xref: /openbmc/linux/fs/btrfs/inode.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
37 #include "xattr.h"
38 #include "tree-log.h"
39 #include "volumes.h"
40 #include "compression.h"
41 #include "locking.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
44 #include "backref.h"
45 #include "props.h"
46 #include "qgroup.h"
47 #include "dedupe.h"
48 
49 struct btrfs_iget_args {
50 	struct btrfs_key *location;
51 	struct btrfs_root *root;
52 };
53 
54 struct btrfs_dio_data {
55 	u64 reserve;
56 	u64 unsubmitted_oe_range_start;
57 	u64 unsubmitted_oe_range_end;
58 	int overwrite;
59 };
60 
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static const struct extent_io_ops btrfs_extent_io_ops;
69 
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 struct kmem_cache *btrfs_free_space_cachep;
74 
75 #define S_SHIFT 12
76 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
78 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
79 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
80 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
81 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
82 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
83 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
84 };
85 
86 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
87 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
88 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
89 static noinline int cow_file_range(struct inode *inode,
90 				   struct page *locked_page,
91 				   u64 start, u64 end, u64 delalloc_end,
92 				   int *page_started, unsigned long *nr_written,
93 				   int unlock, struct btrfs_dedupe_hash *hash);
94 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
95 				       u64 orig_start, u64 block_start,
96 				       u64 block_len, u64 orig_block_len,
97 				       u64 ram_bytes, int compress_type,
98 				       int type);
99 
100 static void __endio_write_update_ordered(struct inode *inode,
101 					 const u64 offset, const u64 bytes,
102 					 const bool uptodate);
103 
104 /*
105  * Cleanup all submitted ordered extents in specified range to handle errors
106  * from the fill_dellaloc() callback.
107  *
108  * NOTE: caller must ensure that when an error happens, it can not call
109  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
110  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
111  * to be released, which we want to happen only when finishing the ordered
112  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
113  * fill_delalloc() callback already does proper cleanup for the first page of
114  * the range, that is, it invokes the callback writepage_end_io_hook() for the
115  * range of the first page.
116  */
117 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
118 						 const u64 offset,
119 						 const u64 bytes)
120 {
121 	unsigned long index = offset >> PAGE_SHIFT;
122 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
123 	struct page *page;
124 
125 	while (index <= end_index) {
126 		page = find_get_page(inode->i_mapping, index);
127 		index++;
128 		if (!page)
129 			continue;
130 		ClearPagePrivate2(page);
131 		put_page(page);
132 	}
133 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
134 					    bytes - PAGE_SIZE, false);
135 }
136 
137 static int btrfs_dirty_inode(struct inode *inode);
138 
139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
140 void btrfs_test_inode_set_ops(struct inode *inode)
141 {
142 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
143 }
144 #endif
145 
146 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
147 				     struct inode *inode,  struct inode *dir,
148 				     const struct qstr *qstr)
149 {
150 	int err;
151 
152 	err = btrfs_init_acl(trans, inode, dir);
153 	if (!err)
154 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
155 	return err;
156 }
157 
158 /*
159  * this does all the hard work for inserting an inline extent into
160  * the btree.  The caller should have done a btrfs_drop_extents so that
161  * no overlapping inline items exist in the btree
162  */
163 static int insert_inline_extent(struct btrfs_trans_handle *trans,
164 				struct btrfs_path *path, int extent_inserted,
165 				struct btrfs_root *root, struct inode *inode,
166 				u64 start, size_t size, size_t compressed_size,
167 				int compress_type,
168 				struct page **compressed_pages)
169 {
170 	struct extent_buffer *leaf;
171 	struct page *page = NULL;
172 	char *kaddr;
173 	unsigned long ptr;
174 	struct btrfs_file_extent_item *ei;
175 	int ret;
176 	size_t cur_size = size;
177 	unsigned long offset;
178 
179 	if (compressed_size && compressed_pages)
180 		cur_size = compressed_size;
181 
182 	inode_add_bytes(inode, size);
183 
184 	if (!extent_inserted) {
185 		struct btrfs_key key;
186 		size_t datasize;
187 
188 		key.objectid = btrfs_ino(BTRFS_I(inode));
189 		key.offset = start;
190 		key.type = BTRFS_EXTENT_DATA_KEY;
191 
192 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 		path->leave_spinning = 1;
194 		ret = btrfs_insert_empty_item(trans, root, path, &key,
195 					      datasize);
196 		if (ret)
197 			goto fail;
198 	}
199 	leaf = path->nodes[0];
200 	ei = btrfs_item_ptr(leaf, path->slots[0],
201 			    struct btrfs_file_extent_item);
202 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 	btrfs_set_file_extent_encryption(leaf, ei, 0);
205 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 	ptr = btrfs_file_extent_inline_start(ei);
208 
209 	if (compress_type != BTRFS_COMPRESS_NONE) {
210 		struct page *cpage;
211 		int i = 0;
212 		while (compressed_size > 0) {
213 			cpage = compressed_pages[i];
214 			cur_size = min_t(unsigned long, compressed_size,
215 				       PAGE_SIZE);
216 
217 			kaddr = kmap_atomic(cpage);
218 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 			kunmap_atomic(kaddr);
220 
221 			i++;
222 			ptr += cur_size;
223 			compressed_size -= cur_size;
224 		}
225 		btrfs_set_file_extent_compression(leaf, ei,
226 						  compress_type);
227 	} else {
228 		page = find_get_page(inode->i_mapping,
229 				     start >> PAGE_SHIFT);
230 		btrfs_set_file_extent_compression(leaf, ei, 0);
231 		kaddr = kmap_atomic(page);
232 		offset = start & (PAGE_SIZE - 1);
233 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 		kunmap_atomic(kaddr);
235 		put_page(page);
236 	}
237 	btrfs_mark_buffer_dirty(leaf);
238 	btrfs_release_path(path);
239 
240 	/*
241 	 * we're an inline extent, so nobody can
242 	 * extend the file past i_size without locking
243 	 * a page we already have locked.
244 	 *
245 	 * We must do any isize and inode updates
246 	 * before we unlock the pages.  Otherwise we
247 	 * could end up racing with unlink.
248 	 */
249 	BTRFS_I(inode)->disk_i_size = inode->i_size;
250 	ret = btrfs_update_inode(trans, root, inode);
251 
252 fail:
253 	return ret;
254 }
255 
256 
257 /*
258  * conditionally insert an inline extent into the file.  This
259  * does the checks required to make sure the data is small enough
260  * to fit as an inline extent.
261  */
262 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
263 					  u64 end, size_t compressed_size,
264 					  int compress_type,
265 					  struct page **compressed_pages)
266 {
267 	struct btrfs_root *root = BTRFS_I(inode)->root;
268 	struct btrfs_fs_info *fs_info = root->fs_info;
269 	struct btrfs_trans_handle *trans;
270 	u64 isize = i_size_read(inode);
271 	u64 actual_end = min(end + 1, isize);
272 	u64 inline_len = actual_end - start;
273 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
274 	u64 data_len = inline_len;
275 	int ret;
276 	struct btrfs_path *path;
277 	int extent_inserted = 0;
278 	u32 extent_item_size;
279 
280 	if (compressed_size)
281 		data_len = compressed_size;
282 
283 	if (start > 0 ||
284 	    actual_end > fs_info->sectorsize ||
285 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
286 	    (!compressed_size &&
287 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
288 	    end + 1 < isize ||
289 	    data_len > fs_info->max_inline) {
290 		return 1;
291 	}
292 
293 	path = btrfs_alloc_path();
294 	if (!path)
295 		return -ENOMEM;
296 
297 	trans = btrfs_join_transaction(root);
298 	if (IS_ERR(trans)) {
299 		btrfs_free_path(path);
300 		return PTR_ERR(trans);
301 	}
302 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
303 
304 	if (compressed_size && compressed_pages)
305 		extent_item_size = btrfs_file_extent_calc_inline_size(
306 		   compressed_size);
307 	else
308 		extent_item_size = btrfs_file_extent_calc_inline_size(
309 		    inline_len);
310 
311 	ret = __btrfs_drop_extents(trans, root, inode, path,
312 				   start, aligned_end, NULL,
313 				   1, 1, extent_item_size, &extent_inserted);
314 	if (ret) {
315 		btrfs_abort_transaction(trans, ret);
316 		goto out;
317 	}
318 
319 	if (isize > actual_end)
320 		inline_len = min_t(u64, isize, actual_end);
321 	ret = insert_inline_extent(trans, path, extent_inserted,
322 				   root, inode, start,
323 				   inline_len, compressed_size,
324 				   compress_type, compressed_pages);
325 	if (ret && ret != -ENOSPC) {
326 		btrfs_abort_transaction(trans, ret);
327 		goto out;
328 	} else if (ret == -ENOSPC) {
329 		ret = 1;
330 		goto out;
331 	}
332 
333 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
334 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
335 out:
336 	/*
337 	 * Don't forget to free the reserved space, as for inlined extent
338 	 * it won't count as data extent, free them directly here.
339 	 * And at reserve time, it's always aligned to page size, so
340 	 * just free one page here.
341 	 */
342 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
343 	btrfs_free_path(path);
344 	btrfs_end_transaction(trans);
345 	return ret;
346 }
347 
348 struct async_extent {
349 	u64 start;
350 	u64 ram_size;
351 	u64 compressed_size;
352 	struct page **pages;
353 	unsigned long nr_pages;
354 	int compress_type;
355 	struct list_head list;
356 };
357 
358 struct async_cow {
359 	struct inode *inode;
360 	struct btrfs_root *root;
361 	struct page *locked_page;
362 	u64 start;
363 	u64 end;
364 	unsigned int write_flags;
365 	struct list_head extents;
366 	struct btrfs_work work;
367 };
368 
369 static noinline int add_async_extent(struct async_cow *cow,
370 				     u64 start, u64 ram_size,
371 				     u64 compressed_size,
372 				     struct page **pages,
373 				     unsigned long nr_pages,
374 				     int compress_type)
375 {
376 	struct async_extent *async_extent;
377 
378 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
379 	BUG_ON(!async_extent); /* -ENOMEM */
380 	async_extent->start = start;
381 	async_extent->ram_size = ram_size;
382 	async_extent->compressed_size = compressed_size;
383 	async_extent->pages = pages;
384 	async_extent->nr_pages = nr_pages;
385 	async_extent->compress_type = compress_type;
386 	list_add_tail(&async_extent->list, &cow->extents);
387 	return 0;
388 }
389 
390 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
391 {
392 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
393 
394 	/* force compress */
395 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
396 		return 1;
397 	/* defrag ioctl */
398 	if (BTRFS_I(inode)->defrag_compress)
399 		return 1;
400 	/* bad compression ratios */
401 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
402 		return 0;
403 	if (btrfs_test_opt(fs_info, COMPRESS) ||
404 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
405 	    BTRFS_I(inode)->prop_compress)
406 		return btrfs_compress_heuristic(inode, start, end);
407 	return 0;
408 }
409 
410 static inline void inode_should_defrag(struct btrfs_inode *inode,
411 		u64 start, u64 end, u64 num_bytes, u64 small_write)
412 {
413 	/* If this is a small write inside eof, kick off a defrag */
414 	if (num_bytes < small_write &&
415 	    (start > 0 || end + 1 < inode->disk_i_size))
416 		btrfs_add_inode_defrag(NULL, inode);
417 }
418 
419 /*
420  * we create compressed extents in two phases.  The first
421  * phase compresses a range of pages that have already been
422  * locked (both pages and state bits are locked).
423  *
424  * This is done inside an ordered work queue, and the compression
425  * is spread across many cpus.  The actual IO submission is step
426  * two, and the ordered work queue takes care of making sure that
427  * happens in the same order things were put onto the queue by
428  * writepages and friends.
429  *
430  * If this code finds it can't get good compression, it puts an
431  * entry onto the work queue to write the uncompressed bytes.  This
432  * makes sure that both compressed inodes and uncompressed inodes
433  * are written in the same order that the flusher thread sent them
434  * down.
435  */
436 static noinline void compress_file_range(struct inode *inode,
437 					struct page *locked_page,
438 					u64 start, u64 end,
439 					struct async_cow *async_cow,
440 					int *num_added)
441 {
442 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
443 	u64 blocksize = fs_info->sectorsize;
444 	u64 actual_end;
445 	u64 isize = i_size_read(inode);
446 	int ret = 0;
447 	struct page **pages = NULL;
448 	unsigned long nr_pages;
449 	unsigned long total_compressed = 0;
450 	unsigned long total_in = 0;
451 	int i;
452 	int will_compress;
453 	int compress_type = fs_info->compress_type;
454 	int redirty = 0;
455 
456 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
457 			SZ_16K);
458 
459 	actual_end = min_t(u64, isize, end + 1);
460 again:
461 	will_compress = 0;
462 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
463 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
464 	nr_pages = min_t(unsigned long, nr_pages,
465 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
466 
467 	/*
468 	 * we don't want to send crud past the end of i_size through
469 	 * compression, that's just a waste of CPU time.  So, if the
470 	 * end of the file is before the start of our current
471 	 * requested range of bytes, we bail out to the uncompressed
472 	 * cleanup code that can deal with all of this.
473 	 *
474 	 * It isn't really the fastest way to fix things, but this is a
475 	 * very uncommon corner.
476 	 */
477 	if (actual_end <= start)
478 		goto cleanup_and_bail_uncompressed;
479 
480 	total_compressed = actual_end - start;
481 
482 	/*
483 	 * skip compression for a small file range(<=blocksize) that
484 	 * isn't an inline extent, since it doesn't save disk space at all.
485 	 */
486 	if (total_compressed <= blocksize &&
487 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
488 		goto cleanup_and_bail_uncompressed;
489 
490 	total_compressed = min_t(unsigned long, total_compressed,
491 			BTRFS_MAX_UNCOMPRESSED);
492 	total_in = 0;
493 	ret = 0;
494 
495 	/*
496 	 * we do compression for mount -o compress and when the
497 	 * inode has not been flagged as nocompress.  This flag can
498 	 * change at any time if we discover bad compression ratios.
499 	 */
500 	if (inode_need_compress(inode, start, end)) {
501 		WARN_ON(pages);
502 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
503 		if (!pages) {
504 			/* just bail out to the uncompressed code */
505 			nr_pages = 0;
506 			goto cont;
507 		}
508 
509 		if (BTRFS_I(inode)->defrag_compress)
510 			compress_type = BTRFS_I(inode)->defrag_compress;
511 		else if (BTRFS_I(inode)->prop_compress)
512 			compress_type = BTRFS_I(inode)->prop_compress;
513 
514 		/*
515 		 * we need to call clear_page_dirty_for_io on each
516 		 * page in the range.  Otherwise applications with the file
517 		 * mmap'd can wander in and change the page contents while
518 		 * we are compressing them.
519 		 *
520 		 * If the compression fails for any reason, we set the pages
521 		 * dirty again later on.
522 		 *
523 		 * Note that the remaining part is redirtied, the start pointer
524 		 * has moved, the end is the original one.
525 		 */
526 		if (!redirty) {
527 			extent_range_clear_dirty_for_io(inode, start, end);
528 			redirty = 1;
529 		}
530 
531 		/* Compression level is applied here and only here */
532 		ret = btrfs_compress_pages(
533 			compress_type | (fs_info->compress_level << 4),
534 					   inode->i_mapping, start,
535 					   pages,
536 					   &nr_pages,
537 					   &total_in,
538 					   &total_compressed);
539 
540 		if (!ret) {
541 			unsigned long offset = total_compressed &
542 				(PAGE_SIZE - 1);
543 			struct page *page = pages[nr_pages - 1];
544 			char *kaddr;
545 
546 			/* zero the tail end of the last page, we might be
547 			 * sending it down to disk
548 			 */
549 			if (offset) {
550 				kaddr = kmap_atomic(page);
551 				memset(kaddr + offset, 0,
552 				       PAGE_SIZE - offset);
553 				kunmap_atomic(kaddr);
554 			}
555 			will_compress = 1;
556 		}
557 	}
558 cont:
559 	if (start == 0) {
560 		/* lets try to make an inline extent */
561 		if (ret || total_in < actual_end) {
562 			/* we didn't compress the entire range, try
563 			 * to make an uncompressed inline extent.
564 			 */
565 			ret = cow_file_range_inline(inode, start, end, 0,
566 						    BTRFS_COMPRESS_NONE, NULL);
567 		} else {
568 			/* try making a compressed inline extent */
569 			ret = cow_file_range_inline(inode, start, end,
570 						    total_compressed,
571 						    compress_type, pages);
572 		}
573 		if (ret <= 0) {
574 			unsigned long clear_flags = EXTENT_DELALLOC |
575 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
576 				EXTENT_DO_ACCOUNTING;
577 			unsigned long page_error_op;
578 
579 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
580 
581 			/*
582 			 * inline extent creation worked or returned error,
583 			 * we don't need to create any more async work items.
584 			 * Unlock and free up our temp pages.
585 			 *
586 			 * We use DO_ACCOUNTING here because we need the
587 			 * delalloc_release_metadata to be done _after_ we drop
588 			 * our outstanding extent for clearing delalloc for this
589 			 * range.
590 			 */
591 			extent_clear_unlock_delalloc(inode, start, end, end,
592 						     NULL, clear_flags,
593 						     PAGE_UNLOCK |
594 						     PAGE_CLEAR_DIRTY |
595 						     PAGE_SET_WRITEBACK |
596 						     page_error_op |
597 						     PAGE_END_WRITEBACK);
598 			goto free_pages_out;
599 		}
600 	}
601 
602 	if (will_compress) {
603 		/*
604 		 * we aren't doing an inline extent round the compressed size
605 		 * up to a block size boundary so the allocator does sane
606 		 * things
607 		 */
608 		total_compressed = ALIGN(total_compressed, blocksize);
609 
610 		/*
611 		 * one last check to make sure the compression is really a
612 		 * win, compare the page count read with the blocks on disk,
613 		 * compression must free at least one sector size
614 		 */
615 		total_in = ALIGN(total_in, PAGE_SIZE);
616 		if (total_compressed + blocksize <= total_in) {
617 			*num_added += 1;
618 
619 			/*
620 			 * The async work queues will take care of doing actual
621 			 * allocation on disk for these compressed pages, and
622 			 * will submit them to the elevator.
623 			 */
624 			add_async_extent(async_cow, start, total_in,
625 					total_compressed, pages, nr_pages,
626 					compress_type);
627 
628 			if (start + total_in < end) {
629 				start += total_in;
630 				pages = NULL;
631 				cond_resched();
632 				goto again;
633 			}
634 			return;
635 		}
636 	}
637 	if (pages) {
638 		/*
639 		 * the compression code ran but failed to make things smaller,
640 		 * free any pages it allocated and our page pointer array
641 		 */
642 		for (i = 0; i < nr_pages; i++) {
643 			WARN_ON(pages[i]->mapping);
644 			put_page(pages[i]);
645 		}
646 		kfree(pages);
647 		pages = NULL;
648 		total_compressed = 0;
649 		nr_pages = 0;
650 
651 		/* flag the file so we don't compress in the future */
652 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
653 		    !(BTRFS_I(inode)->prop_compress)) {
654 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
655 		}
656 	}
657 cleanup_and_bail_uncompressed:
658 	/*
659 	 * No compression, but we still need to write the pages in the file
660 	 * we've been given so far.  redirty the locked page if it corresponds
661 	 * to our extent and set things up for the async work queue to run
662 	 * cow_file_range to do the normal delalloc dance.
663 	 */
664 	if (page_offset(locked_page) >= start &&
665 	    page_offset(locked_page) <= end)
666 		__set_page_dirty_nobuffers(locked_page);
667 		/* unlocked later on in the async handlers */
668 
669 	if (redirty)
670 		extent_range_redirty_for_io(inode, start, end);
671 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 			 BTRFS_COMPRESS_NONE);
673 	*num_added += 1;
674 
675 	return;
676 
677 free_pages_out:
678 	for (i = 0; i < nr_pages; i++) {
679 		WARN_ON(pages[i]->mapping);
680 		put_page(pages[i]);
681 	}
682 	kfree(pages);
683 }
684 
685 static void free_async_extent_pages(struct async_extent *async_extent)
686 {
687 	int i;
688 
689 	if (!async_extent->pages)
690 		return;
691 
692 	for (i = 0; i < async_extent->nr_pages; i++) {
693 		WARN_ON(async_extent->pages[i]->mapping);
694 		put_page(async_extent->pages[i]);
695 	}
696 	kfree(async_extent->pages);
697 	async_extent->nr_pages = 0;
698 	async_extent->pages = NULL;
699 }
700 
701 /*
702  * phase two of compressed writeback.  This is the ordered portion
703  * of the code, which only gets called in the order the work was
704  * queued.  We walk all the async extents created by compress_file_range
705  * and send them down to the disk.
706  */
707 static noinline void submit_compressed_extents(struct inode *inode,
708 					      struct async_cow *async_cow)
709 {
710 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
711 	struct async_extent *async_extent;
712 	u64 alloc_hint = 0;
713 	struct btrfs_key ins;
714 	struct extent_map *em;
715 	struct btrfs_root *root = BTRFS_I(inode)->root;
716 	struct extent_io_tree *io_tree;
717 	int ret = 0;
718 
719 again:
720 	while (!list_empty(&async_cow->extents)) {
721 		async_extent = list_entry(async_cow->extents.next,
722 					  struct async_extent, list);
723 		list_del(&async_extent->list);
724 
725 		io_tree = &BTRFS_I(inode)->io_tree;
726 
727 retry:
728 		/* did the compression code fall back to uncompressed IO? */
729 		if (!async_extent->pages) {
730 			int page_started = 0;
731 			unsigned long nr_written = 0;
732 
733 			lock_extent(io_tree, async_extent->start,
734 					 async_extent->start +
735 					 async_extent->ram_size - 1);
736 
737 			/* allocate blocks */
738 			ret = cow_file_range(inode, async_cow->locked_page,
739 					     async_extent->start,
740 					     async_extent->start +
741 					     async_extent->ram_size - 1,
742 					     async_extent->start +
743 					     async_extent->ram_size - 1,
744 					     &page_started, &nr_written, 0,
745 					     NULL);
746 
747 			/* JDM XXX */
748 
749 			/*
750 			 * if page_started, cow_file_range inserted an
751 			 * inline extent and took care of all the unlocking
752 			 * and IO for us.  Otherwise, we need to submit
753 			 * all those pages down to the drive.
754 			 */
755 			if (!page_started && !ret)
756 				extent_write_locked_range(inode,
757 						  async_extent->start,
758 						  async_extent->start +
759 						  async_extent->ram_size - 1,
760 						  WB_SYNC_ALL);
761 			else if (ret)
762 				unlock_page(async_cow->locked_page);
763 			kfree(async_extent);
764 			cond_resched();
765 			continue;
766 		}
767 
768 		lock_extent(io_tree, async_extent->start,
769 			    async_extent->start + async_extent->ram_size - 1);
770 
771 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
772 					   async_extent->compressed_size,
773 					   async_extent->compressed_size,
774 					   0, alloc_hint, &ins, 1, 1);
775 		if (ret) {
776 			free_async_extent_pages(async_extent);
777 
778 			if (ret == -ENOSPC) {
779 				unlock_extent(io_tree, async_extent->start,
780 					      async_extent->start +
781 					      async_extent->ram_size - 1);
782 
783 				/*
784 				 * we need to redirty the pages if we decide to
785 				 * fallback to uncompressed IO, otherwise we
786 				 * will not submit these pages down to lower
787 				 * layers.
788 				 */
789 				extent_range_redirty_for_io(inode,
790 						async_extent->start,
791 						async_extent->start +
792 						async_extent->ram_size - 1);
793 
794 				goto retry;
795 			}
796 			goto out_free;
797 		}
798 		/*
799 		 * here we're doing allocation and writeback of the
800 		 * compressed pages
801 		 */
802 		em = create_io_em(inode, async_extent->start,
803 				  async_extent->ram_size, /* len */
804 				  async_extent->start, /* orig_start */
805 				  ins.objectid, /* block_start */
806 				  ins.offset, /* block_len */
807 				  ins.offset, /* orig_block_len */
808 				  async_extent->ram_size, /* ram_bytes */
809 				  async_extent->compress_type,
810 				  BTRFS_ORDERED_COMPRESSED);
811 		if (IS_ERR(em))
812 			/* ret value is not necessary due to void function */
813 			goto out_free_reserve;
814 		free_extent_map(em);
815 
816 		ret = btrfs_add_ordered_extent_compress(inode,
817 						async_extent->start,
818 						ins.objectid,
819 						async_extent->ram_size,
820 						ins.offset,
821 						BTRFS_ORDERED_COMPRESSED,
822 						async_extent->compress_type);
823 		if (ret) {
824 			btrfs_drop_extent_cache(BTRFS_I(inode),
825 						async_extent->start,
826 						async_extent->start +
827 						async_extent->ram_size - 1, 0);
828 			goto out_free_reserve;
829 		}
830 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
831 
832 		/*
833 		 * clear dirty, set writeback and unlock the pages.
834 		 */
835 		extent_clear_unlock_delalloc(inode, async_extent->start,
836 				async_extent->start +
837 				async_extent->ram_size - 1,
838 				async_extent->start +
839 				async_extent->ram_size - 1,
840 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
842 				PAGE_SET_WRITEBACK);
843 		if (btrfs_submit_compressed_write(inode,
844 				    async_extent->start,
845 				    async_extent->ram_size,
846 				    ins.objectid,
847 				    ins.offset, async_extent->pages,
848 				    async_extent->nr_pages,
849 				    async_cow->write_flags)) {
850 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 			struct page *p = async_extent->pages[0];
852 			const u64 start = async_extent->start;
853 			const u64 end = start + async_extent->ram_size - 1;
854 
855 			p->mapping = inode->i_mapping;
856 			tree->ops->writepage_end_io_hook(p, start, end,
857 							 NULL, 0);
858 			p->mapping = NULL;
859 			extent_clear_unlock_delalloc(inode, start, end, end,
860 						     NULL, 0,
861 						     PAGE_END_WRITEBACK |
862 						     PAGE_SET_ERROR);
863 			free_async_extent_pages(async_extent);
864 		}
865 		alloc_hint = ins.objectid + ins.offset;
866 		kfree(async_extent);
867 		cond_resched();
868 	}
869 	return;
870 out_free_reserve:
871 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
873 out_free:
874 	extent_clear_unlock_delalloc(inode, async_extent->start,
875 				     async_extent->start +
876 				     async_extent->ram_size - 1,
877 				     async_extent->start +
878 				     async_extent->ram_size - 1,
879 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880 				     EXTENT_DELALLOC_NEW |
881 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
884 				     PAGE_SET_ERROR);
885 	free_async_extent_pages(async_extent);
886 	kfree(async_extent);
887 	goto again;
888 }
889 
890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
891 				      u64 num_bytes)
892 {
893 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 	struct extent_map *em;
895 	u64 alloc_hint = 0;
896 
897 	read_lock(&em_tree->lock);
898 	em = search_extent_mapping(em_tree, start, num_bytes);
899 	if (em) {
900 		/*
901 		 * if block start isn't an actual block number then find the
902 		 * first block in this inode and use that as a hint.  If that
903 		 * block is also bogus then just don't worry about it.
904 		 */
905 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
906 			free_extent_map(em);
907 			em = search_extent_mapping(em_tree, 0, 0);
908 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 				alloc_hint = em->block_start;
910 			if (em)
911 				free_extent_map(em);
912 		} else {
913 			alloc_hint = em->block_start;
914 			free_extent_map(em);
915 		}
916 	}
917 	read_unlock(&em_tree->lock);
918 
919 	return alloc_hint;
920 }
921 
922 /*
923  * when extent_io.c finds a delayed allocation range in the file,
924  * the call backs end up in this code.  The basic idea is to
925  * allocate extents on disk for the range, and create ordered data structs
926  * in ram to track those extents.
927  *
928  * locked_page is the page that writepage had locked already.  We use
929  * it to make sure we don't do extra locks or unlocks.
930  *
931  * *page_started is set to one if we unlock locked_page and do everything
932  * required to start IO on it.  It may be clean and already done with
933  * IO when we return.
934  */
935 static noinline int cow_file_range(struct inode *inode,
936 				   struct page *locked_page,
937 				   u64 start, u64 end, u64 delalloc_end,
938 				   int *page_started, unsigned long *nr_written,
939 				   int unlock, struct btrfs_dedupe_hash *hash)
940 {
941 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942 	struct btrfs_root *root = BTRFS_I(inode)->root;
943 	u64 alloc_hint = 0;
944 	u64 num_bytes;
945 	unsigned long ram_size;
946 	u64 cur_alloc_size = 0;
947 	u64 blocksize = fs_info->sectorsize;
948 	struct btrfs_key ins;
949 	struct extent_map *em;
950 	unsigned clear_bits;
951 	unsigned long page_ops;
952 	bool extent_reserved = false;
953 	int ret = 0;
954 
955 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
956 		WARN_ON_ONCE(1);
957 		ret = -EINVAL;
958 		goto out_unlock;
959 	}
960 
961 	num_bytes = ALIGN(end - start + 1, blocksize);
962 	num_bytes = max(blocksize,  num_bytes);
963 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
964 
965 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
966 
967 	if (start == 0) {
968 		/* lets try to make an inline extent */
969 		ret = cow_file_range_inline(inode, start, end, 0,
970 					    BTRFS_COMPRESS_NONE, NULL);
971 		if (ret == 0) {
972 			/*
973 			 * We use DO_ACCOUNTING here because we need the
974 			 * delalloc_release_metadata to be run _after_ we drop
975 			 * our outstanding extent for clearing delalloc for this
976 			 * range.
977 			 */
978 			extent_clear_unlock_delalloc(inode, start, end,
979 				     delalloc_end, NULL,
980 				     EXTENT_LOCKED | EXTENT_DELALLOC |
981 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
983 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
984 				     PAGE_END_WRITEBACK);
985 			*nr_written = *nr_written +
986 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
987 			*page_started = 1;
988 			goto out;
989 		} else if (ret < 0) {
990 			goto out_unlock;
991 		}
992 	}
993 
994 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 			start + num_bytes - 1, 0);
997 
998 	while (num_bytes > 0) {
999 		cur_alloc_size = num_bytes;
1000 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001 					   fs_info->sectorsize, 0, alloc_hint,
1002 					   &ins, 1, 1);
1003 		if (ret < 0)
1004 			goto out_unlock;
1005 		cur_alloc_size = ins.offset;
1006 		extent_reserved = true;
1007 
1008 		ram_size = ins.offset;
1009 		em = create_io_em(inode, start, ins.offset, /* len */
1010 				  start, /* orig_start */
1011 				  ins.objectid, /* block_start */
1012 				  ins.offset, /* block_len */
1013 				  ins.offset, /* orig_block_len */
1014 				  ram_size, /* ram_bytes */
1015 				  BTRFS_COMPRESS_NONE, /* compress_type */
1016 				  BTRFS_ORDERED_REGULAR /* type */);
1017 		if (IS_ERR(em)) {
1018 			ret = PTR_ERR(em);
1019 			goto out_reserve;
1020 		}
1021 		free_extent_map(em);
1022 
1023 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 					       ram_size, cur_alloc_size, 0);
1025 		if (ret)
1026 			goto out_drop_extent_cache;
1027 
1028 		if (root->root_key.objectid ==
1029 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 			ret = btrfs_reloc_clone_csums(inode, start,
1031 						      cur_alloc_size);
1032 			/*
1033 			 * Only drop cache here, and process as normal.
1034 			 *
1035 			 * We must not allow extent_clear_unlock_delalloc()
1036 			 * at out_unlock label to free meta of this ordered
1037 			 * extent, as its meta should be freed by
1038 			 * btrfs_finish_ordered_io().
1039 			 *
1040 			 * So we must continue until @start is increased to
1041 			 * skip current ordered extent.
1042 			 */
1043 			if (ret)
1044 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 						start + ram_size - 1, 0);
1046 		}
1047 
1048 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1049 
1050 		/* we're not doing compressed IO, don't unlock the first
1051 		 * page (which the caller expects to stay locked), don't
1052 		 * clear any dirty bits and don't set any writeback bits
1053 		 *
1054 		 * Do set the Private2 bit so we know this page was properly
1055 		 * setup for writepage
1056 		 */
1057 		page_ops = unlock ? PAGE_UNLOCK : 0;
1058 		page_ops |= PAGE_SET_PRIVATE2;
1059 
1060 		extent_clear_unlock_delalloc(inode, start,
1061 					     start + ram_size - 1,
1062 					     delalloc_end, locked_page,
1063 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1064 					     page_ops);
1065 		if (num_bytes < cur_alloc_size)
1066 			num_bytes = 0;
1067 		else
1068 			num_bytes -= cur_alloc_size;
1069 		alloc_hint = ins.objectid + ins.offset;
1070 		start += cur_alloc_size;
1071 		extent_reserved = false;
1072 
1073 		/*
1074 		 * btrfs_reloc_clone_csums() error, since start is increased
1075 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 		 * free metadata of current ordered extent, we're OK to exit.
1077 		 */
1078 		if (ret)
1079 			goto out_unlock;
1080 	}
1081 out:
1082 	return ret;
1083 
1084 out_drop_extent_cache:
1085 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1086 out_reserve:
1087 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1089 out_unlock:
1090 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1093 		PAGE_END_WRITEBACK;
1094 	/*
1095 	 * If we reserved an extent for our delalloc range (or a subrange) and
1096 	 * failed to create the respective ordered extent, then it means that
1097 	 * when we reserved the extent we decremented the extent's size from
1098 	 * the data space_info's bytes_may_use counter and incremented the
1099 	 * space_info's bytes_reserved counter by the same amount. We must make
1100 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1103 	 */
1104 	if (extent_reserved) {
1105 		extent_clear_unlock_delalloc(inode, start,
1106 					     start + cur_alloc_size,
1107 					     start + cur_alloc_size,
1108 					     locked_page,
1109 					     clear_bits,
1110 					     page_ops);
1111 		start += cur_alloc_size;
1112 		if (start >= end)
1113 			goto out;
1114 	}
1115 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1116 				     locked_page,
1117 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1118 				     page_ops);
1119 	goto out;
1120 }
1121 
1122 /*
1123  * work queue call back to started compression on a file and pages
1124  */
1125 static noinline void async_cow_start(struct btrfs_work *work)
1126 {
1127 	struct async_cow *async_cow;
1128 	int num_added = 0;
1129 	async_cow = container_of(work, struct async_cow, work);
1130 
1131 	compress_file_range(async_cow->inode, async_cow->locked_page,
1132 			    async_cow->start, async_cow->end, async_cow,
1133 			    &num_added);
1134 	if (num_added == 0) {
1135 		btrfs_add_delayed_iput(async_cow->inode);
1136 		async_cow->inode = NULL;
1137 	}
1138 }
1139 
1140 /*
1141  * work queue call back to submit previously compressed pages
1142  */
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1144 {
1145 	struct btrfs_fs_info *fs_info;
1146 	struct async_cow *async_cow;
1147 	struct btrfs_root *root;
1148 	unsigned long nr_pages;
1149 
1150 	async_cow = container_of(work, struct async_cow, work);
1151 
1152 	root = async_cow->root;
1153 	fs_info = root->fs_info;
1154 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1155 		PAGE_SHIFT;
1156 
1157 	/* atomic_sub_return implies a barrier */
1158 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1159 	    5 * SZ_1M)
1160 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1161 
1162 	if (async_cow->inode)
1163 		submit_compressed_extents(async_cow->inode, async_cow);
1164 }
1165 
1166 static noinline void async_cow_free(struct btrfs_work *work)
1167 {
1168 	struct async_cow *async_cow;
1169 	async_cow = container_of(work, struct async_cow, work);
1170 	if (async_cow->inode)
1171 		btrfs_add_delayed_iput(async_cow->inode);
1172 	kfree(async_cow);
1173 }
1174 
1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176 				u64 start, u64 end, int *page_started,
1177 				unsigned long *nr_written,
1178 				unsigned int write_flags)
1179 {
1180 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181 	struct async_cow *async_cow;
1182 	struct btrfs_root *root = BTRFS_I(inode)->root;
1183 	unsigned long nr_pages;
1184 	u64 cur_end;
1185 
1186 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1187 			 1, 0, NULL);
1188 	while (start < end) {
1189 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1190 		BUG_ON(!async_cow); /* -ENOMEM */
1191 		async_cow->inode = igrab(inode);
1192 		async_cow->root = root;
1193 		async_cow->locked_page = locked_page;
1194 		async_cow->start = start;
1195 		async_cow->write_flags = write_flags;
1196 
1197 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1199 			cur_end = end;
1200 		else
1201 			cur_end = min(end, start + SZ_512K - 1);
1202 
1203 		async_cow->end = cur_end;
1204 		INIT_LIST_HEAD(&async_cow->extents);
1205 
1206 		btrfs_init_work(&async_cow->work,
1207 				btrfs_delalloc_helper,
1208 				async_cow_start, async_cow_submit,
1209 				async_cow_free);
1210 
1211 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1212 			PAGE_SHIFT;
1213 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1214 
1215 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1216 
1217 		*nr_written += nr_pages;
1218 		start = cur_end + 1;
1219 	}
1220 	*page_started = 1;
1221 	return 0;
1222 }
1223 
1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1225 					u64 bytenr, u64 num_bytes)
1226 {
1227 	int ret;
1228 	struct btrfs_ordered_sum *sums;
1229 	LIST_HEAD(list);
1230 
1231 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1232 				       bytenr + num_bytes - 1, &list, 0);
1233 	if (ret == 0 && list_empty(&list))
1234 		return 0;
1235 
1236 	while (!list_empty(&list)) {
1237 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238 		list_del(&sums->list);
1239 		kfree(sums);
1240 	}
1241 	if (ret < 0)
1242 		return ret;
1243 	return 1;
1244 }
1245 
1246 /*
1247  * when nowcow writeback call back.  This checks for snapshots or COW copies
1248  * of the extents that exist in the file, and COWs the file as required.
1249  *
1250  * If no cow copies or snapshots exist, we write directly to the existing
1251  * blocks on disk
1252  */
1253 static noinline int run_delalloc_nocow(struct inode *inode,
1254 				       struct page *locked_page,
1255 			      u64 start, u64 end, int *page_started, int force,
1256 			      unsigned long *nr_written)
1257 {
1258 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1259 	struct btrfs_root *root = BTRFS_I(inode)->root;
1260 	struct extent_buffer *leaf;
1261 	struct btrfs_path *path;
1262 	struct btrfs_file_extent_item *fi;
1263 	struct btrfs_key found_key;
1264 	struct extent_map *em;
1265 	u64 cow_start;
1266 	u64 cur_offset;
1267 	u64 extent_end;
1268 	u64 extent_offset;
1269 	u64 disk_bytenr;
1270 	u64 num_bytes;
1271 	u64 disk_num_bytes;
1272 	u64 ram_bytes;
1273 	int extent_type;
1274 	int ret;
1275 	int type;
1276 	int nocow;
1277 	int check_prev = 1;
1278 	bool nolock;
1279 	u64 ino = btrfs_ino(BTRFS_I(inode));
1280 
1281 	path = btrfs_alloc_path();
1282 	if (!path) {
1283 		extent_clear_unlock_delalloc(inode, start, end, end,
1284 					     locked_page,
1285 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1286 					     EXTENT_DO_ACCOUNTING |
1287 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1288 					     PAGE_CLEAR_DIRTY |
1289 					     PAGE_SET_WRITEBACK |
1290 					     PAGE_END_WRITEBACK);
1291 		return -ENOMEM;
1292 	}
1293 
1294 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1295 
1296 	cow_start = (u64)-1;
1297 	cur_offset = start;
1298 	while (1) {
1299 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1300 					       cur_offset, 0);
1301 		if (ret < 0)
1302 			goto error;
1303 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 			leaf = path->nodes[0];
1305 			btrfs_item_key_to_cpu(leaf, &found_key,
1306 					      path->slots[0] - 1);
1307 			if (found_key.objectid == ino &&
1308 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1309 				path->slots[0]--;
1310 		}
1311 		check_prev = 0;
1312 next_slot:
1313 		leaf = path->nodes[0];
1314 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 			ret = btrfs_next_leaf(root, path);
1316 			if (ret < 0) {
1317 				if (cow_start != (u64)-1)
1318 					cur_offset = cow_start;
1319 				goto error;
1320 			}
1321 			if (ret > 0)
1322 				break;
1323 			leaf = path->nodes[0];
1324 		}
1325 
1326 		nocow = 0;
1327 		disk_bytenr = 0;
1328 		num_bytes = 0;
1329 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1330 
1331 		if (found_key.objectid > ino)
1332 			break;
1333 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1335 			path->slots[0]++;
1336 			goto next_slot;
1337 		}
1338 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1339 		    found_key.offset > end)
1340 			break;
1341 
1342 		if (found_key.offset > cur_offset) {
1343 			extent_end = found_key.offset;
1344 			extent_type = 0;
1345 			goto out_check;
1346 		}
1347 
1348 		fi = btrfs_item_ptr(leaf, path->slots[0],
1349 				    struct btrfs_file_extent_item);
1350 		extent_type = btrfs_file_extent_type(leaf, fi);
1351 
1352 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1353 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1355 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1356 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1357 			extent_end = found_key.offset +
1358 				btrfs_file_extent_num_bytes(leaf, fi);
1359 			disk_num_bytes =
1360 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1361 			if (extent_end <= start) {
1362 				path->slots[0]++;
1363 				goto next_slot;
1364 			}
1365 			if (disk_bytenr == 0)
1366 				goto out_check;
1367 			if (btrfs_file_extent_compression(leaf, fi) ||
1368 			    btrfs_file_extent_encryption(leaf, fi) ||
1369 			    btrfs_file_extent_other_encoding(leaf, fi))
1370 				goto out_check;
1371 			/*
1372 			 * Do the same check as in btrfs_cross_ref_exist but
1373 			 * without the unnecessary search.
