1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include "compat.h" 43 #include "ctree.h" 44 #include "disk-io.h" 45 #include "transaction.h" 46 #include "btrfs_inode.h" 47 #include "ioctl.h" 48 #include "print-tree.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "volumes.h" 53 #include "compression.h" 54 #include "locking.h" 55 #include "free-space-cache.h" 56 #include "inode-map.h" 57 58 struct btrfs_iget_args { 59 u64 ino; 60 struct btrfs_root *root; 61 }; 62 63 static const struct inode_operations btrfs_dir_inode_operations; 64 static const struct inode_operations btrfs_symlink_inode_operations; 65 static const struct inode_operations btrfs_dir_ro_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct address_space_operations btrfs_symlink_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_transaction_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 79 #define S_SHIFT 12 80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 88 }; 89 90 static int btrfs_setsize(struct inode *inode, loff_t newsize); 91 static int btrfs_truncate(struct inode *inode); 92 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 93 static noinline int cow_file_range(struct inode *inode, 94 struct page *locked_page, 95 u64 start, u64 end, int *page_started, 96 unsigned long *nr_written, int unlock); 97 98 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 99 struct inode *inode, struct inode *dir, 100 const struct qstr *qstr) 101 { 102 int err; 103 104 err = btrfs_init_acl(trans, inode, dir); 105 if (!err) 106 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 107 return err; 108 } 109 110 /* 111 * this does all the hard work for inserting an inline extent into 112 * the btree. The caller should have done a btrfs_drop_extents so that 113 * no overlapping inline items exist in the btree 114 */ 115 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 116 struct btrfs_root *root, struct inode *inode, 117 u64 start, size_t size, size_t compressed_size, 118 int compress_type, 119 struct page **compressed_pages) 120 { 121 struct btrfs_key key; 122 struct btrfs_path *path; 123 struct extent_buffer *leaf; 124 struct page *page = NULL; 125 char *kaddr; 126 unsigned long ptr; 127 struct btrfs_file_extent_item *ei; 128 int err = 0; 129 int ret; 130 size_t cur_size = size; 131 size_t datasize; 132 unsigned long offset; 133 134 if (compressed_size && compressed_pages) 135 cur_size = compressed_size; 136 137 path = btrfs_alloc_path(); 138 if (!path) 139 return -ENOMEM; 140 141 path->leave_spinning = 1; 142 143 key.objectid = btrfs_ino(inode); 144 key.offset = start; 145 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 146 datasize = btrfs_file_extent_calc_inline_size(cur_size); 147 148 inode_add_bytes(inode, size); 149 ret = btrfs_insert_empty_item(trans, root, path, &key, 150 datasize); 151 if (ret) { 152 err = ret; 153 goto fail; 154 } 155 leaf = path->nodes[0]; 156 ei = btrfs_item_ptr(leaf, path->slots[0], 157 struct btrfs_file_extent_item); 158 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 160 btrfs_set_file_extent_encryption(leaf, ei, 0); 161 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 162 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 163 ptr = btrfs_file_extent_inline_start(ei); 164 165 if (compress_type != BTRFS_COMPRESS_NONE) { 166 struct page *cpage; 167 int i = 0; 168 while (compressed_size > 0) { 169 cpage = compressed_pages[i]; 170 cur_size = min_t(unsigned long, compressed_size, 171 PAGE_CACHE_SIZE); 172 173 kaddr = kmap_atomic(cpage); 174 write_extent_buffer(leaf, kaddr, ptr, cur_size); 175 kunmap_atomic(kaddr); 176 177 i++; 178 ptr += cur_size; 179 compressed_size -= cur_size; 180 } 181 btrfs_set_file_extent_compression(leaf, ei, 182 compress_type); 183 } else { 184 page = find_get_page(inode->i_mapping, 185 start >> PAGE_CACHE_SHIFT); 186 btrfs_set_file_extent_compression(leaf, ei, 0); 187 kaddr = kmap_atomic(page); 188 offset = start & (PAGE_CACHE_SIZE - 1); 189 write_extent_buffer(leaf, kaddr + offset, ptr, size); 190 kunmap_atomic(kaddr); 191 page_cache_release(page); 192 } 193 btrfs_mark_buffer_dirty(leaf); 194 btrfs_free_path(path); 195 196 /* 197 * we're an inline extent, so nobody can 198 * extend the file past i_size without locking 199 * a page we already have locked. 200 * 201 * We must do any isize and inode updates 202 * before we unlock the pages. Otherwise we 203 * could end up racing with unlink. 204 */ 205 BTRFS_I(inode)->disk_i_size = inode->i_size; 206 ret = btrfs_update_inode(trans, root, inode); 207 208 return ret; 209 fail: 210 btrfs_free_path(path); 211 return err; 212 } 213 214 215 /* 216 * conditionally insert an inline extent into the file. This 217 * does the checks required to make sure the data is small enough 218 * to fit as an inline extent. 219 */ 220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 221 struct btrfs_root *root, 222 struct inode *inode, u64 start, u64 end, 223 size_t compressed_size, int compress_type, 224 struct page **compressed_pages) 225 { 226 u64 isize = i_size_read(inode); 227 u64 actual_end = min(end + 1, isize); 228 u64 inline_len = actual_end - start; 229 u64 aligned_end = (end + root->sectorsize - 1) & 230 ~((u64)root->sectorsize - 1); 231 u64 data_len = inline_len; 232 int ret; 233 234 if (compressed_size) 235 data_len = compressed_size; 236 237 if (start > 0 || 238 actual_end >= PAGE_CACHE_SIZE || 239 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 240 (!compressed_size && 241 (actual_end & (root->sectorsize - 1)) == 0) || 242 end + 1 < isize || 243 data_len > root->fs_info->max_inline) { 244 return 1; 245 } 246 247 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 248 if (ret) 249 return ret; 250 251 if (isize > actual_end) 252 inline_len = min_t(u64, isize, actual_end); 253 ret = insert_inline_extent(trans, root, inode, start, 254 inline_len, compressed_size, 255 compress_type, compressed_pages); 256 if (ret && ret != -ENOSPC) { 257 btrfs_abort_transaction(trans, root, ret); 258 return ret; 259 } else if (ret == -ENOSPC) { 260 return 1; 261 } 262 263 btrfs_delalloc_release_metadata(inode, end + 1 - start); 264 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 265 return 0; 266 } 267 268 struct async_extent { 269 u64 start; 270 u64 ram_size; 271 u64 compressed_size; 272 struct page **pages; 273 unsigned long nr_pages; 274 int compress_type; 275 struct list_head list; 276 }; 277 278 struct async_cow { 279 struct inode *inode; 280 struct btrfs_root *root; 281 struct page *locked_page; 282 u64 start; 283 u64 end; 284 struct list_head extents; 285 struct btrfs_work work; 286 }; 287 288 static noinline int add_async_extent(struct async_cow *cow, 289 u64 start, u64 ram_size, 290 u64 compressed_size, 291 struct page **pages, 292 unsigned long nr_pages, 293 int compress_type) 294 { 295 struct async_extent *async_extent; 296 297 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 298 BUG_ON(!async_extent); /* -ENOMEM */ 299 async_extent->start = start; 300 async_extent->ram_size = ram_size; 301 async_extent->compressed_size = compressed_size; 302 async_extent->pages = pages; 303 async_extent->nr_pages = nr_pages; 304 async_extent->compress_type = compress_type; 305 list_add_tail(&async_extent->list, &cow->extents); 306 return 0; 307 } 308 309 /* 310 * we create compressed extents in two phases. The first 311 * phase compresses a range of pages that have already been 312 * locked (both pages and state bits are locked). 313 * 314 * This is done inside an ordered work queue, and the compression 315 * is spread across many cpus. The actual IO submission is step 316 * two, and the ordered work queue takes care of making sure that 317 * happens in the same order things were put onto the queue by 318 * writepages and friends. 319 * 320 * If this code finds it can't get good compression, it puts an 321 * entry onto the work queue to write the uncompressed bytes. This 322 * makes sure that both compressed inodes and uncompressed inodes 323 * are written in the same order that the flusher thread sent them 324 * down. 325 */ 326 static noinline int compress_file_range(struct inode *inode, 327 struct page *locked_page, 328 u64 start, u64 end, 329 struct async_cow *async_cow, 330 int *num_added) 331 { 332 struct btrfs_root *root = BTRFS_I(inode)->root; 333 struct btrfs_trans_handle *trans; 334 u64 num_bytes; 335 u64 blocksize = root->sectorsize; 336 u64 actual_end; 337 u64 isize = i_size_read(inode); 338 int ret = 0; 339 struct page **pages = NULL; 340 unsigned long nr_pages; 341 unsigned long nr_pages_ret = 0; 342 unsigned long total_compressed = 0; 343 unsigned long total_in = 0; 344 unsigned long max_compressed = 128 * 1024; 345 unsigned long max_uncompressed = 128 * 1024; 346 int i; 347 int will_compress; 348 int compress_type = root->fs_info->compress_type; 349 350 /* if this is a small write inside eof, kick off a defrag */ 351 if ((end - start + 1) < 16 * 1024 && 352 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 353 btrfs_add_inode_defrag(NULL, inode); 354 355 actual_end = min_t(u64, isize, end + 1); 356 again: 357 will_compress = 0; 358 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 359 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 360 361 /* 362 * we don't want to send crud past the end of i_size through 363 * compression, that's just a waste of CPU time. So, if the 364 * end of the file is before the start of our current 365 * requested range of bytes, we bail out to the uncompressed 366 * cleanup code that can deal with all of this. 367 * 368 * It isn't really the fastest way to fix things, but this is a 369 * very uncommon corner. 370 */ 371 if (actual_end <= start) 372 goto cleanup_and_bail_uncompressed; 373 374 total_compressed = actual_end - start; 375 376 /* we want to make sure that amount of ram required to uncompress 377 * an extent is reasonable, so we limit the total size in ram 378 * of a compressed extent to 128k. This is a crucial number 379 * because it also controls how easily we can spread reads across 380 * cpus for decompression. 381 * 382 * We also want to make sure the amount of IO required to do 383 * a random read is reasonably small, so we limit the size of 384 * a compressed extent to 128k. 385 */ 386 total_compressed = min(total_compressed, max_uncompressed); 387 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 388 num_bytes = max(blocksize, num_bytes); 389 total_in = 0; 390 ret = 0; 391 392 /* 393 * we do compression for mount -o compress and when the 394 * inode has not been flagged as nocompress. This flag can 395 * change at any time if we discover bad compression ratios. 396 */ 397 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 398 (btrfs_test_opt(root, COMPRESS) || 399 (BTRFS_I(inode)->force_compress) || 400 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 401 WARN_ON(pages); 402 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 403 if (!pages) { 404 /* just bail out to the uncompressed code */ 405 goto cont; 406 } 407 408 if (BTRFS_I(inode)->force_compress) 409 compress_type = BTRFS_I(inode)->force_compress; 410 411 ret = btrfs_compress_pages(compress_type, 412 inode->i_mapping, start, 413 total_compressed, pages, 414 nr_pages, &nr_pages_ret, 415 &total_in, 416 &total_compressed, 417 max_compressed); 418 419 if (!ret) { 420 unsigned long offset = total_compressed & 421 (PAGE_CACHE_SIZE - 1); 422 struct page *page = pages[nr_pages_ret - 1]; 423 char *kaddr; 424 425 /* zero the tail end of the last page, we might be 426 * sending it down to disk 427 */ 428 if (offset) { 429 kaddr = kmap_atomic(page); 430 memset(kaddr + offset, 0, 431 PAGE_CACHE_SIZE - offset); 432 kunmap_atomic(kaddr); 433 } 434 will_compress = 1; 435 } 436 } 437 cont: 438 if (start == 0) { 439 trans = btrfs_join_transaction(root); 440 if (IS_ERR(trans)) { 441 ret = PTR_ERR(trans); 442 trans = NULL; 443 goto cleanup_and_out; 444 } 445 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 446 447 /* lets try to make an inline extent */ 448 if (ret || total_in < (actual_end - start)) { 449 /* we didn't compress the entire range, try 450 * to make an uncompressed inline extent. 451 */ 452 ret = cow_file_range_inline(trans, root, inode, 453 start, end, 0, 0, NULL); 454 } else { 455 /* try making a compressed inline extent */ 456 ret = cow_file_range_inline(trans, root, inode, 457 start, end, 458 total_compressed, 459 compress_type, pages); 460 } 461 if (ret <= 0) { 462 /* 463 * inline extent creation worked or returned error, 464 * we don't need to create any more async work items. 465 * Unlock and free up our temp pages. 466 */ 467 extent_clear_unlock_delalloc(inode, 468 &BTRFS_I(inode)->io_tree, 469 start, end, NULL, 470 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 471 EXTENT_CLEAR_DELALLOC | 472 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 473 474 btrfs_end_transaction(trans, root); 475 goto free_pages_out; 476 } 477 btrfs_end_transaction(trans, root); 478 } 479 480 if (will_compress) { 481 /* 482 * we aren't doing an inline extent round the compressed size 483 * up to a block size boundary so the allocator does sane 484 * things 485 */ 486 total_compressed = (total_compressed + blocksize - 1) & 487 ~(blocksize - 1); 488 489 /* 490 * one last check to make sure the compression is really a 491 * win, compare the page count read with the blocks on disk 492 */ 493 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 494 ~(PAGE_CACHE_SIZE - 1); 495 if (total_compressed >= total_in) { 496 will_compress = 0; 497 } else { 498 num_bytes = total_in; 499 } 500 } 501 if (!will_compress && pages) { 502 /* 503 * the compression code ran but failed to make things smaller, 504 * free any pages it allocated and our page pointer array 505 */ 506 for (i = 0; i < nr_pages_ret; i++) { 507 WARN_ON(pages[i]->mapping); 508 page_cache_release(pages[i]); 509 } 510 kfree(pages); 511 pages = NULL; 512 total_compressed = 0; 513 nr_pages_ret = 0; 514 515 /* flag the file so we don't compress in the future */ 516 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 517 !(BTRFS_I(inode)->force_compress)) { 518 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 519 } 520 } 521 if (will_compress) { 522 *num_added += 1; 523 524 /* the async work queues will take care of doing actual 525 * allocation on disk for these compressed pages, 526 * and will submit them to the elevator. 527 */ 528 add_async_extent(async_cow, start, num_bytes, 529 total_compressed, pages, nr_pages_ret, 530 compress_type); 531 532 if (start + num_bytes < end) { 533 start += num_bytes; 534 pages = NULL; 535 cond_resched(); 536 goto again; 537 } 538 } else { 539 cleanup_and_bail_uncompressed: 540 /* 541 * No compression, but we still need to write the pages in 542 * the file we've been given so far. redirty the locked 543 * page if it corresponds to our extent and set things up 544 * for the async work queue to run cow_file_range to do 545 * the normal delalloc dance 546 */ 547 if (page_offset(locked_page) >= start && 548 page_offset(locked_page) <= end) { 549 __set_page_dirty_nobuffers(locked_page); 550 /* unlocked later on in the async handlers */ 551 } 552 add_async_extent(async_cow, start, end - start + 1, 553 0, NULL, 0, BTRFS_COMPRESS_NONE); 554 *num_added += 1; 555 } 556 557 out: 558 return ret; 559 560 free_pages_out: 561 for (i = 0; i < nr_pages_ret; i++) { 562 WARN_ON(pages[i]->mapping); 563 page_cache_release(pages[i]); 564 } 565 kfree(pages); 566 567 goto out; 568 569 cleanup_and_out: 570 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 571 start, end, NULL, 572 EXTENT_CLEAR_UNLOCK_PAGE | 573 EXTENT_CLEAR_DIRTY | 574 EXTENT_CLEAR_DELALLOC | 575 EXTENT_SET_WRITEBACK | 576 EXTENT_END_WRITEBACK); 577 if (!trans || IS_ERR(trans)) 578 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 579 else 580 btrfs_abort_transaction(trans, root, ret); 581 goto free_pages_out; 582 } 583 584 /* 585 * phase two of compressed writeback. This is the ordered portion 586 * of the code, which only gets called in the order the work was 587 * queued. We walk all the async extents created by compress_file_range 588 * and send them down to the disk. 589 */ 590 static noinline int submit_compressed_extents(struct inode *inode, 591 struct async_cow *async_cow) 592 { 593 struct async_extent *async_extent; 594 u64 alloc_hint = 0; 595 struct btrfs_trans_handle *trans; 596 struct btrfs_key ins; 597 struct extent_map *em; 598 struct btrfs_root *root = BTRFS_I(inode)->root; 599 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 600 struct extent_io_tree *io_tree; 601 int ret = 0; 602 603 if (list_empty(&async_cow->extents)) 604 return 0; 605 606 607 while (!list_empty(&async_cow->extents)) { 608 async_extent = list_entry(async_cow->extents.next, 609 struct async_extent, list); 610 list_del(&async_extent->list); 611 612 io_tree = &BTRFS_I(inode)->io_tree; 613 614 retry: 615 /* did the compression code fall back to uncompressed IO? */ 616 if (!async_extent->pages) { 617 int page_started = 0; 618 unsigned long nr_written = 0; 619 620 lock_extent(io_tree, async_extent->start, 621 async_extent->start + 622 async_extent->ram_size - 1); 623 624 /* allocate blocks */ 625 ret = cow_file_range(inode, async_cow->locked_page, 626 async_extent->start, 627 async_extent->start + 628 async_extent->ram_size - 1, 629 &page_started, &nr_written, 0); 630 631 /* JDM XXX */ 632 633 /* 634 * if page_started, cow_file_range inserted an 635 * inline extent and took care of all the unlocking 636 * and IO for us. Otherwise, we need to submit 637 * all those pages down to the drive. 638 */ 639 if (!page_started && !ret) 640 extent_write_locked_range(io_tree, 641 inode, async_extent->start, 642 async_extent->start + 643 async_extent->ram_size - 1, 644 btrfs_get_extent, 645 WB_SYNC_ALL); 646 kfree(async_extent); 647 cond_resched(); 648 continue; 649 } 650 651 lock_extent(io_tree, async_extent->start, 652 async_extent->start + async_extent->ram_size - 1); 653 654 trans = btrfs_join_transaction(root); 655 if (IS_ERR(trans)) { 656 ret = PTR_ERR(trans); 657 } else { 658 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 659 ret = btrfs_reserve_extent(trans, root, 660 async_extent->compressed_size, 661 async_extent->compressed_size, 662 0, alloc_hint, &ins, 1); 663 if (ret && ret != -ENOSPC) 664 btrfs_abort_transaction(trans, root, ret); 665 btrfs_end_transaction(trans, root); 666 } 667 668 if (ret) { 669 int i; 670 for (i = 0; i < async_extent->nr_pages; i++) { 671 WARN_ON(async_extent->pages[i]->mapping); 672 page_cache_release(async_extent->pages[i]); 673 } 674 kfree(async_extent->pages); 675 async_extent->nr_pages = 0; 676 async_extent->pages = NULL; 677 unlock_extent(io_tree, async_extent->start, 678 async_extent->start + 679 async_extent->ram_size - 1); 680 if (ret == -ENOSPC) 681 goto retry; 682 goto out_free; /* JDM: Requeue? */ 683 } 684 685 /* 686 * here we're doing allocation and writeback of the 687 * compressed pages 688 */ 689 btrfs_drop_extent_cache(inode, async_extent->start, 690 async_extent->start + 691 async_extent->ram_size - 1, 0); 692 693 em = alloc_extent_map(); 694 BUG_ON(!em); /* -ENOMEM */ 695 em->start = async_extent->start; 696 em->len = async_extent->ram_size; 697 em->orig_start = em->start; 698 699 em->block_start = ins.objectid; 700 em->block_len = ins.offset; 701 em->bdev = root->fs_info->fs_devices->latest_bdev; 702 em->compress_type = async_extent->compress_type; 703 set_bit(EXTENT_FLAG_PINNED, &em->flags); 704 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 705 706 while (1) { 707 write_lock(&em_tree->lock); 708 ret = add_extent_mapping(em_tree, em); 709 write_unlock(&em_tree->lock); 710 if (ret != -EEXIST) { 711 free_extent_map(em); 712 break; 713 } 714 btrfs_drop_extent_cache(inode, async_extent->start, 715 async_extent->start + 716 async_extent->ram_size - 1, 0); 717 } 718 719 ret = btrfs_add_ordered_extent_compress(inode, 720 async_extent->start, 721 ins.objectid, 722 async_extent->ram_size, 723 ins.offset, 724 BTRFS_ORDERED_COMPRESSED, 725 async_extent->compress_type); 726 BUG_ON(ret); /* -ENOMEM */ 727 728 /* 729 * clear dirty, set writeback and unlock the pages. 730 */ 731 extent_clear_unlock_delalloc(inode, 732 &BTRFS_I(inode)->io_tree, 733 async_extent->start, 734 async_extent->start + 735 async_extent->ram_size - 1, 736 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 737 EXTENT_CLEAR_UNLOCK | 738 EXTENT_CLEAR_DELALLOC | 739 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 740 741 ret = btrfs_submit_compressed_write(inode, 742 async_extent->start, 743 async_extent->ram_size, 744 ins.objectid, 745 ins.offset, async_extent->pages, 746 async_extent->nr_pages); 747 748 BUG_ON(ret); /* -ENOMEM */ 749 alloc_hint = ins.objectid + ins.offset; 750 kfree(async_extent); 751 cond_resched(); 752 } 753 ret = 0; 754 out: 755 return ret; 756 out_free: 757 kfree(async_extent); 758 goto out; 759 } 760 761 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 762 u64 num_bytes) 763 { 764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 765 struct extent_map *em; 766 u64 alloc_hint = 0; 767 768 read_lock(&em_tree->lock); 769 em = search_extent_mapping(em_tree, start, num_bytes); 770 if (em) { 771 /* 772 * if block start isn't an actual block number then find the 773 * first block in this inode and use that as a hint. If that 774 * block is also bogus then just don't worry about it. 775 */ 776 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 777 free_extent_map(em); 778 em = search_extent_mapping(em_tree, 0, 0); 779 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 780 alloc_hint = em->block_start; 781 if (em) 782 free_extent_map(em); 783 } else { 784 alloc_hint = em->block_start; 785 free_extent_map(em); 786 } 787 } 788 read_unlock(&em_tree->lock); 789 790 return alloc_hint; 791 } 792 793 /* 794 * when extent_io.c finds a delayed allocation range in the file, 795 * the call backs end up in this code. The basic idea is to 796 * allocate extents on disk for the range, and create ordered data structs 797 * in ram to track those extents. 798 * 799 * locked_page is the page that writepage had locked already. We use 800 * it to make sure we don't do extra locks or unlocks. 801 * 802 * *page_started is set to one if we unlock locked_page and do everything 803 * required to start IO on it. It may be clean and already done with 804 * IO when we return. 805 */ 806 static noinline int cow_file_range(struct inode *inode, 807 struct page *locked_page, 808 u64 start, u64 end, int *page_started, 809 unsigned long *nr_written, 810 int unlock) 811 { 812 struct btrfs_root *root = BTRFS_I(inode)->root; 813 struct btrfs_trans_handle *trans; 814 u64 alloc_hint = 0; 815 u64 num_bytes; 816 unsigned long ram_size; 817 u64 disk_num_bytes; 818 u64 cur_alloc_size; 819 u64 blocksize = root->sectorsize; 820 struct btrfs_key ins; 821 struct extent_map *em; 822 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 823 int ret = 0; 824 825 BUG_ON(btrfs_is_free_space_inode(inode)); 826 trans = btrfs_join_transaction(root); 827 if (IS_ERR(trans)) { 828 extent_clear_unlock_delalloc(inode, 829 &BTRFS_I(inode)->io_tree, 830 start, end, locked_page, 831 EXTENT_CLEAR_UNLOCK_PAGE | 832 EXTENT_CLEAR_UNLOCK | 833 EXTENT_CLEAR_DELALLOC | 834 EXTENT_CLEAR_DIRTY | 835 EXTENT_SET_WRITEBACK | 836 EXTENT_END_WRITEBACK); 837 return PTR_ERR(trans); 838 } 839 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 840 841 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 842 num_bytes = max(blocksize, num_bytes); 843 disk_num_bytes = num_bytes; 844 ret = 0; 845 846 /* if this is a small write inside eof, kick off defrag */ 847 if (num_bytes < 64 * 1024 && 848 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 849 btrfs_add_inode_defrag(trans, inode); 850 851 if (start == 0) { 852 /* lets try to make an inline extent */ 853 ret = cow_file_range_inline(trans, root, inode, 854 start, end, 0, 0, NULL); 855 if (ret == 0) { 856 extent_clear_unlock_delalloc(inode, 857 &BTRFS_I(inode)->io_tree, 858 start, end, NULL, 859 EXTENT_CLEAR_UNLOCK_PAGE | 860 EXTENT_CLEAR_UNLOCK | 861 EXTENT_CLEAR_DELALLOC | 862 EXTENT_CLEAR_DIRTY | 863 EXTENT_SET_WRITEBACK | 864 EXTENT_END_WRITEBACK); 865 866 *nr_written = *nr_written + 867 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 868 *page_started = 1; 869 goto out; 870 } else if (ret < 0) { 871 btrfs_abort_transaction(trans, root, ret); 872 goto out_unlock; 873 } 874 } 875 876 BUG_ON(disk_num_bytes > 877 btrfs_super_total_bytes(root->fs_info->super_copy)); 878 879 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 880 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 881 882 while (disk_num_bytes > 0) { 883 unsigned long op; 884 885 cur_alloc_size = disk_num_bytes; 886 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 887 root->sectorsize, 0, alloc_hint, 888 &ins, 1); 889 if (ret < 0) { 890 btrfs_abort_transaction(trans, root, ret); 891 goto out_unlock; 892 } 893 894 em = alloc_extent_map(); 895 BUG_ON(!em); /* -ENOMEM */ 896 em->start = start; 897 em->orig_start = em->start; 898 ram_size = ins.offset; 899 em->len = ins.offset; 900 901 em->block_start = ins.objectid; 902 em->block_len = ins.offset; 903 em->bdev = root->fs_info->fs_devices->latest_bdev; 904 set_bit(EXTENT_FLAG_PINNED, &em->flags); 905 906 while (1) { 907 write_lock(&em_tree->lock); 908 ret = add_extent_mapping(em_tree, em); 909 write_unlock(&em_tree->lock); 910 if (ret != -EEXIST) { 911 free_extent_map(em); 912 break; 913 } 914 btrfs_drop_extent_cache(inode, start, 915 start + ram_size - 1, 0); 916 } 917 918 cur_alloc_size = ins.offset; 919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 920 ram_size, cur_alloc_size, 0); 921 BUG_ON(ret); /* -ENOMEM */ 922 923 if (root->root_key.objectid == 924 BTRFS_DATA_RELOC_TREE_OBJECTID) { 925 ret = btrfs_reloc_clone_csums(inode, start, 926 cur_alloc_size); 927 if (ret) { 928 btrfs_abort_transaction(trans, root, ret); 929 goto out_unlock; 930 } 931 } 932 933 if (disk_num_bytes < cur_alloc_size) 934 break; 935 936 /* we're not doing compressed IO, don't unlock the first 937 * page (which the caller expects to stay locked), don't 938 * clear any dirty bits and don't set any writeback bits 939 * 940 * Do set the Private2 bit so we know this page was properly 941 * setup for writepage 942 */ 943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 945 EXTENT_SET_PRIVATE2; 946 947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 948 start, start + ram_size - 1, 949 locked_page, op); 950 disk_num_bytes -= cur_alloc_size; 951 num_bytes -= cur_alloc_size; 952 alloc_hint = ins.objectid + ins.offset; 953 start += cur_alloc_size; 954 } 955 ret = 0; 956 out: 957 btrfs_end_transaction(trans, root); 958 959 return ret; 960 out_unlock: 961 extent_clear_unlock_delalloc(inode, 962 &BTRFS_I(inode)->io_tree, 963 start, end, locked_page, 964 EXTENT_CLEAR_UNLOCK_PAGE | 965 EXTENT_CLEAR_UNLOCK | 966 EXTENT_CLEAR_DELALLOC | 967 EXTENT_CLEAR_DIRTY | 968 EXTENT_SET_WRITEBACK | 969 EXTENT_END_WRITEBACK); 970 971 goto out; 972 } 973 974 /* 975 * work queue call back to started compression on a file and pages 976 */ 977 static noinline void async_cow_start(struct btrfs_work *work) 978 { 979 struct async_cow *async_cow; 980 int num_added = 0; 981 async_cow = container_of(work, struct async_cow, work); 982 983 compress_file_range(async_cow->inode, async_cow->locked_page, 984 async_cow->start, async_cow->end, async_cow, 985 &num_added); 986 if (num_added == 0) { 987 btrfs_add_delayed_iput(async_cow->inode); 988 async_cow->inode = NULL; 989 } 990 } 991 992 /* 993 * work queue call back to submit previously compressed pages 994 */ 995 static noinline void async_cow_submit(struct btrfs_work *work) 996 { 997 struct async_cow *async_cow; 998 struct btrfs_root *root; 999 unsigned long nr_pages; 1000 1001 async_cow = container_of(work, struct async_cow, work); 1002 1003 root = async_cow->root; 1004 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1005 PAGE_CACHE_SHIFT; 1006 1007 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1008 5 * 1024 * 1024 && 1009 waitqueue_active(&root->fs_info->async_submit_wait)) 1010 wake_up(&root->fs_info->async_submit_wait); 1011 1012 if (async_cow->inode) 1013 submit_compressed_extents(async_cow->inode, async_cow); 1014 } 1015 1016 static noinline void async_cow_free(struct btrfs_work *work) 1017 { 1018 struct async_cow *async_cow; 1019 async_cow = container_of(work, struct async_cow, work); 1020 if (async_cow->inode) 1021 btrfs_add_delayed_iput(async_cow->inode); 1022 kfree(async_cow); 1023 } 1024 1025 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1026 u64 start, u64 end, int *page_started, 1027 unsigned long *nr_written) 1028 { 1029 struct async_cow *async_cow; 1030 struct btrfs_root *root = BTRFS_I(inode)->root; 1031 unsigned long nr_pages; 1032 u64 cur_end; 1033 int limit = 10 * 1024 * 1024; 1034 1035 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1036 1, 0, NULL, GFP_NOFS); 1037 while (start < end) { 1038 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1039 BUG_ON(!async_cow); /* -ENOMEM */ 1040 async_cow->inode = igrab(inode); 1041 async_cow->root = root; 1042 async_cow->locked_page = locked_page; 1043 async_cow->start = start; 1044 1045 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1046 cur_end = end; 1047 else 1048 cur_end = min(end, start + 512 * 1024 - 1); 1049 1050 async_cow->end = cur_end; 1051 INIT_LIST_HEAD(&async_cow->extents); 1052 1053 async_cow->work.func = async_cow_start; 1054 async_cow->work.ordered_func = async_cow_submit; 1055 async_cow->work.ordered_free = async_cow_free; 1056 async_cow->work.flags = 0; 1057 1058 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1059 PAGE_CACHE_SHIFT; 1060 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1061 1062 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1063 &async_cow->work); 1064 1065 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1066 wait_event(root->fs_info->async_submit_wait, 1067 (atomic_read(&root->fs_info->async_delalloc_pages) < 1068 limit)); 1069 } 1070 1071 while (atomic_read(&root->fs_info->async_submit_draining) && 1072 atomic_read(&root->fs_info->async_delalloc_pages)) { 1073 wait_event(root->fs_info->async_submit_wait, 1074 (atomic_read(&root->fs_info->async_delalloc_pages) == 1075 0)); 1076 } 1077 1078 *nr_written += nr_pages; 1079 start = cur_end + 1; 1080 } 1081 *page_started = 1; 1082 return 0; 1083 } 1084 1085 static noinline int csum_exist_in_range(struct btrfs_root *root, 1086 u64 bytenr, u64 num_bytes) 1087 { 1088 int ret; 1089 struct btrfs_ordered_sum *sums; 1090 LIST_HEAD(list); 1091 1092 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1093 bytenr + num_bytes - 1, &list, 0); 1094 if (ret == 0 && list_empty(&list)) 1095 return 0; 1096 1097 while (!list_empty(&list)) { 1098 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1099 list_del(&sums->list); 1100 kfree(sums); 1101 } 1102 return 1; 1103 } 1104 1105 /* 1106 * when nowcow writeback call back. This checks for snapshots or COW copies 1107 * of the extents that exist in the file, and COWs the file as required. 