 5082 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 5083 u64 offset, u64 len) 5084 { 5085 struct btrfs_fs_info *fs_info = root->fs_info; 5086 struct btrfs_trans_handle *trans; 5087 struct btrfs_drop_extents_args drop_args = { 0 }; 5088 int ret; 5089 5090 /* 5091 * Still need to make sure the inode looks like it's been updated so 5092 * that any holes get logged if we fsync. 5093 */ 5094 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 5095 inode->last_trans = fs_info->generation; 5096 inode->last_sub_trans = root->log_transid; 5097 inode->last_log_commit = root->last_log_commit; 5098 return 0; 5099 } 5100 5101 /* 5102 * 1 - for the one we're dropping 5103 * 1 - for the one we're adding 5104 * 1 - for updating the inode. 5105 */ 5106 trans = btrfs_start_transaction(root, 3); 5107 if (IS_ERR(trans)) 5108 return PTR_ERR(trans); 5109 5110 drop_args.start = offset; 5111 drop_args.end = offset + len; 5112 drop_args.drop_cache = true; 5113 5114 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5115 if (ret) { 5116 btrfs_abort_transaction(trans, ret); 5117 btrfs_end_transaction(trans); 5118 return ret; 5119 } 5120 5121 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 5122 offset, 0, 0, len, 0, len, 0, 0, 0); 5123 if (ret) { 5124 btrfs_abort_transaction(trans, ret); 5125 } else { 5126 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5127 btrfs_update_inode(trans, root, inode); 5128 } 5129 btrfs_end_transaction(trans); 5130 return ret; 5131 } 5132 5133 /* 5134 * This function puts in dummy file extents for the area we're creating a hole 5135 * for. So if we are truncating this file to a larger size we need to insert 5136 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5137 * the range between oldsize and size 5138 */ 5139 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5140 { 5141 struct btrfs_root *root = inode->root; 5142 struct btrfs_fs_info *fs_info = root->fs_info; 5143 struct extent_io_tree *io_tree = &inode->io_tree; 5144 struct extent_map *em = NULL; 5145 struct extent_state *cached_state = NULL; 5146 struct extent_map_tree *em_tree = &inode->extent_tree; 5147 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5148 u64 block_end = ALIGN(size, fs_info->sectorsize); 5149 u64 last_byte; 5150 u64 cur_offset; 5151 u64 hole_size; 5152 int err = 0; 5153 5154 /* 5155 * If our size started in the middle of a block we need to zero out the 5156 * rest of the block before we expand the i_size, otherwise we could 5157 * expose stale data. 5158 */ 5159 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5160 if (err) 5161 return err; 5162 5163 if (size <= hole_start) 5164 return 0; 5165 5166 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5167 &cached_state); 5168 cur_offset = hole_start; 5169 while (1) { 5170 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5171 block_end - cur_offset); 5172 if (IS_ERR(em)) { 5173 err = PTR_ERR(em); 5174 em = NULL; 5175 break; 5176 } 5177 last_byte = min(extent_map_end(em), block_end); 5178 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5179 hole_size = last_byte - cur_offset; 5180 5181 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5182 struct extent_map *hole_em; 5183 5184 err = maybe_insert_hole(root, inode, cur_offset, 5185 hole_size); 5186 if (err) 5187 break; 5188 5189 err = btrfs_inode_set_file_extent_range(inode, 5190 cur_offset, hole_size); 5191 if (err) 5192 break; 5193 5194 btrfs_drop_extent_cache(inode, cur_offset, 5195 cur_offset + hole_size - 1, 0); 5196 hole_em = alloc_extent_map(); 5197 if (!hole_em) { 5198 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5199 &inode->runtime_flags); 5200 goto next; 5201 } 5202 hole_em->start = cur_offset; 5203 hole_em->len = hole_size; 5204 hole_em->orig_start = cur_offset; 5205 5206 hole_em->block_start = EXTENT_MAP_HOLE; 5207 hole_em->block_len = 0; 5208 hole_em->orig_block_len = 0; 5209 hole_em->ram_bytes = hole_size; 5210 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5211 hole_em->generation = fs_info->generation; 5212 5213 while (1) { 5214 write_lock(&em_tree->lock); 5215 err = add_extent_mapping(em_tree, hole_em, 1); 5216 write_unlock(&em_tree->lock); 5217 if (err != -EEXIST) 5218 break; 5219 btrfs_drop_extent_cache(inode, cur_offset, 5220 cur_offset + 5221 hole_size - 1, 0); 5222 } 5223 free_extent_map(hole_em); 5224 } else { 5225 err = btrfs_inode_set_file_extent_range(inode, 5226 cur_offset, hole_size); 5227 if (err) 5228 break; 5229 } 5230 next: 5231 free_extent_map(em); 5232 em = NULL; 5233 cur_offset = last_byte; 5234 if (cur_offset >= block_end) 5235 break; 5236 } 5237 free_extent_map(em); 5238 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5239 return err; 5240 } 5241 5242 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5243 { 5244 struct btrfs_root *root = BTRFS_I(inode)->root; 5245 struct btrfs_trans_handle *trans; 5246 loff_t oldsize = i_size_read(inode); 5247 loff_t newsize = attr->ia_size; 5248 int mask = attr->ia_valid; 5249 int ret; 5250 5251 /* 5252 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5253 * special case where we need to update the times despite not having 5254 * these flags set. For all other operations the VFS set these flags 5255 * explicitly if it wants a timestamp update. 5256 */ 5257 if (newsize != oldsize) { 5258 inode_inc_iversion(inode); 5259 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5260 inode->i_ctime = inode->i_mtime = 5261 current_time(inode); 5262 } 5263 5264 if (newsize > oldsize) { 5265 /* 5266 * Don't do an expanding truncate while snapshotting is ongoing. 5267 * This is to ensure the snapshot captures a fully consistent 5268 * state of this file - if the snapshot captures this expanding 5269 * truncation, it must capture all writes that happened before 5270 * this truncation. 5271 */ 5272 btrfs_drew_write_lock(&root->snapshot_lock); 5273 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5274 if (ret) { 5275 btrfs_drew_write_unlock(&root->snapshot_lock); 5276 return ret; 5277 } 5278 5279 trans = btrfs_start_transaction(root, 1); 5280 if (IS_ERR(trans)) { 5281 btrfs_drew_write_unlock(&root->snapshot_lock); 5282 return PTR_ERR(trans); 5283 } 5284 5285 i_size_write(inode, newsize); 5286 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5287 pagecache_isize_extended(inode, oldsize, newsize); 5288 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5289 btrfs_drew_write_unlock(&root->snapshot_lock); 5290 btrfs_end_transaction(trans); 5291 } else { 5292 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5293 5294 if (btrfs_is_zoned(fs_info)) { 5295 ret = btrfs_wait_ordered_range(inode, 5296 ALIGN(newsize, fs_info->sectorsize), 5297 (u64)-1); 5298 if (ret) 5299 return ret; 5300 } 5301 5302 /* 5303 * We're truncating a file that used to have good data down to 5304 * zero. Make sure any new writes to the file get on disk 5305 * on close. 5306 */ 5307 if (newsize == 0) 5308 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5309 &BTRFS_I(inode)->runtime_flags); 5310 5311 truncate_setsize(inode, newsize); 5312 5313 inode_dio_wait(inode); 5314 5315 ret = btrfs_truncate(inode, newsize == oldsize); 5316 if (ret && inode->i_nlink) { 5317 int err; 5318 5319 /* 5320 * Truncate failed, so fix up the in-memory size. We 5321 * adjusted disk_i_size down as we removed extents, so 5322 * wait for disk_i_size to be stable and then update the 5323 * in-memory size to match. 5324 */ 5325 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5326 if (err) 5327 return err; 5328 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5329 } 5330 } 5331 5332 return ret; 5333 } 5334 5335 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5336 struct iattr *attr) 5337 { 5338 struct inode *inode = d_inode(dentry); 5339 struct btrfs_root *root = BTRFS_I(inode)->root; 5340 int err; 5341 5342 if (btrfs_root_readonly(root)) 5343 return -EROFS; 5344 5345 err = setattr_prepare(&init_user_ns, dentry, attr); 5346 if (err) 5347 return err; 5348 5349 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5350 err = btrfs_setsize(inode, attr); 5351 if (err) 5352 return err; 5353 } 5354 5355 if (attr->ia_valid) { 5356 setattr_copy(&init_user_ns, inode, attr); 5357 inode_inc_iversion(inode); 5358 err = btrfs_dirty_inode(inode); 5359 5360 if (!err && attr->ia_valid & ATTR_MODE) 5361 err = posix_acl_chmod(&init_user_ns, inode, 5362 inode->i_mode); 5363 } 5364 5365 return err; 5366 } 5367 5368 /* 5369 * While truncating the inode pages during eviction, we get the VFS calling 5370 * btrfs_invalidatepage() against each page of the inode. This is slow because 5371 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5372 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5373 * extent_state structures over and over, wasting lots of time. 5374 * 5375 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5376 * those expensive operations on a per page basis and do only the ordered io 5377 * finishing, while we release here the extent_map and extent_state structures, 5378 * without the excessive merging and splitting. 5379 */ 5380 static void evict_inode_truncate_pages(struct inode *inode) 5381 { 5382 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5383 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5384 struct rb_node *node; 5385 5386 ASSERT(inode->i_state & I_FREEING); 5387 truncate_inode_pages_final(&inode->i_data); 5388 5389 write_lock(&map_tree->lock); 5390 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5391 struct extent_map *em; 5392 5393 node = rb_first_cached(&map_tree->map); 5394 em = rb_entry(node, struct extent_map, rb_node); 5395 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5396 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5397 remove_extent_mapping(map_tree, em); 5398 free_extent_map(em); 5399 if (need_resched()) { 5400 write_unlock(&map_tree->lock); 5401 cond_resched(); 5402 write_lock(&map_tree->lock); 5403 } 5404 } 5405 write_unlock(&map_tree->lock); 5406 5407 /* 5408 * Keep looping until we have no more ranges in the io tree. 5409 * We can have ongoing bios started by readahead that have 5410 * their endio callback (extent_io.c:end_bio_extent_readpage) 5411 * still in progress (unlocked the pages in the bio but did not yet 5412 * unlocked the ranges in the io tree). Therefore this means some 5413 * ranges can still be locked and eviction started because before 5414 * submitting those bios, which are executed by a separate task (work 5415 * queue kthread), inode references (inode->i_count) were not taken 5416 * (which would be dropped in the end io callback of each bio). 5417 * Therefore here we effectively end up waiting for those bios and 5418 * anyone else holding locked ranges without having bumped the inode's 5419 * reference count - if we don't do it, when they access the inode's 5420 * io_tree to unlock a range it may be too late, leading to an 5421 * use-after-free issue. 5422 */ 5423 spin_lock(&io_tree->lock); 5424 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5425 struct extent_state *state; 5426 struct extent_state *cached_state = NULL; 5427 u64 start; 5428 u64 end; 5429 unsigned state_flags; 5430 5431 node = rb_first(&io_tree->state); 5432 state = rb_entry(node, struct extent_state, rb_node); 5433 start = state->start; 5434 end = state->end; 5435 state_flags = state->state; 5436 spin_unlock(&io_tree->lock); 5437 5438 lock_extent_bits(io_tree, start, end, &cached_state); 5439 5440 /* 5441 * If still has DELALLOC flag, the extent didn't reach disk, 5442 * and its reserved space won't be freed by delayed_ref. 5443 * So we need to free its reserved space here. 5444 * (Refer to comment in btrfs_invalidatepage, case 2) 5445 * 5446 * Note, end is the bytenr of last byte, so we need + 1 here. 5447 */ 5448 if (state_flags & EXTENT_DELALLOC) 5449 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5450 end - start + 1); 5451 5452 clear_extent_bit(io_tree, start, end, 5453 EXTENT_LOCKED | EXTENT_DELALLOC | 5454 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5455 &cached_state); 5456 5457 cond_resched(); 5458 spin_lock(&io_tree->lock); 5459 } 5460 spin_unlock(&io_tree->lock); 5461 } 5462 5463 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5464 struct btrfs_block_rsv *rsv) 5465 { 5466 struct btrfs_fs_info *fs_info = root->fs_info; 5467 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5468 struct btrfs_trans_handle *trans; 5469 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5470 int ret; 5471 5472 /* 5473 * Eviction should be taking place at some place safe because of our 5474 * delayed iputs. However the normal flushing code will run delayed 5475 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5476 * 5477 * We reserve the delayed_refs_extra here again because we can't use 5478 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5479 * above. We reserve our extra bit here because we generate a ton of 5480 * delayed refs activity by truncating. 5481 * 5482 * If we cannot make our reservation we'll attempt to steal from the 5483 * global reserve, because we really want to be able to free up space. 5484 */ 5485 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5486 BTRFS_RESERVE_FLUSH_EVICT); 5487 if (ret) { 5488 /* 5489 * Try to steal from the global reserve if there is space for 5490 * it. 5491 */ 5492 if (btrfs_check_space_for_delayed_refs(fs_info) || 5493 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5494 btrfs_warn(fs_info, 5495 "could not allocate space for delete; will truncate on mount"); 5496 return ERR_PTR(-ENOSPC); 5497 } 5498 delayed_refs_extra = 0; 5499 } 5500 5501 trans = btrfs_join_transaction(root); 5502 if (IS_ERR(trans)) 5503 return trans; 5504 5505 if (delayed_refs_extra) { 5506 trans->block_rsv = &fs_info->trans_block_rsv; 5507 trans->bytes_reserved = delayed_refs_extra; 5508 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5509 delayed_refs_extra, 1); 5510 } 5511 return trans; 5512 } 5513 5514 void btrfs_evict_inode(struct inode *inode) 5515 { 5516 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5517 struct btrfs_trans_handle *trans; 5518 struct btrfs_root *root = BTRFS_I(inode)->root; 5519 struct btrfs_block_rsv *rsv; 5520 int ret; 5521 5522 trace_btrfs_inode_evict(inode); 5523 5524 if (!root) { 5525 clear_inode(inode); 5526 return; 5527 } 5528 5529 evict_inode_truncate_pages(inode); 5530 5531 if (inode->i_nlink && 5532 ((btrfs_root_refs(&root->root_item) != 0 && 5533 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5534 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5535 goto no_delete; 5536 5537 if (is_bad_inode(inode)) 5538 goto no_delete; 5539 5540 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5541 5542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5543 goto no_delete; 5544 5545 if (inode->i_nlink > 0) { 5546 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5547 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5548 goto no_delete; 5549 } 5550 5551 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5552 if (ret) 5553 goto no_delete; 5554 5555 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5556 if (!rsv) 5557 goto no_delete; 5558 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5559 rsv->failfast = 1; 5560 5561 btrfs_i_size_write(BTRFS_I(inode), 0); 5562 5563 while (1) { 5564 trans = evict_refill_and_join(root, rsv); 5565 if (IS_ERR(trans)) 5566 goto free_rsv; 5567 5568 trans->block_rsv = rsv; 5569 5570 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5571 0, 0, NULL); 5572 trans->block_rsv = &fs_info->trans_block_rsv; 5573 btrfs_end_transaction(trans); 5574 btrfs_btree_balance_dirty(fs_info); 5575 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5576 goto free_rsv; 5577 else if (!ret) 5578 break; 5579 } 5580 5581 /* 5582 * Errors here aren't a big deal, it just means we leave orphan items in 5583 * the tree. They will be cleaned up on the next mount. If the inode 5584 * number gets reused, cleanup deletes the orphan item without doing 5585 * anything, and unlink reuses the existing orphan item. 5586 * 5587 * If it turns out that we are dropping too many of these, we might want 5588 * to add a mechanism for retrying these after a commit. 5589 */ 5590 trans = evict_refill_and_join(root, rsv); 5591 if (!IS_ERR(trans)) { 5592 trans->block_rsv = rsv; 5593 btrfs_orphan_del(trans, BTRFS_I(inode)); 5594 trans->block_rsv = &fs_info->trans_block_rsv; 5595 btrfs_end_transaction(trans); 5596 } 5597 5598 free_rsv: 5599 btrfs_free_block_rsv(fs_info, rsv); 5600 no_delete: 5601 /* 5602 * If we didn't successfully delete, the orphan item will still be in 5603 * the tree and we'll retry on the next mount. Again, we might also want 5604 * to retry these periodically in the future. 5605 */ 5606 btrfs_remove_delayed_node(BTRFS_I(inode)); 5607 clear_inode(inode); 5608 } 5609 5610 /* 5611 * Return the key found in the dir entry in the location pointer, fill @type 5612 * with BTRFS_FT_*, and return 0. 5613 * 5614 * If no dir entries were found, returns -ENOENT. 5615 * If found a corrupted location in dir entry, returns -EUCLEAN. 5616 */ 5617 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5618 struct btrfs_key *location, u8 *type) 5619 { 5620 const char *name = dentry->d_name.name; 5621 int namelen = dentry->d_name.len; 5622 struct btrfs_dir_item *di; 5623 struct btrfs_path *path; 5624 struct btrfs_root *root = BTRFS_I(dir)->root; 5625 int ret = 0; 5626 5627 path = btrfs_alloc_path(); 5628 if (!path) 5629 return -ENOMEM; 5630 5631 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5632 name, namelen, 0); 5633 if (IS_ERR_OR_NULL(di)) { 5634 ret = di ? PTR_ERR(di) : -ENOENT; 5635 goto out; 5636 } 5637 5638 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5639 if (location->type != BTRFS_INODE_ITEM_KEY && 5640 location->type != BTRFS_ROOT_ITEM_KEY) { 5641 ret = -EUCLEAN; 5642 btrfs_warn(root->fs_info, 5643 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5644 __func__, name, btrfs_ino(BTRFS_I(dir)), 5645 location->objectid, location->type, location->offset); 5646 } 5647 if (!ret) 5648 *type = btrfs_dir_type(path->nodes[0], di); 5649 out: 5650 btrfs_free_path(path); 5651 return ret; 5652 } 5653 5654 /* 5655 * when we hit a tree root in a directory, the btrfs part of the inode 5656 * needs to be changed to reflect the root directory of the tree root. This 5657 * is kind of like crossing a mount point. 5658 */ 5659 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5660 struct inode *dir, 5661 struct dentry *dentry, 5662 struct btrfs_key *location, 5663 struct btrfs_root **sub_root) 5664 { 5665 struct btrfs_path *path; 5666 struct btrfs_root *new_root; 5667 struct btrfs_root_ref *ref; 5668 struct extent_buffer *leaf; 5669 struct btrfs_key key; 5670 int ret; 5671 int err = 0; 5672 5673 path = btrfs_alloc_path(); 5674 if (!path) { 5675 err = -ENOMEM; 5676 goto out; 5677 } 5678 5679 err = -ENOENT; 5680 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5681 key.type = BTRFS_ROOT_REF_KEY; 5682 key.offset = location->objectid; 5683 5684 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5685 if (ret) { 5686 if (ret < 0) 5687 err = ret; 5688 goto out; 5689 } 5690 5691 leaf = path->nodes[0]; 5692 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5693 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5694 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5695 goto out; 5696 5697 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5698 (unsigned long)(ref + 1), 5699 dentry->d_name.len); 5700 if (ret) 5701 goto out; 5702 5703 btrfs_release_path(path); 5704 5705 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5706 if (IS_ERR(new_root)) { 5707 err = PTR_ERR(new_root); 5708 goto out; 5709 } 5710 5711 *sub_root = new_root; 5712 location->objectid = btrfs_root_dirid(&new_root->root_item); 5713 location->type = BTRFS_INODE_ITEM_KEY; 5714 location->offset = 0; 5715 err = 0; 5716 out: 5717 btrfs_free_path(path); 5718 return err; 5719 } 5720 5721 static void inode_tree_add(struct inode *inode) 5722 { 5723 struct btrfs_root *root = BTRFS_I(inode)->root; 5724 struct btrfs_inode *entry; 5725 struct rb_node **p; 5726 struct rb_node *parent; 5727 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5728 u64 ino = btrfs_ino(BTRFS_I(inode)); 5729 5730 if (inode_unhashed(inode)) 5731 return; 5732 parent = NULL; 5733 spin_lock(&root->inode_lock); 5734 p = &root->inode_tree.rb_node; 5735 while (*p) { 5736 parent = *p; 5737 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5738 5739 if (ino < btrfs_ino(entry)) 5740 p = &parent->rb_left; 5741 else if (ino > btrfs_ino(entry)) 5742 p = &parent->rb_right; 5743 else { 5744 WARN_ON(!(entry->vfs_inode.i_state & 5745 (I_WILL_FREE | I_FREEING))); 5746 rb_replace_node(parent, new, &root->inode_tree); 5747 RB_CLEAR_NODE(parent); 5748 spin_unlock(&root->inode_lock); 5749 return; 5750 } 5751 } 5752 rb_link_node(new, parent, p); 5753 rb_insert_color(new, &root->inode_tree); 5754 spin_unlock(&root->inode_lock); 5755 } 5756 5757 static void inode_tree_del(struct btrfs_inode *inode) 5758 { 5759 struct btrfs_root *root = inode->root; 5760 int empty = 0; 5761 5762 spin_lock(&root->inode_lock); 5763 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5764 rb_erase(&inode->rb_node, &root->inode_tree); 5765 RB_CLEAR_NODE(&inode->rb_node); 5766 empty = RB_EMPTY_ROOT(&root->inode_tree); 5767 } 5768 spin_unlock(&root->inode_lock); 5769 5770 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5771 spin_lock(&root->inode_lock); 5772 empty = RB_EMPTY_ROOT(&root->inode_tree); 5773 spin_unlock(&root->inode_lock); 5774 if (empty) 5775 btrfs_add_dead_root(root); 5776 } 5777 } 5778 5779 5780 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5781 { 5782 struct btrfs_iget_args *args = p; 5783 5784 inode->i_ino = args->ino; 5785 BTRFS_I(inode)->location.objectid = args->ino; 5786 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5787 BTRFS_I(inode)->location.offset = 0; 5788 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5789 BUG_ON(args->root && !BTRFS_I(inode)->root); 5790 return 0; 5791 } 5792 5793 static int btrfs_find_actor(struct inode *inode, void *opaque) 5794 { 5795 struct btrfs_iget_args *args = opaque; 5796 5797 return args->ino == BTRFS_I(inode)->location.objectid && 5798 args->root == BTRFS_I(inode)->root; 5799 } 5800 5801 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5802 struct btrfs_root *root) 5803 { 5804 struct inode *inode; 5805 struct btrfs_iget_args args; 5806 unsigned long hashval = btrfs_inode_hash(ino, root); 5807 5808 args.ino = ino; 5809 args.root = root; 5810 5811 inode = iget5_locked(s, hashval, btrfs_find_actor, 5812 btrfs_init_locked_inode, 5813 (void *)&args); 5814 return inode; 5815 } 5816 5817 /* 5818 * Get an inode object given its inode number and corresponding root. 5819 * Path can be preallocated to prevent recursing back to iget through 5820 * allocator. NULL is also valid but may require an additional allocation 5821 * later. 