1374 			 */
1375 			if (btrfs_file_extent_generation(leaf, fi) <=
1376 			    btrfs_root_last_snapshot(&root->root_item))
1377 				goto out_check;
1378 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1379 				goto out_check;
1380 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1381 				goto out_check;
1382 			ret = btrfs_cross_ref_exist(root, ino,
1383 						    found_key.offset -
1384 						    extent_offset, disk_bytenr);
1385 			if (ret) {
1386 				/*
1387 				 * ret could be -EIO if the above fails to read
1388 				 * metadata.
1389 				 */
1390 				if (ret < 0) {
1391 					if (cow_start != (u64)-1)
1392 						cur_offset = cow_start;
1393 					goto error;
1394 				}
1395 
1396 				WARN_ON_ONCE(nolock);
1397 				goto out_check;
1398 			}
1399 			disk_bytenr += extent_offset;
1400 			disk_bytenr += cur_offset - found_key.offset;
1401 			num_bytes = min(end + 1, extent_end) - cur_offset;
1402 			/*
1403 			 * if there are pending snapshots for this root,
1404 			 * we fall into common COW way.
1405 			 */
1406 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1407 				goto out_check;
1408 			/*
1409 			 * force cow if csum exists in the range.
1410 			 * this ensure that csum for a given extent are
1411 			 * either valid or do not exist.
1412 			 */
1413 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1414 						  num_bytes);
1415 			if (ret) {
1416 				/*
1417 				 * ret could be -EIO if the above fails to read
1418 				 * metadata.
1419 				 */
1420 				if (ret < 0) {
1421 					if (cow_start != (u64)-1)
1422 						cur_offset = cow_start;
1423 					goto error;
1424 				}
1425 				WARN_ON_ONCE(nolock);
1426 				goto out_check;
1427 			}
1428 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1429 				goto out_check;
1430 			nocow = 1;
1431 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1432 			extent_end = found_key.offset +
1433 				btrfs_file_extent_ram_bytes(leaf, fi);
1434 			extent_end = ALIGN(extent_end,
1435 					   fs_info->sectorsize);
1436 		} else {
1437 			BUG_ON(1);
1438 		}
1439 out_check:
1440 		if (extent_end <= start) {
1441 			path->slots[0]++;
1442 			if (nocow)
1443 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1444 			goto next_slot;
1445 		}
1446 		if (!nocow) {
1447 			if (cow_start == (u64)-1)
1448 				cow_start = cur_offset;
1449 			cur_offset = extent_end;
1450 			if (cur_offset > end)
1451 				break;
1452 			path->slots[0]++;
1453 			goto next_slot;
1454 		}
1455 
1456 		btrfs_release_path(path);
1457 		if (cow_start != (u64)-1) {
1458 			ret = cow_file_range(inode, locked_page,
1459 					     cow_start, found_key.offset - 1,
1460 					     end, page_started, nr_written, 1,
1461 					     NULL);
1462 			if (ret) {
1463 				if (nocow)
1464 					btrfs_dec_nocow_writers(fs_info,
1465 								disk_bytenr);
1466 				goto error;
1467 			}
1468 			cow_start = (u64)-1;
1469 		}
1470 
1471 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1472 			u64 orig_start = found_key.offset - extent_offset;
1473 
1474 			em = create_io_em(inode, cur_offset, num_bytes,
1475 					  orig_start,
1476 					  disk_bytenr, /* block_start */
1477 					  num_bytes, /* block_len */
1478 					  disk_num_bytes, /* orig_block_len */
1479 					  ram_bytes, BTRFS_COMPRESS_NONE,
1480 					  BTRFS_ORDERED_PREALLOC);
1481 			if (IS_ERR(em)) {
1482 				if (nocow)
1483 					btrfs_dec_nocow_writers(fs_info,
1484 								disk_bytenr);
1485 				ret = PTR_ERR(em);
1486 				goto error;
1487 			}
1488 			free_extent_map(em);
1489 		}
1490 
1491 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1492 			type = BTRFS_ORDERED_PREALLOC;
1493 		} else {
1494 			type = BTRFS_ORDERED_NOCOW;
1495 		}
1496 
1497 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1498 					       num_bytes, num_bytes, type);
1499 		if (nocow)
1500 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1501 		BUG_ON(ret); /* -ENOMEM */
1502 
1503 		if (root->root_key.objectid ==
1504 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1505 			/*
1506 			 * Error handled later, as we must prevent
1507 			 * extent_clear_unlock_delalloc() in error handler
1508 			 * from freeing metadata of created ordered extent.
1509 			 */
1510 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1511 						      num_bytes);
1512 
1513 		extent_clear_unlock_delalloc(inode, cur_offset,
1514 					     cur_offset + num_bytes - 1, end,
1515 					     locked_page, EXTENT_LOCKED |
1516 					     EXTENT_DELALLOC |
1517 					     EXTENT_CLEAR_DATA_RESV,
1518 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1519 
1520 		cur_offset = extent_end;
1521 
1522 		/*
1523 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 		 * handler, as metadata for created ordered extent will only
1525 		 * be freed by btrfs_finish_ordered_io().
1526 		 */
1527 		if (ret)
1528 			goto error;
1529 		if (cur_offset > end)
1530 			break;
1531 	}
1532 	btrfs_release_path(path);
1533 
1534 	if (cur_offset <= end && cow_start == (u64)-1)
1535 		cow_start = cur_offset;
1536 
1537 	if (cow_start != (u64)-1) {
1538 		cur_offset = end;
1539 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1540 				     page_started, nr_written, 1, NULL);
1541 		if (ret)
1542 			goto error;
1543 	}
1544 
1545 error:
1546 	if (ret && cur_offset < end)
1547 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1548 					     locked_page, EXTENT_LOCKED |
1549 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1550 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1551 					     PAGE_CLEAR_DIRTY |
1552 					     PAGE_SET_WRITEBACK |
1553 					     PAGE_END_WRITEBACK);
1554 	btrfs_free_path(path);
1555 	return ret;
1556 }
1557 
1558 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1559 {
1560 
1561 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1562 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1563 		return 0;
1564 
1565 	/*
1566 	 * @defrag_bytes is a hint value, no spinlock held here,
1567 	 * if is not zero, it means the file is defragging.
1568 	 * Force cow if given extent needs to be defragged.
1569 	 */
1570 	if (BTRFS_I(inode)->defrag_bytes &&
1571 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1572 			   EXTENT_DEFRAG, 0, NULL))
1573 		return 1;
1574 
1575 	return 0;
1576 }
1577 
1578 /*
1579  * extent_io.c call back to do delayed allocation processing
1580  */
1581 static int run_delalloc_range(void *private_data, struct page *locked_page,
1582 			      u64 start, u64 end, int *page_started,
1583 			      unsigned long *nr_written,
1584 			      struct writeback_control *wbc)
1585 {
1586 	struct inode *inode = private_data;
1587 	int ret;
1588 	int force_cow = need_force_cow(inode, start, end);
1589 	unsigned int write_flags = wbc_to_write_flags(wbc);
1590 
1591 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1592 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1593 					 page_started, 1, nr_written);
1594 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1595 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1596 					 page_started, 0, nr_written);
1597 	} else if (!inode_need_compress(inode, start, end)) {
1598 		ret = cow_file_range(inode, locked_page, start, end, end,
1599 				      page_started, nr_written, 1, NULL);
1600 	} else {
1601 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1602 			&BTRFS_I(inode)->runtime_flags);
1603 		ret = cow_file_range_async(inode, locked_page, start, end,
1604 					   page_started, nr_written,
1605 					   write_flags);
1606 	}
1607 	if (ret)
1608 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1609 	return ret;
1610 }
1611 
1612 static void btrfs_split_extent_hook(void *private_data,
1613 				    struct extent_state *orig, u64 split)
1614 {
1615 	struct inode *inode = private_data;
1616 	u64 size;
1617 
1618 	/* not delalloc, ignore it */
1619 	if (!(orig->state & EXTENT_DELALLOC))
1620 		return;
1621 
1622 	size = orig->end - orig->start + 1;
1623 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1624 		u32 num_extents;
1625 		u64 new_size;
1626 
1627 		/*
1628 		 * See the explanation in btrfs_merge_extent_hook, the same
1629 		 * applies here, just in reverse.
1630 		 */
1631 		new_size = orig->end - split + 1;
1632 		num_extents = count_max_extents(new_size);
1633 		new_size = split - orig->start;
1634 		num_extents += count_max_extents(new_size);
1635 		if (count_max_extents(size) >= num_extents)
1636 			return;
1637 	}
1638 
1639 	spin_lock(&BTRFS_I(inode)->lock);
1640 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1641 	spin_unlock(&BTRFS_I(inode)->lock);
1642 }
1643 
1644 /*
1645  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1646  * extents so we can keep track of new extents that are just merged onto old
1647  * extents, such as when we are doing sequential writes, so we can properly
1648  * account for the metadata space we'll need.
1649  */
1650 static void btrfs_merge_extent_hook(void *private_data,
1651 				    struct extent_state *new,
1652 				    struct extent_state *other)
1653 {
1654 	struct inode *inode = private_data;
1655 	u64 new_size, old_size;
1656 	u32 num_extents;
1657 
1658 	/* not delalloc, ignore it */
1659 	if (!(other->state & EXTENT_DELALLOC))
1660 		return;
1661 
1662 	if (new->start > other->start)
1663 		new_size = new->end - other->start + 1;
1664 	else
1665 		new_size = other->end - new->start + 1;
1666 
1667 	/* we're not bigger than the max, unreserve the space and go */
1668 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1669 		spin_lock(&BTRFS_I(inode)->lock);
1670 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1671 		spin_unlock(&BTRFS_I(inode)->lock);
1672 		return;
1673 	}
1674 
1675 	/*
1676 	 * We have to add up either side to figure out how many extents were
1677 	 * accounted for before we merged into one big extent.  If the number of
1678 	 * extents we accounted for is <= the amount we need for the new range
1679 	 * then we can return, otherwise drop.  Think of it like this
1680 	 *
1681 	 * [ 4k][MAX_SIZE]
1682 	 *
1683 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1684 	 * need 2 outstanding extents, on one side we have 1 and the other side
1685 	 * we have 1 so they are == and we can return.  But in this case
1686 	 *
1687 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1688 	 *
1689 	 * Each range on their own accounts for 2 extents, but merged together
1690 	 * they are only 3 extents worth of accounting, so we need to drop in
1691 	 * this case.
1692 	 */
1693 	old_size = other->end - other->start + 1;
1694 	num_extents = count_max_extents(old_size);
1695 	old_size = new->end - new->start + 1;
1696 	num_extents += count_max_extents(old_size);
1697 	if (count_max_extents(new_size) >= num_extents)
1698 		return;
1699 
1700 	spin_lock(&BTRFS_I(inode)->lock);
1701 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1702 	spin_unlock(&BTRFS_I(inode)->lock);
1703 }
1704 
1705 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1706 				      struct inode *inode)
1707 {
1708 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1709 
1710 	spin_lock(&root->delalloc_lock);
1711 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1712 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1713 			      &root->delalloc_inodes);
1714 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 			&BTRFS_I(inode)->runtime_flags);
1716 		root->nr_delalloc_inodes++;
1717 		if (root->nr_delalloc_inodes == 1) {
1718 			spin_lock(&fs_info->delalloc_root_lock);
1719 			BUG_ON(!list_empty(&root->delalloc_root));
1720 			list_add_tail(&root->delalloc_root,
1721 				      &fs_info->delalloc_roots);
1722 			spin_unlock(&fs_info->delalloc_root_lock);
1723 		}
1724 	}
1725 	spin_unlock(&root->delalloc_lock);
1726 }
1727 
1728 
1729 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1730 				struct btrfs_inode *inode)
1731 {
1732 	struct btrfs_fs_info *fs_info = root->fs_info;
1733 
1734 	if (!list_empty(&inode->delalloc_inodes)) {
1735 		list_del_init(&inode->delalloc_inodes);
1736 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1737 			  &inode->runtime_flags);
1738 		root->nr_delalloc_inodes--;
1739 		if (!root->nr_delalloc_inodes) {
1740 			ASSERT(list_empty(&root->delalloc_inodes));
1741 			spin_lock(&fs_info->delalloc_root_lock);
1742 			BUG_ON(list_empty(&root->delalloc_root));
1743 			list_del_init(&root->delalloc_root);
1744 			spin_unlock(&fs_info->delalloc_root_lock);
1745 		}
1746 	}
1747 }
1748 
1749 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1750 				     struct btrfs_inode *inode)
1751 {
1752 	spin_lock(&root->delalloc_lock);
1753 	__btrfs_del_delalloc_inode(root, inode);
1754 	spin_unlock(&root->delalloc_lock);
1755 }
1756 
1757 /*
1758  * extent_io.c set_bit_hook, used to track delayed allocation
1759  * bytes in this file, and to maintain the list of inodes that
1760  * have pending delalloc work to be done.
1761  */
1762 static void btrfs_set_bit_hook(void *private_data,
1763 			       struct extent_state *state, unsigned *bits)
1764 {
1765 	struct inode *inode = private_data;
1766 
1767 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1768 
1769 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1770 		WARN_ON(1);
1771 	/*
1772 	 * set_bit and clear bit hooks normally require _irqsave/restore
1773 	 * but in this case, we are only testing for the DELALLOC
1774 	 * bit, which is only set or cleared with irqs on
1775 	 */
1776 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1777 		struct btrfs_root *root = BTRFS_I(inode)->root;
1778 		u64 len = state->end + 1 - state->start;
1779 		u32 num_extents = count_max_extents(len);
1780 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1781 
1782 		spin_lock(&BTRFS_I(inode)->lock);
1783 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1784 		spin_unlock(&BTRFS_I(inode)->lock);
1785 
1786 		/* For sanity tests */
1787 		if (btrfs_is_testing(fs_info))
1788 			return;
1789 
1790 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1791 					 fs_info->delalloc_batch);
1792 		spin_lock(&BTRFS_I(inode)->lock);
1793 		BTRFS_I(inode)->delalloc_bytes += len;
1794 		if (*bits & EXTENT_DEFRAG)
1795 			BTRFS_I(inode)->defrag_bytes += len;
1796 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1797 					 &BTRFS_I(inode)->runtime_flags))
1798 			btrfs_add_delalloc_inodes(root, inode);
1799 		spin_unlock(&BTRFS_I(inode)->lock);
1800 	}
1801 
1802 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1803 	    (*bits & EXTENT_DELALLOC_NEW)) {
1804 		spin_lock(&BTRFS_I(inode)->lock);
1805 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1806 			state->start;
1807 		spin_unlock(&BTRFS_I(inode)->lock);
1808 	}
1809 }
1810 
1811 /*
1812  * extent_io.c clear_bit_hook, see set_bit_hook for why
1813  */
1814 static void btrfs_clear_bit_hook(void *private_data,
1815 				 struct extent_state *state,
1816 				 unsigned *bits)
1817 {
1818 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1819 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1820 	u64 len = state->end + 1 - state->start;
1821 	u32 num_extents = count_max_extents(len);
1822 
1823 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1824 		spin_lock(&inode->lock);
1825 		inode->defrag_bytes -= len;
1826 		spin_unlock(&inode->lock);
1827 	}
1828 
1829 	/*
1830 	 * set_bit and clear bit hooks normally require _irqsave/restore
1831 	 * but in this case, we are only testing for the DELALLOC
1832 	 * bit, which is only set or cleared with irqs on
1833 	 */
1834 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1835 		struct btrfs_root *root = inode->root;
1836 		bool do_list = !btrfs_is_free_space_inode(inode);
1837 
1838 		spin_lock(&inode->lock);
1839 		btrfs_mod_outstanding_extents(inode, -num_extents);
1840 		spin_unlock(&inode->lock);
1841 
1842 		/*
1843 		 * We don't reserve metadata space for space cache inodes so we
1844 		 * don't need to call dellalloc_release_metadata if there is an
1845 		 * error.
1846 		 */
1847 		if (*bits & EXTENT_CLEAR_META_RESV &&
1848 		    root != fs_info->tree_root)
1849 			btrfs_delalloc_release_metadata(inode, len, false);
1850 
1851 		/* For sanity tests. */
1852 		if (btrfs_is_testing(fs_info))
1853 			return;
1854 
1855 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1856 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1857 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1858 			btrfs_free_reserved_data_space_noquota(
1859 					&inode->vfs_inode,
1860 					state->start, len);
1861 
1862 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1863 					 fs_info->delalloc_batch);
1864 		spin_lock(&inode->lock);
1865 		inode->delalloc_bytes -= len;
1866 		if (do_list && inode->delalloc_bytes == 0 &&
1867 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1868 					&inode->runtime_flags))
1869 			btrfs_del_delalloc_inode(root, inode);
1870 		spin_unlock(&inode->lock);
1871 	}
1872 
1873 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1874 	    (*bits & EXTENT_DELALLOC_NEW)) {
1875 		spin_lock(&inode->lock);
1876 		ASSERT(inode->new_delalloc_bytes >= len);
1877 		inode->new_delalloc_bytes -= len;
1878 		spin_unlock(&inode->lock);
1879 	}
1880 }
1881 
1882 /*
1883  * Merge bio hook, this must check the chunk tree to make sure we don't create
1884  * bios that span stripes or chunks
1885  *
1886  * return 1 if page cannot be merged to bio
1887  * return 0 if page can be merged to bio
1888  * return error otherwise
1889  */
1890 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1891 			 size_t size, struct bio *bio,
1892 			 unsigned long bio_flags)
1893 {
1894 	struct inode *inode = page->mapping->host;
1895 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1896 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1897 	u64 length = 0;
1898 	u64 map_length;
1899 	int ret;
1900 
1901 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1902 		return 0;
1903 
1904 	length = bio->bi_iter.bi_size;
1905 	map_length = length;
1906 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1907 			      NULL, 0);
1908 	if (ret < 0)
1909 		return ret;
1910 	if (map_length < length + size)
1911 		return 1;
1912 	return 0;
1913 }
1914 
1915 /*
1916  * in order to insert checksums into the metadata in large chunks,
1917  * we wait until bio submission time.   All the pages in the bio are
1918  * checksummed and sums are attached onto the ordered extent record.
1919  *
1920  * At IO completion time the cums attached on the ordered extent record
1921  * are inserted into the btree
1922  */
1923 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1924 				    u64 bio_offset)
1925 {
1926 	struct inode *inode = private_data;
1927 	blk_status_t ret = 0;
1928 
1929 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1930 	BUG_ON(ret); /* -ENOMEM */
1931 	return 0;
1932 }
1933 
1934 /*
1935  * in order to insert checksums into the metadata in large chunks,
1936  * we wait until bio submission time.   All the pages in the bio are
1937  * checksummed and sums are attached onto the ordered extent record.
1938  *
1939  * At IO completion time the cums attached on the ordered extent record
1940  * are inserted into the btree
1941  */
1942 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1943 			  int mirror_num)
1944 {
1945 	struct inode *inode = private_data;
1946 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1947 	blk_status_t ret;
1948 
1949 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1950 	if (ret) {
1951 		bio->bi_status = ret;
1952 		bio_endio(bio);
1953 	}
1954 	return ret;
1955 }
1956 
1957 /*
1958  * extent_io.c submission hook. This does the right thing for csum calculation
1959  * on write, or reading the csums from the tree before a read.
1960  *
1961  * Rules about async/sync submit,
1962  * a) read:				sync submit
1963  *
1964  * b) write without checksum:		sync submit
1965  *
1966  * c) write with checksum:
1967  *    c-1) if bio is issued by fsync:	sync submit
1968  *         (sync_writers != 0)
1969  *
1970  *    c-2) if root is reloc root:	sync submit
1971  *         (only in case of buffered IO)
1972  *
1973  *    c-3) otherwise:			async submit
1974  */
1975 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1976 				 int mirror_num, unsigned long bio_flags,
1977 				 u64 bio_offset)
1978 {
1979 	struct inode *inode = private_data;
1980 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1981 	struct btrfs_root *root = BTRFS_I(inode)->root;
1982 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1983 	blk_status_t ret = 0;
1984 	int skip_sum;
1985 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1986 
1987 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1988 
1989 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1990 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1991 
1992 	if (bio_op(bio) != REQ_OP_WRITE) {
1993 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1994 		if (ret)
1995 			goto out;
1996 
1997 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1998 			ret = btrfs_submit_compressed_read(inode, bio,
1999 							   mirror_num,
2000 							   bio_flags);
2001 			goto out;
2002 		} else if (!skip_sum) {
2003 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2004 			if (ret)
2005 				goto out;
2006 		}
2007 		goto mapit;
2008 	} else if (async && !skip_sum) {
2009 		/* csum items have already been cloned */
2010 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2011 			goto mapit;
2012 		/* we're doing a write, do the async checksumming */
2013 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2014 					  bio_offset, inode,
2015 					  btrfs_submit_bio_start);
2016 		goto out;
2017 	} else if (!skip_sum) {
2018 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2019 		if (ret)
2020 			goto out;
2021 	}
2022 
2023 mapit:
2024 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2025 
2026 out:
2027 	if (ret) {
2028 		bio->bi_status = ret;
2029 		bio_endio(bio);
2030 	}
2031 	return ret;
2032 }
2033 
2034 /*
2035  * given a list of ordered sums record them in the inode.  This happens
2036  * at IO completion time based on sums calculated at bio submission time.
2037  */
2038 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2039 			     struct inode *inode, struct list_head *list)
2040 {
2041 	struct btrfs_ordered_sum *sum;
2042 	int ret;
2043 
2044 	list_for_each_entry(sum, list, list) {
2045 		trans->adding_csums = true;
2046 		ret = btrfs_csum_file_blocks(trans,
2047 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2048 		trans->adding_csums = false;
2049 		if (ret)
2050 			return ret;
2051 	}
2052 	return 0;
2053 }
2054 
2055 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2056 			      unsigned int extra_bits,
2057 			      struct extent_state **cached_state, int dedupe)
2058 {
2059 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2060 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2061 				   extra_bits, cached_state);
2062 }
2063 
2064 /* see btrfs_writepage_start_hook for details on why this is required */
2065 struct btrfs_writepage_fixup {
2066 	struct page *page;
2067 	struct btrfs_work work;
2068 };
2069 
2070 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2071 {
2072 	struct btrfs_writepage_fixup *fixup;
2073 	struct btrfs_ordered_extent *ordered;
2074 	struct extent_state *cached_state = NULL;
2075 	struct extent_changeset *data_reserved = NULL;
2076 	struct page *page;
2077 	struct inode *inode;
2078 	u64 page_start;
2079 	u64 page_end;
2080 	int ret;
2081 
2082 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2083 	page = fixup->page;
2084 again:
2085 	lock_page(page);
2086 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2087 		ClearPageChecked(page);
2088 		goto out_page;
2089 	}
2090 
2091 	inode = page->mapping->host;
2092 	page_start = page_offset(page);
2093 	page_end = page_offset(page) + PAGE_SIZE - 1;
2094 
2095 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2096 			 &cached_state);
2097 
2098 	/* already ordered? We're done */
2099 	if (PagePrivate2(page))
2100 		goto out;
2101 
2102 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2103 					PAGE_SIZE);
2104 	if (ordered) {
2105 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2106 				     page_end, &cached_state);
2107 		unlock_page(page);
2108 		btrfs_start_ordered_extent(inode, ordered, 1);
2109 		btrfs_put_ordered_extent(ordered);
2110 		goto again;
2111 	}
2112 
2113 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2114 					   PAGE_SIZE);
2115 	if (ret) {
2116 		mapping_set_error(page->mapping, ret);
2117 		end_extent_writepage(page, ret, page_start, page_end);
2118 		ClearPageChecked(page);
2119 		goto out;
2120 	 }
2121 
2122 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2123 					&cached_state, 0);
2124 	if (ret) {
2125 		mapping_set_error(page->mapping, ret);
2126 		end_extent_writepage(page, ret, page_start, page_end);
2127 		ClearPageChecked(page);
2128 		goto out;
2129 	}
2130 
2131 	ClearPageChecked(page);
2132 	set_page_dirty(page);
2133 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2134 out:
2135 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2136 			     &cached_state);
2137 out_page:
2138 	unlock_page(page);
2139 	put_page(page);
2140 	kfree(fixup);
2141 	extent_changeset_free(data_reserved);
2142 }
2143 
2144 /*
2145  * There are a few paths in the higher layers of the kernel that directly
2146  * set the page dirty bit without asking the filesystem if it is a
2147  * good idea.  This causes problems because we want to make sure COW
2148  * properly happens and the data=ordered rules are followed.
2149  *
2150  * In our case any range that doesn't have the ORDERED bit set
2151  * hasn't been properly setup for IO.  We kick off an async process
2152  * to fix it up.  The async helper will wait for ordered extents, set
2153  * the delalloc bit and make it safe to write the page.
2154  */
2155 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2156 {
2157 	struct inode *inode = page->mapping->host;
2158 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2159 	struct btrfs_writepage_fixup *fixup;
2160 
2161 	/* this page is properly in the ordered list */
2162 	if (TestClearPagePrivate2(page))
2163 		return 0;
2164 
2165 	if (PageChecked(page))
2166 		return -EAGAIN;
2167 
2168 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2169 	if (!fixup)
2170 		return -EAGAIN;
2171 
2172 	SetPageChecked(page);
2173 	get_page(page);
2174 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2175 			btrfs_writepage_fixup_worker, NULL, NULL);
2176 	fixup->page = page;
2177 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2178 	return -EBUSY;
2179 }
2180 
2181 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2182 				       struct inode *inode, u64 file_pos,
2183 				       u64 disk_bytenr, u64 disk_num_bytes,
2184 				       u64 num_bytes, u64 ram_bytes,
2185 				       u8 compression, u8 encryption,
2186 				       u16 other_encoding, int extent_type)
2187 {
2188 	struct btrfs_root *root = BTRFS_I(inode)->root;
2189 	struct btrfs_file_extent_item *fi;
2190 	struct btrfs_path *path;
2191 	struct extent_buffer *leaf;
2192 	struct btrfs_key ins;
2193 	u64 qg_released;
2194 	int extent_inserted = 0;
2195 	int ret;
2196 
2197 	path = btrfs_alloc_path();
2198 	if (!path)
2199 		return -ENOMEM;
2200 
2201 	/*
2202 	 * we may be replacing one extent in the tree with another.
2203 	 * The new extent is pinned in the extent map, and we don't want
2204 	 * to drop it from the cache until it is completely in the btree.
2205 	 *
2206 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2207 	 * the caller is expected to unpin it and allow it to be merged
2208 	 * with the others.
2209 	 */
2210 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2211 				   file_pos + num_bytes, NULL, 0,
2212 				   1, sizeof(*fi), &extent_inserted);
2213 	if (ret)
2214 		goto out;
2215 
2216 	if (!extent_inserted) {
2217 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2218 		ins.offset = file_pos;
2219 		ins.type = BTRFS_EXTENT_DATA_KEY;
2220 
2221 		path->leave_spinning = 1;
2222 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2223 					      sizeof(*fi));
2224 		if (ret)
2225 			goto out;
2226 	}
2227 	leaf = path->nodes[0];
2228 	fi = btrfs_item_ptr(leaf, path->slots[0],
2229 			    struct btrfs_file_extent_item);
2230 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2231 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2232 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2233 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2234 	btrfs_set_file_extent_offset(leaf, fi, 0);
2235 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2236 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2237 	btrfs_set_file_extent_compression(leaf, fi, compression);
2238 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2239 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2240 
2241 	btrfs_mark_buffer_dirty(leaf);
2242 	btrfs_release_path(path);
2243 
2244 	inode_add_bytes(inode, num_bytes);
2245 
2246 	ins.objectid = disk_bytenr;
2247 	ins.offset = disk_num_bytes;
2248 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2249 
2250 	/*
2251 	 * Release the reserved range from inode dirty range map, as it is
2252 	 * already moved into delayed_ref_head
2253 	 */
2254 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2255 	if (ret < 0)
2256 		goto out;
2257 	qg_released = ret;
2258 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2259 					       btrfs_ino(BTRFS_I(inode)),
2260 					       file_pos, qg_released, &ins);
2261 out:
2262 	btrfs_free_path(path);
2263 
2264 	return ret;
2265 }
2266 
2267 /* snapshot-aware defrag */
2268 struct sa_defrag_extent_backref {
2269 	struct rb_node node;
2270 	struct old_sa_defrag_extent *old;
2271 	u64 root_id;
2272 	u64 inum;
2273 	u64 file_pos;
2274 	u64 extent_offset;
2275 	u64 num_bytes;
2276 	u64 generation;
2277 };
2278 
2279 struct old_sa_defrag_extent {
2280 	struct list_head list;
2281 	struct new_sa_defrag_extent *new;
2282 
2283 	u64 extent_offset;
2284 	u64 bytenr;
2285 	u64 offset;
2286 	u64 len;
2287 	int count;
2288 };
2289 
2290 struct new_sa_defrag_extent {
2291 	struct rb_root root;
2292 	struct list_head head;
2293 	struct btrfs_path *path;
2294 	struct inode *inode;
2295 	u64 file_pos;
2296 	u64 len;
2297 	u64 bytenr;
2298 	u64 disk_len;
2299 	u8 compress_type;
2300 };
2301 
2302 static int backref_comp(struct sa_defrag_extent_backref *b1,
2303 			struct sa_defrag_extent_backref *b2)
2304 {
2305 	if (b1->root_id < b2->root_id)
2306 		return -1;
2307 	else if (b1->root_id > b2->root_id)
2308 		return 1;
2309 
2310 	if (b1->inum < b2->inum)
2311 		return -1;
2312 	else if (b1->inum > b2->inum)
2313 		return 1;
2314 
2315 	if (b1->file_pos < b2->file_pos)
2316 		return -1;
2317 	else if (b1->file_pos > b2->file_pos)
2318 		return 1;
2319 
2320 	/*
2321 	 * [------------------------------] ===> (a range of space)
2322 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2323 	 * |<---------------------------->| ===> (fs/file tree B)
2324 	 *
2325 	 * A range of space can refer to two file extents in one tree while
2326 	 * refer to only one file extent in another tree.
2327 	 *
2328 	 * So we may process a disk offset more than one time(two extents in A)
2329 	 * and locate at the same extent(one extent in B), then insert two same
2330 	 * backrefs(both refer to the extent in B).
2331 	 */
2332 	return 0;
2333 }
2334 
2335 static void backref_insert(struct rb_root *root,
2336 			   struct sa_defrag_extent_backref *backref)
2337 {
2338 	struct rb_node **p = &root->rb_node;
2339 	struct rb_node *parent = NULL;
2340 	struct sa_defrag_extent_backref *entry;
2341 	int ret;
2342 
2343 	while (*p) {
2344 		parent = *p;
2345 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2346 
2347 		ret = backref_comp(backref, entry);
2348 		if (ret < 0)
2349 			p = &(*p)->rb_left;
2350 		else
2351 			p = &(*p)->rb_right;
2352 	}
2353 
2354 	rb_link_node(&backref->node, parent, p);
2355 	rb_insert_color(&backref->node, root);
2356 }
2357 
2358 /*
2359  * Note the backref might has changed, and in this case we just return 0.
2360  */
2361 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2362 				       void *ctx)
2363 {
2364 	struct btrfs_file_extent_item *extent;
2365 	struct old_sa_defrag_extent *old = ctx;
2366 	struct new_sa_defrag_extent *new = old->new;
2367 	struct btrfs_path *path = new->path;
2368 	struct btrfs_key key;
2369 	struct btrfs_root *root;
2370 	struct sa_defrag_extent_backref *backref;
2371 	struct extent_buffer *leaf;
2372 	struct inode *inode = new->inode;
2373 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2374 	int slot;
2375 	int ret;
2376 	u64 extent_offset;
2377 	u64 num_bytes;
2378 
2379 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2380 	    inum == btrfs_ino(BTRFS_I(inode)))
2381 		return 0;
2382 
2383 	key.objectid = root_id;
2384 	key.type = BTRFS_ROOT_ITEM_KEY;
2385 	key.offset = (u64)-1;
2386 
2387 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2388 	if (IS_ERR(root)) {
2389 		if (PTR_ERR(root) == -ENOENT)
2390 			return 0;
2391 		WARN_ON(1);
2392 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2393 			 inum, offset, root_id);
2394 		return PTR_ERR(root);
2395 	}
2396 
2397 	key.objectid = inum;
2398 	key.type = BTRFS_EXTENT_DATA_KEY;
2399 	if (offset > (u64)-1 << 32)
2400 		key.offset = 0;
2401 	else
2402 		key.offset = offset;
2403 
2404 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2405 	if (WARN_ON(ret < 0))
2406 		return ret;
2407 	ret = 0;
2408 
2409 	while (1) {
2410 		cond_resched();
2411 
2412 		leaf = path->nodes[0];
2413 		slot = path->slots[0];
2414 
2415 		if (slot >= btrfs_header_nritems(leaf)) {
2416 			ret = btrfs_next_leaf(root, path);
2417 			if (ret < 0) {
2418 				goto out;
2419 			} else if (ret > 0) {
2420 				ret = 0;
2421 				goto out;
2422 			}
2423 			continue;
2424 		}
2425 
2426 		path->slots[0]++;
2427 
2428 		btrfs_item_key_to_cpu(leaf, &key, slot);
2429 
2430 		if (key.objectid > inum)
2431 			goto out;
2432 
2433 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2434 			continue;
2435 
2436 		extent = btrfs_item_ptr(leaf, slot,
2437 					struct btrfs_file_extent_item);
2438 
2439 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2440 			continue;
2441 
2442 		/*
2443 		 * 'offset' refers to the exact key.offset,
2444 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2445 		 * (key.offset - extent_offset).
2446 		 */
2447 		if (key.offset != offset)
2448 			continue;
2449 
2450 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2451 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2452 
2453 		if (extent_offset >= old->extent_offset + old->offset +
2454 		    old->len || extent_offset + num_bytes <=
2455 		    old->extent_offset + old->offset)
2456 			continue;
2457 		break;
2458 	}
2459 
2460 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2461 	if (!backref) {
2462 		ret = -ENOENT;
2463 		goto out;
2464 	}
2465 
2466 	backref->root_id = root_id;
2467 	backref->inum = inum;
2468 	backref->file_pos = offset;
2469 	backref->num_bytes = num_bytes;
2470 	backref->extent_offset = extent_offset;
2471 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2472 	backref->old = old;
2473 	backref_insert(&new->root, backref);
2474 	old->count++;
2475 out:
2476 	btrfs_release_path(path);
2477 	WARN_ON(ret);
2478 	return ret;
2479 }
2480 
2481 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2482 				   struct new_sa_defrag_extent *new)
2483 {
2484 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2485 	struct old_sa_defrag_extent *old, *tmp;
2486 	int ret;
2487 
2488 	new->path = path;
2489 
2490 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2491 		ret = iterate_inodes_from_logical(old->bytenr +
2492 						  old->extent_offset, fs_info,
2493 						  path, record_one_backref,
2494 						  old, false);
2495 		if (ret < 0 && ret != -ENOENT)
2496 			return false;
2497 
2498 		/* no backref to be processed for this extent */
2499 		if (!old->count) {
2500 			list_del(&old->list);
2501 			kfree(old);
2502 		}
2503 	}
2504 
2505 	if (list_empty(&new->head))
2506 		return false;
2507 
2508 	return true;
2509 }
2510 
2511 static int relink_is_mergable(struct extent_buffer *leaf,
2512 			      struct btrfs_file_extent_item *fi,
2513 			      struct new_sa_defrag_extent *new)
2514 {
2515 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2516 		return 0;
2517 
2518 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2519 		return 0;
2520 
2521 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2522 		return 0;
2523 
2524 	if (btrfs_file_extent_encryption(leaf, fi) ||
2525 	    btrfs_file_extent_other_encoding(leaf, fi))
2526 		return 0;
2527 
2528 	return 1;
2529 }
2530 
2531 /*
2532  * Note the backref might has changed, and in this case we just return 0.