1108 * 1109 * If no cow copies or snapshots exist, we write directly to the existing 1110 * blocks on disk 1111 */ 1112 static noinline int run_delalloc_nocow(struct inode *inode, 1113 struct page *locked_page, 1114 u64 start, u64 end, int *page_started, int force, 1115 unsigned long *nr_written) 1116 { 1117 struct btrfs_root *root = BTRFS_I(inode)->root; 1118 struct btrfs_trans_handle *trans; 1119 struct extent_buffer *leaf; 1120 struct btrfs_path *path; 1121 struct btrfs_file_extent_item *fi; 1122 struct btrfs_key found_key; 1123 u64 cow_start; 1124 u64 cur_offset; 1125 u64 extent_end; 1126 u64 extent_offset; 1127 u64 disk_bytenr; 1128 u64 num_bytes; 1129 int extent_type; 1130 int ret, err; 1131 int type; 1132 int nocow; 1133 int check_prev = 1; 1134 bool nolock; 1135 u64 ino = btrfs_ino(inode); 1136 1137 path = btrfs_alloc_path(); 1138 if (!path) { 1139 extent_clear_unlock_delalloc(inode, 1140 &BTRFS_I(inode)->io_tree, 1141 start, end, locked_page, 1142 EXTENT_CLEAR_UNLOCK_PAGE | 1143 EXTENT_CLEAR_UNLOCK | 1144 EXTENT_CLEAR_DELALLOC | 1145 EXTENT_CLEAR_DIRTY | 1146 EXTENT_SET_WRITEBACK | 1147 EXTENT_END_WRITEBACK); 1148 return -ENOMEM; 1149 } 1150 1151 nolock = btrfs_is_free_space_inode(inode); 1152 1153 if (nolock) 1154 trans = btrfs_join_transaction_nolock(root); 1155 else 1156 trans = btrfs_join_transaction(root); 1157 1158 if (IS_ERR(trans)) { 1159 extent_clear_unlock_delalloc(inode, 1160 &BTRFS_I(inode)->io_tree, 1161 start, end, locked_page, 1162 EXTENT_CLEAR_UNLOCK_PAGE | 1163 EXTENT_CLEAR_UNLOCK | 1164 EXTENT_CLEAR_DELALLOC | 1165 EXTENT_CLEAR_DIRTY | 1166 EXTENT_SET_WRITEBACK | 1167 EXTENT_END_WRITEBACK); 1168 btrfs_free_path(path); 1169 return PTR_ERR(trans); 1170 } 1171 1172 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1173 1174 cow_start = (u64)-1; 1175 cur_offset = start; 1176 while (1) { 1177 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1178 cur_offset, 0); 1179 if (ret < 0) { 1180 btrfs_abort_transaction(trans, root, ret); 1181 goto error; 1182 } 1183 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1184 leaf = path->nodes[0]; 1185 btrfs_item_key_to_cpu(leaf, &found_key, 1186 path->slots[0] - 1); 1187 if (found_key.objectid == ino && 1188 found_key.type == BTRFS_EXTENT_DATA_KEY) 1189 path->slots[0]--; 1190 } 1191 check_prev = 0; 1192 next_slot: 1193 leaf = path->nodes[0]; 1194 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1195 ret = btrfs_next_leaf(root, path); 1196 if (ret < 0) { 1197 btrfs_abort_transaction(trans, root, ret); 1198 goto error; 1199 } 1200 if (ret > 0) 1201 break; 1202 leaf = path->nodes[0]; 1203 } 1204 1205 nocow = 0; 1206 disk_bytenr = 0; 1207 num_bytes = 0; 1208 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1209 1210 if (found_key.objectid > ino || 1211 found_key.type > BTRFS_EXTENT_DATA_KEY || 1212 found_key.offset > end) 1213 break; 1214 1215 if (found_key.offset > cur_offset) { 1216 extent_end = found_key.offset; 1217 extent_type = 0; 1218 goto out_check; 1219 } 1220 1221 fi = btrfs_item_ptr(leaf, path->slots[0], 1222 struct btrfs_file_extent_item); 1223 extent_type = btrfs_file_extent_type(leaf, fi); 1224 1225 if (extent_type == BTRFS_FILE_EXTENT_REG || 1226 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1227 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1228 extent_offset = btrfs_file_extent_offset(leaf, fi); 1229 extent_end = found_key.offset + 1230 btrfs_file_extent_num_bytes(leaf, fi); 1231 if (extent_end <= start) { 1232 path->slots[0]++; 1233 goto next_slot; 1234 } 1235 if (disk_bytenr == 0) 1236 goto out_check; 1237 if (btrfs_file_extent_compression(leaf, fi) || 1238 btrfs_file_extent_encryption(leaf, fi) || 1239 btrfs_file_extent_other_encoding(leaf, fi)) 1240 goto out_check; 1241 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1242 goto out_check; 1243 if (btrfs_extent_readonly(root, disk_bytenr)) 1244 goto out_check; 1245 if (btrfs_cross_ref_exist(trans, root, ino, 1246 found_key.offset - 1247 extent_offset, disk_bytenr)) 1248 goto out_check; 1249 disk_bytenr += extent_offset; 1250 disk_bytenr += cur_offset - found_key.offset; 1251 num_bytes = min(end + 1, extent_end) - cur_offset; 1252 /* 1253 * force cow if csum exists in the range. 1254 * this ensure that csum for a given extent are 1255 * either valid or do not exist. 1256 */ 1257 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1258 goto out_check; 1259 nocow = 1; 1260 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1261 extent_end = found_key.offset + 1262 btrfs_file_extent_inline_len(leaf, fi); 1263 extent_end = ALIGN(extent_end, root->sectorsize); 1264 } else { 1265 BUG_ON(1); 1266 } 1267 out_check: 1268 if (extent_end <= start) { 1269 path->slots[0]++; 1270 goto next_slot; 1271 } 1272 if (!nocow) { 1273 if (cow_start == (u64)-1) 1274 cow_start = cur_offset; 1275 cur_offset = extent_end; 1276 if (cur_offset > end) 1277 break; 1278 path->slots[0]++; 1279 goto next_slot; 1280 } 1281 1282 btrfs_release_path(path); 1283 if (cow_start != (u64)-1) { 1284 ret = cow_file_range(inode, locked_page, cow_start, 1285 found_key.offset - 1, page_started, 1286 nr_written, 1); 1287 if (ret) { 1288 btrfs_abort_transaction(trans, root, ret); 1289 goto error; 1290 } 1291 cow_start = (u64)-1; 1292 } 1293 1294 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1295 struct extent_map *em; 1296 struct extent_map_tree *em_tree; 1297 em_tree = &BTRFS_I(inode)->extent_tree; 1298 em = alloc_extent_map(); 1299 BUG_ON(!em); /* -ENOMEM */ 1300 em->start = cur_offset; 1301 em->orig_start = em->start; 1302 em->len = num_bytes; 1303 em->block_len = num_bytes; 1304 em->block_start = disk_bytenr; 1305 em->bdev = root->fs_info->fs_devices->latest_bdev; 1306 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1307 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1308 while (1) { 1309 write_lock(&em_tree->lock); 1310 ret = add_extent_mapping(em_tree, em); 1311 write_unlock(&em_tree->lock); 1312 if (ret != -EEXIST) { 1313 free_extent_map(em); 1314 break; 1315 } 1316 btrfs_drop_extent_cache(inode, em->start, 1317 em->start + em->len - 1, 0); 1318 } 1319 type = BTRFS_ORDERED_PREALLOC; 1320 } else { 1321 type = BTRFS_ORDERED_NOCOW; 1322 } 1323 1324 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1325 num_bytes, num_bytes, type); 1326 BUG_ON(ret); /* -ENOMEM */ 1327 1328 if (root->root_key.objectid == 1329 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1330 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1331 num_bytes); 1332 if (ret) { 1333 btrfs_abort_transaction(trans, root, ret); 1334 goto error; 1335 } 1336 } 1337 1338 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1339 cur_offset, cur_offset + num_bytes - 1, 1340 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1341 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1342 EXTENT_SET_PRIVATE2); 1343 cur_offset = extent_end; 1344 if (cur_offset > end) 1345 break; 1346 } 1347 btrfs_release_path(path); 1348 1349 if (cur_offset <= end && cow_start == (u64)-1) { 1350 cow_start = cur_offset; 1351 cur_offset = end; 1352 } 1353 1354 if (cow_start != (u64)-1) { 1355 ret = cow_file_range(inode, locked_page, cow_start, end, 1356 page_started, nr_written, 1); 1357 if (ret) { 1358 btrfs_abort_transaction(trans, root, ret); 1359 goto error; 1360 } 1361 } 1362 1363 error: 1364 err = btrfs_end_transaction(trans, root); 1365 if (!ret) 1366 ret = err; 1367 1368 if (ret && cur_offset < end) 1369 extent_clear_unlock_delalloc(inode, 1370 &BTRFS_I(inode)->io_tree, 1371 cur_offset, end, locked_page, 1372 EXTENT_CLEAR_UNLOCK_PAGE | 1373 EXTENT_CLEAR_UNLOCK | 1374 EXTENT_CLEAR_DELALLOC | 1375 EXTENT_CLEAR_DIRTY | 1376 EXTENT_SET_WRITEBACK | 1377 EXTENT_END_WRITEBACK); 1378 1379 btrfs_free_path(path); 1380 return ret; 1381 } 1382 1383 /* 1384 * extent_io.c call back to do delayed allocation processing 1385 */ 1386 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1387 u64 start, u64 end, int *page_started, 1388 unsigned long *nr_written) 1389 { 1390 int ret; 1391 struct btrfs_root *root = BTRFS_I(inode)->root; 1392 1393 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1394 ret = run_delalloc_nocow(inode, locked_page, start, end, 1395 page_started, 1, nr_written); 1396 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1397 ret = run_delalloc_nocow(inode, locked_page, start, end, 1398 page_started, 0, nr_written); 1399 } else if (!btrfs_test_opt(root, COMPRESS) && 1400 !(BTRFS_I(inode)->force_compress) && 1401 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1402 ret = cow_file_range(inode, locked_page, start, end, 1403 page_started, nr_written, 1); 1404 } else { 1405 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1406 &BTRFS_I(inode)->runtime_flags); 1407 ret = cow_file_range_async(inode, locked_page, start, end, 1408 page_started, nr_written); 1409 } 1410 return ret; 1411 } 1412 1413 static void btrfs_split_extent_hook(struct inode *inode, 1414 struct extent_state *orig, u64 split) 1415 { 1416 /* not delalloc, ignore it */ 1417 if (!(orig->state & EXTENT_DELALLOC)) 1418 return; 1419 1420 spin_lock(&BTRFS_I(inode)->lock); 1421 BTRFS_I(inode)->outstanding_extents++; 1422 spin_unlock(&BTRFS_I(inode)->lock); 1423 } 1424 1425 /* 1426 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1427 * extents so we can keep track of new extents that are just merged onto old 1428 * extents, such as when we are doing sequential writes, so we can properly 1429 * account for the metadata space we'll need. 1430 */ 1431 static void btrfs_merge_extent_hook(struct inode *inode, 1432 struct extent_state *new, 1433 struct extent_state *other) 1434 { 1435 /* not delalloc, ignore it */ 1436 if (!(other->state & EXTENT_DELALLOC)) 1437 return; 1438 1439 spin_lock(&BTRFS_I(inode)->lock); 1440 BTRFS_I(inode)->outstanding_extents--; 1441 spin_unlock(&BTRFS_I(inode)->lock); 1442 } 1443 1444 /* 1445 * extent_io.c set_bit_hook, used to track delayed allocation 1446 * bytes in this file, and to maintain the list of inodes that 1447 * have pending delalloc work to be done. 1448 */ 1449 static void btrfs_set_bit_hook(struct inode *inode, 1450 struct extent_state *state, int *bits) 1451 { 1452 1453 /* 1454 * set_bit and clear bit hooks normally require _irqsave/restore 1455 * but in this case, we are only testing for the DELALLOC 1456 * bit, which is only set or cleared with irqs on 1457 */ 1458 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1459 struct btrfs_root *root = BTRFS_I(inode)->root; 1460 u64 len = state->end + 1 - state->start; 1461 bool do_list = !btrfs_is_free_space_inode(inode); 1462 1463 if (*bits & EXTENT_FIRST_DELALLOC) { 1464 *bits &= ~EXTENT_FIRST_DELALLOC; 1465 } else { 1466 spin_lock(&BTRFS_I(inode)->lock); 1467 BTRFS_I(inode)->outstanding_extents++; 1468 spin_unlock(&BTRFS_I(inode)->lock); 1469 } 1470 1471 spin_lock(&root->fs_info->delalloc_lock); 1472 BTRFS_I(inode)->delalloc_bytes += len; 1473 root->fs_info->delalloc_bytes += len; 1474 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1475 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1476 &root->fs_info->delalloc_inodes); 1477 } 1478 spin_unlock(&root->fs_info->delalloc_lock); 1479 } 1480 } 1481 1482 /* 1483 * extent_io.c clear_bit_hook, see set_bit_hook for why 1484 */ 1485 static void btrfs_clear_bit_hook(struct inode *inode, 1486 struct extent_state *state, int *bits) 1487 { 1488 /* 1489 * set_bit and clear bit hooks normally require _irqsave/restore 1490 * but in this case, we are only testing for the DELALLOC 1491 * bit, which is only set or cleared with irqs on 1492 */ 1493 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1494 struct btrfs_root *root = BTRFS_I(inode)->root; 1495 u64 len = state->end + 1 - state->start; 1496 bool do_list = !btrfs_is_free_space_inode(inode); 1497 1498 if (*bits & EXTENT_FIRST_DELALLOC) { 1499 *bits &= ~EXTENT_FIRST_DELALLOC; 1500 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1501 spin_lock(&BTRFS_I(inode)->lock); 1502 BTRFS_I(inode)->outstanding_extents--; 1503 spin_unlock(&BTRFS_I(inode)->lock); 1504 } 1505 1506 if (*bits & EXTENT_DO_ACCOUNTING) 1507 btrfs_delalloc_release_metadata(inode, len); 1508 1509 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1510 && do_list) 1511 btrfs_free_reserved_data_space(inode, len); 1512 1513 spin_lock(&root->fs_info->delalloc_lock); 1514 root->fs_info->delalloc_bytes -= len; 1515 BTRFS_I(inode)->delalloc_bytes -= len; 1516 1517 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1518 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1519 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1520 } 1521 spin_unlock(&root->fs_info->delalloc_lock); 1522 } 1523 } 1524 1525 /* 1526 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1527 * we don't create bios that span stripes or chunks 1528 */ 1529 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1530 size_t size, struct bio *bio, 1531 unsigned long bio_flags) 1532 { 1533 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1534 struct btrfs_mapping_tree *map_tree; 1535 u64 logical = (u64)bio->bi_sector << 9; 1536 u64 length = 0; 1537 u64 map_length; 1538 int ret; 1539 1540 if (bio_flags & EXTENT_BIO_COMPRESSED) 1541 return 0; 1542 1543 length = bio->bi_size; 1544 map_tree = &root->fs_info->mapping_tree; 1545 map_length = length; 1546 ret = btrfs_map_block(map_tree, READ, logical, 1547 &map_length, NULL, 0); 1548 /* Will always return 0 or 1 with map_multi == NULL */ 1549 BUG_ON(ret < 0); 1550 if (map_length < length + size) 1551 return 1; 1552 return 0; 1553 } 1554 1555 /* 1556 * in order to insert checksums into the metadata in large chunks, 1557 * we wait until bio submission time. All the pages in the bio are 1558 * checksummed and sums are attached onto the ordered extent record. 1559 * 1560 * At IO completion time the cums attached on the ordered extent record 1561 * are inserted into the btree 1562 */ 1563 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1564 struct bio *bio, int mirror_num, 1565 unsigned long bio_flags, 1566 u64 bio_offset) 1567 { 1568 struct btrfs_root *root = BTRFS_I(inode)->root; 1569 int ret = 0; 1570 1571 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1572 BUG_ON(ret); /* -ENOMEM */ 1573 return 0; 1574 } 1575 1576 /* 1577 * in order to insert checksums into the metadata in large chunks, 1578 * we wait until bio submission time. All the pages in the bio are 1579 * checksummed and sums are attached onto the ordered extent record. 1580 * 1581 * At IO completion time the cums attached on the ordered extent record 1582 * are inserted into the btree 1583 */ 1584 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1585 int mirror_num, unsigned long bio_flags, 1586 u64 bio_offset) 1587 { 1588 struct btrfs_root *root = BTRFS_I(inode)->root; 1589 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1590 } 1591 1592 /* 1593 * extent_io.c submission hook. This does the right thing for csum calculation 1594 * on write, or reading the csums from the tree before a read 1595 */ 1596 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1597 int mirror_num, unsigned long bio_flags, 1598 u64 bio_offset) 1599 { 1600 struct btrfs_root *root = BTRFS_I(inode)->root; 1601 int ret = 0; 1602 int skip_sum; 1603 int metadata = 0; 1604 1605 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1606 1607 if (btrfs_is_free_space_inode(inode)) 1608 metadata = 2; 1609 1610 if (!(rw & REQ_WRITE)) { 1611 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1612 if (ret) 1613 return ret; 1614 1615 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1616 return btrfs_submit_compressed_read(inode, bio, 1617 mirror_num, bio_flags); 1618 } else if (!skip_sum) { 1619 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1620 if (ret) 1621 return ret; 1622 } 1623 goto mapit; 1624 } else if (!skip_sum) { 1625 /* csum items have already been cloned */ 1626 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1627 goto mapit; 1628 /* we're doing a write, do the async checksumming */ 1629 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1630 inode, rw, bio, mirror_num, 1631 bio_flags, bio_offset, 1632 __btrfs_submit_bio_start, 1633 __btrfs_submit_bio_done); 1634 } 1635 1636 mapit: 1637 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1638 } 1639 1640 /* 1641 * given a list of ordered sums record them in the inode. This happens 1642 * at IO completion time based on sums calculated at bio submission time. 1643 */ 1644 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1645 struct inode *inode, u64 file_offset, 1646 struct list_head *list) 1647 { 1648 struct btrfs_ordered_sum *sum; 1649 1650 list_for_each_entry(sum, list, list) { 1651 btrfs_csum_file_blocks(trans, 1652 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1653 } 1654 return 0; 1655 } 1656 1657 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1658 struct extent_state **cached_state) 1659 { 1660 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1661 WARN_ON(1); 1662 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1663 cached_state, GFP_NOFS); 1664 } 1665 1666 /* see btrfs_writepage_start_hook for details on why this is required */ 1667 struct btrfs_writepage_fixup { 1668 struct page *page; 1669 struct btrfs_work work; 1670 }; 1671 1672 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1673 { 1674 struct btrfs_writepage_fixup *fixup; 1675 struct btrfs_ordered_extent *ordered; 1676 struct extent_state *cached_state = NULL; 1677 struct page *page; 1678 struct inode *inode; 1679 u64 page_start; 1680 u64 page_end; 1681 int ret; 1682 1683 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1684 page = fixup->page; 1685 again: 1686 lock_page(page); 1687 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1688 ClearPageChecked(page); 1689 goto out_page; 1690 } 1691 1692 inode = page->mapping->host; 1693 page_start = page_offset(page); 1694 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1695 1696 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1697 &cached_state); 1698 1699 /* already ordered? We're done */ 1700 if (PagePrivate2(page)) 1701 goto out; 1702 1703 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1704 if (ordered) { 1705 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1706 page_end, &cached_state, GFP_NOFS); 1707 unlock_page(page); 1708 btrfs_start_ordered_extent(inode, ordered, 1); 1709 btrfs_put_ordered_extent(ordered); 1710 goto again; 1711 } 1712 1713 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1714 if (ret) { 1715 mapping_set_error(page->mapping, ret); 1716 end_extent_writepage(page, ret, page_start, page_end); 1717 ClearPageChecked(page); 1718 goto out; 1719 } 1720 1721 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1722 ClearPageChecked(page); 1723 set_page_dirty(page); 1724 out: 1725 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1726 &cached_state, GFP_NOFS); 1727 out_page: 1728 unlock_page(page); 1729 page_cache_release(page); 1730 kfree(fixup); 1731 } 1732 1733 /* 1734 * There are a few paths in the higher layers of the kernel that directly 1735 * set the page dirty bit without asking the filesystem if it is a 1736 * good idea. This causes problems because we want to make sure COW 1737 * properly happens and the data=ordered rules are followed. 1738 * 1739 * In our case any range that doesn't have the ORDERED bit set 1740 * hasn't been properly setup for IO. We kick off an async process 1741 * to fix it up. The async helper will wait for ordered extents, set 1742 * the delalloc bit and make it safe to write the page. 1743 */ 1744 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1745 { 1746 struct inode *inode = page->mapping->host; 1747 struct btrfs_writepage_fixup *fixup; 1748 struct btrfs_root *root = BTRFS_I(inode)->root; 1749 1750 /* this page is properly in the ordered list */ 1751 if (TestClearPagePrivate2(page)) 1752 return 0; 1753 1754 if (PageChecked(page)) 1755 return -EAGAIN; 1756 1757 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1758 if (!fixup) 1759 return -EAGAIN; 1760 1761 SetPageChecked(page); 1762 page_cache_get(page); 1763 fixup->work.func = btrfs_writepage_fixup_worker; 1764 fixup->page = page; 1765 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1766 return -EBUSY; 1767 } 1768 1769 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1770 struct inode *inode, u64 file_pos, 1771 u64 disk_bytenr, u64 disk_num_bytes, 1772 u64 num_bytes, u64 ram_bytes, 1773 u8 compression, u8 encryption, 1774 u16 other_encoding, int extent_type) 1775 { 1776 struct btrfs_root *root = BTRFS_I(inode)->root; 1777 struct btrfs_file_extent_item *fi; 1778 struct btrfs_path *path; 1779 struct extent_buffer *leaf; 1780 struct btrfs_key ins; 1781 int ret; 1782 1783 path = btrfs_alloc_path(); 1784 if (!path) 1785 return -ENOMEM; 1786 1787 path->leave_spinning = 1; 1788 1789 /* 1790 * we may be replacing one extent in the tree with another. 1791 * The new extent is pinned in the extent map, and we don't want 1792 * to drop it from the cache until it is completely in the btree. 1793 * 1794 * So, tell btrfs_drop_extents to leave this extent in the cache. 1795 * the caller is expected to unpin it and allow it to be merged 1796 * with the others. 1797 */ 1798 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1799 file_pos + num_bytes, 0); 1800 if (ret) 1801 goto out; 1802 1803 ins.objectid = btrfs_ino(inode); 1804 ins.offset = file_pos; 1805 ins.type = BTRFS_EXTENT_DATA_KEY; 1806 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1807 if (ret) 1808 goto out; 1809 leaf = path->nodes[0]; 1810 fi = btrfs_item_ptr(leaf, path->slots[0], 1811 struct btrfs_file_extent_item); 1812 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1813 btrfs_set_file_extent_type(leaf, fi, extent_type); 1814 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1815 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1816 btrfs_set_file_extent_offset(leaf, fi, 0); 1817 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1818 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1819 btrfs_set_file_extent_compression(leaf, fi, compression); 1820 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1821 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1822 1823 btrfs_mark_buffer_dirty(leaf); 1824 btrfs_release_path(path); 1825 1826 inode_add_bytes(inode, num_bytes); 1827 1828 ins.objectid = disk_bytenr; 1829 ins.offset = disk_num_bytes; 1830 ins.type = BTRFS_EXTENT_ITEM_KEY; 1831 ret = btrfs_alloc_reserved_file_extent(trans, root, 1832 root->root_key.objectid, 1833 btrfs_ino(inode), file_pos, &ins); 1834 out: 1835 btrfs_free_path(path); 1836 1837 return ret; 1838 } 1839 1840 /* 1841 * helper function for btrfs_finish_ordered_io, this 1842 * just reads in some of the csum leaves to prime them into ram 1843 * before we start the transaction. It limits the amount of btree 1844 * reads required while inside the transaction. 1845 */ 1846 /* as ordered data IO finishes, this gets called so we can finish 1847 * an ordered extent if the range of bytes in the file it covers are 1848 * fully written. 1849 */ 1850 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 1851 { 1852 struct inode *inode = ordered_extent->inode; 1853 struct btrfs_root *root = BTRFS_I(inode)->root; 1854 struct btrfs_trans_handle *trans = NULL; 1855 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1856 struct extent_state *cached_state = NULL; 1857 int compress_type = 0; 1858 int ret; 1859 bool nolock; 1860 1861 nolock = btrfs_is_free_space_inode(inode); 1862 1863 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 1864 ret = -EIO; 1865 goto out; 1866 } 1867 1868 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1869 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 1870 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1871 if (!ret) { 1872 if (nolock) 1873 trans = btrfs_join_transaction_nolock(root); 1874 else 1875 trans = btrfs_join_transaction(root); 1876 if (IS_ERR(trans)) { 1877 ret = PTR_ERR(trans); 1878 trans = NULL; 1879 goto out; 1880 } 1881 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1882 ret = btrfs_update_inode_fallback(trans, root, inode); 1883 if (ret) /* -ENOMEM or corruption */ 1884 btrfs_abort_transaction(trans, root, ret); 1885 } 1886 goto out; 1887 } 1888 1889 lock_extent_bits(io_tree, ordered_extent->file_offset, 1890 ordered_extent->file_offset + ordered_extent->len - 1, 1891 0, &cached_state); 1892 1893 if (nolock) 1894 trans = btrfs_join_transaction_nolock(root); 1895 else 1896 trans = btrfs_join_transaction(root); 1897 if (IS_ERR(trans)) { 1898 ret = PTR_ERR(trans); 1899 trans = NULL; 1900 goto out_unlock; 1901 } 1902 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1903 1904 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1905 compress_type = ordered_extent->compress_type; 1906 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1907 BUG_ON(compress_type); 1908 ret = btrfs_mark_extent_written(trans, inode, 1909 ordered_extent->file_offset, 1910 ordered_extent->file_offset + 1911 ordered_extent->len); 1912 } else { 1913 BUG_ON(root == root->fs_info->tree_root); 1914 ret = insert_reserved_file_extent(trans, inode, 1915 ordered_extent->file_offset, 1916 ordered_extent->start, 1917 ordered_extent->disk_len, 1918 ordered_extent->len, 1919 ordered_extent->len, 1920 compress_type, 0, 0, 1921 BTRFS_FILE_EXTENT_REG); 1922 } 1923 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1924 ordered_extent->file_offset, ordered_extent->len, 1925 trans->transid); 1926 if (ret < 0) { 1927 btrfs_abort_transaction(trans, root, ret); 1928 goto out_unlock; 1929 } 1930 1931 add_pending_csums(trans, inode, ordered_extent->file_offset, 1932 &ordered_extent->list); 1933 1934 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1935 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1936 ret = btrfs_update_inode_fallback(trans, root, inode); 1937 if (ret) { /* -ENOMEM or corruption */ 1938 btrfs_abort_transaction(trans, root, ret); 1939 goto out_unlock; 1940 } 1941 } else { 1942 btrfs_set_inode_last_trans(trans, inode); 1943 } 1944 ret = 0; 1945 out_unlock: 1946 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1947 ordered_extent->file_offset + 1948 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1949 out: 1950 if (root != root->fs_info->tree_root) 1951 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1952 if (trans) 1953 btrfs_end_transaction(trans, root); 1954 1955 if (ret) 1956 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 1957 ordered_extent->file_offset + 1958 ordered_extent->len - 1, NULL, GFP_NOFS); 1959 1960 /* 1961 * This needs to be done to make sure anybody waiting knows we are done 1962 * updating everything for this ordered extent. 