1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include <linux/magic.h> 46 #include <linux/iversion.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "ordered-data.h" 53 #include "xattr.h" 54 #include "tree-log.h" 55 #include "volumes.h" 56 #include "compression.h" 57 #include "locking.h" 58 #include "free-space-cache.h" 59 #include "inode-map.h" 60 #include "backref.h" 61 #include "hash.h" 62 #include "props.h" 63 #include "qgroup.h" 64 #include "dedupe.h" 65 66 struct btrfs_iget_args { 67 struct btrfs_key *location; 68 struct btrfs_root *root; 69 }; 70 71 struct btrfs_dio_data { 72 u64 reserve; 73 u64 unsubmitted_oe_range_start; 74 u64 unsubmitted_oe_range_end; 75 int overwrite; 76 }; 77 78 static const struct inode_operations btrfs_dir_inode_operations; 79 static const struct inode_operations btrfs_symlink_inode_operations; 80 static const struct inode_operations btrfs_dir_ro_inode_operations; 81 static const struct inode_operations btrfs_special_inode_operations; 82 static const struct inode_operations btrfs_file_inode_operations; 83 static const struct address_space_operations btrfs_aops; 84 static const struct address_space_operations btrfs_symlink_aops; 85 static const struct file_operations btrfs_dir_file_operations; 86 static const struct extent_io_ops btrfs_extent_io_ops; 87 88 static struct kmem_cache *btrfs_inode_cachep; 89 struct kmem_cache *btrfs_trans_handle_cachep; 90 struct kmem_cache *btrfs_path_cachep; 91 struct kmem_cache *btrfs_free_space_cachep; 92 93 #define S_SHIFT 12 94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 102 }; 103 104 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 105 static int btrfs_truncate(struct inode *inode); 106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 107 static noinline int cow_file_range(struct inode *inode, 108 struct page *locked_page, 109 u64 start, u64 end, u64 delalloc_end, 110 int *page_started, unsigned long *nr_written, 111 int unlock, struct btrfs_dedupe_hash *hash); 112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 113 u64 orig_start, u64 block_start, 114 u64 block_len, u64 orig_block_len, 115 u64 ram_bytes, int compress_type, 116 int type); 117 118 static void __endio_write_update_ordered(struct inode *inode, 119 const u64 offset, const u64 bytes, 120 const bool uptodate); 121 122 /* 123 * Cleanup all submitted ordered extents in specified range to handle errors 124 * from the fill_dellaloc() callback. 125 * 126 * NOTE: caller must ensure that when an error happens, it can not call 127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 129 * to be released, which we want to happen only when finishing the ordered 130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 131 * fill_delalloc() callback already does proper cleanup for the first page of 132 * the range, that is, it invokes the callback writepage_end_io_hook() for the 133 * range of the first page. 134 */ 135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 136 const u64 offset, 137 const u64 bytes) 138 { 139 unsigned long index = offset >> PAGE_SHIFT; 140 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 141 struct page *page; 142 143 while (index <= end_index) { 144 page = find_get_page(inode->i_mapping, index); 145 index++; 146 if (!page) 147 continue; 148 ClearPagePrivate2(page); 149 put_page(page); 150 } 151 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 152 bytes - PAGE_SIZE, false); 153 } 154 155 static int btrfs_dirty_inode(struct inode *inode); 156 157 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 158 void btrfs_test_inode_set_ops(struct inode *inode) 159 { 160 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 161 } 162 #endif 163 164 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 165 struct inode *inode, struct inode *dir, 166 const struct qstr *qstr) 167 { 168 int err; 169 170 err = btrfs_init_acl(trans, inode, dir); 171 if (!err) 172 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 173 return err; 174 } 175 176 /* 177 * this does all the hard work for inserting an inline extent into 178 * the btree. The caller should have done a btrfs_drop_extents so that 179 * no overlapping inline items exist in the btree 180 */ 181 static int insert_inline_extent(struct btrfs_trans_handle *trans, 182 struct btrfs_path *path, int extent_inserted, 183 struct btrfs_root *root, struct inode *inode, 184 u64 start, size_t size, size_t compressed_size, 185 int compress_type, 186 struct page **compressed_pages) 187 { 188 struct extent_buffer *leaf; 189 struct page *page = NULL; 190 char *kaddr; 191 unsigned long ptr; 192 struct btrfs_file_extent_item *ei; 193 int ret; 194 size_t cur_size = size; 195 unsigned long offset; 196 197 if (compressed_size && compressed_pages) 198 cur_size = compressed_size; 199 200 inode_add_bytes(inode, size); 201 202 if (!extent_inserted) { 203 struct btrfs_key key; 204 size_t datasize; 205 206 key.objectid = btrfs_ino(BTRFS_I(inode)); 207 key.offset = start; 208 key.type = BTRFS_EXTENT_DATA_KEY; 209 210 datasize = btrfs_file_extent_calc_inline_size(cur_size); 211 path->leave_spinning = 1; 212 ret = btrfs_insert_empty_item(trans, root, path, &key, 213 datasize); 214 if (ret) 215 goto fail; 216 } 217 leaf = path->nodes[0]; 218 ei = btrfs_item_ptr(leaf, path->slots[0], 219 struct btrfs_file_extent_item); 220 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 221 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 222 btrfs_set_file_extent_encryption(leaf, ei, 0); 223 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 224 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 225 ptr = btrfs_file_extent_inline_start(ei); 226 227 if (compress_type != BTRFS_COMPRESS_NONE) { 228 struct page *cpage; 229 int i = 0; 230 while (compressed_size > 0) { 231 cpage = compressed_pages[i]; 232 cur_size = min_t(unsigned long, compressed_size, 233 PAGE_SIZE); 234 235 kaddr = kmap_atomic(cpage); 236 write_extent_buffer(leaf, kaddr, ptr, cur_size); 237 kunmap_atomic(kaddr); 238 239 i++; 240 ptr += cur_size; 241 compressed_size -= cur_size; 242 } 243 btrfs_set_file_extent_compression(leaf, ei, 244 compress_type); 245 } else { 246 page = find_get_page(inode->i_mapping, 247 start >> PAGE_SHIFT); 248 btrfs_set_file_extent_compression(leaf, ei, 0); 249 kaddr = kmap_atomic(page); 250 offset = start & (PAGE_SIZE - 1); 251 write_extent_buffer(leaf, kaddr + offset, ptr, size); 252 kunmap_atomic(kaddr); 253 put_page(page); 254 } 255 btrfs_mark_buffer_dirty(leaf); 256 btrfs_release_path(path); 257 258 /* 259 * we're an inline extent, so nobody can 260 * extend the file past i_size without locking 261 * a page we already have locked. 262 * 263 * We must do any isize and inode updates 264 * before we unlock the pages. Otherwise we 265 * could end up racing with unlink. 266 */ 267 BTRFS_I(inode)->disk_i_size = inode->i_size; 268 ret = btrfs_update_inode(trans, root, inode); 269 270 fail: 271 return ret; 272 } 273 274 275 /* 276 * conditionally insert an inline extent into the file. This 277 * does the checks required to make sure the data is small enough 278 * to fit as an inline extent. 279 */ 280 static noinline int cow_file_range_inline(struct btrfs_root *root, 281 struct inode *inode, u64 start, 282 u64 end, size_t compressed_size, 283 int compress_type, 284 struct page **compressed_pages) 285 { 286 struct btrfs_fs_info *fs_info = root->fs_info; 287 struct btrfs_trans_handle *trans; 288 u64 isize = i_size_read(inode); 289 u64 actual_end = min(end + 1, isize); 290 u64 inline_len = actual_end - start; 291 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 292 u64 data_len = inline_len; 293 int ret; 294 struct btrfs_path *path; 295 int extent_inserted = 0; 296 u32 extent_item_size; 297 298 if (compressed_size) 299 data_len = compressed_size; 300 301 if (start > 0 || 302 actual_end > fs_info->sectorsize || 303 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 304 (!compressed_size && 305 (actual_end & (fs_info->sectorsize - 1)) == 0) || 306 end + 1 < isize || 307 data_len > fs_info->max_inline) { 308 return 1; 309 } 310 311 path = btrfs_alloc_path(); 312 if (!path) 313 return -ENOMEM; 314 315 trans = btrfs_join_transaction(root); 316 if (IS_ERR(trans)) { 317 btrfs_free_path(path); 318 return PTR_ERR(trans); 319 } 320 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 321 322 if (compressed_size && compressed_pages) 323 extent_item_size = btrfs_file_extent_calc_inline_size( 324 compressed_size); 325 else 326 extent_item_size = btrfs_file_extent_calc_inline_size( 327 inline_len); 328 329 ret = __btrfs_drop_extents(trans, root, inode, path, 330 start, aligned_end, NULL, 331 1, 1, extent_item_size, &extent_inserted); 332 if (ret) { 333 btrfs_abort_transaction(trans, ret); 334 goto out; 335 } 336 337 if (isize > actual_end) 338 inline_len = min_t(u64, isize, actual_end); 339 ret = insert_inline_extent(trans, path, extent_inserted, 340 root, inode, start, 341 inline_len, compressed_size, 342 compress_type, compressed_pages); 343 if (ret && ret != -ENOSPC) { 344 btrfs_abort_transaction(trans, ret); 345 goto out; 346 } else if (ret == -ENOSPC) { 347 ret = 1; 348 goto out; 349 } 350 351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 353 out: 354 /* 355 * Don't forget to free the reserved space, as for inlined extent 356 * it won't count as data extent, free them directly here. 357 * And at reserve time, it's always aligned to page size, so 358 * just free one page here. 359 */ 360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 361 btrfs_free_path(path); 362 btrfs_end_transaction(trans); 363 return ret; 364 } 365 366 struct async_extent { 367 u64 start; 368 u64 ram_size; 369 u64 compressed_size; 370 struct page **pages; 371 unsigned long nr_pages; 372 int compress_type; 373 struct list_head list; 374 }; 375 376 struct async_cow { 377 struct inode *inode; 378 struct btrfs_root *root; 379 struct page *locked_page; 380 u64 start; 381 u64 end; 382 unsigned int write_flags; 383 struct list_head extents; 384 struct btrfs_work work; 385 }; 386 387 static noinline int add_async_extent(struct async_cow *cow, 388 u64 start, u64 ram_size, 389 u64 compressed_size, 390 struct page **pages, 391 unsigned long nr_pages, 392 int compress_type) 393 { 394 struct async_extent *async_extent; 395 396 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 397 BUG_ON(!async_extent); /* -ENOMEM */ 398 async_extent->start = start; 399 async_extent->ram_size = ram_size; 400 async_extent->compressed_size = compressed_size; 401 async_extent->pages = pages; 402 async_extent->nr_pages = nr_pages; 403 async_extent->compress_type = compress_type; 404 list_add_tail(&async_extent->list, &cow->extents); 405 return 0; 406 } 407 408 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 409 { 410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 411 412 /* force compress */ 413 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 414 return 1; 415 /* defrag ioctl */ 416 if (BTRFS_I(inode)->defrag_compress) 417 return 1; 418 /* bad compression ratios */ 419 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 420 return 0; 421 if (btrfs_test_opt(fs_info, COMPRESS) || 422 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 423 BTRFS_I(inode)->prop_compress) 424 return btrfs_compress_heuristic(inode, start, end); 425 return 0; 426 } 427 428 static inline void inode_should_defrag(struct btrfs_inode *inode, 429 u64 start, u64 end, u64 num_bytes, u64 small_write) 430 { 431 /* If this is a small write inside eof, kick off a defrag */ 432 if (num_bytes < small_write && 433 (start > 0 || end + 1 < inode->disk_i_size)) 434 btrfs_add_inode_defrag(NULL, inode); 435 } 436 437 /* 438 * we create compressed extents in two phases. The first 439 * phase compresses a range of pages that have already been 440 * locked (both pages and state bits are locked). 441 * 442 * This is done inside an ordered work queue, and the compression 443 * is spread across many cpus. The actual IO submission is step 444 * two, and the ordered work queue takes care of making sure that 445 * happens in the same order things were put onto the queue by 446 * writepages and friends. 447 * 448 * If this code finds it can't get good compression, it puts an 449 * entry onto the work queue to write the uncompressed bytes. This 450 * makes sure that both compressed inodes and uncompressed inodes 451 * are written in the same order that the flusher thread sent them 452 * down. 453 */ 454 static noinline void compress_file_range(struct inode *inode, 455 struct page *locked_page, 456 u64 start, u64 end, 457 struct async_cow *async_cow, 458 int *num_added) 459 { 460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 461 struct btrfs_root *root = BTRFS_I(inode)->root; 462 u64 blocksize = fs_info->sectorsize; 463 u64 actual_end; 464 u64 isize = i_size_read(inode); 465 int ret = 0; 466 struct page **pages = NULL; 467 unsigned long nr_pages; 468 unsigned long total_compressed = 0; 469 unsigned long total_in = 0; 470 int i; 471 int will_compress; 472 int compress_type = fs_info->compress_type; 473 int redirty = 0; 474 475 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 476 SZ_16K); 477 478 actual_end = min_t(u64, isize, end + 1); 479 again: 480 will_compress = 0; 481 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 482 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 483 nr_pages = min_t(unsigned long, nr_pages, 484 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 485 486 /* 487 * we don't want to send crud past the end of i_size through 488 * compression, that's just a waste of CPU time. So, if the 489 * end of the file is before the start of our current 490 * requested range of bytes, we bail out to the uncompressed 491 * cleanup code that can deal with all of this. 492 * 493 * It isn't really the fastest way to fix things, but this is a 494 * very uncommon corner. 495 */ 496 if (actual_end <= start) 497 goto cleanup_and_bail_uncompressed; 498 499 total_compressed = actual_end - start; 500 501 /* 502 * skip compression for a small file range(<=blocksize) that 503 * isn't an inline extent, since it doesn't save disk space at all. 504 */ 505 if (total_compressed <= blocksize && 506 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 507 goto cleanup_and_bail_uncompressed; 508 509 total_compressed = min_t(unsigned long, total_compressed, 510 BTRFS_MAX_UNCOMPRESSED); 511 total_in = 0; 512 ret = 0; 513 514 /* 515 * we do compression for mount -o compress and when the 516 * inode has not been flagged as nocompress. This flag can 517 * change at any time if we discover bad compression ratios. 518 */ 519 if (inode_need_compress(inode, start, end)) { 520 WARN_ON(pages); 521 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 522 if (!pages) { 523 /* just bail out to the uncompressed code */ 524 goto cont; 525 } 526 527 if (BTRFS_I(inode)->defrag_compress) 528 compress_type = BTRFS_I(inode)->defrag_compress; 529 else if (BTRFS_I(inode)->prop_compress) 530 compress_type = BTRFS_I(inode)->prop_compress; 531 532 /* 533 * we need to call clear_page_dirty_for_io on each 534 * page in the range. Otherwise applications with the file 535 * mmap'd can wander in and change the page contents while 536 * we are compressing them. 537 * 538 * If the compression fails for any reason, we set the pages 539 * dirty again later on. 540 * 541 * Note that the remaining part is redirtied, the start pointer 542 * has moved, the end is the original one. 543 */ 544 if (!redirty) { 545 extent_range_clear_dirty_for_io(inode, start, end); 546 redirty = 1; 547 } 548 549 /* Compression level is applied here and only here */ 550 ret = btrfs_compress_pages( 551 compress_type | (fs_info->compress_level << 4), 552 inode->i_mapping, start, 553 pages, 554 &nr_pages, 555 &total_in, 556 &total_compressed); 557 558 if (!ret) { 559 unsigned long offset = total_compressed & 560 (PAGE_SIZE - 1); 561 struct page *page = pages[nr_pages - 1]; 562 char *kaddr; 563 564 /* zero the tail end of the last page, we might be 565 * sending it down to disk 566 */ 567 if (offset) { 568 kaddr = kmap_atomic(page); 569 memset(kaddr + offset, 0, 570 PAGE_SIZE - offset); 571 kunmap_atomic(kaddr); 572 } 573 will_compress = 1; 574 } 575 } 576 cont: 577 if (start == 0) { 578 /* lets try to make an inline extent */ 579 if (ret || total_in < actual_end) { 580 /* we didn't compress the entire range, try 581 * to make an uncompressed inline extent. 582 */ 583 ret = cow_file_range_inline(root, inode, start, end, 584 0, BTRFS_COMPRESS_NONE, NULL); 585 } else { 586 /* try making a compressed inline extent */ 587 ret = cow_file_range_inline(root, inode, start, end, 588 total_compressed, 589 compress_type, pages); 590 } 591 if (ret <= 0) { 592 unsigned long clear_flags = EXTENT_DELALLOC | 593 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 594 EXTENT_DO_ACCOUNTING; 595 unsigned long page_error_op; 596 597 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 598 599 /* 600 * inline extent creation worked or returned error, 601 * we don't need to create any more async work items. 602 * Unlock and free up our temp pages. 603 * 604 * We use DO_ACCOUNTING here because we need the 605 * delalloc_release_metadata to be done _after_ we drop 606 * our outstanding extent for clearing delalloc for this 607 * range. 608 */ 609 extent_clear_unlock_delalloc(inode, start, end, end, 610 NULL, clear_flags, 611 PAGE_UNLOCK | 612 PAGE_CLEAR_DIRTY | 613 PAGE_SET_WRITEBACK | 614 page_error_op | 615 PAGE_END_WRITEBACK); 616 goto free_pages_out; 617 } 618 } 619 620 if (will_compress) { 621 /* 622 * we aren't doing an inline extent round the compressed size 623 * up to a block size boundary so the allocator does sane 624 * things 625 */ 626 total_compressed = ALIGN(total_compressed, blocksize); 627 628 /* 629 * one last check to make sure the compression is really a 630 * win, compare the page count read with the blocks on disk, 631 * compression must free at least one sector size 632 */ 633 total_in = ALIGN(total_in, PAGE_SIZE); 634 if (total_compressed + blocksize <= total_in) { 635 *num_added += 1; 636 637 /* 638 * The async work queues will take care of doing actual 639 * allocation on disk for these compressed pages, and 640 * will submit them to the elevator. 641 */ 642 add_async_extent(async_cow, start, total_in, 643 total_compressed, pages, nr_pages, 644 compress_type); 645 646 if (start + total_in < end) { 647 start += total_in; 648 pages = NULL; 649 cond_resched(); 650 goto again; 651 } 652 return; 653 } 654 } 655 if (pages) { 656 /* 657 * the compression code ran but failed to make things smaller, 658 * free any pages it allocated and our page pointer array 659 */ 660 for (i = 0; i < nr_pages; i++) { 661 WARN_ON(pages[i]->mapping); 662 put_page(pages[i]); 663 } 664 kfree(pages); 665 pages = NULL; 666 total_compressed = 0; 667 nr_pages = 0; 668 669 /* flag the file so we don't compress in the future */ 670 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 671 !(BTRFS_I(inode)->prop_compress)) { 672 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 673 } 674 } 675 cleanup_and_bail_uncompressed: 676 /* 677 * No compression, but we still need to write the pages in the file 678 * we've been given so far. redirty the locked page if it corresponds 679 * to our extent and set things up for the async work queue to run 680 * cow_file_range to do the normal delalloc dance. 681 */ 682 if (page_offset(locked_page) >= start && 683 page_offset(locked_page) <= end) 684 __set_page_dirty_nobuffers(locked_page); 685 /* unlocked later on in the async handlers */ 686 687 if (redirty) 688 extent_range_redirty_for_io(inode, start, end); 689 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 690 BTRFS_COMPRESS_NONE); 691 *num_added += 1; 692 693 return; 694 695 free_pages_out: 696 for (i = 0; i < nr_pages; i++) { 697 WARN_ON(pages[i]->mapping); 698 put_page(pages[i]); 699 } 700 kfree(pages); 701 } 702 703 static void free_async_extent_pages(struct async_extent *async_extent) 704 { 705 int i; 706 707 if (!async_extent->pages) 708 return; 709 710 for (i = 0; i < async_extent->nr_pages; i++) { 711 WARN_ON(async_extent->pages[i]->mapping); 712 put_page(async_extent->pages[i]); 713 } 714 kfree(async_extent->pages); 715 async_extent->nr_pages = 0; 716 async_extent->pages = NULL; 717 } 718 719 /* 720 * phase two of compressed writeback. This is the ordered portion 721 * of the code, which only gets called in the order the work was 722 * queued. We walk all the async extents created by compress_file_range 723 * and send them down to the disk. 724 */ 725 static noinline void submit_compressed_extents(struct inode *inode, 726 struct async_cow *async_cow) 727 { 728 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 729 struct async_extent *async_extent; 730 u64 alloc_hint = 0; 731 struct btrfs_key ins; 732 struct extent_map *em; 733 struct btrfs_root *root = BTRFS_I(inode)->root; 734 struct extent_io_tree *io_tree; 735 int ret = 0; 736 737 again: 738 while (!list_empty(&async_cow->extents)) { 739 async_extent = list_entry(async_cow->extents.next, 740 struct async_extent, list); 741 list_del(&async_extent->list); 742 743 io_tree = &BTRFS_I(inode)->io_tree; 744 745 retry: 746 /* did the compression code fall back to uncompressed IO? */ 747 if (!async_extent->pages) { 748 int page_started = 0; 749 unsigned long nr_written = 0; 750 751 lock_extent(io_tree, async_extent->start, 752 async_extent->start + 753 async_extent->ram_size - 1); 754 755 /* allocate blocks */ 756 ret = cow_file_range(inode, async_cow->locked_page, 757 async_extent->start, 758 async_extent->start + 759 async_extent->ram_size - 1, 760 async_extent->start + 761 async_extent->ram_size - 1, 762 &page_started, &nr_written, 0, 763 NULL); 764 765 /* JDM XXX */ 766 767 /* 768 * if page_started, cow_file_range inserted an 769 * inline extent and took care of all the unlocking 770 * and IO for us. Otherwise, we need to submit 771 * all those pages down to the drive. 772 */ 773 if (!page_started && !ret) 774 extent_write_locked_range(inode, 775 async_extent->start, 776 async_extent->start + 777 async_extent->ram_size - 1, 778 WB_SYNC_ALL); 779 else if (ret) 780 unlock_page(async_cow->locked_page); 781 kfree(async_extent); 782 cond_resched(); 783 continue; 784 } 785 786 lock_extent(io_tree, async_extent->start, 787 async_extent->start + async_extent->ram_size - 1); 788 789 ret = btrfs_reserve_extent(root, async_extent->ram_size, 790 async_extent->compressed_size, 791 async_extent->compressed_size, 792 0, alloc_hint, &ins, 1, 1); 793 if (ret) { 794 free_async_extent_pages(async_extent); 795 796 if (ret == -ENOSPC) { 797 unlock_extent(io_tree, async_extent->start, 798 async_extent->start + 799 async_extent->ram_size - 1); 800 801 /* 802 * we need to redirty the pages if we decide to 803 * fallback to uncompressed IO, otherwise we 804 * will not submit these pages down to lower 805 * layers. 806 */ 807 extent_range_redirty_for_io(inode, 808 async_extent->start, 809 async_extent->start + 810 async_extent->ram_size - 1); 811 812 goto retry; 813 } 814 goto out_free; 815 } 816 /* 817 * here we're doing allocation and writeback of the 818 * compressed pages 819 */ 820 em = create_io_em(inode, async_extent->start, 821 async_extent->ram_size, /* len */ 822 async_extent->start, /* orig_start */ 823 ins.objectid, /* block_start */ 824 ins.offset, /* block_len */ 825 ins.offset, /* orig_block_len */ 826 async_extent->ram_size, /* ram_bytes */ 827 async_extent->compress_type, 828 BTRFS_ORDERED_COMPRESSED); 829 if (IS_ERR(em)) 830 /* ret value is not necessary due to void function */ 831 goto out_free_reserve; 832 free_extent_map(em); 833 834 ret = btrfs_add_ordered_extent_compress(inode, 835 async_extent->start, 836 ins.objectid, 837 async_extent->ram_size, 838 ins.offset, 839 BTRFS_ORDERED_COMPRESSED, 840 async_extent->compress_type); 841 if (ret) { 842 btrfs_drop_extent_cache(BTRFS_I(inode), 843 async_extent->start, 844 async_extent->start + 845 async_extent->ram_size - 1, 0); 846 goto out_free_reserve; 847 } 848 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 849 850 /* 851 * clear dirty, set writeback and unlock the pages. 852 */ 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 async_extent->start + 857 async_extent->ram_size - 1, 858 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 859 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 860 PAGE_SET_WRITEBACK); 861 if (btrfs_submit_compressed_write(inode, 862 async_extent->start, 863 async_extent->ram_size, 864 ins.objectid, 865 ins.offset, async_extent->pages, 866 async_extent->nr_pages, 867 async_cow->write_flags)) { 868 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 869 struct page *p = async_extent->pages[0]; 870 const u64 start = async_extent->start; 871 const u64 end = start + async_extent->ram_size - 1; 872 873 p->mapping = inode->i_mapping; 874 tree->ops->writepage_end_io_hook(p, start, end, 875 NULL, 0); 876 p->mapping = NULL; 877 extent_clear_unlock_delalloc(inode, start, end, end, 878 NULL, 0, 879 PAGE_END_WRITEBACK | 880 PAGE_SET_ERROR); 881 free_async_extent_pages(async_extent); 882 } 883 alloc_hint = ins.objectid + ins.offset; 884 kfree(async_extent); 885 cond_resched(); 886 } 887 return; 888 out_free_reserve: 889 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 890 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 891 out_free: 892 extent_clear_unlock_delalloc(inode, async_extent->start, 893 async_extent->start + 894 async_extent->ram_size - 1, 895 async_extent->start + 896 async_extent->ram_size - 1, 897 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 898 EXTENT_DELALLOC_NEW | 899 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 900 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 901 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 902 PAGE_SET_ERROR); 903 free_async_extent_pages(async_extent); 904 kfree(async_extent); 905 goto again; 906 } 907 908 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 909 u64 num_bytes) 910 { 911 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 912 struct extent_map *em; 913 u64 alloc_hint = 0; 914 915 read_lock(&em_tree->lock); 916 em = search_extent_mapping(em_tree, start, num_bytes); 917 if (em) { 918 /* 919 * if block start isn't an actual block number then find the 920 * first block in this inode and use that as a hint. If that 921 * block is also bogus then just don't worry about it. 922 */ 923 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 924 free_extent_map(em); 925 em = search_extent_mapping(em_tree, 0, 0); 926 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 927 alloc_hint = em->block_start; 928 if (em) 929 free_extent_map(em); 930 } else { 931 alloc_hint = em->block_start; 932 free_extent_map(em); 933 } 934 } 935 read_unlock(&em_tree->lock); 936 937 return alloc_hint; 938 } 939 940 /* 941 * when extent_io.c finds a delayed allocation range in the file, 942 * the call backs end up in this code. The basic idea is to 943 * allocate extents on disk for the range, and create ordered data structs 944 * in ram to track those extents. 945 * 946 * locked_page is the page that writepage had locked already. We use 947 * it to make sure we don't do extra locks or unlocks. 948 * 949 * *page_started is set to one if we unlock locked_page and do everything 950 * required to start IO on it. It may be clean and already done with 951 * IO when we return. 952 */ 953 static noinline int cow_file_range(struct inode *inode, 954 struct page *locked_page, 955 u64 start, u64 end, u64 delalloc_end, 956 int *page_started, unsigned long *nr_written, 957 int unlock, struct btrfs_dedupe_hash *hash) 958 { 959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 960 struct btrfs_root *root = BTRFS_I(inode)->root; 961 u64 alloc_hint = 0; 962 u64 num_bytes; 963 unsigned long ram_size; 964 u64 disk_num_bytes; 965 u64 cur_alloc_size = 0; 966 u64 blocksize = fs_info->sectorsize; 967 struct btrfs_key ins; 968 struct extent_map *em; 969 unsigned clear_bits; 970 unsigned long page_ops; 971 bool extent_reserved = false; 972 int ret = 0; 973 974 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 975 WARN_ON_ONCE(1); 976 ret = -EINVAL; 977 goto out_unlock; 978 } 979 980 num_bytes = ALIGN(end - start + 1, blocksize); 981 num_bytes = max(blocksize, num_bytes); 982 disk_num_bytes = num_bytes; 983 984 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 985 986 if (start == 0) { 987 /* lets try to make an inline extent */ 988 ret = cow_file_range_inline(root, inode, start, end, 0, 989 BTRFS_COMPRESS_NONE, NULL); 990 if (ret == 0) { 991 /* 992 * We use DO_ACCOUNTING here because we need the 993 * delalloc_release_metadata to be run _after_ we drop 994 * our outstanding extent for clearing delalloc for this 995 * range. 