2533  */
2534 static noinline int relink_extent_backref(struct btrfs_path *path,
2535 				 struct sa_defrag_extent_backref *prev,
2536 				 struct sa_defrag_extent_backref *backref)
2537 {
2538 	struct btrfs_file_extent_item *extent;
2539 	struct btrfs_file_extent_item *item;
2540 	struct btrfs_ordered_extent *ordered;
2541 	struct btrfs_trans_handle *trans;
2542 	struct btrfs_root *root;
2543 	struct btrfs_key key;
2544 	struct extent_buffer *leaf;
2545 	struct old_sa_defrag_extent *old = backref->old;
2546 	struct new_sa_defrag_extent *new = old->new;
2547 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2548 	struct inode *inode;
2549 	struct extent_state *cached = NULL;
2550 	int ret = 0;
2551 	u64 start;
2552 	u64 len;
2553 	u64 lock_start;
2554 	u64 lock_end;
2555 	bool merge = false;
2556 	int index;
2557 
2558 	if (prev && prev->root_id == backref->root_id &&
2559 	    prev->inum == backref->inum &&
2560 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2561 		merge = true;
2562 
2563 	/* step 1: get root */
2564 	key.objectid = backref->root_id;
2565 	key.type = BTRFS_ROOT_ITEM_KEY;
2566 	key.offset = (u64)-1;
2567 
2568 	index = srcu_read_lock(&fs_info->subvol_srcu);
2569 
2570 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2571 	if (IS_ERR(root)) {
2572 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2573 		if (PTR_ERR(root) == -ENOENT)
2574 			return 0;
2575 		return PTR_ERR(root);
2576 	}
2577 
2578 	if (btrfs_root_readonly(root)) {
2579 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2580 		return 0;
2581 	}
2582 
2583 	/* step 2: get inode */
2584 	key.objectid = backref->inum;
2585 	key.type = BTRFS_INODE_ITEM_KEY;
2586 	key.offset = 0;
2587 
2588 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2589 	if (IS_ERR(inode)) {
2590 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2591 		return 0;
2592 	}
2593 
2594 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2595 
2596 	/* step 3: relink backref */
2597 	lock_start = backref->file_pos;
2598 	lock_end = backref->file_pos + backref->num_bytes - 1;
2599 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2600 			 &cached);
2601 
2602 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2603 	if (ordered) {
2604 		btrfs_put_ordered_extent(ordered);
2605 		goto out_unlock;
2606 	}
2607 
2608 	trans = btrfs_join_transaction(root);
2609 	if (IS_ERR(trans)) {
2610 		ret = PTR_ERR(trans);
2611 		goto out_unlock;
2612 	}
2613 
2614 	key.objectid = backref->inum;
2615 	key.type = BTRFS_EXTENT_DATA_KEY;
2616 	key.offset = backref->file_pos;
2617 
2618 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2619 	if (ret < 0) {
2620 		goto out_free_path;
2621 	} else if (ret > 0) {
2622 		ret = 0;
2623 		goto out_free_path;
2624 	}
2625 
2626 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2627 				struct btrfs_file_extent_item);
2628 
2629 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2630 	    backref->generation)
2631 		goto out_free_path;
2632 
2633 	btrfs_release_path(path);
2634 
2635 	start = backref->file_pos;
2636 	if (backref->extent_offset < old->extent_offset + old->offset)
2637 		start += old->extent_offset + old->offset -
2638 			 backref->extent_offset;
2639 
2640 	len = min(backref->extent_offset + backref->num_bytes,
2641 		  old->extent_offset + old->offset + old->len);
2642 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2643 
2644 	ret = btrfs_drop_extents(trans, root, inode, start,
2645 				 start + len, 1);
2646 	if (ret)
2647 		goto out_free_path;
2648 again:
2649 	key.objectid = btrfs_ino(BTRFS_I(inode));
2650 	key.type = BTRFS_EXTENT_DATA_KEY;
2651 	key.offset = start;
2652 
2653 	path->leave_spinning = 1;
2654 	if (merge) {
2655 		struct btrfs_file_extent_item *fi;
2656 		u64 extent_len;
2657 		struct btrfs_key found_key;
2658 
2659 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2660 		if (ret < 0)
2661 			goto out_free_path;
2662 
2663 		path->slots[0]--;
2664 		leaf = path->nodes[0];
2665 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2666 
2667 		fi = btrfs_item_ptr(leaf, path->slots[0],
2668 				    struct btrfs_file_extent_item);
2669 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2670 
2671 		if (extent_len + found_key.offset == start &&
2672 		    relink_is_mergable(leaf, fi, new)) {
2673 			btrfs_set_file_extent_num_bytes(leaf, fi,
2674 							extent_len + len);
2675 			btrfs_mark_buffer_dirty(leaf);
2676 			inode_add_bytes(inode, len);
2677 
2678 			ret = 1;
2679 			goto out_free_path;
2680 		} else {
2681 			merge = false;
2682 			btrfs_release_path(path);
2683 			goto again;
2684 		}
2685 	}
2686 
2687 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2688 					sizeof(*extent));
2689 	if (ret) {
2690 		btrfs_abort_transaction(trans, ret);
2691 		goto out_free_path;
2692 	}
2693 
2694 	leaf = path->nodes[0];
2695 	item = btrfs_item_ptr(leaf, path->slots[0],
2696 				struct btrfs_file_extent_item);
2697 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2698 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2699 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2700 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2701 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2702 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2703 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2704 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2705 	btrfs_set_file_extent_encryption(leaf, item, 0);
2706 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2707 
2708 	btrfs_mark_buffer_dirty(leaf);
2709 	inode_add_bytes(inode, len);
2710 	btrfs_release_path(path);
2711 
2712 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2713 			new->disk_len, 0,
2714 			backref->root_id, backref->inum,
2715 			new->file_pos);	/* start - extent_offset */
2716 	if (ret) {
2717 		btrfs_abort_transaction(trans, ret);
2718 		goto out_free_path;
2719 	}
2720 
2721 	ret = 1;
2722 out_free_path:
2723 	btrfs_release_path(path);
2724 	path->leave_spinning = 0;
2725 	btrfs_end_transaction(trans);
2726 out_unlock:
2727 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2728 			     &cached);
2729 	iput(inode);
2730 	return ret;
2731 }
2732 
2733 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2734 {
2735 	struct old_sa_defrag_extent *old, *tmp;
2736 
2737 	if (!new)
2738 		return;
2739 
2740 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2741 		kfree(old);
2742 	}
2743 	kfree(new);
2744 }
2745 
2746 static void relink_file_extents(struct new_sa_defrag_extent *new)
2747 {
2748 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2749 	struct btrfs_path *path;
2750 	struct sa_defrag_extent_backref *backref;
2751 	struct sa_defrag_extent_backref *prev = NULL;
2752 	struct rb_node *node;
2753 	int ret;
2754 
2755 	path = btrfs_alloc_path();
2756 	if (!path)
2757 		return;
2758 
2759 	if (!record_extent_backrefs(path, new)) {
2760 		btrfs_free_path(path);
2761 		goto out;
2762 	}
2763 	btrfs_release_path(path);
2764 
2765 	while (1) {
2766 		node = rb_first(&new->root);
2767 		if (!node)
2768 			break;
2769 		rb_erase(node, &new->root);
2770 
2771 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2772 
2773 		ret = relink_extent_backref(path, prev, backref);
2774 		WARN_ON(ret < 0);
2775 
2776 		kfree(prev);
2777 
2778 		if (ret == 1)
2779 			prev = backref;
2780 		else
2781 			prev = NULL;
2782 		cond_resched();
2783 	}
2784 	kfree(prev);
2785 
2786 	btrfs_free_path(path);
2787 out:
2788 	free_sa_defrag_extent(new);
2789 
2790 	atomic_dec(&fs_info->defrag_running);
2791 	wake_up(&fs_info->transaction_wait);
2792 }
2793 
2794 static struct new_sa_defrag_extent *
2795 record_old_file_extents(struct inode *inode,
2796 			struct btrfs_ordered_extent *ordered)
2797 {
2798 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2799 	struct btrfs_root *root = BTRFS_I(inode)->root;
2800 	struct btrfs_path *path;
2801 	struct btrfs_key key;
2802 	struct old_sa_defrag_extent *old;
2803 	struct new_sa_defrag_extent *new;
2804 	int ret;
2805 
2806 	new = kmalloc(sizeof(*new), GFP_NOFS);
2807 	if (!new)
2808 		return NULL;
2809 
2810 	new->inode = inode;
2811 	new->file_pos = ordered->file_offset;
2812 	new->len = ordered->len;
2813 	new->bytenr = ordered->start;
2814 	new->disk_len = ordered->disk_len;
2815 	new->compress_type = ordered->compress_type;
2816 	new->root = RB_ROOT;
2817 	INIT_LIST_HEAD(&new->head);
2818 
2819 	path = btrfs_alloc_path();
2820 	if (!path)
2821 		goto out_kfree;
2822 
2823 	key.objectid = btrfs_ino(BTRFS_I(inode));
2824 	key.type = BTRFS_EXTENT_DATA_KEY;
2825 	key.offset = new->file_pos;
2826 
2827 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2828 	if (ret < 0)
2829 		goto out_free_path;
2830 	if (ret > 0 && path->slots[0] > 0)
2831 		path->slots[0]--;
2832 
2833 	/* find out all the old extents for the file range */
2834 	while (1) {
2835 		struct btrfs_file_extent_item *extent;
2836 		struct extent_buffer *l;
2837 		int slot;
2838 		u64 num_bytes;
2839 		u64 offset;
2840 		u64 end;
2841 		u64 disk_bytenr;
2842 		u64 extent_offset;
2843 
2844 		l = path->nodes[0];
2845 		slot = path->slots[0];
2846 
2847 		if (slot >= btrfs_header_nritems(l)) {
2848 			ret = btrfs_next_leaf(root, path);
2849 			if (ret < 0)
2850 				goto out_free_path;
2851 			else if (ret > 0)
2852 				break;
2853 			continue;
2854 		}
2855 
2856 		btrfs_item_key_to_cpu(l, &key, slot);
2857 
2858 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2859 			break;
2860 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2861 			break;
2862 		if (key.offset >= new->file_pos + new->len)
2863 			break;
2864 
2865 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2866 
2867 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2868 		if (key.offset + num_bytes < new->file_pos)
2869 			goto next;
2870 
2871 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2872 		if (!disk_bytenr)
2873 			goto next;
2874 
2875 		extent_offset = btrfs_file_extent_offset(l, extent);
2876 
2877 		old = kmalloc(sizeof(*old), GFP_NOFS);
2878 		if (!old)
2879 			goto out_free_path;
2880 
2881 		offset = max(new->file_pos, key.offset);
2882 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2883 
2884 		old->bytenr = disk_bytenr;
2885 		old->extent_offset = extent_offset;
2886 		old->offset = offset - key.offset;
2887 		old->len = end - offset;
2888 		old->new = new;
2889 		old->count = 0;
2890 		list_add_tail(&old->list, &new->head);
2891 next:
2892 		path->slots[0]++;
2893 		cond_resched();
2894 	}
2895 
2896 	btrfs_free_path(path);
2897 	atomic_inc(&fs_info->defrag_running);
2898 
2899 	return new;
2900 
2901 out_free_path:
2902 	btrfs_free_path(path);
2903 out_kfree:
2904 	free_sa_defrag_extent(new);
2905 	return NULL;
2906 }
2907 
2908 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2909 					 u64 start, u64 len)
2910 {
2911 	struct btrfs_block_group_cache *cache;
2912 
2913 	cache = btrfs_lookup_block_group(fs_info, start);
2914 	ASSERT(cache);
2915 
2916 	spin_lock(&cache->lock);
2917 	cache->delalloc_bytes -= len;
2918 	spin_unlock(&cache->lock);
2919 
2920 	btrfs_put_block_group(cache);
2921 }
2922 
2923 /* as ordered data IO finishes, this gets called so we can finish
2924  * an ordered extent if the range of bytes in the file it covers are
2925  * fully written.
2926  */
2927 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2928 {
2929 	struct inode *inode = ordered_extent->inode;
2930 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2931 	struct btrfs_root *root = BTRFS_I(inode)->root;
2932 	struct btrfs_trans_handle *trans = NULL;
2933 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2934 	struct extent_state *cached_state = NULL;
2935 	struct new_sa_defrag_extent *new = NULL;
2936 	int compress_type = 0;
2937 	int ret = 0;
2938 	u64 logical_len = ordered_extent->len;
2939 	bool nolock;
2940 	bool truncated = false;
2941 	bool range_locked = false;
2942 	bool clear_new_delalloc_bytes = false;
2943 	bool clear_reserved_extent = true;
2944 
2945 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2946 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2947 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2948 		clear_new_delalloc_bytes = true;
2949 
2950 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2951 
2952 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2953 		ret = -EIO;
2954 		goto out;
2955 	}
2956 
2957 	btrfs_free_io_failure_record(BTRFS_I(inode),
2958 			ordered_extent->file_offset,
2959 			ordered_extent->file_offset +
2960 			ordered_extent->len - 1);
2961 
2962 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2963 		truncated = true;
2964 		logical_len = ordered_extent->truncated_len;
2965 		/* Truncated the entire extent, don't bother adding */
2966 		if (!logical_len)
2967 			goto out;
2968 	}
2969 
2970 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2971 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2972 
2973 		/*
2974 		 * For mwrite(mmap + memset to write) case, we still reserve
2975 		 * space for NOCOW range.
2976 		 * As NOCOW won't cause a new delayed ref, just free the space
2977 		 */
2978 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2979 				       ordered_extent->len);
2980 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2981 		if (nolock)
2982 			trans = btrfs_join_transaction_nolock(root);
2983 		else
2984 			trans = btrfs_join_transaction(root);
2985 		if (IS_ERR(trans)) {
2986 			ret = PTR_ERR(trans);
2987 			trans = NULL;
2988 			goto out;
2989 		}
2990 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2991 		ret = btrfs_update_inode_fallback(trans, root, inode);
2992 		if (ret) /* -ENOMEM or corruption */
2993 			btrfs_abort_transaction(trans, ret);
2994 		goto out;
2995 	}
2996 
2997 	range_locked = true;
2998 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2999 			 ordered_extent->file_offset + ordered_extent->len - 1,
3000 			 &cached_state);
3001 
3002 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3003 			ordered_extent->file_offset + ordered_extent->len - 1,
3004 			EXTENT_DEFRAG, 0, cached_state);
3005 	if (ret) {
3006 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3007 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3008 			/* the inode is shared */
3009 			new = record_old_file_extents(inode, ordered_extent);
3010 
3011 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3012 			ordered_extent->file_offset + ordered_extent->len - 1,
3013 			EXTENT_DEFRAG, 0, 0, &cached_state);
3014 	}
3015 
3016 	if (nolock)
3017 		trans = btrfs_join_transaction_nolock(root);
3018 	else
3019 		trans = btrfs_join_transaction(root);
3020 	if (IS_ERR(trans)) {
3021 		ret = PTR_ERR(trans);
3022 		trans = NULL;
3023 		goto out;
3024 	}
3025 
3026 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3027 
3028 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3029 		compress_type = ordered_extent->compress_type;
3030 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3031 		BUG_ON(compress_type);
3032 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3033 				       ordered_extent->len);
3034 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3035 						ordered_extent->file_offset,
3036 						ordered_extent->file_offset +
3037 						logical_len);
3038 	} else {
3039 		BUG_ON(root == fs_info->tree_root);
3040 		ret = insert_reserved_file_extent(trans, inode,
3041 						ordered_extent->file_offset,
3042 						ordered_extent->start,
3043 						ordered_extent->disk_len,
3044 						logical_len, logical_len,
3045 						compress_type, 0, 0,
3046 						BTRFS_FILE_EXTENT_REG);
3047 		if (!ret) {
3048 			clear_reserved_extent = false;
3049 			btrfs_release_delalloc_bytes(fs_info,
3050 						     ordered_extent->start,
3051 						     ordered_extent->disk_len);
3052 		}
3053 	}
3054 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3055 			   ordered_extent->file_offset, ordered_extent->len,
3056 			   trans->transid);
3057 	if (ret < 0) {
3058 		btrfs_abort_transaction(trans, ret);
3059 		goto out;
3060 	}
3061 
3062 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3063 	if (ret) {
3064 		btrfs_abort_transaction(trans, ret);
3065 		goto out;
3066 	}
3067 
3068 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3069 	ret = btrfs_update_inode_fallback(trans, root, inode);
3070 	if (ret) { /* -ENOMEM or corruption */
3071 		btrfs_abort_transaction(trans, ret);
3072 		goto out;
3073 	}
3074 	ret = 0;
3075 out:
3076 	if (range_locked || clear_new_delalloc_bytes) {
3077 		unsigned int clear_bits = 0;
3078 
3079 		if (range_locked)
3080 			clear_bits |= EXTENT_LOCKED;
3081 		if (clear_new_delalloc_bytes)
3082 			clear_bits |= EXTENT_DELALLOC_NEW;
3083 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3084 				 ordered_extent->file_offset,
3085 				 ordered_extent->file_offset +
3086 				 ordered_extent->len - 1,
3087 				 clear_bits,
3088 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3089 				 0, &cached_state);
3090 	}
3091 
3092 	if (trans)
3093 		btrfs_end_transaction(trans);
3094 
3095 	if (ret || truncated) {
3096 		u64 start, end;
3097 
3098 		if (truncated)
3099 			start = ordered_extent->file_offset + logical_len;
3100 		else
3101 			start = ordered_extent->file_offset;
3102 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3103 		clear_extent_uptodate(io_tree, start, end, NULL);
3104 
3105 		/* Drop the cache for the part of the extent we didn't write. */
3106 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3107 
3108 		/*
3109 		 * If the ordered extent had an IOERR or something else went
3110 		 * wrong we need to return the space for this ordered extent
3111 		 * back to the allocator.  We only free the extent in the
3112 		 * truncated case if we didn't write out the extent at all.
3113 		 *
3114 		 * If we made it past insert_reserved_file_extent before we
3115 		 * errored out then we don't need to do this as the accounting
3116 		 * has already been done.
3117 		 */
3118 		if ((ret || !logical_len) &&
3119 		    clear_reserved_extent &&
3120 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3121 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3122 			btrfs_free_reserved_extent(fs_info,
3123 						   ordered_extent->start,
3124 						   ordered_extent->disk_len, 1);
3125 	}
3126 
3127 
3128 	/*
3129 	 * This needs to be done to make sure anybody waiting knows we are done
3130 	 * updating everything for this ordered extent.
3131 	 */
3132 	btrfs_remove_ordered_extent(inode, ordered_extent);
3133 
3134 	/* for snapshot-aware defrag */
3135 	if (new) {
3136 		if (ret) {
3137 			free_sa_defrag_extent(new);
3138 			atomic_dec(&fs_info->defrag_running);
3139 		} else {
3140 			relink_file_extents(new);
3141 		}
3142 	}
3143 
3144 	/* once for us */
3145 	btrfs_put_ordered_extent(ordered_extent);
3146 	/* once for the tree */
3147 	btrfs_put_ordered_extent(ordered_extent);
3148 
3149 	/* Try to release some metadata so we don't get an OOM but don't wait */
3150 	btrfs_btree_balance_dirty_nodelay(fs_info);
3151 
3152 	return ret;
3153 }
3154 
3155 static void finish_ordered_fn(struct btrfs_work *work)
3156 {
3157 	struct btrfs_ordered_extent *ordered_extent;
3158 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3159 	btrfs_finish_ordered_io(ordered_extent);
3160 }
3161 
3162 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3163 				struct extent_state *state, int uptodate)
3164 {
3165 	struct inode *inode = page->mapping->host;
3166 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3167 	struct btrfs_ordered_extent *ordered_extent = NULL;
3168 	struct btrfs_workqueue *wq;
3169 	btrfs_work_func_t func;
3170 
3171 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3172 
3173 	ClearPagePrivate2(page);
3174 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3175 					    end - start + 1, uptodate))
3176 		return;
3177 
3178 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3179 		wq = fs_info->endio_freespace_worker;
3180 		func = btrfs_freespace_write_helper;
3181 	} else {
3182 		wq = fs_info->endio_write_workers;
3183 		func = btrfs_endio_write_helper;
3184 	}
3185 
3186 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3187 			NULL);
3188 	btrfs_queue_work(wq, &ordered_extent->work);
3189 }
3190 
3191 static int __readpage_endio_check(struct inode *inode,
3192 				  struct btrfs_io_bio *io_bio,
3193 				  int icsum, struct page *page,
3194 				  int pgoff, u64 start, size_t len)
3195 {
3196 	char *kaddr;
3197 	u32 csum_expected;
3198 	u32 csum = ~(u32)0;
3199 
3200 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3201 
3202 	kaddr = kmap_atomic(page);
3203 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3204 	btrfs_csum_final(csum, (u8 *)&csum);
3205 	if (csum != csum_expected)
3206 		goto zeroit;
3207 
3208 	kunmap_atomic(kaddr);
3209 	return 0;
3210 zeroit:
3211 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3212 				    io_bio->mirror_num);
3213 	memset(kaddr + pgoff, 1, len);
3214 	flush_dcache_page(page);
3215 	kunmap_atomic(kaddr);
3216 	return -EIO;
3217 }
3218 
3219 /*
3220  * when reads are done, we need to check csums to verify the data is correct
3221  * if there's a match, we allow the bio to finish.  If not, the code in
3222  * extent_io.c will try to find good copies for us.
3223  */
3224 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3225 				      u64 phy_offset, struct page *page,
3226 				      u64 start, u64 end, int mirror)
3227 {
3228 	size_t offset = start - page_offset(page);
3229 	struct inode *inode = page->mapping->host;
3230 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3231 	struct btrfs_root *root = BTRFS_I(inode)->root;
3232 
3233 	if (PageChecked(page)) {
3234 		ClearPageChecked(page);
3235 		return 0;
3236 	}
3237 
3238 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3239 		return 0;
3240 
3241 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3242 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3243 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3244 		return 0;
3245 	}
3246 
3247 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3248 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3249 				      start, (size_t)(end - start + 1));
3250 }
3251 
3252 /*
3253  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3254  *
3255  * @inode: The inode we want to perform iput on
3256  *
3257  * This function uses the generic vfs_inode::i_count to track whether we should
3258  * just decrement it (in case it's > 1) or if this is the last iput then link
3259  * the inode to the delayed iput machinery. Delayed iputs are processed at
3260  * transaction commit time/superblock commit/cleaner kthread.
3261  */
3262 void btrfs_add_delayed_iput(struct inode *inode)
3263 {
3264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3265 	struct btrfs_inode *binode = BTRFS_I(inode);
3266 
3267 	if (atomic_add_unless(&inode->i_count, -1, 1))
3268 		return;
3269 
3270 	spin_lock(&fs_info->delayed_iput_lock);
3271 	ASSERT(list_empty(&binode->delayed_iput));
3272 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3273 	spin_unlock(&fs_info->delayed_iput_lock);
3274 }
3275 
3276 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3277 {
3278 
3279 	spin_lock(&fs_info->delayed_iput_lock);
3280 	while (!list_empty(&fs_info->delayed_iputs)) {
3281 		struct btrfs_inode *inode;
3282 
3283 		inode = list_first_entry(&fs_info->delayed_iputs,
3284 				struct btrfs_inode, delayed_iput);
3285 		list_del_init(&inode->delayed_iput);
3286 		spin_unlock(&fs_info->delayed_iput_lock);
3287 		iput(&inode->vfs_inode);
3288 		spin_lock(&fs_info->delayed_iput_lock);
3289 	}
3290 	spin_unlock(&fs_info->delayed_iput_lock);
3291 }
3292 
3293 /*
3294  * This creates an orphan entry for the given inode in case something goes wrong
3295  * in the middle of an unlink.
3296  */
3297 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3298 		     struct btrfs_inode *inode)
3299 {
3300 	int ret;
3301 
3302 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3303 	if (ret && ret != -EEXIST) {
3304 		btrfs_abort_transaction(trans, ret);
3305 		return ret;
3306 	}
3307 
3308 	return 0;
3309 }
3310 
3311 /*
3312  * We have done the delete so we can go ahead and remove the orphan item for
3313  * this particular inode.
3314  */
3315 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3316 			    struct btrfs_inode *inode)
3317 {
3318 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3319 }
3320 
3321 /*
3322  * this cleans up any orphans that may be left on the list from the last use
3323  * of this root.
3324  */
3325 int btrfs_orphan_cleanup(struct btrfs_root *root)
3326 {
3327 	struct btrfs_fs_info *fs_info = root->fs_info;
3328 	struct btrfs_path *path;
3329 	struct extent_buffer *leaf;
3330 	struct btrfs_key key, found_key;
3331 	struct btrfs_trans_handle *trans;
3332 	struct inode *inode;
3333 	u64 last_objectid = 0;
3334 	int ret = 0, nr_unlink = 0;
3335 
3336 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3337 		return 0;
3338 
3339 	path = btrfs_alloc_path();
3340 	if (!path) {
3341 		ret = -ENOMEM;
3342 		goto out;
3343 	}
3344 	path->reada = READA_BACK;
3345 
3346 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3347 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3348 	key.offset = (u64)-1;
3349 
3350 	while (1) {
3351 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3352 		if (ret < 0)
3353 			goto out;
3354 
3355 		/*
3356 		 * if ret == 0 means we found what we were searching for, which
3357 		 * is weird, but possible, so only screw with path if we didn't
3358 		 * find the key and see if we have stuff that matches
3359 		 */
3360 		if (ret > 0) {
3361 			ret = 0;
3362 			if (path->slots[0] == 0)
3363 				break;
3364 			path->slots[0]--;
3365 		}
3366 
3367 		/* pull out the item */
3368 		leaf = path->nodes[0];
3369 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3370 
3371 		/* make sure the item matches what we want */
3372 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3373 			break;
3374 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3375 			break;
3376 
3377 		/* release the path since we're done with it */
3378 		btrfs_release_path(path);
3379 
3380 		/*
3381 		 * this is where we are basically btrfs_lookup, without the
3382 		 * crossing root thing.  we store the inode number in the
3383 		 * offset of the orphan item.
3384 		 */
3385 
3386 		if (found_key.offset == last_objectid) {
3387 			btrfs_err(fs_info,
3388 				  "Error removing orphan entry, stopping orphan cleanup");
3389 			ret = -EINVAL;
3390 			goto out;
3391 		}
3392 
3393 		last_objectid = found_key.offset;
3394 
3395 		found_key.objectid = found_key.offset;
3396 		found_key.type = BTRFS_INODE_ITEM_KEY;
3397 		found_key.offset = 0;
3398 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3399 		ret = PTR_ERR_OR_ZERO(inode);
3400 		if (ret && ret != -ENOENT)
3401 			goto out;
3402 
3403 		if (ret == -ENOENT && root == fs_info->tree_root) {
3404 			struct btrfs_root *dead_root;
3405 			struct btrfs_fs_info *fs_info = root->fs_info;
3406 			int is_dead_root = 0;
3407 
3408 			/*
3409 			 * this is an orphan in the tree root. Currently these
3410 			 * could come from 2 sources:
3411 			 *  a) a snapshot deletion in progress
3412 			 *  b) a free space cache inode
3413 			 * We need to distinguish those two, as the snapshot
3414 			 * orphan must not get deleted.
3415 			 * find_dead_roots already ran before us, so if this
3416 			 * is a snapshot deletion, we should find the root
3417 			 * in the dead_roots list
3418 			 */
3419 			spin_lock(&fs_info->trans_lock);
3420 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3421 					    root_list) {
3422 				if (dead_root->root_key.objectid ==
3423 				    found_key.objectid) {
3424 					is_dead_root = 1;
3425 					break;
3426 				}
3427 			}
3428 			spin_unlock(&fs_info->trans_lock);
3429 			if (is_dead_root) {
3430 				/* prevent this orphan from being found again */
3431 				key.offset = found_key.objectid - 1;
3432 				continue;
3433 			}
3434 
3435 		}
3436 
3437 		/*
3438 		 * If we have an inode with links, there are a couple of
3439 		 * possibilities. Old kernels (before v3.12) used to create an
3440 		 * orphan item for truncate indicating that there were possibly
3441 		 * extent items past i_size that needed to be deleted. In v3.12,
3442 		 * truncate was changed to update i_size in sync with the extent
3443 		 * items, but the (useless) orphan item was still created. Since
3444 		 * v4.18, we don't create the orphan item for truncate at all.
3445 		 *
3446 		 * So, this item could mean that we need to do a truncate, but
3447 		 * only if this filesystem was last used on a pre-v3.12 kernel
3448 		 * and was not cleanly unmounted. The odds of that are quite
3449 		 * slim, and it's a pain to do the truncate now, so just delete
3450 		 * the orphan item.
3451 		 *
3452 		 * It's also possible that this orphan item was supposed to be
3453 		 * deleted but wasn't. The inode number may have been reused,
3454 		 * but either way, we can delete the orphan item.
3455 		 */
3456 		if (ret == -ENOENT || inode->i_nlink) {
3457 			if (!ret)
3458 				iput(inode);
3459 			trans = btrfs_start_transaction(root, 1);
3460 			if (IS_ERR(trans)) {
3461 				ret = PTR_ERR(trans);
3462 				goto out;
3463 			}
3464 			btrfs_debug(fs_info, "auto deleting %Lu",
3465 				    found_key.objectid);
3466 			ret = btrfs_del_orphan_item(trans, root,
3467 						    found_key.objectid);
3468 			btrfs_end_transaction(trans);
3469 			if (ret)
3470 				goto out;
3471 			continue;
3472 		}
3473 
3474 		nr_unlink++;
3475 
3476 		/* this will do delete_inode and everything for us */
3477 		iput(inode);
3478 	}
3479 	/* release the path since we're done with it */
3480 	btrfs_release_path(path);
3481 
3482 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3483 
3484 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3485 		trans = btrfs_join_transaction(root);
3486 		if (!IS_ERR(trans))
3487 			btrfs_end_transaction(trans);
3488 	}
3489 
3490 	if (nr_unlink)
3491 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3492 
3493 out:
3494 	if (ret)
3495 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3496 	btrfs_free_path(path);
3497 	return ret;
3498 }
3499 
3500 /*
3501  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3502  * don't find any xattrs, we know there can't be any acls.
3503  *
3504  * slot is the slot the inode is in, objectid is the objectid of the inode
3505  */
3506 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3507 					  int slot, u64 objectid,
3508 					  int *first_xattr_slot)
3509 {
3510 	u32 nritems = btrfs_header_nritems(leaf);
3511 	struct btrfs_key found_key;
3512 	static u64 xattr_access = 0;
3513 	static u64 xattr_default = 0;
3514 	int scanned = 0;
3515 
3516 	if (!xattr_access) {
3517 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3518 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3519 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3520 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3521 	}
3522 
3523 	slot++;
3524 	*first_xattr_slot = -1;
3525 	while (slot < nritems) {
3526 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3527 
3528 		/* we found a different objectid, there must not be acls */
3529 		if (found_key.objectid != objectid)
3530 			return 0;
3531 
3532 		/* we found an xattr, assume we've got an acl */
3533 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3534 			if (*first_xattr_slot == -1)
3535 				*first_xattr_slot = slot;
3536 			if (found_key.offset == xattr_access ||
3537 			    found_key.offset == xattr_default)
3538 				return 1;
3539 		}
3540 
3541 		/*
3542 		 * we found a key greater than an xattr key, there can't
3543 		 * be any acls later on
3544 		 */
3545 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3546 			return 0;
3547 
3548 		slot++;
3549 		scanned++;
3550 
3551 		/*
3552 		 * it goes inode, inode backrefs, xattrs, extents,
3553 		 * so if there are a ton of hard links to an inode there can
3554 		 * be a lot of backrefs.  Don't waste time searching too hard,
3555 		 * this is just an optimization
3556 		 */
3557 		if (scanned >= 8)
3558 			break;
3559 	}
3560 	/* we hit the end of the leaf before we found an xattr or
3561 	 * something larger than an xattr.  We have to assume the inode
3562 	 * has acls
3563 	 */
3564 	if (*first_xattr_slot == -1)
3565 		*first_xattr_slot = slot;
3566 	return 1;
3567 }
3568 
3569 /*
3570  * read an inode from the btree into the in-memory inode
3571  */
3572 static int btrfs_read_locked_inode(struct inode *inode,
3573 				   struct btrfs_path *in_path)
3574 {
3575 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3576 	struct btrfs_path *path = in_path;
3577 	struct extent_buffer *leaf;
3578 	struct btrfs_inode_item *inode_item;
3579 	struct btrfs_root *root = BTRFS_I(inode)->root;
3580 	struct btrfs_key location;
3581 	unsigned long ptr;
3582 	int maybe_acls;
3583 	u32 rdev;
3584 	int ret;
3585 	bool filled = false;
3586 	int first_xattr_slot;
3587 
3588 	ret = btrfs_fill_inode(inode, &rdev);
3589 	if (!ret)
3590 		filled = true;
3591 
3592 	if (!path) {
3593 		path = btrfs_alloc_path();
3594 		if (!path)
3595 			return -ENOMEM;
3596 	}
3597 
3598 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3599 
3600 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3601 	if (ret) {
3602 		if (path != in_path)
3603 			btrfs_free_path(path);
3604 		return ret;
3605 	}
3606 
3607 	leaf = path->nodes[0];
3608 
3609 	if (filled)
3610 		goto cache_index;
3611 
3612 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3613 				    struct btrfs_inode_item);
3614 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3615 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3616 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3617 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3618 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3619 
3620 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3621 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3622 
3623 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3624 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3625 
3626 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3627 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3628 
3629 	BTRFS_I(inode)->i_otime.tv_sec =
3630 		btrfs_timespec_sec(leaf, &inode_item->otime);
3631 	BTRFS_I(inode)->i_otime.tv_nsec =
3632 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3633 
3634 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3635 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3636 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3637 
3638 	inode_set_iversion_queried(inode,
3639 				   btrfs_inode_sequence(leaf, inode_item));
3640 	inode->i_generation = BTRFS_I(inode)->generation;
3641 	inode->i_rdev = 0;
3642 	rdev = btrfs_inode_rdev(leaf, inode_item);
3643 
3644 	BTRFS_I(inode)->index_cnt = (u64)-1;
3645 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3646 
3647 cache_index:
3648 	/*
3649 	 * If we were modified in the current generation and evicted from memory
3650 	 * and then re-read we need to do a full sync since we don't have any
3651 	 * idea about which extents were modified before we were evicted from
3652 	 * cache.
3653 	 *
3654 	 * This is required for both inode re-read from disk and delayed inode
3655 	 * in delayed_nodes_tree.
3656 	 */
3657 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3658 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3659 			&BTRFS_I(inode)->runtime_flags);
3660 
3661 	/*
3662 	 * We don't persist the id of the transaction where an unlink operation
3663 	 * against the inode was last made. So here we assume the inode might
3664 	 * have been evicted, and therefore the exact value of last_unlink_trans
3665 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3666 	 * between the inode and its parent if the inode is fsync'ed and the log
3667 	 * replayed. For example, in the scenario:
3668 	 *
3669 	 * touch mydir/foo
3670 	 * ln mydir/foo mydir/bar
3671 	 * sync
3672 	 * unlink mydir/bar
3673 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3674 	 * xfs_io -c fsync mydir/foo
3675 	 * <power failure>
3676 	 * mount fs, triggers fsync log replay
3677 	 *
3678 	 * We must make sure that when we fsync our inode foo we also log its
3679 	 * parent inode, otherwise after log replay the parent still has the
3680 	 * dentry with the "bar" name but our inode foo has a link count of 1
3681 	 * and doesn't have an inode ref with the name "bar" anymore.
3682 	 *
3683 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3684 	 * but it guarantees correctness at the expense of occasional full
3685 	 * transaction commits on fsync if our inode is a directory, or if our
3686 	 * inode is not a directory, logging its parent unnecessarily.
3687 	 */
3688 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3689 
3690 	path->slots[0]++;
3691 	if (inode->i_nlink != 1 ||
3692 	    path->slots[0] >= btrfs_header_nritems(leaf))
3693 		goto cache_acl;
3694 
3695 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3696 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3697 		goto cache_acl;
3698 
3699 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3700 	if (location.type == BTRFS_INODE_REF_KEY) {
3701 		struct btrfs_inode_ref *ref;
3702 
3703 		ref = (struct btrfs_inode_ref *)ptr;
3704 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3705 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3706 		struct btrfs_inode_extref *extref;
3707 
3708 		extref = (struct btrfs_inode_extref *)ptr;
3709 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3710 								     extref);
3711 	}
3712 cache_acl:
3713 	/*
3714 	 * try to precache a NULL acl entry for files that don't have
3715 	 * any xattrs or acls
3716 	 */
3717 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3718 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3719 	if (first_xattr_slot != -1) {
3720 		path->slots[0] = first_xattr_slot;
3721 		ret = btrfs_load_inode_props(inode, path);
3722 		if (ret)
3723 			btrfs_err(fs_info,
3724 				  "error loading props for ino %llu (root %llu): %d",
3725 				  btrfs_ino(BTRFS_I(inode)),
3726 				  root->root_key.objectid, ret);
3727 	}
3728 	if (path != in_path)
3729 		btrfs_free_path(path);
3730 
3731 	if (!maybe_acls)
3732 		cache_no_acl(inode);
3733 
3734 	switch (inode->i_mode & S_IFMT) {
3735 	case S_IFREG:
3736 		inode->i_mapping->a_ops = &btrfs_aops;
3737 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3738 		inode->i_fop = &btrfs_file_operations;
3739 		inode->i_op = &btrfs_file_inode_operations;
3740 		break;
3741 	case S_IFDIR:
3742 		inode->i_fop = &btrfs_dir_file_operations;
3743 		inode->i_op = &btrfs_dir_inode_operations;
3744 		break;
3745 	case S_IFLNK:
3746 		inode->i_op = &btrfs_symlink_inode_operations;
3747 		inode_nohighmem(inode);
3748 		inode->i_mapping->a_ops = &btrfs_aops;
3749 		break;
3750 	default:
3751 		inode->i_op = &btrfs_special_inode_operations;
3752 		init_special_inode(inode, inode->i_mode, rdev);
3753 		break;
3754 	}
3755 
3756 	btrfs_sync_inode_flags_to_i_flags(inode);
3757 	return 0;
3758 }
3759 
3760 /*
3761  * given a leaf and an inode, copy the inode fields into the leaf
3762  */
3763 static void fill_inode_item(struct btrfs_trans_handle *trans,
3764 			    struct extent_buffer *leaf,
3765 			    struct btrfs_inode_item *item,
3766 			    struct inode *inode)
3767 {
3768 	struct btrfs_map_token token;
3769 
3770 	btrfs_init_map_token(&token);
3771 
3772 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3773 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3774 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3775 				   &token);
3776 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3777 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3778 
3779 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3780 				     inode->i_atime.tv_sec, &token);
3781 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3782 				      inode->i_atime.tv_nsec, &token);
3783 
3784 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3785 				     inode->i_mtime.tv_sec, &token);
3786 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3787 				      inode->i_mtime.tv_nsec, &token);
3788 
3789 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3790 				     inode->i_ctime.tv_sec, &token);
3791 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3792 				      inode->i_ctime.tv_nsec, &token);
3793 
3794 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3795 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3796 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3797 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3798 
3799 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3800 				     &token);
3801 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3802 					 &token);
3803 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3804 				       &token);
3805 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3806 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3807 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3808 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3809 }
3810 
3811 /*
3812  * copy everything in the in-memory inode into the btree.
3813  */
3814 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3815 				struct btrfs_root *root, struct inode *inode)
3816 {
3817 	struct btrfs_inode_item *inode_item;
3818 	struct btrfs_path *path;
3819 	struct extent_buffer *leaf;
3820 	int ret;
3821 
3822 	path = btrfs_alloc_path();
3823 	if (!path)
3824 		return -ENOMEM;
3825 
3826 	path->leave_spinning = 1;
3827 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3828 				 1);
3829 	if (ret) {
3830 		if (ret > 0)
3831 			ret = -ENOENT;
3832 		goto failed;
3833 	}
3834 
3835 	leaf = path->nodes[0];
3836 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3837 				    struct btrfs_inode_item);
3838 
3839 	fill_inode_item(trans, leaf, inode_item, inode);
3840 	btrfs_mark_buffer_dirty(leaf);
3841 	btrfs_set_inode_last_trans(trans, inode);
3842 	ret = 0;
3843 failed:
3844 	btrfs_free_path(path);
3845 	return ret;
3846 }
3847 
3848 /*
3849  * copy everything in the in-memory inode into the btree.
3850  */
3851 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3852 				struct btrfs_root *root, struct inode *inode)
3853 {
3854 	struct btrfs_fs_info *fs_info = root->fs_info;
3855 	int ret;
3856 
3857 	/*
3858 	 * If the inode is a free space inode, we can deadlock during commit
3859 	 * if we put it into the delayed code.
3860 	 *
3861 	 * The data relocation inode should also be directly updated
3862 	 * without delay
3863 	 */
3864 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3865 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3866 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3867 		btrfs_update_root_times(trans, root);
3868 
3869 		ret = btrfs_delayed_update_inode(trans, root, inode);
3870 		if (!ret)
3871 			btrfs_set_inode_last_trans(trans, inode);
3872 		return ret;
3873 	}
3874 
3875 	return btrfs_update_inode_item(trans, root, inode);
3876 }
3877 
3878 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3879 					 struct btrfs_root *root,
3880 					 struct inode *inode)
3881 {
3882 	int ret;
3883 
3884 	ret = btrfs_update_inode(trans, root, inode);
3885 	if (ret == -ENOSPC)
3886 		return btrfs_update_inode_item(trans, root, inode);
3887 	return ret;
3888 }
3889 
3890 /*
3891  * unlink helper that gets used here in inode.c and in the tree logging
3892  * recovery code.  It remove a link in a directory with a given name, and
3893  * also drops the back refs in the inode to the directory
3894  */
3895 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3896 				struct btrfs_root *root,
3897 				struct btrfs_inode *dir,
3898 				struct btrfs_inode *inode,
3899 				const char *name, int name_len)
3900 {
3901 	struct btrfs_fs_info *fs_info = root->fs_info;
3902 	struct btrfs_path *path;
3903 	int ret = 0;
3904 	struct extent_buffer *leaf;
3905 	struct btrfs_dir_item *di;
3906 	struct btrfs_key key;
3907 	u64 index;
3908 	u64 ino = btrfs_ino(inode);
3909 	u64 dir_ino = btrfs_ino(dir);
3910 
3911 	path = btrfs_alloc_path();
3912 	if (!path) {
3913 		ret = -ENOMEM;
3914 		goto out;
3915 	}
3916 
3917 	path->leave_spinning = 1;
3918 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3919 				    name, name_len, -1);
3920 	if (IS_ERR_OR_NULL(di)) {
3921 		ret = di ? PTR_ERR(di) : -ENOENT;
3922 		goto err;
3923 	}
3924 	leaf = path->nodes[0];
3925 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3926 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3927 	if (ret)
3928 		goto err;
3929 	btrfs_release_path(path);
3930 
3931 	/*
3932 	 * If we don't have dir index, we have to get it by looking up
3933 	 * the inode ref, since we get the inode ref, remove it directly,
3934 	 * it is unnecessary to do delayed deletion.
3935 	 *
3936 	 * But if we have dir index, needn't search inode ref to get it.
3937 	 * Since the inode ref is close to the inode item, it is better
3938 	 * that we delay to delete it, and just do this deletion when
3939 	 * we update the inode item.
3940 	 */
3941 	if (inode->dir_index) {
3942 		ret = btrfs_delayed_delete_inode_ref(inode);
3943 		if (!ret) {
3944 			index = inode->dir_index;
3945 			goto skip_backref;
3946 		}
3947 	}
3948 
3949 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3950 				  dir_ino, &index);
3951 	if (ret) {
3952 		btrfs_info(fs_info,
3953 			"failed to delete reference to %.*s, inode %llu parent %llu",
3954 			name_len, name, ino, dir_ino);
3955 		btrfs_abort_transaction(trans, ret);
3956 		goto err;
3957 	}
3958 skip_backref:
3959 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3960 	if (ret) {
3961 		btrfs_abort_transaction(trans, ret);
3962 		goto err;
3963 	}
3964 
3965 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3966 			dir_ino);
3967 	if (ret != 0 && ret != -ENOENT) {
3968 		btrfs_abort_transaction(trans, ret);
3969 		goto err;
3970 	}
3971 
3972 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3973 			index);
3974 	if (ret == -ENOENT)
3975 		ret = 0;
3976 	else if (ret)
3977 		btrfs_abort_transaction(trans, ret);
3978 err:
3979 	btrfs_free_path(path);
3980 	if (ret)
3981 		goto out;
3982 
3983 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3984 	inode_inc_iversion(&inode->vfs_inode);
3985 	inode_inc_iversion(&dir->vfs_inode);
3986 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3987 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3988 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3989 out:
3990 	return ret;
3991 }
3992 
3993 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3994 		       struct btrfs_root *root,
3995 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3996 		       const char *name, int name_len)
3997 {
3998 	int ret;
3999 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4000 	if (!ret) {
4001 		drop_nlink(&inode->vfs_inode);
4002 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4003 	}
4004 	return ret;
4005 }
4006 
4007 /*
4008  * helper to start transaction for unlink and rmdir.
4009  *
4010  * unlink and rmdir are special in btrfs, they do not always free space, so
4011  * if we cannot make our reservations the normal way try and see if there is
4012  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4013  * allow the unlink to occur.