5822 */ 5823 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5824 struct btrfs_root *root, struct btrfs_path *path) 5825 { 5826 struct inode *inode; 5827 5828 inode = btrfs_iget_locked(s, ino, root); 5829 if (!inode) 5830 return ERR_PTR(-ENOMEM); 5831 5832 if (inode->i_state & I_NEW) { 5833 int ret; 5834 5835 ret = btrfs_read_locked_inode(inode, path); 5836 if (!ret) { 5837 inode_tree_add(inode); 5838 unlock_new_inode(inode); 5839 } else { 5840 iget_failed(inode); 5841 /* 5842 * ret > 0 can come from btrfs_search_slot called by 5843 * btrfs_read_locked_inode, this means the inode item 5844 * was not found. 5845 */ 5846 if (ret > 0) 5847 ret = -ENOENT; 5848 inode = ERR_PTR(ret); 5849 } 5850 } 5851 5852 return inode; 5853 } 5854 5855 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5856 { 5857 return btrfs_iget_path(s, ino, root, NULL); 5858 } 5859 5860 static struct inode *new_simple_dir(struct super_block *s, 5861 struct btrfs_key *key, 5862 struct btrfs_root *root) 5863 { 5864 struct inode *inode = new_inode(s); 5865 5866 if (!inode) 5867 return ERR_PTR(-ENOMEM); 5868 5869 BTRFS_I(inode)->root = btrfs_grab_root(root); 5870 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5871 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5872 5873 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5874 /* 5875 * We only need lookup, the rest is read-only and there's no inode 5876 * associated with the dentry 5877 */ 5878 inode->i_op = &simple_dir_inode_operations; 5879 inode->i_opflags &= ~IOP_XATTR; 5880 inode->i_fop = &simple_dir_operations; 5881 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5882 inode->i_mtime = current_time(inode); 5883 inode->i_atime = inode->i_mtime; 5884 inode->i_ctime = inode->i_mtime; 5885 BTRFS_I(inode)->i_otime = inode->i_mtime; 5886 5887 return inode; 5888 } 5889 5890 static inline u8 btrfs_inode_type(struct inode *inode) 5891 { 5892 /* 5893 * Compile-time asserts that generic FT_* types still match 5894 * BTRFS_FT_* types 5895 */ 5896 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5897 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5898 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5899 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5900 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5901 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5902 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5903 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5904 5905 return fs_umode_to_ftype(inode->i_mode); 5906 } 5907 5908 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5909 { 5910 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5911 struct inode *inode; 5912 struct btrfs_root *root = BTRFS_I(dir)->root; 5913 struct btrfs_root *sub_root = root; 5914 struct btrfs_key location; 5915 u8 di_type = 0; 5916 int ret = 0; 5917 5918 if (dentry->d_name.len > BTRFS_NAME_LEN) 5919 return ERR_PTR(-ENAMETOOLONG); 5920 5921 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5922 if (ret < 0) 5923 return ERR_PTR(ret); 5924 5925 if (location.type == BTRFS_INODE_ITEM_KEY) { 5926 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5927 if (IS_ERR(inode)) 5928 return inode; 5929 5930 /* Do extra check against inode mode with di_type */ 5931 if (btrfs_inode_type(inode) != di_type) { 5932 btrfs_crit(fs_info, 5933 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5934 inode->i_mode, btrfs_inode_type(inode), 5935 di_type); 5936 iput(inode); 5937 return ERR_PTR(-EUCLEAN); 5938 } 5939 return inode; 5940 } 5941 5942 ret = fixup_tree_root_location(fs_info, dir, dentry, 5943 &location, &sub_root); 5944 if (ret < 0) { 5945 if (ret != -ENOENT) 5946 inode = ERR_PTR(ret); 5947 else 5948 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5949 } else { 5950 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5951 } 5952 if (root != sub_root) 5953 btrfs_put_root(sub_root); 5954 5955 if (!IS_ERR(inode) && root != sub_root) { 5956 down_read(&fs_info->cleanup_work_sem); 5957 if (!sb_rdonly(inode->i_sb)) 5958 ret = btrfs_orphan_cleanup(sub_root); 5959 up_read(&fs_info->cleanup_work_sem); 5960 if (ret) { 5961 iput(inode); 5962 inode = ERR_PTR(ret); 5963 } 5964 } 5965 5966 return inode; 5967 } 5968 5969 static int btrfs_dentry_delete(const struct dentry *dentry) 5970 { 5971 struct btrfs_root *root; 5972 struct inode *inode = d_inode(dentry); 5973 5974 if (!inode && !IS_ROOT(dentry)) 5975 inode = d_inode(dentry->d_parent); 5976 5977 if (inode) { 5978 root = BTRFS_I(inode)->root; 5979 if (btrfs_root_refs(&root->root_item) == 0) 5980 return 1; 5981 5982 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5983 return 1; 5984 } 5985 return 0; 5986 } 5987 5988 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5989 unsigned int flags) 5990 { 5991 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5992 5993 if (inode == ERR_PTR(-ENOENT)) 5994 inode = NULL; 5995 return d_splice_alias(inode, dentry); 5996 } 5997 5998 /* 5999 * All this infrastructure exists because dir_emit can fault, and we are holding 6000 * the tree lock when doing readdir. For now just allocate a buffer and copy 6001 * our information into that, and then dir_emit from the buffer. This is 6002 * similar to what NFS does, only we don't keep the buffer around in pagecache 6003 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6004 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6005 * tree lock. 6006 */ 6007 static int btrfs_opendir(struct inode *inode, struct file *file) 6008 { 6009 struct btrfs_file_private *private; 6010 6011 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6012 if (!private) 6013 return -ENOMEM; 6014 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6015 if (!private->filldir_buf) { 6016 kfree(private); 6017 return -ENOMEM; 6018 } 6019 file->private_data = private; 6020 return 0; 6021 } 6022 6023 struct dir_entry { 6024 u64 ino; 6025 u64 offset; 6026 unsigned type; 6027 int name_len; 6028 }; 6029 6030 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6031 { 6032 while (entries--) { 6033 struct dir_entry *entry = addr; 6034 char *name = (char *)(entry + 1); 6035 6036 ctx->pos = get_unaligned(&entry->offset); 6037 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6038 get_unaligned(&entry->ino), 6039 get_unaligned(&entry->type))) 6040 return 1; 6041 addr += sizeof(struct dir_entry) + 6042 get_unaligned(&entry->name_len); 6043 ctx->pos++; 6044 } 6045 return 0; 6046 } 6047 6048 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6049 { 6050 struct inode *inode = file_inode(file); 6051 struct btrfs_root *root = BTRFS_I(inode)->root; 6052 struct btrfs_file_private *private = file->private_data; 6053 struct btrfs_dir_item *di; 6054 struct btrfs_key key; 6055 struct btrfs_key found_key; 6056 struct btrfs_path *path; 6057 void *addr; 6058 struct list_head ins_list; 6059 struct list_head del_list; 6060 int ret; 6061 struct extent_buffer *leaf; 6062 int slot; 6063 char *name_ptr; 6064 int name_len; 6065 int entries = 0; 6066 int total_len = 0; 6067 bool put = false; 6068 struct btrfs_key location; 6069 6070 if (!dir_emit_dots(file, ctx)) 6071 return 0; 6072 6073 path = btrfs_alloc_path(); 6074 if (!path) 6075 return -ENOMEM; 6076 6077 addr = private->filldir_buf; 6078 path->reada = READA_FORWARD; 6079 6080 INIT_LIST_HEAD(&ins_list); 6081 INIT_LIST_HEAD(&del_list); 6082 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 6083 6084 again: 6085 key.type = BTRFS_DIR_INDEX_KEY; 6086 key.offset = ctx->pos; 6087 key.objectid = btrfs_ino(BTRFS_I(inode)); 6088 6089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6090 if (ret < 0) 6091 goto err; 6092 6093 while (1) { 6094 struct dir_entry *entry; 6095 6096 leaf = path->nodes[0]; 6097 slot = path->slots[0]; 6098 if (slot >= btrfs_header_nritems(leaf)) { 6099 ret = btrfs_next_leaf(root, path); 6100 if (ret < 0) 6101 goto err; 6102 else if (ret > 0) 6103 break; 6104 continue; 6105 } 6106 6107 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6108 6109 if (found_key.objectid != key.objectid) 6110 break; 6111 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6112 break; 6113 if (found_key.offset < ctx->pos) 6114 goto next; 6115 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6116 goto next; 6117 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6118 name_len = btrfs_dir_name_len(leaf, di); 6119 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6120 PAGE_SIZE) { 6121 btrfs_release_path(path); 6122 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6123 if (ret) 6124 goto nopos; 6125 addr = private->filldir_buf; 6126 entries = 0; 6127 total_len = 0; 6128 goto again; 6129 } 6130 6131 entry = addr; 6132 put_unaligned(name_len, &entry->name_len); 6133 name_ptr = (char *)(entry + 1); 6134 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6135 name_len); 6136 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6137 &entry->type); 6138 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6139 put_unaligned(location.objectid, &entry->ino); 6140 put_unaligned(found_key.offset, &entry->offset); 6141 entries++; 6142 addr += sizeof(struct dir_entry) + name_len; 6143 total_len += sizeof(struct dir_entry) + name_len; 6144 next: 6145 path->slots[0]++; 6146 } 6147 btrfs_release_path(path); 6148 6149 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6150 if (ret) 6151 goto nopos; 6152 6153 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6154 if (ret) 6155 goto nopos; 6156 6157 /* 6158 * Stop new entries from being returned after we return the last 6159 * entry. 6160 * 6161 * New directory entries are assigned a strictly increasing 6162 * offset. This means that new entries created during readdir 6163 * are *guaranteed* to be seen in the future by that readdir. 6164 * This has broken buggy programs which operate on names as 6165 * they're returned by readdir. Until we re-use freed offsets 6166 * we have this hack to stop new entries from being returned 6167 * under the assumption that they'll never reach this huge 6168 * offset. 6169 * 6170 * This is being careful not to overflow 32bit loff_t unless the 6171 * last entry requires it because doing so has broken 32bit apps 6172 * in the past. 6173 */ 6174 if (ctx->pos >= INT_MAX) 6175 ctx->pos = LLONG_MAX; 6176 else 6177 ctx->pos = INT_MAX; 6178 nopos: 6179 ret = 0; 6180 err: 6181 if (put) 6182 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6183 btrfs_free_path(path); 6184 return ret; 6185 } 6186 6187 /* 6188 * This is somewhat expensive, updating the tree every time the 6189 * inode changes. But, it is most likely to find the inode in cache. 6190 * FIXME, needs more benchmarking...there are no reasons other than performance 6191 * to keep or drop this code. 6192 */ 6193 static int btrfs_dirty_inode(struct inode *inode) 6194 { 6195 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6196 struct btrfs_root *root = BTRFS_I(inode)->root; 6197 struct btrfs_trans_handle *trans; 6198 int ret; 6199 6200 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6201 return 0; 6202 6203 trans = btrfs_join_transaction(root); 6204 if (IS_ERR(trans)) 6205 return PTR_ERR(trans); 6206 6207 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6208 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6209 /* whoops, lets try again with the full transaction */ 6210 btrfs_end_transaction(trans); 6211 trans = btrfs_start_transaction(root, 1); 6212 if (IS_ERR(trans)) 6213 return PTR_ERR(trans); 6214 6215 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6216 } 6217 btrfs_end_transaction(trans); 6218 if (BTRFS_I(inode)->delayed_node) 6219 btrfs_balance_delayed_items(fs_info); 6220 6221 return ret; 6222 } 6223 6224 /* 6225 * This is a copy of file_update_time. We need this so we can return error on 6226 * ENOSPC for updating the inode in the case of file write and mmap writes. 6227 */ 6228 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6229 int flags) 6230 { 6231 struct btrfs_root *root = BTRFS_I(inode)->root; 6232 bool dirty = flags & ~S_VERSION; 6233 6234 if (btrfs_root_readonly(root)) 6235 return -EROFS; 6236 6237 if (flags & S_VERSION) 6238 dirty |= inode_maybe_inc_iversion(inode, dirty); 6239 if (flags & S_CTIME) 6240 inode->i_ctime = *now; 6241 if (flags & S_MTIME) 6242 inode->i_mtime = *now; 6243 if (flags & S_ATIME) 6244 inode->i_atime = *now; 6245 return dirty ? btrfs_dirty_inode(inode) : 0; 6246 } 6247 6248 /* 6249 * find the highest existing sequence number in a directory 6250 * and then set the in-memory index_cnt variable to reflect 6251 * free sequence numbers 6252 */ 6253 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6254 { 6255 struct btrfs_root *root = inode->root; 6256 struct btrfs_key key, found_key; 6257 struct btrfs_path *path; 6258 struct extent_buffer *leaf; 6259 int ret; 6260 6261 key.objectid = btrfs_ino(inode); 6262 key.type = BTRFS_DIR_INDEX_KEY; 6263 key.offset = (u64)-1; 6264 6265 path = btrfs_alloc_path(); 6266 if (!path) 6267 return -ENOMEM; 6268 6269 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6270 if (ret < 0) 6271 goto out; 6272 /* FIXME: we should be able to handle this */ 6273 if (ret == 0) 6274 goto out; 6275 ret = 0; 6276 6277 /* 6278 * MAGIC NUMBER EXPLANATION: 6279 * since we search a directory based on f_pos we have to start at 2 6280 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6281 * else has to start at 2 6282 */ 6283 if (path->slots[0] == 0) { 6284 inode->index_cnt = 2; 6285 goto out; 6286 } 6287 6288 path->slots[0]--; 6289 6290 leaf = path->nodes[0]; 6291 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6292 6293 if (found_key.objectid != btrfs_ino(inode) || 6294 found_key.type != BTRFS_DIR_INDEX_KEY) { 6295 inode->index_cnt = 2; 6296 goto out; 6297 } 6298 6299 inode->index_cnt = found_key.offset + 1; 6300 out: 6301 btrfs_free_path(path); 6302 return ret; 6303 } 6304 6305 /* 6306 * helper to find a free sequence number in a given directory. This current 6307 * code is very simple, later versions will do smarter things in the btree 6308 */ 6309 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6310 { 6311 int ret = 0; 6312 6313 if (dir->index_cnt == (u64)-1) { 6314 ret = btrfs_inode_delayed_dir_index_count(dir); 6315 if (ret) { 6316 ret = btrfs_set_inode_index_count(dir); 6317 if (ret) 6318 return ret; 6319 } 6320 } 6321 6322 *index = dir->index_cnt; 6323 dir->index_cnt++; 6324 6325 return ret; 6326 } 6327 6328 static int btrfs_insert_inode_locked(struct inode *inode) 6329 { 6330 struct btrfs_iget_args args; 6331 6332 args.ino = BTRFS_I(inode)->location.objectid; 6333 args.root = BTRFS_I(inode)->root; 6334 6335 return insert_inode_locked4(inode, 6336 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6337 btrfs_find_actor, &args); 6338 } 6339 6340 /* 6341 * Inherit flags from the parent inode. 6342 * 6343 * Currently only the compression flags and the cow flags are inherited. 6344 */ 6345 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6346 { 6347 unsigned int flags; 6348 6349 if (!dir) 6350 return; 6351 6352 flags = BTRFS_I(dir)->flags; 6353 6354 if (flags & BTRFS_INODE_NOCOMPRESS) { 6355 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6356 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6357 } else if (flags & BTRFS_INODE_COMPRESS) { 6358 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6359 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6360 } 6361 6362 if (flags & BTRFS_INODE_NODATACOW) { 6363 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6364 if (S_ISREG(inode->i_mode)) 6365 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6366 } 6367 6368 btrfs_sync_inode_flags_to_i_flags(inode); 6369 } 6370 6371 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6372 struct btrfs_root *root, 6373 struct inode *dir, 6374 const char *name, int name_len, 6375 u64 ref_objectid, u64 objectid, 6376 umode_t mode, u64 *index) 6377 { 6378 struct btrfs_fs_info *fs_info = root->fs_info; 6379 struct inode *inode; 6380 struct btrfs_inode_item *inode_item; 6381 struct btrfs_key *location; 6382 struct btrfs_path *path; 6383 struct btrfs_inode_ref *ref; 6384 struct btrfs_key key[2]; 6385 u32 sizes[2]; 6386 int nitems = name ? 2 : 1; 6387 unsigned long ptr; 6388 unsigned int nofs_flag; 6389 int ret; 6390 6391 path = btrfs_alloc_path(); 6392 if (!path) 6393 return ERR_PTR(-ENOMEM); 6394 6395 nofs_flag = memalloc_nofs_save(); 6396 inode = new_inode(fs_info->sb); 6397 memalloc_nofs_restore(nofs_flag); 6398 if (!inode) { 6399 btrfs_free_path(path); 6400 return ERR_PTR(-ENOMEM); 6401 } 6402 6403 /* 6404 * O_TMPFILE, set link count to 0, so that after this point, 6405 * we fill in an inode item with the correct link count. 6406 */ 6407 if (!name) 6408 set_nlink(inode, 0); 6409 6410 /* 6411 * we have to initialize this early, so we can reclaim the inode 6412 * number if we fail afterwards in this function. 6413 */ 6414 inode->i_ino = objectid; 6415 6416 if (dir && name) { 6417 trace_btrfs_inode_request(dir); 6418 6419 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6420 if (ret) { 6421 btrfs_free_path(path); 6422 iput(inode); 6423 return ERR_PTR(ret); 6424 } 6425 } else if (dir) { 6426 *index = 0; 6427 } 6428 /* 6429 * index_cnt is ignored for everything but a dir, 6430 * btrfs_set_inode_index_count has an explanation for the magic 6431 * number 6432 */ 6433 BTRFS_I(inode)->index_cnt = 2; 6434 BTRFS_I(inode)->dir_index = *index; 6435 BTRFS_I(inode)->root = btrfs_grab_root(root); 6436 BTRFS_I(inode)->generation = trans->transid; 6437 inode->i_generation = BTRFS_I(inode)->generation; 6438 6439 /* 6440 * We could have gotten an inode number from somebody who was fsynced 6441 * and then removed in this same transaction, so let's just set full 6442 * sync since it will be a full sync anyway and this will blow away the 6443 * old info in the log. 6444 */ 6445 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6446 6447 key[0].objectid = objectid; 6448 key[0].type = BTRFS_INODE_ITEM_KEY; 6449 key[0].offset = 0; 6450 6451 sizes[0] = sizeof(struct btrfs_inode_item); 6452 6453 if (name) { 6454 /* 6455 * Start new inodes with an inode_ref. This is slightly more 6456 * efficient for small numbers of hard links since they will 6457 * be packed into one item. Extended refs will kick in if we 6458 * add more hard links than can fit in the ref item. 6459 */ 6460 key[1].objectid = objectid; 6461 key[1].type = BTRFS_INODE_REF_KEY; 6462 key[1].offset = ref_objectid; 6463 6464 sizes[1] = name_len + sizeof(*ref); 6465 } 6466 6467 location = &BTRFS_I(inode)->location; 6468 location->objectid = objectid; 6469 location->offset = 0; 6470 location->type = BTRFS_INODE_ITEM_KEY; 6471 6472 ret = btrfs_insert_inode_locked(inode); 6473 if (ret < 0) { 6474 iput(inode); 6475 goto fail; 6476 } 6477 6478 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6479 if (ret != 0) 6480 goto fail_unlock; 6481 6482 inode_init_owner(&init_user_ns, inode, dir, mode); 6483 inode_set_bytes(inode, 0); 6484 6485 inode->i_mtime = current_time(inode); 6486 inode->i_atime = inode->i_mtime; 6487 inode->i_ctime = inode->i_mtime; 6488 BTRFS_I(inode)->i_otime = inode->i_mtime; 6489 6490 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6491 struct btrfs_inode_item); 6492 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6493 sizeof(*inode_item)); 6494 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6495 6496 if (name) { 6497 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6498 struct btrfs_inode_ref); 6499 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6500 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6501 ptr = (unsigned long)(ref + 1); 6502 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6503 } 6504 6505 btrfs_mark_buffer_dirty(path->nodes[0]); 6506 btrfs_free_path(path); 6507 6508 btrfs_inherit_iflags(inode, dir); 6509 6510 if (S_ISREG(mode)) { 6511 if (btrfs_test_opt(fs_info, NODATASUM)) 6512 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6513 if (btrfs_test_opt(fs_info, NODATACOW)) 6514 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6515 BTRFS_INODE_NODATASUM; 6516 } 6517 6518 inode_tree_add(inode); 6519 6520 trace_btrfs_inode_new(inode); 6521 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6522 6523 btrfs_update_root_times(trans, root); 6524 6525 ret = btrfs_inode_inherit_props(trans, inode, dir); 6526 if (ret) 6527 btrfs_err(fs_info, 6528 "error inheriting props for ino %llu (root %llu): %d", 6529 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6530 6531 return inode; 6532 6533 fail_unlock: 6534 discard_new_inode(inode); 6535 fail: 6536 if (dir && name) 6537 BTRFS_I(dir)->index_cnt--; 6538 btrfs_free_path(path); 6539 return ERR_PTR(ret); 6540 } 6541 6542 /* 6543 * utility function to add 'inode' into 'parent_inode' with 6544 * a give name and a given sequence number. 6545 * if 'add_backref' is true, also insert a backref from the 6546 * inode to the parent directory. 