996 */ 997 extent_clear_unlock_delalloc(inode, start, end, 998 delalloc_end, NULL, 999 EXTENT_LOCKED | EXTENT_DELALLOC | 1000 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1001 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1002 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1003 PAGE_END_WRITEBACK); 1004 *nr_written = *nr_written + 1005 (end - start + PAGE_SIZE) / PAGE_SIZE; 1006 *page_started = 1; 1007 goto out; 1008 } else if (ret < 0) { 1009 goto out_unlock; 1010 } 1011 } 1012 1013 BUG_ON(disk_num_bytes > 1014 btrfs_super_total_bytes(fs_info->super_copy)); 1015 1016 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1017 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1018 start + num_bytes - 1, 0); 1019 1020 while (disk_num_bytes > 0) { 1021 cur_alloc_size = disk_num_bytes; 1022 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1023 fs_info->sectorsize, 0, alloc_hint, 1024 &ins, 1, 1); 1025 if (ret < 0) 1026 goto out_unlock; 1027 cur_alloc_size = ins.offset; 1028 extent_reserved = true; 1029 1030 ram_size = ins.offset; 1031 em = create_io_em(inode, start, ins.offset, /* len */ 1032 start, /* orig_start */ 1033 ins.objectid, /* block_start */ 1034 ins.offset, /* block_len */ 1035 ins.offset, /* orig_block_len */ 1036 ram_size, /* ram_bytes */ 1037 BTRFS_COMPRESS_NONE, /* compress_type */ 1038 BTRFS_ORDERED_REGULAR /* type */); 1039 if (IS_ERR(em)) 1040 goto out_reserve; 1041 free_extent_map(em); 1042 1043 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1044 ram_size, cur_alloc_size, 0); 1045 if (ret) 1046 goto out_drop_extent_cache; 1047 1048 if (root->root_key.objectid == 1049 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1050 ret = btrfs_reloc_clone_csums(inode, start, 1051 cur_alloc_size); 1052 /* 1053 * Only drop cache here, and process as normal. 1054 * 1055 * We must not allow extent_clear_unlock_delalloc() 1056 * at out_unlock label to free meta of this ordered 1057 * extent, as its meta should be freed by 1058 * btrfs_finish_ordered_io(). 1059 * 1060 * So we must continue until @start is increased to 1061 * skip current ordered extent. 1062 */ 1063 if (ret) 1064 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1065 start + ram_size - 1, 0); 1066 } 1067 1068 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1069 1070 /* we're not doing compressed IO, don't unlock the first 1071 * page (which the caller expects to stay locked), don't 1072 * clear any dirty bits and don't set any writeback bits 1073 * 1074 * Do set the Private2 bit so we know this page was properly 1075 * setup for writepage 1076 */ 1077 page_ops = unlock ? PAGE_UNLOCK : 0; 1078 page_ops |= PAGE_SET_PRIVATE2; 1079 1080 extent_clear_unlock_delalloc(inode, start, 1081 start + ram_size - 1, 1082 delalloc_end, locked_page, 1083 EXTENT_LOCKED | EXTENT_DELALLOC, 1084 page_ops); 1085 if (disk_num_bytes < cur_alloc_size) 1086 disk_num_bytes = 0; 1087 else 1088 disk_num_bytes -= cur_alloc_size; 1089 num_bytes -= cur_alloc_size; 1090 alloc_hint = ins.objectid + ins.offset; 1091 start += cur_alloc_size; 1092 extent_reserved = false; 1093 1094 /* 1095 * btrfs_reloc_clone_csums() error, since start is increased 1096 * extent_clear_unlock_delalloc() at out_unlock label won't 1097 * free metadata of current ordered extent, we're OK to exit. 1098 */ 1099 if (ret) 1100 goto out_unlock; 1101 } 1102 out: 1103 return ret; 1104 1105 out_drop_extent_cache: 1106 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1107 out_reserve: 1108 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1109 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1110 out_unlock: 1111 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1112 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1113 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1114 PAGE_END_WRITEBACK; 1115 /* 1116 * If we reserved an extent for our delalloc range (or a subrange) and 1117 * failed to create the respective ordered extent, then it means that 1118 * when we reserved the extent we decremented the extent's size from 1119 * the data space_info's bytes_may_use counter and incremented the 1120 * space_info's bytes_reserved counter by the same amount. We must make 1121 * sure extent_clear_unlock_delalloc() does not try to decrement again 1122 * the data space_info's bytes_may_use counter, therefore we do not pass 1123 * it the flag EXTENT_CLEAR_DATA_RESV. 1124 */ 1125 if (extent_reserved) { 1126 extent_clear_unlock_delalloc(inode, start, 1127 start + cur_alloc_size, 1128 start + cur_alloc_size, 1129 locked_page, 1130 clear_bits, 1131 page_ops); 1132 start += cur_alloc_size; 1133 if (start >= end) 1134 goto out; 1135 } 1136 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1137 locked_page, 1138 clear_bits | EXTENT_CLEAR_DATA_RESV, 1139 page_ops); 1140 goto out; 1141 } 1142 1143 /* 1144 * work queue call back to started compression on a file and pages 1145 */ 1146 static noinline void async_cow_start(struct btrfs_work *work) 1147 { 1148 struct async_cow *async_cow; 1149 int num_added = 0; 1150 async_cow = container_of(work, struct async_cow, work); 1151 1152 compress_file_range(async_cow->inode, async_cow->locked_page, 1153 async_cow->start, async_cow->end, async_cow, 1154 &num_added); 1155 if (num_added == 0) { 1156 btrfs_add_delayed_iput(async_cow->inode); 1157 async_cow->inode = NULL; 1158 } 1159 } 1160 1161 /* 1162 * work queue call back to submit previously compressed pages 1163 */ 1164 static noinline void async_cow_submit(struct btrfs_work *work) 1165 { 1166 struct btrfs_fs_info *fs_info; 1167 struct async_cow *async_cow; 1168 struct btrfs_root *root; 1169 unsigned long nr_pages; 1170 1171 async_cow = container_of(work, struct async_cow, work); 1172 1173 root = async_cow->root; 1174 fs_info = root->fs_info; 1175 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1176 PAGE_SHIFT; 1177 1178 /* 1179 * atomic_sub_return implies a barrier for waitqueue_active 1180 */ 1181 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1182 5 * SZ_1M && 1183 waitqueue_active(&fs_info->async_submit_wait)) 1184 wake_up(&fs_info->async_submit_wait); 1185 1186 if (async_cow->inode) 1187 submit_compressed_extents(async_cow->inode, async_cow); 1188 } 1189 1190 static noinline void async_cow_free(struct btrfs_work *work) 1191 { 1192 struct async_cow *async_cow; 1193 async_cow = container_of(work, struct async_cow, work); 1194 if (async_cow->inode) 1195 btrfs_add_delayed_iput(async_cow->inode); 1196 kfree(async_cow); 1197 } 1198 1199 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1200 u64 start, u64 end, int *page_started, 1201 unsigned long *nr_written, 1202 unsigned int write_flags) 1203 { 1204 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1205 struct async_cow *async_cow; 1206 struct btrfs_root *root = BTRFS_I(inode)->root; 1207 unsigned long nr_pages; 1208 u64 cur_end; 1209 1210 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1211 1, 0, NULL); 1212 while (start < end) { 1213 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1214 BUG_ON(!async_cow); /* -ENOMEM */ 1215 async_cow->inode = igrab(inode); 1216 async_cow->root = root; 1217 async_cow->locked_page = locked_page; 1218 async_cow->start = start; 1219 async_cow->write_flags = write_flags; 1220 1221 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1222 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1223 cur_end = end; 1224 else 1225 cur_end = min(end, start + SZ_512K - 1); 1226 1227 async_cow->end = cur_end; 1228 INIT_LIST_HEAD(&async_cow->extents); 1229 1230 btrfs_init_work(&async_cow->work, 1231 btrfs_delalloc_helper, 1232 async_cow_start, async_cow_submit, 1233 async_cow_free); 1234 1235 nr_pages = (cur_end - start + PAGE_SIZE) >> 1236 PAGE_SHIFT; 1237 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1238 1239 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1240 1241 *nr_written += nr_pages; 1242 start = cur_end + 1; 1243 } 1244 *page_started = 1; 1245 return 0; 1246 } 1247 1248 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1249 u64 bytenr, u64 num_bytes) 1250 { 1251 int ret; 1252 struct btrfs_ordered_sum *sums; 1253 LIST_HEAD(list); 1254 1255 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1256 bytenr + num_bytes - 1, &list, 0); 1257 if (ret == 0 && list_empty(&list)) 1258 return 0; 1259 1260 while (!list_empty(&list)) { 1261 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1262 list_del(&sums->list); 1263 kfree(sums); 1264 } 1265 return 1; 1266 } 1267 1268 /* 1269 * when nowcow writeback call back. This checks for snapshots or COW copies 1270 * of the extents that exist in the file, and COWs the file as required. 1271 * 1272 * If no cow copies or snapshots exist, we write directly to the existing 1273 * blocks on disk 1274 */ 1275 static noinline int run_delalloc_nocow(struct inode *inode, 1276 struct page *locked_page, 1277 u64 start, u64 end, int *page_started, int force, 1278 unsigned long *nr_written) 1279 { 1280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1281 struct btrfs_root *root = BTRFS_I(inode)->root; 1282 struct extent_buffer *leaf; 1283 struct btrfs_path *path; 1284 struct btrfs_file_extent_item *fi; 1285 struct btrfs_key found_key; 1286 struct extent_map *em; 1287 u64 cow_start; 1288 u64 cur_offset; 1289 u64 extent_end; 1290 u64 extent_offset; 1291 u64 disk_bytenr; 1292 u64 num_bytes; 1293 u64 disk_num_bytes; 1294 u64 ram_bytes; 1295 int extent_type; 1296 int ret, err; 1297 int type; 1298 int nocow; 1299 int check_prev = 1; 1300 bool nolock; 1301 u64 ino = btrfs_ino(BTRFS_I(inode)); 1302 1303 path = btrfs_alloc_path(); 1304 if (!path) { 1305 extent_clear_unlock_delalloc(inode, start, end, end, 1306 locked_page, 1307 EXTENT_LOCKED | EXTENT_DELALLOC | 1308 EXTENT_DO_ACCOUNTING | 1309 EXTENT_DEFRAG, PAGE_UNLOCK | 1310 PAGE_CLEAR_DIRTY | 1311 PAGE_SET_WRITEBACK | 1312 PAGE_END_WRITEBACK); 1313 return -ENOMEM; 1314 } 1315 1316 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1317 1318 cow_start = (u64)-1; 1319 cur_offset = start; 1320 while (1) { 1321 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1322 cur_offset, 0); 1323 if (ret < 0) 1324 goto error; 1325 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1326 leaf = path->nodes[0]; 1327 btrfs_item_key_to_cpu(leaf, &found_key, 1328 path->slots[0] - 1); 1329 if (found_key.objectid == ino && 1330 found_key.type == BTRFS_EXTENT_DATA_KEY) 1331 path->slots[0]--; 1332 } 1333 check_prev = 0; 1334 next_slot: 1335 leaf = path->nodes[0]; 1336 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1337 ret = btrfs_next_leaf(root, path); 1338 if (ret < 0) { 1339 if (cow_start != (u64)-1) 1340 cur_offset = cow_start; 1341 goto error; 1342 } 1343 if (ret > 0) 1344 break; 1345 leaf = path->nodes[0]; 1346 } 1347 1348 nocow = 0; 1349 disk_bytenr = 0; 1350 num_bytes = 0; 1351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1352 1353 if (found_key.objectid > ino) 1354 break; 1355 if (WARN_ON_ONCE(found_key.objectid < ino) || 1356 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1357 path->slots[0]++; 1358 goto next_slot; 1359 } 1360 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1361 found_key.offset > end) 1362 break; 1363 1364 if (found_key.offset > cur_offset) { 1365 extent_end = found_key.offset; 1366 extent_type = 0; 1367 goto out_check; 1368 } 1369 1370 fi = btrfs_item_ptr(leaf, path->slots[0], 1371 struct btrfs_file_extent_item); 1372 extent_type = btrfs_file_extent_type(leaf, fi); 1373 1374 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1375 if (extent_type == BTRFS_FILE_EXTENT_REG || 1376 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1377 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1378 extent_offset = btrfs_file_extent_offset(leaf, fi); 1379 extent_end = found_key.offset + 1380 btrfs_file_extent_num_bytes(leaf, fi); 1381 disk_num_bytes = 1382 btrfs_file_extent_disk_num_bytes(leaf, fi); 1383 if (extent_end <= start) { 1384 path->slots[0]++; 1385 goto next_slot; 1386 } 1387 if (disk_bytenr == 0) 1388 goto out_check; 1389 if (btrfs_file_extent_compression(leaf, fi) || 1390 btrfs_file_extent_encryption(leaf, fi) || 1391 btrfs_file_extent_other_encoding(leaf, fi)) 1392 goto out_check; 1393 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1394 goto out_check; 1395 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1396 goto out_check; 1397 if (btrfs_cross_ref_exist(root, ino, 1398 found_key.offset - 1399 extent_offset, disk_bytenr)) 1400 goto out_check; 1401 disk_bytenr += extent_offset; 1402 disk_bytenr += cur_offset - found_key.offset; 1403 num_bytes = min(end + 1, extent_end) - cur_offset; 1404 /* 1405 * if there are pending snapshots for this root, 1406 * we fall into common COW way. 1407 */ 1408 if (!nolock) { 1409 err = btrfs_start_write_no_snapshotting(root); 1410 if (!err) 1411 goto out_check; 1412 } 1413 /* 1414 * force cow if csum exists in the range. 1415 * this ensure that csum for a given extent are 1416 * either valid or do not exist. 1417 */ 1418 if (csum_exist_in_range(fs_info, disk_bytenr, 1419 num_bytes)) { 1420 if (!nolock) 1421 btrfs_end_write_no_snapshotting(root); 1422 goto out_check; 1423 } 1424 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1425 if (!nolock) 1426 btrfs_end_write_no_snapshotting(root); 1427 goto out_check; 1428 } 1429 nocow = 1; 1430 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1431 extent_end = found_key.offset + 1432 btrfs_file_extent_inline_len(leaf, 1433 path->slots[0], fi); 1434 extent_end = ALIGN(extent_end, 1435 fs_info->sectorsize); 1436 } else { 1437 BUG_ON(1); 1438 } 1439 out_check: 1440 if (extent_end <= start) { 1441 path->slots[0]++; 1442 if (!nolock && nocow) 1443 btrfs_end_write_no_snapshotting(root); 1444 if (nocow) 1445 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1446 goto next_slot; 1447 } 1448 if (!nocow) { 1449 if (cow_start == (u64)-1) 1450 cow_start = cur_offset; 1451 cur_offset = extent_end; 1452 if (cur_offset > end) 1453 break; 1454 path->slots[0]++; 1455 goto next_slot; 1456 } 1457 1458 btrfs_release_path(path); 1459 if (cow_start != (u64)-1) { 1460 ret = cow_file_range(inode, locked_page, 1461 cow_start, found_key.offset - 1, 1462 end, page_started, nr_written, 1, 1463 NULL); 1464 if (ret) { 1465 if (!nolock && nocow) 1466 btrfs_end_write_no_snapshotting(root); 1467 if (nocow) 1468 btrfs_dec_nocow_writers(fs_info, 1469 disk_bytenr); 1470 goto error; 1471 } 1472 cow_start = (u64)-1; 1473 } 1474 1475 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1476 u64 orig_start = found_key.offset - extent_offset; 1477 1478 em = create_io_em(inode, cur_offset, num_bytes, 1479 orig_start, 1480 disk_bytenr, /* block_start */ 1481 num_bytes, /* block_len */ 1482 disk_num_bytes, /* orig_block_len */ 1483 ram_bytes, BTRFS_COMPRESS_NONE, 1484 BTRFS_ORDERED_PREALLOC); 1485 if (IS_ERR(em)) { 1486 if (!nolock && nocow) 1487 btrfs_end_write_no_snapshotting(root); 1488 if (nocow) 1489 btrfs_dec_nocow_writers(fs_info, 1490 disk_bytenr); 1491 ret = PTR_ERR(em); 1492 goto error; 1493 } 1494 free_extent_map(em); 1495 } 1496 1497 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1498 type = BTRFS_ORDERED_PREALLOC; 1499 } else { 1500 type = BTRFS_ORDERED_NOCOW; 1501 } 1502 1503 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1504 num_bytes, num_bytes, type); 1505 if (nocow) 1506 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1507 BUG_ON(ret); /* -ENOMEM */ 1508 1509 if (root->root_key.objectid == 1510 BTRFS_DATA_RELOC_TREE_OBJECTID) 1511 /* 1512 * Error handled later, as we must prevent 1513 * extent_clear_unlock_delalloc() in error handler 1514 * from freeing metadata of created ordered extent. 1515 */ 1516 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1517 num_bytes); 1518 1519 extent_clear_unlock_delalloc(inode, cur_offset, 1520 cur_offset + num_bytes - 1, end, 1521 locked_page, EXTENT_LOCKED | 1522 EXTENT_DELALLOC | 1523 EXTENT_CLEAR_DATA_RESV, 1524 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1525 1526 if (!nolock && nocow) 1527 btrfs_end_write_no_snapshotting(root); 1528 cur_offset = extent_end; 1529 1530 /* 1531 * btrfs_reloc_clone_csums() error, now we're OK to call error 1532 * handler, as metadata for created ordered extent will only 1533 * be freed by btrfs_finish_ordered_io(). 1534 */ 1535 if (ret) 1536 goto error; 1537 if (cur_offset > end) 1538 break; 1539 } 1540 btrfs_release_path(path); 1541 1542 if (cur_offset <= end && cow_start == (u64)-1) { 1543 cow_start = cur_offset; 1544 cur_offset = end; 1545 } 1546 1547 if (cow_start != (u64)-1) { 1548 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1549 page_started, nr_written, 1, NULL); 1550 if (ret) 1551 goto error; 1552 } 1553 1554 error: 1555 if (ret && cur_offset < end) 1556 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1557 locked_page, EXTENT_LOCKED | 1558 EXTENT_DELALLOC | EXTENT_DEFRAG | 1559 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1560 PAGE_CLEAR_DIRTY | 1561 PAGE_SET_WRITEBACK | 1562 PAGE_END_WRITEBACK); 1563 btrfs_free_path(path); 1564 return ret; 1565 } 1566 1567 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1568 { 1569 1570 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1571 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1572 return 0; 1573 1574 /* 1575 * @defrag_bytes is a hint value, no spinlock held here, 1576 * if is not zero, it means the file is defragging. 1577 * Force cow if given extent needs to be defragged. 1578 */ 1579 if (BTRFS_I(inode)->defrag_bytes && 1580 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1581 EXTENT_DEFRAG, 0, NULL)) 1582 return 1; 1583 1584 return 0; 1585 } 1586 1587 /* 1588 * extent_io.c call back to do delayed allocation processing 1589 */ 1590 static int run_delalloc_range(void *private_data, struct page *locked_page, 1591 u64 start, u64 end, int *page_started, 1592 unsigned long *nr_written, 1593 struct writeback_control *wbc) 1594 { 1595 struct inode *inode = private_data; 1596 int ret; 1597 int force_cow = need_force_cow(inode, start, end); 1598 unsigned int write_flags = wbc_to_write_flags(wbc); 1599 1600 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1601 ret = run_delalloc_nocow(inode, locked_page, start, end, 1602 page_started, 1, nr_written); 1603 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1604 ret = run_delalloc_nocow(inode, locked_page, start, end, 1605 page_started, 0, nr_written); 1606 } else if (!inode_need_compress(inode, start, end)) { 1607 ret = cow_file_range(inode, locked_page, start, end, end, 1608 page_started, nr_written, 1, NULL); 1609 } else { 1610 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1611 &BTRFS_I(inode)->runtime_flags); 1612 ret = cow_file_range_async(inode, locked_page, start, end, 1613 page_started, nr_written, 1614 write_flags); 1615 } 1616 if (ret) 1617 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1618 return ret; 1619 } 1620 1621 static void btrfs_split_extent_hook(void *private_data, 1622 struct extent_state *orig, u64 split) 1623 { 1624 struct inode *inode = private_data; 1625 u64 size; 1626 1627 /* not delalloc, ignore it */ 1628 if (!(orig->state & EXTENT_DELALLOC)) 1629 return; 1630 1631 size = orig->end - orig->start + 1; 1632 if (size > BTRFS_MAX_EXTENT_SIZE) { 1633 u32 num_extents; 1634 u64 new_size; 1635 1636 /* 1637 * See the explanation in btrfs_merge_extent_hook, the same 1638 * applies here, just in reverse. 1639 */ 1640 new_size = orig->end - split + 1; 1641 num_extents = count_max_extents(new_size); 1642 new_size = split - orig->start; 1643 num_extents += count_max_extents(new_size); 1644 if (count_max_extents(size) >= num_extents) 1645 return; 1646 } 1647 1648 spin_lock(&BTRFS_I(inode)->lock); 1649 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1650 spin_unlock(&BTRFS_I(inode)->lock); 1651 } 1652 1653 /* 1654 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1655 * extents so we can keep track of new extents that are just merged onto old 1656 * extents, such as when we are doing sequential writes, so we can properly 1657 * account for the metadata space we'll need. 1658 */ 1659 static void btrfs_merge_extent_hook(void *private_data, 1660 struct extent_state *new, 1661 struct extent_state *other) 1662 { 1663 struct inode *inode = private_data; 1664 u64 new_size, old_size; 1665 u32 num_extents; 1666 1667 /* not delalloc, ignore it */ 1668 if (!(other->state & EXTENT_DELALLOC)) 1669 return; 1670 1671 if (new->start > other->start) 1672 new_size = new->end - other->start + 1; 1673 else 1674 new_size = other->end - new->start + 1; 1675 1676 /* we're not bigger than the max, unreserve the space and go */ 1677 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1678 spin_lock(&BTRFS_I(inode)->lock); 1679 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1680 spin_unlock(&BTRFS_I(inode)->lock); 1681 return; 1682 } 1683 1684 /* 1685 * We have to add up either side to figure out how many extents were 1686 * accounted for before we merged into one big extent. If the number of 1687 * extents we accounted for is <= the amount we need for the new range 1688 * then we can return, otherwise drop. Think of it like this 1689 * 1690 * [ 4k][MAX_SIZE] 1691 * 1692 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1693 * need 2 outstanding extents, on one side we have 1 and the other side 1694 * we have 1 so they are == and we can return. But in this case 1695 * 1696 * [MAX_SIZE+4k][MAX_SIZE+4k] 1697 * 1698 * Each range on their own accounts for 2 extents, but merged together 1699 * they are only 3 extents worth of accounting, so we need to drop in 1700 * this case. 1701 */ 1702 old_size = other->end - other->start + 1; 1703 num_extents = count_max_extents(old_size); 1704 old_size = new->end - new->start + 1; 1705 num_extents += count_max_extents(old_size); 1706 if (count_max_extents(new_size) >= num_extents) 1707 return; 1708 1709 spin_lock(&BTRFS_I(inode)->lock); 1710 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1711 spin_unlock(&BTRFS_I(inode)->lock); 1712 } 1713 1714 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1715 struct inode *inode) 1716 { 1717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1718 1719 spin_lock(&root->delalloc_lock); 1720 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1721 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1722 &root->delalloc_inodes); 1723 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1724 &BTRFS_I(inode)->runtime_flags); 1725 root->nr_delalloc_inodes++; 1726 if (root->nr_delalloc_inodes == 1) { 1727 spin_lock(&fs_info->delalloc_root_lock); 1728 BUG_ON(!list_empty(&root->delalloc_root)); 1729 list_add_tail(&root->delalloc_root, 1730 &fs_info->delalloc_roots); 1731 spin_unlock(&fs_info->delalloc_root_lock); 1732 } 1733 } 1734 spin_unlock(&root->delalloc_lock); 1735 } 1736 1737 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1738 struct btrfs_inode *inode) 1739 { 1740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1741 1742 spin_lock(&root->delalloc_lock); 1743 if (!list_empty(&inode->delalloc_inodes)) { 1744 list_del_init(&inode->delalloc_inodes); 1745 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1746 &inode->runtime_flags); 1747 root->nr_delalloc_inodes--; 1748 if (!root->nr_delalloc_inodes) { 1749 spin_lock(&fs_info->delalloc_root_lock); 1750 BUG_ON(list_empty(&root->delalloc_root)); 1751 list_del_init(&root->delalloc_root); 1752 spin_unlock(&fs_info->delalloc_root_lock); 1753 } 1754 } 1755 spin_unlock(&root->delalloc_lock); 1756 } 1757 1758 /* 1759 * extent_io.c set_bit_hook, used to track delayed allocation 1760 * bytes in this file, and to maintain the list of inodes that 1761 * have pending delalloc work to be done. 1762 */ 1763 static void btrfs_set_bit_hook(void *private_data, 1764 struct extent_state *state, unsigned *bits) 1765 { 1766 struct inode *inode = private_data; 1767 1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1769 1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1771 WARN_ON(1); 1772 /* 1773 * set_bit and clear bit hooks normally require _irqsave/restore 1774 * but in this case, we are only testing for the DELALLOC 1775 * bit, which is only set or cleared with irqs on 1776 */ 1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1778 struct btrfs_root *root = BTRFS_I(inode)->root; 1779 u64 len = state->end + 1 - state->start; 1780 u32 num_extents = count_max_extents(len); 1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1782 1783 spin_lock(&BTRFS_I(inode)->lock); 1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1785 spin_unlock(&BTRFS_I(inode)->lock); 1786 1787 /* For sanity tests */ 1788 if (btrfs_is_testing(fs_info)) 1789 return; 1790 1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1792 fs_info->delalloc_batch); 1793 spin_lock(&BTRFS_I(inode)->lock); 1794 BTRFS_I(inode)->delalloc_bytes += len; 1795 if (*bits & EXTENT_DEFRAG) 1796 BTRFS_I(inode)->defrag_bytes += len; 1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1798 &BTRFS_I(inode)->runtime_flags)) 1799 btrfs_add_delalloc_inodes(root, inode); 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 } 1802 1803 if (!(state->state & EXTENT_DELALLOC_NEW) && 1804 (*bits & EXTENT_DELALLOC_NEW)) { 1805 spin_lock(&BTRFS_I(inode)->lock); 1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1807 state->start; 1808 spin_unlock(&BTRFS_I(inode)->lock); 1809 } 1810 } 1811 1812 /* 1813 * extent_io.c clear_bit_hook, see set_bit_hook for why 1814 */ 1815 static void btrfs_clear_bit_hook(void *private_data, 1816 struct extent_state *state, 1817 unsigned *bits) 1818 { 1819 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1821 u64 len = state->end + 1 - state->start; 1822 u32 num_extents = count_max_extents(len); 1823 1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1825 spin_lock(&inode->lock); 1826 inode->defrag_bytes -= len; 1827 spin_unlock(&inode->lock); 1828 } 1829 1830 /* 1831 * set_bit and clear bit hooks normally require _irqsave/restore 1832 * but in this case, we are only testing for the DELALLOC 1833 * bit, which is only set or cleared with irqs on 1834 */ 1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1836 struct btrfs_root *root = inode->root; 1837 bool do_list = !btrfs_is_free_space_inode(inode); 1838 1839 spin_lock(&inode->lock); 1840 btrfs_mod_outstanding_extents(inode, -num_extents); 1841 spin_unlock(&inode->lock); 1842 1843 /* 1844 * We don't reserve metadata space for space cache inodes so we 1845 * don't need to call dellalloc_release_metadata if there is an 1846 * error. 1847 */ 1848 if (*bits & EXTENT_CLEAR_META_RESV && 1849 root != fs_info->tree_root) 1850 btrfs_delalloc_release_metadata(inode, len); 1851 1852 /* For sanity tests. */ 1853 if (btrfs_is_testing(fs_info)) 1854 return; 1855 1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1857 do_list && !