4014  */
4015 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4016 {
4017 	struct btrfs_root *root = BTRFS_I(dir)->root;
4018 
4019 	/*
4020 	 * 1 for the possible orphan item
4021 	 * 1 for the dir item
4022 	 * 1 for the dir index
4023 	 * 1 for the inode ref
4024 	 * 1 for the inode
4025 	 */
4026 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4027 }
4028 
4029 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4030 {
4031 	struct btrfs_root *root = BTRFS_I(dir)->root;
4032 	struct btrfs_trans_handle *trans;
4033 	struct inode *inode = d_inode(dentry);
4034 	int ret;
4035 
4036 	trans = __unlink_start_trans(dir);
4037 	if (IS_ERR(trans))
4038 		return PTR_ERR(trans);
4039 
4040 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4041 			0);
4042 
4043 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4044 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4045 			dentry->d_name.len);
4046 	if (ret)
4047 		goto out;
4048 
4049 	if (inode->i_nlink == 0) {
4050 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4051 		if (ret)
4052 			goto out;
4053 	}
4054 
4055 out:
4056 	btrfs_end_transaction(trans);
4057 	btrfs_btree_balance_dirty(root->fs_info);
4058 	return ret;
4059 }
4060 
4061 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4062 			       struct inode *dir, u64 objectid,
4063 			       const char *name, int name_len)
4064 {
4065 	struct btrfs_root *root = BTRFS_I(dir)->root;
4066 	struct btrfs_path *path;
4067 	struct extent_buffer *leaf;
4068 	struct btrfs_dir_item *di;
4069 	struct btrfs_key key;
4070 	u64 index;
4071 	int ret;
4072 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4073 
4074 	path = btrfs_alloc_path();
4075 	if (!path)
4076 		return -ENOMEM;
4077 
4078 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4079 				   name, name_len, -1);
4080 	if (IS_ERR_OR_NULL(di)) {
4081 		ret = di ? PTR_ERR(di) : -ENOENT;
4082 		goto out;
4083 	}
4084 
4085 	leaf = path->nodes[0];
4086 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4087 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4088 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4089 	if (ret) {
4090 		btrfs_abort_transaction(trans, ret);
4091 		goto out;
4092 	}
4093 	btrfs_release_path(path);
4094 
4095 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4096 				 dir_ino, &index, name, name_len);
4097 	if (ret < 0) {
4098 		if (ret != -ENOENT) {
4099 			btrfs_abort_transaction(trans, ret);
4100 			goto out;
4101 		}
4102 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4103 						 name, name_len);
4104 		if (IS_ERR_OR_NULL(di)) {
4105 			if (!di)
4106 				ret = -ENOENT;
4107 			else
4108 				ret = PTR_ERR(di);
4109 			btrfs_abort_transaction(trans, ret);
4110 			goto out;
4111 		}
4112 
4113 		leaf = path->nodes[0];
4114 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4115 		index = key.offset;
4116 	}
4117 	btrfs_release_path(path);
4118 
4119 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4120 	if (ret) {
4121 		btrfs_abort_transaction(trans, ret);
4122 		goto out;
4123 	}
4124 
4125 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4126 	inode_inc_iversion(dir);
4127 	dir->i_mtime = dir->i_ctime = current_time(dir);
4128 	ret = btrfs_update_inode_fallback(trans, root, dir);
4129 	if (ret)
4130 		btrfs_abort_transaction(trans, ret);
4131 out:
4132 	btrfs_free_path(path);
4133 	return ret;
4134 }
4135 
4136 /*
4137  * Helper to check if the subvolume references other subvolumes or if it's
4138  * default.
4139  */
4140 static noinline int may_destroy_subvol(struct btrfs_root *root)
4141 {
4142 	struct btrfs_fs_info *fs_info = root->fs_info;
4143 	struct btrfs_path *path;
4144 	struct btrfs_dir_item *di;
4145 	struct btrfs_key key;
4146 	u64 dir_id;
4147 	int ret;
4148 
4149 	path = btrfs_alloc_path();
4150 	if (!path)
4151 		return -ENOMEM;
4152 
4153 	/* Make sure this root isn't set as the default subvol */
4154 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4155 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4156 				   dir_id, "default", 7, 0);
4157 	if (di && !IS_ERR(di)) {
4158 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4159 		if (key.objectid == root->root_key.objectid) {
4160 			ret = -EPERM;
4161 			btrfs_err(fs_info,
4162 				  "deleting default subvolume %llu is not allowed",
4163 				  key.objectid);
4164 			goto out;
4165 		}
4166 		btrfs_release_path(path);
4167 	}
4168 
4169 	key.objectid = root->root_key.objectid;
4170 	key.type = BTRFS_ROOT_REF_KEY;
4171 	key.offset = (u64)-1;
4172 
4173 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4174 	if (ret < 0)
4175 		goto out;
4176 	BUG_ON(ret == 0);
4177 
4178 	ret = 0;
4179 	if (path->slots[0] > 0) {
4180 		path->slots[0]--;
4181 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4182 		if (key.objectid == root->root_key.objectid &&
4183 		    key.type == BTRFS_ROOT_REF_KEY)
4184 			ret = -ENOTEMPTY;
4185 	}
4186 out:
4187 	btrfs_free_path(path);
4188 	return ret;
4189 }
4190 
4191 /* Delete all dentries for inodes belonging to the root */
4192 static void btrfs_prune_dentries(struct btrfs_root *root)
4193 {
4194 	struct btrfs_fs_info *fs_info = root->fs_info;
4195 	struct rb_node *node;
4196 	struct rb_node *prev;
4197 	struct btrfs_inode *entry;
4198 	struct inode *inode;
4199 	u64 objectid = 0;
4200 
4201 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4202 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4203 
4204 	spin_lock(&root->inode_lock);
4205 again:
4206 	node = root->inode_tree.rb_node;
4207 	prev = NULL;
4208 	while (node) {
4209 		prev = node;
4210 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4211 
4212 		if (objectid < btrfs_ino(entry))
4213 			node = node->rb_left;
4214 		else if (objectid > btrfs_ino(entry))
4215 			node = node->rb_right;
4216 		else
4217 			break;
4218 	}
4219 	if (!node) {
4220 		while (prev) {
4221 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4222 			if (objectid <= btrfs_ino(entry)) {
4223 				node = prev;
4224 				break;
4225 			}
4226 			prev = rb_next(prev);
4227 		}
4228 	}
4229 	while (node) {
4230 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4231 		objectid = btrfs_ino(entry) + 1;
4232 		inode = igrab(&entry->vfs_inode);
4233 		if (inode) {
4234 			spin_unlock(&root->inode_lock);
4235 			if (atomic_read(&inode->i_count) > 1)
4236 				d_prune_aliases(inode);
4237 			/*
4238 			 * btrfs_drop_inode will have it removed from the inode
4239 			 * cache when its usage count hits zero.
4240 			 */
4241 			iput(inode);
4242 			cond_resched();
4243 			spin_lock(&root->inode_lock);
4244 			goto again;
4245 		}
4246 
4247 		if (cond_resched_lock(&root->inode_lock))
4248 			goto again;
4249 
4250 		node = rb_next(node);
4251 	}
4252 	spin_unlock(&root->inode_lock);
4253 }
4254 
4255 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4256 {
4257 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4258 	struct btrfs_root *root = BTRFS_I(dir)->root;
4259 	struct inode *inode = d_inode(dentry);
4260 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4261 	struct btrfs_trans_handle *trans;
4262 	struct btrfs_block_rsv block_rsv;
4263 	u64 root_flags;
4264 	int ret;
4265 	int err;
4266 
4267 	/*
4268 	 * Don't allow to delete a subvolume with send in progress. This is
4269 	 * inside the inode lock so the error handling that has to drop the bit
4270 	 * again is not run concurrently.
4271 	 */
4272 	spin_lock(&dest->root_item_lock);
4273 	if (dest->send_in_progress) {
4274 		spin_unlock(&dest->root_item_lock);
4275 		btrfs_warn(fs_info,
4276 			   "attempt to delete subvolume %llu during send",
4277 			   dest->root_key.objectid);
4278 		return -EPERM;
4279 	}
4280 	root_flags = btrfs_root_flags(&dest->root_item);
4281 	btrfs_set_root_flags(&dest->root_item,
4282 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4283 	spin_unlock(&dest->root_item_lock);
4284 
4285 	down_write(&fs_info->subvol_sem);
4286 
4287 	err = may_destroy_subvol(dest);
4288 	if (err)
4289 		goto out_up_write;
4290 
4291 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4292 	/*
4293 	 * One for dir inode,
4294 	 * two for dir entries,
4295 	 * two for root ref/backref.
4296 	 */
4297 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4298 	if (err)
4299 		goto out_up_write;
4300 
4301 	trans = btrfs_start_transaction(root, 0);
4302 	if (IS_ERR(trans)) {
4303 		err = PTR_ERR(trans);
4304 		goto out_release;
4305 	}
4306 	trans->block_rsv = &block_rsv;
4307 	trans->bytes_reserved = block_rsv.size;
4308 
4309 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4310 
4311 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4312 				  dentry->d_name.name, dentry->d_name.len);
4313 	if (ret) {
4314 		err = ret;
4315 		btrfs_abort_transaction(trans, ret);
4316 		goto out_end_trans;
4317 	}
4318 
4319 	btrfs_record_root_in_trans(trans, dest);
4320 
4321 	memset(&dest->root_item.drop_progress, 0,
4322 		sizeof(dest->root_item.drop_progress));
4323 	dest->root_item.drop_level = 0;
4324 	btrfs_set_root_refs(&dest->root_item, 0);
4325 
4326 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4327 		ret = btrfs_insert_orphan_item(trans,
4328 					fs_info->tree_root,
4329 					dest->root_key.objectid);
4330 		if (ret) {
4331 			btrfs_abort_transaction(trans, ret);
4332 			err = ret;
4333 			goto out_end_trans;
4334 		}
4335 	}
4336 
4337 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4338 				  BTRFS_UUID_KEY_SUBVOL,
4339 				  dest->root_key.objectid);
4340 	if (ret && ret != -ENOENT) {
4341 		btrfs_abort_transaction(trans, ret);
4342 		err = ret;
4343 		goto out_end_trans;
4344 	}
4345 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4346 		ret = btrfs_uuid_tree_remove(trans,
4347 					  dest->root_item.received_uuid,
4348 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4349 					  dest->root_key.objectid);
4350 		if (ret && ret != -ENOENT) {
4351 			btrfs_abort_transaction(trans, ret);
4352 			err = ret;
4353 			goto out_end_trans;
4354 		}
4355 	}
4356 
4357 out_end_trans:
4358 	trans->block_rsv = NULL;
4359 	trans->bytes_reserved = 0;
4360 	ret = btrfs_end_transaction(trans);
4361 	if (ret && !err)
4362 		err = ret;
4363 	inode->i_flags |= S_DEAD;
4364 out_release:
4365 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4366 out_up_write:
4367 	up_write(&fs_info->subvol_sem);
4368 	if (err) {
4369 		spin_lock(&dest->root_item_lock);
4370 		root_flags = btrfs_root_flags(&dest->root_item);
4371 		btrfs_set_root_flags(&dest->root_item,
4372 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4373 		spin_unlock(&dest->root_item_lock);
4374 	} else {
4375 		d_invalidate(dentry);
4376 		btrfs_prune_dentries(dest);
4377 		ASSERT(dest->send_in_progress == 0);
4378 
4379 		/* the last ref */
4380 		if (dest->ino_cache_inode) {
4381 			iput(dest->ino_cache_inode);
4382 			dest->ino_cache_inode = NULL;
4383 		}
4384 	}
4385 
4386 	return err;
4387 }
4388 
4389 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4390 {
4391 	struct inode *inode = d_inode(dentry);
4392 	int err = 0;
4393 	struct btrfs_root *root = BTRFS_I(dir)->root;
4394 	struct btrfs_trans_handle *trans;
4395 	u64 last_unlink_trans;
4396 
4397 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4398 		return -ENOTEMPTY;
4399 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4400 		return btrfs_delete_subvolume(dir, dentry);
4401 
4402 	trans = __unlink_start_trans(dir);
4403 	if (IS_ERR(trans))
4404 		return PTR_ERR(trans);
4405 
4406 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4407 		err = btrfs_unlink_subvol(trans, dir,
4408 					  BTRFS_I(inode)->location.objectid,
4409 					  dentry->d_name.name,
4410 					  dentry->d_name.len);
4411 		goto out;
4412 	}
4413 
4414 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4415 	if (err)
4416 		goto out;
4417 
4418 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4419 
4420 	/* now the directory is empty */
4421 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4422 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4423 			dentry->d_name.len);
4424 	if (!err) {
4425 		btrfs_i_size_write(BTRFS_I(inode), 0);
4426 		/*
4427 		 * Propagate the last_unlink_trans value of the deleted dir to
4428 		 * its parent directory. This is to prevent an unrecoverable
4429 		 * log tree in the case we do something like this:
4430 		 * 1) create dir foo
4431 		 * 2) create snapshot under dir foo
4432 		 * 3) delete the snapshot
4433 		 * 4) rmdir foo
4434 		 * 5) mkdir foo
4435 		 * 6) fsync foo or some file inside foo
4436 		 */
4437 		if (last_unlink_trans >= trans->transid)
4438 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4439 	}
4440 out:
4441 	btrfs_end_transaction(trans);
4442 	btrfs_btree_balance_dirty(root->fs_info);
4443 
4444 	return err;
4445 }
4446 
4447 static int truncate_space_check(struct btrfs_trans_handle *trans,
4448 				struct btrfs_root *root,
4449 				u64 bytes_deleted)
4450 {
4451 	struct btrfs_fs_info *fs_info = root->fs_info;
4452 	int ret;
4453 
4454 	/*
4455 	 * This is only used to apply pressure to the enospc system, we don't
4456 	 * intend to use this reservation at all.
4457 	 */
4458 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4459 	bytes_deleted *= fs_info->nodesize;
4460 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4461 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4462 	if (!ret) {
4463 		trace_btrfs_space_reservation(fs_info, "transaction",
4464 					      trans->transid,
4465 					      bytes_deleted, 1);
4466 		trans->bytes_reserved += bytes_deleted;
4467 	}
4468 	return ret;
4469 
4470 }
4471 
4472 /*
4473  * Return this if we need to call truncate_block for the last bit of the
4474  * truncate.
4475  */
4476 #define NEED_TRUNCATE_BLOCK 1
4477 
4478 /*
4479  * this can truncate away extent items, csum items and directory items.
4480  * It starts at a high offset and removes keys until it can't find
4481  * any higher than new_size
4482  *
4483  * csum items that cross the new i_size are truncated to the new size
4484  * as well.
4485  *
4486  * min_type is the minimum key type to truncate down to.  If set to 0, this
4487  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4488  */
4489 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4490 			       struct btrfs_root *root,
4491 			       struct inode *inode,
4492 			       u64 new_size, u32 min_type)
4493 {
4494 	struct btrfs_fs_info *fs_info = root->fs_info;
4495 	struct btrfs_path *path;
4496 	struct extent_buffer *leaf;
4497 	struct btrfs_file_extent_item *fi;
4498 	struct btrfs_key key;
4499 	struct btrfs_key found_key;
4500 	u64 extent_start = 0;
4501 	u64 extent_num_bytes = 0;
4502 	u64 extent_offset = 0;
4503 	u64 item_end = 0;
4504 	u64 last_size = new_size;
4505 	u32 found_type = (u8)-1;
4506 	int found_extent;
4507 	int del_item;
4508 	int pending_del_nr = 0;
4509 	int pending_del_slot = 0;
4510 	int extent_type = -1;
4511 	int ret;
4512 	u64 ino = btrfs_ino(BTRFS_I(inode));
4513 	u64 bytes_deleted = 0;
4514 	bool be_nice = false;
4515 	bool should_throttle = false;
4516 	bool should_end = false;
4517 
4518 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4519 
4520 	/*
4521 	 * for non-free space inodes and ref cows, we want to back off from
4522 	 * time to time
4523 	 */
4524 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4525 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4526 		be_nice = true;
4527 
4528 	path = btrfs_alloc_path();
4529 	if (!path)
4530 		return -ENOMEM;
4531 	path->reada = READA_BACK;
4532 
4533 	/*
4534 	 * We want to drop from the next block forward in case this new size is
4535 	 * not block aligned since we will be keeping the last block of the
4536 	 * extent just the way it is.
4537 	 */
4538 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4539 	    root == fs_info->tree_root)
4540 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4541 					fs_info->sectorsize),
4542 					(u64)-1, 0);
4543 
4544 	/*
4545 	 * This function is also used to drop the items in the log tree before
4546 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4547 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4548 	 * items.
4549 	 */
4550 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4551 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4552 
4553 	key.objectid = ino;
4554 	key.offset = (u64)-1;
4555 	key.type = (u8)-1;
4556 
4557 search_again:
4558 	/*
4559 	 * with a 16K leaf size and 128MB extents, you can actually queue
4560 	 * up a huge file in a single leaf.  Most of the time that
4561 	 * bytes_deleted is > 0, it will be huge by the time we get here
4562 	 */
4563 	if (be_nice && bytes_deleted > SZ_32M &&
4564 	    btrfs_should_end_transaction(trans)) {
4565 		ret = -EAGAIN;
4566 		goto out;
4567 	}
4568 
4569 	path->leave_spinning = 1;
4570 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4571 	if (ret < 0)
4572 		goto out;
4573 
4574 	if (ret > 0) {
4575 		ret = 0;
4576 		/* there are no items in the tree for us to truncate, we're
4577 		 * done
4578 		 */
4579 		if (path->slots[0] == 0)
4580 			goto out;
4581 		path->slots[0]--;
4582 	}
4583 
4584 	while (1) {
4585 		fi = NULL;
4586 		leaf = path->nodes[0];
4587 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4588 		found_type = found_key.type;
4589 
4590 		if (found_key.objectid != ino)
4591 			break;
4592 
4593 		if (found_type < min_type)
4594 			break;
4595 
4596 		item_end = found_key.offset;
4597 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4598 			fi = btrfs_item_ptr(leaf, path->slots[0],
4599 					    struct btrfs_file_extent_item);
4600 			extent_type = btrfs_file_extent_type(leaf, fi);
4601 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4602 				item_end +=
4603 				    btrfs_file_extent_num_bytes(leaf, fi);
4604 
4605 				trace_btrfs_truncate_show_fi_regular(
4606 					BTRFS_I(inode), leaf, fi,
4607 					found_key.offset);
4608 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4609 				item_end += btrfs_file_extent_ram_bytes(leaf,
4610 									fi);
4611 
4612 				trace_btrfs_truncate_show_fi_inline(
4613 					BTRFS_I(inode), leaf, fi, path->slots[0],
4614 					found_key.offset);
4615 			}
4616 			item_end--;
4617 		}
4618 		if (found_type > min_type) {
4619 			del_item = 1;
4620 		} else {
4621 			if (item_end < new_size)
4622 				break;
4623 			if (found_key.offset >= new_size)
4624 				del_item = 1;
4625 			else
4626 				del_item = 0;
4627 		}
4628 		found_extent = 0;
4629 		/* FIXME, shrink the extent if the ref count is only 1 */
4630 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4631 			goto delete;
4632 
4633 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4634 			u64 num_dec;
4635 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4636 			if (!del_item) {
4637 				u64 orig_num_bytes =
4638 					btrfs_file_extent_num_bytes(leaf, fi);
4639 				extent_num_bytes = ALIGN(new_size -
4640 						found_key.offset,
4641 						fs_info->sectorsize);
4642 				btrfs_set_file_extent_num_bytes(leaf, fi,
4643 							 extent_num_bytes);
4644 				num_dec = (orig_num_bytes -
4645 					   extent_num_bytes);
4646 				if (test_bit(BTRFS_ROOT_REF_COWS,
4647 					     &root->state) &&
4648 				    extent_start != 0)
4649 					inode_sub_bytes(inode, num_dec);
4650 				btrfs_mark_buffer_dirty(leaf);
4651 			} else {
4652 				extent_num_bytes =
4653 					btrfs_file_extent_disk_num_bytes(leaf,
4654 									 fi);
4655 				extent_offset = found_key.offset -
4656 					btrfs_file_extent_offset(leaf, fi);
4657 
4658 				/* FIXME blocksize != 4096 */
4659 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4660 				if (extent_start != 0) {
4661 					found_extent = 1;
4662 					if (test_bit(BTRFS_ROOT_REF_COWS,
4663 						     &root->state))
4664 						inode_sub_bytes(inode, num_dec);
4665 				}
4666 			}
4667 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4668 			/*
4669 			 * we can't truncate inline items that have had
4670 			 * special encodings
4671 			 */
4672 			if (!del_item &&
4673 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4674 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4675 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4676 				u32 size = (u32)(new_size - found_key.offset);
4677 
4678 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4679 				size = btrfs_file_extent_calc_inline_size(size);
4680 				btrfs_truncate_item(root->fs_info, path, size, 1);
4681 			} else if (!del_item) {
4682 				/*
4683 				 * We have to bail so the last_size is set to
4684 				 * just before this extent.
4685 				 */
4686 				ret = NEED_TRUNCATE_BLOCK;
4687 				break;
4688 			}
4689 
4690 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4691 				inode_sub_bytes(inode, item_end + 1 - new_size);
4692 		}
4693 delete:
4694 		if (del_item)
4695 			last_size = found_key.offset;
4696 		else
4697 			last_size = new_size;
4698 		if (del_item) {
4699 			if (!pending_del_nr) {
4700 				/* no pending yet, add ourselves */
4701 				pending_del_slot = path->slots[0];
4702 				pending_del_nr = 1;
4703 			} else if (pending_del_nr &&
4704 				   path->slots[0] + 1 == pending_del_slot) {
4705 				/* hop on the pending chunk */
4706 				pending_del_nr++;
4707 				pending_del_slot = path->slots[0];
4708 			} else {
4709 				BUG();
4710 			}
4711 		} else {
4712 			break;
4713 		}
4714 		should_throttle = false;
4715 
4716 		if (found_extent &&
4717 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4718 		     root == fs_info->tree_root)) {
4719 			btrfs_set_path_blocking(path);
4720 			bytes_deleted += extent_num_bytes;
4721 			ret = btrfs_free_extent(trans, root, extent_start,
4722 						extent_num_bytes, 0,
4723 						btrfs_header_owner(leaf),
4724 						ino, extent_offset);
4725 			if (ret) {
4726 				btrfs_abort_transaction(trans, ret);
4727 				break;
4728 			}
4729 			if (btrfs_should_throttle_delayed_refs(trans))
4730 				btrfs_async_run_delayed_refs(fs_info,
4731 					trans->delayed_ref_updates * 2,
4732 					trans->transid, 0);
4733 			if (be_nice) {
4734 				if (truncate_space_check(trans, root,
4735 							 extent_num_bytes)) {
4736 					should_end = true;
4737 				}
4738 				if (btrfs_should_throttle_delayed_refs(trans))
4739 					should_throttle = true;
4740 			}
4741 		}
4742 
4743 		if (found_type == BTRFS_INODE_ITEM_KEY)
4744 			break;
4745 
4746 		if (path->slots[0] == 0 ||
4747 		    path->slots[0] != pending_del_slot ||
4748 		    should_throttle || should_end) {
4749 			if (pending_del_nr) {
4750 				ret = btrfs_del_items(trans, root, path,
4751 						pending_del_slot,
4752 						pending_del_nr);
4753 				if (ret) {
4754 					btrfs_abort_transaction(trans, ret);
4755 					break;
4756 				}
4757 				pending_del_nr = 0;
4758 			}
4759 			btrfs_release_path(path);
4760 			if (should_throttle) {
4761 				unsigned long updates = trans->delayed_ref_updates;
4762 				if (updates) {
4763 					trans->delayed_ref_updates = 0;
4764 					ret = btrfs_run_delayed_refs(trans,
4765 								   updates * 2);
4766 					if (ret)
4767 						break;
4768 				}
4769 			}
4770 			/*
4771 			 * if we failed to refill our space rsv, bail out
4772 			 * and let the transaction restart
4773 			 */
4774 			if (should_end) {
4775 				ret = -EAGAIN;
4776 				break;
4777 			}
4778 			goto search_again;
4779 		} else {
4780 			path->slots[0]--;
4781 		}
4782 	}
4783 out:
4784 	if (ret >= 0 && pending_del_nr) {
4785 		int err;
4786 
4787 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4788 				      pending_del_nr);
4789 		if (err) {
4790 			btrfs_abort_transaction(trans, err);
4791 			ret = err;
4792 		}
4793 	}
4794 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4795 		ASSERT(last_size >= new_size);
4796 		if (!ret && last_size > new_size)
4797 			last_size = new_size;
4798 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4799 	}
4800 
4801 	btrfs_free_path(path);
4802 
4803 	if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4804 		unsigned long updates = trans->delayed_ref_updates;
4805 		int err;
4806 
4807 		if (updates) {
4808 			trans->delayed_ref_updates = 0;
4809 			err = btrfs_run_delayed_refs(trans, updates * 2);
4810 			if (err)
4811 				ret = err;
4812 		}
4813 	}
4814 	return ret;
4815 }
4816 
4817 /*
4818  * btrfs_truncate_block - read, zero a chunk and write a block
4819  * @inode - inode that we're zeroing
4820  * @from - the offset to start zeroing
4821  * @len - the length to zero, 0 to zero the entire range respective to the
4822  *	offset
4823  * @front - zero up to the offset instead of from the offset on
4824  *
4825  * This will find the block for the "from" offset and cow the block and zero the
4826  * part we want to zero.  This is used with truncate and hole punching.
4827  */
4828 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4829 			int front)
4830 {
4831 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4832 	struct address_space *mapping = inode->i_mapping;
4833 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4834 	struct btrfs_ordered_extent *ordered;
4835 	struct extent_state *cached_state = NULL;
4836 	struct extent_changeset *data_reserved = NULL;
4837 	char *kaddr;
4838 	u32 blocksize = fs_info->sectorsize;
4839 	pgoff_t index = from >> PAGE_SHIFT;
4840 	unsigned offset = from & (blocksize - 1);
4841 	struct page *page;
4842 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4843 	int ret = 0;
4844 	u64 block_start;
4845 	u64 block_end;
4846 
4847 	if (IS_ALIGNED(offset, blocksize) &&
4848 	    (!len || IS_ALIGNED(len, blocksize)))
4849 		goto out;
4850 
4851 	block_start = round_down(from, blocksize);
4852 	block_end = block_start + blocksize - 1;
4853 
4854 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4855 					   block_start, blocksize);
4856 	if (ret)
4857 		goto out;
4858 
4859 again:
4860 	page = find_or_create_page(mapping, index, mask);
4861 	if (!page) {
4862 		btrfs_delalloc_release_space(inode, data_reserved,
4863 					     block_start, blocksize, true);
4864 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4865 		ret = -ENOMEM;
4866 		goto out;
4867 	}
4868 
4869 	if (!PageUptodate(page)) {
4870 		ret = btrfs_readpage(NULL, page);
4871 		lock_page(page);
4872 		if (page->mapping != mapping) {
4873 			unlock_page(page);
4874 			put_page(page);
4875 			goto again;
4876 		}
4877 		if (!PageUptodate(page)) {
4878 			ret = -EIO;
4879 			goto out_unlock;
4880 		}
4881 	}
4882 	wait_on_page_writeback(page);
4883 
4884 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4885 	set_page_extent_mapped(page);
4886 
4887 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4888 	if (ordered) {
4889 		unlock_extent_cached(io_tree, block_start, block_end,
4890 				     &cached_state);
4891 		unlock_page(page);
4892 		put_page(page);
4893 		btrfs_start_ordered_extent(inode, ordered, 1);
4894 		btrfs_put_ordered_extent(ordered);
4895 		goto again;
4896 	}
4897 
4898 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4899 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4900 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4901 			  0, 0, &cached_state);
4902 
4903 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4904 					&cached_state, 0);
4905 	if (ret) {
4906 		unlock_extent_cached(io_tree, block_start, block_end,
4907 				     &cached_state);
4908 		goto out_unlock;
4909 	}
4910 
4911 	if (offset != blocksize) {
4912 		if (!len)
4913 			len = blocksize - offset;
4914 		kaddr = kmap(page);
4915 		if (front)
4916 			memset(kaddr + (block_start - page_offset(page)),
4917 				0, offset);
4918 		else
4919 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4920 				0, len);
4921 		flush_dcache_page(page);
4922 		kunmap(page);
4923 	}
4924 	ClearPageChecked(page);
4925 	set_page_dirty(page);
4926 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4927 
4928 out_unlock:
4929 	if (ret)
4930 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4931 					     blocksize, true);
4932 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4933 	unlock_page(page);
4934 	put_page(page);
4935 out:
4936 	extent_changeset_free(data_reserved);
4937 	return ret;
4938 }
4939 
4940 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4941 			     u64 offset, u64 len)
4942 {
4943 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4944 	struct btrfs_trans_handle *trans;
4945 	int ret;
4946 
4947 	/*
4948 	 * Still need to make sure the inode looks like it's been updated so
4949 	 * that any holes get logged if we fsync.
4950 	 */
4951 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4952 		BTRFS_I(inode)->last_trans = fs_info->generation;
4953 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4954 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4955 		return 0;
4956 	}
4957 
4958 	/*
4959 	 * 1 - for the one we're dropping
4960 	 * 1 - for the one we're adding
4961 	 * 1 - for updating the inode.
4962 	 */
4963 	trans = btrfs_start_transaction(root, 3);
4964 	if (IS_ERR(trans))
4965 		return PTR_ERR(trans);
4966 
4967 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4968 	if (ret) {
4969 		btrfs_abort_transaction(trans, ret);
4970 		btrfs_end_transaction(trans);
4971 		return ret;
4972 	}
4973 
4974 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4975 			offset, 0, 0, len, 0, len, 0, 0, 0);
4976 	if (ret)
4977 		btrfs_abort_transaction(trans, ret);
4978 	else
4979 		btrfs_update_inode(trans, root, inode);
4980 	btrfs_end_transaction(trans);
4981 	return ret;
4982 }
4983 
4984 /*
4985  * This function puts in dummy file extents for the area we're creating a hole
4986  * for.  So if we are truncating this file to a larger size we need to insert
4987  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4988  * the range between oldsize and size
4989  */
4990 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4991 {
4992 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4993 	struct btrfs_root *root = BTRFS_I(inode)->root;
4994 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4995 	struct extent_map *em = NULL;
4996 	struct extent_state *cached_state = NULL;
4997 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4998 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4999 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5000 	u64 last_byte;
5001 	u64 cur_offset;
5002 	u64 hole_size;
5003 	int err = 0;
5004 
5005 	/*
5006 	 * If our size started in the middle of a block we need to zero out the
5007 	 * rest of the block before we expand the i_size, otherwise we could
5008 	 * expose stale data.
5009 	 */
5010 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5011 	if (err)
5012 		return err;
5013 
5014 	if (size <= hole_start)
5015 		return 0;
5016 
5017 	while (1) {
5018 		struct btrfs_ordered_extent *ordered;
5019 
5020 		lock_extent_bits(io_tree, hole_start, block_end - 1,
5021 				 &cached_state);
5022 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5023 						     block_end - hole_start);
5024 		if (!ordered)
5025 			break;
5026 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
5027 				     &cached_state);
5028 		btrfs_start_ordered_extent(inode, ordered, 1);
5029 		btrfs_put_ordered_extent(ordered);
5030 	}
5031 
5032 	cur_offset = hole_start;
5033 	while (1) {
5034 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5035 				block_end - cur_offset, 0);
5036 		if (IS_ERR(em)) {
5037 			err = PTR_ERR(em);
5038 			em = NULL;
5039 			break;
5040 		}
5041 		last_byte = min(extent_map_end(em), block_end);
5042 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5043 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5044 			struct extent_map *hole_em;
5045 			hole_size = last_byte - cur_offset;
5046 
5047 			err = maybe_insert_hole(root, inode, cur_offset,
5048 						hole_size);
5049 			if (err)
5050 				break;
5051 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5052 						cur_offset + hole_size - 1, 0);
5053 			hole_em = alloc_extent_map();
5054 			if (!hole_em) {
5055 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5056 					&BTRFS_I(inode)->runtime_flags);
5057 				goto next;
5058 			}
5059 			hole_em->start = cur_offset;
5060 			hole_em->len = hole_size;
5061 			hole_em->orig_start = cur_offset;
5062 
5063 			hole_em->block_start = EXTENT_MAP_HOLE;
5064 			hole_em->block_len = 0;
5065 			hole_em->orig_block_len = 0;
5066 			hole_em->ram_bytes = hole_size;
5067 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5068 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5069 			hole_em->generation = fs_info->generation;
5070 
5071 			while (1) {
5072 				write_lock(&em_tree->lock);
5073 				err = add_extent_mapping(em_tree, hole_em, 1);
5074 				write_unlock(&em_tree->lock);
5075 				if (err != -EEXIST)
5076 					break;
5077 				btrfs_drop_extent_cache(BTRFS_I(inode),
5078 							cur_offset,
5079 							cur_offset +
5080 							hole_size - 1, 0);
5081 			}
5082 			free_extent_map(hole_em);
5083 		}
5084 next:
5085 		free_extent_map(em);
5086 		em = NULL;
5087 		cur_offset = last_byte;
5088 		if (cur_offset >= block_end)
5089 			break;
5090 	}
5091 	free_extent_map(em);
5092 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5093 	return err;
5094 }
5095 
5096 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5097 {
5098 	struct btrfs_root *root = BTRFS_I(inode)->root;
5099 	struct btrfs_trans_handle *trans;
5100 	loff_t oldsize = i_size_read(inode);
5101 	loff_t newsize = attr->ia_size;
5102 	int mask = attr->ia_valid;
5103 	int ret;
5104 
5105 	/*
5106 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5107 	 * special case where we need to update the times despite not having
5108 	 * these flags set.  For all other operations the VFS set these flags
5109 	 * explicitly if it wants a timestamp update.
5110 	 */
5111 	if (newsize != oldsize) {
5112 		inode_inc_iversion(inode);
5113 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5114 			inode->i_ctime = inode->i_mtime =
5115 				current_time(inode);
5116 	}
5117 
5118 	if (newsize > oldsize) {
5119 		/*
5120 		 * Don't do an expanding truncate while snapshotting is ongoing.
5121 		 * This is to ensure the snapshot captures a fully consistent
5122 		 * state of this file - if the snapshot captures this expanding
5123 		 * truncation, it must capture all writes that happened before
5124 		 * this truncation.
5125 		 */
5126 		btrfs_wait_for_snapshot_creation(root);
5127 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5128 		if (ret) {
5129 			btrfs_end_write_no_snapshotting(root);
5130 			return ret;
5131 		}
5132 
5133 		trans = btrfs_start_transaction(root, 1);
5134 		if (IS_ERR(trans)) {
5135 			btrfs_end_write_no_snapshotting(root);
5136 			return PTR_ERR(trans);
5137 		}
5138 
5139 		i_size_write(inode, newsize);
5140 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5141 		pagecache_isize_extended(inode, oldsize, newsize);
5142 		ret = btrfs_update_inode(trans, root, inode);
5143 		btrfs_end_write_no_snapshotting(root);
5144 		btrfs_end_transaction(trans);
5145 	} else {
5146 
5147 		/*
5148 		 * We're truncating a file that used to have good data down to
5149 		 * zero. Make sure it gets into the ordered flush list so that
5150 		 * any new writes get down to disk quickly.
5151 		 */
5152 		if (newsize == 0)
5153 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5154 				&BTRFS_I(inode)->runtime_flags);
5155 
5156 		truncate_setsize(inode, newsize);
5157 
5158 		/* Disable nonlocked read DIO to avoid the end less truncate */
5159 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5160 		inode_dio_wait(inode);
5161 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5162 
5163 		ret = btrfs_truncate(inode, newsize == oldsize);
5164 		if (ret && inode->i_nlink) {
5165 			int err;
5166 
5167 			/*
5168 			 * Truncate failed, so fix up the in-memory size. We
5169 			 * adjusted disk_i_size down as we removed extents, so
5170 			 * wait for disk_i_size to be stable and then update the
5171 			 * in-memory size to match.
5172 			 */
5173 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5174 			if (err)
5175 				return err;
5176 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5177 		}
5178 	}
5179 
5180 	return ret;
5181 }
5182 
5183 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5184 {
5185 	struct inode *inode = d_inode(dentry);
5186 	struct btrfs_root *root = BTRFS_I(inode)->root;
5187 	int err;
5188 
5189 	if (btrfs_root_readonly(root))
5190 		return -EROFS;
5191 
5192 	err = setattr_prepare(dentry, attr);
5193 	if (err)
5194 		return err;
5195 
5196 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5197 		err = btrfs_setsize(inode, attr);
5198 		if (err)
5199 			return err;
5200 	}
5201 
5202 	if (attr->ia_valid) {
5203 		setattr_copy(inode, attr);
5204 		inode_inc_iversion(inode);
5205 		err = btrfs_dirty_inode(inode);
5206 
5207 		if (!err && attr->ia_valid & ATTR_MODE)
5208 			err = posix_acl_chmod(inode, inode->i_mode);
5209 	}
5210 
5211 	return err;
5212 }
5213 
5214 /*
5215  * While truncating the inode pages during eviction, we get the VFS calling
5216  * btrfs_invalidatepage() against each page of the inode. This is slow because
5217  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5218  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5219  * extent_state structures over and over, wasting lots of time.
5220  *
5221  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5222  * those expensive operations on a per page basis and do only the ordered io
5223  * finishing, while we release here the extent_map and extent_state structures,
5224  * without the excessive merging and splitting.
5225  */
5226 static void evict_inode_truncate_pages(struct inode *inode)
5227 {
5228 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5229 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5230 	struct rb_node *node;
5231 
5232 	ASSERT(inode->i_state & I_FREEING);
5233 	truncate_inode_pages_final(&inode->i_data);
5234 
5235 	write_lock(&map_tree->lock);
5236 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5237 		struct extent_map *em;
5238 
5239 		node = rb_first_cached(&map_tree->map);
5240 		em = rb_entry(node, struct extent_map, rb_node);
5241 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5242 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5243 		remove_extent_mapping(map_tree, em);
5244 		free_extent_map(em);
5245 		if (need_resched()) {
5246 			write_unlock(&map_tree->lock);
5247 			cond_resched();
5248 			write_lock(&map_tree->lock);
5249 		}
5250 	}
5251 	write_unlock(&map_tree->lock);
5252 
5253 	/*
5254 	 * Keep looping until we have no more ranges in the io tree.
5255 	 * We can have ongoing bios started by readpages (called from readahead)
5256 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5257 	 * still in progress (unlocked the pages in the bio but did not yet
5258 	 * unlocked the ranges in the io tree). Therefore this means some
5259 	 * ranges can still be locked and eviction started because before
5260 	 * submitting those bios, which are executed by a separate task (work
5261 	 * queue kthread), inode references (inode->i_count) were not taken
5262 	 * (which would be dropped in the end io callback of each bio).
5263 	 * Therefore here we effectively end up waiting for those bios and
5264 	 * anyone else holding locked ranges without having bumped the inode's
5265 	 * reference count - if we don't do it, when they access the inode's
5266 	 * io_tree to unlock a range it may be too late, leading to an
5267 	 * use-after-free issue.
5268 	 */
5269 	spin_lock(&io_tree->lock);
5270 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5271 		struct extent_state *state;
5272 		struct extent_state *cached_state = NULL;
5273 		u64 start;
5274 		u64 end;
5275 		unsigned state_flags;
5276 
5277 		node = rb_first(&io_tree->state);
5278 		state = rb_entry(node, struct extent_state, rb_node);
5279 		start = state->start;
5280 		end = state->end;
5281 		state_flags = state->state;
5282 		spin_unlock(&io_tree->lock);
5283 
5284 		lock_extent_bits(io_tree, start, end, &cached_state);
5285 
5286 		/*
5287 		 * If still has DELALLOC flag, the extent didn't reach disk,
5288 		 * and its reserved space won't be freed by delayed_ref.
5289 		 * So we need to free its reserved space here.
5290 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5291 		 *
5292 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5293 		 */
5294 		if (state_flags & EXTENT_DELALLOC)
5295 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5296 
5297 		clear_extent_bit(io_tree, start, end,
5298 				 EXTENT_LOCKED | EXTENT_DIRTY |
5299 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5300 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5301 
5302 		cond_resched();
5303 		spin_lock(&io_tree->lock);
5304 	}
5305 	spin_unlock(&io_tree->lock);
5306 }
5307 
5308 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5309 							struct btrfs_block_rsv *rsv)
5310 {
5311 	struct btrfs_fs_info *fs_info = root->fs_info;
5312 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5313 	int failures = 0;
5314 
5315 	for (;;) {
5316 		struct btrfs_trans_handle *trans;
5317 		int ret;
5318 
5319 		ret = btrfs_block_rsv_refill(root, rsv, rsv->size,
5320 					     BTRFS_RESERVE_FLUSH_LIMIT);
5321 
5322 		if (ret && ++failures > 2) {
5323 			btrfs_warn(fs_info,
5324 				   "could not allocate space for a delete; will truncate on mount");
5325 			return ERR_PTR(-ENOSPC);
5326 		}
5327 
5328 		trans = btrfs_join_transaction(root);
5329 		if (IS_ERR(trans) || !ret)
5330 			return trans;
5331 
5332 		/*
5333 		 * Try to steal from the global reserve if there is space for
5334 		 * it.