6547 */ 6548 int btrfs_add_link(struct btrfs_trans_handle *trans, 6549 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6550 const char *name, int name_len, int add_backref, u64 index) 6551 { 6552 int ret = 0; 6553 struct btrfs_key key; 6554 struct btrfs_root *root = parent_inode->root; 6555 u64 ino = btrfs_ino(inode); 6556 u64 parent_ino = btrfs_ino(parent_inode); 6557 6558 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6559 memcpy(&key, &inode->root->root_key, sizeof(key)); 6560 } else { 6561 key.objectid = ino; 6562 key.type = BTRFS_INODE_ITEM_KEY; 6563 key.offset = 0; 6564 } 6565 6566 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6567 ret = btrfs_add_root_ref(trans, key.objectid, 6568 root->root_key.objectid, parent_ino, 6569 index, name, name_len); 6570 } else if (add_backref) { 6571 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6572 parent_ino, index); 6573 } 6574 6575 /* Nothing to clean up yet */ 6576 if (ret) 6577 return ret; 6578 6579 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6580 btrfs_inode_type(&inode->vfs_inode), index); 6581 if (ret == -EEXIST || ret == -EOVERFLOW) 6582 goto fail_dir_item; 6583 else if (ret) { 6584 btrfs_abort_transaction(trans, ret); 6585 return ret; 6586 } 6587 6588 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6589 name_len * 2); 6590 inode_inc_iversion(&parent_inode->vfs_inode); 6591 /* 6592 * If we are replaying a log tree, we do not want to update the mtime 6593 * and ctime of the parent directory with the current time, since the 6594 * log replay procedure is responsible for setting them to their correct 6595 * values (the ones it had when the fsync was done). 6596 */ 6597 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6598 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6599 6600 parent_inode->vfs_inode.i_mtime = now; 6601 parent_inode->vfs_inode.i_ctime = now; 6602 } 6603 ret = btrfs_update_inode(trans, root, parent_inode); 6604 if (ret) 6605 btrfs_abort_transaction(trans, ret); 6606 return ret; 6607 6608 fail_dir_item: 6609 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6610 u64 local_index; 6611 int err; 6612 err = btrfs_del_root_ref(trans, key.objectid, 6613 root->root_key.objectid, parent_ino, 6614 &local_index, name, name_len); 6615 if (err) 6616 btrfs_abort_transaction(trans, err); 6617 } else if (add_backref) { 6618 u64 local_index; 6619 int err; 6620 6621 err = btrfs_del_inode_ref(trans, root, name, name_len, 6622 ino, parent_ino, &local_index); 6623 if (err) 6624 btrfs_abort_transaction(trans, err); 6625 } 6626 6627 /* Return the original error code */ 6628 return ret; 6629 } 6630 6631 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6632 struct btrfs_inode *dir, struct dentry *dentry, 6633 struct btrfs_inode *inode, int backref, u64 index) 6634 { 6635 int err = btrfs_add_link(trans, dir, inode, 6636 dentry->d_name.name, dentry->d_name.len, 6637 backref, index); 6638 if (err > 0) 6639 err = -EEXIST; 6640 return err; 6641 } 6642 6643 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6644 struct dentry *dentry, umode_t mode, dev_t rdev) 6645 { 6646 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6647 struct btrfs_trans_handle *trans; 6648 struct btrfs_root *root = BTRFS_I(dir)->root; 6649 struct inode *inode = NULL; 6650 int err; 6651 u64 objectid; 6652 u64 index = 0; 6653 6654 /* 6655 * 2 for inode item and ref 6656 * 2 for dir items 6657 * 1 for xattr if selinux is on 6658 */ 6659 trans = btrfs_start_transaction(root, 5); 6660 if (IS_ERR(trans)) 6661 return PTR_ERR(trans); 6662 6663 err = btrfs_get_free_objectid(root, &objectid); 6664 if (err) 6665 goto out_unlock; 6666 6667 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6668 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6669 mode, &index); 6670 if (IS_ERR(inode)) { 6671 err = PTR_ERR(inode); 6672 inode = NULL; 6673 goto out_unlock; 6674 } 6675 6676 /* 6677 * If the active LSM wants to access the inode during 6678 * d_instantiate it needs these. Smack checks to see 6679 * if the filesystem supports xattrs by looking at the 6680 * ops vector. 6681 */ 6682 inode->i_op = &btrfs_special_inode_operations; 6683 init_special_inode(inode, inode->i_mode, rdev); 6684 6685 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6686 if (err) 6687 goto out_unlock; 6688 6689 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6690 0, index); 6691 if (err) 6692 goto out_unlock; 6693 6694 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6695 d_instantiate_new(dentry, inode); 6696 6697 out_unlock: 6698 btrfs_end_transaction(trans); 6699 btrfs_btree_balance_dirty(fs_info); 6700 if (err && inode) { 6701 inode_dec_link_count(inode); 6702 discard_new_inode(inode); 6703 } 6704 return err; 6705 } 6706 6707 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6708 struct dentry *dentry, umode_t mode, bool excl) 6709 { 6710 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6711 struct btrfs_trans_handle *trans; 6712 struct btrfs_root *root = BTRFS_I(dir)->root; 6713 struct inode *inode = NULL; 6714 int err; 6715 u64 objectid; 6716 u64 index = 0; 6717 6718 /* 6719 * 2 for inode item and ref 6720 * 2 for dir items 6721 * 1 for xattr if selinux is on 6722 */ 6723 trans = btrfs_start_transaction(root, 5); 6724 if (IS_ERR(trans)) 6725 return PTR_ERR(trans); 6726 6727 err = btrfs_get_free_objectid(root, &objectid); 6728 if (err) 6729 goto out_unlock; 6730 6731 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6732 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6733 mode, &index); 6734 if (IS_ERR(inode)) { 6735 err = PTR_ERR(inode); 6736 inode = NULL; 6737 goto out_unlock; 6738 } 6739 /* 6740 * If the active LSM wants to access the inode during 6741 * d_instantiate it needs these. Smack checks to see 6742 * if the filesystem supports xattrs by looking at the 6743 * ops vector. 6744 */ 6745 inode->i_fop = &btrfs_file_operations; 6746 inode->i_op = &btrfs_file_inode_operations; 6747 inode->i_mapping->a_ops = &btrfs_aops; 6748 6749 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6750 if (err) 6751 goto out_unlock; 6752 6753 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6754 if (err) 6755 goto out_unlock; 6756 6757 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6758 0, index); 6759 if (err) 6760 goto out_unlock; 6761 6762 d_instantiate_new(dentry, inode); 6763 6764 out_unlock: 6765 btrfs_end_transaction(trans); 6766 if (err && inode) { 6767 inode_dec_link_count(inode); 6768 discard_new_inode(inode); 6769 } 6770 btrfs_btree_balance_dirty(fs_info); 6771 return err; 6772 } 6773 6774 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6775 struct dentry *dentry) 6776 { 6777 struct btrfs_trans_handle *trans = NULL; 6778 struct btrfs_root *root = BTRFS_I(dir)->root; 6779 struct inode *inode = d_inode(old_dentry); 6780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6781 u64 index; 6782 int err; 6783 int drop_inode = 0; 6784 6785 /* do not allow sys_link's with other subvols of the same device */ 6786 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6787 return -EXDEV; 6788 6789 if (inode->i_nlink >= BTRFS_LINK_MAX) 6790 return -EMLINK; 6791 6792 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6793 if (err) 6794 goto fail; 6795 6796 /* 6797 * 2 items for inode and inode ref 6798 * 2 items for dir items 6799 * 1 item for parent inode 6800 * 1 item for orphan item deletion if O_TMPFILE 6801 */ 6802 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6803 if (IS_ERR(trans)) { 6804 err = PTR_ERR(trans); 6805 trans = NULL; 6806 goto fail; 6807 } 6808 6809 /* There are several dir indexes for this inode, clear the cache. */ 6810 BTRFS_I(inode)->dir_index = 0ULL; 6811 inc_nlink(inode); 6812 inode_inc_iversion(inode); 6813 inode->i_ctime = current_time(inode); 6814 ihold(inode); 6815 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6816 6817 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6818 1, index); 6819 6820 if (err) { 6821 drop_inode = 1; 6822 } else { 6823 struct dentry *parent = dentry->d_parent; 6824 6825 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6826 if (err) 6827 goto fail; 6828 if (inode->i_nlink == 1) { 6829 /* 6830 * If new hard link count is 1, it's a file created 6831 * with open(2) O_TMPFILE flag. 6832 */ 6833 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6834 if (err) 6835 goto fail; 6836 } 6837 d_instantiate(dentry, inode); 6838 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6839 } 6840 6841 fail: 6842 if (trans) 6843 btrfs_end_transaction(trans); 6844 if (drop_inode) { 6845 inode_dec_link_count(inode); 6846 iput(inode); 6847 } 6848 btrfs_btree_balance_dirty(fs_info); 6849 return err; 6850 } 6851 6852 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6853 struct dentry *dentry, umode_t mode) 6854 { 6855 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6856 struct inode *inode = NULL; 6857 struct btrfs_trans_handle *trans; 6858 struct btrfs_root *root = BTRFS_I(dir)->root; 6859 int err = 0; 6860 u64 objectid = 0; 6861 u64 index = 0; 6862 6863 /* 6864 * 2 items for inode and ref 6865 * 2 items for dir items 6866 * 1 for xattr if selinux is on 6867 */ 6868 trans = btrfs_start_transaction(root, 5); 6869 if (IS_ERR(trans)) 6870 return PTR_ERR(trans); 6871 6872 err = btrfs_get_free_objectid(root, &objectid); 6873 if (err) 6874 goto out_fail; 6875 6876 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6877 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6878 S_IFDIR | mode, &index); 6879 if (IS_ERR(inode)) { 6880 err = PTR_ERR(inode); 6881 inode = NULL; 6882 goto out_fail; 6883 } 6884 6885 /* these must be set before we unlock the inode */ 6886 inode->i_op = &btrfs_dir_inode_operations; 6887 inode->i_fop = &btrfs_dir_file_operations; 6888 6889 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6890 if (err) 6891 goto out_fail; 6892 6893 btrfs_i_size_write(BTRFS_I(inode), 0); 6894 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6895 if (err) 6896 goto out_fail; 6897 6898 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6899 dentry->d_name.name, 6900 dentry->d_name.len, 0, index); 6901 if (err) 6902 goto out_fail; 6903 6904 d_instantiate_new(dentry, inode); 6905 6906 out_fail: 6907 btrfs_end_transaction(trans); 6908 if (err && inode) { 6909 inode_dec_link_count(inode); 6910 discard_new_inode(inode); 6911 } 6912 btrfs_btree_balance_dirty(fs_info); 6913 return err; 6914 } 6915 6916 static noinline int uncompress_inline(struct btrfs_path *path, 6917 struct page *page, 6918 size_t pg_offset, u64 extent_offset, 6919 struct btrfs_file_extent_item *item) 6920 { 6921 int ret; 6922 struct extent_buffer *leaf = path->nodes[0]; 6923 char *tmp; 6924 size_t max_size; 6925 unsigned long inline_size; 6926 unsigned long ptr; 6927 int compress_type; 6928 6929 WARN_ON(pg_offset != 0); 6930 compress_type = btrfs_file_extent_compression(leaf, item); 6931 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6932 inline_size = btrfs_file_extent_inline_item_len(leaf, 6933 btrfs_item_nr(path->slots[0])); 6934 tmp = kmalloc(inline_size, GFP_NOFS); 6935 if (!tmp) 6936 return -ENOMEM; 6937 ptr = btrfs_file_extent_inline_start(item); 6938 6939 read_extent_buffer(leaf, tmp, ptr, inline_size); 6940 6941 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6942 ret = btrfs_decompress(compress_type, tmp, page, 6943 extent_offset, inline_size, max_size); 6944 6945 /* 6946 * decompression code contains a memset to fill in any space between the end 6947 * of the uncompressed data and the end of max_size in case the decompressed 6948 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6949 * the end of an inline extent and the beginning of the next block, so we 6950 * cover that region here. 6951 */ 6952 6953 if (max_size + pg_offset < PAGE_SIZE) 6954 memzero_page(page, pg_offset + max_size, 6955 PAGE_SIZE - max_size - pg_offset); 6956 kfree(tmp); 6957 return ret; 6958 } 6959 6960 /** 6961 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6962 * @inode: file to search in 6963 * @page: page to read extent data into if the extent is inline 6964 * @pg_offset: offset into @page to copy to 6965 * @start: file offset 6966 * @len: length of range starting at @start 6967 * 6968 * This returns the first &struct extent_map which overlaps with the given 6969 * range, reading it from the B-tree and caching it if necessary. Note that 6970 * there may be more extents which overlap the given range after the returned 6971 * extent_map. 6972 * 6973 * If @page is not NULL and the extent is inline, this also reads the extent 6974 * data directly into the page and marks the extent up to date in the io_tree. 6975 * 6976 * Return: ERR_PTR on error, non-NULL extent_map on success. 6977 */ 6978 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6979 struct page *page, size_t pg_offset, 6980 u64 start, u64 len) 6981 { 6982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6983 int ret = 0; 6984 u64 extent_start = 0; 6985 u64 extent_end = 0; 6986 u64 objectid = btrfs_ino(inode); 6987 int extent_type = -1; 6988 struct btrfs_path *path = NULL; 6989 struct btrfs_root *root = inode->root; 6990 struct btrfs_file_extent_item *item; 6991 struct extent_buffer *leaf; 6992 struct btrfs_key found_key; 6993 struct extent_map *em = NULL; 6994 struct extent_map_tree *em_tree = &inode->extent_tree; 6995 struct extent_io_tree *io_tree = &inode->io_tree; 6996 6997 read_lock(&em_tree->lock); 6998 em = lookup_extent_mapping(em_tree, start, len); 6999 read_unlock(&em_tree->lock); 7000 7001 if (em) { 7002 if (em->start > start || em->start + em->len <= start) 7003 free_extent_map(em); 7004 else if (em->block_start == EXTENT_MAP_INLINE && page) 7005 free_extent_map(em); 7006 else 7007 goto out; 7008 } 7009 em = alloc_extent_map(); 7010 if (!em) { 7011 ret = -ENOMEM; 7012 goto out; 7013 } 7014 em->start = EXTENT_MAP_HOLE; 7015 em->orig_start = EXTENT_MAP_HOLE; 7016 em->len = (u64)-1; 7017 em->block_len = (u64)-1; 7018 7019 path = btrfs_alloc_path(); 7020 if (!path) { 7021 ret = -ENOMEM; 7022 goto out; 7023 } 7024 7025 /* Chances are we'll be called again, so go ahead and do readahead */ 7026 path->reada = READA_FORWARD; 7027 7028 /* 7029 * The same explanation in load_free_space_cache applies here as well, 7030 * we only read when we're loading the free space cache, and at that 7031 * point the commit_root has everything we need. 7032 */ 7033 if (btrfs_is_free_space_inode(inode)) { 7034 path->search_commit_root = 1; 7035 path->skip_locking = 1; 7036 } 7037 7038 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7039 if (ret < 0) { 7040 goto out; 7041 } else if (ret > 0) { 7042 if (path->slots[0] == 0) 7043 goto not_found; 7044 path->slots[0]--; 7045 ret = 0; 7046 } 7047 7048 leaf = path->nodes[0]; 7049 item = btrfs_item_ptr(leaf, path->slots[0], 7050 struct btrfs_file_extent_item); 7051 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7052 if (found_key.objectid != objectid || 7053 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7054 /* 7055 * If we backup past the first extent we want to move forward 7056 * and see if there is an extent in front of us, otherwise we'll 7057 * say there is a hole for our whole search range which can 7058 * cause problems. 7059 */ 7060 extent_end = start; 7061 goto next; 7062 } 7063 7064 extent_type = btrfs_file_extent_type(leaf, item); 7065 extent_start = found_key.offset; 7066 extent_end = btrfs_file_extent_end(path); 7067 if (extent_type == BTRFS_FILE_EXTENT_REG || 7068 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7069 /* Only regular file could have regular/prealloc extent */ 7070 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7071 ret = -EUCLEAN; 7072 btrfs_crit(fs_info, 7073 "regular/prealloc extent found for non-regular inode %llu", 7074 btrfs_ino(inode)); 7075 goto out; 7076 } 7077 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7078 extent_start); 7079 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7080 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7081 path->slots[0], 7082 extent_start); 7083 } 7084 next: 7085 if (start >= extent_end) { 7086 path->slots[0]++; 7087 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7088 ret = btrfs_next_leaf(root, path); 7089 if (ret < 0) 7090 goto out; 7091 else if (ret > 0) 7092 goto not_found; 7093 7094 leaf = path->nodes[0]; 7095 } 7096 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7097 if (found_key.objectid != objectid || 7098 found_key.type != BTRFS_EXTENT_DATA_KEY) 7099 goto not_found; 7100 if (start + len <= found_key.offset) 7101 goto not_found; 7102 if (start > found_key.offset) 7103 goto next; 7104 7105 /* New extent overlaps with existing one */ 7106 em->start = start; 7107 em->orig_start = start; 7108 em->len = found_key.offset - start; 7109 em->block_start = EXTENT_MAP_HOLE; 7110 goto insert; 7111 } 7112 7113 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 7114 7115 if (extent_type == BTRFS_FILE_EXTENT_REG || 7116 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7117 goto insert; 7118 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7119 unsigned long ptr; 7120 char *map; 7121 size_t size; 7122 size_t extent_offset; 7123 size_t copy_size; 7124 7125 if (!page) 7126 goto out; 7127 7128 size = btrfs_file_extent_ram_bytes(leaf, item); 7129 extent_offset = page_offset(page) + pg_offset - extent_start; 7130 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7131 size - extent_offset); 7132 em->start = extent_start + extent_offset; 7133 em->len = ALIGN(copy_size, fs_info->sectorsize); 7134 em->orig_block_len = em->len; 7135 em->orig_start = em->start; 7136 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7137 7138 if (!PageUptodate(page)) { 7139 if (btrfs_file_extent_compression(leaf, item) != 7140 BTRFS_COMPRESS_NONE) { 7141 ret = uncompress_inline(path, page, pg_offset, 7142 extent_offset, item); 7143 if (ret) 7144 goto out; 7145 } else { 7146 map = kmap_local_page(page); 7147 read_extent_buffer(leaf, map + pg_offset, ptr, 7148 copy_size); 7149 if (pg_offset + copy_size < PAGE_SIZE) { 7150 memset(map + pg_offset + copy_size, 0, 7151 PAGE_SIZE - pg_offset - 7152 copy_size); 7153 } 7154 kunmap_local(map); 7155 } 7156 flush_dcache_page(page); 7157 } 7158 set_extent_uptodate(io_tree, em->start, 7159 extent_map_end(em) - 1, NULL, GFP_NOFS); 7160 goto insert; 7161 } 7162 not_found: 7163 em->start = start; 7164 em->orig_start = start; 7165 em->len = len; 7166 em->block_start = EXTENT_MAP_HOLE; 7167 insert: 7168 ret = 0; 7169 btrfs_release_path(path); 7170 if (em->start > start || extent_map_end(em) <= start) { 7171 btrfs_err(fs_info, 7172 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7173 em->start, em->len, start, len); 7174 ret = -EIO; 7175 goto out; 7176 } 7177 7178 write_lock(&em_tree->lock); 7179 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7180 write_unlock(&em_tree->lock); 7181 out: 7182 btrfs_free_path(path); 7183 7184 trace_btrfs_get_extent(root, inode, em); 7185 7186 if (ret) { 7187 free_extent_map(em); 7188 return ERR_PTR(ret); 7189 } 7190 return em; 7191 } 7192 7193 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7194 u64 start, u64 len) 7195 { 7196 struct extent_map *em; 7197 struct extent_map *hole_em = NULL; 7198 u64 delalloc_start = start; 7199 u64 end; 7200 u64 delalloc_len; 7201 u64 delalloc_end; 7202 int err = 0; 7203 7204 em = btrfs_get_extent(inode, NULL, 0, start, len); 7205 if (IS_ERR(em)) 7206 return em; 7207 /* 7208 * If our em maps to: 7209 * - a hole or 7210 * - a pre-alloc extent, 7211 * there might actually be delalloc bytes behind it. 7212 */ 7213 if (em->block_start != EXTENT_MAP_HOLE && 7214 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7215 return em; 7216 else 7217 hole_em = em; 7218 7219 /* check to see if we've wrapped (len == -1 or similar) */ 7220 end = start + len; 7221 if (end < start) 7222 end = (u64)-1; 7223 else 7224 end -= 1; 7225 7226 em = NULL; 7227 7228 /* ok, we didn't find anything, lets look for delalloc */ 7229 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7230 end, len, EXTENT_DELALLOC, 1); 7231 delalloc_end = delalloc_start + delalloc_len; 7232 if (delalloc_end < delalloc_start) 7233 delalloc_end = (u64)-1; 7234 7235 /* 7236 * We didn't find anything useful, return the original results from 7237 * get_extent() 7238 */ 7239 if (delalloc_start > end || delalloc_end <= start) { 7240 em = hole_em; 7241 hole_em = NULL; 7242 goto out; 7243 } 7244 7245 /* 7246 * Adjust the delalloc_start to make sure it doesn't go backwards from 7247 * the start they passed in 7248 */ 7249 delalloc_start = max(start, delalloc_start); 7250 delalloc_len = delalloc_end - delalloc_start; 7251 7252 if (delalloc_len > 0) { 7253 u64 hole_start; 7254 u64 hole_len; 7255 const u64 hole_end = extent_map_end(hole_em); 7256 7257 em = alloc_extent_map(); 7258 if (!em) { 7259 err = -ENOMEM; 7260 goto out; 7261 } 7262 7263 ASSERT(hole_em); 7264 /* 7265 * When btrfs_get_extent can't find anything it returns one 7266 * huge hole 7267 * 7268 * Make sure what it found really fits our range, and adjust to 7269 * make sure it is based on the start from the caller 7270 */ 7271 if (hole_end <= start || hole_em->start > end) { 7272 free_extent_map(hole_em); 7273 hole_em = NULL; 7274 } else { 7275 hole_start = max(hole_em->start, start); 7276 hole_len = hole_end - hole_start; 7277 } 7278 7279 if (hole_em && delalloc_start > hole_start) { 7280 /* 7281 * Our hole starts before our delalloc, so we have to 7282 * return just the parts of the hole that go until the 7283 * delalloc starts 7284 */ 7285 em->len = min(hole_len, delalloc_start - hole_start); 7286 em->start = hole_start; 7287 em->orig_start = hole_start; 7288 /* 7289 * Don't adjust block start at all, it is fixed at 7290 * EXTENT_MAP_HOLE 7291 */ 7292 em->block_start = hole_em->block_start; 7293 em->block_len = hole_len; 7294 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7295 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7296 } else { 7297 /* 7298 * Hole is out of passed range or it starts after 7299 * delalloc range 7300 */ 7301 em->start = delalloc_start; 7302 em->len = delalloc_len; 7303 em->orig_start = delalloc_start; 7304 em->block_start = EXTENT_MAP_DELALLOC; 7305 em->block_len = delalloc_len; 7306 } 7307 } else { 7308 return hole_em; 7309 } 7310 out: 7311 7312 free_extent_map(hole_em); 7313 if (err) { 7314 free_extent_map(em); 7315 return ERR_PTR(err); 7316 } 7317 return em; 7318 } 7319 7320 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7321 const u64 start, 7322 const u64 len, 7323 const u64 orig_start, 7324 const u64 block_start, 7325 const u64 block_len, 7326 const u64 orig_block_len, 7327 const u64 ram_bytes, 7328 const int type) 7329 { 7330 struct extent_map *em = NULL; 7331 int ret; 7332 7333 if (type != BTRFS_ORDERED_NOCOW) { 7334 em = create_io_em(inode, start, len, orig_start, block_start, 7335 block_len, orig_block_len, ram_bytes, 7336 BTRFS_COMPRESS_NONE, /* compress_type */ 7337 type); 7338 if (IS_ERR(em)) 7339 goto out; 7340 } 7341 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7342 block_len, type); 7343 if (ret) { 7344 if (em) { 7345 free_extent_map(em); 7346 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7347 } 7348 em = ERR_PTR(ret); 7349 } 7350 out: 7351 7352 return em; 7353 } 7354 7355 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7356 u64 start, u64 len) 7357 { 7358 struct btrfs_root *root = inode->root; 7359 struct btrfs_fs_info *fs_info = root->fs_info; 7360 struct extent_map *em; 7361 struct btrfs_key ins; 7362 u64 alloc_hint; 7363 int ret; 7364 7365 alloc_hint = get_extent_allocation_hint(inode, start, len); 7366 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7367 0, alloc_hint, &ins, 1, 1); 7368 if (ret) 7369 return ERR_PTR(ret); 7370 7371 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7372 ins.objectid, ins.offset, ins.offset, 7373 ins.offset, BTRFS_ORDERED_REGULAR); 7374 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7375 if (IS_ERR(em)) 7376 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7377 1); 7378 7379 return em; 7380 } 7381 7382 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7383 { 7384 struct btrfs_block_group *block_group; 7385 bool readonly = false; 7386 7387 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7388 if (!block_group || block_group->ro) 7389 readonly = true; 7390 if (block_group) 7391 btrfs_put_block_group(block_group); 7392 return readonly; 7393 } 7394 7395 /* 7396 * Check if we can do nocow write into the range [@offset, @offset + @len) 7397 * 7398 * @offset: File offset 7399 * @len: The length to write, will be updated to the nocow writeable 7400 * range 7401 * @orig_start: (optional) Return the original file offset of the file extent 7402 * @orig_len: (optional) Return the original on-disk length of the file extent 7403 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7404 * @strict: if true, omit optimizations that might force us into unnecessary 7405 * cow. e.g., don't trust generation number. 