1963 */ 1964 btrfs_remove_ordered_extent(inode, ordered_extent); 1965 1966 /* once for us */ 1967 btrfs_put_ordered_extent(ordered_extent); 1968 /* once for the tree */ 1969 btrfs_put_ordered_extent(ordered_extent); 1970 1971 return ret; 1972 } 1973 1974 static void finish_ordered_fn(struct btrfs_work *work) 1975 { 1976 struct btrfs_ordered_extent *ordered_extent; 1977 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 1978 btrfs_finish_ordered_io(ordered_extent); 1979 } 1980 1981 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1982 struct extent_state *state, int uptodate) 1983 { 1984 struct inode *inode = page->mapping->host; 1985 struct btrfs_root *root = BTRFS_I(inode)->root; 1986 struct btrfs_ordered_extent *ordered_extent = NULL; 1987 struct btrfs_workers *workers; 1988 1989 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1990 1991 ClearPagePrivate2(page); 1992 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1993 end - start + 1, uptodate)) 1994 return 0; 1995 1996 ordered_extent->work.func = finish_ordered_fn; 1997 ordered_extent->work.flags = 0; 1998 1999 if (btrfs_is_free_space_inode(inode)) 2000 workers = &root->fs_info->endio_freespace_worker; 2001 else 2002 workers = &root->fs_info->endio_write_workers; 2003 btrfs_queue_worker(workers, &ordered_extent->work); 2004 2005 return 0; 2006 } 2007 2008 /* 2009 * when reads are done, we need to check csums to verify the data is correct 2010 * if there's a match, we allow the bio to finish. If not, the code in 2011 * extent_io.c will try to find good copies for us. 2012 */ 2013 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2014 struct extent_state *state, int mirror) 2015 { 2016 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 2017 struct inode *inode = page->mapping->host; 2018 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2019 char *kaddr; 2020 u64 private = ~(u32)0; 2021 int ret; 2022 struct btrfs_root *root = BTRFS_I(inode)->root; 2023 u32 csum = ~(u32)0; 2024 2025 if (PageChecked(page)) { 2026 ClearPageChecked(page); 2027 goto good; 2028 } 2029 2030 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2031 goto good; 2032 2033 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2034 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2035 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2036 GFP_NOFS); 2037 return 0; 2038 } 2039 2040 if (state && state->start == start) { 2041 private = state->private; 2042 ret = 0; 2043 } else { 2044 ret = get_state_private(io_tree, start, &private); 2045 } 2046 kaddr = kmap_atomic(page); 2047 if (ret) 2048 goto zeroit; 2049 2050 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2051 btrfs_csum_final(csum, (char *)&csum); 2052 if (csum != private) 2053 goto zeroit; 2054 2055 kunmap_atomic(kaddr); 2056 good: 2057 return 0; 2058 2059 zeroit: 2060 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2061 "private %llu\n", 2062 (unsigned long long)btrfs_ino(page->mapping->host), 2063 (unsigned long long)start, csum, 2064 (unsigned long long)private); 2065 memset(kaddr + offset, 1, end - start + 1); 2066 flush_dcache_page(page); 2067 kunmap_atomic(kaddr); 2068 if (private == 0) 2069 return 0; 2070 return -EIO; 2071 } 2072 2073 struct delayed_iput { 2074 struct list_head list; 2075 struct inode *inode; 2076 }; 2077 2078 /* JDM: If this is fs-wide, why can't we add a pointer to 2079 * btrfs_inode instead and avoid the allocation? */ 2080 void btrfs_add_delayed_iput(struct inode *inode) 2081 { 2082 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2083 struct delayed_iput *delayed; 2084 2085 if (atomic_add_unless(&inode->i_count, -1, 1)) 2086 return; 2087 2088 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2089 delayed->inode = inode; 2090 2091 spin_lock(&fs_info->delayed_iput_lock); 2092 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2093 spin_unlock(&fs_info->delayed_iput_lock); 2094 } 2095 2096 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2097 { 2098 LIST_HEAD(list); 2099 struct btrfs_fs_info *fs_info = root->fs_info; 2100 struct delayed_iput *delayed; 2101 int empty; 2102 2103 spin_lock(&fs_info->delayed_iput_lock); 2104 empty = list_empty(&fs_info->delayed_iputs); 2105 spin_unlock(&fs_info->delayed_iput_lock); 2106 if (empty) 2107 return; 2108 2109 spin_lock(&fs_info->delayed_iput_lock); 2110 list_splice_init(&fs_info->delayed_iputs, &list); 2111 spin_unlock(&fs_info->delayed_iput_lock); 2112 2113 while (!list_empty(&list)) { 2114 delayed = list_entry(list.next, struct delayed_iput, list); 2115 list_del(&delayed->list); 2116 iput(delayed->inode); 2117 kfree(delayed); 2118 } 2119 } 2120 2121 enum btrfs_orphan_cleanup_state { 2122 ORPHAN_CLEANUP_STARTED = 1, 2123 ORPHAN_CLEANUP_DONE = 2, 2124 }; 2125 2126 /* 2127 * This is called in transaction commit time. If there are no orphan 2128 * files in the subvolume, it removes orphan item and frees block_rsv 2129 * structure. 2130 */ 2131 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2132 struct btrfs_root *root) 2133 { 2134 struct btrfs_block_rsv *block_rsv; 2135 int ret; 2136 2137 if (atomic_read(&root->orphan_inodes) || 2138 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2139 return; 2140 2141 spin_lock(&root->orphan_lock); 2142 if (atomic_read(&root->orphan_inodes)) { 2143 spin_unlock(&root->orphan_lock); 2144 return; 2145 } 2146 2147 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2148 spin_unlock(&root->orphan_lock); 2149 return; 2150 } 2151 2152 block_rsv = root->orphan_block_rsv; 2153 root->orphan_block_rsv = NULL; 2154 spin_unlock(&root->orphan_lock); 2155 2156 if (root->orphan_item_inserted && 2157 btrfs_root_refs(&root->root_item) > 0) { 2158 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2159 root->root_key.objectid); 2160 BUG_ON(ret); 2161 root->orphan_item_inserted = 0; 2162 } 2163 2164 if (block_rsv) { 2165 WARN_ON(block_rsv->size > 0); 2166 btrfs_free_block_rsv(root, block_rsv); 2167 } 2168 } 2169 2170 /* 2171 * This creates an orphan entry for the given inode in case something goes 2172 * wrong in the middle of an unlink/truncate. 2173 * 2174 * NOTE: caller of this function should reserve 5 units of metadata for 2175 * this function. 2176 */ 2177 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2178 { 2179 struct btrfs_root *root = BTRFS_I(inode)->root; 2180 struct btrfs_block_rsv *block_rsv = NULL; 2181 int reserve = 0; 2182 int insert = 0; 2183 int ret; 2184 2185 if (!root->orphan_block_rsv) { 2186 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2187 if (!block_rsv) 2188 return -ENOMEM; 2189 } 2190 2191 spin_lock(&root->orphan_lock); 2192 if (!root->orphan_block_rsv) { 2193 root->orphan_block_rsv = block_rsv; 2194 } else if (block_rsv) { 2195 btrfs_free_block_rsv(root, block_rsv); 2196 block_rsv = NULL; 2197 } 2198 2199 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2200 &BTRFS_I(inode)->runtime_flags)) { 2201 #if 0 2202 /* 2203 * For proper ENOSPC handling, we should do orphan 2204 * cleanup when mounting. But this introduces backward 2205 * compatibility issue. 2206 */ 2207 if (!xchg(&root->orphan_item_inserted, 1)) 2208 insert = 2; 2209 else 2210 insert = 1; 2211 #endif 2212 insert = 1; 2213 atomic_inc(&root->orphan_inodes); 2214 } 2215 2216 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2217 &BTRFS_I(inode)->runtime_flags)) 2218 reserve = 1; 2219 spin_unlock(&root->orphan_lock); 2220 2221 /* grab metadata reservation from transaction handle */ 2222 if (reserve) { 2223 ret = btrfs_orphan_reserve_metadata(trans, inode); 2224 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2225 } 2226 2227 /* insert an orphan item to track this unlinked/truncated file */ 2228 if (insert >= 1) { 2229 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2230 if (ret && ret != -EEXIST) { 2231 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2232 &BTRFS_I(inode)->runtime_flags); 2233 btrfs_abort_transaction(trans, root, ret); 2234 return ret; 2235 } 2236 ret = 0; 2237 } 2238 2239 /* insert an orphan item to track subvolume contains orphan files */ 2240 if (insert >= 2) { 2241 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2242 root->root_key.objectid); 2243 if (ret && ret != -EEXIST) { 2244 btrfs_abort_transaction(trans, root, ret); 2245 return ret; 2246 } 2247 } 2248 return 0; 2249 } 2250 2251 /* 2252 * We have done the truncate/delete so we can go ahead and remove the orphan 2253 * item for this particular inode. 2254 */ 2255 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2256 { 2257 struct btrfs_root *root = BTRFS_I(inode)->root; 2258 int delete_item = 0; 2259 int release_rsv = 0; 2260 int ret = 0; 2261 2262 spin_lock(&root->orphan_lock); 2263 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2264 &BTRFS_I(inode)->runtime_flags)) 2265 delete_item = 1; 2266 2267 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2268 &BTRFS_I(inode)->runtime_flags)) 2269 release_rsv = 1; 2270 spin_unlock(&root->orphan_lock); 2271 2272 if (trans && delete_item) { 2273 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2274 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 2275 } 2276 2277 if (release_rsv) { 2278 btrfs_orphan_release_metadata(inode); 2279 atomic_dec(&root->orphan_inodes); 2280 } 2281 2282 return 0; 2283 } 2284 2285 /* 2286 * this cleans up any orphans that may be left on the list from the last use 2287 * of this root. 2288 */ 2289 int btrfs_orphan_cleanup(struct btrfs_root *root) 2290 { 2291 struct btrfs_path *path; 2292 struct extent_buffer *leaf; 2293 struct btrfs_key key, found_key; 2294 struct btrfs_trans_handle *trans; 2295 struct inode *inode; 2296 u64 last_objectid = 0; 2297 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2298 2299 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2300 return 0; 2301 2302 path = btrfs_alloc_path(); 2303 if (!path) { 2304 ret = -ENOMEM; 2305 goto out; 2306 } 2307 path->reada = -1; 2308 2309 key.objectid = BTRFS_ORPHAN_OBJECTID; 2310 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2311 key.offset = (u64)-1; 2312 2313 while (1) { 2314 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2315 if (ret < 0) 2316 goto out; 2317 2318 /* 2319 * if ret == 0 means we found what we were searching for, which 2320 * is weird, but possible, so only screw with path if we didn't 2321 * find the key and see if we have stuff that matches 2322 */ 2323 if (ret > 0) { 2324 ret = 0; 2325 if (path->slots[0] == 0) 2326 break; 2327 path->slots[0]--; 2328 } 2329 2330 /* pull out the item */ 2331 leaf = path->nodes[0]; 2332 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2333 2334 /* make sure the item matches what we want */ 2335 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2336 break; 2337 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2338 break; 2339 2340 /* release the path since we're done with it */ 2341 btrfs_release_path(path); 2342 2343 /* 2344 * this is where we are basically btrfs_lookup, without the 2345 * crossing root thing. we store the inode number in the 2346 * offset of the orphan item. 2347 */ 2348 2349 if (found_key.offset == last_objectid) { 2350 printk(KERN_ERR "btrfs: Error removing orphan entry, " 2351 "stopping orphan cleanup\n"); 2352 ret = -EINVAL; 2353 goto out; 2354 } 2355 2356 last_objectid = found_key.offset; 2357 2358 found_key.objectid = found_key.offset; 2359 found_key.type = BTRFS_INODE_ITEM_KEY; 2360 found_key.offset = 0; 2361 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2362 ret = PTR_RET(inode); 2363 if (ret && ret != -ESTALE) 2364 goto out; 2365 2366 if (ret == -ESTALE && root == root->fs_info->tree_root) { 2367 struct btrfs_root *dead_root; 2368 struct btrfs_fs_info *fs_info = root->fs_info; 2369 int is_dead_root = 0; 2370 2371 /* 2372 * this is an orphan in the tree root. Currently these 2373 * could come from 2 sources: 2374 * a) a snapshot deletion in progress 2375 * b) a free space cache inode 2376 * We need to distinguish those two, as the snapshot 2377 * orphan must not get deleted. 2378 * find_dead_roots already ran before us, so if this 2379 * is a snapshot deletion, we should find the root 2380 * in the dead_roots list 2381 */ 2382 spin_lock(&fs_info->trans_lock); 2383 list_for_each_entry(dead_root, &fs_info->dead_roots, 2384 root_list) { 2385 if (dead_root->root_key.objectid == 2386 found_key.objectid) { 2387 is_dead_root = 1; 2388 break; 2389 } 2390 } 2391 spin_unlock(&fs_info->trans_lock); 2392 if (is_dead_root) { 2393 /* prevent this orphan from being found again */ 2394 key.offset = found_key.objectid - 1; 2395 continue; 2396 } 2397 } 2398 /* 2399 * Inode is already gone but the orphan item is still there, 2400 * kill the orphan item. 2401 */ 2402 if (ret == -ESTALE) { 2403 trans = btrfs_start_transaction(root, 1); 2404 if (IS_ERR(trans)) { 2405 ret = PTR_ERR(trans); 2406 goto out; 2407 } 2408 printk(KERN_ERR "auto deleting %Lu\n", 2409 found_key.objectid); 2410 ret = btrfs_del_orphan_item(trans, root, 2411 found_key.objectid); 2412 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 2413 btrfs_end_transaction(trans, root); 2414 continue; 2415 } 2416 2417 /* 2418 * add this inode to the orphan list so btrfs_orphan_del does 2419 * the proper thing when we hit it 2420 */ 2421 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2422 &BTRFS_I(inode)->runtime_flags); 2423 2424 /* if we have links, this was a truncate, lets do that */ 2425 if (inode->i_nlink) { 2426 if (!S_ISREG(inode->i_mode)) { 2427 WARN_ON(1); 2428 iput(inode); 2429 continue; 2430 } 2431 nr_truncate++; 2432 ret = btrfs_truncate(inode); 2433 } else { 2434 nr_unlink++; 2435 } 2436 2437 /* this will do delete_inode and everything for us */ 2438 iput(inode); 2439 if (ret) 2440 goto out; 2441 } 2442 /* release the path since we're done with it */ 2443 btrfs_release_path(path); 2444 2445 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2446 2447 if (root->orphan_block_rsv) 2448 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2449 (u64)-1); 2450 2451 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2452 trans = btrfs_join_transaction(root); 2453 if (!IS_ERR(trans)) 2454 btrfs_end_transaction(trans, root); 2455 } 2456 2457 if (nr_unlink) 2458 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2459 if (nr_truncate) 2460 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2461 2462 out: 2463 if (ret) 2464 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2465 btrfs_free_path(path); 2466 return ret; 2467 } 2468 2469 /* 2470 * very simple check to peek ahead in the leaf looking for xattrs. If we 2471 * don't find any xattrs, we know there can't be any acls. 2472 * 2473 * slot is the slot the inode is in, objectid is the objectid of the inode 2474 */ 2475 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2476 int slot, u64 objectid) 2477 { 2478 u32 nritems = btrfs_header_nritems(leaf); 2479 struct btrfs_key found_key; 2480 int scanned = 0; 2481 2482 slot++; 2483 while (slot < nritems) { 2484 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2485 2486 /* we found a different objectid, there must not be acls */ 2487 if (found_key.objectid != objectid) 2488 return 0; 2489 2490 /* we found an xattr, assume we've got an acl */ 2491 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2492 return 1; 2493 2494 /* 2495 * we found a key greater than an xattr key, there can't 2496 * be any acls later on 2497 */ 2498 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2499 return 0; 2500 2501 slot++; 2502 scanned++; 2503 2504 /* 2505 * it goes inode, inode backrefs, xattrs, extents, 2506 * so if there are a ton of hard links to an inode there can 2507 * be a lot of backrefs. Don't waste time searching too hard, 2508 * this is just an optimization 2509 */ 2510 if (scanned >= 8) 2511 break; 2512 } 2513 /* we hit the end of the leaf before we found an xattr or 2514 * something larger than an xattr. We have to assume the inode 2515 * has acls 2516 */ 2517 return 1; 2518 } 2519 2520 /* 2521 * read an inode from the btree into the in-memory inode 2522 */ 2523 static void btrfs_read_locked_inode(struct inode *inode) 2524 { 2525 struct btrfs_path *path; 2526 struct extent_buffer *leaf; 2527 struct btrfs_inode_item *inode_item; 2528 struct btrfs_timespec *tspec; 2529 struct btrfs_root *root = BTRFS_I(inode)->root; 2530 struct btrfs_key location; 2531 int maybe_acls; 2532 u32 rdev; 2533 int ret; 2534 bool filled = false; 2535 2536 ret = btrfs_fill_inode(inode, &rdev); 2537 if (!ret) 2538 filled = true; 2539 2540 path = btrfs_alloc_path(); 2541 if (!path) 2542 goto make_bad; 2543 2544 path->leave_spinning = 1; 2545 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2546 2547 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2548 if (ret) 2549 goto make_bad; 2550 2551 leaf = path->nodes[0]; 2552 2553 if (filled) 2554 goto cache_acl; 2555 2556 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2557 struct btrfs_inode_item); 2558 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2559 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 2560 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 2561 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 2562 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2563 2564 tspec = btrfs_inode_atime(inode_item); 2565 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2566 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2567 2568 tspec = btrfs_inode_mtime(inode_item); 2569 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2570 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2571 2572 tspec = btrfs_inode_ctime(inode_item); 2573 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2574 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2575 2576 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2577 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2578 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 2579 2580 /* 2581 * If we were modified in the current generation and evicted from memory 2582 * and then re-read we need to do a full sync since we don't have any 2583 * idea about which extents were modified before we were evicted from 2584 * cache. 2585 */ 2586 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 2587 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2588 &BTRFS_I(inode)->runtime_flags); 2589 2590 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 2591 inode->i_generation = BTRFS_I(inode)->generation; 2592 inode->i_rdev = 0; 2593 rdev = btrfs_inode_rdev(leaf, inode_item); 2594 2595 BTRFS_I(inode)->index_cnt = (u64)-1; 2596 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2597 cache_acl: 2598 /* 2599 * try to precache a NULL acl entry for files that don't have 2600 * any xattrs or acls 2601 */ 2602 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2603 btrfs_ino(inode)); 2604 if (!maybe_acls) 2605 cache_no_acl(inode); 2606 2607 btrfs_free_path(path); 2608 2609 switch (inode->i_mode & S_IFMT) { 2610 case S_IFREG: 2611 inode->i_mapping->a_ops = &btrfs_aops; 2612 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2613 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2614 inode->i_fop = &btrfs_file_operations; 2615 inode->i_op = &btrfs_file_inode_operations; 2616 break; 2617 case S_IFDIR: 2618 inode->i_fop = &btrfs_dir_file_operations; 2619 if (root == root->fs_info->tree_root) 2620 inode->i_op = &btrfs_dir_ro_inode_operations; 2621 else 2622 inode->i_op = &btrfs_dir_inode_operations; 2623 break; 2624 case S_IFLNK: 2625 inode->i_op = &btrfs_symlink_inode_operations; 2626 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2627 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2628 break; 2629 default: 2630 inode->i_op = &btrfs_special_inode_operations; 2631 init_special_inode(inode, inode->i_mode, rdev); 2632 break; 2633 } 2634 2635 btrfs_update_iflags(inode); 2636 return; 2637 2638 make_bad: 2639 btrfs_free_path(path); 2640 make_bad_inode(inode); 2641 } 2642 2643 /* 2644 * given a leaf and an inode, copy the inode fields into the leaf 2645 */ 2646 static void fill_inode_item(struct btrfs_trans_handle *trans, 2647 struct extent_buffer *leaf, 2648 struct btrfs_inode_item *item, 2649 struct inode *inode) 2650 { 2651 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 2652 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 2653 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2654 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2655 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2656 2657 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2658 inode->i_atime.tv_sec); 2659 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2660 inode->i_atime.tv_nsec); 2661 2662 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2663 inode->i_mtime.tv_sec); 2664 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2665 inode->i_mtime.tv_nsec); 2666 2667 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2668 inode->i_ctime.tv_sec); 2669 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2670 inode->i_ctime.tv_nsec); 2671 2672 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2673 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2674 btrfs_set_inode_sequence(leaf, item, inode->i_version); 2675 btrfs_set_inode_transid(leaf, item, trans->transid); 2676 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2677 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2678 btrfs_set_inode_block_group(leaf, item, 0); 2679 } 2680 2681 /* 2682 * copy everything in the in-memory inode into the btree. 2683 */ 2684 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 2685 struct btrfs_root *root, struct inode *inode) 2686 { 2687 struct btrfs_inode_item *inode_item; 2688 struct btrfs_path *path; 2689 struct extent_buffer *leaf; 2690 int ret; 2691 2692 path = btrfs_alloc_path(); 2693 if (!path) 2694 return -ENOMEM; 2695 2696 path->leave_spinning = 1; 2697 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2698 1); 2699 if (ret) { 2700 if (ret > 0) 2701 ret = -ENOENT; 2702 goto failed; 2703 } 2704 2705 btrfs_unlock_up_safe(path, 1); 2706 leaf = path->nodes[0]; 2707 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2708 struct btrfs_inode_item); 2709 2710 fill_inode_item(trans, leaf, inode_item, inode); 2711 btrfs_mark_buffer_dirty(leaf); 2712 btrfs_set_inode_last_trans(trans, inode); 2713 ret = 0; 2714 failed: 2715 btrfs_free_path(path); 2716 return ret; 2717 } 2718 2719 /* 2720 * copy everything in the in-memory inode into the btree. 2721 */ 2722 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2723 struct btrfs_root *root, struct inode *inode) 2724 { 2725 int ret; 2726 2727 /* 2728 * If the inode is a free space inode, we can deadlock during commit 2729 * if we put it into the delayed code. 2730 * 2731 * The data relocation inode should also be directly updated 2732 * without delay 2733 */ 2734 if (!btrfs_is_free_space_inode(inode) 2735 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2736 btrfs_update_root_times(trans, root); 2737 2738 ret = btrfs_delayed_update_inode(trans, root, inode); 2739 if (!ret) 2740 btrfs_set_inode_last_trans(trans, inode); 2741 return ret; 2742 } 2743 2744 return btrfs_update_inode_item(trans, root, inode); 2745 } 2746 2747 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 2748 struct btrfs_root *root, 2749 struct inode *inode) 2750 { 2751 int ret; 2752 2753 ret = btrfs_update_inode(trans, root, inode); 2754 if (ret == -ENOSPC) 2755 return btrfs_update_inode_item(trans, root, inode); 2756 return ret; 2757 } 2758 2759 /* 2760 * unlink helper that gets used here in inode.c and in the tree logging 2761 * recovery code. It remove a link in a directory with a given name, and 2762 * also drops the back refs in the inode to the directory 2763 */ 2764 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2765 struct btrfs_root *root, 2766 struct inode *dir, struct inode *inode, 2767 const char *name, int name_len) 2768 { 2769 struct btrfs_path *path; 2770 int ret = 0; 2771 struct extent_buffer *leaf; 2772 struct btrfs_dir_item *di; 2773 struct btrfs_key key; 2774 u64 index; 2775 u64 ino = btrfs_ino(inode); 2776 u64 dir_ino = btrfs_ino(dir); 2777 2778 path = btrfs_alloc_path(); 2779 if (!path) { 2780 ret = -ENOMEM; 2781 goto out; 2782 } 2783 2784 path->leave_spinning = 1; 2785 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2786 name, name_len, -1); 2787 if (IS_ERR(di)) { 2788 ret = PTR_ERR(di); 2789 goto err; 2790 } 2791 if (!di) { 2792 ret = -ENOENT; 2793 goto err; 2794 } 2795 leaf = path->nodes[0]; 2796 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2797 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2798 if (ret) 2799 goto err; 2800 btrfs_release_path(path); 2801 2802 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2803 dir_ino, &index); 2804 if (ret) { 2805 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2806 "inode %llu parent %llu\n", name_len, name, 2807 (unsigned long long)ino, (unsigned long long)dir_ino); 2808 btrfs_abort_transaction(trans, root, ret); 2809 goto err; 2810 } 2811 2812 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2813 if (ret) { 2814 btrfs_abort_transaction(trans, root, ret); 2815 goto err; 2816 } 2817 2818 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2819 inode, dir_ino); 2820 if (ret != 0 && ret != -ENOENT) { 2821 btrfs_abort_transaction(trans, root, ret); 2822 goto err; 2823 } 2824 2825 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2826 dir, index); 2827 if (ret == -ENOENT) 2828 ret = 0; 2829 err: 2830 btrfs_free_path(path); 2831 if (ret) 2832 goto out; 2833 2834 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2835 inode_inc_iversion(inode); 2836 inode_inc_iversion(dir); 2837 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2838 ret = btrfs_update_inode(trans, root, dir); 2839 out: 2840 return ret; 2841 } 2842 2843 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root, 2845 struct inode *dir, struct inode *inode, 2846 const char *name, int name_len) 2847 { 2848 int ret; 2849 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2850 if (!ret) { 2851 btrfs_drop_nlink(inode); 2852 ret = btrfs_update_inode(trans, root, inode); 2853 } 2854 return ret; 2855 } 2856 2857 2858 /* helper to check if there is any shared block in the path */ 2859 static int check_path_shared(struct btrfs_root *root, 2860 struct btrfs_path *path) 2861 { 2862 struct extent_buffer *eb; 2863 int level; 2864 u64 refs = 1; 2865 2866 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2867 int ret; 2868 2869 if (!path->nodes[level]) 2870 break; 2871 eb = path->nodes[level]; 2872 if (!btrfs_block_can_be_shared(root, eb)) 2873 continue; 2874 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2875 &refs, NULL); 2876 if (refs > 1) 2877 return 1; 2878 } 2879 return 0; 2880 } 2881 2882 /* 2883 * helper to start transaction for unlink and rmdir. 2884 * 2885 * unlink and rmdir are special in btrfs, they do not always free space. 2886 * so in enospc case, we should make sure they will free space before 2887 * allowing them to use the global metadata reservation. 