5335 		 */
5336 		if (!btrfs_check_space_for_delayed_refs(trans) &&
5337 		    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, false))
5338 			return trans;
5339 
5340 		/* If not, commit and try again. */
5341 		ret = btrfs_commit_transaction(trans);
5342 		if (ret)
5343 			return ERR_PTR(ret);
5344 	}
5345 }
5346 
5347 void btrfs_evict_inode(struct inode *inode)
5348 {
5349 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5350 	struct btrfs_trans_handle *trans;
5351 	struct btrfs_root *root = BTRFS_I(inode)->root;
5352 	struct btrfs_block_rsv *rsv;
5353 	int ret;
5354 
5355 	trace_btrfs_inode_evict(inode);
5356 
5357 	if (!root) {
5358 		clear_inode(inode);
5359 		return;
5360 	}
5361 
5362 	evict_inode_truncate_pages(inode);
5363 
5364 	if (inode->i_nlink &&
5365 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5366 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5367 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5368 		goto no_delete;
5369 
5370 	if (is_bad_inode(inode))
5371 		goto no_delete;
5372 
5373 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5374 
5375 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5376 		goto no_delete;
5377 
5378 	if (inode->i_nlink > 0) {
5379 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5380 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5381 		goto no_delete;
5382 	}
5383 
5384 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5385 	if (ret)
5386 		goto no_delete;
5387 
5388 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5389 	if (!rsv)
5390 		goto no_delete;
5391 	rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5392 	rsv->failfast = 1;
5393 
5394 	btrfs_i_size_write(BTRFS_I(inode), 0);
5395 
5396 	while (1) {
5397 		trans = evict_refill_and_join(root, rsv);
5398 		if (IS_ERR(trans))
5399 			goto free_rsv;
5400 
5401 		trans->block_rsv = rsv;
5402 
5403 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5404 		trans->block_rsv = &fs_info->trans_block_rsv;
5405 		btrfs_end_transaction(trans);
5406 		btrfs_btree_balance_dirty(fs_info);
5407 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5408 			goto free_rsv;
5409 		else if (!ret)
5410 			break;
5411 	}
5412 
5413 	/*
5414 	 * Errors here aren't a big deal, it just means we leave orphan items in
5415 	 * the tree. They will be cleaned up on the next mount. If the inode
5416 	 * number gets reused, cleanup deletes the orphan item without doing
5417 	 * anything, and unlink reuses the existing orphan item.
5418 	 *
5419 	 * If it turns out that we are dropping too many of these, we might want
5420 	 * to add a mechanism for retrying these after a commit.
5421 	 */
5422 	trans = evict_refill_and_join(root, rsv);
5423 	if (!IS_ERR(trans)) {
5424 		trans->block_rsv = rsv;
5425 		btrfs_orphan_del(trans, BTRFS_I(inode));
5426 		trans->block_rsv = &fs_info->trans_block_rsv;
5427 		btrfs_end_transaction(trans);
5428 	}
5429 
5430 	if (!(root == fs_info->tree_root ||
5431 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5432 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5433 
5434 free_rsv:
5435 	btrfs_free_block_rsv(fs_info, rsv);
5436 no_delete:
5437 	/*
5438 	 * If we didn't successfully delete, the orphan item will still be in
5439 	 * the tree and we'll retry on the next mount. Again, we might also want
5440 	 * to retry these periodically in the future.
5441 	 */
5442 	btrfs_remove_delayed_node(BTRFS_I(inode));
5443 	clear_inode(inode);
5444 }
5445 
5446 /*
5447  * this returns the key found in the dir entry in the location pointer.
5448  * If no dir entries were found, returns -ENOENT.
5449  * If found a corrupted location in dir entry, returns -EUCLEAN.
5450  */
5451 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5452 			       struct btrfs_key *location)
5453 {
5454 	const char *name = dentry->d_name.name;
5455 	int namelen = dentry->d_name.len;
5456 	struct btrfs_dir_item *di;
5457 	struct btrfs_path *path;
5458 	struct btrfs_root *root = BTRFS_I(dir)->root;
5459 	int ret = 0;
5460 
5461 	path = btrfs_alloc_path();
5462 	if (!path)
5463 		return -ENOMEM;
5464 
5465 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5466 			name, namelen, 0);
5467 	if (IS_ERR_OR_NULL(di)) {
5468 		ret = di ? PTR_ERR(di) : -ENOENT;
5469 		goto out;
5470 	}
5471 
5472 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5473 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5474 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5475 		ret = -EUCLEAN;
5476 		btrfs_warn(root->fs_info,
5477 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5478 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5479 			   location->objectid, location->type, location->offset);
5480 	}
5481 out:
5482 	btrfs_free_path(path);
5483 	return ret;
5484 }
5485 
5486 /*
5487  * when we hit a tree root in a directory, the btrfs part of the inode
5488  * needs to be changed to reflect the root directory of the tree root.  This
5489  * is kind of like crossing a mount point.
5490  */
5491 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5492 				    struct inode *dir,
5493 				    struct dentry *dentry,
5494 				    struct btrfs_key *location,
5495 				    struct btrfs_root **sub_root)
5496 {
5497 	struct btrfs_path *path;
5498 	struct btrfs_root *new_root;
5499 	struct btrfs_root_ref *ref;
5500 	struct extent_buffer *leaf;
5501 	struct btrfs_key key;
5502 	int ret;
5503 	int err = 0;
5504 
5505 	path = btrfs_alloc_path();
5506 	if (!path) {
5507 		err = -ENOMEM;
5508 		goto out;
5509 	}
5510 
5511 	err = -ENOENT;
5512 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5513 	key.type = BTRFS_ROOT_REF_KEY;
5514 	key.offset = location->objectid;
5515 
5516 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5517 	if (ret) {
5518 		if (ret < 0)
5519 			err = ret;
5520 		goto out;
5521 	}
5522 
5523 	leaf = path->nodes[0];
5524 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5525 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5526 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5527 		goto out;
5528 
5529 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5530 				   (unsigned long)(ref + 1),
5531 				   dentry->d_name.len);
5532 	if (ret)
5533 		goto out;
5534 
5535 	btrfs_release_path(path);
5536 
5537 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5538 	if (IS_ERR(new_root)) {
5539 		err = PTR_ERR(new_root);
5540 		goto out;
5541 	}
5542 
5543 	*sub_root = new_root;
5544 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5545 	location->type = BTRFS_INODE_ITEM_KEY;
5546 	location->offset = 0;
5547 	err = 0;
5548 out:
5549 	btrfs_free_path(path);
5550 	return err;
5551 }
5552 
5553 static void inode_tree_add(struct inode *inode)
5554 {
5555 	struct btrfs_root *root = BTRFS_I(inode)->root;
5556 	struct btrfs_inode *entry;
5557 	struct rb_node **p;
5558 	struct rb_node *parent;
5559 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5560 	u64 ino = btrfs_ino(BTRFS_I(inode));
5561 
5562 	if (inode_unhashed(inode))
5563 		return;
5564 	parent = NULL;
5565 	spin_lock(&root->inode_lock);
5566 	p = &root->inode_tree.rb_node;
5567 	while (*p) {
5568 		parent = *p;
5569 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5570 
5571 		if (ino < btrfs_ino(entry))
5572 			p = &parent->rb_left;
5573 		else if (ino > btrfs_ino(entry))
5574 			p = &parent->rb_right;
5575 		else {
5576 			WARN_ON(!(entry->vfs_inode.i_state &
5577 				  (I_WILL_FREE | I_FREEING)));
5578 			rb_replace_node(parent, new, &root->inode_tree);
5579 			RB_CLEAR_NODE(parent);
5580 			spin_unlock(&root->inode_lock);
5581 			return;
5582 		}
5583 	}
5584 	rb_link_node(new, parent, p);
5585 	rb_insert_color(new, &root->inode_tree);
5586 	spin_unlock(&root->inode_lock);
5587 }
5588 
5589 static void inode_tree_del(struct inode *inode)
5590 {
5591 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5592 	struct btrfs_root *root = BTRFS_I(inode)->root;
5593 	int empty = 0;
5594 
5595 	spin_lock(&root->inode_lock);
5596 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5597 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5598 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5599 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5600 	}
5601 	spin_unlock(&root->inode_lock);
5602 
5603 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5604 		synchronize_srcu(&fs_info->subvol_srcu);
5605 		spin_lock(&root->inode_lock);
5606 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5607 		spin_unlock(&root->inode_lock);
5608 		if (empty)
5609 			btrfs_add_dead_root(root);
5610 	}
5611 }
5612 
5613 
5614 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5615 {
5616 	struct btrfs_iget_args *args = p;
5617 	inode->i_ino = args->location->objectid;
5618 	memcpy(&BTRFS_I(inode)->location, args->location,
5619 	       sizeof(*args->location));
5620 	BTRFS_I(inode)->root = args->root;
5621 	return 0;
5622 }
5623 
5624 static int btrfs_find_actor(struct inode *inode, void *opaque)
5625 {
5626 	struct btrfs_iget_args *args = opaque;
5627 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5628 		args->root == BTRFS_I(inode)->root;
5629 }
5630 
5631 static struct inode *btrfs_iget_locked(struct super_block *s,
5632 				       struct btrfs_key *location,
5633 				       struct btrfs_root *root)
5634 {
5635 	struct inode *inode;
5636 	struct btrfs_iget_args args;
5637 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5638 
5639 	args.location = location;
5640 	args.root = root;
5641 
5642 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5643 			     btrfs_init_locked_inode,
5644 			     (void *)&args);
5645 	return inode;
5646 }
5647 
5648 /* Get an inode object given its location and corresponding root.
5649  * Returns in *is_new if the inode was read from disk
5650  */
5651 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5652 			      struct btrfs_root *root, int *new,
5653 			      struct btrfs_path *path)
5654 {
5655 	struct inode *inode;
5656 
5657 	inode = btrfs_iget_locked(s, location, root);
5658 	if (!inode)
5659 		return ERR_PTR(-ENOMEM);
5660 
5661 	if (inode->i_state & I_NEW) {
5662 		int ret;
5663 
5664 		ret = btrfs_read_locked_inode(inode, path);
5665 		if (!ret) {
5666 			inode_tree_add(inode);
5667 			unlock_new_inode(inode);
5668 			if (new)
5669 				*new = 1;
5670 		} else {
5671 			iget_failed(inode);
5672 			/*
5673 			 * ret > 0 can come from btrfs_search_slot called by
5674 			 * btrfs_read_locked_inode, this means the inode item
5675 			 * was not found.
5676 			 */
5677 			if (ret > 0)
5678 				ret = -ENOENT;
5679 			inode = ERR_PTR(ret);
5680 		}
5681 	}
5682 
5683 	return inode;
5684 }
5685 
5686 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5687 			 struct btrfs_root *root, int *new)
5688 {
5689 	return btrfs_iget_path(s, location, root, new, NULL);
5690 }
5691 
5692 static struct inode *new_simple_dir(struct super_block *s,
5693 				    struct btrfs_key *key,
5694 				    struct btrfs_root *root)
5695 {
5696 	struct inode *inode = new_inode(s);
5697 
5698 	if (!inode)
5699 		return ERR_PTR(-ENOMEM);
5700 
5701 	BTRFS_I(inode)->root = root;
5702 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5703 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5704 
5705 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5706 	inode->i_op = &btrfs_dir_ro_inode_operations;
5707 	inode->i_opflags &= ~IOP_XATTR;
5708 	inode->i_fop = &simple_dir_operations;
5709 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5710 	inode->i_mtime = current_time(inode);
5711 	inode->i_atime = inode->i_mtime;
5712 	inode->i_ctime = inode->i_mtime;
5713 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5714 
5715 	return inode;
5716 }
5717 
5718 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5719 {
5720 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5721 	struct inode *inode;
5722 	struct btrfs_root *root = BTRFS_I(dir)->root;
5723 	struct btrfs_root *sub_root = root;
5724 	struct btrfs_key location;
5725 	int index;
5726 	int ret = 0;
5727 
5728 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5729 		return ERR_PTR(-ENAMETOOLONG);
5730 
5731 	ret = btrfs_inode_by_name(dir, dentry, &location);
5732 	if (ret < 0)
5733 		return ERR_PTR(ret);
5734 
5735 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5736 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5737 		return inode;
5738 	}
5739 
5740 	index = srcu_read_lock(&fs_info->subvol_srcu);
5741 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5742 				       &location, &sub_root);
5743 	if (ret < 0) {
5744 		if (ret != -ENOENT)
5745 			inode = ERR_PTR(ret);
5746 		else
5747 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5748 	} else {
5749 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5750 	}
5751 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5752 
5753 	if (!IS_ERR(inode) && root != sub_root) {
5754 		down_read(&fs_info->cleanup_work_sem);
5755 		if (!sb_rdonly(inode->i_sb))
5756 			ret = btrfs_orphan_cleanup(sub_root);
5757 		up_read(&fs_info->cleanup_work_sem);
5758 		if (ret) {
5759 			iput(inode);
5760 			inode = ERR_PTR(ret);
5761 		}
5762 	}
5763 
5764 	return inode;
5765 }
5766 
5767 static int btrfs_dentry_delete(const struct dentry *dentry)
5768 {
5769 	struct btrfs_root *root;
5770 	struct inode *inode = d_inode(dentry);
5771 
5772 	if (!inode && !IS_ROOT(dentry))
5773 		inode = d_inode(dentry->d_parent);
5774 
5775 	if (inode) {
5776 		root = BTRFS_I(inode)->root;
5777 		if (btrfs_root_refs(&root->root_item) == 0)
5778 			return 1;
5779 
5780 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5781 			return 1;
5782 	}
5783 	return 0;
5784 }
5785 
5786 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5787 				   unsigned int flags)
5788 {
5789 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5790 
5791 	if (inode == ERR_PTR(-ENOENT))
5792 		inode = NULL;
5793 	return d_splice_alias(inode, dentry);
5794 }
5795 
5796 unsigned char btrfs_filetype_table[] = {
5797 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5798 };
5799 
5800 /*
5801  * All this infrastructure exists because dir_emit can fault, and we are holding
5802  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5803  * our information into that, and then dir_emit from the buffer.  This is
5804  * similar to what NFS does, only we don't keep the buffer around in pagecache
5805  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5806  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5807  * tree lock.
5808  */
5809 static int btrfs_opendir(struct inode *inode, struct file *file)
5810 {
5811 	struct btrfs_file_private *private;
5812 
5813 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5814 	if (!private)
5815 		return -ENOMEM;
5816 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5817 	if (!private->filldir_buf) {
5818 		kfree(private);
5819 		return -ENOMEM;
5820 	}
5821 	file->private_data = private;
5822 	return 0;
5823 }
5824 
5825 struct dir_entry {
5826 	u64 ino;
5827 	u64 offset;
5828 	unsigned type;
5829 	int name_len;
5830 };
5831 
5832 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5833 {
5834 	while (entries--) {
5835 		struct dir_entry *entry = addr;
5836 		char *name = (char *)(entry + 1);
5837 
5838 		ctx->pos = get_unaligned(&entry->offset);
5839 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5840 					 get_unaligned(&entry->ino),
5841 					 get_unaligned(&entry->type)))
5842 			return 1;
5843 		addr += sizeof(struct dir_entry) +
5844 			get_unaligned(&entry->name_len);
5845 		ctx->pos++;
5846 	}
5847 	return 0;
5848 }
5849 
5850 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5851 {
5852 	struct inode *inode = file_inode(file);
5853 	struct btrfs_root *root = BTRFS_I(inode)->root;
5854 	struct btrfs_file_private *private = file->private_data;
5855 	struct btrfs_dir_item *di;
5856 	struct btrfs_key key;
5857 	struct btrfs_key found_key;
5858 	struct btrfs_path *path;
5859 	void *addr;
5860 	struct list_head ins_list;
5861 	struct list_head del_list;
5862 	int ret;
5863 	struct extent_buffer *leaf;
5864 	int slot;
5865 	char *name_ptr;
5866 	int name_len;
5867 	int entries = 0;
5868 	int total_len = 0;
5869 	bool put = false;
5870 	struct btrfs_key location;
5871 
5872 	if (!dir_emit_dots(file, ctx))
5873 		return 0;
5874 
5875 	path = btrfs_alloc_path();
5876 	if (!path)
5877 		return -ENOMEM;
5878 
5879 	addr = private->filldir_buf;
5880 	path->reada = READA_FORWARD;
5881 
5882 	INIT_LIST_HEAD(&ins_list);
5883 	INIT_LIST_HEAD(&del_list);
5884 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5885 
5886 again:
5887 	key.type = BTRFS_DIR_INDEX_KEY;
5888 	key.offset = ctx->pos;
5889 	key.objectid = btrfs_ino(BTRFS_I(inode));
5890 
5891 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5892 	if (ret < 0)
5893 		goto err;
5894 
5895 	while (1) {
5896 		struct dir_entry *entry;
5897 
5898 		leaf = path->nodes[0];
5899 		slot = path->slots[0];
5900 		if (slot >= btrfs_header_nritems(leaf)) {
5901 			ret = btrfs_next_leaf(root, path);
5902 			if (ret < 0)
5903 				goto err;
5904 			else if (ret > 0)
5905 				break;
5906 			continue;
5907 		}
5908 
5909 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5910 
5911 		if (found_key.objectid != key.objectid)
5912 			break;
5913 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5914 			break;
5915 		if (found_key.offset < ctx->pos)
5916 			goto next;
5917 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5918 			goto next;
5919 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5920 		name_len = btrfs_dir_name_len(leaf, di);
5921 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5922 		    PAGE_SIZE) {
5923 			btrfs_release_path(path);
5924 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5925 			if (ret)
5926 				goto nopos;
5927 			addr = private->filldir_buf;
5928 			entries = 0;
5929 			total_len = 0;
5930 			goto again;
5931 		}
5932 
5933 		entry = addr;
5934 		put_unaligned(name_len, &entry->name_len);
5935 		name_ptr = (char *)(entry + 1);
5936 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5937 				   name_len);
5938 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5939 				&entry->type);
5940 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5941 		put_unaligned(location.objectid, &entry->ino);
5942 		put_unaligned(found_key.offset, &entry->offset);
5943 		entries++;
5944 		addr += sizeof(struct dir_entry) + name_len;
5945 		total_len += sizeof(struct dir_entry) + name_len;
5946 next:
5947 		path->slots[0]++;
5948 	}
5949 	btrfs_release_path(path);
5950 
5951 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5952 	if (ret)
5953 		goto nopos;
5954 
5955 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5956 	if (ret)
5957 		goto nopos;
5958 
5959 	/*
5960 	 * Stop new entries from being returned after we return the last
5961 	 * entry.
5962 	 *
5963 	 * New directory entries are assigned a strictly increasing
5964 	 * offset.  This means that new entries created during readdir
5965 	 * are *guaranteed* to be seen in the future by that readdir.
5966 	 * This has broken buggy programs which operate on names as
5967 	 * they're returned by readdir.  Until we re-use freed offsets
5968 	 * we have this hack to stop new entries from being returned
5969 	 * under the assumption that they'll never reach this huge
5970 	 * offset.
5971 	 *
5972 	 * This is being careful not to overflow 32bit loff_t unless the
5973 	 * last entry requires it because doing so has broken 32bit apps
5974 	 * in the past.
5975 	 */
5976 	if (ctx->pos >= INT_MAX)
5977 		ctx->pos = LLONG_MAX;
5978 	else
5979 		ctx->pos = INT_MAX;
5980 nopos:
5981 	ret = 0;
5982 err:
5983 	if (put)
5984 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5985 	btrfs_free_path(path);
5986 	return ret;
5987 }
5988 
5989 /*
5990  * This is somewhat expensive, updating the tree every time the
5991  * inode changes.  But, it is most likely to find the inode in cache.
5992  * FIXME, needs more benchmarking...there are no reasons other than performance
5993  * to keep or drop this code.
5994  */
5995 static int btrfs_dirty_inode(struct inode *inode)
5996 {
5997 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5998 	struct btrfs_root *root = BTRFS_I(inode)->root;
5999 	struct btrfs_trans_handle *trans;
6000 	int ret;
6001 
6002 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6003 		return 0;
6004 
6005 	trans = btrfs_join_transaction(root);
6006 	if (IS_ERR(trans))
6007 		return PTR_ERR(trans);
6008 
6009 	ret = btrfs_update_inode(trans, root, inode);
6010 	if (ret && ret == -ENOSPC) {
6011 		/* whoops, lets try again with the full transaction */
6012 		btrfs_end_transaction(trans);
6013 		trans = btrfs_start_transaction(root, 1);
6014 		if (IS_ERR(trans))
6015 			return PTR_ERR(trans);
6016 
6017 		ret = btrfs_update_inode(trans, root, inode);
6018 	}
6019 	btrfs_end_transaction(trans);
6020 	if (BTRFS_I(inode)->delayed_node)
6021 		btrfs_balance_delayed_items(fs_info);
6022 
6023 	return ret;
6024 }
6025 
6026 /*
6027  * This is a copy of file_update_time.  We need this so we can return error on
6028  * ENOSPC for updating the inode in the case of file write and mmap writes.
6029  */
6030 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6031 			     int flags)
6032 {
6033 	struct btrfs_root *root = BTRFS_I(inode)->root;
6034 	bool dirty = flags & ~S_VERSION;
6035 
6036 	if (btrfs_root_readonly(root))
6037 		return -EROFS;
6038 
6039 	if (flags & S_VERSION)
6040 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6041 	if (flags & S_CTIME)
6042 		inode->i_ctime = *now;
6043 	if (flags & S_MTIME)
6044 		inode->i_mtime = *now;
6045 	if (flags & S_ATIME)
6046 		inode->i_atime = *now;
6047 	return dirty ? btrfs_dirty_inode(inode) : 0;
6048 }
6049 
6050 /*
6051  * find the highest existing sequence number in a directory
6052  * and then set the in-memory index_cnt variable to reflect
6053  * free sequence numbers
6054  */
6055 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6056 {
6057 	struct btrfs_root *root = inode->root;
6058 	struct btrfs_key key, found_key;
6059 	struct btrfs_path *path;
6060 	struct extent_buffer *leaf;
6061 	int ret;
6062 
6063 	key.objectid = btrfs_ino(inode);
6064 	key.type = BTRFS_DIR_INDEX_KEY;
6065 	key.offset = (u64)-1;
6066 
6067 	path = btrfs_alloc_path();
6068 	if (!path)
6069 		return -ENOMEM;
6070 
6071 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6072 	if (ret < 0)
6073 		goto out;
6074 	/* FIXME: we should be able to handle this */
6075 	if (ret == 0)
6076 		goto out;
6077 	ret = 0;
6078 
6079 	/*
6080 	 * MAGIC NUMBER EXPLANATION:
6081 	 * since we search a directory based on f_pos we have to start at 2
6082 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6083 	 * else has to start at 2
6084 	 */
6085 	if (path->slots[0] == 0) {
6086 		inode->index_cnt = 2;
6087 		goto out;
6088 	}
6089 
6090 	path->slots[0]--;
6091 
6092 	leaf = path->nodes[0];
6093 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6094 
6095 	if (found_key.objectid != btrfs_ino(inode) ||
6096 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6097 		inode->index_cnt = 2;
6098 		goto out;
6099 	}
6100 
6101 	inode->index_cnt = found_key.offset + 1;
6102 out:
6103 	btrfs_free_path(path);
6104 	return ret;
6105 }
6106 
6107 /*
6108  * helper to find a free sequence number in a given directory.  This current
6109  * code is very simple, later versions will do smarter things in the btree
6110  */
6111 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6112 {
6113 	int ret = 0;
6114 
6115 	if (dir->index_cnt == (u64)-1) {
6116 		ret = btrfs_inode_delayed_dir_index_count(dir);
6117 		if (ret) {
6118 			ret = btrfs_set_inode_index_count(dir);
6119 			if (ret)
6120 				return ret;
6121 		}
6122 	}
6123 
6124 	*index = dir->index_cnt;
6125 	dir->index_cnt++;
6126 
6127 	return ret;
6128 }
6129 
6130 static int btrfs_insert_inode_locked(struct inode *inode)
6131 {
6132 	struct btrfs_iget_args args;
6133 	args.location = &BTRFS_I(inode)->location;
6134 	args.root = BTRFS_I(inode)->root;
6135 
6136 	return insert_inode_locked4(inode,
6137 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6138 		   btrfs_find_actor, &args);
6139 }
6140 
6141 /*
6142  * Inherit flags from the parent inode.
6143  *
6144  * Currently only the compression flags and the cow flags are inherited.
6145  */
6146 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6147 {
6148 	unsigned int flags;
6149 
6150 	if (!dir)
6151 		return;
6152 
6153 	flags = BTRFS_I(dir)->flags;
6154 
6155 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6156 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6157 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6158 	} else if (flags & BTRFS_INODE_COMPRESS) {
6159 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6160 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6161 	}
6162 
6163 	if (flags & BTRFS_INODE_NODATACOW) {
6164 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6165 		if (S_ISREG(inode->i_mode))
6166 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6167 	}
6168 
6169 	btrfs_sync_inode_flags_to_i_flags(inode);
6170 }
6171 
6172 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6173 				     struct btrfs_root *root,
6174 				     struct inode *dir,
6175 				     const char *name, int name_len,
6176 				     u64 ref_objectid, u64 objectid,
6177 				     umode_t mode, u64 *index)
6178 {
6179 	struct btrfs_fs_info *fs_info = root->fs_info;
6180 	struct inode *inode;
6181 	struct btrfs_inode_item *inode_item;
6182 	struct btrfs_key *location;
6183 	struct btrfs_path *path;
6184 	struct btrfs_inode_ref *ref;
6185 	struct btrfs_key key[2];
6186 	u32 sizes[2];
6187 	int nitems = name ? 2 : 1;
6188 	unsigned long ptr;
6189 	int ret;
6190 
6191 	path = btrfs_alloc_path();
6192 	if (!path)
6193 		return ERR_PTR(-ENOMEM);
6194 
6195 	inode = new_inode(fs_info->sb);
6196 	if (!inode) {
6197 		btrfs_free_path(path);
6198 		return ERR_PTR(-ENOMEM);
6199 	}
6200 
6201 	/*
6202 	 * O_TMPFILE, set link count to 0, so that after this point,
6203 	 * we fill in an inode item with the correct link count.
6204 	 */
6205 	if (!name)
6206 		set_nlink(inode, 0);
6207 
6208 	/*
6209 	 * we have to initialize this early, so we can reclaim the inode
6210 	 * number if we fail afterwards in this function.
6211 	 */
6212 	inode->i_ino = objectid;
6213 
6214 	if (dir && name) {
6215 		trace_btrfs_inode_request(dir);
6216 
6217 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6218 		if (ret) {
6219 			btrfs_free_path(path);
6220 			iput(inode);
6221 			return ERR_PTR(ret);
6222 		}
6223 	} else if (dir) {
6224 		*index = 0;
6225 	}
6226 	/*
6227 	 * index_cnt is ignored for everything but a dir,
6228 	 * btrfs_set_inode_index_count has an explanation for the magic
6229 	 * number
6230 	 */
6231 	BTRFS_I(inode)->index_cnt = 2;
6232 	BTRFS_I(inode)->dir_index = *index;
6233 	BTRFS_I(inode)->root = root;
6234 	BTRFS_I(inode)->generation = trans->transid;
6235 	inode->i_generation = BTRFS_I(inode)->generation;
6236 
6237 	/*
6238 	 * We could have gotten an inode number from somebody who was fsynced
6239 	 * and then removed in this same transaction, so let's just set full
6240 	 * sync since it will be a full sync anyway and this will blow away the
6241 	 * old info in the log.
6242 	 */
6243 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6244 
6245 	key[0].objectid = objectid;
6246 	key[0].type = BTRFS_INODE_ITEM_KEY;
6247 	key[0].offset = 0;
6248 
6249 	sizes[0] = sizeof(struct btrfs_inode_item);
6250 
6251 	if (name) {
6252 		/*
6253 		 * Start new inodes with an inode_ref. This is slightly more
6254 		 * efficient for small numbers of hard links since they will
6255 		 * be packed into one item. Extended refs will kick in if we
6256 		 * add more hard links than can fit in the ref item.
6257 		 */
6258 		key[1].objectid = objectid;
6259 		key[1].type = BTRFS_INODE_REF_KEY;
6260 		key[1].offset = ref_objectid;
6261 
6262 		sizes[1] = name_len + sizeof(*ref);
6263 	}
6264 
6265 	location = &BTRFS_I(inode)->location;
6266 	location->objectid = objectid;
6267 	location->offset = 0;
6268 	location->type = BTRFS_INODE_ITEM_KEY;
6269 
6270 	ret = btrfs_insert_inode_locked(inode);
6271 	if (ret < 0) {
6272 		iput(inode);
6273 		goto fail;
6274 	}
6275 
6276 	path->leave_spinning = 1;
6277 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6278 	if (ret != 0)
6279 		goto fail_unlock;
6280 
6281 	inode_init_owner(inode, dir, mode);
6282 	inode_set_bytes(inode, 0);
6283 
6284 	inode->i_mtime = current_time(inode);
6285 	inode->i_atime = inode->i_mtime;
6286 	inode->i_ctime = inode->i_mtime;
6287 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6288 
6289 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6290 				  struct btrfs_inode_item);
6291 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6292 			     sizeof(*inode_item));
6293 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6294 
6295 	if (name) {
6296 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6297 				     struct btrfs_inode_ref);
6298 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6299 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6300 		ptr = (unsigned long)(ref + 1);
6301 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6302 	}
6303 
6304 	btrfs_mark_buffer_dirty(path->nodes[0]);
6305 	btrfs_free_path(path);
6306 
6307 	btrfs_inherit_iflags(inode, dir);
6308 
6309 	if (S_ISREG(mode)) {
6310 		if (btrfs_test_opt(fs_info, NODATASUM))
6311 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6312 		if (btrfs_test_opt(fs_info, NODATACOW))
6313 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6314 				BTRFS_INODE_NODATASUM;
6315 	}
6316 
6317 	inode_tree_add(inode);
6318 
6319 	trace_btrfs_inode_new(inode);
6320 	btrfs_set_inode_last_trans(trans, inode);
6321 
6322 	btrfs_update_root_times(trans, root);
6323 
6324 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6325 	if (ret)
6326 		btrfs_err(fs_info,
6327 			  "error inheriting props for ino %llu (root %llu): %d",
6328 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6329 
6330 	return inode;
6331 
6332 fail_unlock:
6333 	discard_new_inode(inode);
6334 fail:
6335 	if (dir && name)
6336 		BTRFS_I(dir)->index_cnt--;
6337 	btrfs_free_path(path);
6338 	return ERR_PTR(ret);
6339 }
6340 
6341 static inline u8 btrfs_inode_type(struct inode *inode)
6342 {
6343 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6344 }
6345 
6346 /*
6347  * utility function to add 'inode' into 'parent_inode' with
6348  * a give name and a given sequence number.
6349  * if 'add_backref' is true, also insert a backref from the
6350  * inode to the parent directory.
6351  */
6352 int btrfs_add_link(struct btrfs_trans_handle *trans,
6353 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6354 		   const char *name, int name_len, int add_backref, u64 index)
6355 {
6356 	int ret = 0;
6357 	struct btrfs_key key;
6358 	struct btrfs_root *root = parent_inode->root;
6359 	u64 ino = btrfs_ino(inode);
6360 	u64 parent_ino = btrfs_ino(parent_inode);
6361 
6362 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6363 		memcpy(&key, &inode->root->root_key, sizeof(key));
6364 	} else {
6365 		key.objectid = ino;
6366 		key.type = BTRFS_INODE_ITEM_KEY;
6367 		key.offset = 0;
6368 	}
6369 
6370 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6371 		ret = btrfs_add_root_ref(trans, key.objectid,
6372 					 root->root_key.objectid, parent_ino,
6373 					 index, name, name_len);
6374 	} else if (add_backref) {
6375 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6376 					     parent_ino, index);
6377 	}
6378 
6379 	/* Nothing to clean up yet */
6380 	if (ret)
6381 		return ret;
6382 
6383 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6384 				    btrfs_inode_type(&inode->vfs_inode), index);
6385 	if (ret == -EEXIST || ret == -EOVERFLOW)
6386 		goto fail_dir_item;
6387 	else if (ret) {
6388 		btrfs_abort_transaction(trans, ret);
6389 		return ret;
6390 	}
6391 
6392 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6393 			   name_len * 2);
6394 	inode_inc_iversion(&parent_inode->vfs_inode);
6395 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6396 		current_time(&parent_inode->vfs_inode);
6397 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6398 	if (ret)
6399 		btrfs_abort_transaction(trans, ret);
6400 	return ret;
6401 
6402 fail_dir_item:
6403 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6404 		u64 local_index;
6405 		int err;
6406 		err = btrfs_del_root_ref(trans, key.objectid,
6407 					 root->root_key.objectid, parent_ino,
6408 					 &local_index, name, name_len);
6409 
6410 	} else if (add_backref) {
6411 		u64 local_index;
6412 		int err;
6413 
6414 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6415 					  ino, parent_ino, &local_index);
6416 	}
6417 	return ret;
6418 }
6419 
6420 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6421 			    struct btrfs_inode *dir, struct dentry *dentry,
6422 			    struct btrfs_inode *inode, int backref, u64 index)
6423 {
6424 	int err = btrfs_add_link(trans, dir, inode,
6425 				 dentry->d_name.name, dentry->d_name.len,
6426 				 backref, index);
6427 	if (err > 0)
6428 		err = -EEXIST;
6429 	return err;
6430 }
6431 
6432 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6433 			umode_t mode, dev_t rdev)
6434 {
6435 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6436 	struct btrfs_trans_handle *trans;
6437 	struct btrfs_root *root = BTRFS_I(dir)->root;
6438 	struct inode *inode = NULL;
6439 	int err;
6440 	u64 objectid;
6441 	u64 index = 0;
6442 
6443 	/*
6444 	 * 2 for inode item and ref
6445 	 * 2 for dir items
6446 	 * 1 for xattr if selinux is on
6447 	 */
6448 	trans = btrfs_start_transaction(root, 5);
6449 	if (IS_ERR(trans))
6450 		return PTR_ERR(trans);
6451 
6452 	err = btrfs_find_free_ino(root, &objectid);
6453 	if (err)
6454 		goto out_unlock;
6455 
6456 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6457 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6458 			mode, &index);
6459 	if (IS_ERR(inode)) {
6460 		err = PTR_ERR(inode);
6461 		inode = NULL;
6462 		goto out_unlock;
6463 	}
6464 
6465 	/*
6466 	* If the active LSM wants to access the inode during
6467 	* d_instantiate it needs these. Smack checks to see
6468 	* if the filesystem supports xattrs by looking at the
6469 	* ops vector.
6470 	*/
6471 	inode->i_op = &btrfs_special_inode_operations;
6472 	init_special_inode(inode, inode->i_mode, rdev);
6473 
6474 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6475 	if (err)
6476 		goto out_unlock;
6477 
6478 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6479 			0, index);
6480 	if (err)
6481 		goto out_unlock;
6482 
6483 	btrfs_update_inode(trans, root, inode);
6484 	d_instantiate_new(dentry, inode);
6485 
6486 out_unlock:
6487 	btrfs_end_transaction(trans);
6488 	btrfs_btree_balance_dirty(fs_info);
6489 	if (err && inode) {
6490 		inode_dec_link_count(inode);
6491 		discard_new_inode(inode);
6492 	}
6493 	return err;
6494 }
6495 
6496 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6497 			umode_t mode, bool excl)
6498 {
6499 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6500 	struct btrfs_trans_handle *trans;
6501 	struct btrfs_root *root = BTRFS_I(dir)->root;
6502 	struct inode *inode = NULL;
6503 	int err;
6504 	u64 objectid;
6505 	u64 index = 0;
6506 
6507 	/*
6508 	 * 2 for inode item and ref
6509 	 * 2 for dir items
6510 	 * 1 for xattr if selinux is on
6511 	 */
6512 	trans = btrfs_start_transaction(root, 5);
6513 	if (IS_ERR(trans))
6514 		return PTR_ERR(trans);
6515 
6516 	err = btrfs_find_free_ino(root, &objectid);
6517 	if (err)
6518 		goto out_unlock;
6519 
6520 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6521 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6522 			mode, &index);
6523 	if (IS_ERR(inode)) {
6524 		err = PTR_ERR(inode);
6525 		inode = NULL;
6526 		goto out_unlock;
6527 	}
6528 	/*
6529 	* If the active LSM wants to access the inode during
6530 	* d_instantiate it needs these. Smack checks to see
6531 	* if the filesystem supports xattrs by looking at the
6532 	* ops vector.
6533 	*/
6534 	inode->i_fop = &btrfs_file_operations;
6535 	inode->i_op = &btrfs_file_inode_operations;
6536 	inode->i_mapping->a_ops = &btrfs_aops;
6537 
6538 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6539 	if (err)
6540 		goto out_unlock;
6541 
6542 	err = btrfs_update_inode(trans, root, inode);
6543 	if (err)
6544 		goto out_unlock;
6545 
6546 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6547 			0, index);
6548 	if (err)
6549 		goto out_unlock;
6550 
6551 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6552 	d_instantiate_new(dentry, inode);
6553 
6554 out_unlock:
6555 	btrfs_end_transaction(trans);
6556 	if (err && inode) {
6557 		inode_dec_link_count(inode);
6558 		discard_new_inode(inode);
6559 	}
6560 	btrfs_btree_balance_dirty(fs_info);
6561 	return err;
6562 }
6563 
6564 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6565 		      struct dentry *dentry)
6566 {
6567 	struct btrfs_trans_handle *trans = NULL;
6568 	struct btrfs_root *root = BTRFS_I(dir)->root;
6569 	struct inode *inode = d_inode(old_dentry);
6570 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6571 	u64 index;
6572 	int err;
6573 	int drop_inode = 0;
6574 
6575 	/* do not allow sys_link's with other subvols of the same device */
6576 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6577 		return -EXDEV;
6578 
6579 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6580 		return -EMLINK;
6581 
6582 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6583 	if (err)
6584 		goto fail;
6585 
6586 	/*
6587 	 * 2 items for inode and inode ref
6588 	 * 2 items for dir items
6589 	 * 1 item for parent inode
6590 	 * 1 item for orphan item deletion if O_TMPFILE
6591 	 */
6592 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6593 	if (IS_ERR(trans)) {
6594 		err = PTR_ERR(trans);
6595 		trans = NULL;
6596 		goto fail;
6597 	}
6598 
6599 	/* There are several dir indexes for this inode, clear the cache. */
6600 	BTRFS_I(inode)->dir_index = 0ULL;
6601 	inc_nlink(inode);
6602 	inode_inc_iversion(inode);
6603 	inode->i_ctime = current_time(inode);
6604 	ihold(inode);
6605 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6606 
6607 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6608 			1, index);
6609 
6610 	if (err) {
6611 		drop_inode = 1;
6612 	} else {
6613 		struct dentry *parent = dentry->d_parent;
6614 		int ret;
6615 
6616 		err = btrfs_update_inode(trans, root, inode);
6617 		if (err)
6618 			goto fail;
6619 		if (inode->i_nlink == 1) {
6620 			/*
6621 			 * If new hard link count is 1, it's a file created
6622 			 * with open(2) O_TMPFILE flag.
6623 			 */
6624 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6625 			if (err)
6626 				goto fail;
6627 		}
6628 		d_instantiate(dentry, inode);
6629 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6630 					 true, NULL);
6631 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6632 			err = btrfs_commit_transaction(trans);
6633 			trans = NULL;
6634 		}
6635 	}
6636 
6637 fail:
6638 	if (trans)
6639 		btrfs_end_transaction(trans);
6640 	if (drop_inode) {
6641 		inode_dec_link_count(inode);
6642 		iput(inode);
6643 	}
6644 	btrfs_btree_balance_dirty(fs_info);
6645 	return err;
6646 }
6647 
6648 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6649 {
6650 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6651 	struct inode *inode = NULL;
6652 	struct btrfs_trans_handle *trans;
6653 	struct btrfs_root *root = BTRFS_I(dir)->root;
6654 	int err = 0;
6655 	int drop_on_err = 0;
6656 	u64 objectid = 0;
6657 	u64 index = 0;
6658 
6659 	/*
6660 	 * 2 items for inode and ref
6661 	 * 2 items for dir items
6662 	 * 1 for xattr if selinux is on
6663 	 */
6664 	trans = btrfs_start_transaction(root, 5);
6665 	if (IS_ERR(trans))
6666 		return PTR_ERR(trans);
6667 
6668 	err = btrfs_find_free_ino(root, &objectid);
6669 	if (err)
6670 		goto out_fail;
6671 
6672 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6673 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6674 			S_IFDIR | mode, &index);
6675 	if (IS_ERR(inode)) {
6676 		err = PTR_ERR(inode);
6677 		inode = NULL;
6678 		goto out_fail;
6679 	}
6680 
6681 	drop_on_err = 1;
6682 	/* these must be set before we unlock the inode */
6683 	inode->i_op = &btrfs_dir_inode_operations;
6684 	inode->i_fop = &btrfs_dir_file_operations;
6685 
6686 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6687 	if (err)
6688 		goto out_fail;
6689 
6690 	btrfs_i_size_write(BTRFS_I(inode), 0);
6691 	err = btrfs_update_inode(trans, root, inode);
6692 	if (err)
6693 		goto out_fail;
6694 
6695 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6696 			dentry->d_name.name,
6697 			dentry->d_name.len, 0, index);
6698 	if (err)
6699 		goto out_fail;
6700 
6701 	d_instantiate_new(dentry, inode);
6702 	drop_on_err = 0;
6703 
6704 out_fail:
6705 	btrfs_end_transaction(trans);
6706 	if (err && inode) {
6707 		inode_dec_link_count(inode);
6708 		discard_new_inode(inode);
6709 	}
6710 	btrfs_btree_balance_dirty(fs_info);
6711 	return err;
6712 }
6713 
6714 static noinline int uncompress_inline(struct btrfs_path *path,
6715 				      struct page *page,
6716 				      size_t pg_offset, u64 extent_offset,
6717 				      struct btrfs_file_extent_item *item)
6718 {
6719 	int ret;
6720 	struct extent_buffer *leaf = path->nodes[0];
6721 	char *tmp;
6722 	size_t max_size;
6723 	unsigned long inline_size;
6724 	unsigned long ptr;
6725 	int compress_type;
6726 
6727 	WARN_ON(pg_offset != 0);
6728 	compress_type = btrfs_file_extent_compression(leaf, item);
6729 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6730 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6731 					btrfs_item_nr(path->slots[0]));
6732 	tmp = kmalloc(inline_size, GFP_NOFS);
6733 	if (!tmp)
6734 		return -ENOMEM;
6735 	ptr = btrfs_file_extent_inline_start(item);
6736 
6737 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6738 
6739 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6740 	ret = btrfs_decompress(compress_type, tmp, page,
6741 			       extent_offset, inline_size, max_size);
6742 
6743 	/*
6744 	 * decompression code contains a memset to fill in any space between the end
6745 	 * of the uncompressed data and the end of max_size in case the decompressed
6746 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6747 	 * the end of an inline extent and the beginning of the next block, so we
6748 	 * cover that region here.