(state->state & EXTENT_NORESERVE) && 1858 (*bits & EXTENT_CLEAR_DATA_RESV)) 1859 btrfs_free_reserved_data_space_noquota( 1860 &inode->vfs_inode, 1861 state->start, len); 1862 1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1864 fs_info->delalloc_batch); 1865 spin_lock(&inode->lock); 1866 inode->delalloc_bytes -= len; 1867 if (do_list && inode->delalloc_bytes == 0 && 1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1869 &inode->runtime_flags)) 1870 btrfs_del_delalloc_inode(root, inode); 1871 spin_unlock(&inode->lock); 1872 } 1873 1874 if ((state->state & EXTENT_DELALLOC_NEW) && 1875 (*bits & EXTENT_DELALLOC_NEW)) { 1876 spin_lock(&inode->lock); 1877 ASSERT(inode->new_delalloc_bytes >= len); 1878 inode->new_delalloc_bytes -= len; 1879 spin_unlock(&inode->lock); 1880 } 1881 } 1882 1883 /* 1884 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1885 * we don't create bios that span stripes or chunks 1886 * 1887 * return 1 if page cannot be merged to bio 1888 * return 0 if page can be merged to bio 1889 * return error otherwise 1890 */ 1891 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1892 size_t size, struct bio *bio, 1893 unsigned long bio_flags) 1894 { 1895 struct inode *inode = page->mapping->host; 1896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1897 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1898 u64 length = 0; 1899 u64 map_length; 1900 int ret; 1901 1902 if (bio_flags & EXTENT_BIO_COMPRESSED) 1903 return 0; 1904 1905 length = bio->bi_iter.bi_size; 1906 map_length = length; 1907 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1908 NULL, 0); 1909 if (ret < 0) 1910 return ret; 1911 if (map_length < length + size) 1912 return 1; 1913 return 0; 1914 } 1915 1916 /* 1917 * in order to insert checksums into the metadata in large chunks, 1918 * we wait until bio submission time. All the pages in the bio are 1919 * checksummed and sums are attached onto the ordered extent record. 1920 * 1921 * At IO completion time the cums attached on the ordered extent record 1922 * are inserted into the btree 1923 */ 1924 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio, 1925 int mirror_num, unsigned long bio_flags, 1926 u64 bio_offset) 1927 { 1928 struct inode *inode = private_data; 1929 blk_status_t ret = 0; 1930 1931 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1932 BUG_ON(ret); /* -ENOMEM */ 1933 return 0; 1934 } 1935 1936 /* 1937 * in order to insert checksums into the metadata in large chunks, 1938 * we wait until bio submission time. All the pages in the bio are 1939 * checksummed and sums are attached onto the ordered extent record. 1940 * 1941 * At IO completion time the cums attached on the ordered extent record 1942 * are inserted into the btree 1943 */ 1944 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio, 1945 int mirror_num, unsigned long bio_flags, 1946 u64 bio_offset) 1947 { 1948 struct inode *inode = private_data; 1949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1950 blk_status_t ret; 1951 1952 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1953 if (ret) { 1954 bio->bi_status = ret; 1955 bio_endio(bio); 1956 } 1957 return ret; 1958 } 1959 1960 /* 1961 * extent_io.c submission hook. This does the right thing for csum calculation 1962 * on write, or reading the csums from the tree before a read. 1963 * 1964 * Rules about async/sync submit, 1965 * a) read: sync submit 1966 * 1967 * b) write without checksum: sync submit 1968 * 1969 * c) write with checksum: 1970 * c-1) if bio is issued by fsync: sync submit 1971 * (sync_writers != 0) 1972 * 1973 * c-2) if root is reloc root: sync submit 1974 * (only in case of buffered IO) 1975 * 1976 * c-3) otherwise: async submit 1977 */ 1978 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1979 int mirror_num, unsigned long bio_flags, 1980 u64 bio_offset) 1981 { 1982 struct inode *inode = private_data; 1983 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1984 struct btrfs_root *root = BTRFS_I(inode)->root; 1985 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1986 blk_status_t ret = 0; 1987 int skip_sum; 1988 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1989 1990 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1991 1992 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1993 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1994 1995 if (bio_op(bio) != REQ_OP_WRITE) { 1996 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1997 if (ret) 1998 goto out; 1999 2000 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2001 ret = btrfs_submit_compressed_read(inode, bio, 2002 mirror_num, 2003 bio_flags); 2004 goto out; 2005 } else if (!skip_sum) { 2006 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2007 if (ret) 2008 goto out; 2009 } 2010 goto mapit; 2011 } else if (async && !skip_sum) { 2012 /* csum items have already been cloned */ 2013 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2014 goto mapit; 2015 /* we're doing a write, do the async checksumming */ 2016 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2017 bio_offset, inode, 2018 __btrfs_submit_bio_start, 2019 __btrfs_submit_bio_done); 2020 goto out; 2021 } else if (!skip_sum) { 2022 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2023 if (ret) 2024 goto out; 2025 } 2026 2027 mapit: 2028 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2029 2030 out: 2031 if (ret) { 2032 bio->bi_status = ret; 2033 bio_endio(bio); 2034 } 2035 return ret; 2036 } 2037 2038 /* 2039 * given a list of ordered sums record them in the inode. This happens 2040 * at IO completion time based on sums calculated at bio submission time. 2041 */ 2042 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2043 struct inode *inode, struct list_head *list) 2044 { 2045 struct btrfs_ordered_sum *sum; 2046 2047 list_for_each_entry(sum, list, list) { 2048 trans->adding_csums = true; 2049 btrfs_csum_file_blocks(trans, 2050 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2051 trans->adding_csums = false; 2052 } 2053 return 0; 2054 } 2055 2056 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2057 unsigned int extra_bits, 2058 struct extent_state **cached_state, int dedupe) 2059 { 2060 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2061 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2062 extra_bits, cached_state); 2063 } 2064 2065 /* see btrfs_writepage_start_hook for details on why this is required */ 2066 struct btrfs_writepage_fixup { 2067 struct page *page; 2068 struct btrfs_work work; 2069 }; 2070 2071 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2072 { 2073 struct btrfs_writepage_fixup *fixup; 2074 struct btrfs_ordered_extent *ordered; 2075 struct extent_state *cached_state = NULL; 2076 struct extent_changeset *data_reserved = NULL; 2077 struct page *page; 2078 struct inode *inode; 2079 u64 page_start; 2080 u64 page_end; 2081 int ret; 2082 2083 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2084 page = fixup->page; 2085 again: 2086 lock_page(page); 2087 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2088 ClearPageChecked(page); 2089 goto out_page; 2090 } 2091 2092 inode = page->mapping->host; 2093 page_start = page_offset(page); 2094 page_end = page_offset(page) + PAGE_SIZE - 1; 2095 2096 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2097 &cached_state); 2098 2099 /* already ordered? We're done */ 2100 if (PagePrivate2(page)) 2101 goto out; 2102 2103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2104 PAGE_SIZE); 2105 if (ordered) { 2106 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2107 page_end, &cached_state); 2108 unlock_page(page); 2109 btrfs_start_ordered_extent(inode, ordered, 1); 2110 btrfs_put_ordered_extent(ordered); 2111 goto again; 2112 } 2113 2114 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2115 PAGE_SIZE); 2116 if (ret) { 2117 mapping_set_error(page->mapping, ret); 2118 end_extent_writepage(page, ret, page_start, page_end); 2119 ClearPageChecked(page); 2120 goto out; 2121 } 2122 2123 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2124 &cached_state, 0); 2125 if (ret) { 2126 mapping_set_error(page->mapping, ret); 2127 end_extent_writepage(page, ret, page_start, page_end); 2128 ClearPageChecked(page); 2129 goto out; 2130 } 2131 2132 ClearPageChecked(page); 2133 set_page_dirty(page); 2134 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2135 out: 2136 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2137 &cached_state); 2138 out_page: 2139 unlock_page(page); 2140 put_page(page); 2141 kfree(fixup); 2142 extent_changeset_free(data_reserved); 2143 } 2144 2145 /* 2146 * There are a few paths in the higher layers of the kernel that directly 2147 * set the page dirty bit without asking the filesystem if it is a 2148 * good idea. This causes problems because we want to make sure COW 2149 * properly happens and the data=ordered rules are followed. 2150 * 2151 * In our case any range that doesn't have the ORDERED bit set 2152 * hasn't been properly setup for IO. We kick off an async process 2153 * to fix it up. The async helper will wait for ordered extents, set 2154 * the delalloc bit and make it safe to write the page. 2155 */ 2156 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2157 { 2158 struct inode *inode = page->mapping->host; 2159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2160 struct btrfs_writepage_fixup *fixup; 2161 2162 /* this page is properly in the ordered list */ 2163 if (TestClearPagePrivate2(page)) 2164 return 0; 2165 2166 if (PageChecked(page)) 2167 return -EAGAIN; 2168 2169 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2170 if (!fixup) 2171 return -EAGAIN; 2172 2173 SetPageChecked(page); 2174 get_page(page); 2175 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2176 btrfs_writepage_fixup_worker, NULL, NULL); 2177 fixup->page = page; 2178 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2179 return -EBUSY; 2180 } 2181 2182 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2183 struct inode *inode, u64 file_pos, 2184 u64 disk_bytenr, u64 disk_num_bytes, 2185 u64 num_bytes, u64 ram_bytes, 2186 u8 compression, u8 encryption, 2187 u16 other_encoding, int extent_type) 2188 { 2189 struct btrfs_root *root = BTRFS_I(inode)->root; 2190 struct btrfs_file_extent_item *fi; 2191 struct btrfs_path *path; 2192 struct extent_buffer *leaf; 2193 struct btrfs_key ins; 2194 u64 qg_released; 2195 int extent_inserted = 0; 2196 int ret; 2197 2198 path = btrfs_alloc_path(); 2199 if (!path) 2200 return -ENOMEM; 2201 2202 /* 2203 * we may be replacing one extent in the tree with another. 2204 * The new extent is pinned in the extent map, and we don't want 2205 * to drop it from the cache until it is completely in the btree. 2206 * 2207 * So, tell btrfs_drop_extents to leave this extent in the cache. 2208 * the caller is expected to unpin it and allow it to be merged 2209 * with the others. 2210 */ 2211 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2212 file_pos + num_bytes, NULL, 0, 2213 1, sizeof(*fi), &extent_inserted); 2214 if (ret) 2215 goto out; 2216 2217 if (!extent_inserted) { 2218 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2219 ins.offset = file_pos; 2220 ins.type = BTRFS_EXTENT_DATA_KEY; 2221 2222 path->leave_spinning = 1; 2223 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2224 sizeof(*fi)); 2225 if (ret) 2226 goto out; 2227 } 2228 leaf = path->nodes[0]; 2229 fi = btrfs_item_ptr(leaf, path->slots[0], 2230 struct btrfs_file_extent_item); 2231 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2232 btrfs_set_file_extent_type(leaf, fi, extent_type); 2233 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2234 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2235 btrfs_set_file_extent_offset(leaf, fi, 0); 2236 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2237 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2238 btrfs_set_file_extent_compression(leaf, fi, compression); 2239 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2240 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2241 2242 btrfs_mark_buffer_dirty(leaf); 2243 btrfs_release_path(path); 2244 2245 inode_add_bytes(inode, num_bytes); 2246 2247 ins.objectid = disk_bytenr; 2248 ins.offset = disk_num_bytes; 2249 ins.type = BTRFS_EXTENT_ITEM_KEY; 2250 2251 /* 2252 * Release the reserved range from inode dirty range map, as it is 2253 * already moved into delayed_ref_head 2254 */ 2255 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2256 if (ret < 0) 2257 goto out; 2258 qg_released = ret; 2259 ret = btrfs_alloc_reserved_file_extent(trans, root, 2260 btrfs_ino(BTRFS_I(inode)), 2261 file_pos, qg_released, &ins); 2262 out: 2263 btrfs_free_path(path); 2264 2265 return ret; 2266 } 2267 2268 /* snapshot-aware defrag */ 2269 struct sa_defrag_extent_backref { 2270 struct rb_node node; 2271 struct old_sa_defrag_extent *old; 2272 u64 root_id; 2273 u64 inum; 2274 u64 file_pos; 2275 u64 extent_offset; 2276 u64 num_bytes; 2277 u64 generation; 2278 }; 2279 2280 struct old_sa_defrag_extent { 2281 struct list_head list; 2282 struct new_sa_defrag_extent *new; 2283 2284 u64 extent_offset; 2285 u64 bytenr; 2286 u64 offset; 2287 u64 len; 2288 int count; 2289 }; 2290 2291 struct new_sa_defrag_extent { 2292 struct rb_root root; 2293 struct list_head head; 2294 struct btrfs_path *path; 2295 struct inode *inode; 2296 u64 file_pos; 2297 u64 len; 2298 u64 bytenr; 2299 u64 disk_len; 2300 u8 compress_type; 2301 }; 2302 2303 static int backref_comp(struct sa_defrag_extent_backref *b1, 2304 struct sa_defrag_extent_backref *b2) 2305 { 2306 if (b1->root_id < b2->root_id) 2307 return -1; 2308 else if (b1->root_id > b2->root_id) 2309 return 1; 2310 2311 if (b1->inum < b2->inum) 2312 return -1; 2313 else if (b1->inum > b2->inum) 2314 return 1; 2315 2316 if (b1->file_pos < b2->file_pos) 2317 return -1; 2318 else if (b1->file_pos > b2->file_pos) 2319 return 1; 2320 2321 /* 2322 * [------------------------------] ===> (a range of space) 2323 * |<--->| |<---->| =============> (fs/file tree A) 2324 * |<---------------------------->| ===> (fs/file tree B) 2325 * 2326 * A range of space can refer to two file extents in one tree while 2327 * refer to only one file extent in another tree. 2328 * 2329 * So we may process a disk offset more than one time(two extents in A) 2330 * and locate at the same extent(one extent in B), then insert two same 2331 * backrefs(both refer to the extent in B). 2332 */ 2333 return 0; 2334 } 2335 2336 static void backref_insert(struct rb_root *root, 2337 struct sa_defrag_extent_backref *backref) 2338 { 2339 struct rb_node **p = &root->rb_node; 2340 struct rb_node *parent = NULL; 2341 struct sa_defrag_extent_backref *entry; 2342 int ret; 2343 2344 while (*p) { 2345 parent = *p; 2346 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2347 2348 ret = backref_comp(backref, entry); 2349 if (ret < 0) 2350 p = &(*p)->rb_left; 2351 else 2352 p = &(*p)->rb_right; 2353 } 2354 2355 rb_link_node(&backref->node, parent, p); 2356 rb_insert_color(&backref->node, root); 2357 } 2358 2359 /* 2360 * Note the backref might has changed, and in this case we just return 0. 2361 */ 2362 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2363 void *ctx) 2364 { 2365 struct btrfs_file_extent_item *extent; 2366 struct old_sa_defrag_extent *old = ctx; 2367 struct new_sa_defrag_extent *new = old->new; 2368 struct btrfs_path *path = new->path; 2369 struct btrfs_key key; 2370 struct btrfs_root *root; 2371 struct sa_defrag_extent_backref *backref; 2372 struct extent_buffer *leaf; 2373 struct inode *inode = new->inode; 2374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2375 int slot; 2376 int ret; 2377 u64 extent_offset; 2378 u64 num_bytes; 2379 2380 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2381 inum == btrfs_ino(BTRFS_I(inode))) 2382 return 0; 2383 2384 key.objectid = root_id; 2385 key.type = BTRFS_ROOT_ITEM_KEY; 2386 key.offset = (u64)-1; 2387 2388 root = btrfs_read_fs_root_no_name(fs_info, &key); 2389 if (IS_ERR(root)) { 2390 if (PTR_ERR(root) == -ENOENT) 2391 return 0; 2392 WARN_ON(1); 2393 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2394 inum, offset, root_id); 2395 return PTR_ERR(root); 2396 } 2397 2398 key.objectid = inum; 2399 key.type = BTRFS_EXTENT_DATA_KEY; 2400 if (offset > (u64)-1 << 32) 2401 key.offset = 0; 2402 else 2403 key.offset = offset; 2404 2405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2406 if (WARN_ON(ret < 0)) 2407 return ret; 2408 ret = 0; 2409 2410 while (1) { 2411 cond_resched(); 2412 2413 leaf = path->nodes[0]; 2414 slot = path->slots[0]; 2415 2416 if (slot >= btrfs_header_nritems(leaf)) { 2417 ret = btrfs_next_leaf(root, path); 2418 if (ret < 0) { 2419 goto out; 2420 } else if (ret > 0) { 2421 ret = 0; 2422 goto out; 2423 } 2424 continue; 2425 } 2426 2427 path->slots[0]++; 2428 2429 btrfs_item_key_to_cpu(leaf, &key, slot); 2430 2431 if (key.objectid > inum) 2432 goto out; 2433 2434 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2435 continue; 2436 2437 extent = btrfs_item_ptr(leaf, slot, 2438 struct btrfs_file_extent_item); 2439 2440 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2441 continue; 2442 2443 /* 2444 * 'offset' refers to the exact key.offset, 2445 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2446 * (key.offset - extent_offset). 2447 */ 2448 if (key.offset != offset) 2449 continue; 2450 2451 extent_offset = btrfs_file_extent_offset(leaf, extent); 2452 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2453 2454 if (extent_offset >= old->extent_offset + old->offset + 2455 old->len || extent_offset + num_bytes <= 2456 old->extent_offset + old->offset) 2457 continue; 2458 break; 2459 } 2460 2461 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2462 if (!backref) { 2463 ret = -ENOENT; 2464 goto out; 2465 } 2466 2467 backref->root_id = root_id; 2468 backref->inum = inum; 2469 backref->file_pos = offset; 2470 backref->num_bytes = num_bytes; 2471 backref->extent_offset = extent_offset; 2472 backref->generation = btrfs_file_extent_generation(leaf, extent); 2473 backref->old = old; 2474 backref_insert(&new->root, backref); 2475 old->count++; 2476 out: 2477 btrfs_release_path(path); 2478 WARN_ON(ret); 2479 return ret; 2480 } 2481 2482 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2483 struct new_sa_defrag_extent *new) 2484 { 2485 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2486 struct old_sa_defrag_extent *old, *tmp; 2487 int ret; 2488 2489 new->path = path; 2490 2491 list_for_each_entry_safe(old, tmp, &new->head, list) { 2492 ret = iterate_inodes_from_logical(old->bytenr + 2493 old->extent_offset, fs_info, 2494 path, record_one_backref, 2495 old, false); 2496 if (ret < 0 && ret != -ENOENT) 2497 return false; 2498 2499 /* no backref to be processed for this extent */ 2500 if (!old->count) { 2501 list_del(&old->list); 2502 kfree(old); 2503 } 2504 } 2505 2506 if (list_empty(&new->head)) 2507 return false; 2508 2509 return true; 2510 } 2511 2512 static int relink_is_mergable(struct extent_buffer *leaf, 2513 struct btrfs_file_extent_item *fi, 2514 struct new_sa_defrag_extent *new) 2515 { 2516 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2517 return 0; 2518 2519 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2520 return 0; 2521 2522 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2523 return 0; 2524 2525 if (btrfs_file_extent_encryption(leaf, fi) || 2526 btrfs_file_extent_other_encoding(leaf, fi)) 2527 return 0; 2528 2529 return 1; 2530 } 2531 2532 /* 2533 * Note the backref might has changed, and in this case we just return 0. 2534 */ 2535 static noinline int relink_extent_backref(struct btrfs_path *path, 2536 struct sa_defrag_extent_backref *prev, 2537 struct sa_defrag_extent_backref *backref) 2538 { 2539 struct btrfs_file_extent_item *extent; 2540 struct btrfs_file_extent_item *item; 2541 struct btrfs_ordered_extent *ordered; 2542 struct btrfs_trans_handle *trans; 2543 struct btrfs_root *root; 2544 struct btrfs_key key; 2545 struct extent_buffer *leaf; 2546 struct old_sa_defrag_extent *old = backref->old; 2547 struct new_sa_defrag_extent *new = old->new; 2548 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2549 struct inode *inode; 2550 struct extent_state *cached = NULL; 2551 int ret = 0; 2552 u64 start; 2553 u64 len; 2554 u64 lock_start; 2555 u64 lock_end; 2556 bool merge = false; 2557 int index; 2558 2559 if (prev && prev->root_id == backref->root_id && 2560 prev->inum == backref->inum && 2561 prev->file_pos + prev->num_bytes == backref->file_pos) 2562 merge = true; 2563 2564 /* step 1: get root */ 2565 key.objectid = backref->root_id; 2566 key.type = BTRFS_ROOT_ITEM_KEY; 2567 key.offset = (u64)-1; 2568 2569 index = srcu_read_lock(&fs_info->subvol_srcu); 2570 2571 root = btrfs_read_fs_root_no_name(fs_info, &key); 2572 if (IS_ERR(root)) { 2573 srcu_read_unlock(&fs_info->subvol_srcu, index); 2574 if (PTR_ERR(root) == -ENOENT) 2575 return 0; 2576 return PTR_ERR(root); 2577 } 2578 2579 if (btrfs_root_readonly(root)) { 2580 srcu_read_unlock(&fs_info->subvol_srcu, index); 2581 return 0; 2582 } 2583 2584 /* step 2: get inode */ 2585 key.objectid = backref->inum; 2586 key.type = BTRFS_INODE_ITEM_KEY; 2587 key.offset = 0; 2588 2589 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2590 if (IS_ERR(inode)) { 2591 srcu_read_unlock(&fs_info->subvol_srcu, index); 2592 return 0; 2593 } 2594 2595 srcu_read_unlock(&fs_info->subvol_srcu, index); 2596 2597 /* step 3: relink backref */ 2598 lock_start = backref->file_pos; 2599 lock_end = backref->file_pos + backref->num_bytes - 1; 2600 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2601 &cached); 2602 2603 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2604 if (ordered) { 2605 btrfs_put_ordered_extent(ordered); 2606 goto out_unlock; 2607 } 2608 2609 trans = btrfs_join_transaction(root); 2610 if (IS_ERR(trans)) { 2611 ret = PTR_ERR(trans); 2612 goto out_unlock; 2613 } 2614 2615 key.objectid = backref->inum; 2616 key.type = BTRFS_EXTENT_DATA_KEY; 2617 key.offset = backref->file_pos; 2618 2619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2620 if (ret < 0) { 2621 goto out_free_path; 2622 } else if (ret > 0) { 2623 ret = 0; 2624 goto out_free_path; 2625 } 2626 2627 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2628 struct btrfs_file_extent_item); 2629 2630 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2631 backref->generation) 2632 goto out_free_path; 2633 2634 btrfs_release_path(path); 2635 2636 start = backref->file_pos; 2637 if (backref->extent_offset < old->extent_offset + old->offset) 2638 start += old->extent_offset + old->offset - 2639 backref->extent_offset; 2640 2641 len = min(backref->extent_offset + backref->num_bytes, 2642 old->extent_offset + old->offset + old->len); 2643 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2644 2645 ret = btrfs_drop_extents(trans, root, inode, start, 2646 start + len, 1); 2647 if (ret) 2648 goto out_free_path; 2649 again: 2650 key.objectid = btrfs_ino(BTRFS_I(inode)); 2651 key.type = BTRFS_EXTENT_DATA_KEY; 2652 key.offset = start; 2653 2654 path->leave_spinning = 1; 2655 if (merge) { 2656 struct btrfs_file_extent_item *fi; 2657 u64 extent_len; 2658 struct btrfs_key found_key; 2659 2660 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2661 if (ret < 0) 2662 goto out_free_path; 2663 2664 path->slots[0]--; 2665 leaf = path->nodes[0]; 2666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2667 2668 fi = btrfs_item_ptr(leaf, path->slots[0], 2669 struct btrfs_file_extent_item); 2670 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2671 2672 if (extent_len + found_key.offset == start && 2673 relink_is_mergable(leaf, fi, new)) { 2674 btrfs_set_file_extent_num_bytes(leaf, fi, 2675 extent_len + len); 2676 btrfs_mark_buffer_dirty(leaf); 2677 inode_add_bytes(inode, len); 2678 2679 ret = 1; 2680 goto out_free_path; 2681 } else { 2682 merge = false; 2683 btrfs_release_path(path); 2684 goto again; 2685 } 2686 } 2687 2688 ret = btrfs_insert_empty_item(trans, root, path, &key, 2689 sizeof(*extent)); 2690 if (ret) { 2691 btrfs_abort_transaction(trans, ret); 2692 goto out_free_path; 2693 } 2694 2695 leaf = path->nodes[0]; 2696 item = btrfs_item_ptr(leaf, path->slots[0], 2697 struct btrfs_file_extent_item); 2698 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2699 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2700 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2701 btrfs_set_file_extent_num_bytes(leaf, item, len); 2702 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2703 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2704 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2705 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2706 btrfs_set_file_extent_encryption(leaf, item, 0); 2707 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2708 2709 btrfs_mark_buffer_dirty(leaf); 2710 inode_add_bytes(inode, len); 2711 btrfs_release_path(path); 2712 2713 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2714 new->disk_len, 0, 2715 backref->root_id, backref->inum, 2716 new->file_pos); /* start - extent_offset */ 2717 if (ret) { 2718 btrfs_abort_transaction(trans, ret); 2719 goto out_free_path; 2720 } 2721 2722 ret = 1; 2723 out_free_path: 2724 btrfs_release_path(path); 2725 path->leave_spinning = 0; 2726 btrfs_end_transaction(trans); 2727 out_unlock: 2728 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2729 &cached); 2730 iput(inode); 2731 return ret; 2732 } 2733 2734 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2735 { 2736 struct old_sa_defrag_extent *old, *tmp; 2737 2738 if (!new) 2739 return; 2740 2741 list_for_each_entry_safe(old, tmp, &new->head, list) { 2742 kfree(old); 2743 } 2744 kfree(new); 2745 } 2746 2747 static void relink_file_extents(struct new_sa_defrag_extent *new) 2748 { 2749 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2750 struct btrfs_path *path; 2751 struct sa_defrag_extent_backref *backref; 2752 struct sa_defrag_extent_backref *prev = NULL; 2753 struct inode *inode; 2754 struct btrfs_root *root; 2755 struct rb_node *node; 2756 int ret; 2757 2758 inode = new->inode; 2759 root = BTRFS_I(inode)->root; 2760 2761 path = btrfs_alloc_path(); 2762 if (!path) 2763 return; 2764 2765 if (!record_extent_backrefs(path, new)) { 2766 btrfs_free_path(path); 2767 goto out; 2768 } 2769 btrfs_release_path(path); 2770 2771 while (1) { 2772 node = rb_first(&new->root); 2773 if (!node) 2774 break; 2775 rb_erase(node, &new->root); 2776 2777 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2778 2779 ret = relink_extent_backref(path, prev, backref); 2780 WARN_ON(ret < 0); 2781 2782 kfree(prev); 2783 2784 if (ret == 1) 2785 prev = backref; 2786 else 2787 prev = NULL; 2788 cond_resched(); 2789 } 2790 kfree(prev); 2791 2792 btrfs_free_path(path); 2793 out: 2794 free_sa_defrag_extent(new); 2795 2796 atomic_dec(&fs_info->defrag_running); 2797 wake_up(&fs_info->transaction_wait); 2798 } 2799 2800 static struct new_sa_defrag_extent * 2801 record_old_file_extents(struct inode *inode, 2802 struct btrfs_ordered_extent *ordered) 2803 { 2804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2805 struct btrfs_root *root = BTRFS_I(inode)->root; 2806 struct btrfs_path *path; 2807 struct btrfs_key key; 2808 struct old_sa_defrag_extent *old; 2809 struct new_sa_defrag_extent *new; 2810 int ret; 2811 2812 new = kmalloc(sizeof(*new), GFP_NOFS); 2813 if (!new) 2814 return NULL; 2815 2816 new->inode = inode; 2817 new->file_pos = ordered->file_offset; 2818 new->len = ordered->len; 2819 new->bytenr = ordered->start; 2820 new->disk_len = ordered->disk_len; 2821 new->compress_type = ordered->compress_type; 2822 new->root = RB_ROOT; 2823 INIT_LIST_HEAD(&new->head); 2824 2825 path = btrfs_alloc_path(); 2826 if (!path) 2827 goto out_kfree; 2828 2829 key.objectid = btrfs_ino(BTRFS_I(inode)); 2830 key.type = BTRFS_EXTENT_DATA_KEY; 2831 key.offset = new->file_pos; 2832 2833 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2834 if (ret < 0) 2835 goto out_free_path; 2836 if (ret > 0 && path->slots[0] > 0) 2837 path->slots[0]--; 2838 2839 /* find out all the old extents for the file range */ 2840 while (1) { 2841 struct btrfs_file_extent_item *extent; 2842 struct extent_buffer *l; 2843 int slot; 2844 u64 num_bytes; 2845 u64 offset; 2846 u64 end; 2847 u64 disk_bytenr; 2848 u64 extent_offset; 2849 2850 l = path->nodes[0]; 2851 slot = path->slots[0]; 2852 2853 if (slot >= btrfs_header_nritems(l)) { 2854 ret = btrfs_next_leaf(root, path); 2855 if (ret < 0) 2856 goto out_free_path; 2857 else if (ret > 0) 2858 break; 2859 continue; 2860 } 2861 2862 btrfs_item_key_to_cpu(l, &key, slot); 2863 2864 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2865 break; 2866 if (key.type != BTRFS_EXTENT_DATA_KEY) 2867 break; 2868 if (key.offset >= new->file_pos + new->len) 2869 break; 2870 2871 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2872 2873 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2874 if (key.offset + num_bytes < new->file_pos) 2875 goto next; 2876 2877 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2878 if (!disk_bytenr) 2879 goto next; 2880 2881 extent_offset = btrfs_file_extent_offset(l, extent); 2882 2883 old = kmalloc(sizeof(*old), GFP_NOFS); 2884 if (!old) 2885 goto out_free_path; 2886 2887 offset = max(new->file_pos, key.offset); 2888 end = min(new->file_pos + new->len, key.offset + num_bytes); 2889 2890 old->bytenr = disk_bytenr; 2891 old->extent_offset = extent_offset; 2892 old->offset = offset - key.offset; 2893 old->len = end - offset; 2894 old->new = new; 2895 old->count = 0; 2896 list_add_tail(&old->list, &new->head); 2897 next: 2898 path->slots[0]++; 2899 cond_resched(); 2900 } 2901 2902 btrfs_free_path(path); 2903 atomic_inc(&fs_info->defrag_running); 2904 2905 return new; 2906 2907 out_free_path: 2908 btrfs_free_path(path); 2909 out_kfree: 2910 free_sa_defrag_extent(new); 2911 return NULL; 2912 } 2913 2914 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2915 u64 start, u64 len) 2916 { 2917 struct btrfs_block_group_cache *cache; 2918 2919 cache = btrfs_lookup_block_group(fs_info, start); 2920 ASSERT(cache); 2921 2922 spin_lock(&cache->lock); 2923 cache->delalloc_bytes -= len; 2924 spin_unlock(&cache->lock); 2925 2926 btrfs_put_block_group(cache); 2927 } 2928 2929 /* as ordered data IO finishes, this gets called so we can finish 2930 * an ordered extent if the range of bytes in the file it covers are 2931 * fully written. 