2888 */ 2889 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2890 struct dentry *dentry) 2891 { 2892 struct btrfs_trans_handle *trans; 2893 struct btrfs_root *root = BTRFS_I(dir)->root; 2894 struct btrfs_path *path; 2895 struct btrfs_dir_item *di; 2896 struct inode *inode = dentry->d_inode; 2897 u64 index; 2898 int check_link = 1; 2899 int err = -ENOSPC; 2900 int ret; 2901 u64 ino = btrfs_ino(inode); 2902 u64 dir_ino = btrfs_ino(dir); 2903 2904 /* 2905 * 1 for the possible orphan item 2906 * 1 for the dir item 2907 * 1 for the dir index 2908 * 1 for the inode ref 2909 * 1 for the inode ref in the tree log 2910 * 2 for the dir entries in the log 2911 * 1 for the inode 2912 */ 2913 trans = btrfs_start_transaction(root, 8); 2914 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2915 return trans; 2916 2917 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2918 return ERR_PTR(-ENOSPC); 2919 2920 /* check if there is someone else holds reference */ 2921 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2922 return ERR_PTR(-ENOSPC); 2923 2924 if (atomic_read(&inode->i_count) > 2) 2925 return ERR_PTR(-ENOSPC); 2926 2927 if (xchg(&root->fs_info->enospc_unlink, 1)) 2928 return ERR_PTR(-ENOSPC); 2929 2930 path = btrfs_alloc_path(); 2931 if (!path) { 2932 root->fs_info->enospc_unlink = 0; 2933 return ERR_PTR(-ENOMEM); 2934 } 2935 2936 /* 1 for the orphan item */ 2937 trans = btrfs_start_transaction(root, 1); 2938 if (IS_ERR(trans)) { 2939 btrfs_free_path(path); 2940 root->fs_info->enospc_unlink = 0; 2941 return trans; 2942 } 2943 2944 path->skip_locking = 1; 2945 path->search_commit_root = 1; 2946 2947 ret = btrfs_lookup_inode(trans, root, path, 2948 &BTRFS_I(dir)->location, 0); 2949 if (ret < 0) { 2950 err = ret; 2951 goto out; 2952 } 2953 if (ret == 0) { 2954 if (check_path_shared(root, path)) 2955 goto out; 2956 } else { 2957 check_link = 0; 2958 } 2959 btrfs_release_path(path); 2960 2961 ret = btrfs_lookup_inode(trans, root, path, 2962 &BTRFS_I(inode)->location, 0); 2963 if (ret < 0) { 2964 err = ret; 2965 goto out; 2966 } 2967 if (ret == 0) { 2968 if (check_path_shared(root, path)) 2969 goto out; 2970 } else { 2971 check_link = 0; 2972 } 2973 btrfs_release_path(path); 2974 2975 if (ret == 0 && S_ISREG(inode->i_mode)) { 2976 ret = btrfs_lookup_file_extent(trans, root, path, 2977 ino, (u64)-1, 0); 2978 if (ret < 0) { 2979 err = ret; 2980 goto out; 2981 } 2982 BUG_ON(ret == 0); /* Corruption */ 2983 if (check_path_shared(root, path)) 2984 goto out; 2985 btrfs_release_path(path); 2986 } 2987 2988 if (!check_link) { 2989 err = 0; 2990 goto out; 2991 } 2992 2993 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2994 dentry->d_name.name, dentry->d_name.len, 0); 2995 if (IS_ERR(di)) { 2996 err = PTR_ERR(di); 2997 goto out; 2998 } 2999 if (di) { 3000 if (check_path_shared(root, path)) 3001 goto out; 3002 } else { 3003 err = 0; 3004 goto out; 3005 } 3006 btrfs_release_path(path); 3007 3008 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name, 3009 dentry->d_name.len, ino, dir_ino, 0, 3010 &index); 3011 if (ret) { 3012 err = ret; 3013 goto out; 3014 } 3015 3016 if (check_path_shared(root, path)) 3017 goto out; 3018 3019 btrfs_release_path(path); 3020 3021 /* 3022 * This is a commit root search, if we can lookup inode item and other 3023 * relative items in the commit root, it means the transaction of 3024 * dir/file creation has been committed, and the dir index item that we 3025 * delay to insert has also been inserted into the commit root. So 3026 * we needn't worry about the delayed insertion of the dir index item 3027 * here. 3028 */ 3029 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 3030 dentry->d_name.name, dentry->d_name.len, 0); 3031 if (IS_ERR(di)) { 3032 err = PTR_ERR(di); 3033 goto out; 3034 } 3035 BUG_ON(ret == -ENOENT); 3036 if (check_path_shared(root, path)) 3037 goto out; 3038 3039 err = 0; 3040 out: 3041 btrfs_free_path(path); 3042 /* Migrate the orphan reservation over */ 3043 if (!err) 3044 err = btrfs_block_rsv_migrate(trans->block_rsv, 3045 &root->fs_info->global_block_rsv, 3046 trans->bytes_reserved); 3047 3048 if (err) { 3049 btrfs_end_transaction(trans, root); 3050 root->fs_info->enospc_unlink = 0; 3051 return ERR_PTR(err); 3052 } 3053 3054 trans->block_rsv = &root->fs_info->global_block_rsv; 3055 return trans; 3056 } 3057 3058 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 3059 struct btrfs_root *root) 3060 { 3061 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) { 3062 btrfs_block_rsv_release(root, trans->block_rsv, 3063 trans->bytes_reserved); 3064 trans->block_rsv = &root->fs_info->trans_block_rsv; 3065 BUG_ON(!root->fs_info->enospc_unlink); 3066 root->fs_info->enospc_unlink = 0; 3067 } 3068 btrfs_end_transaction(trans, root); 3069 } 3070 3071 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3072 { 3073 struct btrfs_root *root = BTRFS_I(dir)->root; 3074 struct btrfs_trans_handle *trans; 3075 struct inode *inode = dentry->d_inode; 3076 int ret; 3077 unsigned long nr = 0; 3078 3079 trans = __unlink_start_trans(dir, dentry); 3080 if (IS_ERR(trans)) 3081 return PTR_ERR(trans); 3082 3083 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3084 3085 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3086 dentry->d_name.name, dentry->d_name.len); 3087 if (ret) 3088 goto out; 3089 3090 if (inode->i_nlink == 0) { 3091 ret = btrfs_orphan_add(trans, inode); 3092 if (ret) 3093 goto out; 3094 } 3095 3096 out: 3097 nr = trans->blocks_used; 3098 __unlink_end_trans(trans, root); 3099 btrfs_btree_balance_dirty(root, nr); 3100 return ret; 3101 } 3102 3103 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3104 struct btrfs_root *root, 3105 struct inode *dir, u64 objectid, 3106 const char *name, int name_len) 3107 { 3108 struct btrfs_path *path; 3109 struct extent_buffer *leaf; 3110 struct btrfs_dir_item *di; 3111 struct btrfs_key key; 3112 u64 index; 3113 int ret; 3114 u64 dir_ino = btrfs_ino(dir); 3115 3116 path = btrfs_alloc_path(); 3117 if (!path) 3118 return -ENOMEM; 3119 3120 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3121 name, name_len, -1); 3122 if (IS_ERR_OR_NULL(di)) { 3123 if (!di) 3124 ret = -ENOENT; 3125 else 3126 ret = PTR_ERR(di); 3127 goto out; 3128 } 3129 3130 leaf = path->nodes[0]; 3131 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3132 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3133 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3134 if (ret) { 3135 btrfs_abort_transaction(trans, root, ret); 3136 goto out; 3137 } 3138 btrfs_release_path(path); 3139 3140 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3141 objectid, root->root_key.objectid, 3142 dir_ino, &index, name, name_len); 3143 if (ret < 0) { 3144 if (ret != -ENOENT) { 3145 btrfs_abort_transaction(trans, root, ret); 3146 goto out; 3147 } 3148 di = btrfs_search_dir_index_item(root, path, dir_ino, 3149 name, name_len); 3150 if (IS_ERR_OR_NULL(di)) { 3151 if (!di) 3152 ret = -ENOENT; 3153 else 3154 ret = PTR_ERR(di); 3155 btrfs_abort_transaction(trans, root, ret); 3156 goto out; 3157 } 3158 3159 leaf = path->nodes[0]; 3160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3161 btrfs_release_path(path); 3162 index = key.offset; 3163 } 3164 btrfs_release_path(path); 3165 3166 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3167 if (ret) { 3168 btrfs_abort_transaction(trans, root, ret); 3169 goto out; 3170 } 3171 3172 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3173 inode_inc_iversion(dir); 3174 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3175 ret = btrfs_update_inode_fallback(trans, root, dir); 3176 if (ret) 3177 btrfs_abort_transaction(trans, root, ret); 3178 out: 3179 btrfs_free_path(path); 3180 return ret; 3181 } 3182 3183 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3184 { 3185 struct inode *inode = dentry->d_inode; 3186 int err = 0; 3187 struct btrfs_root *root = BTRFS_I(dir)->root; 3188 struct btrfs_trans_handle *trans; 3189 unsigned long nr = 0; 3190 3191 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3192 return -ENOTEMPTY; 3193 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3194 return -EPERM; 3195 3196 trans = __unlink_start_trans(dir, dentry); 3197 if (IS_ERR(trans)) 3198 return PTR_ERR(trans); 3199 3200 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3201 err = btrfs_unlink_subvol(trans, root, dir, 3202 BTRFS_I(inode)->location.objectid, 3203 dentry->d_name.name, 3204 dentry->d_name.len); 3205 goto out; 3206 } 3207 3208 err = btrfs_orphan_add(trans, inode); 3209 if (err) 3210 goto out; 3211 3212 /* now the directory is empty */ 3213 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3214 dentry->d_name.name, dentry->d_name.len); 3215 if (!err) 3216 btrfs_i_size_write(inode, 0); 3217 out: 3218 nr = trans->blocks_used; 3219 __unlink_end_trans(trans, root); 3220 btrfs_btree_balance_dirty(root, nr); 3221 3222 return err; 3223 } 3224 3225 /* 3226 * this can truncate away extent items, csum items and directory items. 3227 * It starts at a high offset and removes keys until it can't find 3228 * any higher than new_size 3229 * 3230 * csum items that cross the new i_size are truncated to the new size 3231 * as well. 3232 * 3233 * min_type is the minimum key type to truncate down to. If set to 0, this 3234 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3235 */ 3236 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3237 struct btrfs_root *root, 3238 struct inode *inode, 3239 u64 new_size, u32 min_type) 3240 { 3241 struct btrfs_path *path; 3242 struct extent_buffer *leaf; 3243 struct btrfs_file_extent_item *fi; 3244 struct btrfs_key key; 3245 struct btrfs_key found_key; 3246 u64 extent_start = 0; 3247 u64 extent_num_bytes = 0; 3248 u64 extent_offset = 0; 3249 u64 item_end = 0; 3250 u64 mask = root->sectorsize - 1; 3251 u32 found_type = (u8)-1; 3252 int found_extent; 3253 int del_item; 3254 int pending_del_nr = 0; 3255 int pending_del_slot = 0; 3256 int extent_type = -1; 3257 int ret; 3258 int err = 0; 3259 u64 ino = btrfs_ino(inode); 3260 3261 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3262 3263 path = btrfs_alloc_path(); 3264 if (!path) 3265 return -ENOMEM; 3266 path->reada = -1; 3267 3268 /* 3269 * We want to drop from the next block forward in case this new size is 3270 * not block aligned since we will be keeping the last block of the 3271 * extent just the way it is. 3272 */ 3273 if (root->ref_cows || root == root->fs_info->tree_root) 3274 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0); 3275 3276 /* 3277 * This function is also used to drop the items in the log tree before 3278 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3279 * it is used to drop the loged items. So we shouldn't kill the delayed 3280 * items. 3281 */ 3282 if (min_type == 0 && root == BTRFS_I(inode)->root) 3283 btrfs_kill_delayed_inode_items(inode); 3284 3285 key.objectid = ino; 3286 key.offset = (u64)-1; 3287 key.type = (u8)-1; 3288 3289 search_again: 3290 path->leave_spinning = 1; 3291 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3292 if (ret < 0) { 3293 err = ret; 3294 goto out; 3295 } 3296 3297 if (ret > 0) { 3298 /* there are no items in the tree for us to truncate, we're 3299 * done 3300 */ 3301 if (path->slots[0] == 0) 3302 goto out; 3303 path->slots[0]--; 3304 } 3305 3306 while (1) { 3307 fi = NULL; 3308 leaf = path->nodes[0]; 3309 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3310 found_type = btrfs_key_type(&found_key); 3311 3312 if (found_key.objectid != ino) 3313 break; 3314 3315 if (found_type < min_type) 3316 break; 3317 3318 item_end = found_key.offset; 3319 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3320 fi = btrfs_item_ptr(leaf, path->slots[0], 3321 struct btrfs_file_extent_item); 3322 extent_type = btrfs_file_extent_type(leaf, fi); 3323 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3324 item_end += 3325 btrfs_file_extent_num_bytes(leaf, fi); 3326 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3327 item_end += btrfs_file_extent_inline_len(leaf, 3328 fi); 3329 } 3330 item_end--; 3331 } 3332 if (found_type > min_type) { 3333 del_item = 1; 3334 } else { 3335 if (item_end < new_size) 3336 break; 3337 if (found_key.offset >= new_size) 3338 del_item = 1; 3339 else 3340 del_item = 0; 3341 } 3342 found_extent = 0; 3343 /* FIXME, shrink the extent if the ref count is only 1 */ 3344 if (found_type != BTRFS_EXTENT_DATA_KEY) 3345 goto delete; 3346 3347 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3348 u64 num_dec; 3349 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3350 if (!del_item) { 3351 u64 orig_num_bytes = 3352 btrfs_file_extent_num_bytes(leaf, fi); 3353 extent_num_bytes = new_size - 3354 found_key.offset + root->sectorsize - 1; 3355 extent_num_bytes = extent_num_bytes & 3356 ~((u64)root->sectorsize - 1); 3357 btrfs_set_file_extent_num_bytes(leaf, fi, 3358 extent_num_bytes); 3359 num_dec = (orig_num_bytes - 3360 extent_num_bytes); 3361 if (root->ref_cows && extent_start != 0) 3362 inode_sub_bytes(inode, num_dec); 3363 btrfs_mark_buffer_dirty(leaf); 3364 } else { 3365 extent_num_bytes = 3366 btrfs_file_extent_disk_num_bytes(leaf, 3367 fi); 3368 extent_offset = found_key.offset - 3369 btrfs_file_extent_offset(leaf, fi); 3370 3371 /* FIXME blocksize != 4096 */ 3372 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3373 if (extent_start != 0) { 3374 found_extent = 1; 3375 if (root->ref_cows) 3376 inode_sub_bytes(inode, num_dec); 3377 } 3378 } 3379 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3380 /* 3381 * we can't truncate inline items that have had 3382 * special encodings 3383 */ 3384 if (!del_item && 3385 btrfs_file_extent_compression(leaf, fi) == 0 && 3386 btrfs_file_extent_encryption(leaf, fi) == 0 && 3387 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3388 u32 size = new_size - found_key.offset; 3389 3390 if (root->ref_cows) { 3391 inode_sub_bytes(inode, item_end + 1 - 3392 new_size); 3393 } 3394 size = 3395 btrfs_file_extent_calc_inline_size(size); 3396 btrfs_truncate_item(trans, root, path, 3397 size, 1); 3398 } else if (root->ref_cows) { 3399 inode_sub_bytes(inode, item_end + 1 - 3400 found_key.offset); 3401 } 3402 } 3403 delete: 3404 if (del_item) { 3405 if (!pending_del_nr) { 3406 /* no pending yet, add ourselves */ 3407 pending_del_slot = path->slots[0]; 3408 pending_del_nr = 1; 3409 } else if (pending_del_nr && 3410 path->slots[0] + 1 == pending_del_slot) { 3411 /* hop on the pending chunk */ 3412 pending_del_nr++; 3413 pending_del_slot = path->slots[0]; 3414 } else { 3415 BUG(); 3416 } 3417 } else { 3418 break; 3419 } 3420 if (found_extent && (root->ref_cows || 3421 root == root->fs_info->tree_root)) { 3422 btrfs_set_path_blocking(path); 3423 ret = btrfs_free_extent(trans, root, extent_start, 3424 extent_num_bytes, 0, 3425 btrfs_header_owner(leaf), 3426 ino, extent_offset, 0); 3427 BUG_ON(ret); 3428 } 3429 3430 if (found_type == BTRFS_INODE_ITEM_KEY) 3431 break; 3432 3433 if (path->slots[0] == 0 || 3434 path->slots[0] != pending_del_slot) { 3435 if (pending_del_nr) { 3436 ret = btrfs_del_items(trans, root, path, 3437 pending_del_slot, 3438 pending_del_nr); 3439 if (ret) { 3440 btrfs_abort_transaction(trans, 3441 root, ret); 3442 goto error; 3443 } 3444 pending_del_nr = 0; 3445 } 3446 btrfs_release_path(path); 3447 goto search_again; 3448 } else { 3449 path->slots[0]--; 3450 } 3451 } 3452 out: 3453 if (pending_del_nr) { 3454 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3455 pending_del_nr); 3456 if (ret) 3457 btrfs_abort_transaction(trans, root, ret); 3458 } 3459 error: 3460 btrfs_free_path(path); 3461 return err; 3462 } 3463 3464 /* 3465 * btrfs_truncate_page - read, zero a chunk and write a page 3466 * @inode - inode that we're zeroing 3467 * @from - the offset to start zeroing 3468 * @len - the length to zero, 0 to zero the entire range respective to the 3469 * offset 3470 * @front - zero up to the offset instead of from the offset on 3471 * 3472 * This will find the page for the "from" offset and cow the page and zero the 3473 * part we want to zero. This is used with truncate and hole punching. 3474 */ 3475 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 3476 int front) 3477 { 3478 struct address_space *mapping = inode->i_mapping; 3479 struct btrfs_root *root = BTRFS_I(inode)->root; 3480 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3481 struct btrfs_ordered_extent *ordered; 3482 struct extent_state *cached_state = NULL; 3483 char *kaddr; 3484 u32 blocksize = root->sectorsize; 3485 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3486 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3487 struct page *page; 3488 gfp_t mask = btrfs_alloc_write_mask(mapping); 3489 int ret = 0; 3490 u64 page_start; 3491 u64 page_end; 3492 3493 if ((offset & (blocksize - 1)) == 0 && 3494 (!len || ((len & (blocksize - 1)) == 0))) 3495 goto out; 3496 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3497 if (ret) 3498 goto out; 3499 3500 ret = -ENOMEM; 3501 again: 3502 page = find_or_create_page(mapping, index, mask); 3503 if (!page) { 3504 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3505 goto out; 3506 } 3507 3508 page_start = page_offset(page); 3509 page_end = page_start + PAGE_CACHE_SIZE - 1; 3510 3511 if (!PageUptodate(page)) { 3512 ret = btrfs_readpage(NULL, page); 3513 lock_page(page); 3514 if (page->mapping != mapping) { 3515 unlock_page(page); 3516 page_cache_release(page); 3517 goto again; 3518 } 3519 if (!PageUptodate(page)) { 3520 ret = -EIO; 3521 goto out_unlock; 3522 } 3523 } 3524 wait_on_page_writeback(page); 3525 3526 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 3527 set_page_extent_mapped(page); 3528 3529 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3530 if (ordered) { 3531 unlock_extent_cached(io_tree, page_start, page_end, 3532 &cached_state, GFP_NOFS); 3533 unlock_page(page); 3534 page_cache_release(page); 3535 btrfs_start_ordered_extent(inode, ordered, 1); 3536 btrfs_put_ordered_extent(ordered); 3537 goto again; 3538 } 3539 3540 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3541 EXTENT_DIRTY | EXTENT_DELALLOC | 3542 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 3543 0, 0, &cached_state, GFP_NOFS); 3544 3545 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3546 &cached_state); 3547 if (ret) { 3548 unlock_extent_cached(io_tree, page_start, page_end, 3549 &cached_state, GFP_NOFS); 3550 goto out_unlock; 3551 } 3552 3553 ret = 0; 3554 if (offset != PAGE_CACHE_SIZE) { 3555 if (!len) 3556 len = PAGE_CACHE_SIZE - offset; 3557 kaddr = kmap(page); 3558 if (front) 3559 memset(kaddr, 0, offset); 3560 else 3561 memset(kaddr + offset, 0, len); 3562 flush_dcache_page(page); 3563 kunmap(page); 3564 } 3565 ClearPageChecked(page); 3566 set_page_dirty(page); 3567 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3568 GFP_NOFS); 3569 3570 out_unlock: 3571 if (ret) 3572 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3573 unlock_page(page); 3574 page_cache_release(page); 3575 out: 3576 return ret; 3577 } 3578 3579 /* 3580 * This function puts in dummy file extents for the area we're creating a hole 3581 * for. So if we are truncating this file to a larger size we need to insert 3582 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3583 * the range between oldsize and size 3584 */ 3585 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3586 { 3587 struct btrfs_trans_handle *trans; 3588 struct btrfs_root *root = BTRFS_I(inode)->root; 3589 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3590 struct extent_map *em = NULL; 3591 struct extent_state *cached_state = NULL; 3592 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3593 u64 mask = root->sectorsize - 1; 3594 u64 hole_start = (oldsize + mask) & ~mask; 3595 u64 block_end = (size + mask) & ~mask; 3596 u64 last_byte; 3597 u64 cur_offset; 3598 u64 hole_size; 3599 int err = 0; 3600 3601 if (size <= hole_start) 3602 return 0; 3603 3604 while (1) { 3605 struct btrfs_ordered_extent *ordered; 3606 btrfs_wait_ordered_range(inode, hole_start, 3607 block_end - hole_start); 3608 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3609 &cached_state); 3610 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3611 if (!ordered) 3612 break; 3613 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3614 &cached_state, GFP_NOFS); 3615 btrfs_put_ordered_extent(ordered); 3616 } 3617 3618 cur_offset = hole_start; 3619 while (1) { 3620 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3621 block_end - cur_offset, 0); 3622 if (IS_ERR(em)) { 3623 err = PTR_ERR(em); 3624 break; 3625 } 3626 last_byte = min(extent_map_end(em), block_end); 3627 last_byte = (last_byte + mask) & ~mask; 3628 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3629 struct extent_map *hole_em; 3630 hole_size = last_byte - cur_offset; 3631 3632 trans = btrfs_start_transaction(root, 3); 3633 if (IS_ERR(trans)) { 3634 err = PTR_ERR(trans); 3635 break; 3636 } 3637 3638 err = btrfs_drop_extents(trans, root, inode, 3639 cur_offset, 3640 cur_offset + hole_size, 1); 3641 if (err) { 3642 btrfs_abort_transaction(trans, root, err); 3643 btrfs_end_transaction(trans, root); 3644 break; 3645 } 3646 3647 err = btrfs_insert_file_extent(trans, root, 3648 btrfs_ino(inode), cur_offset, 0, 3649 0, hole_size, 0, hole_size, 3650 0, 0, 0); 3651 if (err) { 3652 btrfs_abort_transaction(trans, root, err); 3653 btrfs_end_transaction(trans, root); 3654 break; 3655 } 3656 3657 btrfs_drop_extent_cache(inode, cur_offset, 3658 cur_offset + hole_size - 1, 0); 3659 hole_em = alloc_extent_map(); 3660 if (!hole_em) { 3661 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3662 &BTRFS_I(inode)->runtime_flags); 3663 goto next; 3664 } 3665 hole_em->start = cur_offset; 3666 hole_em->len = hole_size; 3667 hole_em->orig_start = cur_offset; 3668 3669 hole_em->block_start = EXTENT_MAP_HOLE; 3670 hole_em->block_len = 0; 3671 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 3672 hole_em->compress_type = BTRFS_COMPRESS_NONE; 3673 hole_em->generation = trans->transid; 3674 3675 while (1) { 3676 write_lock(&em_tree->lock); 3677 err = add_extent_mapping(em_tree, hole_em); 3678 if (!err) 3679 list_move(&hole_em->list, 3680 &em_tree->modified_extents); 3681 write_unlock(&em_tree->lock); 3682 if (err != -EEXIST) 3683 break; 3684 btrfs_drop_extent_cache(inode, cur_offset, 3685 cur_offset + 3686 hole_size - 1, 0); 3687 } 3688 free_extent_map(hole_em); 3689 next: 3690 btrfs_update_inode(trans, root, inode); 3691 btrfs_end_transaction(trans, root); 3692 } 3693 free_extent_map(em); 3694 em = NULL; 3695 cur_offset = last_byte; 3696 if (cur_offset >= block_end) 3697 break; 3698 } 3699 3700 free_extent_map(em); 3701 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3702 GFP_NOFS); 3703 return err; 3704 } 3705 3706 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3707 { 3708 struct btrfs_root *root = BTRFS_I(inode)->root; 3709 struct btrfs_trans_handle *trans; 3710 loff_t oldsize = i_size_read(inode); 3711 int ret; 3712 3713 if (newsize == oldsize) 3714 return 0; 3715 3716 if (newsize > oldsize) { 3717 truncate_pagecache(inode, oldsize, newsize); 3718 ret = btrfs_cont_expand(inode, oldsize, newsize); 3719 if (ret) 3720 return ret; 3721 3722 trans = btrfs_start_transaction(root, 1); 3723 if (IS_ERR(trans)) 3724 return PTR_ERR(trans); 3725 3726 i_size_write(inode, newsize); 3727 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3728 ret = btrfs_update_inode(trans, root, inode); 3729 btrfs_end_transaction(trans, root); 3730 } else { 3731 3732 /* 3733 * We're truncating a file that used to have good data down to 3734 * zero. Make sure it gets into the ordered flush list so that 3735 * any new writes get down to disk quickly. 3736 */ 3737 if (newsize == 0) 3738 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 3739 &BTRFS_I(inode)->runtime_flags); 3740 3741 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3742 truncate_setsize(inode, newsize); 3743 ret = btrfs_truncate(inode); 3744 } 3745 3746 return ret; 3747 } 3748 3749 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3750 { 3751 struct inode *inode = dentry->d_inode; 3752 struct btrfs_root *root = BTRFS_I(inode)->root; 3753 int err; 3754 3755 if (btrfs_root_readonly(root)) 3756 return -EROFS; 3757 3758 err = inode_change_ok(inode, attr); 3759 if (err) 3760 return err; 3761 3762 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3763 err = btrfs_setsize(inode, attr->ia_size); 3764 if (err) 3765 return err; 3766 } 3767 3768 if (attr->ia_valid) { 3769 setattr_copy(inode, attr); 3770 inode_inc_iversion(inode); 3771 err = btrfs_dirty_inode(inode); 3772 3773 if (!err && attr->ia_valid & ATTR_MODE) 3774 err = btrfs_acl_chmod(inode); 3775 } 3776 3777 return err; 3778 } 3779 3780 void btrfs_evict_inode(struct inode *inode) 3781 { 3782 struct btrfs_trans_handle *trans; 3783 struct btrfs_root *root = BTRFS_I(inode)->root; 3784 struct btrfs_block_rsv *rsv, *global_rsv; 3785 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 3786 unsigned long nr; 3787 int ret; 3788 3789 trace_btrfs_inode_evict(inode); 3790 3791 truncate_inode_pages(&inode->i_data, 0); 3792 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3793 btrfs_is_free_space_inode(inode))) 3794 goto no_delete; 3795 3796 if (is_bad_inode(inode)) { 3797 btrfs_orphan_del(NULL, inode); 3798 goto no_delete; 3799 } 3800 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3801 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3802 3803 if (root->fs_info->log_root_recovering) { 3804 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3805 &BTRFS_I(inode)->runtime_flags)); 3806 goto no_delete; 3807 } 3808 3809 if (inode->i_nlink > 0) { 3810 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3811 goto no_delete; 3812 } 3813 3814 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3815 if (!rsv) { 3816 btrfs_orphan_del(NULL, inode); 3817 goto no_delete; 3818 } 3819 rsv->size = min_size; 3820 rsv->failfast = 1; 3821 global_rsv = &root->fs_info->global_block_rsv; 3822 3823 btrfs_i_size_write(inode, 0); 3824 3825 /* 3826 * This is a bit simpler than btrfs_truncate since we've already 3827 * reserved our space for our orphan item in the unlink, so we just 3828 * need to reserve some slack space in case we add bytes and update 3829 * inode item when doing the truncate. 3830 */ 3831 while (1) { 3832 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size); 3833 3834 /* 3835 * Try and steal from the global reserve since we will 3836 * likely not use this space anyway, we want to try as 3837 * hard as possible to get this to work. 3838 */ 3839 if (ret) 3840 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 3841 3842 if (ret) { 3843 printk(KERN_WARNING "Could not get space for a " 3844 "delete, will truncate on mount %d\n", ret); 3845 btrfs_orphan_del(NULL, inode); 3846 btrfs_free_block_rsv(root, rsv); 3847 goto no_delete; 3848 } 3849 3850 trans = btrfs_start_transaction_noflush(root, 1); 3851 if (IS_ERR(trans)) { 3852 btrfs_orphan_del(NULL, inode); 3853 btrfs_free_block_rsv(root, rsv); 3854 goto no_delete; 3855 } 3856 3857 trans->block_rsv = rsv; 3858 3859 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3860 if (ret != -ENOSPC) 3861 break; 3862 3863 trans->block_rsv = &root->fs_info->trans_block_rsv; 3864 ret = btrfs_update_inode(trans, root, inode); 3865 BUG_ON(ret); 3866 3867 nr = trans->blocks_used; 3868 btrfs_end_transaction(trans, root); 3869 trans = NULL; 3870 btrfs_btree_balance_dirty(root, nr); 3871 } 3872 3873 btrfs_free_block_rsv(root, rsv); 3874 3875 if (ret == 0) { 3876 trans->block_rsv = root->orphan_block_rsv; 3877 ret = btrfs_orphan_del(trans, inode); 3878 BUG_ON(ret); 3879 } 3880 3881 trans->block_rsv = &root->fs_info->trans_block_rsv; 3882 if (!(root == root->fs_info->tree_root || 3883 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3884 btrfs_return_ino(root, btrfs_ino(inode)); 3885 3886 nr = trans->blocks_used; 3887 btrfs_end_transaction(trans, root); 3888 btrfs_btree_balance_dirty(root, nr); 3889 no_delete: 3890 clear_inode(inode); 3891 return; 3892 } 3893 3894 /* 3895 * this returns the key found in the dir entry in the location pointer. 3896 * If no dir entries were found, location->objectid is 0. 3897 */ 3898 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3899 struct btrfs_key *location) 3900 { 3901 const char *name = dentry->d_name.name; 3902 int namelen = dentry->d_name.len; 3903 struct btrfs_dir_item *di; 3904 struct btrfs_path *path; 3905 struct btrfs_root *root = BTRFS_I(dir)->root; 3906 int ret = 0; 3907 3908 path = btrfs_alloc_path(); 3909 if (!path) 3910 return -ENOMEM; 3911 3912 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3913 namelen, 0); 3914 if (IS_ERR(di)) 3915 ret = PTR_ERR(di); 3916 3917 if (IS_ERR_OR_NULL(di)) 3918 goto out_err; 3919 3920 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3921 out: 3922 btrfs_free_path(path); 3923 return ret; 3924 out_err: 3925 location->objectid = 0; 3926 goto out; 3927 } 3928 3929 /* 3930 * when we hit a tree root in a directory, the btrfs part of the inode 3931 * needs to be changed to reflect the root directory of the tree root. This 3932 * is kind of like crossing a mount point. 