7406 * 7407 * Return: 7408 * >0 and update @len if we can do nocow write 7409 * 0 if we can't do nocow write 7410 * <0 if error happened 7411 * 7412 * NOTE: This only checks the file extents, caller is responsible to wait for 7413 * any ordered extents. 7414 */ 7415 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7416 u64 *orig_start, u64 *orig_block_len, 7417 u64 *ram_bytes, bool strict) 7418 { 7419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7420 struct btrfs_path *path; 7421 int ret; 7422 struct extent_buffer *leaf; 7423 struct btrfs_root *root = BTRFS_I(inode)->root; 7424 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7425 struct btrfs_file_extent_item *fi; 7426 struct btrfs_key key; 7427 u64 disk_bytenr; 7428 u64 backref_offset; 7429 u64 extent_end; 7430 u64 num_bytes; 7431 int slot; 7432 int found_type; 7433 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7434 7435 path = btrfs_alloc_path(); 7436 if (!path) 7437 return -ENOMEM; 7438 7439 ret = btrfs_lookup_file_extent(NULL, root, path, 7440 btrfs_ino(BTRFS_I(inode)), offset, 0); 7441 if (ret < 0) 7442 goto out; 7443 7444 slot = path->slots[0]; 7445 if (ret == 1) { 7446 if (slot == 0) { 7447 /* can't find the item, must cow */ 7448 ret = 0; 7449 goto out; 7450 } 7451 slot--; 7452 } 7453 ret = 0; 7454 leaf = path->nodes[0]; 7455 btrfs_item_key_to_cpu(leaf, &key, slot); 7456 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7457 key.type != BTRFS_EXTENT_DATA_KEY) { 7458 /* not our file or wrong item type, must cow */ 7459 goto out; 7460 } 7461 7462 if (key.offset > offset) { 7463 /* Wrong offset, must cow */ 7464 goto out; 7465 } 7466 7467 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7468 found_type = btrfs_file_extent_type(leaf, fi); 7469 if (found_type != BTRFS_FILE_EXTENT_REG && 7470 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7471 /* not a regular extent, must cow */ 7472 goto out; 7473 } 7474 7475 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7476 goto out; 7477 7478 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7479 if (extent_end <= offset) 7480 goto out; 7481 7482 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7483 if (disk_bytenr == 0) 7484 goto out; 7485 7486 if (btrfs_file_extent_compression(leaf, fi) || 7487 btrfs_file_extent_encryption(leaf, fi) || 7488 btrfs_file_extent_other_encoding(leaf, fi)) 7489 goto out; 7490 7491 /* 7492 * Do the same check as in btrfs_cross_ref_exist but without the 7493 * unnecessary search. 7494 */ 7495 if (!strict && 7496 (btrfs_file_extent_generation(leaf, fi) <= 7497 btrfs_root_last_snapshot(&root->root_item))) 7498 goto out; 7499 7500 backref_offset = btrfs_file_extent_offset(leaf, fi); 7501 7502 if (orig_start) { 7503 *orig_start = key.offset - backref_offset; 7504 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7505 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7506 } 7507 7508 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7509 goto out; 7510 7511 num_bytes = min(offset + *len, extent_end) - offset; 7512 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7513 u64 range_end; 7514 7515 range_end = round_up(offset + num_bytes, 7516 root->fs_info->sectorsize) - 1; 7517 ret = test_range_bit(io_tree, offset, range_end, 7518 EXTENT_DELALLOC, 0, NULL); 7519 if (ret) { 7520 ret = -EAGAIN; 7521 goto out; 7522 } 7523 } 7524 7525 btrfs_release_path(path); 7526 7527 /* 7528 * look for other files referencing this extent, if we 7529 * find any we must cow 7530 */ 7531 7532 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7533 key.offset - backref_offset, disk_bytenr, 7534 strict); 7535 if (ret) { 7536 ret = 0; 7537 goto out; 7538 } 7539 7540 /* 7541 * adjust disk_bytenr and num_bytes to cover just the bytes 7542 * in this extent we are about to write. If there 7543 * are any csums in that range we have to cow in order 7544 * to keep the csums correct 7545 */ 7546 disk_bytenr += backref_offset; 7547 disk_bytenr += offset - key.offset; 7548 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7549 goto out; 7550 /* 7551 * all of the above have passed, it is safe to overwrite this extent 7552 * without cow 7553 */ 7554 *len = num_bytes; 7555 ret = 1; 7556 out: 7557 btrfs_free_path(path); 7558 return ret; 7559 } 7560 7561 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7562 struct extent_state **cached_state, bool writing) 7563 { 7564 struct btrfs_ordered_extent *ordered; 7565 int ret = 0; 7566 7567 while (1) { 7568 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7569 cached_state); 7570 /* 7571 * We're concerned with the entire range that we're going to be 7572 * doing DIO to, so we need to make sure there's no ordered 7573 * extents in this range. 7574 */ 7575 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7576 lockend - lockstart + 1); 7577 7578 /* 7579 * We need to make sure there are no buffered pages in this 7580 * range either, we could have raced between the invalidate in 7581 * generic_file_direct_write and locking the extent. The 7582 * invalidate needs to happen so that reads after a write do not 7583 * get stale data. 7584 */ 7585 if (!ordered && 7586 (!writing || !filemap_range_has_page(inode->i_mapping, 7587 lockstart, lockend))) 7588 break; 7589 7590 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7591 cached_state); 7592 7593 if (ordered) { 7594 /* 7595 * If we are doing a DIO read and the ordered extent we 7596 * found is for a buffered write, we can not wait for it 7597 * to complete and retry, because if we do so we can 7598 * deadlock with concurrent buffered writes on page 7599 * locks. This happens only if our DIO read covers more 7600 * than one extent map, if at this point has already 7601 * created an ordered extent for a previous extent map 7602 * and locked its range in the inode's io tree, and a 7603 * concurrent write against that previous extent map's 7604 * range and this range started (we unlock the ranges 7605 * in the io tree only when the bios complete and 7606 * buffered writes always lock pages before attempting 7607 * to lock range in the io tree). 7608 */ 7609 if (writing || 7610 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7611 btrfs_start_ordered_extent(ordered, 1); 7612 else 7613 ret = -ENOTBLK; 7614 btrfs_put_ordered_extent(ordered); 7615 } else { 7616 /* 7617 * We could trigger writeback for this range (and wait 7618 * for it to complete) and then invalidate the pages for 7619 * this range (through invalidate_inode_pages2_range()), 7620 * but that can lead us to a deadlock with a concurrent 7621 * call to readahead (a buffered read or a defrag call 7622 * triggered a readahead) on a page lock due to an 7623 * ordered dio extent we created before but did not have 7624 * yet a corresponding bio submitted (whence it can not 7625 * complete), which makes readahead wait for that 7626 * ordered extent to complete while holding a lock on 7627 * that page. 7628 */ 7629 ret = -ENOTBLK; 7630 } 7631 7632 if (ret) 7633 break; 7634 7635 cond_resched(); 7636 } 7637 7638 return ret; 7639 } 7640 7641 /* The callers of this must take lock_extent() */ 7642 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7643 u64 len, u64 orig_start, u64 block_start, 7644 u64 block_len, u64 orig_block_len, 7645 u64 ram_bytes, int compress_type, 7646 int type) 7647 { 7648 struct extent_map_tree *em_tree; 7649 struct extent_map *em; 7650 int ret; 7651 7652 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7653 type == BTRFS_ORDERED_COMPRESSED || 7654 type == BTRFS_ORDERED_NOCOW || 7655 type == BTRFS_ORDERED_REGULAR); 7656 7657 em_tree = &inode->extent_tree; 7658 em = alloc_extent_map(); 7659 if (!em) 7660 return ERR_PTR(-ENOMEM); 7661 7662 em->start = start; 7663 em->orig_start = orig_start; 7664 em->len = len; 7665 em->block_len = block_len; 7666 em->block_start = block_start; 7667 em->orig_block_len = orig_block_len; 7668 em->ram_bytes = ram_bytes; 7669 em->generation = -1; 7670 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7671 if (type == BTRFS_ORDERED_PREALLOC) { 7672 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7673 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7674 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7675 em->compress_type = compress_type; 7676 } 7677 7678 do { 7679 btrfs_drop_extent_cache(inode, em->start, 7680 em->start + em->len - 1, 0); 7681 write_lock(&em_tree->lock); 7682 ret = add_extent_mapping(em_tree, em, 1); 7683 write_unlock(&em_tree->lock); 7684 /* 7685 * The caller has taken lock_extent(), who could race with us 7686 * to add em? 7687 */ 7688 } while (ret == -EEXIST); 7689 7690 if (ret) { 7691 free_extent_map(em); 7692 return ERR_PTR(ret); 7693 } 7694 7695 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7696 return em; 7697 } 7698 7699 7700 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7701 struct inode *inode, 7702 struct btrfs_dio_data *dio_data, 7703 u64 start, u64 len) 7704 { 7705 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7706 struct extent_map *em = *map; 7707 int ret = 0; 7708 7709 /* 7710 * We don't allocate a new extent in the following cases 7711 * 7712 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7713 * existing extent. 7714 * 2) The extent is marked as PREALLOC. We're good to go here and can 7715 * just use the extent. 7716 * 7717 */ 7718 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7719 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7720 em->block_start != EXTENT_MAP_HOLE)) { 7721 int type; 7722 u64 block_start, orig_start, orig_block_len, ram_bytes; 7723 7724 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7725 type = BTRFS_ORDERED_PREALLOC; 7726 else 7727 type = BTRFS_ORDERED_NOCOW; 7728 len = min(len, em->len - (start - em->start)); 7729 block_start = em->block_start + (start - em->start); 7730 7731 if (can_nocow_extent(inode, start, &len, &orig_start, 7732 &orig_block_len, &ram_bytes, false) == 1 && 7733 btrfs_inc_nocow_writers(fs_info, block_start)) { 7734 struct extent_map *em2; 7735 7736 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7737 orig_start, block_start, 7738 len, orig_block_len, 7739 ram_bytes, type); 7740 btrfs_dec_nocow_writers(fs_info, block_start); 7741 if (type == BTRFS_ORDERED_PREALLOC) { 7742 free_extent_map(em); 7743 *map = em = em2; 7744 } 7745 7746 if (em2 && IS_ERR(em2)) { 7747 ret = PTR_ERR(em2); 7748 goto out; 7749 } 7750 /* 7751 * For inode marked NODATACOW or extent marked PREALLOC, 7752 * use the existing or preallocated extent, so does not 7753 * need to adjust btrfs_space_info's bytes_may_use. 7754 */ 7755 btrfs_free_reserved_data_space_noquota(fs_info, len); 7756 goto skip_cow; 7757 } 7758 } 7759 7760 /* this will cow the extent */ 7761 free_extent_map(em); 7762 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7763 if (IS_ERR(em)) { 7764 ret = PTR_ERR(em); 7765 goto out; 7766 } 7767 7768 len = min(len, em->len - (start - em->start)); 7769 7770 skip_cow: 7771 /* 7772 * Need to update the i_size under the extent lock so buffered 7773 * readers will get the updated i_size when we unlock. 7774 */ 7775 if (start + len > i_size_read(inode)) 7776 i_size_write(inode, start + len); 7777 7778 dio_data->reserve -= len; 7779 out: 7780 return ret; 7781 } 7782 7783 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7784 loff_t length, unsigned int flags, struct iomap *iomap, 7785 struct iomap *srcmap) 7786 { 7787 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7788 struct extent_map *em; 7789 struct extent_state *cached_state = NULL; 7790 struct btrfs_dio_data *dio_data = NULL; 7791 u64 lockstart, lockend; 7792 const bool write = !!(flags & IOMAP_WRITE); 7793 int ret = 0; 7794 u64 len = length; 7795 bool unlock_extents = false; 7796 7797 if (!write) 7798 len = min_t(u64, len, fs_info->sectorsize); 7799 7800 lockstart = start; 7801 lockend = start + len - 1; 7802 7803 /* 7804 * The generic stuff only does filemap_write_and_wait_range, which 7805 * isn't enough if we've written compressed pages to this area, so we 7806 * need to flush the dirty pages again to make absolutely sure that any 7807 * outstanding dirty pages are on disk. 7808 */ 7809 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7810 &BTRFS_I(inode)->runtime_flags)) { 7811 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7812 start + length - 1); 7813 if (ret) 7814 return ret; 7815 } 7816 7817 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7818 if (!dio_data) 7819 return -ENOMEM; 7820 7821 dio_data->length = length; 7822 if (write) { 7823 dio_data->reserve = round_up(length, fs_info->sectorsize); 7824 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7825 &dio_data->data_reserved, 7826 start, dio_data->reserve); 7827 if (ret) { 7828 extent_changeset_free(dio_data->data_reserved); 7829 kfree(dio_data); 7830 return ret; 7831 } 7832 } 7833 iomap->private = dio_data; 7834 7835 7836 /* 7837 * If this errors out it's because we couldn't invalidate pagecache for 7838 * this range and we need to fallback to buffered. 7839 */ 7840 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7841 ret = -ENOTBLK; 7842 goto err; 7843 } 7844 7845 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7846 if (IS_ERR(em)) { 7847 ret = PTR_ERR(em); 7848 goto unlock_err; 7849 } 7850 7851 /* 7852 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7853 * io. INLINE is special, and we could probably kludge it in here, but 7854 * it's still buffered so for safety lets just fall back to the generic 7855 * buffered path. 7856 * 7857 * For COMPRESSED we _have_ to read the entire extent in so we can 7858 * decompress it, so there will be buffering required no matter what we 7859 * do, so go ahead and fallback to buffered. 7860 * 7861 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7862 * to buffered IO. Don't blame me, this is the price we pay for using 7863 * the generic code. 7864 */ 7865 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7866 em->block_start == EXTENT_MAP_INLINE) { 7867 free_extent_map(em); 7868 ret = -ENOTBLK; 7869 goto unlock_err; 7870 } 7871 7872 len = min(len, em->len - (start - em->start)); 7873 if (write) { 7874 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7875 start, len); 7876 if (ret < 0) 7877 goto unlock_err; 7878 unlock_extents = true; 7879 /* Recalc len in case the new em is smaller than requested */ 7880 len = min(len, em->len - (start - em->start)); 7881 } else { 7882 /* 7883 * We need to unlock only the end area that we aren't using. 7884 * The rest is going to be unlocked by the endio routine. 7885 */ 7886 lockstart = start + len; 7887 if (lockstart < lockend) 7888 unlock_extents = true; 7889 } 7890 7891 if (unlock_extents) 7892 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7893 lockstart, lockend, &cached_state); 7894 else 7895 free_extent_state(cached_state); 7896 7897 /* 7898 * Translate extent map information to iomap. 7899 * We trim the extents (and move the addr) even though iomap code does 7900 * that, since we have locked only the parts we are performing I/O in. 7901 */ 7902 if ((em->block_start == EXTENT_MAP_HOLE) || 7903 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7904 iomap->addr = IOMAP_NULL_ADDR; 7905 iomap->type = IOMAP_HOLE; 7906 } else { 7907 iomap->addr = em->block_start + (start - em->start); 7908 iomap->type = IOMAP_MAPPED; 7909 } 7910 iomap->offset = start; 7911 iomap->bdev = fs_info->fs_devices->latest_bdev; 7912 iomap->length = len; 7913 7914 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7915 iomap->flags |= IOMAP_F_ZONE_APPEND; 7916 7917 free_extent_map(em); 7918 7919 return 0; 7920 7921 unlock_err: 7922 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7923 &cached_state); 7924 err: 7925 if (dio_data) { 7926 btrfs_delalloc_release_space(BTRFS_I(inode), 7927 dio_data->data_reserved, start, 7928 dio_data->reserve, true); 7929 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7930 extent_changeset_free(dio_data->data_reserved); 7931 kfree(dio_data); 7932 } 7933 return ret; 7934 } 7935 7936 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7937 ssize_t written, unsigned int flags, struct iomap *iomap) 7938 { 7939 int ret = 0; 7940 struct btrfs_dio_data *dio_data = iomap->private; 7941 size_t submitted = dio_data->submitted; 7942 const bool write = !!(flags & IOMAP_WRITE); 7943 7944 if (!write && (iomap->type == IOMAP_HOLE)) { 7945 /* If reading from a hole, unlock and return */ 7946 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7947 goto out; 7948 } 7949 7950 if (submitted < length) { 7951 pos += submitted; 7952 length -= submitted; 7953 if (write) 7954 __endio_write_update_ordered(BTRFS_I(inode), pos, 7955 length, false); 7956 else 7957 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7958 pos + length - 1); 7959 ret = -ENOTBLK; 7960 } 7961 7962 if (write) { 7963 if (dio_data->reserve) 7964 btrfs_delalloc_release_space(BTRFS_I(inode), 7965 dio_data->data_reserved, pos, 7966 dio_data->reserve, true); 7967 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7968 extent_changeset_free(dio_data->data_reserved); 7969 } 7970 out: 7971 kfree(dio_data); 7972 iomap->private = NULL; 7973 7974 return ret; 7975 } 7976 7977 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7978 { 7979 /* 7980 * This implies a barrier so that stores to dio_bio->bi_status before 7981 * this and loads of dio_bio->bi_status after this are fully ordered. 