2932 */ 2933 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2934 { 2935 struct inode *inode = ordered_extent->inode; 2936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2937 struct btrfs_root *root = BTRFS_I(inode)->root; 2938 struct btrfs_trans_handle *trans = NULL; 2939 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2940 struct extent_state *cached_state = NULL; 2941 struct new_sa_defrag_extent *new = NULL; 2942 int compress_type = 0; 2943 int ret = 0; 2944 u64 logical_len = ordered_extent->len; 2945 bool nolock; 2946 bool truncated = false; 2947 bool range_locked = false; 2948 bool clear_new_delalloc_bytes = false; 2949 2950 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2951 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2952 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2953 clear_new_delalloc_bytes = true; 2954 2955 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2956 2957 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2958 ret = -EIO; 2959 goto out; 2960 } 2961 2962 btrfs_free_io_failure_record(BTRFS_I(inode), 2963 ordered_extent->file_offset, 2964 ordered_extent->file_offset + 2965 ordered_extent->len - 1); 2966 2967 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2968 truncated = true; 2969 logical_len = ordered_extent->truncated_len; 2970 /* Truncated the entire extent, don't bother adding */ 2971 if (!logical_len) 2972 goto out; 2973 } 2974 2975 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2976 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2977 2978 /* 2979 * For mwrite(mmap + memset to write) case, we still reserve 2980 * space for NOCOW range. 2981 * As NOCOW won't cause a new delayed ref, just free the space 2982 */ 2983 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2984 ordered_extent->len); 2985 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2986 if (nolock) 2987 trans = btrfs_join_transaction_nolock(root); 2988 else 2989 trans = btrfs_join_transaction(root); 2990 if (IS_ERR(trans)) { 2991 ret = PTR_ERR(trans); 2992 trans = NULL; 2993 goto out; 2994 } 2995 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2996 ret = btrfs_update_inode_fallback(trans, root, inode); 2997 if (ret) /* -ENOMEM or corruption */ 2998 btrfs_abort_transaction(trans, ret); 2999 goto out; 3000 } 3001 3002 range_locked = true; 3003 lock_extent_bits(io_tree, ordered_extent->file_offset, 3004 ordered_extent->file_offset + ordered_extent->len - 1, 3005 &cached_state); 3006 3007 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3008 ordered_extent->file_offset + ordered_extent->len - 1, 3009 EXTENT_DEFRAG, 0, cached_state); 3010 if (ret) { 3011 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3012 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3013 /* the inode is shared */ 3014 new = record_old_file_extents(inode, ordered_extent); 3015 3016 clear_extent_bit(io_tree, ordered_extent->file_offset, 3017 ordered_extent->file_offset + ordered_extent->len - 1, 3018 EXTENT_DEFRAG, 0, 0, &cached_state); 3019 } 3020 3021 if (nolock) 3022 trans = btrfs_join_transaction_nolock(root); 3023 else 3024 trans = btrfs_join_transaction(root); 3025 if (IS_ERR(trans)) { 3026 ret = PTR_ERR(trans); 3027 trans = NULL; 3028 goto out; 3029 } 3030 3031 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3032 3033 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3034 compress_type = ordered_extent->compress_type; 3035 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3036 BUG_ON(compress_type); 3037 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3038 ordered_extent->len); 3039 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3040 ordered_extent->file_offset, 3041 ordered_extent->file_offset + 3042 logical_len); 3043 } else { 3044 BUG_ON(root == fs_info->tree_root); 3045 ret = insert_reserved_file_extent(trans, inode, 3046 ordered_extent->file_offset, 3047 ordered_extent->start, 3048 ordered_extent->disk_len, 3049 logical_len, logical_len, 3050 compress_type, 0, 0, 3051 BTRFS_FILE_EXTENT_REG); 3052 if (!ret) 3053 btrfs_release_delalloc_bytes(fs_info, 3054 ordered_extent->start, 3055 ordered_extent->disk_len); 3056 } 3057 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3058 ordered_extent->file_offset, ordered_extent->len, 3059 trans->transid); 3060 if (ret < 0) { 3061 btrfs_abort_transaction(trans, ret); 3062 goto out; 3063 } 3064 3065 add_pending_csums(trans, inode, &ordered_extent->list); 3066 3067 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3068 ret = btrfs_update_inode_fallback(trans, root, inode); 3069 if (ret) { /* -ENOMEM or corruption */ 3070 btrfs_abort_transaction(trans, ret); 3071 goto out; 3072 } 3073 ret = 0; 3074 out: 3075 if (range_locked || clear_new_delalloc_bytes) { 3076 unsigned int clear_bits = 0; 3077 3078 if (range_locked) 3079 clear_bits |= EXTENT_LOCKED; 3080 if (clear_new_delalloc_bytes) 3081 clear_bits |= EXTENT_DELALLOC_NEW; 3082 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3083 ordered_extent->file_offset, 3084 ordered_extent->file_offset + 3085 ordered_extent->len - 1, 3086 clear_bits, 3087 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3088 0, &cached_state); 3089 } 3090 3091 if (trans) 3092 btrfs_end_transaction(trans); 3093 3094 if (ret || truncated) { 3095 u64 start, end; 3096 3097 if (truncated) 3098 start = ordered_extent->file_offset + logical_len; 3099 else 3100 start = ordered_extent->file_offset; 3101 end = ordered_extent->file_offset + ordered_extent->len - 1; 3102 clear_extent_uptodate(io_tree, start, end, NULL); 3103 3104 /* Drop the cache for the part of the extent we didn't write. */ 3105 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3106 3107 /* 3108 * If the ordered extent had an IOERR or something else went 3109 * wrong we need to return the space for this ordered extent 3110 * back to the allocator. We only free the extent in the 3111 * truncated case if we didn't write out the extent at all. 3112 */ 3113 if ((ret || !logical_len) && 3114 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3115 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3116 btrfs_free_reserved_extent(fs_info, 3117 ordered_extent->start, 3118 ordered_extent->disk_len, 1); 3119 } 3120 3121 3122 /* 3123 * This needs to be done to make sure anybody waiting knows we are done 3124 * updating everything for this ordered extent. 3125 */ 3126 btrfs_remove_ordered_extent(inode, ordered_extent); 3127 3128 /* for snapshot-aware defrag */ 3129 if (new) { 3130 if (ret) { 3131 free_sa_defrag_extent(new); 3132 atomic_dec(&fs_info->defrag_running); 3133 } else { 3134 relink_file_extents(new); 3135 } 3136 } 3137 3138 /* once for us */ 3139 btrfs_put_ordered_extent(ordered_extent); 3140 /* once for the tree */ 3141 btrfs_put_ordered_extent(ordered_extent); 3142 3143 return ret; 3144 } 3145 3146 static void finish_ordered_fn(struct btrfs_work *work) 3147 { 3148 struct btrfs_ordered_extent *ordered_extent; 3149 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3150 btrfs_finish_ordered_io(ordered_extent); 3151 } 3152 3153 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3154 struct extent_state *state, int uptodate) 3155 { 3156 struct inode *inode = page->mapping->host; 3157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3158 struct btrfs_ordered_extent *ordered_extent = NULL; 3159 struct btrfs_workqueue *wq; 3160 btrfs_work_func_t func; 3161 3162 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3163 3164 ClearPagePrivate2(page); 3165 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3166 end - start + 1, uptodate)) 3167 return; 3168 3169 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3170 wq = fs_info->endio_freespace_worker; 3171 func = btrfs_freespace_write_helper; 3172 } else { 3173 wq = fs_info->endio_write_workers; 3174 func = btrfs_endio_write_helper; 3175 } 3176 3177 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3178 NULL); 3179 btrfs_queue_work(wq, &ordered_extent->work); 3180 } 3181 3182 static int __readpage_endio_check(struct inode *inode, 3183 struct btrfs_io_bio *io_bio, 3184 int icsum, struct page *page, 3185 int pgoff, u64 start, size_t len) 3186 { 3187 char *kaddr; 3188 u32 csum_expected; 3189 u32 csum = ~(u32)0; 3190 3191 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3192 3193 kaddr = kmap_atomic(page); 3194 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3195 btrfs_csum_final(csum, (u8 *)&csum); 3196 if (csum != csum_expected) 3197 goto zeroit; 3198 3199 kunmap_atomic(kaddr); 3200 return 0; 3201 zeroit: 3202 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3203 io_bio->mirror_num); 3204 memset(kaddr + pgoff, 1, len); 3205 flush_dcache_page(page); 3206 kunmap_atomic(kaddr); 3207 return -EIO; 3208 } 3209 3210 /* 3211 * when reads are done, we need to check csums to verify the data is correct 3212 * if there's a match, we allow the bio to finish. If not, the code in 3213 * extent_io.c will try to find good copies for us. 3214 */ 3215 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3216 u64 phy_offset, struct page *page, 3217 u64 start, u64 end, int mirror) 3218 { 3219 size_t offset = start - page_offset(page); 3220 struct inode *inode = page->mapping->host; 3221 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3222 struct btrfs_root *root = BTRFS_I(inode)->root; 3223 3224 if (PageChecked(page)) { 3225 ClearPageChecked(page); 3226 return 0; 3227 } 3228 3229 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3230 return 0; 3231 3232 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3233 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3234 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3235 return 0; 3236 } 3237 3238 phy_offset >>= inode->i_sb->s_blocksize_bits; 3239 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3240 start, (size_t)(end - start + 1)); 3241 } 3242 3243 void btrfs_add_delayed_iput(struct inode *inode) 3244 { 3245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3246 struct btrfs_inode *binode = BTRFS_I(inode); 3247 3248 if (atomic_add_unless(&inode->i_count, -1, 1)) 3249 return; 3250 3251 spin_lock(&fs_info->delayed_iput_lock); 3252 if (binode->delayed_iput_count == 0) { 3253 ASSERT(list_empty(&binode->delayed_iput)); 3254 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3255 } else { 3256 binode->delayed_iput_count++; 3257 } 3258 spin_unlock(&fs_info->delayed_iput_lock); 3259 } 3260 3261 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3262 { 3263 3264 spin_lock(&fs_info->delayed_iput_lock); 3265 while (!list_empty(&fs_info->delayed_iputs)) { 3266 struct btrfs_inode *inode; 3267 3268 inode = list_first_entry(&fs_info->delayed_iputs, 3269 struct btrfs_inode, delayed_iput); 3270 if (inode->delayed_iput_count) { 3271 inode->delayed_iput_count--; 3272 list_move_tail(&inode->delayed_iput, 3273 &fs_info->delayed_iputs); 3274 } else { 3275 list_del_init(&inode->delayed_iput); 3276 } 3277 spin_unlock(&fs_info->delayed_iput_lock); 3278 iput(&inode->vfs_inode); 3279 spin_lock(&fs_info->delayed_iput_lock); 3280 } 3281 spin_unlock(&fs_info->delayed_iput_lock); 3282 } 3283 3284 /* 3285 * This is called in transaction commit time. If there are no orphan 3286 * files in the subvolume, it removes orphan item and frees block_rsv 3287 * structure. 3288 */ 3289 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3290 struct btrfs_root *root) 3291 { 3292 struct btrfs_fs_info *fs_info = root->fs_info; 3293 struct btrfs_block_rsv *block_rsv; 3294 int ret; 3295 3296 if (atomic_read(&root->orphan_inodes) || 3297 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3298 return; 3299 3300 spin_lock(&root->orphan_lock); 3301 if (atomic_read(&root->orphan_inodes)) { 3302 spin_unlock(&root->orphan_lock); 3303 return; 3304 } 3305 3306 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3307 spin_unlock(&root->orphan_lock); 3308 return; 3309 } 3310 3311 block_rsv = root->orphan_block_rsv; 3312 root->orphan_block_rsv = NULL; 3313 spin_unlock(&root->orphan_lock); 3314 3315 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3316 btrfs_root_refs(&root->root_item) > 0) { 3317 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3318 root->root_key.objectid); 3319 if (ret) 3320 btrfs_abort_transaction(trans, ret); 3321 else 3322 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3323 &root->state); 3324 } 3325 3326 if (block_rsv) { 3327 WARN_ON(block_rsv->size > 0); 3328 btrfs_free_block_rsv(fs_info, block_rsv); 3329 } 3330 } 3331 3332 /* 3333 * This creates an orphan entry for the given inode in case something goes 3334 * wrong in the middle of an unlink/truncate. 3335 * 3336 * NOTE: caller of this function should reserve 5 units of metadata for 3337 * this function. 3338 */ 3339 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3340 struct btrfs_inode *inode) 3341 { 3342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3343 struct btrfs_root *root = inode->root; 3344 struct btrfs_block_rsv *block_rsv = NULL; 3345 int reserve = 0; 3346 int insert = 0; 3347 int ret; 3348 3349 if (!root->orphan_block_rsv) { 3350 block_rsv = btrfs_alloc_block_rsv(fs_info, 3351 BTRFS_BLOCK_RSV_TEMP); 3352 if (!block_rsv) 3353 return -ENOMEM; 3354 } 3355 3356 spin_lock(&root->orphan_lock); 3357 if (!root->orphan_block_rsv) { 3358 root->orphan_block_rsv = block_rsv; 3359 } else if (block_rsv) { 3360 btrfs_free_block_rsv(fs_info, block_rsv); 3361 block_rsv = NULL; 3362 } 3363 3364 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3365 &inode->runtime_flags)) { 3366 #if 0 3367 /* 3368 * For proper ENOSPC handling, we should do orphan 3369 * cleanup when mounting. But this introduces backward 3370 * compatibility issue. 3371 */ 3372 if (!xchg(&root->orphan_item_inserted, 1)) 3373 insert = 2; 3374 else 3375 insert = 1; 3376 #endif 3377 insert = 1; 3378 atomic_inc(&root->orphan_inodes); 3379 } 3380 3381 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3382 &inode->runtime_flags)) 3383 reserve = 1; 3384 spin_unlock(&root->orphan_lock); 3385 3386 /* grab metadata reservation from transaction handle */ 3387 if (reserve) { 3388 ret = btrfs_orphan_reserve_metadata(trans, inode); 3389 ASSERT(!ret); 3390 if (ret) { 3391 /* 3392 * dec doesn't need spin_lock as ->orphan_block_rsv 3393 * would be released only if ->orphan_inodes is 3394 * zero. 3395 */ 3396 atomic_dec(&root->orphan_inodes); 3397 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3398 &inode->runtime_flags); 3399 if (insert) 3400 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3401 &inode->runtime_flags); 3402 return ret; 3403 } 3404 } 3405 3406 /* insert an orphan item to track this unlinked/truncated file */ 3407 if (insert >= 1) { 3408 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3409 if (ret) { 3410 if (reserve) { 3411 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3412 &inode->runtime_flags); 3413 btrfs_orphan_release_metadata(inode); 3414 } 3415 /* 3416 * btrfs_orphan_commit_root may race with us and set 3417 * ->orphan_block_rsv to zero, in order to avoid that, 3418 * decrease ->orphan_inodes after everything is done. 3419 */ 3420 atomic_dec(&root->orphan_inodes); 3421 if (ret != -EEXIST) { 3422 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3423 &inode->runtime_flags); 3424 btrfs_abort_transaction(trans, ret); 3425 return ret; 3426 } 3427 } 3428 ret = 0; 3429 } 3430 3431 /* insert an orphan item to track subvolume contains orphan files */ 3432 if (insert >= 2) { 3433 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3434 root->root_key.objectid); 3435 if (ret && ret != -EEXIST) { 3436 btrfs_abort_transaction(trans, ret); 3437 return ret; 3438 } 3439 } 3440 return 0; 3441 } 3442 3443 /* 3444 * We have done the truncate/delete so we can go ahead and remove the orphan 3445 * item for this particular inode. 3446 */ 3447 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3448 struct btrfs_inode *inode) 3449 { 3450 struct btrfs_root *root = inode->root; 3451 int delete_item = 0; 3452 int ret = 0; 3453 3454 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3455 &inode->runtime_flags)) 3456 delete_item = 1; 3457 3458 if (delete_item && trans) 3459 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3460 3461 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3462 &inode->runtime_flags)) 3463 btrfs_orphan_release_metadata(inode); 3464 3465 /* 3466 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv 3467 * to zero, in order to avoid that, decrease ->orphan_inodes after 3468 * everything is done. 3469 */ 3470 if (delete_item) 3471 atomic_dec(&root->orphan_inodes); 3472 3473 return ret; 3474 } 3475 3476 /* 3477 * this cleans up any orphans that may be left on the list from the last use 3478 * of this root. 3479 */ 3480 int btrfs_orphan_cleanup(struct btrfs_root *root) 3481 { 3482 struct btrfs_fs_info *fs_info = root->fs_info; 3483 struct btrfs_path *path; 3484 struct extent_buffer *leaf; 3485 struct btrfs_key key, found_key; 3486 struct btrfs_trans_handle *trans; 3487 struct inode *inode; 3488 u64 last_objectid = 0; 3489 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3490 3491 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3492 return 0; 3493 3494 path = btrfs_alloc_path(); 3495 if (!path) { 3496 ret = -ENOMEM; 3497 goto out; 3498 } 3499 path->reada = READA_BACK; 3500 3501 key.objectid = BTRFS_ORPHAN_OBJECTID; 3502 key.type = BTRFS_ORPHAN_ITEM_KEY; 3503 key.offset = (u64)-1; 3504 3505 while (1) { 3506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3507 if (ret < 0) 3508 goto out; 3509 3510 /* 3511 * if ret == 0 means we found what we were searching for, which 3512 * is weird, but possible, so only screw with path if we didn't 3513 * find the key and see if we have stuff that matches 3514 */ 3515 if (ret > 0) { 3516 ret = 0; 3517 if (path->slots[0] == 0) 3518 break; 3519 path->slots[0]--; 3520 } 3521 3522 /* pull out the item */ 3523 leaf = path->nodes[0]; 3524 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3525 3526 /* make sure the item matches what we want */ 3527 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3528 break; 3529 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3530 break; 3531 3532 /* release the path since we're done with it */ 3533 btrfs_release_path(path); 3534 3535 /* 3536 * this is where we are basically btrfs_lookup, without the 3537 * crossing root thing. we store the inode number in the 3538 * offset of the orphan item. 3539 */ 3540 3541 if (found_key.offset == last_objectid) { 3542 btrfs_err(fs_info, 3543 "Error removing orphan entry, stopping orphan cleanup"); 3544 ret = -EINVAL; 3545 goto out; 3546 } 3547 3548 last_objectid = found_key.offset; 3549 3550 found_key.objectid = found_key.offset; 3551 found_key.type = BTRFS_INODE_ITEM_KEY; 3552 found_key.offset = 0; 3553 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3554 ret = PTR_ERR_OR_ZERO(inode); 3555 if (ret && ret != -ENOENT) 3556 goto out; 3557 3558 if (ret == -ENOENT && root == fs_info->tree_root) { 3559 struct btrfs_root *dead_root; 3560 struct btrfs_fs_info *fs_info = root->fs_info; 3561 int is_dead_root = 0; 3562 3563 /* 3564 * this is an orphan in the tree root. Currently these 3565 * could come from 2 sources: 3566 * a) a snapshot deletion in progress 3567 * b) a free space cache inode 3568 * We need to distinguish those two, as the snapshot 3569 * orphan must not get deleted. 3570 * find_dead_roots already ran before us, so if this 3571 * is a snapshot deletion, we should find the root 3572 * in the dead_roots list 3573 */ 3574 spin_lock(&fs_info->trans_lock); 3575 list_for_each_entry(dead_root, &fs_info->dead_roots, 3576 root_list) { 3577 if (dead_root->root_key.objectid == 3578 found_key.objectid) { 3579 is_dead_root = 1; 3580 break; 3581 } 3582 } 3583 spin_unlock(&fs_info->trans_lock); 3584 if (is_dead_root) { 3585 /* prevent this orphan from being found again */ 3586 key.offset = found_key.objectid - 1; 3587 continue; 3588 } 3589 } 3590 /* 3591 * Inode is already gone but the orphan item is still there, 3592 * kill the orphan item. 3593 */ 3594 if (ret == -ENOENT) { 3595 trans = btrfs_start_transaction(root, 1); 3596 if (IS_ERR(trans)) { 3597 ret = PTR_ERR(trans); 3598 goto out; 3599 } 3600 btrfs_debug(fs_info, "auto deleting %Lu", 3601 found_key.objectid); 3602 ret = btrfs_del_orphan_item(trans, root, 3603 found_key.objectid); 3604 btrfs_end_transaction(trans); 3605 if (ret) 3606 goto out; 3607 continue; 3608 } 3609 3610 /* 3611 * add this inode to the orphan list so btrfs_orphan_del does 3612 * the proper thing when we hit it 3613 */ 3614 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3615 &BTRFS_I(inode)->runtime_flags); 3616 atomic_inc(&root->orphan_inodes); 3617 3618 /* if we have links, this was a truncate, lets do that */ 3619 if (inode->i_nlink) { 3620 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3621 iput(inode); 3622 continue; 3623 } 3624 nr_truncate++; 3625 3626 /* 1 for the orphan item deletion. */ 3627 trans = btrfs_start_transaction(root, 1); 3628 if (IS_ERR(trans)) { 3629 iput(inode); 3630 ret = PTR_ERR(trans); 3631 goto out; 3632 } 3633 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3634 btrfs_end_transaction(trans); 3635 if (ret) { 3636 iput(inode); 3637 goto out; 3638 } 3639 3640 ret = btrfs_truncate(inode); 3641 if (ret) 3642 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3643 } else { 3644 nr_unlink++; 3645 } 3646 3647 /* this will do delete_inode and everything for us */ 3648 iput(inode); 3649 if (ret) 3650 goto out; 3651 } 3652 /* release the path since we're done with it */ 3653 btrfs_release_path(path); 3654 3655 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3656 3657 if (root->orphan_block_rsv) 3658 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3659 (u64)-1); 3660 3661 if (root->orphan_block_rsv || 3662 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3663 trans = btrfs_join_transaction(root); 3664 if (!IS_ERR(trans)) 3665 btrfs_end_transaction(trans); 3666 } 3667 3668 if (nr_unlink) 3669 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3670 if (nr_truncate) 3671 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3672 3673 out: 3674 if (ret) 3675 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3676 btrfs_free_path(path); 3677 return ret; 3678 } 3679 3680 /* 3681 * very simple check to peek ahead in the leaf looking for xattrs. If we 3682 * don't find any xattrs, we know there can't be any acls. 3683 * 3684 * slot is the slot the inode is in, objectid is the objectid of the inode 3685 */ 3686 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3687 int slot, u64 objectid, 3688 int *first_xattr_slot) 3689 { 3690 u32 nritems = btrfs_header_nritems(leaf); 3691 struct btrfs_key found_key; 3692 static u64 xattr_access = 0; 3693 static u64 xattr_default = 0; 3694 int scanned = 0; 3695 3696 if (!xattr_access) { 3697 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3698 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3699 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3700 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3701 } 3702 3703 slot++; 3704 *first_xattr_slot = -1; 3705 while (slot < nritems) { 3706 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3707 3708 /* we found a different objectid, there must not be acls */ 3709 if (found_key.objectid != objectid) 3710 return 0; 3711 3712 /* we found an xattr, assume we've got an acl */ 3713 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3714 if (*first_xattr_slot == -1) 3715 *first_xattr_slot = slot; 3716 if (found_key.offset == xattr_access || 3717 found_key.offset == xattr_default) 3718 return 1; 3719 } 3720 3721 /* 3722 * we found a key greater than an xattr key, there can't 3723 * be any acls later on 3724 */ 3725 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3726 return 0; 3727 3728 slot++; 3729 scanned++; 3730 3731 /* 3732 * it goes inode, inode backrefs, xattrs, extents, 3733 * so if there are a ton of hard links to an inode there can 3734 * be a lot of backrefs. Don't waste time searching too hard, 3735 * this is just an optimization 3736 */ 3737 if (scanned >= 8) 3738 break; 3739 } 3740 /* we hit the end of the leaf before we found an xattr or 3741 * something larger than an xattr. We have to assume the inode 3742 * has acls 3743 */ 3744 if (*first_xattr_slot == -1) 3745 *first_xattr_slot = slot; 3746 return 1; 3747 } 3748 3749 /* 3750 * read an inode from the btree into the in-memory inode 3751 */ 3752 static int btrfs_read_locked_inode(struct inode *inode) 3753 { 3754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3755 struct btrfs_path *path; 3756 struct extent_buffer *leaf; 3757 struct btrfs_inode_item *inode_item; 3758 struct btrfs_root *root = BTRFS_I(inode)->root; 3759 struct btrfs_key location; 3760 unsigned long ptr; 3761 int maybe_acls; 3762 u32 rdev; 3763 int ret; 3764 bool filled = false; 3765 int first_xattr_slot; 3766 3767 ret = btrfs_fill_inode(inode, &rdev); 3768 if (!ret) 3769 filled = true; 3770 3771 path = btrfs_alloc_path(); 3772 if (!path) { 3773 ret = -ENOMEM; 3774 goto make_bad; 3775 } 3776 3777 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3778 3779 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3780 if (ret) { 3781 if (ret > 0) 3782 ret = -ENOENT; 3783 goto make_bad; 3784 } 3785 3786 leaf = path->nodes[0]; 3787 3788 if (filled) 3789 goto cache_index; 3790 3791 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3792 struct btrfs_inode_item); 3793 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3794 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3795 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3796 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3797 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3798 3799 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3800 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3801 3802 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3803 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3804 3805 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3806 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3807 3808 BTRFS_I(inode)->i_otime.tv_sec = 3809 btrfs_timespec_sec(leaf, &inode_item->otime); 3810 BTRFS_I(inode)->i_otime.tv_nsec = 3811 btrfs_timespec_nsec(leaf, &inode_item->otime); 3812 3813 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3814 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3815 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3816 3817 inode_set_iversion_queried(inode, 3818 btrfs_inode_sequence(leaf, inode_item)); 3819 inode->i_generation = BTRFS_I(inode)->generation; 3820 inode->i_rdev = 0; 3821 rdev = btrfs_inode_rdev(leaf, inode_item); 3822 3823 BTRFS_I(inode)->index_cnt = (u64)-1; 3824 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3825 3826 cache_index: 3827 /* 3828 * If we were modified in the current generation and evicted from memory 3829 * and then re-read we need to do a full sync since we don't have any 3830 * idea about which extents were modified before we were evicted from 3831 * cache. 