3933 */ 3934 static int fixup_tree_root_location(struct btrfs_root *root, 3935 struct inode *dir, 3936 struct dentry *dentry, 3937 struct btrfs_key *location, 3938 struct btrfs_root **sub_root) 3939 { 3940 struct btrfs_path *path; 3941 struct btrfs_root *new_root; 3942 struct btrfs_root_ref *ref; 3943 struct extent_buffer *leaf; 3944 int ret; 3945 int err = 0; 3946 3947 path = btrfs_alloc_path(); 3948 if (!path) { 3949 err = -ENOMEM; 3950 goto out; 3951 } 3952 3953 err = -ENOENT; 3954 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3955 BTRFS_I(dir)->root->root_key.objectid, 3956 location->objectid); 3957 if (ret) { 3958 if (ret < 0) 3959 err = ret; 3960 goto out; 3961 } 3962 3963 leaf = path->nodes[0]; 3964 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3965 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3966 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3967 goto out; 3968 3969 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3970 (unsigned long)(ref + 1), 3971 dentry->d_name.len); 3972 if (ret) 3973 goto out; 3974 3975 btrfs_release_path(path); 3976 3977 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3978 if (IS_ERR(new_root)) { 3979 err = PTR_ERR(new_root); 3980 goto out; 3981 } 3982 3983 if (btrfs_root_refs(&new_root->root_item) == 0) { 3984 err = -ENOENT; 3985 goto out; 3986 } 3987 3988 *sub_root = new_root; 3989 location->objectid = btrfs_root_dirid(&new_root->root_item); 3990 location->type = BTRFS_INODE_ITEM_KEY; 3991 location->offset = 0; 3992 err = 0; 3993 out: 3994 btrfs_free_path(path); 3995 return err; 3996 } 3997 3998 static void inode_tree_add(struct inode *inode) 3999 { 4000 struct btrfs_root *root = BTRFS_I(inode)->root; 4001 struct btrfs_inode *entry; 4002 struct rb_node **p; 4003 struct rb_node *parent; 4004 u64 ino = btrfs_ino(inode); 4005 again: 4006 p = &root->inode_tree.rb_node; 4007 parent = NULL; 4008 4009 if (inode_unhashed(inode)) 4010 return; 4011 4012 spin_lock(&root->inode_lock); 4013 while (*p) { 4014 parent = *p; 4015 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4016 4017 if (ino < btrfs_ino(&entry->vfs_inode)) 4018 p = &parent->rb_left; 4019 else if (ino > btrfs_ino(&entry->vfs_inode)) 4020 p = &parent->rb_right; 4021 else { 4022 WARN_ON(!(entry->vfs_inode.i_state & 4023 (I_WILL_FREE | I_FREEING))); 4024 rb_erase(parent, &root->inode_tree); 4025 RB_CLEAR_NODE(parent); 4026 spin_unlock(&root->inode_lock); 4027 goto again; 4028 } 4029 } 4030 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4031 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4032 spin_unlock(&root->inode_lock); 4033 } 4034 4035 static void inode_tree_del(struct inode *inode) 4036 { 4037 struct btrfs_root *root = BTRFS_I(inode)->root; 4038 int empty = 0; 4039 4040 spin_lock(&root->inode_lock); 4041 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4042 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4043 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4044 empty = RB_EMPTY_ROOT(&root->inode_tree); 4045 } 4046 spin_unlock(&root->inode_lock); 4047 4048 /* 4049 * Free space cache has inodes in the tree root, but the tree root has a 4050 * root_refs of 0, so this could end up dropping the tree root as a 4051 * snapshot, so we need the extra !root->fs_info->tree_root check to 4052 * make sure we don't drop it. 4053 */ 4054 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4055 root != root->fs_info->tree_root) { 4056 synchronize_srcu(&root->fs_info->subvol_srcu); 4057 spin_lock(&root->inode_lock); 4058 empty = RB_EMPTY_ROOT(&root->inode_tree); 4059 spin_unlock(&root->inode_lock); 4060 if (empty) 4061 btrfs_add_dead_root(root); 4062 } 4063 } 4064 4065 void btrfs_invalidate_inodes(struct btrfs_root *root) 4066 { 4067 struct rb_node *node; 4068 struct rb_node *prev; 4069 struct btrfs_inode *entry; 4070 struct inode *inode; 4071 u64 objectid = 0; 4072 4073 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4074 4075 spin_lock(&root->inode_lock); 4076 again: 4077 node = root->inode_tree.rb_node; 4078 prev = NULL; 4079 while (node) { 4080 prev = node; 4081 entry = rb_entry(node, struct btrfs_inode, rb_node); 4082 4083 if (objectid < btrfs_ino(&entry->vfs_inode)) 4084 node = node->rb_left; 4085 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4086 node = node->rb_right; 4087 else 4088 break; 4089 } 4090 if (!node) { 4091 while (prev) { 4092 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4093 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4094 node = prev; 4095 break; 4096 } 4097 prev = rb_next(prev); 4098 } 4099 } 4100 while (node) { 4101 entry = rb_entry(node, struct btrfs_inode, rb_node); 4102 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4103 inode = igrab(&entry->vfs_inode); 4104 if (inode) { 4105 spin_unlock(&root->inode_lock); 4106 if (atomic_read(&inode->i_count) > 1) 4107 d_prune_aliases(inode); 4108 /* 4109 * btrfs_drop_inode will have it removed from 4110 * the inode cache when its usage count 4111 * hits zero. 4112 */ 4113 iput(inode); 4114 cond_resched(); 4115 spin_lock(&root->inode_lock); 4116 goto again; 4117 } 4118 4119 if (cond_resched_lock(&root->inode_lock)) 4120 goto again; 4121 4122 node = rb_next(node); 4123 } 4124 spin_unlock(&root->inode_lock); 4125 } 4126 4127 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4128 { 4129 struct btrfs_iget_args *args = p; 4130 inode->i_ino = args->ino; 4131 BTRFS_I(inode)->root = args->root; 4132 return 0; 4133 } 4134 4135 static int btrfs_find_actor(struct inode *inode, void *opaque) 4136 { 4137 struct btrfs_iget_args *args = opaque; 4138 return args->ino == btrfs_ino(inode) && 4139 args->root == BTRFS_I(inode)->root; 4140 } 4141 4142 static struct inode *btrfs_iget_locked(struct super_block *s, 4143 u64 objectid, 4144 struct btrfs_root *root) 4145 { 4146 struct inode *inode; 4147 struct btrfs_iget_args args; 4148 args.ino = objectid; 4149 args.root = root; 4150 4151 inode = iget5_locked(s, objectid, btrfs_find_actor, 4152 btrfs_init_locked_inode, 4153 (void *)&args); 4154 return inode; 4155 } 4156 4157 /* Get an inode object given its location and corresponding root. 4158 * Returns in *is_new if the inode was read from disk 4159 */ 4160 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4161 struct btrfs_root *root, int *new) 4162 { 4163 struct inode *inode; 4164 4165 inode = btrfs_iget_locked(s, location->objectid, root); 4166 if (!inode) 4167 return ERR_PTR(-ENOMEM); 4168 4169 if (inode->i_state & I_NEW) { 4170 BTRFS_I(inode)->root = root; 4171 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4172 btrfs_read_locked_inode(inode); 4173 if (!is_bad_inode(inode)) { 4174 inode_tree_add(inode); 4175 unlock_new_inode(inode); 4176 if (new) 4177 *new = 1; 4178 } else { 4179 unlock_new_inode(inode); 4180 iput(inode); 4181 inode = ERR_PTR(-ESTALE); 4182 } 4183 } 4184 4185 return inode; 4186 } 4187 4188 static struct inode *new_simple_dir(struct super_block *s, 4189 struct btrfs_key *key, 4190 struct btrfs_root *root) 4191 { 4192 struct inode *inode = new_inode(s); 4193 4194 if (!inode) 4195 return ERR_PTR(-ENOMEM); 4196 4197 BTRFS_I(inode)->root = root; 4198 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4199 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 4200 4201 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4202 inode->i_op = &btrfs_dir_ro_inode_operations; 4203 inode->i_fop = &simple_dir_operations; 4204 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4205 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4206 4207 return inode; 4208 } 4209 4210 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4211 { 4212 struct inode *inode; 4213 struct btrfs_root *root = BTRFS_I(dir)->root; 4214 struct btrfs_root *sub_root = root; 4215 struct btrfs_key location; 4216 int index; 4217 int ret = 0; 4218 4219 if (dentry->d_name.len > BTRFS_NAME_LEN) 4220 return ERR_PTR(-ENAMETOOLONG); 4221 4222 if (unlikely(d_need_lookup(dentry))) { 4223 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key)); 4224 kfree(dentry->d_fsdata); 4225 dentry->d_fsdata = NULL; 4226 /* This thing is hashed, drop it for now */ 4227 d_drop(dentry); 4228 } else { 4229 ret = btrfs_inode_by_name(dir, dentry, &location); 4230 } 4231 4232 if (ret < 0) 4233 return ERR_PTR(ret); 4234 4235 if (location.objectid == 0) 4236 return NULL; 4237 4238 if (location.type == BTRFS_INODE_ITEM_KEY) { 4239 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4240 return inode; 4241 } 4242 4243 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4244 4245 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4246 ret = fixup_tree_root_location(root, dir, dentry, 4247 &location, &sub_root); 4248 if (ret < 0) { 4249 if (ret != -ENOENT) 4250 inode = ERR_PTR(ret); 4251 else 4252 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4253 } else { 4254 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4255 } 4256 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4257 4258 if (!IS_ERR(inode) && root != sub_root) { 4259 down_read(&root->fs_info->cleanup_work_sem); 4260 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4261 ret = btrfs_orphan_cleanup(sub_root); 4262 up_read(&root->fs_info->cleanup_work_sem); 4263 if (ret) 4264 inode = ERR_PTR(ret); 4265 } 4266 4267 return inode; 4268 } 4269 4270 static int btrfs_dentry_delete(const struct dentry *dentry) 4271 { 4272 struct btrfs_root *root; 4273 struct inode *inode = dentry->d_inode; 4274 4275 if (!inode && !IS_ROOT(dentry)) 4276 inode = dentry->d_parent->d_inode; 4277 4278 if (inode) { 4279 root = BTRFS_I(inode)->root; 4280 if (btrfs_root_refs(&root->root_item) == 0) 4281 return 1; 4282 4283 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 4284 return 1; 4285 } 4286 return 0; 4287 } 4288 4289 static void btrfs_dentry_release(struct dentry *dentry) 4290 { 4291 if (dentry->d_fsdata) 4292 kfree(dentry->d_fsdata); 4293 } 4294 4295 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4296 unsigned int flags) 4297 { 4298 struct dentry *ret; 4299 4300 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4301 if (unlikely(d_need_lookup(dentry))) { 4302 spin_lock(&dentry->d_lock); 4303 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 4304 spin_unlock(&dentry->d_lock); 4305 } 4306 return ret; 4307 } 4308 4309 unsigned char btrfs_filetype_table[] = { 4310 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4311 }; 4312 4313 static int btrfs_real_readdir(struct file *filp, void *dirent, 4314 filldir_t filldir) 4315 { 4316 struct inode *inode = filp->f_dentry->d_inode; 4317 struct btrfs_root *root = BTRFS_I(inode)->root; 4318 struct btrfs_item *item; 4319 struct btrfs_dir_item *di; 4320 struct btrfs_key key; 4321 struct btrfs_key found_key; 4322 struct btrfs_path *path; 4323 struct list_head ins_list; 4324 struct list_head del_list; 4325 int ret; 4326 struct extent_buffer *leaf; 4327 int slot; 4328 unsigned char d_type; 4329 int over = 0; 4330 u32 di_cur; 4331 u32 di_total; 4332 u32 di_len; 4333 int key_type = BTRFS_DIR_INDEX_KEY; 4334 char tmp_name[32]; 4335 char *name_ptr; 4336 int name_len; 4337 int is_curr = 0; /* filp->f_pos points to the current index? */ 4338 4339 /* FIXME, use a real flag for deciding about the key type */ 4340 if (root->fs_info->tree_root == root) 4341 key_type = BTRFS_DIR_ITEM_KEY; 4342 4343 /* special case for "." */ 4344 if (filp->f_pos == 0) { 4345 over = filldir(dirent, ".", 1, 4346 filp->f_pos, btrfs_ino(inode), DT_DIR); 4347 if (over) 4348 return 0; 4349 filp->f_pos = 1; 4350 } 4351 /* special case for .., just use the back ref */ 4352 if (filp->f_pos == 1) { 4353 u64 pino = parent_ino(filp->f_path.dentry); 4354 over = filldir(dirent, "..", 2, 4355 filp->f_pos, pino, DT_DIR); 4356 if (over) 4357 return 0; 4358 filp->f_pos = 2; 4359 } 4360 path = btrfs_alloc_path(); 4361 if (!path) 4362 return -ENOMEM; 4363 4364 path->reada = 1; 4365 4366 if (key_type == BTRFS_DIR_INDEX_KEY) { 4367 INIT_LIST_HEAD(&ins_list); 4368 INIT_LIST_HEAD(&del_list); 4369 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4370 } 4371 4372 btrfs_set_key_type(&key, key_type); 4373 key.offset = filp->f_pos; 4374 key.objectid = btrfs_ino(inode); 4375 4376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4377 if (ret < 0) 4378 goto err; 4379 4380 while (1) { 4381 leaf = path->nodes[0]; 4382 slot = path->slots[0]; 4383 if (slot >= btrfs_header_nritems(leaf)) { 4384 ret = btrfs_next_leaf(root, path); 4385 if (ret < 0) 4386 goto err; 4387 else if (ret > 0) 4388 break; 4389 continue; 4390 } 4391 4392 item = btrfs_item_nr(leaf, slot); 4393 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4394 4395 if (found_key.objectid != key.objectid) 4396 break; 4397 if (btrfs_key_type(&found_key) != key_type) 4398 break; 4399 if (found_key.offset < filp->f_pos) 4400 goto next; 4401 if (key_type == BTRFS_DIR_INDEX_KEY && 4402 btrfs_should_delete_dir_index(&del_list, 4403 found_key.offset)) 4404 goto next; 4405 4406 filp->f_pos = found_key.offset; 4407 is_curr = 1; 4408 4409 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4410 di_cur = 0; 4411 di_total = btrfs_item_size(leaf, item); 4412 4413 while (di_cur < di_total) { 4414 struct btrfs_key location; 4415 4416 if (verify_dir_item(root, leaf, di)) 4417 break; 4418 4419 name_len = btrfs_dir_name_len(leaf, di); 4420 if (name_len <= sizeof(tmp_name)) { 4421 name_ptr = tmp_name; 4422 } else { 4423 name_ptr = kmalloc(name_len, GFP_NOFS); 4424 if (!name_ptr) { 4425 ret = -ENOMEM; 4426 goto err; 4427 } 4428 } 4429 read_extent_buffer(leaf, name_ptr, 4430 (unsigned long)(di + 1), name_len); 4431 4432 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4433 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4434 4435 4436 /* is this a reference to our own snapshot? If so 4437 * skip it. 4438 * 4439 * In contrast to old kernels, we insert the snapshot's 4440 * dir item and dir index after it has been created, so 4441 * we won't find a reference to our own snapshot. We 4442 * still keep the following code for backward 4443 * compatibility. 4444 */ 4445 if (location.type == BTRFS_ROOT_ITEM_KEY && 4446 location.objectid == root->root_key.objectid) { 4447 over = 0; 4448 goto skip; 4449 } 4450 over = filldir(dirent, name_ptr, name_len, 4451 found_key.offset, location.objectid, 4452 d_type); 4453 4454 skip: 4455 if (name_ptr != tmp_name) 4456 kfree(name_ptr); 4457 4458 if (over) 4459 goto nopos; 4460 di_len = btrfs_dir_name_len(leaf, di) + 4461 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4462 di_cur += di_len; 4463 di = (struct btrfs_dir_item *)((char *)di + di_len); 4464 } 4465 next: 4466 path->slots[0]++; 4467 } 4468 4469 if (key_type == BTRFS_DIR_INDEX_KEY) { 4470 if (is_curr) 4471 filp->f_pos++; 4472 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4473 &ins_list); 4474 if (ret) 4475 goto nopos; 4476 } 4477 4478 /* Reached end of directory/root. Bump pos past the last item. */ 4479 if (key_type == BTRFS_DIR_INDEX_KEY) 4480 /* 4481 * 32-bit glibc will use getdents64, but then strtol - 4482 * so the last number we can serve is this. 4483 */ 4484 filp->f_pos = 0x7fffffff; 4485 else 4486 filp->f_pos++; 4487 nopos: 4488 ret = 0; 4489 err: 4490 if (key_type == BTRFS_DIR_INDEX_KEY) 4491 btrfs_put_delayed_items(&ins_list, &del_list); 4492 btrfs_free_path(path); 4493 return ret; 4494 } 4495 4496 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4497 { 4498 struct btrfs_root *root = BTRFS_I(inode)->root; 4499 struct btrfs_trans_handle *trans; 4500 int ret = 0; 4501 bool nolock = false; 4502 4503 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 4504 return 0; 4505 4506 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 4507 nolock = true; 4508 4509 if (wbc->sync_mode == WB_SYNC_ALL) { 4510 if (nolock) 4511 trans = btrfs_join_transaction_nolock(root); 4512 else 4513 trans = btrfs_join_transaction(root); 4514 if (IS_ERR(trans)) 4515 return PTR_ERR(trans); 4516 ret = btrfs_commit_transaction(trans, root); 4517 } 4518 return ret; 4519 } 4520 4521 /* 4522 * This is somewhat expensive, updating the tree every time the 4523 * inode changes. But, it is most likely to find the inode in cache. 4524 * FIXME, needs more benchmarking...there are no reasons other than performance 4525 * to keep or drop this code. 4526 */ 4527 int btrfs_dirty_inode(struct inode *inode) 4528 { 4529 struct btrfs_root *root = BTRFS_I(inode)->root; 4530 struct btrfs_trans_handle *trans; 4531 int ret; 4532 4533 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 4534 return 0; 4535 4536 trans = btrfs_join_transaction(root); 4537 if (IS_ERR(trans)) 4538 return PTR_ERR(trans); 4539 4540 ret = btrfs_update_inode(trans, root, inode); 4541 if (ret && ret == -ENOSPC) { 4542 /* whoops, lets try again with the full transaction */ 4543 btrfs_end_transaction(trans, root); 4544 trans = btrfs_start_transaction(root, 1); 4545 if (IS_ERR(trans)) 4546 return PTR_ERR(trans); 4547 4548 ret = btrfs_update_inode(trans, root, inode); 4549 } 4550 btrfs_end_transaction(trans, root); 4551 if (BTRFS_I(inode)->delayed_node) 4552 btrfs_balance_delayed_items(root); 4553 4554 return ret; 4555 } 4556 4557 /* 4558 * This is a copy of file_update_time. We need this so we can return error on 4559 * ENOSPC for updating the inode in the case of file write and mmap writes. 4560 */ 4561 static int btrfs_update_time(struct inode *inode, struct timespec *now, 4562 int flags) 4563 { 4564 struct btrfs_root *root = BTRFS_I(inode)->root; 4565 4566 if (btrfs_root_readonly(root)) 4567 return -EROFS; 4568 4569 if (flags & S_VERSION) 4570 inode_inc_iversion(inode); 4571 if (flags & S_CTIME) 4572 inode->i_ctime = *now; 4573 if (flags & S_MTIME) 4574 inode->i_mtime = *now; 4575 if (flags & S_ATIME) 4576 inode->i_atime = *now; 4577 return btrfs_dirty_inode(inode); 4578 } 4579 4580 /* 4581 * find the highest existing sequence number in a directory 4582 * and then set the in-memory index_cnt variable to reflect 4583 * free sequence numbers 4584 */ 4585 static int btrfs_set_inode_index_count(struct inode *inode) 4586 { 4587 struct btrfs_root *root = BTRFS_I(inode)->root; 4588 struct btrfs_key key, found_key; 4589 struct btrfs_path *path; 4590 struct extent_buffer *leaf; 4591 int ret; 4592 4593 key.objectid = btrfs_ino(inode); 4594 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4595 key.offset = (u64)-1; 4596 4597 path = btrfs_alloc_path(); 4598 if (!path) 4599 return -ENOMEM; 4600 4601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4602 if (ret < 0) 4603 goto out; 4604 /* FIXME: we should be able to handle this */ 4605 if (ret == 0) 4606 goto out; 4607 ret = 0; 4608 4609 /* 4610 * MAGIC NUMBER EXPLANATION: 4611 * since we search a directory based on f_pos we have to start at 2 4612 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4613 * else has to start at 2 4614 */ 4615 if (path->slots[0] == 0) { 4616 BTRFS_I(inode)->index_cnt = 2; 4617 goto out; 4618 } 4619 4620 path->slots[0]--; 4621 4622 leaf = path->nodes[0]; 4623 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4624 4625 if (found_key.objectid != btrfs_ino(inode) || 4626 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4627 BTRFS_I(inode)->index_cnt = 2; 4628 goto out; 4629 } 4630 4631 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4632 out: 4633 btrfs_free_path(path); 4634 return ret; 4635 } 4636 4637 /* 4638 * helper to find a free sequence number in a given directory. This current 4639 * code is very simple, later versions will do smarter things in the btree 4640 */ 4641 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4642 { 4643 int ret = 0; 4644 4645 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4646 ret = btrfs_inode_delayed_dir_index_count(dir); 4647 if (ret) { 4648 ret = btrfs_set_inode_index_count(dir); 4649 if (ret) 4650 return ret; 4651 } 4652 } 4653 4654 *index = BTRFS_I(dir)->index_cnt; 4655 BTRFS_I(dir)->index_cnt++; 4656 4657 return ret; 4658 } 4659 4660 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4661 struct btrfs_root *root, 4662 struct inode *dir, 4663 const char *name, int name_len, 4664 u64 ref_objectid, u64 objectid, 4665 umode_t mode, u64 *index) 4666 { 4667 struct inode *inode; 4668 struct btrfs_inode_item *inode_item; 4669 struct btrfs_key *location; 4670 struct btrfs_path *path; 4671 struct btrfs_inode_ref *ref; 4672 struct btrfs_key key[2]; 4673 u32 sizes[2]; 4674 unsigned long ptr; 4675 int ret; 4676 int owner; 4677 4678 path = btrfs_alloc_path(); 4679 if (!path) 4680 return ERR_PTR(-ENOMEM); 4681 4682 inode = new_inode(root->fs_info->sb); 4683 if (!inode) { 4684 btrfs_free_path(path); 4685 return ERR_PTR(-ENOMEM); 4686 } 4687 4688 /* 4689 * we have to initialize this early, so we can reclaim the inode 4690 * number if we fail afterwards in this function. 4691 */ 4692 inode->i_ino = objectid; 4693 4694 if (dir) { 4695 trace_btrfs_inode_request(dir); 4696 4697 ret = btrfs_set_inode_index(dir, index); 4698 if (ret) { 4699 btrfs_free_path(path); 4700 iput(inode); 4701 return ERR_PTR(ret); 4702 } 4703 } 4704 /* 4705 * index_cnt is ignored for everything but a dir, 4706 * btrfs_get_inode_index_count has an explanation for the magic 4707 * number 4708 */ 4709 BTRFS_I(inode)->index_cnt = 2; 4710 BTRFS_I(inode)->root = root; 4711 BTRFS_I(inode)->generation = trans->transid; 4712 inode->i_generation = BTRFS_I(inode)->generation; 4713 4714 /* 4715 * We could have gotten an inode number from somebody who was fsynced 4716 * and then removed in this same transaction, so let's just set full 4717 * sync since it will be a full sync anyway and this will blow away the 4718 * old info in the log. 4719 */ 4720 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 4721 4722 if (S_ISDIR(mode)) 4723 owner = 0; 4724 else 4725 owner = 1; 4726 4727 key[0].objectid = objectid; 4728 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4729 key[0].offset = 0; 4730 4731 /* 4732 * Start new inodes with an inode_ref. This is slightly more 4733 * efficient for small numbers of hard links since they will 4734 * be packed into one item. Extended refs will kick in if we 4735 * add more hard links than can fit in the ref item. 4736 */ 4737 key[1].objectid = objectid; 4738 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4739 key[1].offset = ref_objectid; 4740 4741 sizes[0] = sizeof(struct btrfs_inode_item); 4742 sizes[1] = name_len + sizeof(*ref); 4743 4744 path->leave_spinning = 1; 4745 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4746 if (ret != 0) 4747 goto fail; 4748 4749 inode_init_owner(inode, dir, mode); 4750 inode_set_bytes(inode, 0); 4751 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4752 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4753 struct btrfs_inode_item); 4754 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 4755 sizeof(*inode_item)); 4756 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4757 4758 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4759 struct btrfs_inode_ref); 4760 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4761 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4762 ptr = (unsigned long)(ref + 1); 4763 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4764 4765 btrfs_mark_buffer_dirty(path->nodes[0]); 4766 btrfs_free_path(path); 4767 4768 location = &BTRFS_I(inode)->location; 4769 location->objectid = objectid; 4770 location->offset = 0; 4771 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4772 4773 btrfs_inherit_iflags(inode, dir); 4774 4775 if (S_ISREG(mode)) { 4776 if (btrfs_test_opt(root, NODATASUM)) 4777 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4778 if (btrfs_test_opt(root, NODATACOW) || 4779 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4780 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4781 } 4782 4783 insert_inode_hash(inode); 4784 inode_tree_add(inode); 4785 4786 trace_btrfs_inode_new(inode); 4787 btrfs_set_inode_last_trans(trans, inode); 4788 4789 btrfs_update_root_times(trans, root); 4790 4791 return inode; 4792 fail: 4793 if (dir) 4794 BTRFS_I(dir)->index_cnt--; 4795 btrfs_free_path(path); 4796 iput(inode); 4797 return ERR_PTR(ret); 4798 } 4799 4800 static inline u8 btrfs_inode_type(struct inode *inode) 4801 { 4802 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4803 } 4804 4805 /* 4806 * utility function to add 'inode' into 'parent_inode' with 4807 * a give name and a given sequence number. 4808 * if 'add_backref' is true, also insert a backref from the 4809 * inode to the parent directory. 4810 */ 4811 int btrfs_add_link(struct btrfs_trans_handle *trans, 4812 struct inode *parent_inode, struct inode *inode, 4813 const char *name, int name_len, int add_backref, u64 index) 4814 { 4815 int ret = 0; 4816 struct btrfs_key key; 4817 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4818 u64 ino = btrfs_ino(inode); 4819 u64 parent_ino = btrfs_ino(parent_inode); 4820 4821 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4822 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4823 } else { 4824 key.objectid = ino; 4825 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4826 key.offset = 0; 4827 } 4828 4829 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4830 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4831 key.objectid, root->root_key.objectid, 4832 parent_ino, index, name, name_len); 4833 } else if (add_backref) { 4834 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4835 parent_ino, index); 4836 } 4837 4838 /* Nothing to clean up yet */ 4839 if (ret) 4840 return ret; 4841 4842 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4843 parent_inode, &key, 4844 btrfs_inode_type(inode), index); 4845 if (ret == -EEXIST) 4846 goto fail_dir_item; 4847 else if (ret) { 4848 btrfs_abort_transaction(trans, root, ret); 4849 return ret; 4850 } 4851 4852 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4853 name_len * 2); 4854 inode_inc_iversion(parent_inode); 4855 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4856 ret = btrfs_update_inode(trans, root, parent_inode); 4857 if (ret) 4858 btrfs_abort_transaction(trans, root, ret); 4859 return ret; 4860 4861 fail_dir_item: 4862 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4863 u64 local_index; 4864 int err; 4865 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4866 key.objectid, root->root_key.objectid, 4867 parent_ino, &local_index, name, name_len); 4868 4869 } else if (add_backref) { 4870 u64 local_index; 4871 int err; 4872 4873 err = btrfs_del_inode_ref(trans, root, name, name_len, 4874 ino, parent_ino, &local_index); 4875 } 4876 return ret; 4877 } 4878 4879 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4880 struct inode *dir, struct dentry *dentry, 4881 struct inode *inode, int backref, u64 index) 4882 { 4883 int err = btrfs_add_link(trans, dir, inode, 4884 dentry->d_name.name, dentry->d_name.len, 4885 backref, index); 4886 if (err > 0) 4887 err = -EEXIST; 4888 return err; 4889 } 4890 4891 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4892 umode_t mode, dev_t rdev) 4893 { 4894 struct btrfs_trans_handle *trans; 4895 struct btrfs_root *root = BTRFS_I(dir)->root; 4896 struct inode *inode = NULL; 4897 int err; 4898 int drop_inode = 0; 4899 u64 objectid; 4900 unsigned long nr = 0; 4901 u64 index = 0; 4902 4903 if (!new_valid_dev(rdev)) 4904 return -EINVAL; 4905 4906 /* 4907 * 2 for inode item and ref 4908 * 2 for dir items 4909 * 1 for xattr if selinux is on 4910 */ 4911 trans = btrfs_start_transaction(root, 5); 4912 if (IS_ERR(trans)) 4913 return PTR_ERR(trans); 4914 4915 err = btrfs_find_free_ino(root, &objectid); 4916 if (err) 4917 goto out_unlock; 4918 4919 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4920 dentry->d_name.len, btrfs_ino(dir), objectid, 4921 mode, &index); 4922 if (IS_ERR(inode)) { 4923 err = PTR_ERR(inode); 4924 goto out_unlock; 4925 } 4926 4927 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4928 if (err) { 4929 drop_inode = 1; 4930 goto out_unlock; 4931 } 4932 4933 /* 4934 * If the active LSM wants to access the inode during 4935 * d_instantiate it needs these. Smack checks to see 4936 * if the filesystem supports xattrs by looking at the 4937 * ops vector. 4938 */ 4939 4940 inode->i_op = &btrfs_special_inode_operations; 4941 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4942 if (err) 4943 drop_inode = 1; 4944 else { 4945 init_special_inode(inode, inode->i_mode, rdev); 4946 btrfs_update_inode(trans, root, inode); 4947 d_instantiate(dentry, inode); 4948 } 4949 out_unlock: 4950 nr = trans->blocks_used; 4951 btrfs_end_transaction(trans, root); 4952 btrfs_btree_balance_dirty(root, nr); 4953 if (drop_inode) { 4954 inode_dec_link_count(inode); 4955 iput(inode); 4956 } 4957 return err; 4958 } 4959 4960 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4961 umode_t mode, bool excl) 4962 { 4963 struct btrfs_trans_handle *trans; 4964 struct btrfs_root *root = BTRFS_I(dir)->root; 4965 struct inode *inode = NULL; 4966 int drop_inode = 0; 4967 int err; 4968 unsigned long nr = 0; 4969 u64 objectid; 4970 u64 index = 0; 4971 4972 /* 4973 * 2 for inode item and ref 4974 * 2 for dir items 4975 * 1 for xattr if selinux is on 4976 */ 4977 trans = btrfs_start_transaction(root, 5); 4978 if (IS_ERR(trans)) 4979 return PTR_ERR(trans); 4980 4981 err = btrfs_find_free_ino(root, &objectid); 4982 if (err) 4983 goto out_unlock; 4984 4985 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4986 dentry->d_name.len, btrfs_ino(dir), objectid, 4987 mode, &index); 4988 if (IS_ERR(inode)) { 4989 err = PTR_ERR(inode); 4990 goto out_unlock; 4991 } 4992 4993 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4994 if (err) { 4995 drop_inode = 1; 4996 goto out_unlock; 4997 } 4998 4999 /* 5000 * If the active LSM wants to access the inode during 5001 * d_instantiate it needs these. Smack checks to see 5002 * if the filesystem supports xattrs by looking at the 5003 * ops vector. 