7982 */ 7983 if (!refcount_dec_and_test(&dip->refs)) 7984 return; 7985 7986 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7987 __endio_write_update_ordered(BTRFS_I(dip->inode), 7988 dip->logical_offset, 7989 dip->bytes, 7990 !dip->dio_bio->bi_status); 7991 } else { 7992 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7993 dip->logical_offset, 7994 dip->logical_offset + dip->bytes - 1); 7995 } 7996 7997 bio_endio(dip->dio_bio); 7998 kfree(dip); 7999 } 8000 8001 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 8002 int mirror_num, 8003 unsigned long bio_flags) 8004 { 8005 struct btrfs_dio_private *dip = bio->bi_private; 8006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8007 blk_status_t ret; 8008 8009 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 8010 8011 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8012 if (ret) 8013 return ret; 8014 8015 refcount_inc(&dip->refs); 8016 ret = btrfs_map_bio(fs_info, bio, mirror_num); 8017 if (ret) 8018 refcount_dec(&dip->refs); 8019 return ret; 8020 } 8021 8022 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 8023 struct btrfs_io_bio *io_bio, 8024 const bool uptodate) 8025 { 8026 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 8027 const u32 sectorsize = fs_info->sectorsize; 8028 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 8029 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8030 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8031 struct bio_vec bvec; 8032 struct bvec_iter iter; 8033 u64 start = io_bio->logical; 8034 u32 bio_offset = 0; 8035 blk_status_t err = BLK_STS_OK; 8036 8037 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 8038 unsigned int i, nr_sectors, pgoff; 8039 8040 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8041 pgoff = bvec.bv_offset; 8042 for (i = 0; i < nr_sectors; i++) { 8043 ASSERT(pgoff < PAGE_SIZE); 8044 if (uptodate && 8045 (!csum || !check_data_csum(inode, io_bio, 8046 bio_offset, bvec.bv_page, 8047 pgoff, start))) { 8048 clean_io_failure(fs_info, failure_tree, io_tree, 8049 start, bvec.bv_page, 8050 btrfs_ino(BTRFS_I(inode)), 8051 pgoff); 8052 } else { 8053 int ret; 8054 8055 ASSERT((start - io_bio->logical) < UINT_MAX); 8056 ret = btrfs_repair_one_sector(inode, 8057 &io_bio->bio, 8058 start - io_bio->logical, 8059 bvec.bv_page, pgoff, 8060 start, io_bio->mirror_num, 8061 submit_dio_repair_bio); 8062 if (ret) 8063 err = errno_to_blk_status(ret); 8064 } 8065 start += sectorsize; 8066 ASSERT(bio_offset + sectorsize > bio_offset); 8067 bio_offset += sectorsize; 8068 pgoff += sectorsize; 8069 } 8070 } 8071 return err; 8072 } 8073 8074 static void __endio_write_update_ordered(struct btrfs_inode *inode, 8075 const u64 offset, const u64 bytes, 8076 const bool uptodate) 8077 { 8078 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, 8079 finish_ordered_fn, uptodate); 8080 } 8081 8082 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 8083 struct bio *bio, 8084 u64 dio_file_offset) 8085 { 8086 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); 8087 } 8088 8089 static void btrfs_end_dio_bio(struct bio *bio) 8090 { 8091 struct btrfs_dio_private *dip = bio->bi_private; 8092 blk_status_t err = bio->bi_status; 8093 8094 if (err) 8095 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8096 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8097 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8098 bio->bi_opf, bio->bi_iter.bi_sector, 8099 bio->bi_iter.bi_size, err); 8100 8101 if (bio_op(bio) == REQ_OP_READ) { 8102 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 8103 !err); 8104 } 8105 8106 if (err) 8107 dip->dio_bio->bi_status = err; 8108 8109 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); 8110 8111 bio_put(bio); 8112 btrfs_dio_private_put(dip); 8113 } 8114 8115 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8116 struct inode *inode, u64 file_offset, int async_submit) 8117 { 8118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8119 struct btrfs_dio_private *dip = bio->bi_private; 8120 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 8121 blk_status_t ret; 8122 8123 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8124 if (async_submit) 8125 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8126 8127 if (!write) { 8128 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8129 if (ret) 8130 goto err; 8131 } 8132 8133 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8134 goto map; 8135 8136 if (write && async_submit) { 8137 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 8138 btrfs_submit_bio_start_direct_io); 8139 goto err; 8140 } else if (write) { 8141 /* 8142 * If we aren't doing async submit, calculate the csum of the 8143 * bio now. 8144 */ 8145 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 8146 if (ret) 8147 goto err; 8148 } else { 8149 u64 csum_offset; 8150 8151 csum_offset = file_offset - dip->logical_offset; 8152 csum_offset >>= fs_info->sectorsize_bits; 8153 csum_offset *= fs_info->csum_size; 8154 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 8155 } 8156 map: 8157 ret = btrfs_map_bio(fs_info, bio, 0); 8158 err: 8159 return ret; 8160 } 8161 8162 /* 8163 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 8164 * or ordered extents whether or not we submit any bios. 8165 */ 8166 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 8167 struct inode *inode, 8168 loff_t file_offset) 8169 { 8170 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8171 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8172 size_t dip_size; 8173 struct btrfs_dio_private *dip; 8174 8175 dip_size = sizeof(*dip); 8176 if (!write && csum) { 8177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8178 size_t nblocks; 8179 8180 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 8181 dip_size += fs_info->csum_size * nblocks; 8182 } 8183 8184 dip = kzalloc(dip_size, GFP_NOFS); 8185 if (!dip) 8186 return NULL; 8187 8188 dip->inode = inode; 8189 dip->logical_offset = file_offset; 8190 dip->bytes = dio_bio->bi_iter.bi_size; 8191 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 8192 dip->dio_bio = dio_bio; 8193 refcount_set(&dip->refs, 1); 8194 return dip; 8195 } 8196 8197 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 8198 struct bio *dio_bio, loff_t file_offset) 8199 { 8200 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8202 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8203 BTRFS_BLOCK_GROUP_RAID56_MASK); 8204 struct btrfs_dio_private *dip; 8205 struct bio *bio; 8206 u64 start_sector; 8207 int async_submit = 0; 8208 u64 submit_len; 8209 int clone_offset = 0; 8210 int clone_len; 8211 u64 logical; 8212 int ret; 8213 blk_status_t status; 8214 struct btrfs_io_geometry geom; 8215 struct btrfs_dio_data *dio_data = iomap->private; 8216 struct extent_map *em = NULL; 8217 8218 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 8219 if (!dip) { 8220 if (!write) { 8221 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8222 file_offset + dio_bio->bi_iter.bi_size - 1); 8223 } 8224 dio_bio->bi_status = BLK_STS_RESOURCE; 8225 bio_endio(dio_bio); 8226 return BLK_QC_T_NONE; 8227 } 8228 8229 if (!write) { 8230 /* 8231 * Load the csums up front to reduce csum tree searches and 8232 * contention when submitting bios. 8233 * 8234 * If we have csums disabled this will do nothing. 8235 */ 8236 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8237 if (status != BLK_STS_OK) 8238 goto out_err; 8239 } 8240 8241 start_sector = dio_bio->bi_iter.bi_sector; 8242 submit_len = dio_bio->bi_iter.bi_size; 8243 8244 do { 8245 logical = start_sector << 9; 8246 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8247 if (IS_ERR(em)) { 8248 status = errno_to_blk_status(PTR_ERR(em)); 8249 em = NULL; 8250 goto out_err_em; 8251 } 8252 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8253 logical, &geom); 8254 if (ret) { 8255 status = errno_to_blk_status(ret); 8256 goto out_err_em; 8257 } 8258 ASSERT(geom.len <= INT_MAX); 8259 8260 clone_len = min_t(int, submit_len, geom.len); 8261 8262 /* 8263 * This will never fail as it's passing GPF_NOFS and 8264 * the allocation is backed by btrfs_bioset. 8265 */ 8266 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8267 bio->bi_private = dip; 8268 bio->bi_end_io = btrfs_end_dio_bio; 8269 btrfs_io_bio(bio)->logical = file_offset; 8270 8271 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8272 status = extract_ordered_extent(BTRFS_I(inode), bio, 8273 file_offset); 8274 if (status) { 8275 bio_put(bio); 8276 goto out_err; 8277 } 8278 } 8279 8280 ASSERT(submit_len >= clone_len); 8281 submit_len -= clone_len; 8282 8283 /* 8284 * Increase the count before we submit the bio so we know 8285 * the end IO handler won't happen before we increase the 8286 * count. Otherwise, the dip might get freed before we're 8287 * done setting it up. 8288 * 8289 * We transfer the initial reference to the last bio, so we 8290 * don't need to increment the reference count for the last one. 8291 */ 8292 if (submit_len > 0) { 8293 refcount_inc(&dip->refs); 8294 /* 8295 * If we are submitting more than one bio, submit them 8296 * all asynchronously. The exception is RAID 5 or 6, as 8297 * asynchronous checksums make it difficult to collect 8298 * full stripe writes. 8299 */ 8300 if (!raid56) 8301 async_submit = 1; 8302 } 8303 8304 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8305 async_submit); 8306 if (status) { 8307 bio_put(bio); 8308 if (submit_len > 0) 8309 refcount_dec(&dip->refs); 8310 goto out_err_em; 8311 } 8312 8313 dio_data->submitted += clone_len; 8314 clone_offset += clone_len; 8315 start_sector += clone_len >> 9; 8316 file_offset += clone_len; 8317 8318 free_extent_map(em); 8319 } while (submit_len > 0); 8320 return BLK_QC_T_NONE; 8321 8322 out_err_em: 8323 free_extent_map(em); 8324 out_err: 8325 dip->dio_bio->bi_status = status; 8326 btrfs_dio_private_put(dip); 8327 8328 return BLK_QC_T_NONE; 8329 } 8330 8331 const struct iomap_ops btrfs_dio_iomap_ops = { 8332 .iomap_begin = btrfs_dio_iomap_begin, 8333 .iomap_end = btrfs_dio_iomap_end, 8334 }; 8335 8336 const struct iomap_dio_ops btrfs_dio_ops = { 8337 .submit_io = btrfs_submit_direct, 8338 }; 8339 8340 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8341 u64 start, u64 len) 8342 { 8343 int ret; 8344 8345 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8346 if (ret) 8347 return ret; 8348 8349 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8350 } 8351 8352 int btrfs_readpage(struct file *file, struct page *page) 8353 { 8354 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8355 u64 start = page_offset(page); 8356 u64 end = start + PAGE_SIZE - 1; 8357 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 8358 int ret; 8359 8360 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8361 8362 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 8363 if (bio_ctrl.bio) 8364 ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags); 8365 return ret; 8366 } 8367 8368 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8369 { 8370 struct inode *inode = page->mapping->host; 8371 int ret; 8372 8373 if (current->flags & PF_MEMALLOC) { 8374 redirty_page_for_writepage(wbc, page); 8375 unlock_page(page); 8376 return 0; 8377 } 8378 8379 /* 8380 * If we are under memory pressure we will call this directly from the 8381 * VM, we need to make sure we have the inode referenced for the ordered 8382 * extent. If not just return like we didn't do anything. 8383 */ 8384 if (!igrab(inode)) { 8385 redirty_page_for_writepage(wbc, page); 8386 return AOP_WRITEPAGE_ACTIVATE; 8387 } 8388 ret = extent_write_full_page(page, wbc); 8389 btrfs_add_delayed_iput(inode); 8390 return ret; 8391 } 8392 8393 static int btrfs_writepages(struct address_space *mapping, 8394 struct writeback_control *wbc) 8395 { 8396 return extent_writepages(mapping, wbc); 8397 } 8398 8399 static void btrfs_readahead(struct readahead_control *rac) 8400 { 8401 extent_readahead(rac); 8402 } 8403 8404 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8405 { 8406 int ret = try_release_extent_mapping(page, gfp_flags); 8407 if (ret == 1) 8408 clear_page_extent_mapped(page); 8409 return ret; 8410 } 8411 8412 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8413 { 8414 if (PageWriteback(page) || PageDirty(page)) 8415 return 0; 8416 return __btrfs_releasepage(page, gfp_flags); 8417 } 8418 8419 #ifdef CONFIG_MIGRATION 8420 static int btrfs_migratepage(struct address_space *mapping, 8421 struct page *newpage, struct page *page, 8422 enum migrate_mode mode) 8423 { 8424 int ret; 8425 8426 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8427 if (ret != MIGRATEPAGE_SUCCESS) 8428 return ret; 8429 8430 if (page_has_private(page)) 8431 attach_page_private(newpage, detach_page_private(page)); 8432 8433 if (PageOrdered(page)) { 8434 ClearPageOrdered(page); 8435 SetPageOrdered(newpage); 8436 } 8437 8438 if (mode != MIGRATE_SYNC_NO_COPY) 8439 migrate_page_copy(newpage, page); 8440 else 8441 migrate_page_states(newpage, page); 8442 return MIGRATEPAGE_SUCCESS; 8443 } 8444 #endif 8445 8446 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8447 unsigned int length) 8448 { 8449 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8450 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8451 struct extent_io_tree *tree = &inode->io_tree; 8452 struct extent_state *cached_state = NULL; 8453 u64 page_start = page_offset(page); 8454 u64 page_end = page_start + PAGE_SIZE - 1; 8455 u64 cur; 8456 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8457 8458 /* 8459 * We have page locked so no new ordered extent can be created on this 8460 * page, nor bio can be submitted for this page. 8461 * 8462 * But already submitted bio can still be finished on this page. 8463 * Furthermore, endio function won't skip page which has Ordered 8464 * (Private2) already cleared, so it's possible for endio and 8465 * invalidatepage to do the same ordered extent accounting twice 8466 * on one page. 8467 * 8468 * So here we wait for any submitted bios to finish, so that we won't 8469 * do double ordered extent accounting on the same page. 8470 */ 8471 wait_on_page_writeback(page); 8472 8473 /* 8474 * For subpage case, we have call sites like 8475 * btrfs_punch_hole_lock_range() which passes range not aligned to 8476 * sectorsize. 8477 * If the range doesn't cover the full page, we don't need to and 8478 * shouldn't clear page extent mapped, as page->private can still 8479 * record subpage dirty bits for other part of the range. 8480 * 8481 * For cases that can invalidate the full even the range doesn't 8482 * cover the full page, like invalidating the last page, we're 8483 * still safe to wait for ordered extent to finish. 8484 */ 8485 if (!(offset == 0 && length == PAGE_SIZE)) { 8486 btrfs_releasepage(page, GFP_NOFS); 8487 return; 8488 } 8489 8490 if (!inode_evicting) 8491 lock_extent_bits(tree, page_start, page_end, &cached_state); 8492 8493 cur = page_start; 8494 while (cur < page_end) { 8495 struct btrfs_ordered_extent *ordered; 8496 bool delete_states; 8497 u64 range_end; 8498 u32 range_len; 8499 8500 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8501 page_end + 1 - cur); 8502 if (!ordered) { 8503 range_end = page_end; 8504 /* 8505 * No ordered extent covering this range, we are safe 8506 * to delete all extent states in the range. 8507 */ 8508 delete_states = true; 8509 goto next; 8510 } 8511 if (ordered->file_offset > cur) { 8512 /* 8513 * There is a range between [cur, oe->file_offset) not 8514 * covered by any ordered extent. 8515 * We are safe to delete all extent states, and handle 8516 * the ordered extent in the next iteration. 8517 */ 8518 range_end = ordered->file_offset - 1; 8519 delete_states = true; 8520 goto next; 8521 } 8522 8523 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8524 page_end); 8525 ASSERT(range_end + 1 - cur < U32_MAX); 8526 range_len = range_end + 1 - cur; 8527 if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) { 8528 /* 8529 * If Ordered (Private2) is cleared, it means endio has 8530 * already been executed for the range. 8531 * We can't delete the extent states as 8532 * btrfs_finish_ordered_io() may still use some of them. 8533 */ 8534 delete_states = false; 8535 goto next; 8536 } 8537 btrfs_page_clear_ordered(fs_info, page, cur, range_len); 8538 8539 /* 8540 * IO on this page will never be started, so we need to account 8541 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8542 * here, must leave that up for the ordered extent completion. 8543 * 8544 * This will also unlock the range for incoming 8545 * btrfs_finish_ordered_io(). 8546 */ 8547 if (!inode_evicting) 8548 clear_extent_bit(tree, cur, range_end, 8549 EXTENT_DELALLOC | 8550 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8551 EXTENT_DEFRAG, 1, 0, &cached_state); 8552 8553 spin_lock_irq(&inode->ordered_tree.lock); 8554 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8555 ordered->truncated_len = min(ordered->truncated_len, 8556 cur - ordered->file_offset); 8557 spin_unlock_irq(&inode->ordered_tree.lock); 8558 8559 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8560 cur, range_end + 1 - cur, 1)) { 8561 btrfs_finish_ordered_io(ordered); 8562 /* 8563 * The ordered extent has finished, now we're again 8564 * safe to delete all extent states of the range. 8565 */ 8566 delete_states = true; 8567 } else { 8568 /* 8569 * btrfs_finish_ordered_io() will get executed by endio 8570 * of other pages, thus we can't delete extent states 8571 * anymore 8572 */ 8573 delete_states = false; 8574 } 8575 next: 8576 if (ordered) 8577 btrfs_put_ordered_extent(ordered); 8578 /* 8579 * Qgroup reserved space handler 8580 * Sector(s) here will be either: 8581 * 8582 * 1) Already written to disk or bio already finished 8583 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8584 * Qgroup will be handled by its qgroup_record then. 8585 * btrfs_qgroup_free_data() call will do nothing here. 8586 * 8587 * 2) Not written to disk yet 8588 * Then btrfs_qgroup_free_data() call will clear the 8589 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8590 * reserved data space. 8591 * Since the IO will never happen for this page. 8592 */ 8593 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8594 if (!inode_evicting) { 8595 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8596 EXTENT_DELALLOC | EXTENT_UPTODATE | 8597 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8598 delete_states, &cached_state); 8599 } 8600 cur = range_end + 1; 8601 } 8602 /* 8603 * We have iterated through all ordered extents of the page, the page 8604 * should not have Ordered (Private2) anymore, or the above iteration 8605 * did something wrong. 8606 */ 8607 ASSERT(!PageOrdered(page)); 8608 if (!inode_evicting) 8609 __btrfs_releasepage(page, GFP_NOFS); 8610 ClearPageChecked(page); 8611 clear_page_extent_mapped(page); 8612 } 8613 8614 /* 8615 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8616 * called from a page fault handler when a page is first dirtied. Hence we must 8617 * be careful to check for EOF conditions here. We set the page up correctly 8618 * for a written page which means we get ENOSPC checking when writing into 8619 * holes and correct delalloc and unwritten extent mapping on filesystems that 8620 * support these features. 8621 * 8622 * We are not allowed to take the i_mutex here so we have to play games to 8623 * protect against truncate races as the page could now be beyond EOF. Because 8624 * truncate_setsize() writes the inode size before removing pages, once we have 8625 * the page lock we can determine safely if the page is beyond EOF. If it is not 8626 * beyond EOF, then the page is guaranteed safe against truncation until we 8627 * unlock the page. 8628 */ 8629 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8630 { 8631 struct page *page = vmf->page; 8632 struct inode *inode = file_inode(vmf->vma->vm_file); 8633 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8634 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8635 struct btrfs_ordered_extent *ordered; 8636 struct extent_state *cached_state = NULL; 8637 struct extent_changeset *data_reserved = NULL; 8638 unsigned long zero_start; 8639 loff_t size; 8640 vm_fault_t ret; 8641 int ret2; 8642 int reserved = 0; 8643 u64 reserved_space; 8644 u64 page_start; 8645 u64 page_end; 8646 u64 end; 8647 8648 reserved_space = PAGE_SIZE; 8649 8650 sb_start_pagefault(inode->i_sb); 8651 page_start = page_offset(page); 8652 page_end = page_start + PAGE_SIZE - 1; 8653 end = page_end; 8654 8655 /* 8656 * Reserving delalloc space after obtaining the page lock can lead to 8657 * deadlock. For example, if a dirty page is locked by this function 8658 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8659 * dirty page write out, then the btrfs_writepage() function could 8660 * end up waiting indefinitely to get a lock on the page currently 8661 * being processed by btrfs_page_mkwrite() function. 8662 */ 8663 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8664 page_start, reserved_space); 8665 if (!ret2) { 8666 ret2 = file_update_time(vmf->vma->vm_file); 8667 reserved = 1; 8668 } 8669 if (ret2) { 8670 ret = vmf_error(ret2); 8671 if (reserved) 8672 goto out; 8673 goto out_noreserve; 8674 } 8675 8676 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8677 again: 8678 down_read(&BTRFS_I(inode)->i_mmap_lock); 8679 lock_page(page); 8680 size = i_size_read(inode); 8681 8682 if ((page->mapping != inode->i_mapping) || 8683 (page_start >= size)) { 8684 /* page got truncated out from underneath us */ 8685 goto out_unlock; 8686 } 8687 wait_on_page_writeback(page); 8688 8689 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8690 ret2 = set_page_extent_mapped(page); 8691 if (ret2 < 0) { 8692 ret = vmf_error(ret2); 8693 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8694 goto out_unlock; 8695 } 8696 8697 /* 8698 * we can't set the delalloc bits if there are pending ordered 8699 * extents. Drop our locks and wait for them to finish 8700 */ 8701 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8702 PAGE_SIZE); 8703 if (ordered) { 8704 unlock_extent_cached(io_tree, page_start, page_end, 8705 &cached_state); 8706 unlock_page(page); 8707 up_read(&BTRFS_I(inode)->i_mmap_lock); 8708 btrfs_start_ordered_extent(ordered, 1); 8709 btrfs_put_ordered_extent(ordered); 8710 goto again; 8711 } 8712 8713 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8714 reserved_space = round_up(size - page_start, 8715 fs_info->sectorsize); 8716 if (reserved_space < PAGE_SIZE) { 8717 end = page_start + reserved_space - 1; 8718 btrfs_delalloc_release_space(BTRFS_I(inode), 8719 data_reserved, page_start, 8720 PAGE_SIZE - reserved_space, true); 8721 } 8722 } 8723 8724 /* 8725 * page_mkwrite gets called when the page is firstly dirtied after it's 8726 * faulted in, but write(2) could also dirty a page and set delalloc 8727 * bits, thus in this case for space account reason, we still need to 8728 * clear any delalloc bits within this page range since we have to 8729 * reserve data&meta space before lock_page() (see above comments). 