3832 * 3833 * This is required for both inode re-read from disk and delayed inode 3834 * in delayed_nodes_tree. 3835 */ 3836 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3837 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3838 &BTRFS_I(inode)->runtime_flags); 3839 3840 /* 3841 * We don't persist the id of the transaction where an unlink operation 3842 * against the inode was last made. So here we assume the inode might 3843 * have been evicted, and therefore the exact value of last_unlink_trans 3844 * lost, and set it to last_trans to avoid metadata inconsistencies 3845 * between the inode and its parent if the inode is fsync'ed and the log 3846 * replayed. For example, in the scenario: 3847 * 3848 * touch mydir/foo 3849 * ln mydir/foo mydir/bar 3850 * sync 3851 * unlink mydir/bar 3852 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3853 * xfs_io -c fsync mydir/foo 3854 * <power failure> 3855 * mount fs, triggers fsync log replay 3856 * 3857 * We must make sure that when we fsync our inode foo we also log its 3858 * parent inode, otherwise after log replay the parent still has the 3859 * dentry with the "bar" name but our inode foo has a link count of 1 3860 * and doesn't have an inode ref with the name "bar" anymore. 3861 * 3862 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3863 * but it guarantees correctness at the expense of occasional full 3864 * transaction commits on fsync if our inode is a directory, or if our 3865 * inode is not a directory, logging its parent unnecessarily. 3866 */ 3867 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3868 3869 path->slots[0]++; 3870 if (inode->i_nlink != 1 || 3871 path->slots[0] >= btrfs_header_nritems(leaf)) 3872 goto cache_acl; 3873 3874 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3875 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3876 goto cache_acl; 3877 3878 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3879 if (location.type == BTRFS_INODE_REF_KEY) { 3880 struct btrfs_inode_ref *ref; 3881 3882 ref = (struct btrfs_inode_ref *)ptr; 3883 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3884 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3885 struct btrfs_inode_extref *extref; 3886 3887 extref = (struct btrfs_inode_extref *)ptr; 3888 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3889 extref); 3890 } 3891 cache_acl: 3892 /* 3893 * try to precache a NULL acl entry for files that don't have 3894 * any xattrs or acls 3895 */ 3896 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3897 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3898 if (first_xattr_slot != -1) { 3899 path->slots[0] = first_xattr_slot; 3900 ret = btrfs_load_inode_props(inode, path); 3901 if (ret) 3902 btrfs_err(fs_info, 3903 "error loading props for ino %llu (root %llu): %d", 3904 btrfs_ino(BTRFS_I(inode)), 3905 root->root_key.objectid, ret); 3906 } 3907 btrfs_free_path(path); 3908 3909 if (!maybe_acls) 3910 cache_no_acl(inode); 3911 3912 switch (inode->i_mode & S_IFMT) { 3913 case S_IFREG: 3914 inode->i_mapping->a_ops = &btrfs_aops; 3915 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3916 inode->i_fop = &btrfs_file_operations; 3917 inode->i_op = &btrfs_file_inode_operations; 3918 break; 3919 case S_IFDIR: 3920 inode->i_fop = &btrfs_dir_file_operations; 3921 inode->i_op = &btrfs_dir_inode_operations; 3922 break; 3923 case S_IFLNK: 3924 inode->i_op = &btrfs_symlink_inode_operations; 3925 inode_nohighmem(inode); 3926 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3927 break; 3928 default: 3929 inode->i_op = &btrfs_special_inode_operations; 3930 init_special_inode(inode, inode->i_mode, rdev); 3931 break; 3932 } 3933 3934 btrfs_update_iflags(inode); 3935 return 0; 3936 3937 make_bad: 3938 btrfs_free_path(path); 3939 make_bad_inode(inode); 3940 return ret; 3941 } 3942 3943 /* 3944 * given a leaf and an inode, copy the inode fields into the leaf 3945 */ 3946 static void fill_inode_item(struct btrfs_trans_handle *trans, 3947 struct extent_buffer *leaf, 3948 struct btrfs_inode_item *item, 3949 struct inode *inode) 3950 { 3951 struct btrfs_map_token token; 3952 3953 btrfs_init_map_token(&token); 3954 3955 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3956 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3957 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3958 &token); 3959 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3960 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3961 3962 btrfs_set_token_timespec_sec(leaf, &item->atime, 3963 inode->i_atime.tv_sec, &token); 3964 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3965 inode->i_atime.tv_nsec, &token); 3966 3967 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3968 inode->i_mtime.tv_sec, &token); 3969 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3970 inode->i_mtime.tv_nsec, &token); 3971 3972 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3973 inode->i_ctime.tv_sec, &token); 3974 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3975 inode->i_ctime.tv_nsec, &token); 3976 3977 btrfs_set_token_timespec_sec(leaf, &item->otime, 3978 BTRFS_I(inode)->i_otime.tv_sec, &token); 3979 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3980 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3981 3982 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3983 &token); 3984 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3985 &token); 3986 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3987 &token); 3988 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3989 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3990 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3991 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3992 } 3993 3994 /* 3995 * copy everything in the in-memory inode into the btree. 3996 */ 3997 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3998 struct btrfs_root *root, struct inode *inode) 3999 { 4000 struct btrfs_inode_item *inode_item; 4001 struct btrfs_path *path; 4002 struct extent_buffer *leaf; 4003 int ret; 4004 4005 path = btrfs_alloc_path(); 4006 if (!path) 4007 return -ENOMEM; 4008 4009 path->leave_spinning = 1; 4010 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 4011 1); 4012 if (ret) { 4013 if (ret > 0) 4014 ret = -ENOENT; 4015 goto failed; 4016 } 4017 4018 leaf = path->nodes[0]; 4019 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4020 struct btrfs_inode_item); 4021 4022 fill_inode_item(trans, leaf, inode_item, inode); 4023 btrfs_mark_buffer_dirty(leaf); 4024 btrfs_set_inode_last_trans(trans, inode); 4025 ret = 0; 4026 failed: 4027 btrfs_free_path(path); 4028 return ret; 4029 } 4030 4031 /* 4032 * copy everything in the in-memory inode into the btree. 4033 */ 4034 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4035 struct btrfs_root *root, struct inode *inode) 4036 { 4037 struct btrfs_fs_info *fs_info = root->fs_info; 4038 int ret; 4039 4040 /* 4041 * If the inode is a free space inode, we can deadlock during commit 4042 * if we put it into the delayed code. 4043 * 4044 * The data relocation inode should also be directly updated 4045 * without delay 4046 */ 4047 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4048 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4049 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4050 btrfs_update_root_times(trans, root); 4051 4052 ret = btrfs_delayed_update_inode(trans, root, inode); 4053 if (!ret) 4054 btrfs_set_inode_last_trans(trans, inode); 4055 return ret; 4056 } 4057 4058 return btrfs_update_inode_item(trans, root, inode); 4059 } 4060 4061 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4062 struct btrfs_root *root, 4063 struct inode *inode) 4064 { 4065 int ret; 4066 4067 ret = btrfs_update_inode(trans, root, inode); 4068 if (ret == -ENOSPC) 4069 return btrfs_update_inode_item(trans, root, inode); 4070 return ret; 4071 } 4072 4073 /* 4074 * unlink helper that gets used here in inode.c and in the tree logging 4075 * recovery code. It remove a link in a directory with a given name, and 4076 * also drops the back refs in the inode to the directory 4077 */ 4078 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4079 struct btrfs_root *root, 4080 struct btrfs_inode *dir, 4081 struct btrfs_inode *inode, 4082 const char *name, int name_len) 4083 { 4084 struct btrfs_fs_info *fs_info = root->fs_info; 4085 struct btrfs_path *path; 4086 int ret = 0; 4087 struct extent_buffer *leaf; 4088 struct btrfs_dir_item *di; 4089 struct btrfs_key key; 4090 u64 index; 4091 u64 ino = btrfs_ino(inode); 4092 u64 dir_ino = btrfs_ino(dir); 4093 4094 path = btrfs_alloc_path(); 4095 if (!path) { 4096 ret = -ENOMEM; 4097 goto out; 4098 } 4099 4100 path->leave_spinning = 1; 4101 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4102 name, name_len, -1); 4103 if (IS_ERR(di)) { 4104 ret = PTR_ERR(di); 4105 goto err; 4106 } 4107 if (!di) { 4108 ret = -ENOENT; 4109 goto err; 4110 } 4111 leaf = path->nodes[0]; 4112 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4113 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4114 if (ret) 4115 goto err; 4116 btrfs_release_path(path); 4117 4118 /* 4119 * If we don't have dir index, we have to get it by looking up 4120 * the inode ref, since we get the inode ref, remove it directly, 4121 * it is unnecessary to do delayed deletion. 4122 * 4123 * But if we have dir index, needn't search inode ref to get it. 4124 * Since the inode ref is close to the inode item, it is better 4125 * that we delay to delete it, and just do this deletion when 4126 * we update the inode item. 4127 */ 4128 if (inode->dir_index) { 4129 ret = btrfs_delayed_delete_inode_ref(inode); 4130 if (!ret) { 4131 index = inode->dir_index; 4132 goto skip_backref; 4133 } 4134 } 4135 4136 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4137 dir_ino, &index); 4138 if (ret) { 4139 btrfs_info(fs_info, 4140 "failed to delete reference to %.*s, inode %llu parent %llu", 4141 name_len, name, ino, dir_ino); 4142 btrfs_abort_transaction(trans, ret); 4143 goto err; 4144 } 4145 skip_backref: 4146 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4147 if (ret) { 4148 btrfs_abort_transaction(trans, ret); 4149 goto err; 4150 } 4151 4152 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4153 dir_ino); 4154 if (ret != 0 && ret != -ENOENT) { 4155 btrfs_abort_transaction(trans, ret); 4156 goto err; 4157 } 4158 4159 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4160 index); 4161 if (ret == -ENOENT) 4162 ret = 0; 4163 else if (ret) 4164 btrfs_abort_transaction(trans, ret); 4165 err: 4166 btrfs_free_path(path); 4167 if (ret) 4168 goto out; 4169 4170 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4171 inode_inc_iversion(&inode->vfs_inode); 4172 inode_inc_iversion(&dir->vfs_inode); 4173 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4174 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4175 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4176 out: 4177 return ret; 4178 } 4179 4180 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4181 struct btrfs_root *root, 4182 struct btrfs_inode *dir, struct btrfs_inode *inode, 4183 const char *name, int name_len) 4184 { 4185 int ret; 4186 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4187 if (!ret) { 4188 drop_nlink(&inode->vfs_inode); 4189 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4190 } 4191 return ret; 4192 } 4193 4194 /* 4195 * helper to start transaction for unlink and rmdir. 4196 * 4197 * unlink and rmdir are special in btrfs, they do not always free space, so 4198 * if we cannot make our reservations the normal way try and see if there is 4199 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4200 * allow the unlink to occur. 4201 */ 4202 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4203 { 4204 struct btrfs_root *root = BTRFS_I(dir)->root; 4205 4206 /* 4207 * 1 for the possible orphan item 4208 * 1 for the dir item 4209 * 1 for the dir index 4210 * 1 for the inode ref 4211 * 1 for the inode 4212 */ 4213 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4214 } 4215 4216 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4217 { 4218 struct btrfs_root *root = BTRFS_I(dir)->root; 4219 struct btrfs_trans_handle *trans; 4220 struct inode *inode = d_inode(dentry); 4221 int ret; 4222 4223 trans = __unlink_start_trans(dir); 4224 if (IS_ERR(trans)) 4225 return PTR_ERR(trans); 4226 4227 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4228 0); 4229 4230 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4231 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4232 dentry->d_name.len); 4233 if (ret) 4234 goto out; 4235 4236 if (inode->i_nlink == 0) { 4237 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4238 if (ret) 4239 goto out; 4240 } 4241 4242 out: 4243 btrfs_end_transaction(trans); 4244 btrfs_btree_balance_dirty(root->fs_info); 4245 return ret; 4246 } 4247 4248 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4249 struct btrfs_root *root, 4250 struct inode *dir, u64 objectid, 4251 const char *name, int name_len) 4252 { 4253 struct btrfs_fs_info *fs_info = root->fs_info; 4254 struct btrfs_path *path; 4255 struct extent_buffer *leaf; 4256 struct btrfs_dir_item *di; 4257 struct btrfs_key key; 4258 u64 index; 4259 int ret; 4260 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4261 4262 path = btrfs_alloc_path(); 4263 if (!path) 4264 return -ENOMEM; 4265 4266 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4267 name, name_len, -1); 4268 if (IS_ERR_OR_NULL(di)) { 4269 if (!di) 4270 ret = -ENOENT; 4271 else 4272 ret = PTR_ERR(di); 4273 goto out; 4274 } 4275 4276 leaf = path->nodes[0]; 4277 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4278 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4279 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4280 if (ret) { 4281 btrfs_abort_transaction(trans, ret); 4282 goto out; 4283 } 4284 btrfs_release_path(path); 4285 4286 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4287 root->root_key.objectid, dir_ino, 4288 &index, name, name_len); 4289 if (ret < 0) { 4290 if (ret != -ENOENT) { 4291 btrfs_abort_transaction(trans, ret); 4292 goto out; 4293 } 4294 di = btrfs_search_dir_index_item(root, path, dir_ino, 4295 name, name_len); 4296 if (IS_ERR_OR_NULL(di)) { 4297 if (!di) 4298 ret = -ENOENT; 4299 else 4300 ret = PTR_ERR(di); 4301 btrfs_abort_transaction(trans, ret); 4302 goto out; 4303 } 4304 4305 leaf = path->nodes[0]; 4306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4307 btrfs_release_path(path); 4308 index = key.offset; 4309 } 4310 btrfs_release_path(path); 4311 4312 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4313 if (ret) { 4314 btrfs_abort_transaction(trans, ret); 4315 goto out; 4316 } 4317 4318 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4319 inode_inc_iversion(dir); 4320 dir->i_mtime = dir->i_ctime = current_time(dir); 4321 ret = btrfs_update_inode_fallback(trans, root, dir); 4322 if (ret) 4323 btrfs_abort_transaction(trans, ret); 4324 out: 4325 btrfs_free_path(path); 4326 return ret; 4327 } 4328 4329 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4330 { 4331 struct inode *inode = d_inode(dentry); 4332 int err = 0; 4333 struct btrfs_root *root = BTRFS_I(dir)->root; 4334 struct btrfs_trans_handle *trans; 4335 u64 last_unlink_trans; 4336 4337 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4338 return -ENOTEMPTY; 4339 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4340 return -EPERM; 4341 4342 trans = __unlink_start_trans(dir); 4343 if (IS_ERR(trans)) 4344 return PTR_ERR(trans); 4345 4346 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4347 err = btrfs_unlink_subvol(trans, root, dir, 4348 BTRFS_I(inode)->location.objectid, 4349 dentry->d_name.name, 4350 dentry->d_name.len); 4351 goto out; 4352 } 4353 4354 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4355 if (err) 4356 goto out; 4357 4358 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4359 4360 /* now the directory is empty */ 4361 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4362 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4363 dentry->d_name.len); 4364 if (!err) { 4365 btrfs_i_size_write(BTRFS_I(inode), 0); 4366 /* 4367 * Propagate the last_unlink_trans value of the deleted dir to 4368 * its parent directory. This is to prevent an unrecoverable 4369 * log tree in the case we do something like this: 4370 * 1) create dir foo 4371 * 2) create snapshot under dir foo 4372 * 3) delete the snapshot 4373 * 4) rmdir foo 4374 * 5) mkdir foo 4375 * 6) fsync foo or some file inside foo 4376 */ 4377 if (last_unlink_trans >= trans->transid) 4378 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4379 } 4380 out: 4381 btrfs_end_transaction(trans); 4382 btrfs_btree_balance_dirty(root->fs_info); 4383 4384 return err; 4385 } 4386 4387 static int truncate_space_check(struct btrfs_trans_handle *trans, 4388 struct btrfs_root *root, 4389 u64 bytes_deleted) 4390 { 4391 struct btrfs_fs_info *fs_info = root->fs_info; 4392 int ret; 4393 4394 /* 4395 * This is only used to apply pressure to the enospc system, we don't 4396 * intend to use this reservation at all. 4397 */ 4398 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4399 bytes_deleted *= fs_info->nodesize; 4400 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4401 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4402 if (!ret) { 4403 trace_btrfs_space_reservation(fs_info, "transaction", 4404 trans->transid, 4405 bytes_deleted, 1); 4406 trans->bytes_reserved += bytes_deleted; 4407 } 4408 return ret; 4409 4410 } 4411 4412 /* 4413 * Return this if we need to call truncate_block for the last bit of the 4414 * truncate. 4415 */ 4416 #define NEED_TRUNCATE_BLOCK 1 4417 4418 /* 4419 * this can truncate away extent items, csum items and directory items. 4420 * It starts at a high offset and removes keys until it can't find 4421 * any higher than new_size 4422 * 4423 * csum items that cross the new i_size are truncated to the new size 4424 * as well. 4425 * 4426 * min_type is the minimum key type to truncate down to. If set to 0, this 4427 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4428 */ 4429 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4430 struct btrfs_root *root, 4431 struct inode *inode, 4432 u64 new_size, u32 min_type) 4433 { 4434 struct btrfs_fs_info *fs_info = root->fs_info; 4435 struct btrfs_path *path; 4436 struct extent_buffer *leaf; 4437 struct btrfs_file_extent_item *fi; 4438 struct btrfs_key key; 4439 struct btrfs_key found_key; 4440 u64 extent_start = 0; 4441 u64 extent_num_bytes = 0; 4442 u64 extent_offset = 0; 4443 u64 item_end = 0; 4444 u64 last_size = new_size; 4445 u32 found_type = (u8)-1; 4446 int found_extent; 4447 int del_item; 4448 int pending_del_nr = 0; 4449 int pending_del_slot = 0; 4450 int extent_type = -1; 4451 int ret; 4452 int err = 0; 4453 u64 ino = btrfs_ino(BTRFS_I(inode)); 4454 u64 bytes_deleted = 0; 4455 bool be_nice = false; 4456 bool should_throttle = false; 4457 bool should_end = false; 4458 4459 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4460 4461 /* 4462 * for non-free space inodes and ref cows, we want to back off from 4463 * time to time 4464 */ 4465 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4466 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4467 be_nice = true; 4468 4469 path = btrfs_alloc_path(); 4470 if (!path) 4471 return -ENOMEM; 4472 path->reada = READA_BACK; 4473 4474 /* 4475 * We want to drop from the next block forward in case this new size is 4476 * not block aligned since we will be keeping the last block of the 4477 * extent just the way it is. 4478 */ 4479 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4480 root == fs_info->tree_root) 4481 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4482 fs_info->sectorsize), 4483 (u64)-1, 0); 4484 4485 /* 4486 * This function is also used to drop the items in the log tree before 4487 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4488 * it is used to drop the loged items. So we shouldn't kill the delayed 4489 * items. 4490 */ 4491 if (min_type == 0 && root == BTRFS_I(inode)->root) 4492 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4493 4494 key.objectid = ino; 4495 key.offset = (u64)-1; 4496 key.type = (u8)-1; 4497 4498 search_again: 4499 /* 4500 * with a 16K leaf size and 128MB extents, you can actually queue 4501 * up a huge file in a single leaf. Most of the time that 4502 * bytes_deleted is > 0, it will be huge by the time we get here 4503 */ 4504 if (be_nice && bytes_deleted > SZ_32M) { 4505 if (btrfs_should_end_transaction(trans)) { 4506 err = -EAGAIN; 4507 goto error; 4508 } 4509 } 4510 4511 4512 path->leave_spinning = 1; 4513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4514 if (ret < 0) { 4515 err = ret; 4516 goto out; 4517 } 4518 4519 if (ret > 0) { 4520 /* there are no items in the tree for us to truncate, we're 4521 * done 4522 */ 4523 if (path->slots[0] == 0) 4524 goto out; 4525 path->slots[0]--; 4526 } 4527 4528 while (1) { 4529 fi = NULL; 4530 leaf = path->nodes[0]; 4531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4532 found_type = found_key.type; 4533 4534 if (found_key.objectid != ino) 4535 break; 4536 4537 if (found_type < min_type) 4538 break; 4539 4540 item_end = found_key.offset; 4541 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4542 fi = btrfs_item_ptr(leaf, path->slots[0], 4543 struct btrfs_file_extent_item); 4544 extent_type = btrfs_file_extent_type(leaf, fi); 4545 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4546 item_end += 4547 btrfs_file_extent_num_bytes(leaf, fi); 4548 4549 trace_btrfs_truncate_show_fi_regular( 4550 BTRFS_I(inode), leaf, fi, 4551 found_key.offset); 4552 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4553 item_end += btrfs_file_extent_inline_len(leaf, 4554 path->slots[0], fi); 4555 4556 trace_btrfs_truncate_show_fi_inline( 4557 BTRFS_I(inode), leaf, fi, path->slots[0], 4558 found_key.offset); 4559 } 4560 item_end--; 4561 } 4562 if (found_type > min_type) { 4563 del_item = 1; 4564 } else { 4565 if (item_end < new_size) 4566 break; 4567 if (found_key.offset >= new_size) 4568 del_item = 1; 4569 else 4570 del_item = 0; 4571 } 4572 found_extent = 0; 4573 /* FIXME, shrink the extent if the ref count is only 1 */ 4574 if (found_type != BTRFS_EXTENT_DATA_KEY) 4575 goto delete; 4576 4577 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4578 u64 num_dec; 4579 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4580 if (!del_item) { 4581 u64 orig_num_bytes = 4582 btrfs_file_extent_num_bytes(leaf, fi); 4583 extent_num_bytes = ALIGN(new_size - 4584 found_key.offset, 4585 fs_info->sectorsize); 4586 btrfs_set_file_extent_num_bytes(leaf, fi, 4587 extent_num_bytes); 4588 num_dec = (orig_num_bytes - 4589 extent_num_bytes); 4590 if (test_bit(BTRFS_ROOT_REF_COWS, 4591 &root->state) && 4592 extent_start != 0) 4593 inode_sub_bytes(inode, num_dec); 4594 btrfs_mark_buffer_dirty(leaf); 4595 } else { 4596 extent_num_bytes = 4597 btrfs_file_extent_disk_num_bytes(leaf, 4598 fi); 4599 extent_offset = found_key.offset - 4600 btrfs_file_extent_offset(leaf, fi); 4601 4602 /* FIXME blocksize != 4096 */ 4603 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4604 if (extent_start != 0) { 4605 found_extent = 1; 4606 if (test_bit(BTRFS_ROOT_REF_COWS, 4607 &root->state)) 4608 inode_sub_bytes(inode, num_dec); 4609 } 4610 } 4611 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4612 /* 4613 * we can't truncate inline items that have had 4614 * special encodings 4615 */ 4616 if (!del_item && 4617 btrfs_file_extent_encryption(leaf, fi) == 0 && 4618 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4619 btrfs_file_extent_compression(leaf, fi) == 0) { 4620 u32 size = (u32)(new_size - found_key.offset); 4621 4622 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4623 size = btrfs_file_extent_calc_inline_size(size); 4624 btrfs_truncate_item(root->fs_info, path, size, 1); 4625 } else if (!del_item) { 4626 /* 4627 * We have to bail so the last_size is set to 4628 * just before this extent. 4629 */ 4630 err = NEED_TRUNCATE_BLOCK; 4631 break; 4632 } 4633 4634 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4635 inode_sub_bytes(inode, item_end + 1 - new_size); 4636 } 4637 delete: 4638 if (del_item) 4639 last_size = found_key.offset; 4640 else 4641 last_size = new_size; 4642 if (del_item) { 4643 if (!pending_del_nr) { 4644 /* no pending yet, add ourselves */ 4645 pending_del_slot = path->slots[0]; 4646 pending_del_nr = 1; 4647 } else if (pending_del_nr && 4648 path->slots[0] + 1 == pending_del_slot) { 4649 /* hop on the pending chunk */ 4650 pending_del_nr++; 4651 pending_del_slot = path->slots[0]; 4652 } else { 4653 BUG(); 4654 } 4655 } else { 4656 break; 4657 } 4658 should_throttle = false; 4659 4660 if (found_extent && 4661 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4662 root == fs_info->tree_root)) { 4663 btrfs_set_path_blocking(path); 4664 bytes_deleted += extent_num_bytes; 4665 ret = btrfs_free_extent(trans, root, extent_start, 4666 extent_num_bytes, 0, 4667 btrfs_header_owner(leaf), 4668 ino, extent_offset); 4669 BUG_ON(ret); 4670 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4671 btrfs_async_run_delayed_refs(fs_info, 4672 trans->delayed_ref_updates * 2, 4673 trans->transid, 0); 4674 if (be_nice) { 4675 if (truncate_space_check(trans, root, 4676 extent_num_bytes)) { 4677 should_end = true; 4678 } 4679 if (btrfs_should_throttle_delayed_refs(trans, 4680 fs_info)) 4681 should_throttle = true; 4682 } 4683 } 4684 4685 if (found_type == BTRFS_INODE_ITEM_KEY) 4686 break; 4687 4688 if (path->slots[0] == 0 || 4689 path->slots[0] != pending_del_slot || 4690 should_throttle || should_end) { 4691 if (pending_del_nr) { 4692 ret = btrfs_del_items(trans, root, path, 4693 pending_del_slot, 4694 pending_del_nr); 4695 if (ret) { 4696 btrfs_abort_transaction(trans, ret); 4697 goto error; 4698 } 4699 pending_del_nr = 0; 4700 } 4701 btrfs_release_path(path); 4702 if (should_throttle) { 4703 unsigned long updates = trans->delayed_ref_updates; 4704 if (updates) { 4705 trans->delayed_ref_updates = 0; 4706 ret = btrfs_run_delayed_refs(trans, 4707 fs_info, 4708 updates * 2); 4709 if (ret && !err) 4710 err = ret; 4711 } 4712 } 4713 /* 4714 * if we failed to refill our space rsv, bail out 4715 * and let the transaction restart 4716 */ 4717 if (should_end) { 4718 err = -EAGAIN; 4719 goto error; 4720 } 4721 goto search_again; 4722 } else { 4723 path->slots[0]--; 4724 } 4725 } 4726 out: 4727 if (pending_del_nr) { 4728 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4729 pending_del_nr); 4730 if (ret) 4731 btrfs_abort_transaction(trans, ret); 4732 } 4733 error: 4734 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4735 ASSERT(last_size >= new_size); 4736 if (!err && last_size > new_size) 4737 last_size = new_size; 4738 btrfs_ordered_update_i_size(inode, last_size, NULL); 4739 } 4740 4741 btrfs_free_path(path); 4742 4743 if (be_nice && bytes_deleted > SZ_32M) { 4744 unsigned long updates = trans->delayed_ref_updates; 4745 if (updates) { 4746 trans->delayed_ref_updates = 0; 4747 ret = btrfs_run_delayed_refs(trans, fs_info, 4748 updates * 2); 4749 if (ret && !err) 4750 err = ret; 4751 } 4752 } 4753 return err; 4754 } 4755 4756 /* 4757 * btrfs_truncate_block - read, zero a chunk and write a block 4758 * @inode - inode that we're zeroing 4759 * @from - the offset to start zeroing 4760 * @len - the length to zero, 0 to zero the entire range respective to the 4761 * offset 4762 * @front - zero up to the offset instead of from the offset on 4763 * 4764 * This will find the block for the "from" offset and cow the block and zero the 4765 * part we want to zero. This is used with truncate and hole punching. 