5004 */ 5005 inode->i_fop = &btrfs_file_operations; 5006 inode->i_op = &btrfs_file_inode_operations; 5007 5008 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5009 if (err) 5010 drop_inode = 1; 5011 else { 5012 inode->i_mapping->a_ops = &btrfs_aops; 5013 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5014 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5015 d_instantiate(dentry, inode); 5016 } 5017 out_unlock: 5018 nr = trans->blocks_used; 5019 btrfs_end_transaction(trans, root); 5020 if (drop_inode) { 5021 inode_dec_link_count(inode); 5022 iput(inode); 5023 } 5024 btrfs_btree_balance_dirty(root, nr); 5025 return err; 5026 } 5027 5028 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5029 struct dentry *dentry) 5030 { 5031 struct btrfs_trans_handle *trans; 5032 struct btrfs_root *root = BTRFS_I(dir)->root; 5033 struct inode *inode = old_dentry->d_inode; 5034 u64 index; 5035 unsigned long nr = 0; 5036 int err; 5037 int drop_inode = 0; 5038 5039 /* do not allow sys_link's with other subvols of the same device */ 5040 if (root->objectid != BTRFS_I(inode)->root->objectid) 5041 return -EXDEV; 5042 5043 if (inode->i_nlink >= BTRFS_LINK_MAX) 5044 return -EMLINK; 5045 5046 err = btrfs_set_inode_index(dir, &index); 5047 if (err) 5048 goto fail; 5049 5050 /* 5051 * 2 items for inode and inode ref 5052 * 2 items for dir items 5053 * 1 item for parent inode 5054 */ 5055 trans = btrfs_start_transaction(root, 5); 5056 if (IS_ERR(trans)) { 5057 err = PTR_ERR(trans); 5058 goto fail; 5059 } 5060 5061 btrfs_inc_nlink(inode); 5062 inode_inc_iversion(inode); 5063 inode->i_ctime = CURRENT_TIME; 5064 ihold(inode); 5065 5066 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5067 5068 if (err) { 5069 drop_inode = 1; 5070 } else { 5071 struct dentry *parent = dentry->d_parent; 5072 err = btrfs_update_inode(trans, root, inode); 5073 if (err) 5074 goto fail; 5075 d_instantiate(dentry, inode); 5076 btrfs_log_new_name(trans, inode, NULL, parent); 5077 } 5078 5079 nr = trans->blocks_used; 5080 btrfs_end_transaction(trans, root); 5081 fail: 5082 if (drop_inode) { 5083 inode_dec_link_count(inode); 5084 iput(inode); 5085 } 5086 btrfs_btree_balance_dirty(root, nr); 5087 return err; 5088 } 5089 5090 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5091 { 5092 struct inode *inode = NULL; 5093 struct btrfs_trans_handle *trans; 5094 struct btrfs_root *root = BTRFS_I(dir)->root; 5095 int err = 0; 5096 int drop_on_err = 0; 5097 u64 objectid = 0; 5098 u64 index = 0; 5099 unsigned long nr = 1; 5100 5101 /* 5102 * 2 items for inode and ref 5103 * 2 items for dir items 5104 * 1 for xattr if selinux is on 5105 */ 5106 trans = btrfs_start_transaction(root, 5); 5107 if (IS_ERR(trans)) 5108 return PTR_ERR(trans); 5109 5110 err = btrfs_find_free_ino(root, &objectid); 5111 if (err) 5112 goto out_fail; 5113 5114 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5115 dentry->d_name.len, btrfs_ino(dir), objectid, 5116 S_IFDIR | mode, &index); 5117 if (IS_ERR(inode)) { 5118 err = PTR_ERR(inode); 5119 goto out_fail; 5120 } 5121 5122 drop_on_err = 1; 5123 5124 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5125 if (err) 5126 goto out_fail; 5127 5128 inode->i_op = &btrfs_dir_inode_operations; 5129 inode->i_fop = &btrfs_dir_file_operations; 5130 5131 btrfs_i_size_write(inode, 0); 5132 err = btrfs_update_inode(trans, root, inode); 5133 if (err) 5134 goto out_fail; 5135 5136 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5137 dentry->d_name.len, 0, index); 5138 if (err) 5139 goto out_fail; 5140 5141 d_instantiate(dentry, inode); 5142 drop_on_err = 0; 5143 5144 out_fail: 5145 nr = trans->blocks_used; 5146 btrfs_end_transaction(trans, root); 5147 if (drop_on_err) 5148 iput(inode); 5149 btrfs_btree_balance_dirty(root, nr); 5150 return err; 5151 } 5152 5153 /* helper for btfs_get_extent. Given an existing extent in the tree, 5154 * and an extent that you want to insert, deal with overlap and insert 5155 * the new extent into the tree. 5156 */ 5157 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5158 struct extent_map *existing, 5159 struct extent_map *em, 5160 u64 map_start, u64 map_len) 5161 { 5162 u64 start_diff; 5163 5164 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5165 start_diff = map_start - em->start; 5166 em->start = map_start; 5167 em->len = map_len; 5168 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5169 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5170 em->block_start += start_diff; 5171 em->block_len -= start_diff; 5172 } 5173 return add_extent_mapping(em_tree, em); 5174 } 5175 5176 static noinline int uncompress_inline(struct btrfs_path *path, 5177 struct inode *inode, struct page *page, 5178 size_t pg_offset, u64 extent_offset, 5179 struct btrfs_file_extent_item *item) 5180 { 5181 int ret; 5182 struct extent_buffer *leaf = path->nodes[0]; 5183 char *tmp; 5184 size_t max_size; 5185 unsigned long inline_size; 5186 unsigned long ptr; 5187 int compress_type; 5188 5189 WARN_ON(pg_offset != 0); 5190 compress_type = btrfs_file_extent_compression(leaf, item); 5191 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5192 inline_size = btrfs_file_extent_inline_item_len(leaf, 5193 btrfs_item_nr(leaf, path->slots[0])); 5194 tmp = kmalloc(inline_size, GFP_NOFS); 5195 if (!tmp) 5196 return -ENOMEM; 5197 ptr = btrfs_file_extent_inline_start(item); 5198 5199 read_extent_buffer(leaf, tmp, ptr, inline_size); 5200 5201 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5202 ret = btrfs_decompress(compress_type, tmp, page, 5203 extent_offset, inline_size, max_size); 5204 if (ret) { 5205 char *kaddr = kmap_atomic(page); 5206 unsigned long copy_size = min_t(u64, 5207 PAGE_CACHE_SIZE - pg_offset, 5208 max_size - extent_offset); 5209 memset(kaddr + pg_offset, 0, copy_size); 5210 kunmap_atomic(kaddr); 5211 } 5212 kfree(tmp); 5213 return 0; 5214 } 5215 5216 /* 5217 * a bit scary, this does extent mapping from logical file offset to the disk. 5218 * the ugly parts come from merging extents from the disk with the in-ram 5219 * representation. This gets more complex because of the data=ordered code, 5220 * where the in-ram extents might be locked pending data=ordered completion. 5221 * 5222 * This also copies inline extents directly into the page. 5223 */ 5224 5225 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5226 size_t pg_offset, u64 start, u64 len, 5227 int create) 5228 { 5229 int ret; 5230 int err = 0; 5231 u64 bytenr; 5232 u64 extent_start = 0; 5233 u64 extent_end = 0; 5234 u64 objectid = btrfs_ino(inode); 5235 u32 found_type; 5236 struct btrfs_path *path = NULL; 5237 struct btrfs_root *root = BTRFS_I(inode)->root; 5238 struct btrfs_file_extent_item *item; 5239 struct extent_buffer *leaf; 5240 struct btrfs_key found_key; 5241 struct extent_map *em = NULL; 5242 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5243 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5244 struct btrfs_trans_handle *trans = NULL; 5245 int compress_type; 5246 5247 again: 5248 read_lock(&em_tree->lock); 5249 em = lookup_extent_mapping(em_tree, start, len); 5250 if (em) 5251 em->bdev = root->fs_info->fs_devices->latest_bdev; 5252 read_unlock(&em_tree->lock); 5253 5254 if (em) { 5255 if (em->start > start || em->start + em->len <= start) 5256 free_extent_map(em); 5257 else if (em->block_start == EXTENT_MAP_INLINE && page) 5258 free_extent_map(em); 5259 else 5260 goto out; 5261 } 5262 em = alloc_extent_map(); 5263 if (!em) { 5264 err = -ENOMEM; 5265 goto out; 5266 } 5267 em->bdev = root->fs_info->fs_devices->latest_bdev; 5268 em->start = EXTENT_MAP_HOLE; 5269 em->orig_start = EXTENT_MAP_HOLE; 5270 em->len = (u64)-1; 5271 em->block_len = (u64)-1; 5272 5273 if (!path) { 5274 path = btrfs_alloc_path(); 5275 if (!path) { 5276 err = -ENOMEM; 5277 goto out; 5278 } 5279 /* 5280 * Chances are we'll be called again, so go ahead and do 5281 * readahead 5282 */ 5283 path->reada = 1; 5284 } 5285 5286 ret = btrfs_lookup_file_extent(trans, root, path, 5287 objectid, start, trans != NULL); 5288 if (ret < 0) { 5289 err = ret; 5290 goto out; 5291 } 5292 5293 if (ret != 0) { 5294 if (path->slots[0] == 0) 5295 goto not_found; 5296 path->slots[0]--; 5297 } 5298 5299 leaf = path->nodes[0]; 5300 item = btrfs_item_ptr(leaf, path->slots[0], 5301 struct btrfs_file_extent_item); 5302 /* are we inside the extent that was found? */ 5303 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5304 found_type = btrfs_key_type(&found_key); 5305 if (found_key.objectid != objectid || 5306 found_type != BTRFS_EXTENT_DATA_KEY) { 5307 goto not_found; 5308 } 5309 5310 found_type = btrfs_file_extent_type(leaf, item); 5311 extent_start = found_key.offset; 5312 compress_type = btrfs_file_extent_compression(leaf, item); 5313 if (found_type == BTRFS_FILE_EXTENT_REG || 5314 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5315 extent_end = extent_start + 5316 btrfs_file_extent_num_bytes(leaf, item); 5317 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5318 size_t size; 5319 size = btrfs_file_extent_inline_len(leaf, item); 5320 extent_end = (extent_start + size + root->sectorsize - 1) & 5321 ~((u64)root->sectorsize - 1); 5322 } 5323 5324 if (start >= extent_end) { 5325 path->slots[0]++; 5326 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5327 ret = btrfs_next_leaf(root, path); 5328 if (ret < 0) { 5329 err = ret; 5330 goto out; 5331 } 5332 if (ret > 0) 5333 goto not_found; 5334 leaf = path->nodes[0]; 5335 } 5336 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5337 if (found_key.objectid != objectid || 5338 found_key.type != BTRFS_EXTENT_DATA_KEY) 5339 goto not_found; 5340 if (start + len <= found_key.offset) 5341 goto not_found; 5342 em->start = start; 5343 em->len = found_key.offset - start; 5344 goto not_found_em; 5345 } 5346 5347 if (found_type == BTRFS_FILE_EXTENT_REG || 5348 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5349 em->start = extent_start; 5350 em->len = extent_end - extent_start; 5351 em->orig_start = extent_start - 5352 btrfs_file_extent_offset(leaf, item); 5353 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5354 if (bytenr == 0) { 5355 em->block_start = EXTENT_MAP_HOLE; 5356 goto insert; 5357 } 5358 if (compress_type != BTRFS_COMPRESS_NONE) { 5359 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5360 em->compress_type = compress_type; 5361 em->block_start = bytenr; 5362 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5363 item); 5364 } else { 5365 bytenr += btrfs_file_extent_offset(leaf, item); 5366 em->block_start = bytenr; 5367 em->block_len = em->len; 5368 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5369 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5370 } 5371 goto insert; 5372 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5373 unsigned long ptr; 5374 char *map; 5375 size_t size; 5376 size_t extent_offset; 5377 size_t copy_size; 5378 5379 em->block_start = EXTENT_MAP_INLINE; 5380 if (!page || create) { 5381 em->start = extent_start; 5382 em->len = extent_end - extent_start; 5383 goto out; 5384 } 5385 5386 size = btrfs_file_extent_inline_len(leaf, item); 5387 extent_offset = page_offset(page) + pg_offset - extent_start; 5388 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5389 size - extent_offset); 5390 em->start = extent_start + extent_offset; 5391 em->len = (copy_size + root->sectorsize - 1) & 5392 ~((u64)root->sectorsize - 1); 5393 em->orig_start = EXTENT_MAP_INLINE; 5394 if (compress_type) { 5395 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5396 em->compress_type = compress_type; 5397 } 5398 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5399 if (create == 0 && !PageUptodate(page)) { 5400 if (btrfs_file_extent_compression(leaf, item) != 5401 BTRFS_COMPRESS_NONE) { 5402 ret = uncompress_inline(path, inode, page, 5403 pg_offset, 5404 extent_offset, item); 5405 BUG_ON(ret); /* -ENOMEM */ 5406 } else { 5407 map = kmap(page); 5408 read_extent_buffer(leaf, map + pg_offset, ptr, 5409 copy_size); 5410 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5411 memset(map + pg_offset + copy_size, 0, 5412 PAGE_CACHE_SIZE - pg_offset - 5413 copy_size); 5414 } 5415 kunmap(page); 5416 } 5417 flush_dcache_page(page); 5418 } else if (create && PageUptodate(page)) { 5419 BUG(); 5420 if (!trans) { 5421 kunmap(page); 5422 free_extent_map(em); 5423 em = NULL; 5424 5425 btrfs_release_path(path); 5426 trans = btrfs_join_transaction(root); 5427 5428 if (IS_ERR(trans)) 5429 return ERR_CAST(trans); 5430 goto again; 5431 } 5432 map = kmap(page); 5433 write_extent_buffer(leaf, map + pg_offset, ptr, 5434 copy_size); 5435 kunmap(page); 5436 btrfs_mark_buffer_dirty(leaf); 5437 } 5438 set_extent_uptodate(io_tree, em->start, 5439 extent_map_end(em) - 1, NULL, GFP_NOFS); 5440 goto insert; 5441 } else { 5442 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5443 WARN_ON(1); 5444 } 5445 not_found: 5446 em->start = start; 5447 em->len = len; 5448 not_found_em: 5449 em->block_start = EXTENT_MAP_HOLE; 5450 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5451 insert: 5452 btrfs_release_path(path); 5453 if (em->start > start || extent_map_end(em) <= start) { 5454 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5455 "[%llu %llu]\n", (unsigned long long)em->start, 5456 (unsigned long long)em->len, 5457 (unsigned long long)start, 5458 (unsigned long long)len); 5459 err = -EIO; 5460 goto out; 5461 } 5462 5463 err = 0; 5464 write_lock(&em_tree->lock); 5465 ret = add_extent_mapping(em_tree, em); 5466 /* it is possible that someone inserted the extent into the tree 5467 * while we had the lock dropped. It is also possible that 5468 * an overlapping map exists in the tree 5469 */ 5470 if (ret == -EEXIST) { 5471 struct extent_map *existing; 5472 5473 ret = 0; 5474 5475 existing = lookup_extent_mapping(em_tree, start, len); 5476 if (existing && (existing->start > start || 5477 existing->start + existing->len <= start)) { 5478 free_extent_map(existing); 5479 existing = NULL; 5480 } 5481 if (!existing) { 5482 existing = lookup_extent_mapping(em_tree, em->start, 5483 em->len); 5484 if (existing) { 5485 err = merge_extent_mapping(em_tree, existing, 5486 em, start, 5487 root->sectorsize); 5488 free_extent_map(existing); 5489 if (err) { 5490 free_extent_map(em); 5491 em = NULL; 5492 } 5493 } else { 5494 err = -EIO; 5495 free_extent_map(em); 5496 em = NULL; 5497 } 5498 } else { 5499 free_extent_map(em); 5500 em = existing; 5501 err = 0; 5502 } 5503 } 5504 write_unlock(&em_tree->lock); 5505 out: 5506 5507 if (em) 5508 trace_btrfs_get_extent(root, em); 5509 5510 if (path) 5511 btrfs_free_path(path); 5512 if (trans) { 5513 ret = btrfs_end_transaction(trans, root); 5514 if (!err) 5515 err = ret; 5516 } 5517 if (err) { 5518 free_extent_map(em); 5519 return ERR_PTR(err); 5520 } 5521 BUG_ON(!em); /* Error is always set */ 5522 return em; 5523 } 5524 5525 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5526 size_t pg_offset, u64 start, u64 len, 5527 int create) 5528 { 5529 struct extent_map *em; 5530 struct extent_map *hole_em = NULL; 5531 u64 range_start = start; 5532 u64 end; 5533 u64 found; 5534 u64 found_end; 5535 int err = 0; 5536 5537 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5538 if (IS_ERR(em)) 5539 return em; 5540 if (em) { 5541 /* 5542 * if our em maps to a hole, there might 5543 * actually be delalloc bytes behind it 5544 */ 5545 if (em->block_start != EXTENT_MAP_HOLE) 5546 return em; 5547 else 5548 hole_em = em; 5549 } 5550 5551 /* check to see if we've wrapped (len == -1 or similar) */ 5552 end = start + len; 5553 if (end < start) 5554 end = (u64)-1; 5555 else 5556 end -= 1; 5557 5558 em = NULL; 5559 5560 /* ok, we didn't find anything, lets look for delalloc */ 5561 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5562 end, len, EXTENT_DELALLOC, 1); 5563 found_end = range_start + found; 5564 if (found_end < range_start) 5565 found_end = (u64)-1; 5566 5567 /* 5568 * we didn't find anything useful, return 5569 * the original results from get_extent() 5570 */ 5571 if (range_start > end || found_end <= start) { 5572 em = hole_em; 5573 hole_em = NULL; 5574 goto out; 5575 } 5576 5577 /* adjust the range_start to make sure it doesn't 5578 * go backwards from the start they passed in 5579 */ 5580 range_start = max(start,range_start); 5581 found = found_end - range_start; 5582 5583 if (found > 0) { 5584 u64 hole_start = start; 5585 u64 hole_len = len; 5586 5587 em = alloc_extent_map(); 5588 if (!em) { 5589 err = -ENOMEM; 5590 goto out; 5591 } 5592 /* 5593 * when btrfs_get_extent can't find anything it 5594 * returns one huge hole 5595 * 5596 * make sure what it found really fits our range, and 5597 * adjust to make sure it is based on the start from 5598 * the caller 5599 */ 5600 if (hole_em) { 5601 u64 calc_end = extent_map_end(hole_em); 5602 5603 if (calc_end <= start || (hole_em->start > end)) { 5604 free_extent_map(hole_em); 5605 hole_em = NULL; 5606 } else { 5607 hole_start = max(hole_em->start, start); 5608 hole_len = calc_end - hole_start; 5609 } 5610 } 5611 em->bdev = NULL; 5612 if (hole_em && range_start > hole_start) { 5613 /* our hole starts before our delalloc, so we 5614 * have to return just the parts of the hole 5615 * that go until the delalloc starts 5616 */ 5617 em->len = min(hole_len, 5618 range_start - hole_start); 5619 em->start = hole_start; 5620 em->orig_start = hole_start; 5621 /* 5622 * don't adjust block start at all, 5623 * it is fixed at EXTENT_MAP_HOLE 5624 */ 5625 em->block_start = hole_em->block_start; 5626 em->block_len = hole_len; 5627 } else { 5628 em->start = range_start; 5629 em->len = found; 5630 em->orig_start = range_start; 5631 em->block_start = EXTENT_MAP_DELALLOC; 5632 em->block_len = found; 5633 } 5634 } else if (hole_em) { 5635 return hole_em; 5636 } 5637 out: 5638 5639 free_extent_map(hole_em); 5640 if (err) { 5641 free_extent_map(em); 5642 return ERR_PTR(err); 5643 } 5644 return em; 5645 } 5646 5647 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5648 struct extent_map *em, 5649 u64 start, u64 len) 5650 { 5651 struct btrfs_root *root = BTRFS_I(inode)->root; 5652 struct btrfs_trans_handle *trans; 5653 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5654 struct btrfs_key ins; 5655 u64 alloc_hint; 5656 int ret; 5657 bool insert = false; 5658 5659 /* 5660 * Ok if the extent map we looked up is a hole and is for the exact 5661 * range we want, there is no reason to allocate a new one, however if 5662 * it is not right then we need to free this one and drop the cache for 5663 * our range. 5664 */ 5665 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5666 em->len != len) { 5667 free_extent_map(em); 5668 em = NULL; 5669 insert = true; 5670 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5671 } 5672 5673 trans = btrfs_join_transaction(root); 5674 if (IS_ERR(trans)) 5675 return ERR_CAST(trans); 5676 5677 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5678 btrfs_add_inode_defrag(trans, inode); 5679 5680 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5681 5682 alloc_hint = get_extent_allocation_hint(inode, start, len); 5683 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5684 alloc_hint, &ins, 1); 5685 if (ret) { 5686 em = ERR_PTR(ret); 5687 goto out; 5688 } 5689 5690 if (!em) { 5691 em = alloc_extent_map(); 5692 if (!em) { 5693 em = ERR_PTR(-ENOMEM); 5694 goto out; 5695 } 5696 } 5697 5698 em->start = start; 5699 em->orig_start = em->start; 5700 em->len = ins.offset; 5701 5702 em->block_start = ins.objectid; 5703 em->block_len = ins.offset; 5704 em->bdev = root->fs_info->fs_devices->latest_bdev; 5705 5706 /* 5707 * We need to do this because if we're using the original em we searched 5708 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5709 */ 5710 em->flags = 0; 5711 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5712 5713 while (insert) { 5714 write_lock(&em_tree->lock); 5715 ret = add_extent_mapping(em_tree, em); 5716 write_unlock(&em_tree->lock); 5717 if (ret != -EEXIST) 5718 break; 5719 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5720 } 5721 5722 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5723 ins.offset, ins.offset, 0); 5724 if (ret) { 5725 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5726 em = ERR_PTR(ret); 5727 } 5728 out: 5729 btrfs_end_transaction(trans, root); 5730 return em; 5731 } 5732 5733 /* 5734 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5735 * block must be cow'd 5736 */ 5737 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5738 struct inode *inode, u64 offset, u64 len) 5739 { 5740 struct btrfs_path *path; 5741 int ret; 5742 struct extent_buffer *leaf; 5743 struct btrfs_root *root = BTRFS_I(inode)->root; 5744 struct btrfs_file_extent_item *fi; 5745 struct btrfs_key key; 5746 u64 disk_bytenr; 5747 u64 backref_offset; 5748 u64 extent_end; 5749 u64 num_bytes; 5750 int slot; 5751 int found_type; 5752 5753 path = btrfs_alloc_path(); 5754 if (!path) 5755 return -ENOMEM; 5756 5757 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5758 offset, 0); 5759 if (ret < 0) 5760 goto out; 5761 5762 slot = path->slots[0]; 5763 if (ret == 1) { 5764 if (slot == 0) { 5765 /* can't find the item, must cow */ 5766 ret = 0; 5767 goto out; 5768 } 5769 slot--; 5770 } 5771 ret = 0; 5772 leaf = path->nodes[0]; 5773 btrfs_item_key_to_cpu(leaf, &key, slot); 5774 if (key.objectid != btrfs_ino(inode) || 5775 key.type != BTRFS_EXTENT_DATA_KEY) { 5776 /* not our file or wrong item type, must cow */ 5777 goto out; 5778 } 5779 5780 if (key.offset > offset) { 5781 /* Wrong offset, must cow */ 5782 goto out; 5783 } 5784 5785 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5786 found_type = btrfs_file_extent_type(leaf, fi); 5787 if (found_type != BTRFS_FILE_EXTENT_REG && 5788 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5789 /* not a regular extent, must cow */ 5790 goto out; 5791 } 5792 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5793 backref_offset = btrfs_file_extent_offset(leaf, fi); 5794 5795 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5796 if (extent_end < offset + len) { 5797 /* extent doesn't include our full range, must cow */ 5798 goto out; 5799 } 5800 5801 if (btrfs_extent_readonly(root, disk_bytenr)) 5802 goto out; 5803 5804 /* 5805 * look for other files referencing this extent, if we 5806 * find any we must cow 5807 */ 5808 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5809 key.offset - backref_offset, disk_bytenr)) 5810 goto out; 5811 5812 /* 5813 * adjust disk_bytenr and num_bytes to cover just the bytes 5814 * in this extent we are about to write. If there 5815 * are any csums in that range we have to cow in order 5816 * to keep the csums correct 5817 */ 5818 disk_bytenr += backref_offset; 5819 disk_bytenr += offset - key.offset; 5820 num_bytes = min(offset + len, extent_end) - offset; 5821 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5822 goto out; 5823 /* 5824 * all of the above have passed, it is safe to overwrite this extent 5825 * without cow 5826 */ 5827 ret = 1; 5828 out: 5829 btrfs_free_path(path); 5830 return ret; 5831 } 5832 5833 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 5834 struct extent_state **cached_state, int writing) 5835 { 5836 struct btrfs_ordered_extent *ordered; 5837 int ret = 0; 5838 5839 while (1) { 5840 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5841 0, cached_state); 5842 /* 5843 * We're concerned with the entire range that we're going to be 5844 * doing DIO to, so we need to make sure theres no ordered 5845 * extents in this range. 5846 */ 5847 ordered = btrfs_lookup_ordered_range(inode, lockstart, 5848 lockend - lockstart + 1); 5849 5850 /* 5851 * We need to make sure there are no buffered pages in this 5852 * range either, we could have raced between the invalidate in 5853 * generic_file_direct_write and locking the extent. The 5854 * invalidate needs to happen so that reads after a write do not 5855 * get stale data. 5856 */ 5857 if (!ordered && (!writing || 5858 !test_range_bit(&BTRFS_I(inode)->io_tree, 5859 lockstart, lockend, EXTENT_UPTODATE, 0, 5860 *cached_state))) 5861 break; 5862 5863 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5864 cached_state, GFP_NOFS); 5865 5866 if (ordered) { 5867 btrfs_start_ordered_extent(inode, ordered, 1); 5868 btrfs_put_ordered_extent(ordered); 5869 } else { 5870 /* Screw you mmap */ 5871 ret = filemap_write_and_wait_range(inode->i_mapping, 5872 lockstart, 5873 lockend); 5874 if (ret) 5875 break; 5876 5877 /* 5878 * If we found a page that couldn't be invalidated just 5879 * fall back to buffered. 5880 */ 5881 ret = invalidate_inode_pages2_range(inode->i_mapping, 5882 lockstart >> PAGE_CACHE_SHIFT, 5883 lockend >> PAGE_CACHE_SHIFT); 5884 if (ret) 5885 break; 5886 } 5887 5888 cond_resched(); 5889 } 5890 5891 return ret; 5892 } 5893 5894 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 5895 u64 len, u64 orig_start, 5896 u64 block_start, u64 block_len, 5897 int type) 5898 { 5899 struct extent_map_tree *em_tree; 5900 struct extent_map *em; 5901 struct btrfs_root *root = BTRFS_I(inode)->root; 5902 int ret; 5903 5904 em_tree = &BTRFS_I(inode)->extent_tree; 5905 em = alloc_extent_map(); 5906 if (!em) 5907 return ERR_PTR(-ENOMEM); 5908 5909 em->start = start; 5910 em->orig_start = orig_start; 5911 em->len = len; 5912 em->block_len = block_len; 5913 em->block_start = block_start; 5914 em->bdev = root->fs_info->fs_devices->latest_bdev; 5915 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5916 if (type == BTRFS_ORDERED_PREALLOC) 5917 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5918 5919 do { 5920 btrfs_drop_extent_cache(inode, em->start, 5921 em->start + em->len - 1, 0); 5922 write_lock(&em_tree->lock); 5923 ret = add_extent_mapping(em_tree, em); 5924 write_unlock(&em_tree->lock); 5925 } while (ret == -EEXIST); 5926 5927 if (ret) { 5928 free_extent_map(em); 5929 return ERR_PTR(ret); 5930 } 5931 5932 return em; 5933 } 5934 5935 5936 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5937 struct buffer_head *bh_result, int create) 5938 { 5939 struct extent_map *em; 5940 struct btrfs_root *root = BTRFS_I(inode)->root; 5941 struct extent_state *cached_state = NULL; 5942 u64 start = iblock << inode->i_blkbits; 5943 u64 lockstart, lockend; 5944 u64 len = bh_result->b_size; 5945 struct btrfs_trans_handle *trans; 5946 int unlock_bits = EXTENT_LOCKED; 5947 int ret; 5948 5949 if (create) { 5950 ret = btrfs_delalloc_reserve_space(inode, len); 5951 if (ret) 5952 return ret; 5953 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 5954 } else { 5955 len = min_t(u64, len, root->sectorsize); 5956 } 5957 5958 lockstart = start; 5959 lockend = start + len - 1; 5960 5961 /* 5962 * If this errors out it's because we couldn't invalidate pagecache for 5963 * this range and we need to fallback to buffered. 5964 */ 5965 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 5966 return -ENOTBLK; 5967 5968 if (create) { 5969 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 5970 lockend, EXTENT_DELALLOC, NULL, 5971 &cached_state, GFP_NOFS); 5972 if (ret) 5973 goto unlock_err; 5974 } 5975 5976 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5977 if (IS_ERR(em)) { 5978 ret = PTR_ERR(em); 5979 goto unlock_err; 5980 } 5981 5982 /* 5983 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5984 * io. INLINE is special, and we could probably kludge it in here, but 5985 * it's still buffered so for safety lets just fall back to the generic 5986 * buffered path. 5987 * 5988 * For COMPRESSED we _have_ to read the entire extent in so we can 5989 * decompress it, so there will be buffering required no matter what we 5990 * do, so go ahead and fallback to buffered. 5991 * 5992 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5993 * to buffered IO. Don't blame me, this is the price we pay for using 5994 * the generic code. 5995 */ 5996 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5997 em->block_start == EXTENT_MAP_INLINE) { 5998 free_extent_map(em); 5999 ret = -ENOTBLK; 6000 goto unlock_err; 6001 } 6002 6003 /* Just a good old fashioned hole, return */ 6004 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6005 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6006 free_extent_map(em); 6007 ret = 0; 6008 goto unlock_err; 6009 } 6010 6011 /* 6012 * We don't allocate a new extent in the following cases 6013 * 6014 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6015 * existing extent. 6016 * 2) The extent is marked as PREALLOC. We're good to go here and can 6017 * just use the extent. 