8730 */ 8731 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8732 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8733 EXTENT_DEFRAG, 0, 0, &cached_state); 8734 8735 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8736 &cached_state); 8737 if (ret2) { 8738 unlock_extent_cached(io_tree, page_start, page_end, 8739 &cached_state); 8740 ret = VM_FAULT_SIGBUS; 8741 goto out_unlock; 8742 } 8743 8744 /* page is wholly or partially inside EOF */ 8745 if (page_start + PAGE_SIZE > size) 8746 zero_start = offset_in_page(size); 8747 else 8748 zero_start = PAGE_SIZE; 8749 8750 if (zero_start != PAGE_SIZE) { 8751 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8752 flush_dcache_page(page); 8753 } 8754 ClearPageChecked(page); 8755 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8756 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8757 8758 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8759 8760 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8761 up_read(&BTRFS_I(inode)->i_mmap_lock); 8762 8763 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8764 sb_end_pagefault(inode->i_sb); 8765 extent_changeset_free(data_reserved); 8766 return VM_FAULT_LOCKED; 8767 8768 out_unlock: 8769 unlock_page(page); 8770 up_read(&BTRFS_I(inode)->i_mmap_lock); 8771 out: 8772 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8773 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8774 reserved_space, (ret != 0)); 8775 out_noreserve: 8776 sb_end_pagefault(inode->i_sb); 8777 extent_changeset_free(data_reserved); 8778 return ret; 8779 } 8780 8781 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8782 { 8783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8784 struct btrfs_root *root = BTRFS_I(inode)->root; 8785 struct btrfs_block_rsv *rsv; 8786 int ret; 8787 struct btrfs_trans_handle *trans; 8788 u64 mask = fs_info->sectorsize - 1; 8789 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8790 u64 extents_found = 0; 8791 8792 if (!skip_writeback) { 8793 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8794 (u64)-1); 8795 if (ret) 8796 return ret; 8797 } 8798 8799 /* 8800 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8801 * things going on here: 8802 * 8803 * 1) We need to reserve space to update our inode. 8804 * 8805 * 2) We need to have something to cache all the space that is going to 8806 * be free'd up by the truncate operation, but also have some slack 8807 * space reserved in case it uses space during the truncate (thank you 8808 * very much snapshotting). 8809 * 8810 * And we need these to be separate. The fact is we can use a lot of 8811 * space doing the truncate, and we have no earthly idea how much space 8812 * we will use, so we need the truncate reservation to be separate so it 8813 * doesn't end up using space reserved for updating the inode. We also 8814 * need to be able to stop the transaction and start a new one, which 8815 * means we need to be able to update the inode several times, and we 8816 * have no idea of knowing how many times that will be, so we can't just 8817 * reserve 1 item for the entirety of the operation, so that has to be 8818 * done separately as well. 8819 * 8820 * So that leaves us with 8821 * 8822 * 1) rsv - for the truncate reservation, which we will steal from the 8823 * transaction reservation. 8824 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8825 * updating the inode. 8826 */ 8827 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8828 if (!rsv) 8829 return -ENOMEM; 8830 rsv->size = min_size; 8831 rsv->failfast = 1; 8832 8833 /* 8834 * 1 for the truncate slack space 8835 * 1 for updating the inode. 8836 */ 8837 trans = btrfs_start_transaction(root, 2); 8838 if (IS_ERR(trans)) { 8839 ret = PTR_ERR(trans); 8840 goto out; 8841 } 8842 8843 /* Migrate the slack space for the truncate to our reserve */ 8844 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8845 min_size, false); 8846 BUG_ON(ret); 8847 8848 trans->block_rsv = rsv; 8849 8850 while (1) { 8851 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8852 inode->i_size, 8853 BTRFS_EXTENT_DATA_KEY, 8854 &extents_found); 8855 trans->block_rsv = &fs_info->trans_block_rsv; 8856 if (ret != -ENOSPC && ret != -EAGAIN) 8857 break; 8858 8859 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8860 if (ret) 8861 break; 8862 8863 btrfs_end_transaction(trans); 8864 btrfs_btree_balance_dirty(fs_info); 8865 8866 trans = btrfs_start_transaction(root, 2); 8867 if (IS_ERR(trans)) { 8868 ret = PTR_ERR(trans); 8869 trans = NULL; 8870 break; 8871 } 8872 8873 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8874 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8875 rsv, min_size, false); 8876 BUG_ON(ret); /* shouldn't happen */ 8877 trans->block_rsv = rsv; 8878 } 8879 8880 /* 8881 * We can't call btrfs_truncate_block inside a trans handle as we could 8882 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8883 * we've truncated everything except the last little bit, and can do 8884 * btrfs_truncate_block and then update the disk_i_size. 8885 */ 8886 if (ret == NEED_TRUNCATE_BLOCK) { 8887 btrfs_end_transaction(trans); 8888 btrfs_btree_balance_dirty(fs_info); 8889 8890 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8891 if (ret) 8892 goto out; 8893 trans = btrfs_start_transaction(root, 1); 8894 if (IS_ERR(trans)) { 8895 ret = PTR_ERR(trans); 8896 goto out; 8897 } 8898 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8899 } 8900 8901 if (trans) { 8902 int ret2; 8903 8904 trans->block_rsv = &fs_info->trans_block_rsv; 8905 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8906 if (ret2 && !ret) 8907 ret = ret2; 8908 8909 ret2 = btrfs_end_transaction(trans); 8910 if (ret2 && !ret) 8911 ret = ret2; 8912 btrfs_btree_balance_dirty(fs_info); 8913 } 8914 out: 8915 btrfs_free_block_rsv(fs_info, rsv); 8916 /* 8917 * So if we truncate and then write and fsync we normally would just 8918 * write the extents that changed, which is a problem if we need to 8919 * first truncate that entire inode. So set this flag so we write out 8920 * all of the extents in the inode to the sync log so we're completely 8921 * safe. 8922 * 8923 * If no extents were dropped or trimmed we don't need to force the next 8924 * fsync to truncate all the inode's items from the log and re-log them 8925 * all. This means the truncate operation did not change the file size, 8926 * or changed it to a smaller size but there was only an implicit hole 8927 * between the old i_size and the new i_size, and there were no prealloc 8928 * extents beyond i_size to drop. 8929 */ 8930 if (extents_found > 0) 8931 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8932 8933 return ret; 8934 } 8935 8936 /* 8937 * create a new subvolume directory/inode (helper for the ioctl). 8938 */ 8939 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8940 struct btrfs_root *new_root, 8941 struct btrfs_root *parent_root) 8942 { 8943 struct inode *inode; 8944 int err; 8945 u64 index = 0; 8946 u64 ino; 8947 8948 err = btrfs_get_free_objectid(new_root, &ino); 8949 if (err < 0) 8950 return err; 8951 8952 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino, 8953 S_IFDIR | (~current_umask() & S_IRWXUGO), 8954 &index); 8955 if (IS_ERR(inode)) 8956 return PTR_ERR(inode); 8957 inode->i_op = &btrfs_dir_inode_operations; 8958 inode->i_fop = &btrfs_dir_file_operations; 8959 8960 set_nlink(inode, 1); 8961 btrfs_i_size_write(BTRFS_I(inode), 0); 8962 unlock_new_inode(inode); 8963 8964 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8965 if (err) 8966 btrfs_err(new_root->fs_info, 8967 "error inheriting subvolume %llu properties: %d", 8968 new_root->root_key.objectid, err); 8969 8970 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8971 8972 iput(inode); 8973 return err; 8974 } 8975 8976 struct inode *btrfs_alloc_inode(struct super_block *sb) 8977 { 8978 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8979 struct btrfs_inode *ei; 8980 struct inode *inode; 8981 8982 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8983 if (!ei) 8984 return NULL; 8985 8986 ei->root = NULL; 8987 ei->generation = 0; 8988 ei->last_trans = 0; 8989 ei->last_sub_trans = 0; 8990 ei->logged_trans = 0; 8991 ei->delalloc_bytes = 0; 8992 ei->new_delalloc_bytes = 0; 8993 ei->defrag_bytes = 0; 8994 ei->disk_i_size = 0; 8995 ei->flags = 0; 8996 ei->csum_bytes = 0; 8997 ei->index_cnt = (u64)-1; 8998 ei->dir_index = 0; 8999 ei->last_unlink_trans = 0; 9000 ei->last_reflink_trans = 0; 9001 ei->last_log_commit = 0; 9002 9003 spin_lock_init(&ei->lock); 9004 ei->outstanding_extents = 0; 9005 if (sb->s_magic != BTRFS_TEST_MAGIC) 9006 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9007 BTRFS_BLOCK_RSV_DELALLOC); 9008 ei->runtime_flags = 0; 9009 ei->prop_compress = BTRFS_COMPRESS_NONE; 9010 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9011 9012 ei->delayed_node = NULL; 9013 9014 ei->i_otime.tv_sec = 0; 9015 ei->i_otime.tv_nsec = 0; 9016 9017 inode = &ei->vfs_inode; 9018 extent_map_tree_init(&ei->extent_tree); 9019 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 9020 extent_io_tree_init(fs_info, &ei->io_failure_tree, 9021 IO_TREE_INODE_IO_FAILURE, inode); 9022 extent_io_tree_init(fs_info, &ei->file_extent_tree, 9023 IO_TREE_INODE_FILE_EXTENT, inode); 9024 ei->io_tree.track_uptodate = true; 9025 ei->io_failure_tree.track_uptodate = true; 9026 atomic_set(&ei->sync_writers, 0); 9027 mutex_init(&ei->log_mutex); 9028 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9029 INIT_LIST_HEAD(&ei->delalloc_inodes); 9030 INIT_LIST_HEAD(&ei->delayed_iput); 9031 RB_CLEAR_NODE(&ei->rb_node); 9032 init_rwsem(&ei->i_mmap_lock); 9033 9034 return inode; 9035 } 9036 9037 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9038 void btrfs_test_destroy_inode(struct inode *inode) 9039 { 9040 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9041 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9042 } 9043 #endif 9044 9045 void btrfs_free_inode(struct inode *inode) 9046 { 9047 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9048 } 9049 9050 void btrfs_destroy_inode(struct inode *vfs_inode) 9051 { 9052 struct btrfs_ordered_extent *ordered; 9053 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 9054 struct btrfs_root *root = inode->root; 9055 9056 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 9057 WARN_ON(vfs_inode->i_data.nrpages); 9058 WARN_ON(inode->block_rsv.reserved); 9059 WARN_ON(inode->block_rsv.size); 9060 WARN_ON(inode->outstanding_extents); 9061 WARN_ON(inode->delalloc_bytes); 9062 WARN_ON(inode->new_delalloc_bytes); 9063 WARN_ON(inode->csum_bytes); 9064 WARN_ON(inode->defrag_bytes); 9065 9066 /* 9067 * This can happen where we create an inode, but somebody else also 9068 * created the same inode and we need to destroy the one we already 9069 * created. 9070 */ 9071 if (!root) 9072 return; 9073 9074 while (1) { 9075 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9076 if (!ordered) 9077 break; 9078 else { 9079 btrfs_err(root->fs_info, 9080 "found ordered extent %llu %llu on inode cleanup", 9081 ordered->file_offset, ordered->num_bytes); 9082 btrfs_remove_ordered_extent(inode, ordered); 9083 btrfs_put_ordered_extent(ordered); 9084 btrfs_put_ordered_extent(ordered); 9085 } 9086 } 9087 btrfs_qgroup_check_reserved_leak(inode); 9088 inode_tree_del(inode); 9089 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9090 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 9091 btrfs_put_root(inode->root); 9092 } 9093 9094 int btrfs_drop_inode(struct inode *inode) 9095 { 9096 struct btrfs_root *root = BTRFS_I(inode)->root; 9097 9098 if (root == NULL) 9099 return 1; 9100 9101 /* the snap/subvol tree is on deleting */ 9102 if (btrfs_root_refs(&root->root_item) == 0) 9103 return 1; 9104 else 9105 return generic_drop_inode(inode); 9106 } 9107 9108 static void init_once(void *foo) 9109 { 9110 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9111 9112 inode_init_once(&ei->vfs_inode); 9113 } 9114 9115 void __cold btrfs_destroy_cachep(void) 9116 { 9117 /* 9118 * Make sure all delayed rcu free inodes are flushed before we 9119 * destroy cache. 9120 */ 9121 rcu_barrier(); 9122 kmem_cache_destroy(btrfs_inode_cachep); 9123 kmem_cache_destroy(btrfs_trans_handle_cachep); 9124 kmem_cache_destroy(btrfs_path_cachep); 9125 kmem_cache_destroy(btrfs_free_space_cachep); 9126 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 9127 } 9128 9129 int __init btrfs_init_cachep(void) 9130 { 9131 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9132 sizeof(struct btrfs_inode), 0, 9133 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9134 init_once); 9135 if (!btrfs_inode_cachep) 9136 goto fail; 9137 9138 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9139 sizeof(struct btrfs_trans_handle), 0, 9140 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9141 if (!btrfs_trans_handle_cachep) 9142 goto fail; 9143 9144 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9145 sizeof(struct btrfs_path), 0, 9146 SLAB_MEM_SPREAD, NULL); 9147 if (!btrfs_path_cachep) 9148 goto fail; 9149 9150 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9151 sizeof(struct btrfs_free_space), 0, 9152 SLAB_MEM_SPREAD, NULL); 9153 if (!btrfs_free_space_cachep) 9154 goto fail; 9155 9156 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9157 PAGE_SIZE, PAGE_SIZE, 9158 SLAB_MEM_SPREAD, NULL); 9159 if (!btrfs_free_space_bitmap_cachep) 9160 goto fail; 9161 9162 return 0; 9163 fail: 9164 btrfs_destroy_cachep(); 9165 return -ENOMEM; 9166 } 9167 9168 static int btrfs_getattr(struct user_namespace *mnt_userns, 9169 const struct path *path, struct kstat *stat, 9170 u32 request_mask, unsigned int flags) 9171 { 9172 u64 delalloc_bytes; 9173 u64 inode_bytes; 9174 struct inode *inode = d_inode(path->dentry); 9175 u32 blocksize = inode->i_sb->s_blocksize; 9176 u32 bi_flags = BTRFS_I(inode)->flags; 9177 9178 stat->result_mask |= STATX_BTIME; 9179 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9180 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9181 if (bi_flags & BTRFS_INODE_APPEND) 9182 stat->attributes |= STATX_ATTR_APPEND; 9183 if (bi_flags & BTRFS_INODE_COMPRESS) 9184 stat->attributes |= STATX_ATTR_COMPRESSED; 9185 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9186 stat->attributes |= STATX_ATTR_IMMUTABLE; 9187 if (bi_flags & BTRFS_INODE_NODUMP) 9188 stat->attributes |= STATX_ATTR_NODUMP; 9189 9190 stat->attributes_mask |= (STATX_ATTR_APPEND | 9191 STATX_ATTR_COMPRESSED | 9192 STATX_ATTR_IMMUTABLE | 9193 STATX_ATTR_NODUMP); 9194 9195 generic_fillattr(&init_user_ns, inode, stat); 9196 stat->dev = BTRFS_I(inode)->root->anon_dev; 9197 9198 spin_lock(&BTRFS_I(inode)->lock); 9199 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9200 inode_bytes = inode_get_bytes(inode); 9201 spin_unlock(&BTRFS_I(inode)->lock); 9202 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9203 ALIGN(delalloc_bytes, blocksize)) >> 9; 9204 return 0; 9205 } 9206 9207 static int btrfs_rename_exchange(struct inode *old_dir, 9208 struct dentry *old_dentry, 9209 struct inode *new_dir, 9210 struct dentry *new_dentry) 9211 { 9212 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9213 struct btrfs_trans_handle *trans; 9214 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9215 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9216 struct inode *new_inode = new_dentry->d_inode; 9217 struct inode *old_inode = old_dentry->d_inode; 9218 struct timespec64 ctime = current_time(old_inode); 9219 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9220 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9221 u64 old_idx = 0; 9222 u64 new_idx = 0; 9223 int ret; 9224 int ret2; 9225 bool root_log_pinned = false; 9226 bool dest_log_pinned = false; 9227 bool need_abort = false; 9228 9229 /* we only allow rename subvolume link between subvolumes */ 9230 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9231 return -EXDEV; 9232 9233 /* close the race window with snapshot create/destroy ioctl */ 9234 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9235 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9236 down_read(&fs_info->subvol_sem); 9237 9238 /* 9239 * We want to reserve the absolute worst case amount of items. So if 9240 * both inodes are subvols and we need to unlink them then that would 9241 * require 4 item modifications, but if they are both normal inodes it 9242 * would require 5 item modifications, so we'll assume their normal 9243 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9244 * should cover the worst case number of items we'll modify. 9245 */ 9246 trans = btrfs_start_transaction(root, 12); 9247 if (IS_ERR(trans)) { 9248 ret = PTR_ERR(trans); 9249 goto out_notrans; 9250 } 9251 9252 if (dest != root) { 9253 ret = btrfs_record_root_in_trans(trans, dest); 9254 if (ret) 9255 goto out_fail; 9256 } 9257 9258 /* 9259 * We need to find a free sequence number both in the source and 9260 * in the destination directory for the exchange. 9261 */ 9262 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9263 if (ret) 9264 goto out_fail; 9265 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9266 if (ret) 9267 goto out_fail; 9268 9269 BTRFS_I(old_inode)->dir_index = 0ULL; 9270 BTRFS_I(new_inode)->dir_index = 0ULL; 9271 9272 /* Reference for the source. */ 9273 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9274 /* force full log commit if subvolume involved. */ 9275 btrfs_set_log_full_commit(trans); 9276 } else { 9277 btrfs_pin_log_trans(root); 9278 root_log_pinned = true; 9279 ret = btrfs_insert_inode_ref(trans, dest, 9280 new_dentry->d_name.name, 9281 new_dentry->d_name.len, 9282 old_ino, 9283 btrfs_ino(BTRFS_I(new_dir)), 9284 old_idx); 9285 if (ret) 9286 goto out_fail; 9287 need_abort = true; 9288 } 9289 9290 /* And now for the dest. */ 9291 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9292 /* force full log commit if subvolume involved. */ 9293 btrfs_set_log_full_commit(trans); 9294 } else { 9295 btrfs_pin_log_trans(dest); 9296 dest_log_pinned = true; 9297 ret = btrfs_insert_inode_ref(trans, root, 9298 old_dentry->d_name.name, 9299 old_dentry->d_name.len, 9300 new_ino, 9301 btrfs_ino(BTRFS_I(old_dir)), 9302 new_idx); 9303 if (ret) { 9304 if (need_abort) 9305 btrfs_abort_transaction(trans, ret); 9306 goto out_fail; 9307 } 9308 } 9309 9310 /* Update inode version and ctime/mtime. */ 9311 inode_inc_iversion(old_dir); 9312 inode_inc_iversion(new_dir); 9313 inode_inc_iversion(old_inode); 9314 inode_inc_iversion(new_inode); 9315 old_dir->i_ctime = old_dir->i_mtime = ctime; 9316 new_dir->i_ctime = new_dir->i_mtime = ctime; 9317 old_inode->i_ctime = ctime; 9318 new_inode->i_ctime = ctime; 9319 9320 if (old_dentry->d_parent != new_dentry->d_parent) { 9321 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9322 BTRFS_I(old_inode), 1); 9323 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9324 BTRFS_I(new_inode), 1); 9325 } 9326 9327 /* src is a subvolume */ 9328 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9329 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9330 } else { /* src is an inode */ 9331 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9332 BTRFS_I(old_dentry->d_inode), 9333 old_dentry->d_name.name, 9334 old_dentry->d_name.len); 9335 if (!ret) 9336 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9337 } 9338 if (ret) { 9339 btrfs_abort_transaction(trans, ret); 9340 goto out_fail; 9341 } 9342 9343 /* dest is a subvolume */ 9344 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9345 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9346 } else { /* dest is an inode */ 9347 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9348 BTRFS_I(new_dentry->d_inode), 9349 new_dentry->d_name.name, 9350 new_dentry->d_name.len); 9351 if (!ret) 9352 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9353 } 9354 if (ret) { 9355 btrfs_abort_transaction(trans, ret); 9356 goto out_fail; 9357 } 9358 9359 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9360 new_dentry->d_name.name, 9361 new_dentry->d_name.len, 0, old_idx); 9362 if (ret) { 9363 btrfs_abort_transaction(trans, ret); 9364 goto out_fail; 9365 } 9366 9367 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9368 old_dentry->d_name.name, 9369 old_dentry->d_name.len, 0, new_idx); 9370 if (ret) { 9371 btrfs_abort_transaction(trans, ret); 9372 goto out_fail; 9373 } 9374 9375 if (old_inode->i_nlink == 1) 9376 BTRFS_I(old_inode)->dir_index = old_idx; 9377 if (new_inode->i_nlink == 1) 9378 BTRFS_I(new_inode)->dir_index = new_idx; 9379 9380 if (root_log_pinned) { 9381 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9382 new_dentry->d_parent); 9383 btrfs_end_log_trans(root); 9384 root_log_pinned = false; 9385 } 9386 if (dest_log_pinned) { 9387 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9388 old_dentry->d_parent); 9389 btrfs_end_log_trans(dest); 9390 dest_log_pinned = false; 9391 } 9392 out_fail: 9393 /* 9394 * If we have pinned a log and an error happened, we unpin tasks 9395 * trying to sync the log and force them to fallback to a transaction 9396 * commit if the log currently contains any of the inodes involved in 9397 * this rename operation (to ensure we do not persist a log with an 9398 * inconsistent state for any of these inodes or leading to any 9399 * inconsistencies when replayed). If the transaction was aborted, the 9400 * abortion reason is propagated to userspace when attempting to commit 9401 * the transaction. If the log does not contain any of these inodes, we 9402 * allow the tasks to sync it. 9403 */ 9404 if (ret && (root_log_pinned || dest_log_pinned)) { 9405 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9406 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9407 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9408 (new_inode && 9409 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9410 btrfs_set_log_full_commit(trans); 9411 9412 if (root_log_pinned) { 9413 btrfs_end_log_trans(root); 9414 root_log_pinned = false; 9415 } 9416 if (dest_log_pinned) { 9417 btrfs_end_log_trans(dest); 9418 dest_log_pinned = false; 9419 } 9420 } 9421 ret2 = btrfs_end_transaction(trans); 9422 ret = ret ? ret : ret2; 9423 out_notrans: 9424 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9425 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9426 