6749 	 */
6750 
6751 	if (max_size + pg_offset < PAGE_SIZE) {
6752 		char *map = kmap(page);
6753 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6754 		kunmap(page);
6755 	}
6756 	kfree(tmp);
6757 	return ret;
6758 }
6759 
6760 /*
6761  * a bit scary, this does extent mapping from logical file offset to the disk.
6762  * the ugly parts come from merging extents from the disk with the in-ram
6763  * representation.  This gets more complex because of the data=ordered code,
6764  * where the in-ram extents might be locked pending data=ordered completion.
6765  *
6766  * This also copies inline extents directly into the page.
6767  */
6768 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6769 				    struct page *page,
6770 				    size_t pg_offset, u64 start, u64 len,
6771 				    int create)
6772 {
6773 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6774 	int ret;
6775 	int err = 0;
6776 	u64 extent_start = 0;
6777 	u64 extent_end = 0;
6778 	u64 objectid = btrfs_ino(inode);
6779 	u32 found_type;
6780 	struct btrfs_path *path = NULL;
6781 	struct btrfs_root *root = inode->root;
6782 	struct btrfs_file_extent_item *item;
6783 	struct extent_buffer *leaf;
6784 	struct btrfs_key found_key;
6785 	struct extent_map *em = NULL;
6786 	struct extent_map_tree *em_tree = &inode->extent_tree;
6787 	struct extent_io_tree *io_tree = &inode->io_tree;
6788 	const bool new_inline = !page || create;
6789 
6790 	read_lock(&em_tree->lock);
6791 	em = lookup_extent_mapping(em_tree, start, len);
6792 	if (em)
6793 		em->bdev = fs_info->fs_devices->latest_bdev;
6794 	read_unlock(&em_tree->lock);
6795 
6796 	if (em) {
6797 		if (em->start > start || em->start + em->len <= start)
6798 			free_extent_map(em);
6799 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6800 			free_extent_map(em);
6801 		else
6802 			goto out;
6803 	}
6804 	em = alloc_extent_map();
6805 	if (!em) {
6806 		err = -ENOMEM;
6807 		goto out;
6808 	}
6809 	em->bdev = fs_info->fs_devices->latest_bdev;
6810 	em->start = EXTENT_MAP_HOLE;
6811 	em->orig_start = EXTENT_MAP_HOLE;
6812 	em->len = (u64)-1;
6813 	em->block_len = (u64)-1;
6814 
6815 	path = btrfs_alloc_path();
6816 	if (!path) {
6817 		err = -ENOMEM;
6818 		goto out;
6819 	}
6820 
6821 	/* Chances are we'll be called again, so go ahead and do readahead */
6822 	path->reada = READA_FORWARD;
6823 
6824 	/*
6825 	 * Unless we're going to uncompress the inline extent, no sleep would
6826 	 * happen.
6827 	 */
6828 	path->leave_spinning = 1;
6829 
6830 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6831 	if (ret < 0) {
6832 		err = ret;
6833 		goto out;
6834 	}
6835 
6836 	if (ret != 0) {
6837 		if (path->slots[0] == 0)
6838 			goto not_found;
6839 		path->slots[0]--;
6840 	}
6841 
6842 	leaf = path->nodes[0];
6843 	item = btrfs_item_ptr(leaf, path->slots[0],
6844 			      struct btrfs_file_extent_item);
6845 	/* are we inside the extent that was found? */
6846 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6847 	found_type = found_key.type;
6848 	if (found_key.objectid != objectid ||
6849 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6850 		/*
6851 		 * If we backup past the first extent we want to move forward
6852 		 * and see if there is an extent in front of us, otherwise we'll
6853 		 * say there is a hole for our whole search range which can
6854 		 * cause problems.
6855 		 */
6856 		extent_end = start;
6857 		goto next;
6858 	}
6859 
6860 	found_type = btrfs_file_extent_type(leaf, item);
6861 	extent_start = found_key.offset;
6862 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6863 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6864 		extent_end = extent_start +
6865 		       btrfs_file_extent_num_bytes(leaf, item);
6866 
6867 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6868 						       extent_start);
6869 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6870 		size_t size;
6871 
6872 		size = btrfs_file_extent_ram_bytes(leaf, item);
6873 		extent_end = ALIGN(extent_start + size,
6874 				   fs_info->sectorsize);
6875 
6876 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6877 						      path->slots[0],
6878 						      extent_start);
6879 	}
6880 next:
6881 	if (start >= extent_end) {
6882 		path->slots[0]++;
6883 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6884 			ret = btrfs_next_leaf(root, path);
6885 			if (ret < 0) {
6886 				err = ret;
6887 				goto out;
6888 			}
6889 			if (ret > 0)
6890 				goto not_found;
6891 			leaf = path->nodes[0];
6892 		}
6893 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6894 		if (found_key.objectid != objectid ||
6895 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6896 			goto not_found;
6897 		if (start + len <= found_key.offset)
6898 			goto not_found;
6899 		if (start > found_key.offset)
6900 			goto next;
6901 		em->start = start;
6902 		em->orig_start = start;
6903 		em->len = found_key.offset - start;
6904 		goto not_found_em;
6905 	}
6906 
6907 	btrfs_extent_item_to_extent_map(inode, path, item,
6908 			new_inline, em);
6909 
6910 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6911 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6912 		goto insert;
6913 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6914 		unsigned long ptr;
6915 		char *map;
6916 		size_t size;
6917 		size_t extent_offset;
6918 		size_t copy_size;
6919 
6920 		if (new_inline)
6921 			goto out;
6922 
6923 		size = btrfs_file_extent_ram_bytes(leaf, item);
6924 		extent_offset = page_offset(page) + pg_offset - extent_start;
6925 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6926 				  size - extent_offset);
6927 		em->start = extent_start + extent_offset;
6928 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6929 		em->orig_block_len = em->len;
6930 		em->orig_start = em->start;
6931 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6932 
6933 		btrfs_set_path_blocking(path);
6934 		if (!PageUptodate(page)) {
6935 			if (btrfs_file_extent_compression(leaf, item) !=
6936 			    BTRFS_COMPRESS_NONE) {
6937 				ret = uncompress_inline(path, page, pg_offset,
6938 							extent_offset, item);
6939 				if (ret) {
6940 					err = ret;
6941 					goto out;
6942 				}
6943 			} else {
6944 				map = kmap(page);
6945 				read_extent_buffer(leaf, map + pg_offset, ptr,
6946 						   copy_size);
6947 				if (pg_offset + copy_size < PAGE_SIZE) {
6948 					memset(map + pg_offset + copy_size, 0,
6949 					       PAGE_SIZE - pg_offset -
6950 					       copy_size);
6951 				}
6952 				kunmap(page);
6953 			}
6954 			flush_dcache_page(page);
6955 		}
6956 		set_extent_uptodate(io_tree, em->start,
6957 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6958 		goto insert;
6959 	}
6960 not_found:
6961 	em->start = start;
6962 	em->orig_start = start;
6963 	em->len = len;
6964 not_found_em:
6965 	em->block_start = EXTENT_MAP_HOLE;
6966 insert:
6967 	btrfs_release_path(path);
6968 	if (em->start > start || extent_map_end(em) <= start) {
6969 		btrfs_err(fs_info,
6970 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6971 			  em->start, em->len, start, len);
6972 		err = -EIO;
6973 		goto out;
6974 	}
6975 
6976 	err = 0;
6977 	write_lock(&em_tree->lock);
6978 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6979 	write_unlock(&em_tree->lock);
6980 out:
6981 	btrfs_free_path(path);
6982 
6983 	trace_btrfs_get_extent(root, inode, em);
6984 
6985 	if (err) {
6986 		free_extent_map(em);
6987 		return ERR_PTR(err);
6988 	}
6989 	BUG_ON(!em); /* Error is always set */
6990 	return em;
6991 }
6992 
6993 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6994 		struct page *page,
6995 		size_t pg_offset, u64 start, u64 len,
6996 		int create)
6997 {
6998 	struct extent_map *em;
6999 	struct extent_map *hole_em = NULL;
7000 	u64 range_start = start;
7001 	u64 end;
7002 	u64 found;
7003 	u64 found_end;
7004 	int err = 0;
7005 
7006 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7007 	if (IS_ERR(em))
7008 		return em;
7009 	/*
7010 	 * If our em maps to:
7011 	 * - a hole or
7012 	 * - a pre-alloc extent,
7013 	 * there might actually be delalloc bytes behind it.
7014 	 */
7015 	if (em->block_start != EXTENT_MAP_HOLE &&
7016 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7017 		return em;
7018 	else
7019 		hole_em = em;
7020 
7021 	/* check to see if we've wrapped (len == -1 or similar) */
7022 	end = start + len;
7023 	if (end < start)
7024 		end = (u64)-1;
7025 	else
7026 		end -= 1;
7027 
7028 	em = NULL;
7029 
7030 	/* ok, we didn't find anything, lets look for delalloc */
7031 	found = count_range_bits(&inode->io_tree, &range_start,
7032 				 end, len, EXTENT_DELALLOC, 1);
7033 	found_end = range_start + found;
7034 	if (found_end < range_start)
7035 		found_end = (u64)-1;
7036 
7037 	/*
7038 	 * we didn't find anything useful, return
7039 	 * the original results from get_extent()
7040 	 */
7041 	if (range_start > end || found_end <= start) {
7042 		em = hole_em;
7043 		hole_em = NULL;
7044 		goto out;
7045 	}
7046 
7047 	/* adjust the range_start to make sure it doesn't
7048 	 * go backwards from the start they passed in
7049 	 */
7050 	range_start = max(start, range_start);
7051 	found = found_end - range_start;
7052 
7053 	if (found > 0) {
7054 		u64 hole_start = start;
7055 		u64 hole_len = len;
7056 
7057 		em = alloc_extent_map();
7058 		if (!em) {
7059 			err = -ENOMEM;
7060 			goto out;
7061 		}
7062 		/*
7063 		 * when btrfs_get_extent can't find anything it
7064 		 * returns one huge hole
7065 		 *
7066 		 * make sure what it found really fits our range, and
7067 		 * adjust to make sure it is based on the start from
7068 		 * the caller
7069 		 */
7070 		if (hole_em) {
7071 			u64 calc_end = extent_map_end(hole_em);
7072 
7073 			if (calc_end <= start || (hole_em->start > end)) {
7074 				free_extent_map(hole_em);
7075 				hole_em = NULL;
7076 			} else {
7077 				hole_start = max(hole_em->start, start);
7078 				hole_len = calc_end - hole_start;
7079 			}
7080 		}
7081 		em->bdev = NULL;
7082 		if (hole_em && range_start > hole_start) {
7083 			/* our hole starts before our delalloc, so we
7084 			 * have to return just the parts of the hole
7085 			 * that go until  the delalloc starts
7086 			 */
7087 			em->len = min(hole_len,
7088 				      range_start - hole_start);
7089 			em->start = hole_start;
7090 			em->orig_start = hole_start;
7091 			/*
7092 			 * don't adjust block start at all,
7093 			 * it is fixed at EXTENT_MAP_HOLE
7094 			 */
7095 			em->block_start = hole_em->block_start;
7096 			em->block_len = hole_len;
7097 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7098 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7099 		} else {
7100 			em->start = range_start;
7101 			em->len = found;
7102 			em->orig_start = range_start;
7103 			em->block_start = EXTENT_MAP_DELALLOC;
7104 			em->block_len = found;
7105 		}
7106 	} else {
7107 		return hole_em;
7108 	}
7109 out:
7110 
7111 	free_extent_map(hole_em);
7112 	if (err) {
7113 		free_extent_map(em);
7114 		return ERR_PTR(err);
7115 	}
7116 	return em;
7117 }
7118 
7119 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7120 						  const u64 start,
7121 						  const u64 len,
7122 						  const u64 orig_start,
7123 						  const u64 block_start,
7124 						  const u64 block_len,
7125 						  const u64 orig_block_len,
7126 						  const u64 ram_bytes,
7127 						  const int type)
7128 {
7129 	struct extent_map *em = NULL;
7130 	int ret;
7131 
7132 	if (type != BTRFS_ORDERED_NOCOW) {
7133 		em = create_io_em(inode, start, len, orig_start,
7134 				  block_start, block_len, orig_block_len,
7135 				  ram_bytes,
7136 				  BTRFS_COMPRESS_NONE, /* compress_type */
7137 				  type);
7138 		if (IS_ERR(em))
7139 			goto out;
7140 	}
7141 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7142 					   len, block_len, type);
7143 	if (ret) {
7144 		if (em) {
7145 			free_extent_map(em);
7146 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7147 						start + len - 1, 0);
7148 		}
7149 		em = ERR_PTR(ret);
7150 	}
7151  out:
7152 
7153 	return em;
7154 }
7155 
7156 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7157 						  u64 start, u64 len)
7158 {
7159 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7160 	struct btrfs_root *root = BTRFS_I(inode)->root;
7161 	struct extent_map *em;
7162 	struct btrfs_key ins;
7163 	u64 alloc_hint;
7164 	int ret;
7165 
7166 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7167 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7168 				   0, alloc_hint, &ins, 1, 1);
7169 	if (ret)
7170 		return ERR_PTR(ret);
7171 
7172 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7173 				     ins.objectid, ins.offset, ins.offset,
7174 				     ins.offset, BTRFS_ORDERED_REGULAR);
7175 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7176 	if (IS_ERR(em))
7177 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7178 					   ins.offset, 1);
7179 
7180 	return em;
7181 }
7182 
7183 /*
7184  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7185  * block must be cow'd
7186  */
7187 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7188 			      u64 *orig_start, u64 *orig_block_len,
7189 			      u64 *ram_bytes)
7190 {
7191 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7192 	struct btrfs_path *path;
7193 	int ret;
7194 	struct extent_buffer *leaf;
7195 	struct btrfs_root *root = BTRFS_I(inode)->root;
7196 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7197 	struct btrfs_file_extent_item *fi;
7198 	struct btrfs_key key;
7199 	u64 disk_bytenr;
7200 	u64 backref_offset;
7201 	u64 extent_end;
7202 	u64 num_bytes;
7203 	int slot;
7204 	int found_type;
7205 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7206 
7207 	path = btrfs_alloc_path();
7208 	if (!path)
7209 		return -ENOMEM;
7210 
7211 	ret = btrfs_lookup_file_extent(NULL, root, path,
7212 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7213 	if (ret < 0)
7214 		goto out;
7215 
7216 	slot = path->slots[0];
7217 	if (ret == 1) {
7218 		if (slot == 0) {
7219 			/* can't find the item, must cow */
7220 			ret = 0;
7221 			goto out;
7222 		}
7223 		slot--;
7224 	}
7225 	ret = 0;
7226 	leaf = path->nodes[0];
7227 	btrfs_item_key_to_cpu(leaf, &key, slot);
7228 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7229 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7230 		/* not our file or wrong item type, must cow */
7231 		goto out;
7232 	}
7233 
7234 	if (key.offset > offset) {
7235 		/* Wrong offset, must cow */
7236 		goto out;
7237 	}
7238 
7239 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7240 	found_type = btrfs_file_extent_type(leaf, fi);
7241 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7242 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7243 		/* not a regular extent, must cow */
7244 		goto out;
7245 	}
7246 
7247 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7248 		goto out;
7249 
7250 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7251 	if (extent_end <= offset)
7252 		goto out;
7253 
7254 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7255 	if (disk_bytenr == 0)
7256 		goto out;
7257 
7258 	if (btrfs_file_extent_compression(leaf, fi) ||
7259 	    btrfs_file_extent_encryption(leaf, fi) ||
7260 	    btrfs_file_extent_other_encoding(leaf, fi))
7261 		goto out;
7262 
7263 	/*
7264 	 * Do the same check as in btrfs_cross_ref_exist but without the
7265 	 * unnecessary search.
7266 	 */
7267 	if (btrfs_file_extent_generation(leaf, fi) <=
7268 	    btrfs_root_last_snapshot(&root->root_item))
7269 		goto out;
7270 
7271 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7272 
7273 	if (orig_start) {
7274 		*orig_start = key.offset - backref_offset;
7275 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7276 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7277 	}
7278 
7279 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7280 		goto out;
7281 
7282 	num_bytes = min(offset + *len, extent_end) - offset;
7283 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7284 		u64 range_end;
7285 
7286 		range_end = round_up(offset + num_bytes,
7287 				     root->fs_info->sectorsize) - 1;
7288 		ret = test_range_bit(io_tree, offset, range_end,
7289 				     EXTENT_DELALLOC, 0, NULL);
7290 		if (ret) {
7291 			ret = -EAGAIN;
7292 			goto out;
7293 		}
7294 	}
7295 
7296 	btrfs_release_path(path);
7297 
7298 	/*
7299 	 * look for other files referencing this extent, if we
7300 	 * find any we must cow
7301 	 */
7302 
7303 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7304 				    key.offset - backref_offset, disk_bytenr);
7305 	if (ret) {
7306 		ret = 0;
7307 		goto out;
7308 	}
7309 
7310 	/*
7311 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7312 	 * in this extent we are about to write.  If there
7313 	 * are any csums in that range we have to cow in order
7314 	 * to keep the csums correct
7315 	 */
7316 	disk_bytenr += backref_offset;
7317 	disk_bytenr += offset - key.offset;
7318 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7319 		goto out;
7320 	/*
7321 	 * all of the above have passed, it is safe to overwrite this extent
7322 	 * without cow
7323 	 */
7324 	*len = num_bytes;
7325 	ret = 1;
7326 out:
7327 	btrfs_free_path(path);
7328 	return ret;
7329 }
7330 
7331 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7332 			      struct extent_state **cached_state, int writing)
7333 {
7334 	struct btrfs_ordered_extent *ordered;
7335 	int ret = 0;
7336 
7337 	while (1) {
7338 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7339 				 cached_state);
7340 		/*
7341 		 * We're concerned with the entire range that we're going to be
7342 		 * doing DIO to, so we need to make sure there's no ordered
7343 		 * extents in this range.
7344 		 */
7345 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7346 						     lockend - lockstart + 1);
7347 
7348 		/*
7349 		 * We need to make sure there are no buffered pages in this
7350 		 * range either, we could have raced between the invalidate in
7351 		 * generic_file_direct_write and locking the extent.  The
7352 		 * invalidate needs to happen so that reads after a write do not
7353 		 * get stale data.
7354 		 */
7355 		if (!ordered &&
7356 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7357 							 lockstart, lockend)))
7358 			break;
7359 
7360 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7361 				     cached_state);
7362 
7363 		if (ordered) {
7364 			/*
7365 			 * If we are doing a DIO read and the ordered extent we
7366 			 * found is for a buffered write, we can not wait for it
7367 			 * to complete and retry, because if we do so we can
7368 			 * deadlock with concurrent buffered writes on page
7369 			 * locks. This happens only if our DIO read covers more
7370 			 * than one extent map, if at this point has already
7371 			 * created an ordered extent for a previous extent map
7372 			 * and locked its range in the inode's io tree, and a
7373 			 * concurrent write against that previous extent map's
7374 			 * range and this range started (we unlock the ranges
7375 			 * in the io tree only when the bios complete and
7376 			 * buffered writes always lock pages before attempting
7377 			 * to lock range in the io tree).
7378 			 */
7379 			if (writing ||
7380 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7381 				btrfs_start_ordered_extent(inode, ordered, 1);
7382 			else
7383 				ret = -ENOTBLK;
7384 			btrfs_put_ordered_extent(ordered);
7385 		} else {
7386 			/*
7387 			 * We could trigger writeback for this range (and wait
7388 			 * for it to complete) and then invalidate the pages for
7389 			 * this range (through invalidate_inode_pages2_range()),
7390 			 * but that can lead us to a deadlock with a concurrent
7391 			 * call to readpages() (a buffered read or a defrag call
7392 			 * triggered a readahead) on a page lock due to an
7393 			 * ordered dio extent we created before but did not have
7394 			 * yet a corresponding bio submitted (whence it can not
7395 			 * complete), which makes readpages() wait for that
7396 			 * ordered extent to complete while holding a lock on
7397 			 * that page.
7398 			 */
7399 			ret = -ENOTBLK;
7400 		}
7401 
7402 		if (ret)
7403 			break;
7404 
7405 		cond_resched();
7406 	}
7407 
7408 	return ret;
7409 }
7410 
7411 /* The callers of this must take lock_extent() */
7412 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7413 				       u64 orig_start, u64 block_start,
7414 				       u64 block_len, u64 orig_block_len,
7415 				       u64 ram_bytes, int compress_type,
7416 				       int type)
7417 {
7418 	struct extent_map_tree *em_tree;
7419 	struct extent_map *em;
7420 	struct btrfs_root *root = BTRFS_I(inode)->root;
7421 	int ret;
7422 
7423 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7424 	       type == BTRFS_ORDERED_COMPRESSED ||
7425 	       type == BTRFS_ORDERED_NOCOW ||
7426 	       type == BTRFS_ORDERED_REGULAR);
7427 
7428 	em_tree = &BTRFS_I(inode)->extent_tree;
7429 	em = alloc_extent_map();
7430 	if (!em)
7431 		return ERR_PTR(-ENOMEM);
7432 
7433 	em->start = start;
7434 	em->orig_start = orig_start;
7435 	em->len = len;
7436 	em->block_len = block_len;
7437 	em->block_start = block_start;
7438 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7439 	em->orig_block_len = orig_block_len;
7440 	em->ram_bytes = ram_bytes;
7441 	em->generation = -1;
7442 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7443 	if (type == BTRFS_ORDERED_PREALLOC) {
7444 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7445 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7446 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7447 		em->compress_type = compress_type;
7448 	}
7449 
7450 	do {
7451 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7452 				em->start + em->len - 1, 0);
7453 		write_lock(&em_tree->lock);
7454 		ret = add_extent_mapping(em_tree, em, 1);
7455 		write_unlock(&em_tree->lock);
7456 		/*
7457 		 * The caller has taken lock_extent(), who could race with us
7458 		 * to add em?
7459 		 */
7460 	} while (ret == -EEXIST);
7461 
7462 	if (ret) {
7463 		free_extent_map(em);
7464 		return ERR_PTR(ret);
7465 	}
7466 
7467 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7468 	return em;
7469 }
7470 
7471 
7472 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7473 					struct buffer_head *bh_result,
7474 					struct inode *inode,
7475 					u64 start, u64 len)
7476 {
7477 	if (em->block_start == EXTENT_MAP_HOLE ||
7478 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7479 		return -ENOENT;
7480 
7481 	len = min(len, em->len - (start - em->start));
7482 
7483 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7484 		inode->i_blkbits;
7485 	bh_result->b_size = len;
7486 	bh_result->b_bdev = em->bdev;
7487 	set_buffer_mapped(bh_result);
7488 
7489 	return 0;
7490 }
7491 
7492 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7493 					 struct buffer_head *bh_result,
7494 					 struct inode *inode,
7495 					 struct btrfs_dio_data *dio_data,
7496 					 u64 start, u64 len)
7497 {
7498 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7499 	struct extent_map *em = *map;
7500 	int ret = 0;
7501 
7502 	/*
7503 	 * We don't allocate a new extent in the following cases
7504 	 *
7505 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7506 	 * existing extent.
7507 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7508 	 * just use the extent.
7509 	 *
7510 	 */
7511 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7512 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7513 	     em->block_start != EXTENT_MAP_HOLE)) {
7514 		int type;
7515 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7516 
7517 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7518 			type = BTRFS_ORDERED_PREALLOC;
7519 		else
7520 			type = BTRFS_ORDERED_NOCOW;
7521 		len = min(len, em->len - (start - em->start));
7522 		block_start = em->block_start + (start - em->start);
7523 
7524 		if (can_nocow_extent(inode, start, &len, &orig_start,
7525 				     &orig_block_len, &ram_bytes) == 1 &&
7526 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7527 			struct extent_map *em2;
7528 
7529 			em2 = btrfs_create_dio_extent(inode, start, len,
7530 						      orig_start, block_start,
7531 						      len, orig_block_len,
7532 						      ram_bytes, type);
7533 			btrfs_dec_nocow_writers(fs_info, block_start);
7534 			if (type == BTRFS_ORDERED_PREALLOC) {
7535 				free_extent_map(em);
7536 				*map = em = em2;
7537 			}
7538 
7539 			if (em2 && IS_ERR(em2)) {
7540 				ret = PTR_ERR(em2);
7541 				goto out;
7542 			}
7543 			/*
7544 			 * For inode marked NODATACOW or extent marked PREALLOC,
7545 			 * use the existing or preallocated extent, so does not
7546 			 * need to adjust btrfs_space_info's bytes_may_use.
7547 			 */
7548 			btrfs_free_reserved_data_space_noquota(inode, start,
7549 							       len);
7550 			goto skip_cow;
7551 		}
7552 	}
7553 
7554 	/* this will cow the extent */
7555 	len = bh_result->b_size;
7556 	free_extent_map(em);
7557 	*map = em = btrfs_new_extent_direct(inode, start, len);
7558 	if (IS_ERR(em)) {
7559 		ret = PTR_ERR(em);
7560 		goto out;
7561 	}
7562 
7563 	len = min(len, em->len - (start - em->start));
7564 
7565 skip_cow:
7566 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7567 		inode->i_blkbits;
7568 	bh_result->b_size = len;
7569 	bh_result->b_bdev = em->bdev;
7570 	set_buffer_mapped(bh_result);
7571 
7572 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7573 		set_buffer_new(bh_result);
7574 
7575 	/*
7576 	 * Need to update the i_size under the extent lock so buffered
7577 	 * readers will get the updated i_size when we unlock.
7578 	 */
7579 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7580 		i_size_write(inode, start + len);
7581 
7582 	WARN_ON(dio_data->reserve < len);
7583 	dio_data->reserve -= len;
7584 	dio_data->unsubmitted_oe_range_end = start + len;
7585 	current->journal_info = dio_data;
7586 out:
7587 	return ret;
7588 }
7589 
7590 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7591 				   struct buffer_head *bh_result, int create)
7592 {
7593 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7594 	struct extent_map *em;
7595 	struct extent_state *cached_state = NULL;
7596 	struct btrfs_dio_data *dio_data = NULL;
7597 	u64 start = iblock << inode->i_blkbits;
7598 	u64 lockstart, lockend;
7599 	u64 len = bh_result->b_size;
7600 	int unlock_bits = EXTENT_LOCKED;
7601 	int ret = 0;
7602 
7603 	if (create)
7604 		unlock_bits |= EXTENT_DIRTY;
7605 	else
7606 		len = min_t(u64, len, fs_info->sectorsize);
7607 
7608 	lockstart = start;
7609 	lockend = start + len - 1;
7610 
7611 	if (current->journal_info) {
7612 		/*
7613 		 * Need to pull our outstanding extents and set journal_info to NULL so
7614 		 * that anything that needs to check if there's a transaction doesn't get
7615 		 * confused.
7616 		 */
7617 		dio_data = current->journal_info;
7618 		current->journal_info = NULL;
7619 	}
7620 
7621 	/*
7622 	 * If this errors out it's because we couldn't invalidate pagecache for
7623 	 * this range and we need to fallback to buffered.
7624 	 */
7625 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7626 			       create)) {
7627 		ret = -ENOTBLK;
7628 		goto err;
7629 	}
7630 
7631 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7632 	if (IS_ERR(em)) {
7633 		ret = PTR_ERR(em);
7634 		goto unlock_err;
7635 	}
7636 
7637 	/*
7638 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7639 	 * io.  INLINE is special, and we could probably kludge it in here, but
7640 	 * it's still buffered so for safety lets just fall back to the generic
7641 	 * buffered path.
7642 	 *
7643 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7644 	 * decompress it, so there will be buffering required no matter what we
7645 	 * do, so go ahead and fallback to buffered.
7646 	 *
7647 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7648 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7649 	 * the generic code.
7650 	 */
7651 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7652 	    em->block_start == EXTENT_MAP_INLINE) {
7653 		free_extent_map(em);
7654 		ret = -ENOTBLK;
7655 		goto unlock_err;
7656 	}
7657 
7658 	if (create) {
7659 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7660 						    dio_data, start, len);
7661 		if (ret < 0)
7662 			goto unlock_err;
7663 
7664 		/* clear and unlock the entire range */
7665 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7666 				 unlock_bits, 1, 0, &cached_state);
7667 	} else {
7668 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7669 						   start, len);
7670 		/* Can be negative only if we read from a hole */
7671 		if (ret < 0) {
7672 			ret = 0;
7673 			free_extent_map(em);
7674 			goto unlock_err;
7675 		}
7676 		/*
7677 		 * We need to unlock only the end area that we aren't using.
7678 		 * The rest is going to be unlocked by the endio routine.
7679 		 */
7680 		lockstart = start + bh_result->b_size;
7681 		if (lockstart < lockend) {
7682 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7683 					 lockend, unlock_bits, 1, 0,
7684 					 &cached_state);
7685 		} else {
7686 			free_extent_state(cached_state);
7687 		}
7688 	}
7689 
7690 	free_extent_map(em);
7691 
7692 	return 0;
7693 
7694 unlock_err:
7695 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7696 			 unlock_bits, 1, 0, &cached_state);
7697 err:
7698 	if (dio_data)
7699 		current->journal_info = dio_data;
7700 	return ret;
7701 }
7702 
7703 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7704 						 struct bio *bio,
7705 						 int mirror_num)
7706 {
7707 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7708 	blk_status_t ret;
7709 
7710 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7711 
7712 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7713 	if (ret)
7714 		return ret;
7715 
7716 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7717 
7718 	return ret;
7719 }
7720 
7721 static int btrfs_check_dio_repairable(struct inode *inode,
7722 				      struct bio *failed_bio,
7723 				      struct io_failure_record *failrec,
7724 				      int failed_mirror)
7725 {
7726 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7727 	int num_copies;
7728 
7729 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7730 	if (num_copies == 1) {
7731 		/*
7732 		 * we only have a single copy of the data, so don't bother with
7733 		 * all the retry and error correction code that follows. no
7734 		 * matter what the error is, it is very likely to persist.
7735 		 */
7736 		btrfs_debug(fs_info,
7737 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7738 			num_copies, failrec->this_mirror, failed_mirror);
7739 		return 0;
7740 	}
7741 
7742 	failrec->failed_mirror = failed_mirror;
7743 	failrec->this_mirror++;
7744 	if (failrec->this_mirror == failed_mirror)
7745 		failrec->this_mirror++;
7746 
7747 	if (failrec->this_mirror > num_copies) {
7748 		btrfs_debug(fs_info,
7749 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7750 			num_copies, failrec->this_mirror, failed_mirror);
7751 		return 0;
7752 	}
7753 
7754 	return 1;
7755 }
7756 
7757 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7758 				   struct page *page, unsigned int pgoff,
7759 				   u64 start, u64 end, int failed_mirror,
7760 				   bio_end_io_t *repair_endio, void *repair_arg)
7761 {
7762 	struct io_failure_record *failrec;
7763 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7764 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7765 	struct bio *bio;
7766 	int isector;
7767 	unsigned int read_mode = 0;
7768 	int segs;
7769 	int ret;
7770 	blk_status_t status;
7771 	struct bio_vec bvec;
7772 
7773 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7774 
7775 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7776 	if (ret)
7777 		return errno_to_blk_status(ret);
7778 
7779 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7780 					 failed_mirror);
7781 	if (!ret) {
7782 		free_io_failure(failure_tree, io_tree, failrec);
7783 		return BLK_STS_IOERR;
7784 	}
7785 
7786 	segs = bio_segments(failed_bio);
7787 	bio_get_first_bvec(failed_bio, &bvec);
7788 	if (segs > 1 ||
7789 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7790 		read_mode |= REQ_FAILFAST_DEV;
7791 
7792 	isector = start - btrfs_io_bio(failed_bio)->logical;
7793 	isector >>= inode->i_sb->s_blocksize_bits;
7794 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7795 				pgoff, isector, repair_endio, repair_arg);
7796 	bio->bi_opf = REQ_OP_READ | read_mode;
7797 
7798 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7799 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7800 		    read_mode, failrec->this_mirror, failrec->in_validation);
7801 
7802 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7803 	if (status) {
7804 		free_io_failure(failure_tree, io_tree, failrec);
7805 		bio_put(bio);
7806 	}
7807 
7808 	return status;
7809 }
7810 
7811 struct btrfs_retry_complete {
7812 	struct completion done;
7813 	struct inode *inode;
7814 	u64 start;
7815 	int uptodate;
7816 };
7817 
7818 static void btrfs_retry_endio_nocsum(struct bio *bio)
7819 {
7820 	struct btrfs_retry_complete *done = bio->bi_private;
7821 	struct inode *inode = done->inode;
7822 	struct bio_vec *bvec;
7823 	struct extent_io_tree *io_tree, *failure_tree;
7824 	int i;
7825 
7826 	if (bio->bi_status)
7827 		goto end;
7828 
7829 	ASSERT(bio->bi_vcnt == 1);
7830 	io_tree = &BTRFS_I(inode)->io_tree;
7831 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7832 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7833 
7834 	done->uptodate = 1;
7835 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7836 	bio_for_each_segment_all(bvec, bio, i)
7837 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7838 				 io_tree, done->start, bvec->bv_page,
7839 				 btrfs_ino(BTRFS_I(inode)), 0);
7840 end:
7841 	complete(&done->done);
7842 	bio_put(bio);
7843 }
7844 
7845 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7846 						struct btrfs_io_bio *io_bio)
7847 {
7848 	struct btrfs_fs_info *fs_info;
7849 	struct bio_vec bvec;
7850 	struct bvec_iter iter;
7851 	struct btrfs_retry_complete done;
7852 	u64 start;
7853 	unsigned int pgoff;
7854 	u32 sectorsize;
7855 	int nr_sectors;
7856 	blk_status_t ret;
7857 	blk_status_t err = BLK_STS_OK;
7858 
7859 	fs_info = BTRFS_I(inode)->root->fs_info;
7860 	sectorsize = fs_info->sectorsize;
7861 
7862 	start = io_bio->logical;
7863 	done.inode = inode;
7864 	io_bio->bio.bi_iter = io_bio->iter;
7865 
7866 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7867 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7868 		pgoff = bvec.bv_offset;
7869 
7870 next_block_or_try_again:
7871 		done.uptodate = 0;
7872 		done.start = start;
7873 		init_completion(&done.done);
7874 
7875 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7876 				pgoff, start, start + sectorsize - 1,
7877 				io_bio->mirror_num,
7878 				btrfs_retry_endio_nocsum, &done);
7879 		if (ret) {
7880 			err = ret;
7881 			goto next;
7882 		}
7883 
7884 		wait_for_completion_io(&done.done);
7885 
7886 		if (!done.uptodate) {
7887 			/* We might have another mirror, so try again */
7888 			goto next_block_or_try_again;
7889 		}
7890 
7891 next:
7892 		start += sectorsize;
7893 
7894 		nr_sectors--;
7895 		if (nr_sectors) {
7896 			pgoff += sectorsize;
7897 			ASSERT(pgoff < PAGE_SIZE);
7898 			goto next_block_or_try_again;
7899 		}
7900 	}
7901 
7902 	return err;
7903 }
7904 
7905 static void btrfs_retry_endio(struct bio *bio)
7906 {
7907 	struct btrfs_retry_complete *done = bio->bi_private;
7908 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7909 	struct extent_io_tree *io_tree, *failure_tree;
7910 	struct inode *inode = done->inode;
7911 	struct bio_vec *bvec;
7912 	int uptodate;
7913 	int ret;
7914 	int i;
7915 
7916 	if (bio->bi_status)
7917 		goto end;
7918 
7919 	uptodate = 1;
7920 
7921 	ASSERT(bio->bi_vcnt == 1);
7922 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7923 
7924 	io_tree = &BTRFS_I(inode)->io_tree;
7925 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7926 
7927 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7928 	bio_for_each_segment_all(bvec, bio, i) {
7929 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7930 					     bvec->bv_offset, done->start,
7931 					     bvec->bv_len);
7932 		if (!ret)
7933 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7934 					 failure_tree, io_tree, done->start,
7935 					 bvec->bv_page,
7936 					 btrfs_ino(BTRFS_I(inode)),
7937 					 bvec->bv_offset);
7938 		else
7939 			uptodate = 0;
7940 	}
7941 
7942 	done->uptodate = uptodate;
7943 end:
7944 	complete(&done->done);
7945 	bio_put(bio);
7946 }
7947 
7948 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7949 		struct btrfs_io_bio *io_bio, blk_status_t err)
7950 {
7951 	struct btrfs_fs_info *fs_info;
7952 	struct bio_vec bvec;
7953 	struct bvec_iter iter;
7954 	struct btrfs_retry_complete done;
7955 	u64 start;
7956 	u64 offset = 0;
7957 	u32 sectorsize;
7958 	int nr_sectors;
7959 	unsigned int pgoff;
7960 	int csum_pos;
7961 	bool uptodate = (err == 0);
7962 	int ret;
7963 	blk_status_t status;
7964 
7965 	fs_info = BTRFS_I(inode)->root->fs_info;
7966 	sectorsize = fs_info->sectorsize;
7967 
7968 	err = BLK_STS_OK;
7969 	start = io_bio->logical;
7970 	done.inode = inode;
7971 	io_bio->bio.bi_iter = io_bio->iter;
7972 
7973 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7974 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7975 
7976 		pgoff = bvec.bv_offset;
7977 next_block:
7978 		if (uptodate) {
7979 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7980 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
7981 					bvec.bv_page, pgoff, start, sectorsize);
7982 			if (likely(!ret))
7983 				goto next;
7984 		}
7985 try_again:
7986 		done.uptodate = 0;
7987 		done.start = start;
7988 		init_completion(&done.done);
7989 
7990 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7991 					pgoff, start, start + sectorsize - 1,
7992 					io_bio->mirror_num, btrfs_retry_endio,
7993 					&done);
7994 		if (status) {
7995 			err = status;
7996 			goto next;
7997 		}
7998 
7999 		wait_for_completion_io(&done.done);
8000 
8001 		if (!done.uptodate) {
8002 			/* We might have another mirror, so try again */
8003 			goto try_again;
8004 		}
8005 next:
8006 		offset += sectorsize;
8007 		start += sectorsize;
8008 
8009 		ASSERT(nr_sectors);
8010 
8011 		nr_sectors--;
8012 		if (nr_sectors) {
8013 			pgoff += sectorsize;
8014 			ASSERT(pgoff < PAGE_SIZE);
8015 			goto next_block;
8016 		}
8017 	}
8018 
8019 	return err;
8020 }
8021 
8022 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8023 		struct btrfs_io_bio *io_bio, blk_status_t err)
8024 {
8025 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8026 
8027 	if (skip_csum) {
8028 		if (unlikely(err))
8029 			return __btrfs_correct_data_nocsum(inode, io_bio);
8030 		else
8031 			return BLK_STS_OK;
8032 	} else {
8033 		return __btrfs_subio_endio_read(inode, io_bio, err);
8034 	}
8035 }
8036 
8037 static void btrfs_endio_direct_read(struct bio *bio)
8038 {
8039 	struct btrfs_dio_private *dip = bio->bi_private;
8040 	struct inode *inode = dip->inode;
8041 	struct bio *dio_bio;
8042 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8043 	blk_status_t err = bio->bi_status;
8044 
8045 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8046 		err = btrfs_subio_endio_read(inode, io_bio, err);
8047 
8048 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8049 		      dip->logical_offset + dip->bytes - 1);
8050 	dio_bio = dip->dio_bio;
8051 
8052 	kfree(dip);
8053 
8054 	dio_bio->bi_status = err;
8055 	dio_end_io(dio_bio);
8056 
8057 	if (io_bio->end_io)
8058 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8059 	bio_put(bio);
8060 }
8061 
8062 static void __endio_write_update_ordered(struct inode *inode,
8063 					 const u64 offset, const u64 bytes,
8064 					 const bool uptodate)
8065 {
8066 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8067 	struct btrfs_ordered_extent *ordered = NULL;
8068 	struct btrfs_workqueue *wq;
8069 	btrfs_work_func_t func;
8070 	u64 ordered_offset = offset;
8071 	u64 ordered_bytes = bytes;
8072 	u64 last_offset;
8073 
8074 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8075 		wq = fs_info->endio_freespace_worker;
8076 		func = btrfs_freespace_write_helper;
8077 	} else {
8078 		wq = fs_info->endio_write_workers;
8079 		func = btrfs_endio_write_helper;
8080 	}
8081 
8082 	while (ordered_offset < offset + bytes) {
8083 		last_offset = ordered_offset;
8084 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8085 							   &ordered_offset,
8086 							   ordered_bytes,
8087 							   uptodate)) {
8088 			btrfs_init_work(&ordered->work, func,
8089 					finish_ordered_fn,
8090 					NULL, NULL);
8091 			btrfs_queue_work(wq, &ordered->work);
8092 		}
8093 		/*
8094 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8095 		 * extent in the range, we can exit.