6018 * 6019 */ 6020 if (!create) { 6021 len = min(len, em->len - (start - em->start)); 6022 lockstart = start + len; 6023 goto unlock; 6024 } 6025 6026 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6027 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6028 em->block_start != EXTENT_MAP_HOLE)) { 6029 int type; 6030 int ret; 6031 u64 block_start; 6032 6033 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6034 type = BTRFS_ORDERED_PREALLOC; 6035 else 6036 type = BTRFS_ORDERED_NOCOW; 6037 len = min(len, em->len - (start - em->start)); 6038 block_start = em->block_start + (start - em->start); 6039 6040 /* 6041 * we're not going to log anything, but we do need 6042 * to make sure the current transaction stays open 6043 * while we look for nocow cross refs 6044 */ 6045 trans = btrfs_join_transaction(root); 6046 if (IS_ERR(trans)) 6047 goto must_cow; 6048 6049 if (can_nocow_odirect(trans, inode, start, len) == 1) { 6050 u64 orig_start = em->start; 6051 6052 if (type == BTRFS_ORDERED_PREALLOC) { 6053 free_extent_map(em); 6054 em = create_pinned_em(inode, start, len, 6055 orig_start, 6056 block_start, len, type); 6057 if (IS_ERR(em)) { 6058 btrfs_end_transaction(trans, root); 6059 goto unlock_err; 6060 } 6061 } 6062 6063 ret = btrfs_add_ordered_extent_dio(inode, start, 6064 block_start, len, len, type); 6065 btrfs_end_transaction(trans, root); 6066 if (ret) { 6067 free_extent_map(em); 6068 goto unlock_err; 6069 } 6070 goto unlock; 6071 } 6072 btrfs_end_transaction(trans, root); 6073 } 6074 must_cow: 6075 /* 6076 * this will cow the extent, reset the len in case we changed 6077 * it above 6078 */ 6079 len = bh_result->b_size; 6080 em = btrfs_new_extent_direct(inode, em, start, len); 6081 if (IS_ERR(em)) { 6082 ret = PTR_ERR(em); 6083 goto unlock_err; 6084 } 6085 len = min(len, em->len - (start - em->start)); 6086 unlock: 6087 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6088 inode->i_blkbits; 6089 bh_result->b_size = len; 6090 bh_result->b_bdev = em->bdev; 6091 set_buffer_mapped(bh_result); 6092 if (create) { 6093 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6094 set_buffer_new(bh_result); 6095 6096 /* 6097 * Need to update the i_size under the extent lock so buffered 6098 * readers will get the updated i_size when we unlock. 6099 */ 6100 if (start + len > i_size_read(inode)) 6101 i_size_write(inode, start + len); 6102 } 6103 6104 /* 6105 * In the case of write we need to clear and unlock the entire range, 6106 * in the case of read we need to unlock only the end area that we 6107 * aren't using if there is any left over space. 6108 */ 6109 if (lockstart < lockend) { 6110 if (create && len < lockend - lockstart) { 6111 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6112 lockstart + len - 1, 6113 unlock_bits | EXTENT_DEFRAG, 1, 0, 6114 &cached_state, GFP_NOFS); 6115 /* 6116 * Beside unlock, we also need to cleanup reserved space 6117 * for the left range by attaching EXTENT_DO_ACCOUNTING. 6118 */ 6119 clear_extent_bit(&BTRFS_I(inode)->io_tree, 6120 lockstart + len, lockend, 6121 unlock_bits | EXTENT_DO_ACCOUNTING | 6122 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS); 6123 } else { 6124 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6125 lockend, unlock_bits, 1, 0, 6126 &cached_state, GFP_NOFS); 6127 } 6128 } else { 6129 free_extent_state(cached_state); 6130 } 6131 6132 free_extent_map(em); 6133 6134 return 0; 6135 6136 unlock_err: 6137 if (create) 6138 unlock_bits |= EXTENT_DO_ACCOUNTING; 6139 6140 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6141 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6142 return ret; 6143 } 6144 6145 struct btrfs_dio_private { 6146 struct inode *inode; 6147 u64 logical_offset; 6148 u64 disk_bytenr; 6149 u64 bytes; 6150 void *private; 6151 6152 /* number of bios pending for this dio */ 6153 atomic_t pending_bios; 6154 6155 /* IO errors */ 6156 int errors; 6157 6158 struct bio *orig_bio; 6159 }; 6160 6161 static void btrfs_endio_direct_read(struct bio *bio, int err) 6162 { 6163 struct btrfs_dio_private *dip = bio->bi_private; 6164 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6165 struct bio_vec *bvec = bio->bi_io_vec; 6166 struct inode *inode = dip->inode; 6167 struct btrfs_root *root = BTRFS_I(inode)->root; 6168 u64 start; 6169 6170 start = dip->logical_offset; 6171 do { 6172 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6173 struct page *page = bvec->bv_page; 6174 char *kaddr; 6175 u32 csum = ~(u32)0; 6176 u64 private = ~(u32)0; 6177 unsigned long flags; 6178 6179 if (get_state_private(&BTRFS_I(inode)->io_tree, 6180 start, &private)) 6181 goto failed; 6182 local_irq_save(flags); 6183 kaddr = kmap_atomic(page); 6184 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 6185 csum, bvec->bv_len); 6186 btrfs_csum_final(csum, (char *)&csum); 6187 kunmap_atomic(kaddr); 6188 local_irq_restore(flags); 6189 6190 flush_dcache_page(bvec->bv_page); 6191 if (csum != private) { 6192 failed: 6193 printk(KERN_ERR "btrfs csum failed ino %llu off" 6194 " %llu csum %u private %u\n", 6195 (unsigned long long)btrfs_ino(inode), 6196 (unsigned long long)start, 6197 csum, (unsigned)private); 6198 err = -EIO; 6199 } 6200 } 6201 6202 start += bvec->bv_len; 6203 bvec++; 6204 } while (bvec <= bvec_end); 6205 6206 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6207 dip->logical_offset + dip->bytes - 1); 6208 bio->bi_private = dip->private; 6209 6210 kfree(dip); 6211 6212 /* If we had a csum failure make sure to clear the uptodate flag */ 6213 if (err) 6214 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6215 dio_end_io(bio, err); 6216 } 6217 6218 static void btrfs_endio_direct_write(struct bio *bio, int err) 6219 { 6220 struct btrfs_dio_private *dip = bio->bi_private; 6221 struct inode *inode = dip->inode; 6222 struct btrfs_root *root = BTRFS_I(inode)->root; 6223 struct btrfs_ordered_extent *ordered = NULL; 6224 u64 ordered_offset = dip->logical_offset; 6225 u64 ordered_bytes = dip->bytes; 6226 int ret; 6227 6228 if (err) 6229 goto out_done; 6230 again: 6231 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6232 &ordered_offset, 6233 ordered_bytes, !err); 6234 if (!ret) 6235 goto out_test; 6236 6237 ordered->work.func = finish_ordered_fn; 6238 ordered->work.flags = 0; 6239 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6240 &ordered->work); 6241 out_test: 6242 /* 6243 * our bio might span multiple ordered extents. If we haven't 6244 * completed the accounting for the whole dio, go back and try again 6245 */ 6246 if (ordered_offset < dip->logical_offset + dip->bytes) { 6247 ordered_bytes = dip->logical_offset + dip->bytes - 6248 ordered_offset; 6249 ordered = NULL; 6250 goto again; 6251 } 6252 out_done: 6253 bio->bi_private = dip->private; 6254 6255 kfree(dip); 6256 6257 /* If we had an error make sure to clear the uptodate flag */ 6258 if (err) 6259 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6260 dio_end_io(bio, err); 6261 } 6262 6263 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 6264 struct bio *bio, int mirror_num, 6265 unsigned long bio_flags, u64 offset) 6266 { 6267 int ret; 6268 struct btrfs_root *root = BTRFS_I(inode)->root; 6269 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 6270 BUG_ON(ret); /* -ENOMEM */ 6271 return 0; 6272 } 6273 6274 static void btrfs_end_dio_bio(struct bio *bio, int err) 6275 { 6276 struct btrfs_dio_private *dip = bio->bi_private; 6277 6278 if (err) { 6279 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 6280 "sector %#Lx len %u err no %d\n", 6281 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 6282 (unsigned long long)bio->bi_sector, bio->bi_size, err); 6283 dip->errors = 1; 6284 6285 /* 6286 * before atomic variable goto zero, we must make sure 6287 * dip->errors is perceived to be set. 6288 */ 6289 smp_mb__before_atomic_dec(); 6290 } 6291 6292 /* if there are more bios still pending for this dio, just exit */ 6293 if (!atomic_dec_and_test(&dip->pending_bios)) 6294 goto out; 6295 6296 if (dip->errors) 6297 bio_io_error(dip->orig_bio); 6298 else { 6299 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 6300 bio_endio(dip->orig_bio, 0); 6301 } 6302 out: 6303 bio_put(bio); 6304 } 6305 6306 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 6307 u64 first_sector, gfp_t gfp_flags) 6308 { 6309 int nr_vecs = bio_get_nr_vecs(bdev); 6310 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 6311 } 6312 6313 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 6314 int rw, u64 file_offset, int skip_sum, 6315 int async_submit) 6316 { 6317 int write = rw & REQ_WRITE; 6318 struct btrfs_root *root = BTRFS_I(inode)->root; 6319 int ret; 6320 6321 bio_get(bio); 6322 6323 if (!write) { 6324 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 6325 if (ret) 6326 goto err; 6327 } 6328 6329 if (skip_sum) 6330 goto map; 6331 6332 if (write && async_submit) { 6333 ret = btrfs_wq_submit_bio(root->fs_info, 6334 inode, rw, bio, 0, 0, 6335 file_offset, 6336 __btrfs_submit_bio_start_direct_io, 6337 __btrfs_submit_bio_done); 6338 goto err; 6339 } else if (write) { 6340 /* 6341 * If we aren't doing async submit, calculate the csum of the 6342 * bio now. 6343 */ 6344 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 6345 if (ret) 6346 goto err; 6347 } else if (!skip_sum) { 6348 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset); 6349 if (ret) 6350 goto err; 6351 } 6352 6353 map: 6354 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 6355 err: 6356 bio_put(bio); 6357 return ret; 6358 } 6359 6360 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 6361 int skip_sum) 6362 { 6363 struct inode *inode = dip->inode; 6364 struct btrfs_root *root = BTRFS_I(inode)->root; 6365 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6366 struct bio *bio; 6367 struct bio *orig_bio = dip->orig_bio; 6368 struct bio_vec *bvec = orig_bio->bi_io_vec; 6369 u64 start_sector = orig_bio->bi_sector; 6370 u64 file_offset = dip->logical_offset; 6371 u64 submit_len = 0; 6372 u64 map_length; 6373 int nr_pages = 0; 6374 int ret = 0; 6375 int async_submit = 0; 6376 6377 map_length = orig_bio->bi_size; 6378 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6379 &map_length, NULL, 0); 6380 if (ret) { 6381 bio_put(orig_bio); 6382 return -EIO; 6383 } 6384 6385 if (map_length >= orig_bio->bi_size) { 6386 bio = orig_bio; 6387 goto submit; 6388 } 6389 6390 async_submit = 1; 6391 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 6392 if (!bio) 6393 return -ENOMEM; 6394 bio->bi_private = dip; 6395 bio->bi_end_io = btrfs_end_dio_bio; 6396 atomic_inc(&dip->pending_bios); 6397 6398 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 6399 if (unlikely(map_length < submit_len + bvec->bv_len || 6400 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 6401 bvec->bv_offset) < bvec->bv_len)) { 6402 /* 6403 * inc the count before we submit the bio so 6404 * we know the end IO handler won't happen before 6405 * we inc the count. Otherwise, the dip might get freed 6406 * before we're done setting it up 6407 */ 6408 atomic_inc(&dip->pending_bios); 6409 ret = __btrfs_submit_dio_bio(bio, inode, rw, 6410 file_offset, skip_sum, 6411 async_submit); 6412 if (ret) { 6413 bio_put(bio); 6414 atomic_dec(&dip->pending_bios); 6415 goto out_err; 6416 } 6417 6418 start_sector += submit_len >> 9; 6419 file_offset += submit_len; 6420 6421 submit_len = 0; 6422 nr_pages = 0; 6423 6424 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6425 start_sector, GFP_NOFS); 6426 if (!bio) 6427 goto out_err; 6428 bio->bi_private = dip; 6429 bio->bi_end_io = btrfs_end_dio_bio; 6430 6431 map_length = orig_bio->bi_size; 6432 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6433 &map_length, NULL, 0); 6434 if (ret) { 6435 bio_put(bio); 6436 goto out_err; 6437 } 6438 } else { 6439 submit_len += bvec->bv_len; 6440 nr_pages ++; 6441 bvec++; 6442 } 6443 } 6444 6445 submit: 6446 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6447 async_submit); 6448 if (!ret) 6449 return 0; 6450 6451 bio_put(bio); 6452 out_err: 6453 dip->errors = 1; 6454 /* 6455 * before atomic variable goto zero, we must 6456 * make sure dip->errors is perceived to be set. 6457 */ 6458 smp_mb__before_atomic_dec(); 6459 if (atomic_dec_and_test(&dip->pending_bios)) 6460 bio_io_error(dip->orig_bio); 6461 6462 /* bio_end_io() will handle error, so we needn't return it */ 6463 return 0; 6464 } 6465 6466 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6467 loff_t file_offset) 6468 { 6469 struct btrfs_root *root = BTRFS_I(inode)->root; 6470 struct btrfs_dio_private *dip; 6471 struct bio_vec *bvec = bio->bi_io_vec; 6472 int skip_sum; 6473 int write = rw & REQ_WRITE; 6474 int ret = 0; 6475 6476 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6477 6478 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6479 if (!dip) { 6480 ret = -ENOMEM; 6481 goto free_ordered; 6482 } 6483 6484 dip->private = bio->bi_private; 6485 dip->inode = inode; 6486 dip->logical_offset = file_offset; 6487 6488 dip->bytes = 0; 6489 do { 6490 dip->bytes += bvec->bv_len; 6491 bvec++; 6492 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6493 6494 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6495 bio->bi_private = dip; 6496 dip->errors = 0; 6497 dip->orig_bio = bio; 6498 atomic_set(&dip->pending_bios, 0); 6499 6500 if (write) 6501 bio->bi_end_io = btrfs_endio_direct_write; 6502 else 6503 bio->bi_end_io = btrfs_endio_direct_read; 6504 6505 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6506 if (!ret) 6507 return; 6508 free_ordered: 6509 /* 6510 * If this is a write, we need to clean up the reserved space and kill 6511 * the ordered extent. 6512 */ 6513 if (write) { 6514 struct btrfs_ordered_extent *ordered; 6515 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6516 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6517 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6518 btrfs_free_reserved_extent(root, ordered->start, 6519 ordered->disk_len); 6520 btrfs_put_ordered_extent(ordered); 6521 btrfs_put_ordered_extent(ordered); 6522 } 6523 bio_endio(bio, ret); 6524 } 6525 6526 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6527 const struct iovec *iov, loff_t offset, 6528 unsigned long nr_segs) 6529 { 6530 int seg; 6531 int i; 6532 size_t size; 6533 unsigned long addr; 6534 unsigned blocksize_mask = root->sectorsize - 1; 6535 ssize_t retval = -EINVAL; 6536 loff_t end = offset; 6537 6538 if (offset & blocksize_mask) 6539 goto out; 6540 6541 /* Check the memory alignment. Blocks cannot straddle pages */ 6542 for (seg = 0; seg < nr_segs; seg++) { 6543 addr = (unsigned long)iov[seg].iov_base; 6544 size = iov[seg].iov_len; 6545 end += size; 6546 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6547 goto out; 6548 6549 /* If this is a write we don't need to check anymore */ 6550 if (rw & WRITE) 6551 continue; 6552 6553 /* 6554 * Check to make sure we don't have duplicate iov_base's in this 6555 * iovec, if so return EINVAL, otherwise we'll get csum errors 6556 * when reading back. 6557 */ 6558 for (i = seg + 1; i < nr_segs; i++) { 6559 if (iov[seg].iov_base == iov[i].iov_base) 6560 goto out; 6561 } 6562 } 6563 retval = 0; 6564 out: 6565 return retval; 6566 } 6567 6568 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6569 const struct iovec *iov, loff_t offset, 6570 unsigned long nr_segs) 6571 { 6572 struct file *file = iocb->ki_filp; 6573 struct inode *inode = file->f_mapping->host; 6574 6575 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6576 offset, nr_segs)) 6577 return 0; 6578 6579 return __blockdev_direct_IO(rw, iocb, inode, 6580 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6581 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6582 btrfs_submit_direct, 0); 6583 } 6584 6585 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6586 __u64 start, __u64 len) 6587 { 6588 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6589 } 6590 6591 int btrfs_readpage(struct file *file, struct page *page) 6592 { 6593 struct extent_io_tree *tree; 6594 tree = &BTRFS_I(page->mapping->host)->io_tree; 6595 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 6596 } 6597 6598 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6599 { 6600 struct extent_io_tree *tree; 6601 6602 6603 if (current->flags & PF_MEMALLOC) { 6604 redirty_page_for_writepage(wbc, page); 6605 unlock_page(page); 6606 return 0; 6607 } 6608 tree = &BTRFS_I(page->mapping->host)->io_tree; 6609 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6610 } 6611 6612 int btrfs_writepages(struct address_space *mapping, 6613 struct writeback_control *wbc) 6614 { 6615 struct extent_io_tree *tree; 6616 6617 tree = &BTRFS_I(mapping->host)->io_tree; 6618 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6619 } 6620 6621 static int 6622 btrfs_readpages(struct file *file, struct address_space *mapping, 6623 struct list_head *pages, unsigned nr_pages) 6624 { 6625 struct extent_io_tree *tree; 6626 tree = &BTRFS_I(mapping->host)->io_tree; 6627 return extent_readpages(tree, mapping, pages, nr_pages, 6628 btrfs_get_extent); 6629 } 6630 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6631 { 6632 struct extent_io_tree *tree; 6633 struct extent_map_tree *map; 6634 int ret; 6635 6636 tree = &BTRFS_I(page->mapping->host)->io_tree; 6637 map = &BTRFS_I(page->mapping->host)->extent_tree; 6638 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6639 if (ret == 1) { 6640 ClearPagePrivate(page); 6641 set_page_private(page, 0); 6642 page_cache_release(page); 6643 } 6644 return ret; 6645 } 6646 6647 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6648 { 6649 if (PageWriteback(page) || PageDirty(page)) 6650 return 0; 6651 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6652 } 6653 6654 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6655 { 6656 struct inode *inode = page->mapping->host; 6657 struct extent_io_tree *tree; 6658 struct btrfs_ordered_extent *ordered; 6659 struct extent_state *cached_state = NULL; 6660 u64 page_start = page_offset(page); 6661 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6662 6663 /* 6664 * we have the page locked, so new writeback can't start, 6665 * and the dirty bit won't be cleared while we are here. 6666 * 6667 * Wait for IO on this page so that we can safely clear 6668 * the PagePrivate2 bit and do ordered accounting 6669 */ 6670 wait_on_page_writeback(page); 6671 6672 tree = &BTRFS_I(inode)->io_tree; 6673 if (offset) { 6674 btrfs_releasepage(page, GFP_NOFS); 6675 return; 6676 } 6677 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 6678 ordered = btrfs_lookup_ordered_extent(inode, 6679 page_offset(page)); 6680 if (ordered) { 6681 /* 6682 * IO on this page will never be started, so we need 6683 * to account for any ordered extents now 6684 */ 6685 clear_extent_bit(tree, page_start, page_end, 6686 EXTENT_DIRTY | EXTENT_DELALLOC | 6687 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 6688 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 6689 /* 6690 * whoever cleared the private bit is responsible 6691 * for the finish_ordered_io 6692 */ 6693 if (TestClearPagePrivate2(page) && 6694 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 6695 PAGE_CACHE_SIZE, 1)) { 6696 btrfs_finish_ordered_io(ordered); 6697 } 6698 btrfs_put_ordered_extent(ordered); 6699 cached_state = NULL; 6700 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 6701 } 6702 clear_extent_bit(tree, page_start, page_end, 6703 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6704 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 6705 &cached_state, GFP_NOFS); 6706 __btrfs_releasepage(page, GFP_NOFS); 6707 6708 ClearPageChecked(page); 6709 if (PagePrivate(page)) { 6710 ClearPagePrivate(page); 6711 set_page_private(page, 0); 6712 page_cache_release(page); 6713 } 6714 } 6715 6716 /* 6717 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6718 * called from a page fault handler when a page is first dirtied. Hence we must 6719 * be careful to check for EOF conditions here. We set the page up correctly 6720 * for a written page which means we get ENOSPC checking when writing into 6721 * holes and correct delalloc and unwritten extent mapping on filesystems that 6722 * support these features. 6723 * 6724 * We are not allowed to take the i_mutex here so we have to play games to 6725 * protect against truncate races as the page could now be beyond EOF. Because 6726 * vmtruncate() writes the inode size before removing pages, once we have the 6727 * page lock we can determine safely if the page is beyond EOF. If it is not 6728 * beyond EOF, then the page is guaranteed safe against truncation until we 6729 * unlock the page. 6730 */ 6731 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6732 { 6733 struct page *page = vmf->page; 6734 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6735 struct btrfs_root *root = BTRFS_I(inode)->root; 6736 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6737 struct btrfs_ordered_extent *ordered; 6738 struct extent_state *cached_state = NULL; 6739 char *kaddr; 6740 unsigned long zero_start; 6741 loff_t size; 6742 int ret; 6743 int reserved = 0; 6744 u64 page_start; 6745 u64 page_end; 6746 6747 sb_start_pagefault(inode->i_sb); 6748 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6749 if (!ret) { 6750 ret = file_update_time(vma->vm_file); 6751 reserved = 1; 6752 } 6753 if (ret) { 6754 if (ret == -ENOMEM) 6755 ret = VM_FAULT_OOM; 6756 else /* -ENOSPC, -EIO, etc */ 6757 ret = VM_FAULT_SIGBUS; 6758 if (reserved) 6759 goto out; 6760 goto out_noreserve; 6761 } 6762 6763 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6764 again: 6765 lock_page(page); 6766 size = i_size_read(inode); 6767 page_start = page_offset(page); 6768 page_end = page_start + PAGE_CACHE_SIZE - 1; 6769 6770 if ((page->mapping != inode->i_mapping) || 6771 (page_start >= size)) { 6772 /* page got truncated out from underneath us */ 6773 goto out_unlock; 6774 } 6775 wait_on_page_writeback(page); 6776 6777 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 6778 set_page_extent_mapped(page); 6779 6780 /* 6781 * we can't set the delalloc bits if there are pending ordered 6782 * extents. Drop our locks and wait for them to finish 6783 */ 6784 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6785 if (ordered) { 6786 unlock_extent_cached(io_tree, page_start, page_end, 6787 &cached_state, GFP_NOFS); 6788 unlock_page(page); 6789 btrfs_start_ordered_extent(inode, ordered, 1); 6790 btrfs_put_ordered_extent(ordered); 6791 goto again; 6792 } 6793 6794 /* 6795 * XXX - page_mkwrite gets called every time the page is dirtied, even 6796 * if it was already dirty, so for space accounting reasons we need to 6797 * clear any delalloc bits for the range we are fixing to save. There 6798 * is probably a better way to do this, but for now keep consistent with 6799 * prepare_pages in the normal write path. 6800 */ 6801 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6802 EXTENT_DIRTY | EXTENT_DELALLOC | 6803 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 6804 0, 0, &cached_state, GFP_NOFS); 6805 6806 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6807 &cached_state); 6808 if (ret) { 6809 unlock_extent_cached(io_tree, page_start, page_end, 6810 &cached_state, GFP_NOFS); 6811 ret = VM_FAULT_SIGBUS; 6812 goto out_unlock; 6813 } 6814 ret = 0; 6815 6816 /* page is wholly or partially inside EOF */ 6817 if (page_start + PAGE_CACHE_SIZE > size) 6818 zero_start = size & ~PAGE_CACHE_MASK; 6819 else 6820 zero_start = PAGE_CACHE_SIZE; 6821 6822 if (zero_start != PAGE_CACHE_SIZE) { 6823 kaddr = kmap(page); 6824 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6825 flush_dcache_page(page); 6826 kunmap(page); 6827 } 6828 ClearPageChecked(page); 6829 set_page_dirty(page); 6830 SetPageUptodate(page); 6831 6832 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6833 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6834 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 6835 6836 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6837 6838 out_unlock: 6839 if (!ret) { 6840 sb_end_pagefault(inode->i_sb); 6841 return VM_FAULT_LOCKED; 6842 } 6843 unlock_page(page); 6844 out: 6845 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6846 out_noreserve: 6847 sb_end_pagefault(inode->i_sb); 6848 return ret; 6849 } 6850 6851 static int btrfs_truncate(struct inode *inode) 6852 { 6853 struct btrfs_root *root = BTRFS_I(inode)->root; 6854 struct btrfs_block_rsv *rsv; 6855 int ret; 6856 int err = 0; 6857 struct btrfs_trans_handle *trans; 6858 unsigned long nr; 6859 u64 mask = root->sectorsize - 1; 6860 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 6861 6862 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 6863 if (ret) 6864 return ret; 6865 6866 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6867 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6868 6869 /* 6870 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6871 * 3 things going on here 6872 * 6873 * 1) We need to reserve space for our orphan item and the space to 6874 * delete our orphan item. Lord knows we don't want to have a dangling 6875 * orphan item because we didn't reserve space to remove it. 6876 * 6877 * 2) We need to reserve space to update our inode. 6878 * 6879 * 3) We need to have something to cache all the space that is going to 6880 * be free'd up by the truncate operation, but also have some slack 6881 * space reserved in case it uses space during the truncate (thank you 6882 * very much snapshotting). 6883 * 6884 * And we need these to all be seperate. The fact is we can use alot of 6885 * space doing the truncate, and we have no earthly idea how much space 6886 * we will use, so we need the truncate reservation to be seperate so it 6887 * doesn't end up using space reserved for updating the inode or 6888 * removing the orphan item. We also need to be able to stop the 6889 * transaction and start a new one, which means we need to be able to 6890 * update the inode several times, and we have no idea of knowing how 6891 * many times that will be, so we can't just reserve 1 item for the 6892 * entirety of the opration, so that has to be done seperately as well. 6893 * Then there is the orphan item, which does indeed need to be held on 6894 * to for the whole operation, and we need nobody to touch this reserved 6895 * space except the orphan code. 6896 * 6897 * So that leaves us with 6898 * 6899 * 1) root->orphan_block_rsv - for the orphan deletion. 6900 * 2) rsv - for the truncate reservation, which we will steal from the 6901 * transaction reservation. 6902 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6903 * updating the inode. 6904 */ 6905 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 6906 if (!rsv) 6907 return -ENOMEM; 6908 rsv->size = min_size; 6909 rsv->failfast = 1; 6910 6911 /* 6912 * 1 for the truncate slack space 6913 * 1 for the orphan item we're going to add 6914 * 1 for the orphan item deletion 6915 * 1 for updating the inode. 6916 */ 6917 trans = btrfs_start_transaction(root, 4); 6918 if (IS_ERR(trans)) { 6919 err = PTR_ERR(trans); 6920 goto out; 6921 } 6922 6923 /* Migrate the slack space for the truncate to our reserve */ 6924 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 6925 min_size); 6926 BUG_ON(ret); 6927 6928 ret = btrfs_orphan_add(trans, inode); 6929 if (ret) { 6930 btrfs_end_transaction(trans, root); 6931 goto out; 6932 } 6933 6934 /* 6935 * setattr is responsible for setting the ordered_data_close flag, 6936 * but that is only tested during the last file release. That 6937 * could happen well after the next commit, leaving a great big 6938 * window where new writes may get lost if someone chooses to write 6939 * to this file after truncating to zero 6940 * 6941 * The inode doesn't have any dirty data here, and so if we commit 6942 * this is a noop. If someone immediately starts writing to the inode 6943 * it is very likely we'll catch some of their writes in this 6944 * transaction, and the commit will find this file on the ordered 6945 * data list with good things to send down. 6946 * 6947 * This is a best effort solution, there is still a window where 6948 * using truncate to replace the contents of the file will 6949 * end up with a zero length file after a crash. 