up_read(&fs_info->subvol_sem); 9427 9428 return ret; 9429 } 9430 9431 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9432 struct btrfs_root *root, 9433 struct inode *dir, 9434 struct dentry *dentry) 9435 { 9436 int ret; 9437 struct inode *inode; 9438 u64 objectid; 9439 u64 index; 9440 9441 ret = btrfs_get_free_objectid(root, &objectid); 9442 if (ret) 9443 return ret; 9444 9445 inode = btrfs_new_inode(trans, root, dir, 9446 dentry->d_name.name, 9447 dentry->d_name.len, 9448 btrfs_ino(BTRFS_I(dir)), 9449 objectid, 9450 S_IFCHR | WHITEOUT_MODE, 9451 &index); 9452 9453 if (IS_ERR(inode)) { 9454 ret = PTR_ERR(inode); 9455 return ret; 9456 } 9457 9458 inode->i_op = &btrfs_special_inode_operations; 9459 init_special_inode(inode, inode->i_mode, 9460 WHITEOUT_DEV); 9461 9462 ret = btrfs_init_inode_security(trans, inode, dir, 9463 &dentry->d_name); 9464 if (ret) 9465 goto out; 9466 9467 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9468 BTRFS_I(inode), 0, index); 9469 if (ret) 9470 goto out; 9471 9472 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9473 out: 9474 unlock_new_inode(inode); 9475 if (ret) 9476 inode_dec_link_count(inode); 9477 iput(inode); 9478 9479 return ret; 9480 } 9481 9482 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9483 struct inode *new_dir, struct dentry *new_dentry, 9484 unsigned int flags) 9485 { 9486 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9487 struct btrfs_trans_handle *trans; 9488 unsigned int trans_num_items; 9489 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9490 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9491 struct inode *new_inode = d_inode(new_dentry); 9492 struct inode *old_inode = d_inode(old_dentry); 9493 u64 index = 0; 9494 int ret; 9495 int ret2; 9496 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9497 bool log_pinned = false; 9498 9499 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9500 return -EPERM; 9501 9502 /* we only allow rename subvolume link between subvolumes */ 9503 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9504 return -EXDEV; 9505 9506 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9507 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9508 return -ENOTEMPTY; 9509 9510 if (S_ISDIR(old_inode->i_mode) && new_inode && 9511 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9512 return -ENOTEMPTY; 9513 9514 9515 /* check for collisions, even if the name isn't there */ 9516 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9517 new_dentry->d_name.name, 9518 new_dentry->d_name.len); 9519 9520 if (ret) { 9521 if (ret == -EEXIST) { 9522 /* we shouldn't get 9523 * eexist without a new_inode */ 9524 if (WARN_ON(!new_inode)) { 9525 return ret; 9526 } 9527 } else { 9528 /* maybe -EOVERFLOW */ 9529 return ret; 9530 } 9531 } 9532 ret = 0; 9533 9534 /* 9535 * we're using rename to replace one file with another. Start IO on it 9536 * now so we don't add too much work to the end of the transaction 9537 */ 9538 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9539 filemap_flush(old_inode->i_mapping); 9540 9541 /* close the racy window with snapshot create/destroy ioctl */ 9542 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9543 down_read(&fs_info->subvol_sem); 9544 /* 9545 * We want to reserve the absolute worst case amount of items. So if 9546 * both inodes are subvols and we need to unlink them then that would 9547 * require 4 item modifications, but if they are both normal inodes it 9548 * would require 5 item modifications, so we'll assume they are normal 9549 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9550 * should cover the worst case number of items we'll modify. 9551 * If our rename has the whiteout flag, we need more 5 units for the 9552 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9553 * when selinux is enabled). 9554 */ 9555 trans_num_items = 11; 9556 if (flags & RENAME_WHITEOUT) 9557 trans_num_items += 5; 9558 trans = btrfs_start_transaction(root, trans_num_items); 9559 if (IS_ERR(trans)) { 9560 ret = PTR_ERR(trans); 9561 goto out_notrans; 9562 } 9563 9564 if (dest != root) { 9565 ret = btrfs_record_root_in_trans(trans, dest); 9566 if (ret) 9567 goto out_fail; 9568 } 9569 9570 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9571 if (ret) 9572 goto out_fail; 9573 9574 BTRFS_I(old_inode)->dir_index = 0ULL; 9575 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9576 /* force full log commit if subvolume involved. */ 9577 btrfs_set_log_full_commit(trans); 9578 } else { 9579 btrfs_pin_log_trans(root); 9580 log_pinned = true; 9581 ret = btrfs_insert_inode_ref(trans, dest, 9582 new_dentry->d_name.name, 9583 new_dentry->d_name.len, 9584 old_ino, 9585 btrfs_ino(BTRFS_I(new_dir)), index); 9586 if (ret) 9587 goto out_fail; 9588 } 9589 9590 inode_inc_iversion(old_dir); 9591 inode_inc_iversion(new_dir); 9592 inode_inc_iversion(old_inode); 9593 old_dir->i_ctime = old_dir->i_mtime = 9594 new_dir->i_ctime = new_dir->i_mtime = 9595 old_inode->i_ctime = current_time(old_dir); 9596 9597 if (old_dentry->d_parent != new_dentry->d_parent) 9598 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9599 BTRFS_I(old_inode), 1); 9600 9601 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9602 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9603 } else { 9604 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9605 BTRFS_I(d_inode(old_dentry)), 9606 old_dentry->d_name.name, 9607 old_dentry->d_name.len); 9608 if (!ret) 9609 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9610 } 9611 if (ret) { 9612 btrfs_abort_transaction(trans, ret); 9613 goto out_fail; 9614 } 9615 9616 if (new_inode) { 9617 inode_inc_iversion(new_inode); 9618 new_inode->i_ctime = current_time(new_inode); 9619 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9620 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9621 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9622 BUG_ON(new_inode->i_nlink == 0); 9623 } else { 9624 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9625 BTRFS_I(d_inode(new_dentry)), 9626 new_dentry->d_name.name, 9627 new_dentry->d_name.len); 9628 } 9629 if (!ret && new_inode->i_nlink == 0) 9630 ret = btrfs_orphan_add(trans, 9631 BTRFS_I(d_inode(new_dentry))); 9632 if (ret) { 9633 btrfs_abort_transaction(trans, ret); 9634 goto out_fail; 9635 } 9636 } 9637 9638 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9639 new_dentry->d_name.name, 9640 new_dentry->d_name.len, 0, index); 9641 if (ret) { 9642 btrfs_abort_transaction(trans, ret); 9643 goto out_fail; 9644 } 9645 9646 if (old_inode->i_nlink == 1) 9647 BTRFS_I(old_inode)->dir_index = index; 9648 9649 if (log_pinned) { 9650 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9651 new_dentry->d_parent); 9652 btrfs_end_log_trans(root); 9653 log_pinned = false; 9654 } 9655 9656 if (flags & RENAME_WHITEOUT) { 9657 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9658 old_dentry); 9659 9660 if (ret) { 9661 btrfs_abort_transaction(trans, ret); 9662 goto out_fail; 9663 } 9664 } 9665 out_fail: 9666 /* 9667 * If we have pinned the log and an error happened, we unpin tasks 9668 * trying to sync the log and force them to fallback to a transaction 9669 * commit if the log currently contains any of the inodes involved in 9670 * this rename operation (to ensure we do not persist a log with an 9671 * inconsistent state for any of these inodes or leading to any 9672 * inconsistencies when replayed). If the transaction was aborted, the 9673 * abortion reason is propagated to userspace when attempting to commit 9674 * the transaction. If the log does not contain any of these inodes, we 9675 * allow the tasks to sync it. 9676 */ 9677 if (ret && log_pinned) { 9678 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9679 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9680 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9681 (new_inode && 9682 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9683 btrfs_set_log_full_commit(trans); 9684 9685 btrfs_end_log_trans(root); 9686 log_pinned = false; 9687 } 9688 ret2 = btrfs_end_transaction(trans); 9689 ret = ret ? ret : ret2; 9690 out_notrans: 9691 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9692 up_read(&fs_info->subvol_sem); 9693 9694 return ret; 9695 } 9696 9697 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9698 struct dentry *old_dentry, struct inode *new_dir, 9699 struct dentry *new_dentry, unsigned int flags) 9700 { 9701 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9702 return -EINVAL; 9703 9704 if (flags & RENAME_EXCHANGE) 9705 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9706 new_dentry); 9707 9708 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9709 } 9710 9711 struct btrfs_delalloc_work { 9712 struct inode *inode; 9713 struct completion completion; 9714 struct list_head list; 9715 struct btrfs_work work; 9716 }; 9717 9718 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9719 { 9720 struct btrfs_delalloc_work *delalloc_work; 9721 struct inode *inode; 9722 9723 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9724 work); 9725 inode = delalloc_work->inode; 9726 filemap_flush(inode->i_mapping); 9727 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9728 &BTRFS_I(inode)->runtime_flags)) 9729 filemap_flush(inode->i_mapping); 9730 9731 iput(inode); 9732 complete(&delalloc_work->completion); 9733 } 9734 9735 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9736 { 9737 struct btrfs_delalloc_work *work; 9738 9739 work = kmalloc(sizeof(*work), GFP_NOFS); 9740 if (!work) 9741 return NULL; 9742 9743 init_completion(&work->completion); 9744 INIT_LIST_HEAD(&work->list); 9745 work->inode = inode; 9746 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9747 9748 return work; 9749 } 9750 9751 /* 9752 * some fairly slow code that needs optimization. This walks the list 9753 * of all the inodes with pending delalloc and forces them to disk. 9754 */ 9755 static int start_delalloc_inodes(struct btrfs_root *root, 9756 struct writeback_control *wbc, bool snapshot, 9757 bool in_reclaim_context) 9758 { 9759 struct btrfs_inode *binode; 9760 struct inode *inode; 9761 struct btrfs_delalloc_work *work, *next; 9762 struct list_head works; 9763 struct list_head splice; 9764 int ret = 0; 9765 bool full_flush = wbc->nr_to_write == LONG_MAX; 9766 9767 INIT_LIST_HEAD(&works); 9768 INIT_LIST_HEAD(&splice); 9769 9770 mutex_lock(&root->delalloc_mutex); 9771 spin_lock(&root->delalloc_lock); 9772 list_splice_init(&root->delalloc_inodes, &splice); 9773 while (!list_empty(&splice)) { 9774 binode = list_entry(splice.next, struct btrfs_inode, 9775 delalloc_inodes); 9776 9777 list_move_tail(&binode->delalloc_inodes, 9778 &root->delalloc_inodes); 9779 9780 if (in_reclaim_context && 9781 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9782 continue; 9783 9784 inode = igrab(&binode->vfs_inode); 9785 if (!inode) { 9786 cond_resched_lock(&root->delalloc_lock); 9787 continue; 9788 } 9789 spin_unlock(&root->delalloc_lock); 9790 9791 if (snapshot) 9792 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9793 &binode->runtime_flags); 9794 if (full_flush) { 9795 work = btrfs_alloc_delalloc_work(inode); 9796 if (!work) { 9797 iput(inode); 9798 ret = -ENOMEM; 9799 goto out; 9800 } 9801 list_add_tail(&work->list, &works); 9802 btrfs_queue_work(root->fs_info->flush_workers, 9803 &work->work); 9804 } else { 9805 ret = sync_inode(inode, wbc); 9806 if (!ret && 9807 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9808 &BTRFS_I(inode)->runtime_flags)) 9809 ret = sync_inode(inode, wbc); 9810 btrfs_add_delayed_iput(inode); 9811 if (ret || wbc->nr_to_write <= 0) 9812 goto out; 9813 } 9814 cond_resched(); 9815 spin_lock(&root->delalloc_lock); 9816 } 9817 spin_unlock(&root->delalloc_lock); 9818 9819 out: 9820 list_for_each_entry_safe(work, next, &works, list) { 9821 list_del_init(&work->list); 9822 wait_for_completion(&work->completion); 9823 kfree(work); 9824 } 9825 9826 if (!list_empty(&splice)) { 9827 spin_lock(&root->delalloc_lock); 9828 list_splice_tail(&splice, &root->delalloc_inodes); 9829 spin_unlock(&root->delalloc_lock); 9830 } 9831 mutex_unlock(&root->delalloc_mutex); 9832 return ret; 9833 } 9834 9835 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9836 { 9837 struct writeback_control wbc = { 9838 .nr_to_write = LONG_MAX, 9839 .sync_mode = WB_SYNC_NONE, 9840 .range_start = 0, 9841 .range_end = LLONG_MAX, 9842 }; 9843 struct btrfs_fs_info *fs_info = root->fs_info; 9844 9845 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9846 return -EROFS; 9847 9848 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9849 } 9850 9851 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9852 bool in_reclaim_context) 9853 { 9854 struct writeback_control wbc = { 9855 .nr_to_write = nr, 9856 .sync_mode = WB_SYNC_NONE, 9857 .range_start = 0, 9858 .range_end = LLONG_MAX, 9859 }; 9860 struct btrfs_root *root; 9861 struct list_head splice; 9862 int ret; 9863 9864 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9865 return -EROFS; 9866 9867 INIT_LIST_HEAD(&splice); 9868 9869 mutex_lock(&fs_info->delalloc_root_mutex); 9870 spin_lock(&fs_info->delalloc_root_lock); 9871 list_splice_init(&fs_info->delalloc_roots, &splice); 9872 while (!list_empty(&splice)) { 9873 /* 9874 * Reset nr_to_write here so we know that we're doing a full 9875 * flush. 9876 */ 9877 if (nr == LONG_MAX) 9878 wbc.nr_to_write = LONG_MAX; 9879 9880 root = list_first_entry(&splice, struct btrfs_root, 9881 delalloc_root); 9882 root = btrfs_grab_root(root); 9883 BUG_ON(!root); 9884 list_move_tail(&root->delalloc_root, 9885 &fs_info->delalloc_roots); 9886 spin_unlock(&fs_info->delalloc_root_lock); 9887 9888 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9889 btrfs_put_root(root); 9890 if (ret < 0 || wbc.nr_to_write <= 0) 9891 goto out; 9892 spin_lock(&fs_info->delalloc_root_lock); 9893 } 9894 spin_unlock(&fs_info->delalloc_root_lock); 9895 9896 ret = 0; 9897 out: 9898 if (!list_empty(&splice)) { 9899 spin_lock(&fs_info->delalloc_root_lock); 9900 list_splice_tail(&splice, &fs_info->delalloc_roots); 9901 spin_unlock(&fs_info->delalloc_root_lock); 9902 } 9903 mutex_unlock(&fs_info->delalloc_root_mutex); 9904 return ret; 9905 } 9906 9907 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9908 struct dentry *dentry, const char *symname) 9909 { 9910 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9911 struct btrfs_trans_handle *trans; 9912 struct btrfs_root *root = BTRFS_I(dir)->root; 9913 struct btrfs_path *path; 9914 struct btrfs_key key; 9915 struct inode *inode = NULL; 9916 int err; 9917 u64 objectid; 9918 u64 index = 0; 9919 int name_len; 9920 int datasize; 9921 unsigned long ptr; 9922 struct btrfs_file_extent_item *ei; 9923 struct extent_buffer *leaf; 9924 9925 name_len = strlen(symname); 9926 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9927 return -ENAMETOOLONG; 9928 9929 /* 9930 * 2 items for inode item and ref 9931 * 2 items for dir items 9932 * 1 item for updating parent inode item 9933 * 1 item for the inline extent item 9934 * 1 item for xattr if selinux is on 9935 */ 9936 trans = btrfs_start_transaction(root, 7); 9937 if (IS_ERR(trans)) 9938 return PTR_ERR(trans); 9939 9940 err = btrfs_get_free_objectid(root, &objectid); 9941 if (err) 9942 goto out_unlock; 9943 9944 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9945 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9946 objectid, S_IFLNK|S_IRWXUGO, &index); 9947 if (IS_ERR(inode)) { 9948 err = PTR_ERR(inode); 9949 inode = NULL; 9950 goto out_unlock; 9951 } 9952 9953 /* 9954 * If the active LSM wants to access the inode during 9955 * d_instantiate it needs these. Smack checks to see 9956 * if the filesystem supports xattrs by looking at the 9957 * ops vector. 9958 */ 9959 inode->i_fop = &btrfs_file_operations; 9960 inode->i_op = &btrfs_file_inode_operations; 9961 inode->i_mapping->a_ops = &btrfs_aops; 9962 9963 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9964 if (err) 9965 goto out_unlock; 9966 9967 path = btrfs_alloc_path(); 9968 if (!path) { 9969 err = -ENOMEM; 9970 goto out_unlock; 9971 } 9972 key.objectid = btrfs_ino(BTRFS_I(inode)); 9973 key.offset = 0; 9974 key.type = BTRFS_EXTENT_DATA_KEY; 9975 datasize = btrfs_file_extent_calc_inline_size(name_len); 9976 err = btrfs_insert_empty_item(trans, root, path, &key, 9977 datasize); 9978 if (err) { 9979 btrfs_free_path(path); 9980 goto out_unlock; 9981 } 9982 leaf = path->nodes[0]; 9983 ei = btrfs_item_ptr(leaf, path->slots[0], 9984 struct btrfs_file_extent_item); 9985 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9986 btrfs_set_file_extent_type(leaf, ei, 9987 BTRFS_FILE_EXTENT_INLINE); 9988 btrfs_set_file_extent_encryption(leaf, ei, 0); 9989 btrfs_set_file_extent_compression(leaf, ei, 0); 9990 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9991 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9992 9993 ptr = btrfs_file_extent_inline_start(ei); 9994 write_extent_buffer(leaf, symname, ptr, name_len); 9995 btrfs_mark_buffer_dirty(leaf); 9996 btrfs_free_path(path); 9997 9998 inode->i_op = &btrfs_symlink_inode_operations; 9999 inode_nohighmem(inode); 10000 inode_set_bytes(inode, name_len); 10001 btrfs_i_size_write(BTRFS_I(inode), name_len); 10002 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10003 /* 10004 * Last step, add directory indexes for our symlink inode. This is the 10005 * last step to avoid extra cleanup of these indexes if an error happens 10006 * elsewhere above. 10007 */ 10008 if (!err) 10009 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10010 BTRFS_I(inode), 0, index); 10011 if (err) 10012 goto out_unlock; 10013 10014 d_instantiate_new(dentry, inode); 10015 10016 out_unlock: 10017 btrfs_end_transaction(trans); 10018 if (err && inode) { 10019 inode_dec_link_count(inode); 10020 discard_new_inode(inode); 10021 } 10022 btrfs_btree_balance_dirty(fs_info); 10023 return err; 10024 } 10025 10026 static struct btrfs_trans_handle *insert_prealloc_file_extent( 10027 struct btrfs_trans_handle *trans_in, 10028 struct btrfs_inode *inode, 10029 struct btrfs_key *ins, 10030 u64 file_offset) 10031 { 10032 struct btrfs_file_extent_item stack_fi; 10033 struct btrfs_replace_extent_info extent_info; 10034 struct btrfs_trans_handle *trans = trans_in; 10035 struct btrfs_path *path; 10036 u64 start = ins->objectid; 10037 u64 len = ins->offset; 10038 int qgroup_released; 10039 int ret; 10040 10041 memset(&stack_fi, 0, sizeof(stack_fi)); 10042 10043 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 10044 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 10045 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 10046 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 10047 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 10048 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 10049 /* Encryption and other encoding is reserved and all 0 */ 10050 10051 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 10052 if (qgroup_released < 0) 10053 return ERR_PTR(qgroup_released); 10054 10055 if (trans) { 10056 ret = insert_reserved_file_extent(trans, inode, 10057 file_offset, &stack_fi, 10058 true, qgroup_released); 10059 if (ret) 10060 goto free_qgroup; 10061 return trans; 10062 } 10063 10064 extent_info.disk_offset = start; 10065 extent_info.disk_len = len; 10066 extent_info.data_offset = 0; 10067 extent_info.data_len = len; 10068 extent_info.file_offset = file_offset; 10069 extent_info.extent_buf = (char *)&stack_fi; 10070 extent_info.is_new_extent = true; 10071 extent_info.qgroup_reserved = qgroup_released; 10072 extent_info.insertions = 0; 10073 10074 path = btrfs_alloc_path(); 10075 if (!path) { 10076 ret = -ENOMEM; 10077 goto free_qgroup; 10078 } 10079 10080 ret = btrfs_replace_file_extents(inode, path, file_offset, 10081 file_offset + len - 1, &extent_info, 10082 &trans); 10083 btrfs_free_path(path); 10084 if (ret) 10085 goto free_qgroup; 10086 return trans; 10087 10088 free_qgroup: 10089 /* 10090 * We have released qgroup data range at the beginning of the function, 10091 * and normally qgroup_released bytes will be freed when committing 10092 * transaction. 10093 * But if we error out early, we have to free what we have released 10094 * or we leak qgroup data reservation. 10095 */ 10096 btrfs_qgroup_free_refroot(inode->root->fs_info, 10097 inode->root->root_key.objectid, qgroup_released, 10098 BTRFS_QGROUP_RSV_DATA); 10099 return ERR_PTR(ret); 10100 } 10101 10102 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10103 u64 start, u64 num_bytes, u64 min_size, 10104 loff_t actual_len, u64 *alloc_hint, 10105 struct btrfs_trans_handle *trans) 10106 { 10107 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10108 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10109 struct extent_map *em; 10110 struct btrfs_root *root = BTRFS_I(inode)->root; 10111 struct btrfs_key ins; 10112 u64 cur_offset = start; 10113 u64 clear_offset = start; 10114 u64 i_size; 10115 u64 cur_bytes; 10116 u64 last_alloc = (u64)-1; 10117 int ret = 0; 10118 bool own_trans = true; 10119 u64 end = start + num_bytes - 1; 10120 10121 if (trans) 10122 own_trans = false; 10123 while (num_bytes > 0) { 10124 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10125 cur_bytes = max(cur_bytes, min_size); 10126 /* 10127 * If we are severely fragmented we could end up with really 10128 * small allocations, so if the allocator is returning small 10129 * chunks lets make its job easier by only searching for those 10130 * sized chunks. 10131 */ 10132 cur_bytes = min(cur_bytes, last_alloc); 10133 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10134 min_size, 0, *alloc_hint, &ins, 1, 0); 10135 if (ret) 10136 break; 10137 10138 /* 10139 * We've reserved this space, and thus converted it from 10140 * ->bytes_may_use to ->bytes_reserved. Any error that happens 10141 * from here on out we will only need to clear our reservation 10142 * for the remaining unreserved area, so advance our 10143 * clear_offset by our extent size. 10144 */ 10145 clear_offset += ins.offset; 10146 10147 last_alloc = ins.offset; 10148 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 10149 &ins, cur_offset); 10150 /* 10151 * Now that we inserted the prealloc extent we can finally 10152 * decrement the number of reservations in the block group. 