4766 */ 4767 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4768 int front) 4769 { 4770 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4771 struct address_space *mapping = inode->i_mapping; 4772 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4773 struct btrfs_ordered_extent *ordered; 4774 struct extent_state *cached_state = NULL; 4775 struct extent_changeset *data_reserved = NULL; 4776 char *kaddr; 4777 u32 blocksize = fs_info->sectorsize; 4778 pgoff_t index = from >> PAGE_SHIFT; 4779 unsigned offset = from & (blocksize - 1); 4780 struct page *page; 4781 gfp_t mask = btrfs_alloc_write_mask(mapping); 4782 int ret = 0; 4783 u64 block_start; 4784 u64 block_end; 4785 4786 if (IS_ALIGNED(offset, blocksize) && 4787 (!len || IS_ALIGNED(len, blocksize))) 4788 goto out; 4789 4790 block_start = round_down(from, blocksize); 4791 block_end = block_start + blocksize - 1; 4792 4793 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4794 block_start, blocksize); 4795 if (ret) 4796 goto out; 4797 4798 again: 4799 page = find_or_create_page(mapping, index, mask); 4800 if (!page) { 4801 btrfs_delalloc_release_space(inode, data_reserved, 4802 block_start, blocksize); 4803 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4804 ret = -ENOMEM; 4805 goto out; 4806 } 4807 4808 if (!PageUptodate(page)) { 4809 ret = btrfs_readpage(NULL, page); 4810 lock_page(page); 4811 if (page->mapping != mapping) { 4812 unlock_page(page); 4813 put_page(page); 4814 goto again; 4815 } 4816 if (!PageUptodate(page)) { 4817 ret = -EIO; 4818 goto out_unlock; 4819 } 4820 } 4821 wait_on_page_writeback(page); 4822 4823 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4824 set_page_extent_mapped(page); 4825 4826 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4827 if (ordered) { 4828 unlock_extent_cached(io_tree, block_start, block_end, 4829 &cached_state); 4830 unlock_page(page); 4831 put_page(page); 4832 btrfs_start_ordered_extent(inode, ordered, 1); 4833 btrfs_put_ordered_extent(ordered); 4834 goto again; 4835 } 4836 4837 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4838 EXTENT_DIRTY | EXTENT_DELALLOC | 4839 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4840 0, 0, &cached_state); 4841 4842 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4843 &cached_state, 0); 4844 if (ret) { 4845 unlock_extent_cached(io_tree, block_start, block_end, 4846 &cached_state); 4847 goto out_unlock; 4848 } 4849 4850 if (offset != blocksize) { 4851 if (!len) 4852 len = blocksize - offset; 4853 kaddr = kmap(page); 4854 if (front) 4855 memset(kaddr + (block_start - page_offset(page)), 4856 0, offset); 4857 else 4858 memset(kaddr + (block_start - page_offset(page)) + offset, 4859 0, len); 4860 flush_dcache_page(page); 4861 kunmap(page); 4862 } 4863 ClearPageChecked(page); 4864 set_page_dirty(page); 4865 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4866 4867 out_unlock: 4868 if (ret) 4869 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4870 blocksize); 4871 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4872 unlock_page(page); 4873 put_page(page); 4874 out: 4875 extent_changeset_free(data_reserved); 4876 return ret; 4877 } 4878 4879 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4880 u64 offset, u64 len) 4881 { 4882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4883 struct btrfs_trans_handle *trans; 4884 int ret; 4885 4886 /* 4887 * Still need to make sure the inode looks like it's been updated so 4888 * that any holes get logged if we fsync. 4889 */ 4890 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4891 BTRFS_I(inode)->last_trans = fs_info->generation; 4892 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4893 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4894 return 0; 4895 } 4896 4897 /* 4898 * 1 - for the one we're dropping 4899 * 1 - for the one we're adding 4900 * 1 - for updating the inode. 4901 */ 4902 trans = btrfs_start_transaction(root, 3); 4903 if (IS_ERR(trans)) 4904 return PTR_ERR(trans); 4905 4906 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4907 if (ret) { 4908 btrfs_abort_transaction(trans, ret); 4909 btrfs_end_transaction(trans); 4910 return ret; 4911 } 4912 4913 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4914 offset, 0, 0, len, 0, len, 0, 0, 0); 4915 if (ret) 4916 btrfs_abort_transaction(trans, ret); 4917 else 4918 btrfs_update_inode(trans, root, inode); 4919 btrfs_end_transaction(trans); 4920 return ret; 4921 } 4922 4923 /* 4924 * This function puts in dummy file extents for the area we're creating a hole 4925 * for. So if we are truncating this file to a larger size we need to insert 4926 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4927 * the range between oldsize and size 4928 */ 4929 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4930 { 4931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4932 struct btrfs_root *root = BTRFS_I(inode)->root; 4933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4934 struct extent_map *em = NULL; 4935 struct extent_state *cached_state = NULL; 4936 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4937 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4938 u64 block_end = ALIGN(size, fs_info->sectorsize); 4939 u64 last_byte; 4940 u64 cur_offset; 4941 u64 hole_size; 4942 int err = 0; 4943 4944 /* 4945 * If our size started in the middle of a block we need to zero out the 4946 * rest of the block before we expand the i_size, otherwise we could 4947 * expose stale data. 4948 */ 4949 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4950 if (err) 4951 return err; 4952 4953 if (size <= hole_start) 4954 return 0; 4955 4956 while (1) { 4957 struct btrfs_ordered_extent *ordered; 4958 4959 lock_extent_bits(io_tree, hole_start, block_end - 1, 4960 &cached_state); 4961 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4962 block_end - hole_start); 4963 if (!ordered) 4964 break; 4965 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4966 &cached_state); 4967 btrfs_start_ordered_extent(inode, ordered, 1); 4968 btrfs_put_ordered_extent(ordered); 4969 } 4970 4971 cur_offset = hole_start; 4972 while (1) { 4973 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4974 block_end - cur_offset, 0); 4975 if (IS_ERR(em)) { 4976 err = PTR_ERR(em); 4977 em = NULL; 4978 break; 4979 } 4980 last_byte = min(extent_map_end(em), block_end); 4981 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4982 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4983 struct extent_map *hole_em; 4984 hole_size = last_byte - cur_offset; 4985 4986 err = maybe_insert_hole(root, inode, cur_offset, 4987 hole_size); 4988 if (err) 4989 break; 4990 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4991 cur_offset + hole_size - 1, 0); 4992 hole_em = alloc_extent_map(); 4993 if (!hole_em) { 4994 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4995 &BTRFS_I(inode)->runtime_flags); 4996 goto next; 4997 } 4998 hole_em->start = cur_offset; 4999 hole_em->len = hole_size; 5000 hole_em->orig_start = cur_offset; 5001 5002 hole_em->block_start = EXTENT_MAP_HOLE; 5003 hole_em->block_len = 0; 5004 hole_em->orig_block_len = 0; 5005 hole_em->ram_bytes = hole_size; 5006 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5007 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5008 hole_em->generation = fs_info->generation; 5009 5010 while (1) { 5011 write_lock(&em_tree->lock); 5012 err = add_extent_mapping(em_tree, hole_em, 1); 5013 write_unlock(&em_tree->lock); 5014 if (err != -EEXIST) 5015 break; 5016 btrfs_drop_extent_cache(BTRFS_I(inode), 5017 cur_offset, 5018 cur_offset + 5019 hole_size - 1, 0); 5020 } 5021 free_extent_map(hole_em); 5022 } 5023 next: 5024 free_extent_map(em); 5025 em = NULL; 5026 cur_offset = last_byte; 5027 if (cur_offset >= block_end) 5028 break; 5029 } 5030 free_extent_map(em); 5031 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5032 return err; 5033 } 5034 5035 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5036 { 5037 struct btrfs_root *root = BTRFS_I(inode)->root; 5038 struct btrfs_trans_handle *trans; 5039 loff_t oldsize = i_size_read(inode); 5040 loff_t newsize = attr->ia_size; 5041 int mask = attr->ia_valid; 5042 int ret; 5043 5044 /* 5045 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5046 * special case where we need to update the times despite not having 5047 * these flags set. For all other operations the VFS set these flags 5048 * explicitly if it wants a timestamp update. 5049 */ 5050 if (newsize != oldsize) { 5051 inode_inc_iversion(inode); 5052 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5053 inode->i_ctime = inode->i_mtime = 5054 current_time(inode); 5055 } 5056 5057 if (newsize > oldsize) { 5058 /* 5059 * Don't do an expanding truncate while snapshotting is ongoing. 5060 * This is to ensure the snapshot captures a fully consistent 5061 * state of this file - if the snapshot captures this expanding 5062 * truncation, it must capture all writes that happened before 5063 * this truncation. 5064 */ 5065 btrfs_wait_for_snapshot_creation(root); 5066 ret = btrfs_cont_expand(inode, oldsize, newsize); 5067 if (ret) { 5068 btrfs_end_write_no_snapshotting(root); 5069 return ret; 5070 } 5071 5072 trans = btrfs_start_transaction(root, 1); 5073 if (IS_ERR(trans)) { 5074 btrfs_end_write_no_snapshotting(root); 5075 return PTR_ERR(trans); 5076 } 5077 5078 i_size_write(inode, newsize); 5079 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5080 pagecache_isize_extended(inode, oldsize, newsize); 5081 ret = btrfs_update_inode(trans, root, inode); 5082 btrfs_end_write_no_snapshotting(root); 5083 btrfs_end_transaction(trans); 5084 } else { 5085 5086 /* 5087 * We're truncating a file that used to have good data down to 5088 * zero. Make sure it gets into the ordered flush list so that 5089 * any new writes get down to disk quickly. 5090 */ 5091 if (newsize == 0) 5092 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5093 &BTRFS_I(inode)->runtime_flags); 5094 5095 /* 5096 * 1 for the orphan item we're going to add 5097 * 1 for the orphan item deletion. 5098 */ 5099 trans = btrfs_start_transaction(root, 2); 5100 if (IS_ERR(trans)) 5101 return PTR_ERR(trans); 5102 5103 /* 5104 * We need to do this in case we fail at _any_ point during the 5105 * actual truncate. Once we do the truncate_setsize we could 5106 * invalidate pages which forces any outstanding ordered io to 5107 * be instantly completed which will give us extents that need 5108 * to be truncated. If we fail to get an orphan inode down we 5109 * could have left over extents that were never meant to live, 5110 * so we need to guarantee from this point on that everything 5111 * will be consistent. 5112 */ 5113 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5114 btrfs_end_transaction(trans); 5115 if (ret) 5116 return ret; 5117 5118 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5119 truncate_setsize(inode, newsize); 5120 5121 /* Disable nonlocked read DIO to avoid the end less truncate */ 5122 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5123 inode_dio_wait(inode); 5124 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5125 5126 ret = btrfs_truncate(inode); 5127 if (ret && inode->i_nlink) { 5128 int err; 5129 5130 /* To get a stable disk_i_size */ 5131 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5132 if (err) { 5133 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5134 return err; 5135 } 5136 5137 /* 5138 * failed to truncate, disk_i_size is only adjusted down 5139 * as we remove extents, so it should represent the true 5140 * size of the inode, so reset the in memory size and 5141 * delete our orphan entry. 5142 */ 5143 trans = btrfs_join_transaction(root); 5144 if (IS_ERR(trans)) { 5145 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5146 return ret; 5147 } 5148 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5149 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5150 if (err) 5151 btrfs_abort_transaction(trans, err); 5152 btrfs_end_transaction(trans); 5153 } 5154 } 5155 5156 return ret; 5157 } 5158 5159 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5160 { 5161 struct inode *inode = d_inode(dentry); 5162 struct btrfs_root *root = BTRFS_I(inode)->root; 5163 int err; 5164 5165 if (btrfs_root_readonly(root)) 5166 return -EROFS; 5167 5168 err = setattr_prepare(dentry, attr); 5169 if (err) 5170 return err; 5171 5172 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5173 err = btrfs_setsize(inode, attr); 5174 if (err) 5175 return err; 5176 } 5177 5178 if (attr->ia_valid) { 5179 setattr_copy(inode, attr); 5180 inode_inc_iversion(inode); 5181 err = btrfs_dirty_inode(inode); 5182 5183 if (!err && attr->ia_valid & ATTR_MODE) 5184 err = posix_acl_chmod(inode, inode->i_mode); 5185 } 5186 5187 return err; 5188 } 5189 5190 /* 5191 * While truncating the inode pages during eviction, we get the VFS calling 5192 * btrfs_invalidatepage() against each page of the inode. This is slow because 5193 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5194 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5195 * extent_state structures over and over, wasting lots of time. 5196 * 5197 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5198 * those expensive operations on a per page basis and do only the ordered io 5199 * finishing, while we release here the extent_map and extent_state structures, 5200 * without the excessive merging and splitting. 5201 */ 5202 static void evict_inode_truncate_pages(struct inode *inode) 5203 { 5204 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5205 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5206 struct rb_node *node; 5207 5208 ASSERT(inode->i_state & I_FREEING); 5209 truncate_inode_pages_final(&inode->i_data); 5210 5211 write_lock(&map_tree->lock); 5212 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5213 struct extent_map *em; 5214 5215 node = rb_first(&map_tree->map); 5216 em = rb_entry(node, struct extent_map, rb_node); 5217 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5218 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5219 remove_extent_mapping(map_tree, em); 5220 free_extent_map(em); 5221 if (need_resched()) { 5222 write_unlock(&map_tree->lock); 5223 cond_resched(); 5224 write_lock(&map_tree->lock); 5225 } 5226 } 5227 write_unlock(&map_tree->lock); 5228 5229 /* 5230 * Keep looping until we have no more ranges in the io tree. 5231 * We can have ongoing bios started by readpages (called from readahead) 5232 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5233 * still in progress (unlocked the pages in the bio but did not yet 5234 * unlocked the ranges in the io tree). Therefore this means some 5235 * ranges can still be locked and eviction started because before 5236 * submitting those bios, which are executed by a separate task (work 5237 * queue kthread), inode references (inode->i_count) were not taken 5238 * (which would be dropped in the end io callback of each bio). 5239 * Therefore here we effectively end up waiting for those bios and 5240 * anyone else holding locked ranges without having bumped the inode's 5241 * reference count - if we don't do it, when they access the inode's 5242 * io_tree to unlock a range it may be too late, leading to an 5243 * use-after-free issue. 5244 */ 5245 spin_lock(&io_tree->lock); 5246 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5247 struct extent_state *state; 5248 struct extent_state *cached_state = NULL; 5249 u64 start; 5250 u64 end; 5251 5252 node = rb_first(&io_tree->state); 5253 state = rb_entry(node, struct extent_state, rb_node); 5254 start = state->start; 5255 end = state->end; 5256 spin_unlock(&io_tree->lock); 5257 5258 lock_extent_bits(io_tree, start, end, &cached_state); 5259 5260 /* 5261 * If still has DELALLOC flag, the extent didn't reach disk, 5262 * and its reserved space won't be freed by delayed_ref. 5263 * So we need to free its reserved space here. 5264 * (Refer to comment in btrfs_invalidatepage, case 2) 5265 * 5266 * Note, end is the bytenr of last byte, so we need + 1 here. 5267 */ 5268 if (state->state & EXTENT_DELALLOC) 5269 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5270 5271 clear_extent_bit(io_tree, start, end, 5272 EXTENT_LOCKED | EXTENT_DIRTY | 5273 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5274 EXTENT_DEFRAG, 1, 1, &cached_state); 5275 5276 cond_resched(); 5277 spin_lock(&io_tree->lock); 5278 } 5279 spin_unlock(&io_tree->lock); 5280 } 5281 5282 void btrfs_evict_inode(struct inode *inode) 5283 { 5284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5285 struct btrfs_trans_handle *trans; 5286 struct btrfs_root *root = BTRFS_I(inode)->root; 5287 struct btrfs_block_rsv *rsv, *global_rsv; 5288 int steal_from_global = 0; 5289 u64 min_size; 5290 int ret; 5291 5292 trace_btrfs_inode_evict(inode); 5293 5294 if (!root) { 5295 clear_inode(inode); 5296 return; 5297 } 5298 5299 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5300 5301 evict_inode_truncate_pages(inode); 5302 5303 if (inode->i_nlink && 5304 ((btrfs_root_refs(&root->root_item) != 0 && 5305 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5306 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5307 goto no_delete; 5308 5309 if (is_bad_inode(inode)) { 5310 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5311 goto no_delete; 5312 } 5313 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5314 if (!special_file(inode->i_mode)) 5315 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5316 5317 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5318 5319 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5320 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5321 &BTRFS_I(inode)->runtime_flags)); 5322 goto no_delete; 5323 } 5324 5325 if (inode->i_nlink > 0) { 5326 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5327 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5328 goto no_delete; 5329 } 5330 5331 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5332 if (ret) { 5333 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5334 goto no_delete; 5335 } 5336 5337 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5338 if (!rsv) { 5339 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5340 goto no_delete; 5341 } 5342 rsv->size = min_size; 5343 rsv->failfast = 1; 5344 global_rsv = &fs_info->global_block_rsv; 5345 5346 btrfs_i_size_write(BTRFS_I(inode), 0); 5347 5348 /* 5349 * This is a bit simpler than btrfs_truncate since we've already 5350 * reserved our space for our orphan item in the unlink, so we just 5351 * need to reserve some slack space in case we add bytes and update 5352 * inode item when doing the truncate. 5353 */ 5354 while (1) { 5355 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5356 BTRFS_RESERVE_FLUSH_LIMIT); 5357 5358 /* 5359 * Try and steal from the global reserve since we will 5360 * likely not use this space anyway, we want to try as 5361 * hard as possible to get this to work. 5362 */ 5363 if (ret) 5364 steal_from_global++; 5365 else 5366 steal_from_global = 0; 5367 ret = 0; 5368 5369 /* 5370 * steal_from_global == 0: we reserved stuff, hooray! 5371 * steal_from_global == 1: we didn't reserve stuff, boo! 5372 * steal_from_global == 2: we've committed, still not a lot of 5373 * room but maybe we'll have room in the global reserve this 5374 * time. 5375 * steal_from_global == 3: abandon all hope! 5376 */ 5377 if (steal_from_global > 2) { 5378 btrfs_warn(fs_info, 5379 "Could not get space for a delete, will truncate on mount %d", 5380 ret); 5381 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5382 btrfs_free_block_rsv(fs_info, rsv); 5383 goto no_delete; 5384 } 5385 5386 trans = btrfs_join_transaction(root); 5387 if (IS_ERR(trans)) { 5388 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5389 btrfs_free_block_rsv(fs_info, rsv); 5390 goto no_delete; 5391 } 5392 5393 /* 5394 * We can't just steal from the global reserve, we need to make 5395 * sure there is room to do it, if not we need to commit and try 5396 * again. 5397 */ 5398 if (steal_from_global) { 5399 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5400 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5401 min_size, 0); 5402 else 5403 ret = -ENOSPC; 5404 } 5405 5406 /* 5407 * Couldn't steal from the global reserve, we have too much 5408 * pending stuff built up, commit the transaction and try it 5409 * again. 5410 */ 5411 if (ret) { 5412 ret = btrfs_commit_transaction(trans); 5413 if (ret) { 5414 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5415 btrfs_free_block_rsv(fs_info, rsv); 5416 goto no_delete; 5417 } 5418 continue; 5419 } else { 5420 steal_from_global = 0; 5421 } 5422 5423 trans->block_rsv = rsv; 5424 5425 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5426 if (ret != -ENOSPC && ret != -EAGAIN) 5427 break; 5428 5429 trans->block_rsv = &fs_info->trans_block_rsv; 5430 btrfs_end_transaction(trans); 5431 trans = NULL; 5432 btrfs_btree_balance_dirty(fs_info); 5433 } 5434 5435 btrfs_free_block_rsv(fs_info, rsv); 5436 5437 /* 5438 * Errors here aren't a big deal, it just means we leave orphan items 5439 * in the tree. They will be cleaned up on the next mount. 5440 */ 5441 if (ret == 0) { 5442 trans->block_rsv = root->orphan_block_rsv; 5443 btrfs_orphan_del(trans, BTRFS_I(inode)); 5444 } else { 5445 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5446 } 5447 5448 trans->block_rsv = &fs_info->trans_block_rsv; 5449 if (!(root == fs_info->tree_root || 5450 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5451 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5452 5453 btrfs_end_transaction(trans); 5454 btrfs_btree_balance_dirty(fs_info); 5455 no_delete: 5456 btrfs_remove_delayed_node(BTRFS_I(inode)); 5457 clear_inode(inode); 5458 } 5459 5460 /* 5461 * this returns the key found in the dir entry in the location pointer. 5462 * If no dir entries were found, location->objectid is 0. 5463 */ 5464 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5465 struct btrfs_key *location) 5466 { 5467 const char *name = dentry->d_name.name; 5468 int namelen = dentry->d_name.len; 5469 struct btrfs_dir_item *di; 5470 struct btrfs_path *path; 5471 struct btrfs_root *root = BTRFS_I(dir)->root; 5472 int ret = 0; 5473 5474 path = btrfs_alloc_path(); 5475 if (!path) 5476 return -ENOMEM; 5477 5478 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5479 name, namelen, 0); 5480 if (IS_ERR(di)) 5481 ret = PTR_ERR(di); 5482 5483 if (IS_ERR_OR_NULL(di)) 5484 goto out_err; 5485 5486 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5487 if (location->type != BTRFS_INODE_ITEM_KEY && 5488 location->type != BTRFS_ROOT_ITEM_KEY) { 5489 btrfs_warn(root->fs_info, 5490 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5491 __func__, name, btrfs_ino(BTRFS_I(dir)), 5492 location->objectid, location->type, location->offset); 5493 goto out_err; 5494 } 5495 out: 5496 btrfs_free_path(path); 5497 return ret; 5498 out_err: 5499 location->objectid = 0; 5500 goto out; 5501 } 5502 5503 /* 5504 * when we hit a tree root in a directory, the btrfs part of the inode 5505 * needs to be changed to reflect the root directory of the tree root. This 5506 * is kind of like crossing a mount point. 5507 */ 5508 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5509 struct inode *dir, 5510 struct dentry *dentry, 5511 struct btrfs_key *location, 5512 struct btrfs_root **sub_root) 5513 { 5514 struct btrfs_path *path; 5515 struct btrfs_root *new_root; 5516 struct btrfs_root_ref *ref; 5517 struct extent_buffer *leaf; 5518 struct btrfs_key key; 5519 int ret; 5520 int err = 0; 5521 5522 path = btrfs_alloc_path(); 5523 if (!path) { 5524 err = -ENOMEM; 5525 goto out; 5526 } 5527 5528 err = -ENOENT; 5529 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5530 key.type = BTRFS_ROOT_REF_KEY; 5531 key.offset = location->objectid; 5532 5533 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5534 if (ret) { 5535 if (ret < 0) 5536 err = ret; 5537 goto out; 5538 } 5539 5540 leaf = path->nodes[0]; 5541 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5542 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5543 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5544 goto out; 5545 5546 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5547 (unsigned long)(ref + 1), 5548 dentry->d_name.len); 5549 if (ret) 5550 goto out; 5551 5552 btrfs_release_path(path); 5553 5554 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5555 if (IS_ERR(new_root)) { 5556 err = PTR_ERR(new_root); 5557 goto out; 5558 } 5559 5560 *sub_root = new_root; 5561 location->objectid = btrfs_root_dirid(&new_root->root_item); 5562 location->type = BTRFS_INODE_ITEM_KEY; 5563 location->offset = 0; 5564 err = 0; 5565 out: 5566 btrfs_free_path(path); 5567 return err; 5568 } 5569 5570 static void inode_tree_add(struct inode *inode) 5571 { 5572 struct btrfs_root *root = BTRFS_I(inode)->root; 5573 struct btrfs_inode *entry; 5574 struct rb_node **p; 5575 struct rb_node *parent; 5576 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5577 u64 ino = btrfs_ino(BTRFS_I(inode)); 5578 5579 if (inode_unhashed(inode)) 5580 return; 5581 parent = NULL; 5582 spin_lock(&root->inode_lock); 5583 p = &root->inode_tree.rb_node; 5584 while (*p) { 5585 parent = *p; 5586 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5587 5588 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5589 p = &parent->rb_left; 5590 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5591 p = &parent->rb_right; 5592 else { 5593 WARN_ON(!