6950 */ 6951 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 6952 &BTRFS_I(inode)->runtime_flags)) 6953 btrfs_add_ordered_operation(trans, root, inode); 6954 6955 /* 6956 * So if we truncate and then write and fsync we normally would just 6957 * write the extents that changed, which is a problem if we need to 6958 * first truncate that entire inode. So set this flag so we write out 6959 * all of the extents in the inode to the sync log so we're completely 6960 * safe. 6961 */ 6962 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6963 trans->block_rsv = rsv; 6964 6965 while (1) { 6966 ret = btrfs_truncate_inode_items(trans, root, inode, 6967 inode->i_size, 6968 BTRFS_EXTENT_DATA_KEY); 6969 if (ret != -ENOSPC) { 6970 err = ret; 6971 break; 6972 } 6973 6974 trans->block_rsv = &root->fs_info->trans_block_rsv; 6975 ret = btrfs_update_inode(trans, root, inode); 6976 if (ret) { 6977 err = ret; 6978 break; 6979 } 6980 6981 nr = trans->blocks_used; 6982 btrfs_end_transaction(trans, root); 6983 btrfs_btree_balance_dirty(root, nr); 6984 6985 trans = btrfs_start_transaction(root, 2); 6986 if (IS_ERR(trans)) { 6987 ret = err = PTR_ERR(trans); 6988 trans = NULL; 6989 break; 6990 } 6991 6992 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 6993 rsv, min_size); 6994 BUG_ON(ret); /* shouldn't happen */ 6995 trans->block_rsv = rsv; 6996 } 6997 6998 if (ret == 0 && inode->i_nlink > 0) { 6999 trans->block_rsv = root->orphan_block_rsv; 7000 ret = btrfs_orphan_del(trans, inode); 7001 if (ret) 7002 err = ret; 7003 } else if (ret && inode->i_nlink > 0) { 7004 /* 7005 * Failed to do the truncate, remove us from the in memory 7006 * orphan list. 7007 */ 7008 ret = btrfs_orphan_del(NULL, inode); 7009 } 7010 7011 if (trans) { 7012 trans->block_rsv = &root->fs_info->trans_block_rsv; 7013 ret = btrfs_update_inode(trans, root, inode); 7014 if (ret && !err) 7015 err = ret; 7016 7017 nr = trans->blocks_used; 7018 ret = btrfs_end_transaction(trans, root); 7019 btrfs_btree_balance_dirty(root, nr); 7020 } 7021 7022 out: 7023 btrfs_free_block_rsv(root, rsv); 7024 7025 if (ret && !err) 7026 err = ret; 7027 7028 return err; 7029 } 7030 7031 /* 7032 * create a new subvolume directory/inode (helper for the ioctl). 7033 */ 7034 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7035 struct btrfs_root *new_root, u64 new_dirid) 7036 { 7037 struct inode *inode; 7038 int err; 7039 u64 index = 0; 7040 7041 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7042 new_dirid, new_dirid, 7043 S_IFDIR | (~current_umask() & S_IRWXUGO), 7044 &index); 7045 if (IS_ERR(inode)) 7046 return PTR_ERR(inode); 7047 inode->i_op = &btrfs_dir_inode_operations; 7048 inode->i_fop = &btrfs_dir_file_operations; 7049 7050 set_nlink(inode, 1); 7051 btrfs_i_size_write(inode, 0); 7052 7053 err = btrfs_update_inode(trans, new_root, inode); 7054 7055 iput(inode); 7056 return err; 7057 } 7058 7059 struct inode *btrfs_alloc_inode(struct super_block *sb) 7060 { 7061 struct btrfs_inode *ei; 7062 struct inode *inode; 7063 7064 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7065 if (!ei) 7066 return NULL; 7067 7068 ei->root = NULL; 7069 ei->generation = 0; 7070 ei->last_trans = 0; 7071 ei->last_sub_trans = 0; 7072 ei->logged_trans = 0; 7073 ei->delalloc_bytes = 0; 7074 ei->disk_i_size = 0; 7075 ei->flags = 0; 7076 ei->csum_bytes = 0; 7077 ei->index_cnt = (u64)-1; 7078 ei->last_unlink_trans = 0; 7079 ei->last_log_commit = 0; 7080 7081 spin_lock_init(&ei->lock); 7082 ei->outstanding_extents = 0; 7083 ei->reserved_extents = 0; 7084 7085 ei->runtime_flags = 0; 7086 ei->force_compress = BTRFS_COMPRESS_NONE; 7087 7088 ei->delayed_node = NULL; 7089 7090 inode = &ei->vfs_inode; 7091 extent_map_tree_init(&ei->extent_tree); 7092 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7093 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7094 ei->io_tree.track_uptodate = 1; 7095 ei->io_failure_tree.track_uptodate = 1; 7096 mutex_init(&ei->log_mutex); 7097 mutex_init(&ei->delalloc_mutex); 7098 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7099 INIT_LIST_HEAD(&ei->delalloc_inodes); 7100 INIT_LIST_HEAD(&ei->ordered_operations); 7101 RB_CLEAR_NODE(&ei->rb_node); 7102 7103 return inode; 7104 } 7105 7106 static void btrfs_i_callback(struct rcu_head *head) 7107 { 7108 struct inode *inode = container_of(head, struct inode, i_rcu); 7109 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7110 } 7111 7112 void btrfs_destroy_inode(struct inode *inode) 7113 { 7114 struct btrfs_ordered_extent *ordered; 7115 struct btrfs_root *root = BTRFS_I(inode)->root; 7116 7117 WARN_ON(!hlist_empty(&inode->i_dentry)); 7118 WARN_ON(inode->i_data.nrpages); 7119 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7120 WARN_ON(BTRFS_I(inode)->reserved_extents); 7121 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7122 WARN_ON(BTRFS_I(inode)->csum_bytes); 7123 7124 /* 7125 * This can happen where we create an inode, but somebody else also 7126 * created the same inode and we need to destroy the one we already 7127 * created. 7128 */ 7129 if (!root) 7130 goto free; 7131 7132 /* 7133 * Make sure we're properly removed from the ordered operation 7134 * lists. 7135 */ 7136 smp_mb(); 7137 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7138 spin_lock(&root->fs_info->ordered_extent_lock); 7139 list_del_init(&BTRFS_I(inode)->ordered_operations); 7140 spin_unlock(&root->fs_info->ordered_extent_lock); 7141 } 7142 7143 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7144 &BTRFS_I(inode)->runtime_flags)) { 7145 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 7146 (unsigned long long)btrfs_ino(inode)); 7147 atomic_dec(&root->orphan_inodes); 7148 } 7149 7150 while (1) { 7151 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7152 if (!ordered) 7153 break; 7154 else { 7155 printk(KERN_ERR "btrfs found ordered " 7156 "extent %llu %llu on inode cleanup\n", 7157 (unsigned long long)ordered->file_offset, 7158 (unsigned long long)ordered->len); 7159 btrfs_remove_ordered_extent(inode, ordered); 7160 btrfs_put_ordered_extent(ordered); 7161 btrfs_put_ordered_extent(ordered); 7162 } 7163 } 7164 inode_tree_del(inode); 7165 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7166 free: 7167 btrfs_remove_delayed_node(inode); 7168 call_rcu(&inode->i_rcu, btrfs_i_callback); 7169 } 7170 7171 int btrfs_drop_inode(struct inode *inode) 7172 { 7173 struct btrfs_root *root = BTRFS_I(inode)->root; 7174 7175 if (btrfs_root_refs(&root->root_item) == 0 && 7176 !btrfs_is_free_space_inode(inode)) 7177 return 1; 7178 else 7179 return generic_drop_inode(inode); 7180 } 7181 7182 static void init_once(void *foo) 7183 { 7184 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7185 7186 inode_init_once(&ei->vfs_inode); 7187 } 7188 7189 void btrfs_destroy_cachep(void) 7190 { 7191 /* 7192 * Make sure all delayed rcu free inodes are flushed before we 7193 * destroy cache. 7194 */ 7195 rcu_barrier(); 7196 if (btrfs_inode_cachep) 7197 kmem_cache_destroy(btrfs_inode_cachep); 7198 if (btrfs_trans_handle_cachep) 7199 kmem_cache_destroy(btrfs_trans_handle_cachep); 7200 if (btrfs_transaction_cachep) 7201 kmem_cache_destroy(btrfs_transaction_cachep); 7202 if (btrfs_path_cachep) 7203 kmem_cache_destroy(btrfs_path_cachep); 7204 if (btrfs_free_space_cachep) 7205 kmem_cache_destroy(btrfs_free_space_cachep); 7206 } 7207 7208 int btrfs_init_cachep(void) 7209 { 7210 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7211 sizeof(struct btrfs_inode), 0, 7212 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7213 if (!btrfs_inode_cachep) 7214 goto fail; 7215 7216 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 7217 sizeof(struct btrfs_trans_handle), 0, 7218 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7219 if (!btrfs_trans_handle_cachep) 7220 goto fail; 7221 7222 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 7223 sizeof(struct btrfs_transaction), 0, 7224 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7225 if (!btrfs_transaction_cachep) 7226 goto fail; 7227 7228 btrfs_path_cachep = kmem_cache_create("btrfs_path", 7229 sizeof(struct btrfs_path), 0, 7230 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7231 if (!btrfs_path_cachep) 7232 goto fail; 7233 7234 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 7235 sizeof(struct btrfs_free_space), 0, 7236 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7237 if (!btrfs_free_space_cachep) 7238 goto fail; 7239 7240 return 0; 7241 fail: 7242 btrfs_destroy_cachep(); 7243 return -ENOMEM; 7244 } 7245 7246 static int btrfs_getattr(struct vfsmount *mnt, 7247 struct dentry *dentry, struct kstat *stat) 7248 { 7249 struct inode *inode = dentry->d_inode; 7250 u32 blocksize = inode->i_sb->s_blocksize; 7251 7252 generic_fillattr(inode, stat); 7253 stat->dev = BTRFS_I(inode)->root->anon_dev; 7254 stat->blksize = PAGE_CACHE_SIZE; 7255 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 7256 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9; 7257 return 0; 7258 } 7259 7260 /* 7261 * If a file is moved, it will inherit the cow and compression flags of the new 7262 * directory. 7263 */ 7264 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 7265 { 7266 struct btrfs_inode *b_dir = BTRFS_I(dir); 7267 struct btrfs_inode *b_inode = BTRFS_I(inode); 7268 7269 if (b_dir->flags & BTRFS_INODE_NODATACOW) 7270 b_inode->flags |= BTRFS_INODE_NODATACOW; 7271 else 7272 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 7273 7274 if (b_dir->flags & BTRFS_INODE_COMPRESS) { 7275 b_inode->flags |= BTRFS_INODE_COMPRESS; 7276 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 7277 } else { 7278 b_inode->flags &= ~(BTRFS_INODE_COMPRESS | 7279 BTRFS_INODE_NOCOMPRESS); 7280 } 7281 } 7282 7283 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 7284 struct inode *new_dir, struct dentry *new_dentry) 7285 { 7286 struct btrfs_trans_handle *trans; 7287 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7288 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7289 struct inode *new_inode = new_dentry->d_inode; 7290 struct inode *old_inode = old_dentry->d_inode; 7291 struct timespec ctime = CURRENT_TIME; 7292 u64 index = 0; 7293 u64 root_objectid; 7294 int ret; 7295 u64 old_ino = btrfs_ino(old_inode); 7296 7297 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 7298 return -EPERM; 7299 7300 /* we only allow rename subvolume link between subvolumes */ 7301 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 7302 return -EXDEV; 7303 7304 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 7305 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 7306 return -ENOTEMPTY; 7307 7308 if (S_ISDIR(old_inode->i_mode) && new_inode && 7309 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 7310 return -ENOTEMPTY; 7311 /* 7312 * we're using rename to replace one file with another. 7313 * and the replacement file is large. Start IO on it now so 7314 * we don't add too much work to the end of the transaction 7315 */ 7316 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 7317 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 7318 filemap_flush(old_inode->i_mapping); 7319 7320 /* close the racy window with snapshot create/destroy ioctl */ 7321 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7322 down_read(&root->fs_info->subvol_sem); 7323 /* 7324 * We want to reserve the absolute worst case amount of items. So if 7325 * both inodes are subvols and we need to unlink them then that would 7326 * require 4 item modifications, but if they are both normal inodes it 7327 * would require 5 item modifications, so we'll assume their normal 7328 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 7329 * should cover the worst case number of items we'll modify. 7330 */ 7331 trans = btrfs_start_transaction(root, 20); 7332 if (IS_ERR(trans)) { 7333 ret = PTR_ERR(trans); 7334 goto out_notrans; 7335 } 7336 7337 if (dest != root) 7338 btrfs_record_root_in_trans(trans, dest); 7339 7340 ret = btrfs_set_inode_index(new_dir, &index); 7341 if (ret) 7342 goto out_fail; 7343 7344 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7345 /* force full log commit if subvolume involved. */ 7346 root->fs_info->last_trans_log_full_commit = trans->transid; 7347 } else { 7348 ret = btrfs_insert_inode_ref(trans, dest, 7349 new_dentry->d_name.name, 7350 new_dentry->d_name.len, 7351 old_ino, 7352 btrfs_ino(new_dir), index); 7353 if (ret) 7354 goto out_fail; 7355 /* 7356 * this is an ugly little race, but the rename is required 7357 * to make sure that if we crash, the inode is either at the 7358 * old name or the new one. pinning the log transaction lets 7359 * us make sure we don't allow a log commit to come in after 7360 * we unlink the name but before we add the new name back in. 7361 */ 7362 btrfs_pin_log_trans(root); 7363 } 7364 /* 7365 * make sure the inode gets flushed if it is replacing 7366 * something. 7367 */ 7368 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7369 btrfs_add_ordered_operation(trans, root, old_inode); 7370 7371 inode_inc_iversion(old_dir); 7372 inode_inc_iversion(new_dir); 7373 inode_inc_iversion(old_inode); 7374 old_dir->i_ctime = old_dir->i_mtime = ctime; 7375 new_dir->i_ctime = new_dir->i_mtime = ctime; 7376 old_inode->i_ctime = ctime; 7377 7378 if (old_dentry->d_parent != new_dentry->d_parent) 7379 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7380 7381 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7382 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7383 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7384 old_dentry->d_name.name, 7385 old_dentry->d_name.len); 7386 } else { 7387 ret = __btrfs_unlink_inode(trans, root, old_dir, 7388 old_dentry->d_inode, 7389 old_dentry->d_name.name, 7390 old_dentry->d_name.len); 7391 if (!ret) 7392 ret = btrfs_update_inode(trans, root, old_inode); 7393 } 7394 if (ret) { 7395 btrfs_abort_transaction(trans, root, ret); 7396 goto out_fail; 7397 } 7398 7399 if (new_inode) { 7400 inode_inc_iversion(new_inode); 7401 new_inode->i_ctime = CURRENT_TIME; 7402 if (unlikely(btrfs_ino(new_inode) == 7403 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7404 root_objectid = BTRFS_I(new_inode)->location.objectid; 7405 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7406 root_objectid, 7407 new_dentry->d_name.name, 7408 new_dentry->d_name.len); 7409 BUG_ON(new_inode->i_nlink == 0); 7410 } else { 7411 ret = btrfs_unlink_inode(trans, dest, new_dir, 7412 new_dentry->d_inode, 7413 new_dentry->d_name.name, 7414 new_dentry->d_name.len); 7415 } 7416 if (!ret && new_inode->i_nlink == 0) { 7417 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7418 BUG_ON(ret); 7419 } 7420 if (ret) { 7421 btrfs_abort_transaction(trans, root, ret); 7422 goto out_fail; 7423 } 7424 } 7425 7426 fixup_inode_flags(new_dir, old_inode); 7427 7428 ret = btrfs_add_link(trans, new_dir, old_inode, 7429 new_dentry->d_name.name, 7430 new_dentry->d_name.len, 0, index); 7431 if (ret) { 7432 btrfs_abort_transaction(trans, root, ret); 7433 goto out_fail; 7434 } 7435 7436 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7437 struct dentry *parent = new_dentry->d_parent; 7438 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7439 btrfs_end_log_trans(root); 7440 } 7441 out_fail: 7442 btrfs_end_transaction(trans, root); 7443 out_notrans: 7444 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7445 up_read(&root->fs_info->subvol_sem); 7446 7447 return ret; 7448 } 7449 7450 /* 7451 * some fairly slow code that needs optimization. This walks the list 7452 * of all the inodes with pending delalloc and forces them to disk. 7453 */ 7454 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7455 { 7456 struct list_head *head = &root->fs_info->delalloc_inodes; 7457 struct btrfs_inode *binode; 7458 struct inode *inode; 7459 7460 if (root->fs_info->sb->s_flags & MS_RDONLY) 7461 return -EROFS; 7462 7463 spin_lock(&root->fs_info->delalloc_lock); 7464 while (!list_empty(head)) { 7465 binode = list_entry(head->next, struct btrfs_inode, 7466 delalloc_inodes); 7467 inode = igrab(&binode->vfs_inode); 7468 if (!inode) 7469 list_del_init(&binode->delalloc_inodes); 7470 spin_unlock(&root->fs_info->delalloc_lock); 7471 if (inode) { 7472 filemap_flush(inode->i_mapping); 7473 if (delay_iput) 7474 btrfs_add_delayed_iput(inode); 7475 else 7476 iput(inode); 7477 } 7478 cond_resched(); 7479 spin_lock(&root->fs_info->delalloc_lock); 7480 } 7481 spin_unlock(&root->fs_info->delalloc_lock); 7482 7483 /* the filemap_flush will queue IO into the worker threads, but 7484 * we have to make sure the IO is actually started and that 7485 * ordered extents get created before we return 7486 */ 7487 atomic_inc(&root->fs_info->async_submit_draining); 7488 while (atomic_read(&root->fs_info->nr_async_submits) || 7489 atomic_read(&root->fs_info->async_delalloc_pages)) { 7490 wait_event(root->fs_info->async_submit_wait, 7491 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7492 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7493 } 7494 atomic_dec(&root->fs_info->async_submit_draining); 7495 return 0; 7496 } 7497 7498 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7499 const char *symname) 7500 { 7501 struct btrfs_trans_handle *trans; 7502 struct btrfs_root *root = BTRFS_I(dir)->root; 7503 struct btrfs_path *path; 7504 struct btrfs_key key; 7505 struct inode *inode = NULL; 7506 int err; 7507 int drop_inode = 0; 7508 u64 objectid; 7509 u64 index = 0 ; 7510 int name_len; 7511 int datasize; 7512 unsigned long ptr; 7513 struct btrfs_file_extent_item *ei; 7514 struct extent_buffer *leaf; 7515 unsigned long nr = 0; 7516 7517 name_len = strlen(symname) + 1; 7518 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7519 return -ENAMETOOLONG; 7520 7521 /* 7522 * 2 items for inode item and ref 7523 * 2 items for dir items 7524 * 1 item for xattr if selinux is on 7525 */ 7526 trans = btrfs_start_transaction(root, 5); 7527 if (IS_ERR(trans)) 7528 return PTR_ERR(trans); 7529 7530 err = btrfs_find_free_ino(root, &objectid); 7531 if (err) 7532 goto out_unlock; 7533 7534 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7535 dentry->d_name.len, btrfs_ino(dir), objectid, 7536 S_IFLNK|S_IRWXUGO, &index); 7537 if (IS_ERR(inode)) { 7538 err = PTR_ERR(inode); 7539 goto out_unlock; 7540 } 7541 7542 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7543 if (err) { 7544 drop_inode = 1; 7545 goto out_unlock; 7546 } 7547 7548 /* 7549 * If the active LSM wants to access the inode during 7550 * d_instantiate it needs these. Smack checks to see 7551 * if the filesystem supports xattrs by looking at the 7552 * ops vector. 7553 */ 7554 inode->i_fop = &btrfs_file_operations; 7555 inode->i_op = &btrfs_file_inode_operations; 7556 7557 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7558 if (err) 7559 drop_inode = 1; 7560 else { 7561 inode->i_mapping->a_ops = &btrfs_aops; 7562 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7563 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7564 } 7565 if (drop_inode) 7566 goto out_unlock; 7567 7568 path = btrfs_alloc_path(); 7569 if (!path) { 7570 err = -ENOMEM; 7571 drop_inode = 1; 7572 goto out_unlock; 7573 } 7574 key.objectid = btrfs_ino(inode); 7575 key.offset = 0; 7576 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7577 datasize = btrfs_file_extent_calc_inline_size(name_len); 7578 err = btrfs_insert_empty_item(trans, root, path, &key, 7579 datasize); 7580 if (err) { 7581 drop_inode = 1; 7582 btrfs_free_path(path); 7583 goto out_unlock; 7584 } 7585 leaf = path->nodes[0]; 7586 ei = btrfs_item_ptr(leaf, path->slots[0], 7587 struct btrfs_file_extent_item); 7588 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7589 btrfs_set_file_extent_type(leaf, ei, 7590 BTRFS_FILE_EXTENT_INLINE); 7591 btrfs_set_file_extent_encryption(leaf, ei, 0); 7592 btrfs_set_file_extent_compression(leaf, ei, 0); 7593 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7594 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7595 7596 ptr = btrfs_file_extent_inline_start(ei); 7597 write_extent_buffer(leaf, symname, ptr, name_len); 7598 btrfs_mark_buffer_dirty(leaf); 7599 btrfs_free_path(path); 7600 7601 inode->i_op = &btrfs_symlink_inode_operations; 7602 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7603 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7604 inode_set_bytes(inode, name_len); 7605 btrfs_i_size_write(inode, name_len - 1); 7606 err = btrfs_update_inode(trans, root, inode); 7607 if (err) 7608 drop_inode = 1; 7609 7610 out_unlock: 7611 if (!err) 7612 d_instantiate(dentry, inode); 7613 nr = trans->blocks_used; 7614 btrfs_end_transaction(trans, root); 7615 if (drop_inode) { 7616 inode_dec_link_count(inode); 7617 iput(inode); 7618 } 7619 btrfs_btree_balance_dirty(root, nr); 7620 return err; 7621 } 7622 7623 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7624 u64 start, u64 num_bytes, u64 min_size, 7625 loff_t actual_len, u64 *alloc_hint, 7626 struct btrfs_trans_handle *trans) 7627 { 7628 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 7629 struct extent_map *em; 7630 struct btrfs_root *root = BTRFS_I(inode)->root; 7631 struct btrfs_key ins; 7632 u64 cur_offset = start; 7633 u64 i_size; 7634 int ret = 0; 7635 bool own_trans = true; 7636 7637 if (trans) 7638 own_trans = false; 7639 while (num_bytes > 0) { 7640 if (own_trans) { 7641 trans = btrfs_start_transaction(root, 3); 7642 if (IS_ERR(trans)) { 7643 ret = PTR_ERR(trans); 7644 break; 7645 } 7646 } 7647 7648 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7649 0, *alloc_hint, &ins, 1); 7650 if (ret) { 7651 if (own_trans) 7652 btrfs_end_transaction(trans, root); 7653 break; 7654 } 7655 7656 ret = insert_reserved_file_extent(trans, inode, 7657 cur_offset, ins.objectid, 7658 ins.offset, ins.offset, 7659 ins.offset, 0, 0, 0, 7660 BTRFS_FILE_EXTENT_PREALLOC); 7661 if (ret) { 7662 btrfs_abort_transaction(trans, root, ret); 7663 if (own_trans) 7664 btrfs_end_transaction(trans, root); 7665 break; 7666 } 7667 btrfs_drop_extent_cache(inode, cur_offset, 7668 cur_offset + ins.offset -1, 0); 7669 7670 em = alloc_extent_map(); 7671 if (!em) { 7672 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 7673 &BTRFS_I(inode)->runtime_flags); 7674 goto next; 7675 } 7676 7677 em->start = cur_offset; 7678 em->orig_start = cur_offset; 7679 em->len = ins.offset; 7680 em->block_start = ins.objectid; 7681 em->block_len = ins.offset; 7682 em->bdev = root->fs_info->fs_devices->latest_bdev; 7683 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7684 em->generation = trans->transid; 7685 7686 while (1) { 7687 write_lock(&em_tree->lock); 7688 ret = add_extent_mapping(em_tree, em); 7689 if (!ret) 7690 list_move(&em->list, 7691 &em_tree->modified_extents); 7692 write_unlock(&em_tree->lock); 7693 if (ret != -EEXIST) 7694 break; 7695 btrfs_drop_extent_cache(inode, cur_offset, 7696 cur_offset + ins.offset - 1, 7697 0); 7698 } 7699 free_extent_map(em); 7700 next: 7701 num_bytes -= ins.offset; 7702 cur_offset += ins.offset; 7703 *alloc_hint = ins.objectid + ins.offset; 7704 7705 inode_inc_iversion(inode); 7706 inode->i_ctime = CURRENT_TIME; 7707 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7708 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7709 (actual_len > inode->i_size) && 7710 (cur_offset > inode->i_size)) { 7711 if (cur_offset > actual_len) 7712 i_size = actual_len; 7713 else 7714 i_size = cur_offset; 7715 i_size_write(inode, i_size); 7716 btrfs_ordered_update_i_size(inode, i_size, NULL); 7717 } 7718 7719 ret = btrfs_update_inode(trans, root, inode); 7720 7721 if (ret) { 7722 btrfs_abort_transaction(trans, root, ret); 7723 if (own_trans) 7724 btrfs_end_transaction(trans, root); 7725 break; 7726 } 7727 7728 if (own_trans) 7729 btrfs_end_transaction(trans, root); 7730 } 7731 return ret; 7732 } 7733 7734 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7735 u64 start, u64 num_bytes, u64 min_size, 7736 loff_t actual_len, u64 *alloc_hint) 7737 { 7738 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7739 min_size, actual_len, alloc_hint, 7740 NULL); 7741 } 7742 7743 int btrfs_prealloc_file_range_trans(struct inode *inode, 7744 struct btrfs_trans_handle *trans, int mode, 7745 u64 start, u64 num_bytes, u64 min_size, 7746 loff_t actual_len, u64 *alloc_hint) 7747 { 7748 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7749 min_size, actual_len, alloc_hint, trans); 7750 } 7751 7752 static int btrfs_set_page_dirty(struct page *page) 7753 { 7754 return __set_page_dirty_nobuffers(page); 7755 } 7756 7757 static int btrfs_permission(struct inode *inode, int mask) 7758 { 7759 struct btrfs_root *root = BTRFS_I(inode)->root; 7760 umode_t mode = inode->i_mode; 7761 7762 if (mask & MAY_WRITE && 7763 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7764 if (btrfs_root_readonly(root)) 7765 return -EROFS; 7766 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7767 return -EACCES; 7768 } 7769 return generic_permission(inode, mask); 7770 } 7771 7772 static const struct inode_operations btrfs_dir_inode_operations = { 7773 .getattr = btrfs_getattr, 7774 .lookup = btrfs_lookup, 7775 .create = btrfs_create, 7776 .unlink = btrfs_unlink, 7777 .link = btrfs_link, 7778 .mkdir = btrfs_mkdir, 7779 .rmdir = btrfs_rmdir, 7780 .rename = btrfs_rename, 7781 .symlink = btrfs_symlink, 7782 .setattr = btrfs_setattr, 7783 .mknod = btrfs_mknod, 7784 .setxattr = btrfs_setxattr, 7785 .getxattr = btrfs_getxattr, 7786 .listxattr = btrfs_listxattr, 7787 .removexattr = btrfs_removexattr, 7788 .permission = btrfs_permission, 7789 .get_acl = btrfs_get_acl, 7790 }; 7791 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7792 .lookup = btrfs_lookup, 7793 .permission = btrfs_permission, 7794 .get_acl = btrfs_get_acl, 7795 }; 7796 7797 static const struct file_operations btrfs_dir_file_operations = { 7798 .llseek = generic_file_llseek, 7799 .read = generic_read_dir, 7800 .readdir = btrfs_real_readdir, 7801 .unlocked_ioctl = btrfs_ioctl, 7802 #ifdef CONFIG_COMPAT 7803 .compat_ioctl = btrfs_ioctl, 7804 #endif 7805 .release = btrfs_release_file, 7806 .fsync = btrfs_sync_file, 7807 }; 7808 7809 static struct extent_io_ops btrfs_extent_io_ops = { 7810 .fill_delalloc = run_delalloc_range, 7811 .submit_bio_hook = btrfs_submit_bio_hook, 7812 .merge_bio_hook = btrfs_merge_bio_hook, 7813 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7814 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7815 .writepage_start_hook = btrfs_writepage_start_hook, 7816 .set_bit_hook = btrfs_set_bit_hook, 7817 .clear_bit_hook = btrfs_clear_bit_hook, 7818 .merge_extent_hook = btrfs_merge_extent_hook, 7819 .split_extent_hook = btrfs_split_extent_hook, 7820 }; 7821 7822 /* 7823 * btrfs doesn't support the bmap operation because swapfiles 7824 * use bmap to make a mapping of extents in the file. They assume 7825 * these extents won't change over the life of the file and they 7826 * use the bmap result to do IO directly to the drive. 7827 * 7828 * the btrfs bmap call would return logical addresses that aren't 7829 * suitable for IO and they also will change frequently as COW 7830 * operations happen. So, swapfile + btrfs == corruption. 7831 * 7832 * For now we're avoiding this by dropping bmap. 7833 */ 7834 static const struct address_space_operations btrfs_aops = { 7835 .readpage = btrfs_readpage, 7836 .writepage = btrfs_writepage, 7837 .writepages = btrfs_writepages, 7838 .readpages = btrfs_readpages, 7839 .direct_IO = btrfs_direct_IO, 7840 .invalidatepage = btrfs_invalidatepage, 7841 .releasepage = btrfs_releasepage, 7842 .set_page_dirty = btrfs_set_page_dirty, 7843 .error_remove_page = generic_error_remove_page, 7844 }; 7845 7846 static const struct address_space_operations btrfs_symlink_aops = { 7847 .readpage = btrfs_readpage, 7848 .writepage = btrfs_writepage, 7849 .invalidatepage = btrfs_invalidatepage, 7850 .releasepage = btrfs_releasepage, 7851 }; 7852 7853 static const struct inode_operations btrfs_file_inode_operations = { 7854 .getattr = btrfs_getattr, 7855 .setattr = btrfs_setattr, 7856 .setxattr = btrfs_setxattr, 7857 .getxattr = btrfs_getxattr, 7858 .listxattr = btrfs_listxattr, 7859 .removexattr = btrfs_removexattr, 7860 .permission = btrfs_permission, 7861 .fiemap = btrfs_fiemap, 7862 .get_acl = btrfs_get_acl, 7863 .update_time = btrfs_update_time, 7864 }; 7865 static const struct inode_operations btrfs_special_inode_operations = { 7866 .getattr = btrfs_getattr, 7867 .setattr = btrfs_setattr, 7868 .permission = btrfs_permission, 7869 .setxattr = btrfs_setxattr, 7870 .getxattr = btrfs_getxattr, 7871 .listxattr = btrfs_listxattr, 7872 .removexattr = btrfs_removexattr, 7873 .get_acl = btrfs_get_acl, 7874 .update_time = btrfs_update_time, 7875 }; 7876 static const struct inode_operations btrfs_symlink_inode_operations = { 7877 .readlink = generic_readlink, 7878 .follow_link = page_follow_link_light, 7879 .put_link = page_put_link, 7880 .getattr = btrfs_getattr, 7881 .setattr = btrfs_setattr, 7882 .permission = btrfs_permission, 7883 .setxattr = btrfs_setxattr, 7884 .getxattr = btrfs_getxattr, 7885 .listxattr = btrfs_listxattr, 7886 .removexattr = btrfs_removexattr, 7887 .get_acl = btrfs_get_acl, 7888 .update_time = btrfs_update_time, 7889 }; 7890 7891 const struct dentry_operations btrfs_dentry_operations = { 7892 .d_delete = btrfs_dentry_delete, 7893 .d_release = btrfs_dentry_release, 7894 }; 7895