10153 * If we did it before, we could race with relocation and have 10154 * relocation miss the reserved extent, making it fail later. 10155 */ 10156 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10157 if (IS_ERR(trans)) { 10158 ret = PTR_ERR(trans); 10159 btrfs_free_reserved_extent(fs_info, ins.objectid, 10160 ins.offset, 0); 10161 break; 10162 } 10163 10164 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10165 cur_offset + ins.offset -1, 0); 10166 10167 em = alloc_extent_map(); 10168 if (!em) { 10169 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10170 &BTRFS_I(inode)->runtime_flags); 10171 goto next; 10172 } 10173 10174 em->start = cur_offset; 10175 em->orig_start = cur_offset; 10176 em->len = ins.offset; 10177 em->block_start = ins.objectid; 10178 em->block_len = ins.offset; 10179 em->orig_block_len = ins.offset; 10180 em->ram_bytes = ins.offset; 10181 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10182 em->generation = trans->transid; 10183 10184 while (1) { 10185 write_lock(&em_tree->lock); 10186 ret = add_extent_mapping(em_tree, em, 1); 10187 write_unlock(&em_tree->lock); 10188 if (ret != -EEXIST) 10189 break; 10190 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10191 cur_offset + ins.offset - 1, 10192 0); 10193 } 10194 free_extent_map(em); 10195 next: 10196 num_bytes -= ins.offset; 10197 cur_offset += ins.offset; 10198 *alloc_hint = ins.objectid + ins.offset; 10199 10200 inode_inc_iversion(inode); 10201 inode->i_ctime = current_time(inode); 10202 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10203 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10204 (actual_len > inode->i_size) && 10205 (cur_offset > inode->i_size)) { 10206 if (cur_offset > actual_len) 10207 i_size = actual_len; 10208 else 10209 i_size = cur_offset; 10210 i_size_write(inode, i_size); 10211 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10212 } 10213 10214 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10215 10216 if (ret) { 10217 btrfs_abort_transaction(trans, ret); 10218 if (own_trans) 10219 btrfs_end_transaction(trans); 10220 break; 10221 } 10222 10223 if (own_trans) { 10224 btrfs_end_transaction(trans); 10225 trans = NULL; 10226 } 10227 } 10228 if (clear_offset < end) 10229 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10230 end - clear_offset + 1); 10231 return ret; 10232 } 10233 10234 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10235 u64 start, u64 num_bytes, u64 min_size, 10236 loff_t actual_len, u64 *alloc_hint) 10237 { 10238 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10239 min_size, actual_len, alloc_hint, 10240 NULL); 10241 } 10242 10243 int btrfs_prealloc_file_range_trans(struct inode *inode, 10244 struct btrfs_trans_handle *trans, int mode, 10245 u64 start, u64 num_bytes, u64 min_size, 10246 loff_t actual_len, u64 *alloc_hint) 10247 { 10248 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10249 min_size, actual_len, alloc_hint, trans); 10250 } 10251 10252 static int btrfs_set_page_dirty(struct page *page) 10253 { 10254 return __set_page_dirty_nobuffers(page); 10255 } 10256 10257 static int btrfs_permission(struct user_namespace *mnt_userns, 10258 struct inode *inode, int mask) 10259 { 10260 struct btrfs_root *root = BTRFS_I(inode)->root; 10261 umode_t mode = inode->i_mode; 10262 10263 if (mask & MAY_WRITE && 10264 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10265 if (btrfs_root_readonly(root)) 10266 return -EROFS; 10267 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10268 return -EACCES; 10269 } 10270 return generic_permission(&init_user_ns, inode, mask); 10271 } 10272 10273 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10274 struct dentry *dentry, umode_t mode) 10275 { 10276 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10277 struct btrfs_trans_handle *trans; 10278 struct btrfs_root *root = BTRFS_I(dir)->root; 10279 struct inode *inode = NULL; 10280 u64 objectid; 10281 u64 index; 10282 int ret = 0; 10283 10284 /* 10285 * 5 units required for adding orphan entry 10286 */ 10287 trans = btrfs_start_transaction(root, 5); 10288 if (IS_ERR(trans)) 10289 return PTR_ERR(trans); 10290 10291 ret = btrfs_get_free_objectid(root, &objectid); 10292 if (ret) 10293 goto out; 10294 10295 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10296 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10297 if (IS_ERR(inode)) { 10298 ret = PTR_ERR(inode); 10299 inode = NULL; 10300 goto out; 10301 } 10302 10303 inode->i_fop = &btrfs_file_operations; 10304 inode->i_op = &btrfs_file_inode_operations; 10305 10306 inode->i_mapping->a_ops = &btrfs_aops; 10307 10308 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10309 if (ret) 10310 goto out; 10311 10312 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10313 if (ret) 10314 goto out; 10315 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10316 if (ret) 10317 goto out; 10318 10319 /* 10320 * We set number of links to 0 in btrfs_new_inode(), and here we set 10321 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10322 * through: 10323 * 10324 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10325 */ 10326 set_nlink(inode, 1); 10327 d_tmpfile(dentry, inode); 10328 unlock_new_inode(inode); 10329 mark_inode_dirty(inode); 10330 out: 10331 btrfs_end_transaction(trans); 10332 if (ret && inode) 10333 discard_new_inode(inode); 10334 btrfs_btree_balance_dirty(fs_info); 10335 return ret; 10336 } 10337 10338 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10339 { 10340 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10341 unsigned long index = start >> PAGE_SHIFT; 10342 unsigned long end_index = end >> PAGE_SHIFT; 10343 struct page *page; 10344 u32 len; 10345 10346 ASSERT(end + 1 - start <= U32_MAX); 10347 len = end + 1 - start; 10348 while (index <= end_index) { 10349 page = find_get_page(inode->vfs_inode.i_mapping, index); 10350 ASSERT(page); /* Pages should be in the extent_io_tree */ 10351 10352 btrfs_page_set_writeback(fs_info, page, start, len); 10353 put_page(page); 10354 index++; 10355 } 10356 } 10357 10358 #ifdef CONFIG_SWAP 10359 /* 10360 * Add an entry indicating a block group or device which is pinned by a 10361 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10362 * negative errno on failure. 10363 */ 10364 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10365 bool is_block_group) 10366 { 10367 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10368 struct btrfs_swapfile_pin *sp, *entry; 10369 struct rb_node **p; 10370 struct rb_node *parent = NULL; 10371 10372 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10373 if (!sp) 10374 return -ENOMEM; 10375 sp->ptr = ptr; 10376 sp->inode = inode; 10377 sp->is_block_group = is_block_group; 10378 sp->bg_extent_count = 1; 10379 10380 spin_lock(&fs_info->swapfile_pins_lock); 10381 p = &fs_info->swapfile_pins.rb_node; 10382 while (*p) { 10383 parent = *p; 10384 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10385 if (sp->ptr < entry->ptr || 10386 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10387 p = &(*p)->rb_left; 10388 } else if (sp->ptr > entry->ptr || 10389 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10390 p = &(*p)->rb_right; 10391 } else { 10392 if (is_block_group) 10393 entry->bg_extent_count++; 10394 spin_unlock(&fs_info->swapfile_pins_lock); 10395 kfree(sp); 10396 return 1; 10397 } 10398 } 10399 rb_link_node(&sp->node, parent, p); 10400 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10401 spin_unlock(&fs_info->swapfile_pins_lock); 10402 return 0; 10403 } 10404 10405 /* Free all of the entries pinned by this swapfile. */ 10406 static void btrfs_free_swapfile_pins(struct inode *inode) 10407 { 10408 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10409 struct btrfs_swapfile_pin *sp; 10410 struct rb_node *node, *next; 10411 10412 spin_lock(&fs_info->swapfile_pins_lock); 10413 node = rb_first(&fs_info->swapfile_pins); 10414 while (node) { 10415 next = rb_next(node); 10416 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10417 if (sp->inode == inode) { 10418 rb_erase(&sp->node, &fs_info->swapfile_pins); 10419 if (sp->is_block_group) { 10420 btrfs_dec_block_group_swap_extents(sp->ptr, 10421 sp->bg_extent_count); 10422 btrfs_put_block_group(sp->ptr); 10423 } 10424 kfree(sp); 10425 } 10426 node = next; 10427 } 10428 spin_unlock(&fs_info->swapfile_pins_lock); 10429 } 10430 10431 struct btrfs_swap_info { 10432 u64 start; 10433 u64 block_start; 10434 u64 block_len; 10435 u64 lowest_ppage; 10436 u64 highest_ppage; 10437 unsigned long nr_pages; 10438 int nr_extents; 10439 }; 10440 10441 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10442 struct btrfs_swap_info *bsi) 10443 { 10444 unsigned long nr_pages; 10445 u64 first_ppage, first_ppage_reported, next_ppage; 10446 int ret; 10447 10448 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10449 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10450 PAGE_SIZE) >> PAGE_SHIFT; 10451 10452 if (first_ppage >= next_ppage) 10453 return 0; 10454 nr_pages = next_ppage - first_ppage; 10455 10456 first_ppage_reported = first_ppage; 10457 if (bsi->start == 0) 10458 first_ppage_reported++; 10459 if (bsi->lowest_ppage > first_ppage_reported) 10460 bsi->lowest_ppage = first_ppage_reported; 10461 if (bsi->highest_ppage < (next_ppage - 1)) 10462 bsi->highest_ppage = next_ppage - 1; 10463 10464 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10465 if (ret < 0) 10466 return ret; 10467 bsi->nr_extents += ret; 10468 bsi->nr_pages += nr_pages; 10469 return 0; 10470 } 10471 10472 static void btrfs_swap_deactivate(struct file *file) 10473 { 10474 struct inode *inode = file_inode(file); 10475 10476 btrfs_free_swapfile_pins(inode); 10477 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10478 } 10479 10480 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10481 sector_t *span) 10482 { 10483 struct inode *inode = file_inode(file); 10484 struct btrfs_root *root = BTRFS_I(inode)->root; 10485 struct btrfs_fs_info *fs_info = root->fs_info; 10486 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10487 struct extent_state *cached_state = NULL; 10488 struct extent_map *em = NULL; 10489 struct btrfs_device *device = NULL; 10490 struct btrfs_swap_info bsi = { 10491 .lowest_ppage = (sector_t)-1ULL, 10492 }; 10493 int ret = 0; 10494 u64 isize; 10495 u64 start; 10496 10497 /* 10498 * If the swap file was just created, make sure delalloc is done. If the 10499 * file changes again after this, the user is doing something stupid and 10500 * we don't really care. 10501 */ 10502 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10503 if (ret) 10504 return ret; 10505 10506 /* 10507 * The inode is locked, so these flags won't change after we check them. 10508 */ 10509 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10510 btrfs_warn(fs_info, "swapfile must not be compressed"); 10511 return -EINVAL; 10512 } 10513 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10514 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10515 return -EINVAL; 10516 } 10517 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10518 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10519 return -EINVAL; 10520 } 10521 10522 /* 10523 * Balance or device remove/replace/resize can move stuff around from 10524 * under us. The exclop protection makes sure they aren't running/won't 10525 * run concurrently while we are mapping the swap extents, and 10526 * fs_info->swapfile_pins prevents them from running while the swap 10527 * file is active and moving the extents. Note that this also prevents 10528 * a concurrent device add which isn't actually necessary, but it's not 10529 * really worth the trouble to allow it. 10530 */ 10531 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10532 btrfs_warn(fs_info, 10533 "cannot activate swapfile while exclusive operation is running"); 10534 return -EBUSY; 10535 } 10536 10537 /* 10538 * Prevent snapshot creation while we are activating the swap file. 10539 * We do not want to race with snapshot creation. If snapshot creation 10540 * already started before we bumped nr_swapfiles from 0 to 1 and 10541 * completes before the first write into the swap file after it is 10542 * activated, than that write would fallback to COW. 10543 */ 10544 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10545 btrfs_exclop_finish(fs_info); 10546 btrfs_warn(fs_info, 10547 "cannot activate swapfile because snapshot creation is in progress"); 10548 return -EINVAL; 10549 } 10550 /* 10551 * Snapshots can create extents which require COW even if NODATACOW is 10552 * set. We use this counter to prevent snapshots. We must increment it 10553 * before walking the extents because we don't want a concurrent 10554 * snapshot to run after we've already checked the extents. 10555 */ 10556 atomic_inc(&root->nr_swapfiles); 10557 10558 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10559 10560 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10561 start = 0; 10562 while (start < isize) { 10563 u64 logical_block_start, physical_block_start; 10564 struct btrfs_block_group *bg; 10565 u64 len = isize - start; 10566 10567 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10568 if (IS_ERR(em)) { 10569 ret = PTR_ERR(em); 10570 goto out; 10571 } 10572 10573 if (em->block_start == EXTENT_MAP_HOLE) { 10574 btrfs_warn(fs_info, "swapfile must not have holes"); 10575 ret = -EINVAL; 10576 goto out; 10577 } 10578 if (em->block_start == EXTENT_MAP_INLINE) { 10579 /* 10580 * It's unlikely we'll ever actually find ourselves 10581 * here, as a file small enough to fit inline won't be 10582 * big enough to store more than the swap header, but in 10583 * case something changes in the future, let's catch it 10584 * here rather than later. 10585 */ 10586 btrfs_warn(fs_info, "swapfile must not be inline"); 10587 ret = -EINVAL; 10588 goto out; 10589 } 10590 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10591 btrfs_warn(fs_info, "swapfile must not be compressed"); 10592 ret = -EINVAL; 10593 goto out; 10594 } 10595 10596 logical_block_start = em->block_start + (start - em->start); 10597 len = min(len, em->len - (start - em->start)); 10598 free_extent_map(em); 10599 em = NULL; 10600 10601 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10602 if (ret < 0) { 10603 goto out; 10604 } else if (ret) { 10605 ret = 0; 10606 } else { 10607 btrfs_warn(fs_info, 10608 "swapfile must not be copy-on-write"); 10609 ret = -EINVAL; 10610 goto out; 10611 } 10612 10613 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10614 if (IS_ERR(em)) { 10615 ret = PTR_ERR(em); 10616 goto out; 10617 } 10618 10619 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10620 btrfs_warn(fs_info, 10621 "swapfile must have single data profile"); 10622 ret = -EINVAL; 10623 goto out; 10624 } 10625 10626 if (device == NULL) { 10627 device = em->map_lookup->stripes[0].dev; 10628 ret = btrfs_add_swapfile_pin(inode, device, false); 10629 if (ret == 1) 10630 ret = 0; 10631 else if (ret) 10632 goto out; 10633 } else if (device != em->map_lookup->stripes[0].dev) { 10634 btrfs_warn(fs_info, "swapfile must be on one device"); 10635 ret = -EINVAL; 10636 goto out; 10637 } 10638 10639 physical_block_start = (em->map_lookup->stripes[0].physical + 10640 (logical_block_start - em->start)); 10641 len = min(len, em->len - (logical_block_start - em->start)); 10642 free_extent_map(em); 10643 em = NULL; 10644 10645 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10646 if (!bg) { 10647 btrfs_warn(fs_info, 10648 "could not find block group containing swapfile"); 10649 ret = -EINVAL; 10650 goto out; 10651 } 10652 10653 if (!btrfs_inc_block_group_swap_extents(bg)) { 10654 btrfs_warn(fs_info, 10655 "block group for swapfile at %llu is read-only%s", 10656 bg->start, 10657 atomic_read(&fs_info->scrubs_running) ? 10658 " (scrub running)" : ""); 10659 btrfs_put_block_group(bg); 10660 ret = -EINVAL; 10661 goto out; 10662 } 10663 10664 ret = btrfs_add_swapfile_pin(inode, bg, true); 10665 if (ret) { 10666 btrfs_put_block_group(bg); 10667 if (ret == 1) 10668 ret = 0; 10669 else 10670 goto out; 10671 } 10672 10673 if (bsi.block_len && 10674 bsi.block_start + bsi.block_len == physical_block_start) { 10675 bsi.block_len += len; 10676 } else { 10677 if (bsi.block_len) { 10678 ret = btrfs_add_swap_extent(sis, &bsi); 10679 if (ret) 10680 goto out; 10681 } 10682 bsi.start = start; 10683 bsi.block_start = physical_block_start; 10684 bsi.block_len = len; 10685 } 10686 10687 start += len; 10688 } 10689 10690 if (bsi.block_len) 10691 ret = btrfs_add_swap_extent(sis, &bsi); 10692 10693 out: 10694 if (!IS_ERR_OR_NULL(em)) 10695 free_extent_map(em); 10696 10697 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10698 10699 if (ret) 10700 btrfs_swap_deactivate(file); 10701 10702 btrfs_drew_write_unlock(&root->snapshot_lock); 10703 10704 btrfs_exclop_finish(fs_info); 10705 10706 if (ret) 10707 return ret; 10708 10709 if (device) 10710 sis->bdev = device->bdev; 10711 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10712 sis->max = bsi.nr_pages; 10713 sis->pages = bsi.nr_pages - 1; 10714 sis->highest_bit = bsi.nr_pages - 1; 10715 return bsi.nr_extents; 10716 } 10717 #else 10718 static void btrfs_swap_deactivate(struct file *file) 10719 { 10720 } 10721 10722 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10723 sector_t *span) 10724 { 10725 return -EOPNOTSUPP; 10726 } 10727 #endif 10728 10729 /* 10730 * Update the number of bytes used in the VFS' inode. When we replace extents in 10731 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10732 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10733 * always get a correct value. 10734 */ 10735 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10736 const u64 add_bytes, 10737 const u64 del_bytes) 10738 { 10739 if (add_bytes == del_bytes) 10740 return; 10741 10742 spin_lock(&inode->lock); 10743 if (del_bytes > 0) 10744 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10745 if (add_bytes > 0) 10746 inode_add_bytes(&inode->vfs_inode, add_bytes); 10747 spin_unlock(&inode->lock); 10748 } 10749 10750 static const struct inode_operations btrfs_dir_inode_operations = { 10751 .getattr = btrfs_getattr, 10752 .lookup = btrfs_lookup, 10753 .create = btrfs_create, 10754 .unlink = btrfs_unlink, 10755 .link = btrfs_link, 10756 .mkdir = btrfs_mkdir, 10757 .rmdir = btrfs_rmdir, 10758 .rename = btrfs_rename2, 10759 .symlink = btrfs_symlink, 10760 .setattr = btrfs_setattr, 10761 .mknod = btrfs_mknod, 10762 .listxattr = btrfs_listxattr, 10763 .permission = btrfs_permission, 10764 .get_acl = btrfs_get_acl, 10765 .set_acl = btrfs_set_acl, 10766 .update_time = btrfs_update_time, 10767 .tmpfile = btrfs_tmpfile, 10768 .fileattr_get = btrfs_fileattr_get, 10769 .fileattr_set = btrfs_fileattr_set, 10770 }; 10771 10772 static const struct file_operations btrfs_dir_file_operations = { 10773 .llseek = generic_file_llseek, 10774 .read = generic_read_dir, 10775 .iterate_shared = btrfs_real_readdir, 10776 .open = btrfs_opendir, 10777 .unlocked_ioctl = btrfs_ioctl, 10778 #ifdef CONFIG_COMPAT 10779 .compat_ioctl = btrfs_compat_ioctl, 10780 #endif 10781 .release = btrfs_release_file, 10782 .fsync = btrfs_sync_file, 10783 }; 10784 10785 /* 10786 * btrfs doesn't support the bmap operation because swapfiles 10787 * use bmap to make a mapping of extents in the file. They assume 10788 * these extents won't change over the life of the file and they 10789 * use the bmap result to do IO directly to the drive. 10790 * 10791 * the btrfs bmap call would return logical addresses that aren't 10792 * suitable for IO and they also will change frequently as COW 10793 * operations happen. So, swapfile + btrfs == corruption. 10794 * 10795 * For now we're avoiding this by dropping bmap. 10796 */ 10797 static const struct address_space_operations btrfs_aops = { 10798 .readpage = btrfs_readpage, 10799 .writepage = btrfs_writepage, 10800 .writepages = btrfs_writepages, 10801 .readahead = btrfs_readahead, 10802 .direct_IO = noop_direct_IO, 10803 .invalidatepage = btrfs_invalidatepage, 10804 .releasepage = btrfs_releasepage, 10805 #ifdef CONFIG_MIGRATION 10806 .migratepage = btrfs_migratepage, 10807 #endif 10808 .set_page_dirty = btrfs_set_page_dirty, 10809 .error_remove_page = generic_error_remove_page, 10810 .swap_activate = btrfs_swap_activate, 10811 .swap_deactivate = btrfs_swap_deactivate, 10812 }; 10813 10814 static const struct inode_operations btrfs_file_inode_operations = { 10815 .getattr = btrfs_getattr, 10816 .setattr = btrfs_setattr, 10817 .listxattr = btrfs_listxattr, 10818 .permission = btrfs_permission, 10819 .fiemap = btrfs_fiemap, 10820 .get_acl = btrfs_get_acl, 10821 .set_acl = btrfs_set_acl, 10822 .update_time = btrfs_update_time, 10823 .fileattr_get = btrfs_fileattr_get, 10824 .fileattr_set = btrfs_fileattr_set, 10825 }; 10826 static const struct inode_operations btrfs_special_inode_operations = { 10827 .getattr = btrfs_getattr, 10828 .setattr = btrfs_setattr, 10829 .permission = btrfs_permission, 10830 .listxattr = btrfs_listxattr, 10831 .get_acl = btrfs_get_acl, 10832 .set_acl = btrfs_set_acl, 10833 .update_time = btrfs_update_time, 10834 }; 10835 static const struct inode_operations btrfs_symlink_inode_operations = { 10836 .get_link = page_get_link, 10837 .getattr = btrfs_getattr, 10838 .setattr = btrfs_setattr, 10839 .permission = btrfs_permission, 10840 .listxattr = btrfs_listxattr, 10841 .update_time = btrfs_update_time, 10842 }; 10843 10844 const struct dentry_operations btrfs_dentry_operations = { 10845 .d_delete = btrfs_dentry_delete, 10846 }; 10847