(entry->vfs_inode.i_state & 5594 (I_WILL_FREE | I_FREEING))); 5595 rb_replace_node(parent, new, &root->inode_tree); 5596 RB_CLEAR_NODE(parent); 5597 spin_unlock(&root->inode_lock); 5598 return; 5599 } 5600 } 5601 rb_link_node(new, parent, p); 5602 rb_insert_color(new, &root->inode_tree); 5603 spin_unlock(&root->inode_lock); 5604 } 5605 5606 static void inode_tree_del(struct inode *inode) 5607 { 5608 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5609 struct btrfs_root *root = BTRFS_I(inode)->root; 5610 int empty = 0; 5611 5612 spin_lock(&root->inode_lock); 5613 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5614 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5615 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5616 empty = RB_EMPTY_ROOT(&root->inode_tree); 5617 } 5618 spin_unlock(&root->inode_lock); 5619 5620 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5621 synchronize_srcu(&fs_info->subvol_srcu); 5622 spin_lock(&root->inode_lock); 5623 empty = RB_EMPTY_ROOT(&root->inode_tree); 5624 spin_unlock(&root->inode_lock); 5625 if (empty) 5626 btrfs_add_dead_root(root); 5627 } 5628 } 5629 5630 void btrfs_invalidate_inodes(struct btrfs_root *root) 5631 { 5632 struct btrfs_fs_info *fs_info = root->fs_info; 5633 struct rb_node *node; 5634 struct rb_node *prev; 5635 struct btrfs_inode *entry; 5636 struct inode *inode; 5637 u64 objectid = 0; 5638 5639 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5640 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5641 5642 spin_lock(&root->inode_lock); 5643 again: 5644 node = root->inode_tree.rb_node; 5645 prev = NULL; 5646 while (node) { 5647 prev = node; 5648 entry = rb_entry(node, struct btrfs_inode, rb_node); 5649 5650 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5651 node = node->rb_left; 5652 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5653 node = node->rb_right; 5654 else 5655 break; 5656 } 5657 if (!node) { 5658 while (prev) { 5659 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5660 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5661 node = prev; 5662 break; 5663 } 5664 prev = rb_next(prev); 5665 } 5666 } 5667 while (node) { 5668 entry = rb_entry(node, struct btrfs_inode, rb_node); 5669 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5670 inode = igrab(&entry->vfs_inode); 5671 if (inode) { 5672 spin_unlock(&root->inode_lock); 5673 if (atomic_read(&inode->i_count) > 1) 5674 d_prune_aliases(inode); 5675 /* 5676 * btrfs_drop_inode will have it removed from 5677 * the inode cache when its usage count 5678 * hits zero. 5679 */ 5680 iput(inode); 5681 cond_resched(); 5682 spin_lock(&root->inode_lock); 5683 goto again; 5684 } 5685 5686 if (cond_resched_lock(&root->inode_lock)) 5687 goto again; 5688 5689 node = rb_next(node); 5690 } 5691 spin_unlock(&root->inode_lock); 5692 } 5693 5694 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5695 { 5696 struct btrfs_iget_args *args = p; 5697 inode->i_ino = args->location->objectid; 5698 memcpy(&BTRFS_I(inode)->location, args->location, 5699 sizeof(*args->location)); 5700 BTRFS_I(inode)->root = args->root; 5701 return 0; 5702 } 5703 5704 static int btrfs_find_actor(struct inode *inode, void *opaque) 5705 { 5706 struct btrfs_iget_args *args = opaque; 5707 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5708 args->root == BTRFS_I(inode)->root; 5709 } 5710 5711 static struct inode *btrfs_iget_locked(struct super_block *s, 5712 struct btrfs_key *location, 5713 struct btrfs_root *root) 5714 { 5715 struct inode *inode; 5716 struct btrfs_iget_args args; 5717 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5718 5719 args.location = location; 5720 args.root = root; 5721 5722 inode = iget5_locked(s, hashval, btrfs_find_actor, 5723 btrfs_init_locked_inode, 5724 (void *)&args); 5725 return inode; 5726 } 5727 5728 /* Get an inode object given its location and corresponding root. 5729 * Returns in *is_new if the inode was read from disk 5730 */ 5731 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5732 struct btrfs_root *root, int *new) 5733 { 5734 struct inode *inode; 5735 5736 inode = btrfs_iget_locked(s, location, root); 5737 if (!inode) 5738 return ERR_PTR(-ENOMEM); 5739 5740 if (inode->i_state & I_NEW) { 5741 int ret; 5742 5743 ret = btrfs_read_locked_inode(inode); 5744 if (!is_bad_inode(inode)) { 5745 inode_tree_add(inode); 5746 unlock_new_inode(inode); 5747 if (new) 5748 *new = 1; 5749 } else { 5750 unlock_new_inode(inode); 5751 iput(inode); 5752 ASSERT(ret < 0); 5753 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5754 } 5755 } 5756 5757 return inode; 5758 } 5759 5760 static struct inode *new_simple_dir(struct super_block *s, 5761 struct btrfs_key *key, 5762 struct btrfs_root *root) 5763 { 5764 struct inode *inode = new_inode(s); 5765 5766 if (!inode) 5767 return ERR_PTR(-ENOMEM); 5768 5769 BTRFS_I(inode)->root = root; 5770 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5771 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5772 5773 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5774 inode->i_op = &btrfs_dir_ro_inode_operations; 5775 inode->i_opflags &= ~IOP_XATTR; 5776 inode->i_fop = &simple_dir_operations; 5777 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5778 inode->i_mtime = current_time(inode); 5779 inode->i_atime = inode->i_mtime; 5780 inode->i_ctime = inode->i_mtime; 5781 BTRFS_I(inode)->i_otime = inode->i_mtime; 5782 5783 return inode; 5784 } 5785 5786 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5787 { 5788 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5789 struct inode *inode; 5790 struct btrfs_root *root = BTRFS_I(dir)->root; 5791 struct btrfs_root *sub_root = root; 5792 struct btrfs_key location; 5793 int index; 5794 int ret = 0; 5795 5796 if (dentry->d_name.len > BTRFS_NAME_LEN) 5797 return ERR_PTR(-ENAMETOOLONG); 5798 5799 ret = btrfs_inode_by_name(dir, dentry, &location); 5800 if (ret < 0) 5801 return ERR_PTR(ret); 5802 5803 if (location.objectid == 0) 5804 return ERR_PTR(-ENOENT); 5805 5806 if (location.type == BTRFS_INODE_ITEM_KEY) { 5807 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5808 return inode; 5809 } 5810 5811 index = srcu_read_lock(&fs_info->subvol_srcu); 5812 ret = fixup_tree_root_location(fs_info, dir, dentry, 5813 &location, &sub_root); 5814 if (ret < 0) { 5815 if (ret != -ENOENT) 5816 inode = ERR_PTR(ret); 5817 else 5818 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5819 } else { 5820 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5821 } 5822 srcu_read_unlock(&fs_info->subvol_srcu, index); 5823 5824 if (!IS_ERR(inode) && root != sub_root) { 5825 down_read(&fs_info->cleanup_work_sem); 5826 if (!sb_rdonly(inode->i_sb)) 5827 ret = btrfs_orphan_cleanup(sub_root); 5828 up_read(&fs_info->cleanup_work_sem); 5829 if (ret) { 5830 iput(inode); 5831 inode = ERR_PTR(ret); 5832 } 5833 } 5834 5835 return inode; 5836 } 5837 5838 static int btrfs_dentry_delete(const struct dentry *dentry) 5839 { 5840 struct btrfs_root *root; 5841 struct inode *inode = d_inode(dentry); 5842 5843 if (!inode && !IS_ROOT(dentry)) 5844 inode = d_inode(dentry->d_parent); 5845 5846 if (inode) { 5847 root = BTRFS_I(inode)->root; 5848 if (btrfs_root_refs(&root->root_item) == 0) 5849 return 1; 5850 5851 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5852 return 1; 5853 } 5854 return 0; 5855 } 5856 5857 static void btrfs_dentry_release(struct dentry *dentry) 5858 { 5859 kfree(dentry->d_fsdata); 5860 } 5861 5862 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5863 unsigned int flags) 5864 { 5865 struct inode *inode; 5866 5867 inode = btrfs_lookup_dentry(dir, dentry); 5868 if (IS_ERR(inode)) { 5869 if (PTR_ERR(inode) == -ENOENT) 5870 inode = NULL; 5871 else 5872 return ERR_CAST(inode); 5873 } 5874 5875 return d_splice_alias(inode, dentry); 5876 } 5877 5878 unsigned char btrfs_filetype_table[] = { 5879 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5880 }; 5881 5882 /* 5883 * All this infrastructure exists because dir_emit can fault, and we are holding 5884 * the tree lock when doing readdir. For now just allocate a buffer and copy 5885 * our information into that, and then dir_emit from the buffer. This is 5886 * similar to what NFS does, only we don't keep the buffer around in pagecache 5887 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5888 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5889 * tree lock. 5890 */ 5891 static int btrfs_opendir(struct inode *inode, struct file *file) 5892 { 5893 struct btrfs_file_private *private; 5894 5895 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5896 if (!private) 5897 return -ENOMEM; 5898 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5899 if (!private->filldir_buf) { 5900 kfree(private); 5901 return -ENOMEM; 5902 } 5903 file->private_data = private; 5904 return 0; 5905 } 5906 5907 struct dir_entry { 5908 u64 ino; 5909 u64 offset; 5910 unsigned type; 5911 int name_len; 5912 }; 5913 5914 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5915 { 5916 while (entries--) { 5917 struct dir_entry *entry = addr; 5918 char *name = (char *)(entry + 1); 5919 5920 ctx->pos = entry->offset; 5921 if (!dir_emit(ctx, name, entry->name_len, entry->ino, 5922 entry->type)) 5923 return 1; 5924 addr += sizeof(struct dir_entry) + entry->name_len; 5925 ctx->pos++; 5926 } 5927 return 0; 5928 } 5929 5930 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5931 { 5932 struct inode *inode = file_inode(file); 5933 struct btrfs_root *root = BTRFS_I(inode)->root; 5934 struct btrfs_file_private *private = file->private_data; 5935 struct btrfs_dir_item *di; 5936 struct btrfs_key key; 5937 struct btrfs_key found_key; 5938 struct btrfs_path *path; 5939 void *addr; 5940 struct list_head ins_list; 5941 struct list_head del_list; 5942 int ret; 5943 struct extent_buffer *leaf; 5944 int slot; 5945 char *name_ptr; 5946 int name_len; 5947 int entries = 0; 5948 int total_len = 0; 5949 bool put = false; 5950 struct btrfs_key location; 5951 5952 if (!dir_emit_dots(file, ctx)) 5953 return 0; 5954 5955 path = btrfs_alloc_path(); 5956 if (!path) 5957 return -ENOMEM; 5958 5959 addr = private->filldir_buf; 5960 path->reada = READA_FORWARD; 5961 5962 INIT_LIST_HEAD(&ins_list); 5963 INIT_LIST_HEAD(&del_list); 5964 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5965 5966 again: 5967 key.type = BTRFS_DIR_INDEX_KEY; 5968 key.offset = ctx->pos; 5969 key.objectid = btrfs_ino(BTRFS_I(inode)); 5970 5971 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5972 if (ret < 0) 5973 goto err; 5974 5975 while (1) { 5976 struct dir_entry *entry; 5977 5978 leaf = path->nodes[0]; 5979 slot = path->slots[0]; 5980 if (slot >= btrfs_header_nritems(leaf)) { 5981 ret = btrfs_next_leaf(root, path); 5982 if (ret < 0) 5983 goto err; 5984 else if (ret > 0) 5985 break; 5986 continue; 5987 } 5988 5989 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5990 5991 if (found_key.objectid != key.objectid) 5992 break; 5993 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5994 break; 5995 if (found_key.offset < ctx->pos) 5996 goto next; 5997 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5998 goto next; 5999 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6000 name_len = btrfs_dir_name_len(leaf, di); 6001 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6002 PAGE_SIZE) { 6003 btrfs_release_path(path); 6004 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6005 if (ret) 6006 goto nopos; 6007 addr = private->filldir_buf; 6008 entries = 0; 6009 total_len = 0; 6010 goto again; 6011 } 6012 6013 entry = addr; 6014 entry->name_len = name_len; 6015 name_ptr = (char *)(entry + 1); 6016 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6017 name_len); 6018 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 6019 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6020 entry->ino = location.objectid; 6021 entry->offset = found_key.offset; 6022 entries++; 6023 addr += sizeof(struct dir_entry) + name_len; 6024 total_len += sizeof(struct dir_entry) + name_len; 6025 next: 6026 path->slots[0]++; 6027 } 6028 btrfs_release_path(path); 6029 6030 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6031 if (ret) 6032 goto nopos; 6033 6034 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6035 if (ret) 6036 goto nopos; 6037 6038 /* 6039 * Stop new entries from being returned after we return the last 6040 * entry. 6041 * 6042 * New directory entries are assigned a strictly increasing 6043 * offset. This means that new entries created during readdir 6044 * are *guaranteed* to be seen in the future by that readdir. 6045 * This has broken buggy programs which operate on names as 6046 * they're returned by readdir. Until we re-use freed offsets 6047 * we have this hack to stop new entries from being returned 6048 * under the assumption that they'll never reach this huge 6049 * offset. 6050 * 6051 * This is being careful not to overflow 32bit loff_t unless the 6052 * last entry requires it because doing so has broken 32bit apps 6053 * in the past. 6054 */ 6055 if (ctx->pos >= INT_MAX) 6056 ctx->pos = LLONG_MAX; 6057 else 6058 ctx->pos = INT_MAX; 6059 nopos: 6060 ret = 0; 6061 err: 6062 if (put) 6063 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6064 btrfs_free_path(path); 6065 return ret; 6066 } 6067 6068 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6069 { 6070 struct btrfs_root *root = BTRFS_I(inode)->root; 6071 struct btrfs_trans_handle *trans; 6072 int ret = 0; 6073 bool nolock = false; 6074 6075 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6076 return 0; 6077 6078 if (btrfs_fs_closing(root->fs_info) && 6079 btrfs_is_free_space_inode(BTRFS_I(inode))) 6080 nolock = true; 6081 6082 if (wbc->sync_mode == WB_SYNC_ALL) { 6083 if (nolock) 6084 trans = btrfs_join_transaction_nolock(root); 6085 else 6086 trans = btrfs_join_transaction(root); 6087 if (IS_ERR(trans)) 6088 return PTR_ERR(trans); 6089 ret = btrfs_commit_transaction(trans); 6090 } 6091 return ret; 6092 } 6093 6094 /* 6095 * This is somewhat expensive, updating the tree every time the 6096 * inode changes. But, it is most likely to find the inode in cache. 6097 * FIXME, needs more benchmarking...there are no reasons other than performance 6098 * to keep or drop this code. 6099 */ 6100 static int btrfs_dirty_inode(struct inode *inode) 6101 { 6102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6103 struct btrfs_root *root = BTRFS_I(inode)->root; 6104 struct btrfs_trans_handle *trans; 6105 int ret; 6106 6107 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6108 return 0; 6109 6110 trans = btrfs_join_transaction(root); 6111 if (IS_ERR(trans)) 6112 return PTR_ERR(trans); 6113 6114 ret = btrfs_update_inode(trans, root, inode); 6115 if (ret && ret == -ENOSPC) { 6116 /* whoops, lets try again with the full transaction */ 6117 btrfs_end_transaction(trans); 6118 trans = btrfs_start_transaction(root, 1); 6119 if (IS_ERR(trans)) 6120 return PTR_ERR(trans); 6121 6122 ret = btrfs_update_inode(trans, root, inode); 6123 } 6124 btrfs_end_transaction(trans); 6125 if (BTRFS_I(inode)->delayed_node) 6126 btrfs_balance_delayed_items(fs_info); 6127 6128 return ret; 6129 } 6130 6131 /* 6132 * This is a copy of file_update_time. We need this so we can return error on 6133 * ENOSPC for updating the inode in the case of file write and mmap writes. 6134 */ 6135 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6136 int flags) 6137 { 6138 struct btrfs_root *root = BTRFS_I(inode)->root; 6139 bool dirty = flags & ~S_VERSION; 6140 6141 if (btrfs_root_readonly(root)) 6142 return -EROFS; 6143 6144 if (flags & S_VERSION) 6145 dirty |= inode_maybe_inc_iversion(inode, dirty); 6146 if (flags & S_CTIME) 6147 inode->i_ctime = *now; 6148 if (flags & S_MTIME) 6149 inode->i_mtime = *now; 6150 if (flags & S_ATIME) 6151 inode->i_atime = *now; 6152 return dirty ? btrfs_dirty_inode(inode) : 0; 6153 } 6154 6155 /* 6156 * find the highest existing sequence number in a directory 6157 * and then set the in-memory index_cnt variable to reflect 6158 * free sequence numbers 6159 */ 6160 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6161 { 6162 struct btrfs_root *root = inode->root; 6163 struct btrfs_key key, found_key; 6164 struct btrfs_path *path; 6165 struct extent_buffer *leaf; 6166 int ret; 6167 6168 key.objectid = btrfs_ino(inode); 6169 key.type = BTRFS_DIR_INDEX_KEY; 6170 key.offset = (u64)-1; 6171 6172 path = btrfs_alloc_path(); 6173 if (!path) 6174 return -ENOMEM; 6175 6176 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6177 if (ret < 0) 6178 goto out; 6179 /* FIXME: we should be able to handle this */ 6180 if (ret == 0) 6181 goto out; 6182 ret = 0; 6183 6184 /* 6185 * MAGIC NUMBER EXPLANATION: 6186 * since we search a directory based on f_pos we have to start at 2 6187 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6188 * else has to start at 2 6189 */ 6190 if (path->slots[0] == 0) { 6191 inode->index_cnt = 2; 6192 goto out; 6193 } 6194 6195 path->slots[0]--; 6196 6197 leaf = path->nodes[0]; 6198 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6199 6200 if (found_key.objectid != btrfs_ino(inode) || 6201 found_key.type != BTRFS_DIR_INDEX_KEY) { 6202 inode->index_cnt = 2; 6203 goto out; 6204 } 6205 6206 inode->index_cnt = found_key.offset + 1; 6207 out: 6208 btrfs_free_path(path); 6209 return ret; 6210 } 6211 6212 /* 6213 * helper to find a free sequence number in a given directory. This current 6214 * code is very simple, later versions will do smarter things in the btree 6215 */ 6216 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6217 { 6218 int ret = 0; 6219 6220 if (dir->index_cnt == (u64)-1) { 6221 ret = btrfs_inode_delayed_dir_index_count(dir); 6222 if (ret) { 6223 ret = btrfs_set_inode_index_count(dir); 6224 if (ret) 6225 return ret; 6226 } 6227 } 6228 6229 *index = dir->index_cnt; 6230 dir->index_cnt++; 6231 6232 return ret; 6233 } 6234 6235 static int btrfs_insert_inode_locked(struct inode *inode) 6236 { 6237 struct btrfs_iget_args args; 6238 args.location = &BTRFS_I(inode)->location; 6239 args.root = BTRFS_I(inode)->root; 6240 6241 return insert_inode_locked4(inode, 6242 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6243 btrfs_find_actor, &args); 6244 } 6245 6246 /* 6247 * Inherit flags from the parent inode. 6248 * 6249 * Currently only the compression flags and the cow flags are inherited. 6250 */ 6251 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6252 { 6253 unsigned int flags; 6254 6255 if (!dir) 6256 return; 6257 6258 flags = BTRFS_I(dir)->flags; 6259 6260 if (flags & BTRFS_INODE_NOCOMPRESS) { 6261 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6262 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6263 } else if (flags & BTRFS_INODE_COMPRESS) { 6264 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6265 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6266 } 6267 6268 if (flags & BTRFS_INODE_NODATACOW) { 6269 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6270 if (S_ISREG(inode->i_mode)) 6271 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6272 } 6273 6274 btrfs_update_iflags(inode); 6275 } 6276 6277 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6278 struct btrfs_root *root, 6279 struct inode *dir, 6280 const char *name, int name_len, 6281 u64 ref_objectid, u64 objectid, 6282 umode_t mode, u64 *index) 6283 { 6284 struct btrfs_fs_info *fs_info = root->fs_info; 6285 struct inode *inode; 6286 struct btrfs_inode_item *inode_item; 6287 struct btrfs_key *location; 6288 struct btrfs_path *path; 6289 struct btrfs_inode_ref *ref; 6290 struct btrfs_key key[2]; 6291 u32 sizes[2]; 6292 int nitems = name ? 2 : 1; 6293 unsigned long ptr; 6294 int ret; 6295 6296 path = btrfs_alloc_path(); 6297 if (!path) 6298 return ERR_PTR(-ENOMEM); 6299 6300 inode = new_inode(fs_info->sb); 6301 if (!inode) { 6302 btrfs_free_path(path); 6303 return ERR_PTR(-ENOMEM); 6304 } 6305 6306 /* 6307 * O_TMPFILE, set link count to 0, so that after this point, 6308 * we fill in an inode item with the correct link count. 6309 */ 6310 if (!name) 6311 set_nlink(inode, 0); 6312 6313 /* 6314 * we have to initialize this early, so we can reclaim the inode 6315 * number if we fail afterwards in this function. 6316 */ 6317 inode->i_ino = objectid; 6318 6319 if (dir && name) { 6320 trace_btrfs_inode_request(dir); 6321 6322 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6323 if (ret) { 6324 btrfs_free_path(path); 6325 iput(inode); 6326 return ERR_PTR(ret); 6327 } 6328 } else if (dir) { 6329 *index = 0; 6330 } 6331 /* 6332 * index_cnt is ignored for everything but a dir, 6333 * btrfs_set_inode_index_count has an explanation for the magic 6334 * number 6335 */ 6336 BTRFS_I(inode)->index_cnt = 2; 6337 BTRFS_I(inode)->dir_index = *index; 6338 BTRFS_I(inode)->root = root; 6339 BTRFS_I(inode)->generation = trans->transid; 6340 inode->i_generation = BTRFS_I(inode)->generation; 6341 6342 /* 6343 * We could have gotten an inode number from somebody who was fsynced 6344 * and then removed in this same transaction, so let's just set full 6345 * sync since it will be a full sync anyway and this will blow away the 6346 * old info in the log. 6347 */ 6348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6349 6350 key[0].objectid = objectid; 6351 key[0].type = BTRFS_INODE_ITEM_KEY; 6352 key[0].offset = 0; 6353 6354 sizes[0] = sizeof(struct btrfs_inode_item); 6355 6356 if (name) { 6357 /* 6358 * Start new inodes with an inode_ref. This is slightly more 6359 * efficient for small numbers of hard links since they will 6360 * be packed into one item. Extended refs will kick in if we 6361 * add more hard links than can fit in the ref item. 6362 */ 6363 key[1].objectid = objectid; 6364 key[1].type = BTRFS_INODE_REF_KEY; 6365 key[1].offset = ref_objectid; 6366 6367 sizes[1] = name_len + sizeof(*ref); 6368 } 6369 6370 location = &BTRFS_I(inode)->location; 6371 location->objectid = objectid; 6372 location->offset = 0; 6373 location->type = BTRFS_INODE_ITEM_KEY; 6374 6375 ret = btrfs_insert_inode_locked(inode); 6376 if (ret < 0) 6377 goto fail; 6378 6379 path->leave_spinning = 1; 6380 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6381 if (ret != 0) 6382 goto fail_unlock; 6383 6384 inode_init_owner(inode, dir, mode); 6385 inode_set_bytes(inode, 0); 6386 6387 inode->i_mtime = current_time(inode); 6388 inode->i_atime = inode->i_mtime; 6389 inode->i_ctime = inode->i_mtime; 6390 BTRFS_I(inode)->i_otime = inode->i_mtime; 6391 6392 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6393 struct btrfs_inode_item); 6394 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6395 sizeof(*inode_item)); 6396 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6397 6398 if (name) { 6399 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6400 struct btrfs_inode_ref); 6401 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6402 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6403 ptr = (unsigned long)(ref + 1); 6404 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6405 } 6406 6407 btrfs_mark_buffer_dirty(path->nodes[0]); 6408 btrfs_free_path(path); 6409 6410 btrfs_inherit_iflags(inode, dir); 6411 6412 if (S_ISREG(mode)) { 6413 if (btrfs_test_opt(fs_info, NODATASUM)) 6414 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6415 if (btrfs_test_opt(fs_info, NODATACOW)) 6416 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6417 BTRFS_INODE_NODATASUM; 6418 } 6419 6420 inode_tree_add(inode); 6421 6422 trace_btrfs_inode_new(inode); 6423 btrfs_set_inode_last_trans(trans, inode); 6424 6425 btrfs_update_root_times(trans, root); 6426 6427 ret = btrfs_inode_inherit_props(trans, inode, dir); 6428 if (ret) 6429 btrfs_err(fs_info, 6430 "error inheriting props for ino %llu (root %llu): %d", 6431 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6432 6433 return inode; 6434 6435 fail_unlock: 6436 unlock_new_inode(inode); 6437 fail: 6438 if (dir && name) 6439 BTRFS_I(dir)->index_cnt--; 6440 btrfs_free_path(path); 6441 iput(inode); 6442 return ERR_PTR(ret); 6443 } 6444 6445 static inline u8 btrfs_inode_type(struct inode *inode) 6446 { 6447 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6448 } 6449 6450 /* 6451 * utility function to add 'inode' into 'parent_inode' with 6452 * a give name and a given sequence number. 6453 * if 'add_backref' is true, also insert a backref from the 6454 * inode to the parent directory. 6455 */ 6456 int btrfs_add_link(struct btrfs_trans_handle *trans, 6457 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6458 const char *name, int name_len, int add_backref, u64 index) 6459 { 6460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6461 int ret = 0; 6462 struct btrfs_key key; 6463 struct btrfs_root *root = parent_inode->root; 6464 u64 ino = btrfs_ino(inode); 6465 u64 parent_ino = btrfs_ino(parent_inode); 6466 6467 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6468 memcpy(&key, &inode->root->root_key, sizeof(key)); 6469 } else { 6470 key.objectid = ino; 6471 key.type = BTRFS_INODE_ITEM_KEY; 6472 key.offset = 0; 6473 } 6474 6475 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6476 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6477 root->root_key.objectid, parent_ino, 6478 index, name, name_len); 6479 } else if (add_backref) { 6480 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6481 parent_ino, index); 6482 } 6483 6484 /* Nothing to clean up yet */ 6485 if (ret) 6486 return ret; 6487 6488 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6489 parent_inode, &key, 6490 btrfs_inode_type(&inode->vfs_inode), index); 6491 if (ret == -EEXIST || ret == -EOVERFLOW) 6492 goto fail_dir_item; 6493 else if (ret) { 6494 btrfs_abort_transaction(trans, ret); 6495 return ret; 6496 } 6497 6498 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6499 name_len * 2); 6500 inode_inc_iversion(&parent_inode->vfs_inode); 6501 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6502 current_time(&parent_inode->vfs_inode); 6503 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6504 if (ret) 6505 btrfs_abort_transaction(trans, ret); 6506 return ret; 6507 6508 fail_dir_item: 6509 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6510 u64 local_index; 6511 int err; 6512 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6513 root->root_key.objectid, parent_ino, 6514 &local_index, name, name_len); 6515 6516 } else if (add_backref) { 6517 u64 local_index; 6518 int err; 6519 6520 err = btrfs_del_inode_ref(trans, root, name, name_len, 6521 ino, parent_ino, &local_index); 6522 } 6523 return ret; 6524 } 6525 6526 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6527 struct btrfs_inode *dir, struct dentry *dentry, 6528 struct btrfs_inode *inode, int backref, u64 index) 6529 { 6530 int err = btrfs_add_link(trans, dir, inode, 6531 dentry->d_name.name, dentry->d_name.len, 6532 backref, index); 6533 if (err > 0) 6534 err = -EEXIST; 6535 return err; 6536 } 6537 6538 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6539 umode_t mode, dev_t rdev) 6540 { 6541 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6542 struct btrfs_trans_handle *trans; 6543 struct btrfs_root *root = BTRFS_I(dir)->root; 6544 struct inode *inode = NULL; 6545 int err; 6546 int drop_inode = 0; 6547 u64 objectid; 6548 u64 index = 0; 6549 6550 /* 6551 * 2 for inode item and ref 6552 * 2 for dir items 6553 * 1 for xattr if selinux is on 6554 */ 6555 trans = btrfs_start_transaction(root, 5); 6556 if (IS_ERR(trans)) 6557 return PTR_ERR(trans); 6558 6559 err = btrfs_find_free_ino(root, &objectid); 6560 if (err) 6561 goto out_unlock; 6562 6563 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6564 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6565 mode, &index); 6566 if (IS_ERR(inode)) { 6567 err = PTR_ERR(inode); 6568 goto out_unlock; 6569 } 6570 6571 /* 6572 * If the active LSM wants to access the inode during 6573 * d_instantiate it needs these. Smack checks to see 6574 * if the filesystem supports xattrs by looking at the 6575 * ops vector. 6576 */ 6577 inode->i_op = &btrfs_special_inode_operations; 6578 init_special_inode(inode, inode->i_mode, rdev); 6579 6580 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6581 if (err) 6582 goto out_unlock_inode; 6583 6584 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6585 0, index); 6586 if (err) { 6587 goto out_unlock_inode; 6588 } else { 6589 btrfs_update_inode(trans, root, inode); 6590 unlock_new_inode(inode); 6591 d_instantiate(dentry, inode); 6592 } 6593 6594 out_unlock: 6595 btrfs_end_transaction(trans); 6596 btrfs_btree_balance_dirty(fs_info); 6597 if (drop_inode) { 6598 inode_dec_link_count(inode); 6599 iput(inode); 6600 } 6601 return err; 6602 6603 out_unlock_inode: 6604 drop_inode = 1; 6605 unlock_new_inode(inode); 6606 goto out_unlock; 6607 6608 } 6609 6610 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6611 umode_t mode, bool excl) 6612 { 6613 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6614 struct btrfs_trans_handle *trans; 6615 struct btrfs_root *root = BTRFS_I(dir)->root; 6616 struct inode *inode = NULL; 6617 int drop_inode_on_err = 0; 6618 int err; 6619 u64 objectid; 6620 u64 index = 0; 6621 6622 /* 6623 * 2 for inode item and ref 6624 * 2 for dir items 6625 * 1 for xattr if selinux is on 6626 */ 6627 trans = btrfs_start_transaction(root, 5); 6628 if (IS_ERR(trans)) 6629 return PTR_ERR(trans); 6630 6631 err = btrfs_find_free_ino(root, &objectid); 6632 if (err) 6633 goto out_unlock; 6634 6635 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6636 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6637 mode, &index); 6638 if (IS_ERR(inode)) { 6639 err = PTR_ERR(inode); 6640 goto out_unlock; 6641 } 6642 drop_inode_on_err = 1; 6643 /* 6644 * If the active LSM wants to access the inode during 6645 * d_instantiate it needs these. Smack checks to see 6646 * if the filesystem supports xattrs by looking at the 6647 * ops vector. 