8096 		 */
8097 		if (ordered_offset == last_offset)
8098 			return;
8099 		/*
8100 		 * Our bio might span multiple ordered extents. In this case
8101 		 * we keep goin until we have accounted the whole dio.
8102 		 */
8103 		if (ordered_offset < offset + bytes) {
8104 			ordered_bytes = offset + bytes - ordered_offset;
8105 			ordered = NULL;
8106 		}
8107 	}
8108 }
8109 
8110 static void btrfs_endio_direct_write(struct bio *bio)
8111 {
8112 	struct btrfs_dio_private *dip = bio->bi_private;
8113 	struct bio *dio_bio = dip->dio_bio;
8114 
8115 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8116 				     dip->bytes, !bio->bi_status);
8117 
8118 	kfree(dip);
8119 
8120 	dio_bio->bi_status = bio->bi_status;
8121 	dio_end_io(dio_bio);
8122 	bio_put(bio);
8123 }
8124 
8125 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8126 				    struct bio *bio, u64 offset)
8127 {
8128 	struct inode *inode = private_data;
8129 	blk_status_t ret;
8130 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8131 	BUG_ON(ret); /* -ENOMEM */
8132 	return 0;
8133 }
8134 
8135 static void btrfs_end_dio_bio(struct bio *bio)
8136 {
8137 	struct btrfs_dio_private *dip = bio->bi_private;
8138 	blk_status_t err = bio->bi_status;
8139 
8140 	if (err)
8141 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8142 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8143 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8144 			   bio->bi_opf,
8145 			   (unsigned long long)bio->bi_iter.bi_sector,
8146 			   bio->bi_iter.bi_size, err);
8147 
8148 	if (dip->subio_endio)
8149 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8150 
8151 	if (err) {
8152 		/*
8153 		 * We want to perceive the errors flag being set before
8154 		 * decrementing the reference count. We don't need a barrier
8155 		 * since atomic operations with a return value are fully
8156 		 * ordered as per atomic_t.txt
8157 		 */
8158 		dip->errors = 1;
8159 	}
8160 
8161 	/* if there are more bios still pending for this dio, just exit */
8162 	if (!atomic_dec_and_test(&dip->pending_bios))
8163 		goto out;
8164 
8165 	if (dip->errors) {
8166 		bio_io_error(dip->orig_bio);
8167 	} else {
8168 		dip->dio_bio->bi_status = BLK_STS_OK;
8169 		bio_endio(dip->orig_bio);
8170 	}
8171 out:
8172 	bio_put(bio);
8173 }
8174 
8175 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8176 						 struct btrfs_dio_private *dip,
8177 						 struct bio *bio,
8178 						 u64 file_offset)
8179 {
8180 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8181 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8182 	blk_status_t ret;
8183 
8184 	/*
8185 	 * We load all the csum data we need when we submit
8186 	 * the first bio to reduce the csum tree search and
8187 	 * contention.
8188 	 */
8189 	if (dip->logical_offset == file_offset) {
8190 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8191 						file_offset);
8192 		if (ret)
8193 			return ret;
8194 	}
8195 
8196 	if (bio == dip->orig_bio)
8197 		return 0;
8198 
8199 	file_offset -= dip->logical_offset;
8200 	file_offset >>= inode->i_sb->s_blocksize_bits;
8201 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8202 
8203 	return 0;
8204 }
8205 
8206 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8207 		struct inode *inode, u64 file_offset, int async_submit)
8208 {
8209 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8210 	struct btrfs_dio_private *dip = bio->bi_private;
8211 	bool write = bio_op(bio) == REQ_OP_WRITE;
8212 	blk_status_t ret;
8213 
8214 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8215 	if (async_submit)
8216 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8217 
8218 	if (!write) {
8219 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8220 		if (ret)
8221 			goto err;
8222 	}
8223 
8224 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8225 		goto map;
8226 
8227 	if (write && async_submit) {
8228 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8229 					  file_offset, inode,
8230 					  btrfs_submit_bio_start_direct_io);
8231 		goto err;
8232 	} else if (write) {
8233 		/*
8234 		 * If we aren't doing async submit, calculate the csum of the
8235 		 * bio now.
8236 		 */
8237 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8238 		if (ret)
8239 			goto err;
8240 	} else {
8241 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8242 						     file_offset);
8243 		if (ret)
8244 			goto err;
8245 	}
8246 map:
8247 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8248 err:
8249 	return ret;
8250 }
8251 
8252 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8253 {
8254 	struct inode *inode = dip->inode;
8255 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8256 	struct bio *bio;
8257 	struct bio *orig_bio = dip->orig_bio;
8258 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8259 	u64 file_offset = dip->logical_offset;
8260 	u64 map_length;
8261 	int async_submit = 0;
8262 	u64 submit_len;
8263 	int clone_offset = 0;
8264 	int clone_len;
8265 	int ret;
8266 	blk_status_t status;
8267 
8268 	map_length = orig_bio->bi_iter.bi_size;
8269 	submit_len = map_length;
8270 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8271 			      &map_length, NULL, 0);
8272 	if (ret)
8273 		return -EIO;
8274 
8275 	if (map_length >= submit_len) {
8276 		bio = orig_bio;
8277 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8278 		goto submit;
8279 	}
8280 
8281 	/* async crcs make it difficult to collect full stripe writes. */
8282 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8283 		async_submit = 0;
8284 	else
8285 		async_submit = 1;
8286 
8287 	/* bio split */
8288 	ASSERT(map_length <= INT_MAX);
8289 	atomic_inc(&dip->pending_bios);
8290 	do {
8291 		clone_len = min_t(int, submit_len, map_length);
8292 
8293 		/*
8294 		 * This will never fail as it's passing GPF_NOFS and
8295 		 * the allocation is backed by btrfs_bioset.
8296 		 */
8297 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8298 					      clone_len);
8299 		bio->bi_private = dip;
8300 		bio->bi_end_io = btrfs_end_dio_bio;
8301 		btrfs_io_bio(bio)->logical = file_offset;
8302 
8303 		ASSERT(submit_len >= clone_len);
8304 		submit_len -= clone_len;
8305 		if (submit_len == 0)
8306 			break;
8307 
8308 		/*
8309 		 * Increase the count before we submit the bio so we know
8310 		 * the end IO handler won't happen before we increase the
8311 		 * count. Otherwise, the dip might get freed before we're
8312 		 * done setting it up.
8313 		 */
8314 		atomic_inc(&dip->pending_bios);
8315 
8316 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8317 						async_submit);
8318 		if (status) {
8319 			bio_put(bio);
8320 			atomic_dec(&dip->pending_bios);
8321 			goto out_err;
8322 		}
8323 
8324 		clone_offset += clone_len;
8325 		start_sector += clone_len >> 9;
8326 		file_offset += clone_len;
8327 
8328 		map_length = submit_len;
8329 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8330 				      start_sector << 9, &map_length, NULL, 0);
8331 		if (ret)
8332 			goto out_err;
8333 	} while (submit_len > 0);
8334 
8335 submit:
8336 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8337 	if (!status)
8338 		return 0;
8339 
8340 	bio_put(bio);
8341 out_err:
8342 	dip->errors = 1;
8343 	/*
8344 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8345 	 * perceived to be set. This ordering is ensured by the fact that an
8346 	 * atomic operations with a return value are fully ordered as per
8347 	 * atomic_t.txt
8348 	 */
8349 	if (atomic_dec_and_test(&dip->pending_bios))
8350 		bio_io_error(dip->orig_bio);
8351 
8352 	/* bio_end_io() will handle error, so we needn't return it */
8353 	return 0;
8354 }
8355 
8356 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8357 				loff_t file_offset)
8358 {
8359 	struct btrfs_dio_private *dip = NULL;
8360 	struct bio *bio = NULL;
8361 	struct btrfs_io_bio *io_bio;
8362 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8363 	int ret = 0;
8364 
8365 	bio = btrfs_bio_clone(dio_bio);
8366 
8367 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8368 	if (!dip) {
8369 		ret = -ENOMEM;
8370 		goto free_ordered;
8371 	}
8372 
8373 	dip->private = dio_bio->bi_private;
8374 	dip->inode = inode;
8375 	dip->logical_offset = file_offset;
8376 	dip->bytes = dio_bio->bi_iter.bi_size;
8377 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8378 	bio->bi_private = dip;
8379 	dip->orig_bio = bio;
8380 	dip->dio_bio = dio_bio;
8381 	atomic_set(&dip->pending_bios, 0);
8382 	io_bio = btrfs_io_bio(bio);
8383 	io_bio->logical = file_offset;
8384 
8385 	if (write) {
8386 		bio->bi_end_io = btrfs_endio_direct_write;
8387 	} else {
8388 		bio->bi_end_io = btrfs_endio_direct_read;
8389 		dip->subio_endio = btrfs_subio_endio_read;
8390 	}
8391 
8392 	/*
8393 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8394 	 * even if we fail to submit a bio, because in such case we do the
8395 	 * corresponding error handling below and it must not be done a second
8396 	 * time by btrfs_direct_IO().
8397 	 */
8398 	if (write) {
8399 		struct btrfs_dio_data *dio_data = current->journal_info;
8400 
8401 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8402 			dip->bytes;
8403 		dio_data->unsubmitted_oe_range_start =
8404 			dio_data->unsubmitted_oe_range_end;
8405 	}
8406 
8407 	ret = btrfs_submit_direct_hook(dip);
8408 	if (!ret)
8409 		return;
8410 
8411 	if (io_bio->end_io)
8412 		io_bio->end_io(io_bio, ret);
8413 
8414 free_ordered:
8415 	/*
8416 	 * If we arrived here it means either we failed to submit the dip
8417 	 * or we either failed to clone the dio_bio or failed to allocate the
8418 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8419 	 * call bio_endio against our io_bio so that we get proper resource
8420 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8421 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8422 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8423 	 */
8424 	if (bio && dip) {
8425 		bio_io_error(bio);
8426 		/*
8427 		 * The end io callbacks free our dip, do the final put on bio
8428 		 * and all the cleanup and final put for dio_bio (through
8429 		 * dio_end_io()).
8430 		 */
8431 		dip = NULL;
8432 		bio = NULL;
8433 	} else {
8434 		if (write)
8435 			__endio_write_update_ordered(inode,
8436 						file_offset,
8437 						dio_bio->bi_iter.bi_size,
8438 						false);
8439 		else
8440 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8441 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8442 
8443 		dio_bio->bi_status = BLK_STS_IOERR;
8444 		/*
8445 		 * Releases and cleans up our dio_bio, no need to bio_put()
8446 		 * nor bio_endio()/bio_io_error() against dio_bio.
8447 		 */
8448 		dio_end_io(dio_bio);
8449 	}
8450 	if (bio)
8451 		bio_put(bio);
8452 	kfree(dip);
8453 }
8454 
8455 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8456 			       const struct iov_iter *iter, loff_t offset)
8457 {
8458 	int seg;
8459 	int i;
8460 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8461 	ssize_t retval = -EINVAL;
8462 
8463 	if (offset & blocksize_mask)
8464 		goto out;
8465 
8466 	if (iov_iter_alignment(iter) & blocksize_mask)
8467 		goto out;
8468 
8469 	/* If this is a write we don't need to check anymore */
8470 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8471 		return 0;
8472 	/*
8473 	 * Check to make sure we don't have duplicate iov_base's in this
8474 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8475 	 * when reading back.
8476 	 */
8477 	for (seg = 0; seg < iter->nr_segs; seg++) {
8478 		for (i = seg + 1; i < iter->nr_segs; i++) {
8479 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8480 				goto out;
8481 		}
8482 	}
8483 	retval = 0;
8484 out:
8485 	return retval;
8486 }
8487 
8488 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8489 {
8490 	struct file *file = iocb->ki_filp;
8491 	struct inode *inode = file->f_mapping->host;
8492 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8493 	struct btrfs_dio_data dio_data = { 0 };
8494 	struct extent_changeset *data_reserved = NULL;
8495 	loff_t offset = iocb->ki_pos;
8496 	size_t count = 0;
8497 	int flags = 0;
8498 	bool wakeup = true;
8499 	bool relock = false;
8500 	ssize_t ret;
8501 
8502 	if (check_direct_IO(fs_info, iter, offset))
8503 		return 0;
8504 
8505 	inode_dio_begin(inode);
8506 
8507 	/*
8508 	 * The generic stuff only does filemap_write_and_wait_range, which
8509 	 * isn't enough if we've written compressed pages to this area, so
8510 	 * we need to flush the dirty pages again to make absolutely sure
8511 	 * that any outstanding dirty pages are on disk.
8512 	 */
8513 	count = iov_iter_count(iter);
8514 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8515 		     &BTRFS_I(inode)->runtime_flags))
8516 		filemap_fdatawrite_range(inode->i_mapping, offset,
8517 					 offset + count - 1);
8518 
8519 	if (iov_iter_rw(iter) == WRITE) {
8520 		/*
8521 		 * If the write DIO is beyond the EOF, we need update
8522 		 * the isize, but it is protected by i_mutex. So we can
8523 		 * not unlock the i_mutex at this case.
8524 		 */
8525 		if (offset + count <= inode->i_size) {
8526 			dio_data.overwrite = 1;
8527 			inode_unlock(inode);
8528 			relock = true;
8529 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8530 			ret = -EAGAIN;
8531 			goto out;
8532 		}
8533 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8534 						   offset, count);
8535 		if (ret)
8536 			goto out;
8537 
8538 		/*
8539 		 * We need to know how many extents we reserved so that we can
8540 		 * do the accounting properly if we go over the number we
8541 		 * originally calculated.  Abuse current->journal_info for this.
8542 		 */
8543 		dio_data.reserve = round_up(count,
8544 					    fs_info->sectorsize);
8545 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8546 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8547 		current->journal_info = &dio_data;
8548 		down_read(&BTRFS_I(inode)->dio_sem);
8549 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8550 				     &BTRFS_I(inode)->runtime_flags)) {
8551 		inode_dio_end(inode);
8552 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8553 		wakeup = false;
8554 	}
8555 
8556 	ret = __blockdev_direct_IO(iocb, inode,
8557 				   fs_info->fs_devices->latest_bdev,
8558 				   iter, btrfs_get_blocks_direct, NULL,
8559 				   btrfs_submit_direct, flags);
8560 	if (iov_iter_rw(iter) == WRITE) {
8561 		up_read(&BTRFS_I(inode)->dio_sem);
8562 		current->journal_info = NULL;
8563 		if (ret < 0 && ret != -EIOCBQUEUED) {
8564 			if (dio_data.reserve)
8565 				btrfs_delalloc_release_space(inode, data_reserved,
8566 					offset, dio_data.reserve, true);
8567 			/*
8568 			 * On error we might have left some ordered extents
8569 			 * without submitting corresponding bios for them, so
8570 			 * cleanup them up to avoid other tasks getting them
8571 			 * and waiting for them to complete forever.
8572 			 */
8573 			if (dio_data.unsubmitted_oe_range_start <
8574 			    dio_data.unsubmitted_oe_range_end)
8575 				__endio_write_update_ordered(inode,
8576 					dio_data.unsubmitted_oe_range_start,
8577 					dio_data.unsubmitted_oe_range_end -
8578 					dio_data.unsubmitted_oe_range_start,
8579 					false);
8580 		} else if (ret >= 0 && (size_t)ret < count)
8581 			btrfs_delalloc_release_space(inode, data_reserved,
8582 					offset, count - (size_t)ret, true);
8583 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8584 	}
8585 out:
8586 	if (wakeup)
8587 		inode_dio_end(inode);
8588 	if (relock)
8589 		inode_lock(inode);
8590 
8591 	extent_changeset_free(data_reserved);
8592 	return ret;
8593 }
8594 
8595 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8596 
8597 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8598 		__u64 start, __u64 len)
8599 {
8600 	int	ret;
8601 
8602 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8603 	if (ret)
8604 		return ret;
8605 
8606 	return extent_fiemap(inode, fieinfo, start, len);
8607 }
8608 
8609 int btrfs_readpage(struct file *file, struct page *page)
8610 {
8611 	struct extent_io_tree *tree;
8612 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8613 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8614 }
8615 
8616 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8617 {
8618 	struct inode *inode = page->mapping->host;
8619 	int ret;
8620 
8621 	if (current->flags & PF_MEMALLOC) {
8622 		redirty_page_for_writepage(wbc, page);
8623 		unlock_page(page);
8624 		return 0;
8625 	}
8626 
8627 	/*
8628 	 * If we are under memory pressure we will call this directly from the
8629 	 * VM, we need to make sure we have the inode referenced for the ordered
8630 	 * extent.  If not just return like we didn't do anything.
8631 	 */
8632 	if (!igrab(inode)) {
8633 		redirty_page_for_writepage(wbc, page);
8634 		return AOP_WRITEPAGE_ACTIVATE;
8635 	}
8636 	ret = extent_write_full_page(page, wbc);
8637 	btrfs_add_delayed_iput(inode);
8638 	return ret;
8639 }
8640 
8641 static int btrfs_writepages(struct address_space *mapping,
8642 			    struct writeback_control *wbc)
8643 {
8644 	return extent_writepages(mapping, wbc);
8645 }
8646 
8647 static int
8648 btrfs_readpages(struct file *file, struct address_space *mapping,
8649 		struct list_head *pages, unsigned nr_pages)
8650 {
8651 	return extent_readpages(mapping, pages, nr_pages);
8652 }
8653 
8654 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8655 {
8656 	int ret = try_release_extent_mapping(page, gfp_flags);
8657 	if (ret == 1) {
8658 		ClearPagePrivate(page);
8659 		set_page_private(page, 0);
8660 		put_page(page);
8661 	}
8662 	return ret;
8663 }
8664 
8665 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8666 {
8667 	if (PageWriteback(page) || PageDirty(page))
8668 		return 0;
8669 	return __btrfs_releasepage(page, gfp_flags);
8670 }
8671 
8672 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8673 				 unsigned int length)
8674 {
8675 	struct inode *inode = page->mapping->host;
8676 	struct extent_io_tree *tree;
8677 	struct btrfs_ordered_extent *ordered;
8678 	struct extent_state *cached_state = NULL;
8679 	u64 page_start = page_offset(page);
8680 	u64 page_end = page_start + PAGE_SIZE - 1;
8681 	u64 start;
8682 	u64 end;
8683 	int inode_evicting = inode->i_state & I_FREEING;
8684 
8685 	/*
8686 	 * we have the page locked, so new writeback can't start,
8687 	 * and the dirty bit won't be cleared while we are here.
8688 	 *
8689 	 * Wait for IO on this page so that we can safely clear
8690 	 * the PagePrivate2 bit and do ordered accounting
8691 	 */
8692 	wait_on_page_writeback(page);
8693 
8694 	tree = &BTRFS_I(inode)->io_tree;
8695 	if (offset) {
8696 		btrfs_releasepage(page, GFP_NOFS);
8697 		return;
8698 	}
8699 
8700 	if (!inode_evicting)
8701 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8702 again:
8703 	start = page_start;
8704 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8705 					page_end - start + 1);
8706 	if (ordered) {
8707 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8708 		/*
8709 		 * IO on this page will never be started, so we need
8710 		 * to account for any ordered extents now
8711 		 */
8712 		if (!inode_evicting)
8713 			clear_extent_bit(tree, start, end,
8714 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8715 					 EXTENT_DELALLOC_NEW |
8716 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8717 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8718 		/*
8719 		 * whoever cleared the private bit is responsible
8720 		 * for the finish_ordered_io
8721 		 */
8722 		if (TestClearPagePrivate2(page)) {
8723 			struct btrfs_ordered_inode_tree *tree;
8724 			u64 new_len;
8725 
8726 			tree = &BTRFS_I(inode)->ordered_tree;
8727 
8728 			spin_lock_irq(&tree->lock);
8729 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8730 			new_len = start - ordered->file_offset;
8731 			if (new_len < ordered->truncated_len)
8732 				ordered->truncated_len = new_len;
8733 			spin_unlock_irq(&tree->lock);
8734 
8735 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8736 							   start,
8737 							   end - start + 1, 1))
8738 				btrfs_finish_ordered_io(ordered);
8739 		}
8740 		btrfs_put_ordered_extent(ordered);
8741 		if (!inode_evicting) {
8742 			cached_state = NULL;
8743 			lock_extent_bits(tree, start, end,
8744 					 &cached_state);
8745 		}
8746 
8747 		start = end + 1;
8748 		if (start < page_end)
8749 			goto again;
8750 	}
8751 
8752 	/*
8753 	 * Qgroup reserved space handler
8754 	 * Page here will be either
8755 	 * 1) Already written to disk
8756 	 *    In this case, its reserved space is released from data rsv map
8757 	 *    and will be freed by delayed_ref handler finally.
8758 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8759 	 *    space.
8760 	 * 2) Not written to disk
8761 	 *    This means the reserved space should be freed here. However,
8762 	 *    if a truncate invalidates the page (by clearing PageDirty)
8763 	 *    and the page is accounted for while allocating extent
8764 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8765 	 *    free the entire extent.
8766 	 */
8767 	if (PageDirty(page))
8768 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8769 	if (!inode_evicting) {
8770 		clear_extent_bit(tree, page_start, page_end,
8771 				 EXTENT_LOCKED | EXTENT_DIRTY |
8772 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8773 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8774 				 &cached_state);
8775 
8776 		__btrfs_releasepage(page, GFP_NOFS);
8777 	}
8778 
8779 	ClearPageChecked(page);
8780 	if (PagePrivate(page)) {
8781 		ClearPagePrivate(page);
8782 		set_page_private(page, 0);
8783 		put_page(page);
8784 	}
8785 }
8786 
8787 /*
8788  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8789  * called from a page fault handler when a page is first dirtied. Hence we must
8790  * be careful to check for EOF conditions here. We set the page up correctly
8791  * for a written page which means we get ENOSPC checking when writing into
8792  * holes and correct delalloc and unwritten extent mapping on filesystems that
8793  * support these features.
8794  *
8795  * We are not allowed to take the i_mutex here so we have to play games to
8796  * protect against truncate races as the page could now be beyond EOF.  Because
8797  * truncate_setsize() writes the inode size before removing pages, once we have
8798  * the page lock we can determine safely if the page is beyond EOF. If it is not
8799  * beyond EOF, then the page is guaranteed safe against truncation until we
8800  * unlock the page.
8801  */
8802 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8803 {
8804 	struct page *page = vmf->page;
8805 	struct inode *inode = file_inode(vmf->vma->vm_file);
8806 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8807 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8808 	struct btrfs_ordered_extent *ordered;
8809 	struct extent_state *cached_state = NULL;
8810 	struct extent_changeset *data_reserved = NULL;
8811 	char *kaddr;
8812 	unsigned long zero_start;
8813 	loff_t size;
8814 	vm_fault_t ret;
8815 	int ret2;
8816 	int reserved = 0;
8817 	u64 reserved_space;
8818 	u64 page_start;
8819 	u64 page_end;
8820 	u64 end;
8821 
8822 	reserved_space = PAGE_SIZE;
8823 
8824 	sb_start_pagefault(inode->i_sb);
8825 	page_start = page_offset(page);
8826 	page_end = page_start + PAGE_SIZE - 1;
8827 	end = page_end;
8828 
8829 	/*
8830 	 * Reserving delalloc space after obtaining the page lock can lead to
8831 	 * deadlock. For example, if a dirty page is locked by this function
8832 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8833 	 * dirty page write out, then the btrfs_writepage() function could
8834 	 * end up waiting indefinitely to get a lock on the page currently
8835 	 * being processed by btrfs_page_mkwrite() function.
8836 	 */
8837 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8838 					   reserved_space);
8839 	if (!ret2) {
8840 		ret2 = file_update_time(vmf->vma->vm_file);
8841 		reserved = 1;
8842 	}
8843 	if (ret2) {
8844 		ret = vmf_error(ret2);
8845 		if (reserved)
8846 			goto out;
8847 		goto out_noreserve;
8848 	}
8849 
8850 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8851 again:
8852 	lock_page(page);
8853 	size = i_size_read(inode);
8854 
8855 	if ((page->mapping != inode->i_mapping) ||
8856 	    (page_start >= size)) {
8857 		/* page got truncated out from underneath us */
8858 		goto out_unlock;
8859 	}
8860 	wait_on_page_writeback(page);
8861 
8862 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8863 	set_page_extent_mapped(page);
8864 
8865 	/*
8866 	 * we can't set the delalloc bits if there are pending ordered
8867 	 * extents.  Drop our locks and wait for them to finish
8868 	 */
8869 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8870 			PAGE_SIZE);
8871 	if (ordered) {
8872 		unlock_extent_cached(io_tree, page_start, page_end,
8873 				     &cached_state);
8874 		unlock_page(page);
8875 		btrfs_start_ordered_extent(inode, ordered, 1);
8876 		btrfs_put_ordered_extent(ordered);
8877 		goto again;
8878 	}
8879 
8880 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8881 		reserved_space = round_up(size - page_start,
8882 					  fs_info->sectorsize);
8883 		if (reserved_space < PAGE_SIZE) {
8884 			end = page_start + reserved_space - 1;
8885 			btrfs_delalloc_release_space(inode, data_reserved,
8886 					page_start, PAGE_SIZE - reserved_space,
8887 					true);
8888 		}
8889 	}
8890 
8891 	/*
8892 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8893 	 * faulted in, but write(2) could also dirty a page and set delalloc
8894 	 * bits, thus in this case for space account reason, we still need to
8895 	 * clear any delalloc bits within this page range since we have to
8896 	 * reserve data&meta space before lock_page() (see above comments).
8897 	 */
8898 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8899 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8900 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8901 			  0, 0, &cached_state);
8902 
8903 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8904 					&cached_state, 0);
8905 	if (ret2) {
8906 		unlock_extent_cached(io_tree, page_start, page_end,
8907 				     &cached_state);
8908 		ret = VM_FAULT_SIGBUS;
8909 		goto out_unlock;
8910 	}
8911 	ret2 = 0;
8912 
8913 	/* page is wholly or partially inside EOF */
8914 	if (page_start + PAGE_SIZE > size)
8915 		zero_start = size & ~PAGE_MASK;
8916 	else
8917 		zero_start = PAGE_SIZE;
8918 
8919 	if (zero_start != PAGE_SIZE) {
8920 		kaddr = kmap(page);
8921 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8922 		flush_dcache_page(page);
8923 		kunmap(page);
8924 	}
8925 	ClearPageChecked(page);
8926 	set_page_dirty(page);
8927 	SetPageUptodate(page);
8928 
8929 	BTRFS_I(inode)->last_trans = fs_info->generation;
8930 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8931 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8932 
8933 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8934 
8935 	if (!ret2) {
8936 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8937 		sb_end_pagefault(inode->i_sb);
8938 		extent_changeset_free(data_reserved);
8939 		return VM_FAULT_LOCKED;
8940 	}
8941 
8942 out_unlock:
8943 	unlock_page(page);
8944 out:
8945 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8946 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8947 				     reserved_space, (ret != 0));
8948 out_noreserve:
8949 	sb_end_pagefault(inode->i_sb);
8950 	extent_changeset_free(data_reserved);
8951 	return ret;
8952 }
8953 
8954 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8955 {
8956 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8957 	struct btrfs_root *root = BTRFS_I(inode)->root;
8958 	struct btrfs_block_rsv *rsv;
8959 	int ret;
8960 	struct btrfs_trans_handle *trans;
8961 	u64 mask = fs_info->sectorsize - 1;
8962 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8963 
8964 	if (!skip_writeback) {
8965 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8966 					       (u64)-1);
8967 		if (ret)
8968 			return ret;
8969 	}
8970 
8971 	/*
8972 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8973 	 * things going on here:
8974 	 *
8975 	 * 1) We need to reserve space to update our inode.
8976 	 *
8977 	 * 2) We need to have something to cache all the space that is going to
8978 	 * be free'd up by the truncate operation, but also have some slack
8979 	 * space reserved in case it uses space during the truncate (thank you
8980 	 * very much snapshotting).
8981 	 *
8982 	 * And we need these to be separate.  The fact is we can use a lot of
8983 	 * space doing the truncate, and we have no earthly idea how much space
8984 	 * we will use, so we need the truncate reservation to be separate so it
8985 	 * doesn't end up using space reserved for updating the inode.  We also
8986 	 * need to be able to stop the transaction and start a new one, which
8987 	 * means we need to be able to update the inode several times, and we
8988 	 * have no idea of knowing how many times that will be, so we can't just
8989 	 * reserve 1 item for the entirety of the operation, so that has to be
8990 	 * done separately as well.
8991 	 *
8992 	 * So that leaves us with
8993 	 *
8994 	 * 1) rsv - for the truncate reservation, which we will steal from the
8995 	 * transaction reservation.
8996 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8997 	 * updating the inode.
8998 	 */
8999 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9000 	if (!rsv)
9001 		return -ENOMEM;
9002 	rsv->size = min_size;
9003 	rsv->failfast = 1;
9004 
9005 	/*
9006 	 * 1 for the truncate slack space
9007 	 * 1 for updating the inode.
9008 	 */
9009 	trans = btrfs_start_transaction(root, 2);
9010 	if (IS_ERR(trans)) {
9011 		ret = PTR_ERR(trans);
9012 		goto out;
9013 	}
9014 
9015 	/* Migrate the slack space for the truncate to our reserve */
9016 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9017 				      min_size, false);
9018 	BUG_ON(ret);
9019 
9020 	/*
9021 	 * So if we truncate and then write and fsync we normally would just
9022 	 * write the extents that changed, which is a problem if we need to
9023 	 * first truncate that entire inode.  So set this flag so we write out
9024 	 * all of the extents in the inode to the sync log so we're completely
9025 	 * safe.
9026 	 */
9027 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9028 	trans->block_rsv = rsv;
9029 
9030 	while (1) {
9031 		ret = btrfs_truncate_inode_items(trans, root, inode,
9032 						 inode->i_size,
9033 						 BTRFS_EXTENT_DATA_KEY);
9034 		trans->block_rsv = &fs_info->trans_block_rsv;
9035 		if (ret != -ENOSPC && ret != -EAGAIN)
9036 			break;
9037 
9038 		ret = btrfs_update_inode(trans, root, inode);
9039 		if (ret)
9040 			break;
9041 
9042 		btrfs_end_transaction(trans);
9043 		btrfs_btree_balance_dirty(fs_info);
9044 
9045 		trans = btrfs_start_transaction(root, 2);
9046 		if (IS_ERR(trans)) {
9047 			ret = PTR_ERR(trans);
9048 			trans = NULL;
9049 			break;
9050 		}
9051 
9052 		btrfs_block_rsv_release(fs_info, rsv, -1);
9053 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9054 					      rsv, min_size, false);
9055 		BUG_ON(ret);	/* shouldn't happen */
9056 		trans->block_rsv = rsv;
9057 	}
9058 
9059 	/*
9060 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9061 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9062 	 * we've truncated everything except the last little bit, and can do
9063 	 * btrfs_truncate_block and then update the disk_i_size.
9064 	 */
9065 	if (ret == NEED_TRUNCATE_BLOCK) {
9066 		btrfs_end_transaction(trans);
9067 		btrfs_btree_balance_dirty(fs_info);
9068 
9069 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9070 		if (ret)
9071 			goto out;
9072 		trans = btrfs_start_transaction(root, 1);
9073 		if (IS_ERR(trans)) {
9074 			ret = PTR_ERR(trans);
9075 			goto out;
9076 		}
9077 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9078 	}
9079 
9080 	if (trans) {
9081 		int ret2;
9082 
9083 		trans->block_rsv = &fs_info->trans_block_rsv;
9084 		ret2 = btrfs_update_inode(trans, root, inode);
9085 		if (ret2 && !ret)
9086 			ret = ret2;
9087 
9088 		ret2 = btrfs_end_transaction(trans);
9089 		if (ret2 && !ret)
9090 			ret = ret2;
9091 		btrfs_btree_balance_dirty(fs_info);
9092 	}
9093 out:
9094 	btrfs_free_block_rsv(fs_info, rsv);
9095 
9096 	return ret;
9097 }
9098 
9099 /*
9100  * create a new subvolume directory/inode (helper for the ioctl).
9101  */
9102 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9103 			     struct btrfs_root *new_root,
9104 			     struct btrfs_root *parent_root,
9105 			     u64 new_dirid)
9106 {
9107 	struct inode *inode;
9108 	int err;
9109 	u64 index = 0;
9110 
9111 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9112 				new_dirid, new_dirid,
9113 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9114 				&index);
9115 	if (IS_ERR(inode))
9116 		return PTR_ERR(inode);
9117 	inode->i_op = &btrfs_dir_inode_operations;
9118 	inode->i_fop = &btrfs_dir_file_operations;
9119 
9120 	set_nlink(inode, 1);
9121 	btrfs_i_size_write(BTRFS_I(inode), 0);
9122 	unlock_new_inode(inode);
9123 
9124 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9125 	if (err)
9126 		btrfs_err(new_root->fs_info,
9127 			  "error inheriting subvolume %llu properties: %d",
9128 			  new_root->root_key.objectid, err);
9129 
9130 	err = btrfs_update_inode(trans, new_root, inode);
9131 
9132 	iput(inode);
9133 	return err;
9134 }
9135 
9136 struct inode *btrfs_alloc_inode(struct super_block *sb)
9137 {
9138 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9139 	struct btrfs_inode *ei;
9140 	struct inode *inode;
9141 
9142 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9143 	if (!ei)
9144 		return NULL;
9145 
9146 	ei->root = NULL;
9147 	ei->generation = 0;
9148 	ei->last_trans = 0;
9149 	ei->last_sub_trans = 0;
9150 	ei->logged_trans = 0;
9151 	ei->delalloc_bytes = 0;
9152 	ei->new_delalloc_bytes = 0;
9153 	ei->defrag_bytes = 0;
9154 	ei->disk_i_size = 0;
9155 	ei->flags = 0;
9156 	ei->csum_bytes = 0;
9157 	ei->index_cnt = (u64)-1;
9158 	ei->dir_index = 0;
9159 	ei->last_unlink_trans = 0;
9160 	ei->last_log_commit = 0;
9161 
9162 	spin_lock_init(&ei->lock);
9163 	ei->outstanding_extents = 0;
9164 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9165 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9166 					      BTRFS_BLOCK_RSV_DELALLOC);
9167 	ei->runtime_flags = 0;
9168 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9169 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9170 
9171 	ei->delayed_node = NULL;
9172 
9173 	ei->i_otime.tv_sec = 0;
9174 	ei->i_otime.tv_nsec = 0;
9175 
9176 	inode = &ei->vfs_inode;
9177 	extent_map_tree_init(&ei->extent_tree);
9178 	extent_io_tree_init(&ei->io_tree, inode);
9179 	extent_io_tree_init(&ei->io_failure_tree, inode);
9180 	ei->io_tree.track_uptodate = 1;
9181 	ei->io_failure_tree.track_uptodate = 1;
9182 	atomic_set(&ei->sync_writers, 0);
9183 	mutex_init(&ei->log_mutex);
9184 	mutex_init(&ei->delalloc_mutex);
9185 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9186 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9187 	INIT_LIST_HEAD(&ei->delayed_iput);
9188 	RB_CLEAR_NODE(&ei->rb_node);
9189 	init_rwsem(&ei->dio_sem);
9190 
9191 	return inode;
9192 }
9193 
9194 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9195 void btrfs_test_destroy_inode(struct inode *inode)
9196 {
9197 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9198 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9199 }
9200 #endif
9201 
9202 static void btrfs_i_callback(struct rcu_head *head)
9203 {
9204 	struct inode *inode = container_of(head, struct inode, i_rcu);
9205 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9206 }
9207 
9208 void btrfs_destroy_inode(struct inode *inode)
9209 {
9210 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9211 	struct btrfs_ordered_extent *ordered;
9212 	struct btrfs_root *root = BTRFS_I(inode)->root;
9213 
9214 	WARN_ON(!hlist_empty(&inode->i_dentry));
9215 	WARN_ON(inode->i_data.nrpages);
9216 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9217 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9218 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9219 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9220 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9221 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9222 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9223 
9224 	/*
9225 	 * This can happen where we create an inode, but somebody else also
9226 	 * created the same inode and we need to destroy the one we already
9227 	 * created.
9228 	 */
9229 	if (!root)
9230 		goto free;
9231 
9232 	while (1) {
9233 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9234 		if (!ordered)
9235 			break;
9236 		else {
9237 			btrfs_err(fs_info,
9238 				  "found ordered extent %llu %llu on inode cleanup",
9239 				  ordered->file_offset, ordered->len);
9240 			btrfs_remove_ordered_extent(inode, ordered);
9241 			btrfs_put_ordered_extent(ordered);
9242 			btrfs_put_ordered_extent(ordered);
9243 		}
9244 	}
9245 	btrfs_qgroup_check_reserved_leak(inode);
9246 	inode_tree_del(inode);
9247 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9248 free:
9249 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9250 }
9251 
9252 int btrfs_drop_inode(struct inode *inode)
9253 {
9254 	struct btrfs_root *root = BTRFS_I(inode)->root;
9255 
9256 	if (root == NULL)
9257 		return 1;
9258 
9259 	/* the snap/subvol tree is on deleting */
9260 	if (btrfs_root_refs(&root->root_item) == 0)
9261 		return 1;
9262 	else
9263 		return generic_drop_inode(inode);
9264 }
9265 
9266 static void init_once(void *foo)
9267 {
9268 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9269 
9270 	inode_init_once(&ei->vfs_inode);
9271 }
9272 
9273 void __cold btrfs_destroy_cachep(void)
9274 {
9275 	/*
9276 	 * Make sure all delayed rcu free inodes are flushed before we
9277 	 * destroy cache.
9278 	 */
9279 	rcu_barrier();
9280 	kmem_cache_destroy(btrfs_inode_cachep);
9281 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9282 	kmem_cache_destroy(btrfs_path_cachep);
9283 	kmem_cache_destroy(btrfs_free_space_cachep);
9284 }
9285 
9286 int __init btrfs_init_cachep(void)
9287 {
9288 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9289 			sizeof(struct btrfs_inode), 0,
9290 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9291 			init_once);
9292 	if (!btrfs_inode_cachep)
9293 		goto fail;
9294 
9295 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9296 			sizeof(struct btrfs_trans_handle), 0,
9297 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9298 	if (!btrfs_trans_handle_cachep)
9299 		goto fail;
9300 
9301 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9302 			sizeof(struct btrfs_path), 0,
9303 			SLAB_MEM_SPREAD, NULL);
9304 	if (!btrfs_path_cachep)
9305 		goto fail;
9306 
9307 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9308 			sizeof(struct btrfs_free_space), 0,
9309 			SLAB_MEM_SPREAD, NULL);
9310 	if (!btrfs_free_space_cachep)
9311 		goto fail;
9312 
9313 	return 0;
9314 fail:
9315 	btrfs_destroy_cachep();
9316 	return -ENOMEM;
9317 }
9318 
9319 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9320 			 u32 request_mask, unsigned int flags)
9321 {
9322 	u64 delalloc_bytes;
9323 	struct inode *inode = d_inode(path->dentry);
9324 	u32 blocksize = inode->i_sb->s_blocksize;
9325 	u32 bi_flags = BTRFS_I(inode)->flags;
9326 
9327 	stat->result_mask |= STATX_BTIME;
9328 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9329 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9330 	if (bi_flags & BTRFS_INODE_APPEND)
9331 		stat->attributes |= STATX_ATTR_APPEND;
9332 	if (bi_flags & BTRFS_INODE_COMPRESS)
9333 		stat->attributes |= STATX_ATTR_COMPRESSED;
9334 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9335 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9336 	if (bi_flags & BTRFS_INODE_NODUMP)
9337 		stat->attributes |= STATX_ATTR_NODUMP;
9338 
9339 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9340 				  STATX_ATTR_COMPRESSED |
9341 				  STATX_ATTR_IMMUTABLE |
9342 				  STATX_ATTR_NODUMP);
9343 
9344 	generic_fillattr(inode, stat);
9345 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9346 
9347 	spin_lock(&BTRFS_I(inode)->lock);
9348 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9349 	spin_unlock(&BTRFS_I(inode)->lock);
9350 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9351 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9352 	return 0;
9353 }
9354 
9355 static int btrfs_rename_exchange(struct inode *old_dir,
9356 			      struct dentry *old_dentry,
9357 			      struct inode *new_dir,
9358 			      struct dentry *new_dentry)
9359 {
9360 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9361 	struct btrfs_trans_handle *trans;
9362 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9363 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9364 	struct inode *new_inode = new_dentry->d_inode;
9365 	struct inode *old_inode = old_dentry->d_inode;
9366 	struct timespec64 ctime = current_time(old_inode);
9367 	struct dentry *parent;
9368 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9369 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9370 	u64 old_idx = 0;
9371 	u64 new_idx = 0;
9372 	u64 root_objectid;
9373 	int ret;
9374 	bool root_log_pinned = false;
9375 	bool dest_log_pinned = false;
9376 	struct btrfs_log_ctx ctx_root;
9377 	struct btrfs_log_ctx ctx_dest;
9378 	bool sync_log_root = false;
9379 	bool sync_log_dest = false;
9380 	bool commit_transaction = false;
9381 
9382 	/* we only allow rename subvolume link between subvolumes */
9383 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9384 		return -EXDEV;
9385 
9386 	btrfs_init_log_ctx(&ctx_root, old_inode);
9387 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9388 
9389 	/* close the race window with snapshot create/destroy ioctl */
9390 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9391 		down_read(&fs_info->subvol_sem);
9392 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9393 		down_read(&fs_info->subvol_sem);
9394 
9395 	/*
9396 	 * We want to reserve the absolute worst case amount of items.  So if
9397 	 * both inodes are subvols and we need to unlink them then that would
9398 	 * require 4 item modifications, but if they are both normal inodes it
9399 	 * would require 5 item modifications, so we'll assume their normal
9400 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9401 	 * should cover the worst case number of items we'll modify.
9402 	 */
9403 	trans = btrfs_start_transaction(root, 12);
9404 	if (IS_ERR(trans)) {
9405 		ret = PTR_ERR(trans);
9406 		goto out_notrans;
9407 	}
9408 
9409 	/*
9410 	 * We need to find a free sequence number both in the source and
9411 	 * in the destination directory for the exchange.
9412 	 */
9413 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9414 	if (ret)
9415 		goto out_fail;
9416 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9417 	if (ret)
9418 		goto out_fail;
9419 
9420 	BTRFS_I(old_inode)->dir_index = 0ULL;
9421 	BTRFS_I(new_inode)->dir_index = 0ULL;
9422 
9423 	/* Reference for the source. */
9424 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9425 		/* force full log commit if subvolume involved. */
9426 		btrfs_set_log_full_commit(fs_info, trans);
9427 	} else {
9428 		btrfs_pin_log_trans(root);
9429 		root_log_pinned = true;
9430 		ret = btrfs_insert_inode_ref(trans, dest,
9431 					     new_dentry->d_name.name,
9432 					     new_dentry->d_name.len,
9433 					     old_ino,
9434 					     btrfs_ino(BTRFS_I(new_dir)),
9435 					     old_idx);
9436 		if (ret)
9437 			goto out_fail;
9438 	}
9439 
9440 	/* And now for the dest. */
9441 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9442 		/* force full log commit if subvolume involved. */
9443 		btrfs_set_log_full_commit(fs_info, trans);
9444 	} else {
9445 		btrfs_pin_log_trans(dest);
9446 		dest_log_pinned = true;
9447 		ret = btrfs_insert_inode_ref(trans, root,
9448 					     old_dentry->d_name.name,
9449 					     old_dentry->d_name.len,
9450 					     new_ino,
9451 					     btrfs_ino(BTRFS_I(old_dir)),
9452 					     new_idx);
9453 		if (ret)
9454 			goto out_fail;
9455 	}
9456 
9457 	/* Update inode version and ctime/mtime. */
9458 	inode_inc_iversion(old_dir);
9459 	inode_inc_iversion(new_dir);
9460 	inode_inc_iversion(old_inode);
9461 	inode_inc_iversion(new_inode);
9462 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9463 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9464 	old_inode->i_ctime = ctime;
9465 	new_inode->i_ctime = ctime;
9466 
9467 	if (old_dentry->d_parent != new_dentry->d_parent) {
9468 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9469 				BTRFS_I(old_inode), 1);
9470 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9471 				BTRFS_I(new_inode), 1);
9472 	}
9473 
9474 	/* src is a subvolume */
9475 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9476 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9477 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9478 					  old_dentry->d_name.name,
9479 					  old_dentry->d_name.len);
9480 	} else { /* src is an inode */
9481 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9482 					   BTRFS_I(old_dentry->d_inode),
9483 					   old_dentry->d_name.name,
9484 					   old_dentry->d_name.len);
9485 		if (!ret)
9486 			ret = btrfs_update_inode(trans, root, old_inode);
9487 	}
9488 	if (ret) {
9489 		btrfs_abort_transaction(trans, ret);
9490 		goto out_fail;
9491 	}
9492 
9493 	/* dest is a subvolume */
9494 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9495 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9496 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9497 					  new_dentry->d_name.name,
9498 					  new_dentry->d_name.len);
9499 	} else { /* dest is an inode */
9500 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9501 					   BTRFS_I(new_dentry->d_inode),
9502 					   new_dentry->d_name.name,
9503 					   new_dentry->d_name.len);
9504 		if (!ret)
9505 			ret = btrfs_update_inode(trans, dest, new_inode);
9506 	}
9507 	if (ret) {
9508 		btrfs_abort_transaction(trans, ret);
9509 		goto out_fail;
9510 	}
9511 
9512 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9513 			     new_dentry->d_name.name,
9514 			     new_dentry->d_name.len, 0, old_idx);
9515 	if (ret) {
9516 		btrfs_abort_transaction(trans, ret);
9517 		goto out_fail;
9518 	}
9519 
9520 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9521 			     old_dentry->d_name.name,
9522 			     old_dentry->d_name.len, 0, new_idx);
9523 	if (ret) {
9524 		btrfs_abort_transaction(trans, ret);
9525 		goto out_fail;
9526 	}
9527 
9528 	if (old_inode->i_nlink == 1)
9529 		BTRFS_I(old_inode)->dir_index = old_idx;
9530 	if (new_inode->i_nlink == 1)
9531 		BTRFS_I(new_inode)->dir_index = new_idx;
9532 
9533 	if (root_log_pinned) {
9534 		parent = new_dentry->d_parent;
9535 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9536 					 BTRFS_I(old_dir), parent,
9537 					 false, &ctx_root);
9538 		if (ret == BTRFS_NEED_LOG_SYNC)
9539 			sync_log_root = true;
9540 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9541 			commit_transaction = true;
9542 		ret = 0;
9543 		btrfs_end_log_trans(root);
9544 		root_log_pinned = false;
9545 	}
9546 	if (dest_log_pinned) {
9547 		if (!commit_transaction) {
9548 			parent = old_dentry->d_parent;
9549 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9550 						 BTRFS_I(new_dir), parent,
9551 						 false, &ctx_dest);
9552 			if (ret == BTRFS_NEED_LOG_SYNC)
9553 				sync_log_dest = true;
9554 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9555 				commit_transaction = true;
9556 			ret = 0;
9557 		}
9558 		btrfs_end_log_trans(dest);
9559 		dest_log_pinned = false;
9560 	}
9561 out_fail:
9562 	/*
9563 	 * If we have pinned a log and an error happened, we unpin tasks
9564 	 * trying to sync the log and force them to fallback to a transaction
9565 	 * commit if the log currently contains any of the inodes involved in
9566 	 * this rename operation (to ensure we do not persist a log with an
9567 	 * inconsistent state for any of these inodes or leading to any
9568 	 * inconsistencies when replayed). If the transaction was aborted, the
9569 	 * abortion reason is propagated to userspace when attempting to commit
9570 	 * the transaction. If the log does not contain any of these inodes, we
9571 	 * allow the tasks to sync it.
9572 	 */
9573 	if (ret && (root_log_pinned || dest_log_pinned)) {
9574 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9575 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9576 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9577 		    (new_inode &&
9578 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9579 			btrfs_set_log_full_commit(fs_info, trans);
9580 
9581 		if (root_log_pinned) {
9582 			btrfs_end_log_trans(root);
9583 			root_log_pinned = false;
9584 		}
9585 		if (dest_log_pinned) {
9586 			btrfs_end_log_trans(dest);
9587 			dest_log_pinned = false;
9588 		}
9589 	}
9590 	if (!ret && sync_log_root && !commit_transaction) {
9591 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9592 				     &ctx_root);
9593 		if (ret)
9594 			commit_transaction = true;
9595 	}
9596 	if (!ret && sync_log_dest && !commit_transaction) {
9597 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9598 				     &ctx_dest);
9599 		if (ret)
9600 			commit_transaction = true;
9601 	}
9602 	if (commit_transaction) {
9603 		ret = btrfs_commit_transaction(trans);
9604 	} else {
9605 		int ret2;
9606 
9607 		ret2 = btrfs_end_transaction(trans);
9608 		ret = ret ? ret : ret2;
9609 	}
9610 out_notrans:
9611 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9612 		up_read(&fs_info->subvol_sem);
9613 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9614 		up_read(&fs_info->subvol_sem);
9615 
9616 	return ret;
9617 }
9618 
9619 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9620 				     struct btrfs_root *root,
9621 				     struct inode *dir,
9622 				     struct dentry *dentry)
9623 {
9624 	int ret;
9625 	struct inode *inode;
9626 	u64 objectid;
9627 	u64 index;
9628 
9629 	ret = btrfs_find_free_ino(root, &objectid);
9630 	if (ret)
9631 		return ret;
9632 
9633 	inode = btrfs_new_inode(trans, root, dir,
9634 				dentry->d_name.name,
9635 				dentry->d_name.len,
9636 				btrfs_ino(BTRFS_I(dir)),
9637 				objectid,
9638 				S_IFCHR | WHITEOUT_MODE,
9639 				&index);
9640 
9641 	if (IS_ERR(inode)) {
9642 		ret = PTR_ERR(inode);
9643 		return ret;
9644 	}
9645 
9646 	inode->i_op = &btrfs_special_inode_operations;
9647 	init_special_inode(inode, inode->i_mode,
9648 		WHITEOUT_DEV);
9649 
9650 	ret = btrfs_init_inode_security(trans, inode, dir,
9651 				&dentry->d_name);
9652 	if (ret)
9653 		goto out;
9654 
9655 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9656 				BTRFS_I(inode), 0, index);
9657 	if (ret)
9658 		goto out;
9659 
9660 	ret = btrfs_update_inode(trans, root, inode);
9661 out:
9662 	unlock_new_inode(inode);
9663 	if (ret)
9664 		inode_dec_link_count(inode);
9665 	iput(inode);
9666 
9667 	return ret;
9668 }
9669 
9670 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9671 			   struct inode *new_dir, struct dentry *new_dentry,
9672 			   unsigned int flags)
9673 {
9674 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9675 	struct btrfs_trans_handle *trans;
9676 	unsigned int trans_num_items;
9677 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9678 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9679 	struct inode *new_inode = d_inode(new_dentry);
9680 	struct inode *old_inode = d_inode(old_dentry);
9681 	u64 index = 0;
9682 	u64 root_objectid;
9683 	int ret;
9684 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9685 	bool log_pinned = false;
9686 	struct btrfs_log_ctx ctx;
9687 	bool sync_log = false;
9688 	bool commit_transaction = false;
9689 
9690 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9691 		return -EPERM;
9692 
9693 	/* we only allow rename subvolume link between subvolumes */
9694 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9695 		return -EXDEV;
9696 
9697 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9698 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9699 		return -ENOTEMPTY;
9700 
9701 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9702 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9703 		return -ENOTEMPTY;
9704 
9705 
9706 	/* check for collisions, even if the  name isn't there */
9707 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9708 			     new_dentry->d_name.name,
9709 			     new_dentry->d_name.len);
9710 
9711 	if (ret) {
9712 		if (ret == -EEXIST) {
9713 			/* we shouldn't get
9714 			 * eexist without a new_inode */
9715 			if (WARN_ON(!new_inode)) {
9716 				return ret;
9717 			}
9718 		} else {
9719 			/* maybe -EOVERFLOW */
9720 			return ret;
9721 		}
9722 	}
9723 	ret = 0;
9724 
9725 	/*
9726 	 * we're using rename to replace one file with another.  Start IO on it
9727 	 * now so  we don't add too much work to the end of the transaction
9728 	 */
9729 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9730 		filemap_flush(old_inode->i_mapping);
9731 
9732 	/* close the racy window with snapshot create/destroy ioctl */
9733 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9734 		down_read(&fs_info->subvol_sem);
9735 	/*
9736 	 * We want to reserve the absolute worst case amount of items.  So if
9737 	 * both inodes are subvols and we need to unlink them then that would
9738 	 * require 4 item modifications, but if they are both normal inodes it
9739 	 * would require 5 item modifications, so we'll assume they are normal
9740 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9741 	 * should cover the worst case number of items we'll modify.
9742 	 * If our rename has the whiteout flag, we need more 5 units for the
9743 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9744 	 * when selinux is enabled).
9745 	 */
9746 	trans_num_items = 11;
9747 	if (flags & RENAME_WHITEOUT)
9748 		trans_num_items += 5;
9749 	trans = btrfs_start_transaction(root, trans_num_items);
9750 	if (IS_ERR(trans)) {
9751 		ret = PTR_ERR(trans);
9752 		goto out_notrans;
9753 	}
9754 
9755 	if (dest != root)
9756 		btrfs_record_root_in_trans(trans, dest);
9757 
9758 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9759 	if (ret)
9760 		goto out_fail;
9761 
9762 	BTRFS_I(old_inode)->dir_index = 0ULL;
9763 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9764 		/* force full log commit if subvolume involved. */
9765 		btrfs_set_log_full_commit(fs_info, trans);
9766 	} else {
9767 		btrfs_pin_log_trans(root);
9768 		log_pinned = true;
9769 		ret = btrfs_insert_inode_ref(trans, dest,
9770 					     new_dentry->d_name.name,
9771 					     new_dentry->d_name.len,
9772 					     old_ino,
9773 					     btrfs_ino(BTRFS_I(new_dir)), index);
9774 		if (ret)
9775 			goto out_fail;
9776 	}
9777 
9778 	inode_inc_iversion(old_dir);
9779 	inode_inc_iversion(new_dir);
9780 	inode_inc_iversion(old_inode);
9781 	old_dir->i_ctime = old_dir->i_mtime =
9782 	new_dir->i_ctime = new_dir->i_mtime =
9783 	old_inode->i_ctime = current_time(old_dir);
9784 
9785 	if (old_dentry->d_parent != new_dentry->d_parent)
9786 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9787 				BTRFS_I(old_inode), 1);
9788 
9789 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9790 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9791 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9792 					old_dentry->d_name.name,
9793 					old_dentry->d_name.len);
9794 	} else {
9795 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9796 					BTRFS_I(d_inode(old_dentry)),
9797 					old_dentry->d_name.name,
9798 					old_dentry->d_name.len);
9799 		if (!ret)
9800 			ret = btrfs_update_inode(trans, root, old_inode);
9801 	}
9802 	if (ret) {
9803 		btrfs_abort_transaction(trans, ret);
9804 		goto out_fail;
9805 	}
9806 
9807 	if (new_inode) {
9808 		inode_inc_iversion(new_inode);
9809 		new_inode->i_ctime = current_time(new_inode);
9810 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9811 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9812 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9813 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9814 						new_dentry->d_name.name,
9815 						new_dentry->d_name.len);
9816 			BUG_ON(new_inode->i_nlink == 0);
9817 		} else {
9818 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9819 						 BTRFS_I(d_inode(new_dentry)),
9820 						 new_dentry->d_name.name,
9821 						 new_dentry->d_name.len);
9822 		}
9823 		if (!ret && new_inode->i_nlink == 0)
9824 			ret = btrfs_orphan_add(trans,
9825 					BTRFS_I(d_inode(new_dentry)));
9826 		if (ret) {
9827 			btrfs_abort_transaction(trans, ret);
9828 			goto out_fail;
9829 		}
9830 	}
9831 
9832 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9833 			     new_dentry->d_name.name,
9834 			     new_dentry->d_name.len, 0, index);
9835 	if (ret) {
9836 		btrfs_abort_transaction(trans, ret);
9837 		goto out_fail;
9838 	}
9839 
9840 	if (old_inode->i_nlink == 1)
9841 		BTRFS_I(old_inode)->dir_index = index;
9842 
9843 	if (log_pinned) {
9844 		struct dentry *parent = new_dentry->d_parent;
9845 
9846 		btrfs_init_log_ctx(&ctx, old_inode);
9847 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9848 					 BTRFS_I(old_dir), parent,
9849 					 false, &ctx);
9850 		if (ret == BTRFS_NEED_LOG_SYNC)
9851 			sync_log = true;
9852 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9853 			commit_transaction = true;
9854 		ret = 0;
9855 		btrfs_end_log_trans(root);
9856 		log_pinned = false;
9857 	}
9858 
9859 	if (flags & RENAME_WHITEOUT) {
9860 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9861 						old_dentry);
9862 
9863 		if (ret) {
9864 			btrfs_abort_transaction(trans, ret);
9865 			goto out_fail;
9866 		}
9867 	}
9868 out_fail:
9869 	/*
9870 	 * If we have pinned the log and an error happened, we unpin tasks
9871 	 * trying to sync the log and force them to fallback to a transaction
9872 	 * commit if the log currently contains any of the inodes involved in
9873 	 * this rename operation (to ensure we do not persist a log with an
9874 	 * inconsistent state for any of these inodes or leading to any
9875 	 * inconsistencies when replayed). If the transaction was aborted, the
9876 	 * abortion reason is propagated to userspace when attempting to commit
9877 	 * the transaction. If the log does not contain any of these inodes, we
9878 	 * allow the tasks to sync it.
9879 	 */
9880 	if (ret && log_pinned) {
9881 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9882 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9883 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9884 		    (new_inode &&
9885 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9886 			btrfs_set_log_full_commit(fs_info, trans);
9887 
9888 		btrfs_end_log_trans(root);
9889 		log_pinned = false;
9890 	}
9891 	if (!ret && sync_log) {
9892 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9893 		if (ret)
9894 			commit_transaction = true;
9895 	}
9896 	if (commit_transaction) {
9897 		ret = btrfs_commit_transaction(trans);
9898 	} else {
9899 		int ret2;
9900 
9901 		ret2 = btrfs_end_transaction(trans);
9902 		ret = ret ? ret : ret2;
9903 	}
9904 out_notrans:
9905 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9906 		up_read(&fs_info->subvol_sem);
9907 
9908 	return ret;
9909 }
9910 
9911 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9912 			 struct inode *new_dir, struct dentry *new_dentry,
9913 			 unsigned int flags)
9914 {
9915 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9916 		return -EINVAL;
9917 
9918 	if (flags & RENAME_EXCHANGE)
9919 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9920 					  new_dentry);
9921 
9922 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9923 }
9924 
9925 struct btrfs_delalloc_work {
9926 	struct inode *inode;
9927 	struct completion completion;
9928 	struct list_head list;
9929 	struct btrfs_work work;
9930 };
9931 
9932 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9933 {
9934 	struct btrfs_delalloc_work *delalloc_work;
9935 	struct inode *inode;
9936 
9937 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9938 				     work);
9939 	inode = delalloc_work->inode;
9940 	filemap_flush(inode->i_mapping);
9941 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9942 				&BTRFS_I(inode)->runtime_flags))
9943 		filemap_flush(inode->i_mapping);
9944 
9945 	iput(inode);
9946 	complete(&delalloc_work->completion);
9947 }
9948 
9949 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9950 {
9951 	struct btrfs_delalloc_work *work;
9952 
9953 	work = kmalloc(sizeof(*work), GFP_NOFS);
9954 	if (!work)
9955 		return NULL;
9956 
9957 	init_completion(&work->completion);
9958 	INIT_LIST_HEAD(&work->list);
9959 	work->inode = inode;
9960 	WARN_ON_ONCE(!inode);
9961 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9962 			btrfs_run_delalloc_work, NULL, NULL);
9963 
9964 	return work;
9965 }
9966 
9967 /*
9968  * some fairly slow code that needs optimization. This walks the list
9969  * of all the inodes with pending delalloc and forces them to disk.
9970  */
9971 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9972 {
9973 	struct btrfs_inode *binode;
9974 	struct inode *inode;
9975 	struct btrfs_delalloc_work *work, *next;
9976 	struct list_head works;
9977 	struct list_head splice;
9978 	int ret = 0;
9979 
9980 	INIT_LIST_HEAD(&works);
9981 	INIT_LIST_HEAD(&splice);
9982 
9983 	mutex_lock(&root->delalloc_mutex);
9984 	spin_lock(&root->delalloc_lock);
9985 	list_splice_init(&root->delalloc_inodes, &splice);
9986 	while (!list_empty(&splice)) {
9987 		binode = list_entry(splice.next, struct btrfs_inode,
9988 				    delalloc_inodes);
9989 
9990 		list_move_tail(&binode->delalloc_inodes,
9991 			       &root->delalloc_inodes);
9992 		inode = igrab(&binode->vfs_inode);
9993 		if (!inode) {
9994 			cond_resched_lock(&root->delalloc_lock);
9995 			continue;
9996 		}
9997 		spin_unlock(&root->delalloc_lock);
9998 
9999 		work = btrfs_alloc_delalloc_work(inode);
10000 		if (!work) {
10001 			iput(inode);
10002 			ret = -ENOMEM;
10003 			goto out;
10004 		}
10005 		list_add_tail(&work->list, &works);
10006 		btrfs_queue_work(root->fs_info->flush_workers,
10007 				 &work->work);
10008 		ret++;
10009 		if (nr != -1 && ret >= nr)
10010 			goto out;
10011 		cond_resched();
10012 		spin_lock(&root->delalloc_lock);
10013 	}
10014 	spin_unlock(&root->delalloc_lock);
10015 
10016 out:
10017 	list_for_each_entry_safe(work, next, &works, list) {
10018 		list_del_init(&work->list);
10019 		wait_for_completion(&work->completion);
10020 		kfree(work);
10021 	}
10022 
10023 	if (!list_empty(&splice)) {
10024 		spin_lock(&root->delalloc_lock);
10025 		list_splice_tail(&splice, &root->delalloc_inodes);
10026 		spin_unlock(&root->delalloc_lock);
10027 	}
10028 	mutex_unlock(&root->delalloc_mutex);
10029 	return ret;
10030 }
10031 
10032 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
10033 {
10034 	struct btrfs_fs_info *fs_info = root->fs_info;
10035 	int ret;
10036 
10037 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10038 		return -EROFS;
10039 
10040 	ret = start_delalloc_inodes(root, -1);
10041 	if (ret > 0)
10042 		ret = 0;
10043 	return ret;
10044 }
10045 
10046 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10047 {
10048 	struct btrfs_root *root;
10049 	struct list_head splice;
10050 	int ret;
10051 
10052 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10053 		return -EROFS;
10054 
10055 	INIT_LIST_HEAD(&splice);
10056 
10057 	mutex_lock(&fs_info->delalloc_root_mutex);
10058 	spin_lock(&fs_info->delalloc_root_lock);
10059 	list_splice_init(&fs_info->delalloc_roots, &splice);
10060 	while (!list_empty(&splice) && nr) {
10061 		root = list_first_entry(&splice, struct btrfs_root,
10062 					delalloc_root);
10063 		root = btrfs_grab_fs_root(root);
10064 		BUG_ON(!root);
10065 		list_move_tail(&root->delalloc_root,
10066 			       &fs_info->delalloc_roots);
10067 		spin_unlock(&fs_info->delalloc_root_lock);
10068 
10069 		ret = start_delalloc_inodes(root, nr);
10070 		btrfs_put_fs_root(root);
10071 		if (ret < 0)
10072 			goto out;
10073 
10074 		if (nr != -1) {
10075 			nr -= ret;
10076 			WARN_ON(nr < 0);
10077 		}
10078 		spin_lock(&fs_info->delalloc_root_lock);
10079 	}
10080 	spin_unlock(&fs_info->delalloc_root_lock);
10081 
10082 	ret = 0;
10083 out:
10084 	if (!list_empty(&splice)) {
10085 		spin_lock(&fs_info->delalloc_root_lock);
10086 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10087 		spin_unlock(&fs_info->delalloc_root_lock);
10088 	}
10089 	mutex_unlock(&fs_info->delalloc_root_mutex);
10090 	return ret;
10091 }
10092 
10093 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10094 			 const char *symname)
10095 {
10096 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10097 	struct btrfs_trans_handle *trans;
10098 	struct btrfs_root *root = BTRFS_I(dir)->root;
10099 	struct btrfs_path *path;
10100 	struct btrfs_key key;
10101 	struct inode *inode = NULL;
10102 	int err;
10103 	u64 objectid;
10104 	u64 index = 0;
10105 	int name_len;
10106 	int datasize;
10107 	unsigned long ptr;
10108 	struct btrfs_file_extent_item *ei;
10109 	struct extent_buffer *leaf;
10110 
10111 	name_len = strlen(symname);
10112 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10113 		return -ENAMETOOLONG;
10114 
10115 	/*
10116 	 * 2 items for inode item and ref
10117 	 * 2 items for dir items
10118 	 * 1 item for updating parent inode item
10119 	 * 1 item for the inline extent item
10120 	 * 1 item for xattr if selinux is on
10121 	 */
10122 	trans = btrfs_start_transaction(root, 7);
10123 	if (IS_ERR(trans))
10124 		return PTR_ERR(trans);
10125 
10126 	err = btrfs_find_free_ino(root, &objectid);
10127 	if (err)
10128 		goto out_unlock;
10129 
10130 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10131 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10132 				objectid, S_IFLNK|S_IRWXUGO, &index);
10133 	if (IS_ERR(inode)) {
10134 		err = PTR_ERR(inode);
10135 		inode = NULL;
10136 		goto out_unlock;
10137 	}
10138 
10139 	/*
10140 	* If the active LSM wants to access the inode during
10141 	* d_instantiate it needs these. Smack checks to see
10142 	* if the filesystem supports xattrs by looking at the
10143 	* ops vector.
10144 	*/
10145 	inode->i_fop = &btrfs_file_operations;
10146 	inode->i_op = &btrfs_file_inode_operations;
10147 	inode->i_mapping->a_ops = &btrfs_aops;
10148 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10149 
10150 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10151 	if (err)
10152 		goto out_unlock;
10153 
10154 	path = btrfs_alloc_path();
10155 	if (!path) {
10156 		err = -ENOMEM;
10157 		goto out_unlock;
10158 	}
10159 	key.objectid = btrfs_ino(BTRFS_I(inode));
10160 	key.offset = 0;
10161 	key.type = BTRFS_EXTENT_DATA_KEY;
10162 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10163 	err = btrfs_insert_empty_item(trans, root, path, &key,
10164 				      datasize);
10165 	if (err) {
10166 		btrfs_free_path(path);
10167 		goto out_unlock;
10168 	}
10169 	leaf = path->nodes[0];
10170 	ei = btrfs_item_ptr(leaf, path->slots[0],
10171 			    struct btrfs_file_extent_item);
10172 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10173 	btrfs_set_file_extent_type(leaf, ei,
10174 				   BTRFS_FILE_EXTENT_INLINE);
10175 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10176 	btrfs_set_file_extent_compression(leaf, ei, 0);
10177 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10178 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10179 
10180 	ptr = btrfs_file_extent_inline_start(ei);
10181 	write_extent_buffer(leaf, symname, ptr, name_len);
10182 	btrfs_mark_buffer_dirty(leaf);
10183 	btrfs_free_path(path);
10184 
10185 	inode->i_op = &btrfs_symlink_inode_operations;
10186 	inode_nohighmem(inode);
10187 	inode->i_mapping->a_ops = &btrfs_aops;
10188 	inode_set_bytes(inode, name_len);
10189 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10190 	err = btrfs_update_inode(trans, root, inode);
10191 	/*
10192 	 * Last step, add directory indexes for our symlink inode. This is the
10193 	 * last step to avoid extra cleanup of these indexes if an error happens
10194 	 * elsewhere above.
10195 	 */
10196 	if (!err)
10197 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10198 				BTRFS_I(inode), 0, index);
10199 	if (err)
10200 		goto out_unlock;
10201 
10202 	d_instantiate_new(dentry, inode);
10203 
10204 out_unlock:
10205 	btrfs_end_transaction(trans);
10206 	if (err && inode) {
10207 		inode_dec_link_count(inode);
10208 		discard_new_inode(inode);
10209 	}
10210 	btrfs_btree_balance_dirty(fs_info);
10211 	return err;
10212 }
10213 
10214 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10215 				       u64 start, u64 num_bytes, u64 min_size,
10216 				       loff_t actual_len, u64 *alloc_hint,
10217 				       struct btrfs_trans_handle *trans)
10218 {
10219 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10220 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10221 	struct extent_map *em;
10222 	struct btrfs_root *root = BTRFS_I(inode)->root;
10223 	struct btrfs_key ins;
10224 	u64 cur_offset = start;
10225 	u64 i_size;
10226 	u64 cur_bytes;
10227 	u64 last_alloc = (u64)-1;
10228 	int ret = 0;
10229 	bool own_trans = true;
10230 	u64 end = start + num_bytes - 1;
10231 
10232 	if (trans)
10233 		own_trans = false;
10234 	while (num_bytes > 0) {
10235 		if (own_trans) {
10236 			trans = btrfs_start_transaction(root, 3);
10237 			if (IS_ERR(trans)) {
10238 				ret = PTR_ERR(trans);
10239 				break;
10240 			}
10241 		}
10242 
10243 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10244 		cur_bytes = max(cur_bytes, min_size);
10245 		/*
10246 		 * If we are severely fragmented we could end up with really
10247 		 * small allocations, so if the allocator is returning small
10248 		 * chunks lets make its job easier by only searching for those
10249 		 * sized chunks.
10250 		 */
10251 		cur_bytes = min(cur_bytes, last_alloc);
10252 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10253 				min_size, 0, *alloc_hint, &ins, 1, 0);
10254 		if (ret) {
10255 			if (own_trans)
10256 				btrfs_end_transaction(trans);
10257 			break;
10258 		}
10259 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10260 
10261 		last_alloc = ins.offset;
10262 		ret = insert_reserved_file_extent(trans, inode,
10263 						  cur_offset, ins.objectid,
10264 						  ins.offset, ins.offset,
10265 						  ins.offset, 0, 0, 0,
10266 						  BTRFS_FILE_EXTENT_PREALLOC);
10267 		if (ret) {
10268 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10269 						   ins.offset, 0);
10270 			btrfs_abort_transaction(trans, ret);
10271 			if (own_trans)
10272 				btrfs_end_transaction(trans);
10273 			break;
10274 		}
10275 
10276 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10277 					cur_offset + ins.offset -1, 0);
10278 
10279 		em = alloc_extent_map();
10280 		if (!em) {
10281 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10282 				&BTRFS_I(inode)->runtime_flags);
10283 			goto next;
10284 		}
10285 
10286 		em->start = cur_offset;
10287 		em->orig_start = cur_offset;
10288 		em->len = ins.offset;
10289 		em->block_start = ins.objectid;
10290 		em->block_len = ins.offset;
10291 		em->orig_block_len = ins.offset;
10292 		em->ram_bytes = ins.offset;
10293 		em->bdev = fs_info->fs_devices->latest_bdev;
10294 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10295 		em->generation = trans->transid;
10296 
10297 		while (1) {
10298 			write_lock(&em_tree->lock);
10299 			ret = add_extent_mapping(em_tree, em, 1);
10300 			write_unlock(&em_tree->lock);
10301 			if (ret != -EEXIST)
10302 				break;
10303 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10304 						cur_offset + ins.offset - 1,
10305 						0);
10306 		}
10307 		free_extent_map(em);
10308 next:
10309 		num_bytes -= ins.offset;
10310 		cur_offset += ins.offset;
10311 		*alloc_hint = ins.objectid + ins.offset;
10312 
10313 		inode_inc_iversion(inode);
10314 		inode->i_ctime = current_time(inode);
10315 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10316 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10317 		    (actual_len > inode->i_size) &&
10318 		    (cur_offset > inode->i_size)) {
10319 			if (cur_offset > actual_len)
10320 				i_size = actual_len;
10321 			else
10322 				i_size = cur_offset;
10323 			i_size_write(inode, i_size);
10324 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10325 		}
10326 
10327 		ret = btrfs_update_inode(trans, root, inode);
10328 
10329 		if (ret) {
10330 			btrfs_abort_transaction(trans, ret);
10331 			if (own_trans)
10332 				btrfs_end_transaction(trans);
10333 			break;
10334 		}
10335 
10336 		if (own_trans)
10337 			btrfs_end_transaction(trans);
10338 	}
10339 	if (cur_offset < end)
10340 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10341 			end - cur_offset + 1);
10342 	return ret;
10343 }
10344 
10345 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10346 			      u64 start, u64 num_bytes, u64 min_size,
10347 			      loff_t actual_len, u64 *alloc_hint)
10348 {
10349 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10350 					   min_size, actual_len, alloc_hint,
10351 					   NULL);
10352 }
10353 
10354 int btrfs_prealloc_file_range_trans(struct inode *inode,
10355 				    struct btrfs_trans_handle *trans, int mode,
10356 				    u64 start, u64 num_bytes, u64 min_size,
10357 				    loff_t actual_len, u64 *alloc_hint)
10358 {
10359 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10360 					   min_size, actual_len, alloc_hint, trans);
10361 }
10362 
10363 static int btrfs_set_page_dirty(struct page *page)
10364 {
10365 	return __set_page_dirty_nobuffers(page);
10366 }
10367 
10368 static int btrfs_permission(struct inode *inode, int mask)
10369 {
10370 	struct btrfs_root *root = BTRFS_I(inode)->root;
10371 	umode_t mode = inode->i_mode;
10372 
10373 	if (mask & MAY_WRITE &&
10374 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10375 		if (btrfs_root_readonly(root))
10376 			return -EROFS;
10377 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10378 			return -EACCES;
10379 	}
10380 	return generic_permission(inode, mask);
10381 }
10382 
10383 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10384 {
10385 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10386 	struct btrfs_trans_handle *trans;
10387 	struct btrfs_root *root = BTRFS_I(dir)->root;
10388 	struct inode *inode = NULL;
10389 	u64 objectid;
10390 	u64 index;
10391 	int ret = 0;
10392 
10393 	/*
10394 	 * 5 units required for adding orphan entry
10395 	 */
10396 	trans = btrfs_start_transaction(root, 5);
10397 	if (IS_ERR(trans))
10398 		return PTR_ERR(trans);
10399 
10400 	ret = btrfs_find_free_ino(root, &objectid);
10401 	if (ret)
10402 		goto out;
10403 
10404 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10405 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10406 	if (IS_ERR(inode)) {
10407 		ret = PTR_ERR(inode);
10408 		inode = NULL;
10409 		goto out;
10410 	}
10411 
10412 	inode->i_fop = &btrfs_file_operations;
10413 	inode->i_op = &btrfs_file_inode_operations;
10414 
10415 	inode->i_mapping->a_ops = &btrfs_aops;
10416 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10417 
10418 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10419 	if (ret)
10420 		goto out;
10421 
10422 	ret = btrfs_update_inode(trans, root, inode);
10423 	if (ret)
10424 		goto out;
10425 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10426 	if (ret)
10427 		goto out;
10428 
10429 	/*
10430 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10431 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10432 	 * through:
10433 	 *
10434 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10435 	 */
10436 	set_nlink(inode, 1);
10437 	d_tmpfile(dentry, inode);
10438 	unlock_new_inode(inode);
10439 	mark_inode_dirty(inode);
10440 out:
10441 	btrfs_end_transaction(trans);
10442 	if (ret && inode)
10443 		discard_new_inode(inode);
10444 	btrfs_btree_balance_dirty(fs_info);
10445 	return ret;
10446 }
10447 
10448 __attribute__((const))
10449 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10450 {
10451 	return -EAGAIN;
10452 }
10453 
10454 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10455 					u64 start, u64 end)
10456 {
10457 	struct inode *inode = private_data;
10458 	u64 isize;
10459 
10460 	isize = i_size_read(inode);
10461 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10462 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10463 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10464 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10465 	}
10466 }
10467 
10468 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10469 {
10470 	struct inode *inode = tree->private_data;
10471 	unsigned long index = start >> PAGE_SHIFT;
10472 	unsigned long end_index = end >> PAGE_SHIFT;
10473 	struct page *page;
10474 
10475 	while (index <= end_index) {
10476 		page = find_get_page(inode->i_mapping, index);
10477 		ASSERT(page); /* Pages should be in the extent_io_tree */
10478 		set_page_writeback(page);
10479 		put_page(page);
10480 		index++;
10481 	}
10482 }
10483 
10484 static const struct inode_operations btrfs_dir_inode_operations = {
10485 	.getattr	= btrfs_getattr,
10486 	.lookup		= btrfs_lookup,
10487 	.create		= btrfs_create,
10488 	.unlink		= btrfs_unlink,
10489 	.link		= btrfs_link,
10490 	.mkdir		= btrfs_mkdir,
10491 	.rmdir		= btrfs_rmdir,
10492 	.rename		= btrfs_rename2,
10493 	.symlink	= btrfs_symlink,
10494 	.setattr	= btrfs_setattr,
10495 	.mknod		= btrfs_mknod,
10496 	.listxattr	= btrfs_listxattr,
10497 	.permission	= btrfs_permission,
10498 	.get_acl	= btrfs_get_acl,
10499 	.set_acl	= btrfs_set_acl,
10500 	.update_time	= btrfs_update_time,
10501 	.tmpfile        = btrfs_tmpfile,
10502 };
10503 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10504 	.lookup		= btrfs_lookup,
10505 	.permission	= btrfs_permission,
10506 	.update_time	= btrfs_update_time,
10507 };
10508 
10509 static const struct file_operations btrfs_dir_file_operations = {
10510 	.llseek		= generic_file_llseek,
10511 	.read		= generic_read_dir,
10512 	.iterate_shared	= btrfs_real_readdir,
10513 	.open		= btrfs_opendir,
10514 	.unlocked_ioctl	= btrfs_ioctl,
10515 #ifdef CONFIG_COMPAT
10516 	.compat_ioctl	= btrfs_compat_ioctl,
10517 #endif
10518 	.release        = btrfs_release_file,
10519 	.fsync		= btrfs_sync_file,
10520 };
10521 
10522 static const struct extent_io_ops btrfs_extent_io_ops = {
10523 	/* mandatory callbacks */
10524 	.submit_bio_hook = btrfs_submit_bio_hook,
10525 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10526 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10527 
10528 	/* optional callbacks */
10529 	.fill_delalloc = run_delalloc_range,
10530 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10531 	.writepage_start_hook = btrfs_writepage_start_hook,
10532 	.set_bit_hook = btrfs_set_bit_hook,
10533 	.clear_bit_hook = btrfs_clear_bit_hook,
10534 	.merge_extent_hook = btrfs_merge_extent_hook,
10535 	.split_extent_hook = btrfs_split_extent_hook,
10536 	.check_extent_io_range = btrfs_check_extent_io_range,
10537 };
10538 
10539 /*
10540  * btrfs doesn't support the bmap operation because swapfiles
10541  * use bmap to make a mapping of extents in the file.  They assume
10542  * these extents won't change over the life of the file and they
10543  * use the bmap result to do IO directly to the drive.
10544  *
10545  * the btrfs bmap call would return logical addresses that aren't
10546  * suitable for IO and they also will change frequently as COW
10547  * operations happen.  So, swapfile + btrfs == corruption.
10548  *
10549  * For now we're avoiding this by dropping bmap.
10550  */
10551 static const struct address_space_operations btrfs_aops = {
10552 	.readpage	= btrfs_readpage,
10553 	.writepage	= btrfs_writepage,
10554 	.writepages	= btrfs_writepages,
10555 	.readpages	= btrfs_readpages,
10556 	.direct_IO	= btrfs_direct_IO,
10557 	.invalidatepage = btrfs_invalidatepage,
10558 	.releasepage	= btrfs_releasepage,
10559 	.set_page_dirty	= btrfs_set_page_dirty,
10560 	.error_remove_page = generic_error_remove_page,
10561 };
10562 
10563 static const struct inode_operations btrfs_file_inode_operations = {
10564 	.getattr	= btrfs_getattr,
10565 	.setattr	= btrfs_setattr,
10566 	.listxattr      = btrfs_listxattr,
10567 	.permission	= btrfs_permission,
10568 	.fiemap		= btrfs_fiemap,
10569 	.get_acl	= btrfs_get_acl,
10570 	.set_acl	= btrfs_set_acl,
10571 	.update_time	= btrfs_update_time,
10572 };
10573 static const struct inode_operations btrfs_special_inode_operations = {
10574 	.getattr	= btrfs_getattr,
10575 	.setattr	= btrfs_setattr,
10576 	.permission	= btrfs_permission,
10577 	.listxattr	= btrfs_listxattr,
10578 	.get_acl	= btrfs_get_acl,
10579 	.set_acl	= btrfs_set_acl,
10580 	.update_time	= btrfs_update_time,
10581 };
10582 static const struct inode_operations btrfs_symlink_inode_operations = {
10583 	.get_link	= page_get_link,
10584 	.getattr	= btrfs_getattr,
10585 	.setattr	= btrfs_setattr,
10586 	.permission	= btrfs_permission,
10587 	.listxattr	= btrfs_listxattr,
10588 	.update_time	= btrfs_update_time,
10589 };
10590 
10591 const struct dentry_operations btrfs_dentry_operations = {
10592 	.d_delete	= btrfs_dentry_delete,
10593 };
10594