6648 */ 6649 inode->i_fop = &btrfs_file_operations; 6650 inode->i_op = &btrfs_file_inode_operations; 6651 inode->i_mapping->a_ops = &btrfs_aops; 6652 6653 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6654 if (err) 6655 goto out_unlock_inode; 6656 6657 err = btrfs_update_inode(trans, root, inode); 6658 if (err) 6659 goto out_unlock_inode; 6660 6661 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6662 0, index); 6663 if (err) 6664 goto out_unlock_inode; 6665 6666 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6667 unlock_new_inode(inode); 6668 d_instantiate(dentry, inode); 6669 6670 out_unlock: 6671 btrfs_end_transaction(trans); 6672 if (err && drop_inode_on_err) { 6673 inode_dec_link_count(inode); 6674 iput(inode); 6675 } 6676 btrfs_btree_balance_dirty(fs_info); 6677 return err; 6678 6679 out_unlock_inode: 6680 unlock_new_inode(inode); 6681 goto out_unlock; 6682 6683 } 6684 6685 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6686 struct dentry *dentry) 6687 { 6688 struct btrfs_trans_handle *trans = NULL; 6689 struct btrfs_root *root = BTRFS_I(dir)->root; 6690 struct inode *inode = d_inode(old_dentry); 6691 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6692 u64 index; 6693 int err; 6694 int drop_inode = 0; 6695 6696 /* do not allow sys_link's with other subvols of the same device */ 6697 if (root->objectid != BTRFS_I(inode)->root->objectid) 6698 return -EXDEV; 6699 6700 if (inode->i_nlink >= BTRFS_LINK_MAX) 6701 return -EMLINK; 6702 6703 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6704 if (err) 6705 goto fail; 6706 6707 /* 6708 * 2 items for inode and inode ref 6709 * 2 items for dir items 6710 * 1 item for parent inode 6711 */ 6712 trans = btrfs_start_transaction(root, 5); 6713 if (IS_ERR(trans)) { 6714 err = PTR_ERR(trans); 6715 trans = NULL; 6716 goto fail; 6717 } 6718 6719 /* There are several dir indexes for this inode, clear the cache. */ 6720 BTRFS_I(inode)->dir_index = 0ULL; 6721 inc_nlink(inode); 6722 inode_inc_iversion(inode); 6723 inode->i_ctime = current_time(inode); 6724 ihold(inode); 6725 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6726 6727 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6728 1, index); 6729 6730 if (err) { 6731 drop_inode = 1; 6732 } else { 6733 struct dentry *parent = dentry->d_parent; 6734 err = btrfs_update_inode(trans, root, inode); 6735 if (err) 6736 goto fail; 6737 if (inode->i_nlink == 1) { 6738 /* 6739 * If new hard link count is 1, it's a file created 6740 * with open(2) O_TMPFILE flag. 6741 */ 6742 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6743 if (err) 6744 goto fail; 6745 } 6746 d_instantiate(dentry, inode); 6747 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6748 } 6749 6750 fail: 6751 if (trans) 6752 btrfs_end_transaction(trans); 6753 if (drop_inode) { 6754 inode_dec_link_count(inode); 6755 iput(inode); 6756 } 6757 btrfs_btree_balance_dirty(fs_info); 6758 return err; 6759 } 6760 6761 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6762 { 6763 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6764 struct inode *inode = NULL; 6765 struct btrfs_trans_handle *trans; 6766 struct btrfs_root *root = BTRFS_I(dir)->root; 6767 int err = 0; 6768 int drop_on_err = 0; 6769 u64 objectid = 0; 6770 u64 index = 0; 6771 6772 /* 6773 * 2 items for inode and ref 6774 * 2 items for dir items 6775 * 1 for xattr if selinux is on 6776 */ 6777 trans = btrfs_start_transaction(root, 5); 6778 if (IS_ERR(trans)) 6779 return PTR_ERR(trans); 6780 6781 err = btrfs_find_free_ino(root, &objectid); 6782 if (err) 6783 goto out_fail; 6784 6785 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6786 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6787 S_IFDIR | mode, &index); 6788 if (IS_ERR(inode)) { 6789 err = PTR_ERR(inode); 6790 goto out_fail; 6791 } 6792 6793 drop_on_err = 1; 6794 /* these must be set before we unlock the inode */ 6795 inode->i_op = &btrfs_dir_inode_operations; 6796 inode->i_fop = &btrfs_dir_file_operations; 6797 6798 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6799 if (err) 6800 goto out_fail_inode; 6801 6802 btrfs_i_size_write(BTRFS_I(inode), 0); 6803 err = btrfs_update_inode(trans, root, inode); 6804 if (err) 6805 goto out_fail_inode; 6806 6807 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6808 dentry->d_name.name, 6809 dentry->d_name.len, 0, index); 6810 if (err) 6811 goto out_fail_inode; 6812 6813 d_instantiate(dentry, inode); 6814 /* 6815 * mkdir is special. We're unlocking after we call d_instantiate 6816 * to avoid a race with nfsd calling d_instantiate. 6817 */ 6818 unlock_new_inode(inode); 6819 drop_on_err = 0; 6820 6821 out_fail: 6822 btrfs_end_transaction(trans); 6823 if (drop_on_err) { 6824 inode_dec_link_count(inode); 6825 iput(inode); 6826 } 6827 btrfs_btree_balance_dirty(fs_info); 6828 return err; 6829 6830 out_fail_inode: 6831 unlock_new_inode(inode); 6832 goto out_fail; 6833 } 6834 6835 static noinline int uncompress_inline(struct btrfs_path *path, 6836 struct page *page, 6837 size_t pg_offset, u64 extent_offset, 6838 struct btrfs_file_extent_item *item) 6839 { 6840 int ret; 6841 struct extent_buffer *leaf = path->nodes[0]; 6842 char *tmp; 6843 size_t max_size; 6844 unsigned long inline_size; 6845 unsigned long ptr; 6846 int compress_type; 6847 6848 WARN_ON(pg_offset != 0); 6849 compress_type = btrfs_file_extent_compression(leaf, item); 6850 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6851 inline_size = btrfs_file_extent_inline_item_len(leaf, 6852 btrfs_item_nr(path->slots[0])); 6853 tmp = kmalloc(inline_size, GFP_NOFS); 6854 if (!tmp) 6855 return -ENOMEM; 6856 ptr = btrfs_file_extent_inline_start(item); 6857 6858 read_extent_buffer(leaf, tmp, ptr, inline_size); 6859 6860 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6861 ret = btrfs_decompress(compress_type, tmp, page, 6862 extent_offset, inline_size, max_size); 6863 6864 /* 6865 * decompression code contains a memset to fill in any space between the end 6866 * of the uncompressed data and the end of max_size in case the decompressed 6867 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6868 * the end of an inline extent and the beginning of the next block, so we 6869 * cover that region here. 6870 */ 6871 6872 if (max_size + pg_offset < PAGE_SIZE) { 6873 char *map = kmap(page); 6874 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6875 kunmap(page); 6876 } 6877 kfree(tmp); 6878 return ret; 6879 } 6880 6881 /* 6882 * a bit scary, this does extent mapping from logical file offset to the disk. 6883 * the ugly parts come from merging extents from the disk with the in-ram 6884 * representation. This gets more complex because of the data=ordered code, 6885 * where the in-ram extents might be locked pending data=ordered completion. 6886 * 6887 * This also copies inline extents directly into the page. 6888 */ 6889 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6890 struct page *page, 6891 size_t pg_offset, u64 start, u64 len, 6892 int create) 6893 { 6894 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6895 int ret; 6896 int err = 0; 6897 u64 extent_start = 0; 6898 u64 extent_end = 0; 6899 u64 objectid = btrfs_ino(inode); 6900 u32 found_type; 6901 struct btrfs_path *path = NULL; 6902 struct btrfs_root *root = inode->root; 6903 struct btrfs_file_extent_item *item; 6904 struct extent_buffer *leaf; 6905 struct btrfs_key found_key; 6906 struct extent_map *em = NULL; 6907 struct extent_map_tree *em_tree = &inode->extent_tree; 6908 struct extent_io_tree *io_tree = &inode->io_tree; 6909 const bool new_inline = !page || create; 6910 6911 read_lock(&em_tree->lock); 6912 em = lookup_extent_mapping(em_tree, start, len); 6913 if (em) 6914 em->bdev = fs_info->fs_devices->latest_bdev; 6915 read_unlock(&em_tree->lock); 6916 6917 if (em) { 6918 if (em->start > start || em->start + em->len <= start) 6919 free_extent_map(em); 6920 else if (em->block_start == EXTENT_MAP_INLINE && page) 6921 free_extent_map(em); 6922 else 6923 goto out; 6924 } 6925 em = alloc_extent_map(); 6926 if (!em) { 6927 err = -ENOMEM; 6928 goto out; 6929 } 6930 em->bdev = fs_info->fs_devices->latest_bdev; 6931 em->start = EXTENT_MAP_HOLE; 6932 em->orig_start = EXTENT_MAP_HOLE; 6933 em->len = (u64)-1; 6934 em->block_len = (u64)-1; 6935 6936 if (!path) { 6937 path = btrfs_alloc_path(); 6938 if (!path) { 6939 err = -ENOMEM; 6940 goto out; 6941 } 6942 /* 6943 * Chances are we'll be called again, so go ahead and do 6944 * readahead 6945 */ 6946 path->reada = READA_FORWARD; 6947 } 6948 6949 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6950 if (ret < 0) { 6951 err = ret; 6952 goto out; 6953 } 6954 6955 if (ret != 0) { 6956 if (path->slots[0] == 0) 6957 goto not_found; 6958 path->slots[0]--; 6959 } 6960 6961 leaf = path->nodes[0]; 6962 item = btrfs_item_ptr(leaf, path->slots[0], 6963 struct btrfs_file_extent_item); 6964 /* are we inside the extent that was found? */ 6965 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6966 found_type = found_key.type; 6967 if (found_key.objectid != objectid || 6968 found_type != BTRFS_EXTENT_DATA_KEY) { 6969 /* 6970 * If we backup past the first extent we want to move forward 6971 * and see if there is an extent in front of us, otherwise we'll 6972 * say there is a hole for our whole search range which can 6973 * cause problems. 6974 */ 6975 extent_end = start; 6976 goto next; 6977 } 6978 6979 found_type = btrfs_file_extent_type(leaf, item); 6980 extent_start = found_key.offset; 6981 if (found_type == BTRFS_FILE_EXTENT_REG || 6982 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6983 extent_end = extent_start + 6984 btrfs_file_extent_num_bytes(leaf, item); 6985 6986 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6987 extent_start); 6988 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6989 size_t size; 6990 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6991 extent_end = ALIGN(extent_start + size, 6992 fs_info->sectorsize); 6993 6994 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6995 path->slots[0], 6996 extent_start); 6997 } 6998 next: 6999 if (start >= extent_end) { 7000 path->slots[0]++; 7001 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7002 ret = btrfs_next_leaf(root, path); 7003 if (ret < 0) { 7004 err = ret; 7005 goto out; 7006 } 7007 if (ret > 0) 7008 goto not_found; 7009 leaf = path->nodes[0]; 7010 } 7011 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7012 if (found_key.objectid != objectid || 7013 found_key.type != BTRFS_EXTENT_DATA_KEY) 7014 goto not_found; 7015 if (start + len <= found_key.offset) 7016 goto not_found; 7017 if (start > found_key.offset) 7018 goto next; 7019 em->start = start; 7020 em->orig_start = start; 7021 em->len = found_key.offset - start; 7022 goto not_found_em; 7023 } 7024 7025 btrfs_extent_item_to_extent_map(inode, path, item, 7026 new_inline, em); 7027 7028 if (found_type == BTRFS_FILE_EXTENT_REG || 7029 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7030 goto insert; 7031 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7032 unsigned long ptr; 7033 char *map; 7034 size_t size; 7035 size_t extent_offset; 7036 size_t copy_size; 7037 7038 if (new_inline) 7039 goto out; 7040 7041 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7042 extent_offset = page_offset(page) + pg_offset - extent_start; 7043 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7044 size - extent_offset); 7045 em->start = extent_start + extent_offset; 7046 em->len = ALIGN(copy_size, fs_info->sectorsize); 7047 em->orig_block_len = em->len; 7048 em->orig_start = em->start; 7049 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7050 if (!PageUptodate(page)) { 7051 if (btrfs_file_extent_compression(leaf, item) != 7052 BTRFS_COMPRESS_NONE) { 7053 ret = uncompress_inline(path, page, pg_offset, 7054 extent_offset, item); 7055 if (ret) { 7056 err = ret; 7057 goto out; 7058 } 7059 } else { 7060 map = kmap(page); 7061 read_extent_buffer(leaf, map + pg_offset, ptr, 7062 copy_size); 7063 if (pg_offset + copy_size < PAGE_SIZE) { 7064 memset(map + pg_offset + copy_size, 0, 7065 PAGE_SIZE - pg_offset - 7066 copy_size); 7067 } 7068 kunmap(page); 7069 } 7070 flush_dcache_page(page); 7071 } 7072 set_extent_uptodate(io_tree, em->start, 7073 extent_map_end(em) - 1, NULL, GFP_NOFS); 7074 goto insert; 7075 } 7076 not_found: 7077 em->start = start; 7078 em->orig_start = start; 7079 em->len = len; 7080 not_found_em: 7081 em->block_start = EXTENT_MAP_HOLE; 7082 insert: 7083 btrfs_release_path(path); 7084 if (em->start > start || extent_map_end(em) <= start) { 7085 btrfs_err(fs_info, 7086 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7087 em->start, em->len, start, len); 7088 err = -EIO; 7089 goto out; 7090 } 7091 7092 err = 0; 7093 write_lock(&em_tree->lock); 7094 err = btrfs_add_extent_mapping(em_tree, &em, start, len); 7095 write_unlock(&em_tree->lock); 7096 out: 7097 7098 trace_btrfs_get_extent(root, inode, em); 7099 7100 btrfs_free_path(path); 7101 if (err) { 7102 free_extent_map(em); 7103 return ERR_PTR(err); 7104 } 7105 BUG_ON(!em); /* Error is always set */ 7106 return em; 7107 } 7108 7109 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7110 struct page *page, 7111 size_t pg_offset, u64 start, u64 len, 7112 int create) 7113 { 7114 struct extent_map *em; 7115 struct extent_map *hole_em = NULL; 7116 u64 range_start = start; 7117 u64 end; 7118 u64 found; 7119 u64 found_end; 7120 int err = 0; 7121 7122 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7123 if (IS_ERR(em)) 7124 return em; 7125 /* 7126 * If our em maps to: 7127 * - a hole or 7128 * - a pre-alloc extent, 7129 * there might actually be delalloc bytes behind it. 7130 */ 7131 if (em->block_start != EXTENT_MAP_HOLE && 7132 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7133 return em; 7134 else 7135 hole_em = em; 7136 7137 /* check to see if we've wrapped (len == -1 or similar) */ 7138 end = start + len; 7139 if (end < start) 7140 end = (u64)-1; 7141 else 7142 end -= 1; 7143 7144 em = NULL; 7145 7146 /* ok, we didn't find anything, lets look for delalloc */ 7147 found = count_range_bits(&inode->io_tree, &range_start, 7148 end, len, EXTENT_DELALLOC, 1); 7149 found_end = range_start + found; 7150 if (found_end < range_start) 7151 found_end = (u64)-1; 7152 7153 /* 7154 * we didn't find anything useful, return 7155 * the original results from get_extent() 7156 */ 7157 if (range_start > end || found_end <= start) { 7158 em = hole_em; 7159 hole_em = NULL; 7160 goto out; 7161 } 7162 7163 /* adjust the range_start to make sure it doesn't 7164 * go backwards from the start they passed in 7165 */ 7166 range_start = max(start, range_start); 7167 found = found_end - range_start; 7168 7169 if (found > 0) { 7170 u64 hole_start = start; 7171 u64 hole_len = len; 7172 7173 em = alloc_extent_map(); 7174 if (!em) { 7175 err = -ENOMEM; 7176 goto out; 7177 } 7178 /* 7179 * when btrfs_get_extent can't find anything it 7180 * returns one huge hole 7181 * 7182 * make sure what it found really fits our range, and 7183 * adjust to make sure it is based on the start from 7184 * the caller 7185 */ 7186 if (hole_em) { 7187 u64 calc_end = extent_map_end(hole_em); 7188 7189 if (calc_end <= start || (hole_em->start > end)) { 7190 free_extent_map(hole_em); 7191 hole_em = NULL; 7192 } else { 7193 hole_start = max(hole_em->start, start); 7194 hole_len = calc_end - hole_start; 7195 } 7196 } 7197 em->bdev = NULL; 7198 if (hole_em && range_start > hole_start) { 7199 /* our hole starts before our delalloc, so we 7200 * have to return just the parts of the hole 7201 * that go until the delalloc starts 7202 */ 7203 em->len = min(hole_len, 7204 range_start - hole_start); 7205 em->start = hole_start; 7206 em->orig_start = hole_start; 7207 /* 7208 * don't adjust block start at all, 7209 * it is fixed at EXTENT_MAP_HOLE 7210 */ 7211 em->block_start = hole_em->block_start; 7212 em->block_len = hole_len; 7213 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7214 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7215 } else { 7216 em->start = range_start; 7217 em->len = found; 7218 em->orig_start = range_start; 7219 em->block_start = EXTENT_MAP_DELALLOC; 7220 em->block_len = found; 7221 } 7222 } else { 7223 return hole_em; 7224 } 7225 out: 7226 7227 free_extent_map(hole_em); 7228 if (err) { 7229 free_extent_map(em); 7230 return ERR_PTR(err); 7231 } 7232 return em; 7233 } 7234 7235 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7236 const u64 start, 7237 const u64 len, 7238 const u64 orig_start, 7239 const u64 block_start, 7240 const u64 block_len, 7241 const u64 orig_block_len, 7242 const u64 ram_bytes, 7243 const int type) 7244 { 7245 struct extent_map *em = NULL; 7246 int ret; 7247 7248 if (type != BTRFS_ORDERED_NOCOW) { 7249 em = create_io_em(inode, start, len, orig_start, 7250 block_start, block_len, orig_block_len, 7251 ram_bytes, 7252 BTRFS_COMPRESS_NONE, /* compress_type */ 7253 type); 7254 if (IS_ERR(em)) 7255 goto out; 7256 } 7257 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7258 len, block_len, type); 7259 if (ret) { 7260 if (em) { 7261 free_extent_map(em); 7262 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7263 start + len - 1, 0); 7264 } 7265 em = ERR_PTR(ret); 7266 } 7267 out: 7268 7269 return em; 7270 } 7271 7272 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7273 u64 start, u64 len) 7274 { 7275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7276 struct btrfs_root *root = BTRFS_I(inode)->root; 7277 struct extent_map *em; 7278 struct btrfs_key ins; 7279 u64 alloc_hint; 7280 int ret; 7281 7282 alloc_hint = get_extent_allocation_hint(inode, start, len); 7283 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7284 0, alloc_hint, &ins, 1, 1); 7285 if (ret) 7286 return ERR_PTR(ret); 7287 7288 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7289 ins.objectid, ins.offset, ins.offset, 7290 ins.offset, BTRFS_ORDERED_REGULAR); 7291 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7292 if (IS_ERR(em)) 7293 btrfs_free_reserved_extent(fs_info, ins.objectid, 7294 ins.offset, 1); 7295 7296 return em; 7297 } 7298 7299 /* 7300 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7301 * block must be cow'd 7302 */ 7303 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7304 u64 *orig_start, u64 *orig_block_len, 7305 u64 *ram_bytes) 7306 { 7307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7308 struct btrfs_path *path; 7309 int ret; 7310 struct extent_buffer *leaf; 7311 struct btrfs_root *root = BTRFS_I(inode)->root; 7312 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7313 struct btrfs_file_extent_item *fi; 7314 struct btrfs_key key; 7315 u64 disk_bytenr; 7316 u64 backref_offset; 7317 u64 extent_end; 7318 u64 num_bytes; 7319 int slot; 7320 int found_type; 7321 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7322 7323 path = btrfs_alloc_path(); 7324 if (!path) 7325 return -ENOMEM; 7326 7327 ret = btrfs_lookup_file_extent(NULL, root, path, 7328 btrfs_ino(BTRFS_I(inode)), offset, 0); 7329 if (ret < 0) 7330 goto out; 7331 7332 slot = path->slots[0]; 7333 if (ret == 1) { 7334 if (slot == 0) { 7335 /* can't find the item, must cow */ 7336 ret = 0; 7337 goto out; 7338 } 7339 slot--; 7340 } 7341 ret = 0; 7342 leaf = path->nodes[0]; 7343 btrfs_item_key_to_cpu(leaf, &key, slot); 7344 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7345 key.type != BTRFS_EXTENT_DATA_KEY) { 7346 /* not our file or wrong item type, must cow */ 7347 goto out; 7348 } 7349 7350 if (key.offset > offset) { 7351 /* Wrong offset, must cow */ 7352 goto out; 7353 } 7354 7355 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7356 found_type = btrfs_file_extent_type(leaf, fi); 7357 if (found_type != BTRFS_FILE_EXTENT_REG && 7358 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7359 /* not a regular extent, must cow */ 7360 goto out; 7361 } 7362 7363 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7364 goto out; 7365 7366 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7367 if (extent_end <= offset) 7368 goto out; 7369 7370 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7371 if (disk_bytenr == 0) 7372 goto out; 7373 7374 if (btrfs_file_extent_compression(leaf, fi) || 7375 btrfs_file_extent_encryption(leaf, fi) || 7376 btrfs_file_extent_other_encoding(leaf, fi)) 7377 goto out; 7378 7379 backref_offset = btrfs_file_extent_offset(leaf, fi); 7380 7381 if (orig_start) { 7382 *orig_start = key.offset - backref_offset; 7383 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7384 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7385 } 7386 7387 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7388 goto out; 7389 7390 num_bytes = min(offset + *len, extent_end) - offset; 7391 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7392 u64 range_end; 7393 7394 range_end = round_up(offset + num_bytes, 7395 root->fs_info->sectorsize) - 1; 7396 ret = test_range_bit(io_tree, offset, range_end, 7397 EXTENT_DELALLOC, 0, NULL); 7398 if (ret) { 7399 ret = -EAGAIN; 7400 goto out; 7401 } 7402 } 7403 7404 btrfs_release_path(path); 7405 7406 /* 7407 * look for other files referencing this extent, if we 7408 * find any we must cow 7409 */ 7410 7411 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7412 key.offset - backref_offset, disk_bytenr); 7413 if (ret) { 7414 ret = 0; 7415 goto out; 7416 } 7417 7418 /* 7419 * adjust disk_bytenr and num_bytes to cover just the bytes 7420 * in this extent we are about to write. If there 7421 * are any csums in that range we have to cow in order 7422 * to keep the csums correct 7423 */ 7424 disk_bytenr += backref_offset; 7425 disk_bytenr += offset - key.offset; 7426 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7427 goto out; 7428 /* 7429 * all of the above have passed, it is safe to overwrite this extent 7430 * without cow 7431 */ 7432 *len = num_bytes; 7433 ret = 1; 7434 out: 7435 btrfs_free_path(path); 7436 return ret; 7437 } 7438 7439 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7440 { 7441 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7442 bool found = false; 7443 void **pagep = NULL; 7444 struct page *page = NULL; 7445 unsigned long start_idx; 7446 unsigned long end_idx; 7447 7448 start_idx = start >> PAGE_SHIFT; 7449 7450 /* 7451 * end is the last byte in the last page. end == start is legal 7452 */ 7453 end_idx = end >> PAGE_SHIFT; 7454 7455 rcu_read_lock(); 7456 7457 /* Most of the code in this while loop is lifted from 7458 * find_get_page. It's been modified to begin searching from a 7459 * page and return just the first page found in that range. If the 7460 * found idx is less than or equal to the end idx then we know that 7461 * a page exists. If no pages are found or if those pages are 7462 * outside of the range then we're fine (yay!) */ 7463 while (page == NULL && 7464 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7465 page = radix_tree_deref_slot(pagep); 7466 if (unlikely(!page)) 7467 break; 7468 7469 if (radix_tree_exception(page)) { 7470 if (radix_tree_deref_retry(page)) { 7471 page = NULL; 7472 continue; 7473 } 7474 /* 7475 * Otherwise, shmem/tmpfs must be storing a swap entry 7476 * here as an exceptional entry: so return it without 7477 * attempting to raise page count. 7478 */ 7479 page = NULL; 7480 break; /* TODO: Is this relevant for this use case? */ 7481 } 7482 7483 if (!page_cache_get_speculative(page)) { 7484 page = NULL; 7485 continue; 7486 } 7487 7488 /* 7489 * Has the page moved? 7490 * This is part of the lockless pagecache protocol. See 7491 * include/linux/pagemap.h for details. 7492 */ 7493 if (unlikely(page != *pagep)) { 7494 put_page(page); 7495 page = NULL; 7496 } 7497 } 7498 7499 if (page) { 7500 if (page->index <= end_idx) 7501 found = true; 7502 put_page(page); 7503 } 7504 7505 rcu_read_unlock(); 7506 return found; 7507 } 7508 7509 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7510 struct extent_state **cached_state, int writing) 7511 { 7512 struct btrfs_ordered_extent *ordered; 7513 int ret = 0; 7514 7515 while (1) { 7516 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7517 cached_state); 7518 /* 7519 * We're concerned with the entire range that we're going to be 7520 * doing DIO to, so we need to make sure there's no ordered 7521 * extents in this range. 7522 */ 7523 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7524 lockend - lockstart + 1); 7525 7526 /* 7527 * We need to make sure there are no buffered pages in this 7528 * range either, we could have raced between the invalidate in 7529 * generic_file_direct_write and locking the extent. The 7530 * invalidate needs to happen so that reads after a write do not 7531 * get stale data. 7532 */ 7533 if (!ordered && 7534 (!writing || 7535 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7536 break; 7537 7538 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7539 cached_state); 7540 7541 if (ordered) { 7542 /* 7543 * If we are doing a DIO read and the ordered extent we 7544 * found is for a buffered write, we can not wait for it 7545 * to complete and retry, because if we do so we can 7546 * deadlock with concurrent buffered writes on page 7547 * locks. This happens only if our DIO read covers more 7548 * than one extent map, if at this point has already 7549 * created an ordered extent for a previous extent map 7550 * and locked its range in the inode's io tree, and a 7551 * concurrent write against that previous extent map's 7552 * range and this range started (we unlock the ranges 7553 * in the io tree only when the bios complete and 7554 * buffered writes always lock pages before attempting 7555 * to lock range in the io tree). 7556 */ 7557 if (writing || 7558 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7559 btrfs_start_ordered_extent(inode, ordered, 1); 7560 else 7561 ret = -ENOTBLK; 7562 btrfs_put_ordered_extent(ordered); 7563 } else { 7564 /* 7565 * We could trigger writeback for this range (and wait 7566 * for it to complete) and then invalidate the pages for 7567 * this range (through invalidate_inode_pages2_range()), 7568 * but that can lead us to a deadlock with a concurrent 7569 * call to readpages() (a buffered read or a defrag call 7570 * triggered a readahead) on a page lock due to an 7571 * ordered dio extent we created before but did not have 7572 * yet a corresponding bio submitted (whence it can not 7573 * complete), which makes readpages() wait for that 7574 * ordered extent to complete while holding a lock on 7575 * that page. 7576 */ 7577 ret = -ENOTBLK; 7578 } 7579 7580 if (ret) 7581 break; 7582 7583 cond_resched(); 7584 } 7585 7586 return ret; 7587 } 7588 7589 /* The callers of this must take lock_extent() */ 7590 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7591 u64 orig_start, u64 block_start, 7592 u64 block_len, u64 orig_block_len, 7593 u64 ram_bytes, int compress_type, 7594 int type) 7595 { 7596 struct extent_map_tree *em_tree; 7597 struct extent_map *em; 7598 struct btrfs_root *root = BTRFS_I(inode)->root; 7599 int ret; 7600 7601 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7602 type == BTRFS_ORDERED_COMPRESSED || 7603 type == BTRFS_ORDERED_NOCOW || 7604 type == BTRFS_ORDERED_REGULAR); 7605 7606 em_tree = &BTRFS_I(inode)->extent_tree; 7607 em = alloc_extent_map(); 7608 if (!em) 7609 return ERR_PTR(-ENOMEM); 7610 7611 em->start = start; 7612 em->orig_start = orig_start; 7613 em->len = len; 7614 em->block_len = block_len; 7615 em->block_start = block_start; 7616 em->bdev = root->fs_info->fs_devices->latest_bdev; 7617 em->orig_block_len = orig_block_len; 7618 em->ram_bytes = ram_bytes; 7619 em->generation = -1; 7620 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7621 if (type == BTRFS_ORDERED_PREALLOC) { 7622 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7623 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7624 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7625 em->compress_type = compress_type; 7626 } 7627 7628 do { 7629 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7630 em->start + em->len - 1, 0); 7631 write_lock(&em_tree->lock); 7632 ret = add_extent_mapping(em_tree, em, 1); 7633 write_unlock(&em_tree->lock); 7634 /* 7635 * The caller has taken lock_extent(), who could race with us 7636 * to add em? 7637 */ 7638 } while (ret == -EEXIST); 7639 7640 if (ret) { 7641 free_extent_map(em); 7642 return ERR_PTR(ret); 7643 } 7644 7645 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7646 return em; 7647 } 7648 7649 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7650 struct buffer_head *bh_result, int create) 7651 { 7652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7653 struct extent_map *em; 7654 struct extent_state *cached_state = NULL; 7655 struct btrfs_dio_data *dio_data = NULL; 7656 u64 start = iblock << inode->i_blkbits; 7657 u64 lockstart, lockend; 7658 u64 len = bh_result->b_size; 7659 int unlock_bits = EXTENT_LOCKED; 7660 int ret = 0; 7661 7662 if (create) 7663 unlock_bits |= EXTENT_DIRTY; 7664 else 7665 len = min_t(u64, len, fs_info->sectorsize); 7666 7667 lockstart = start; 7668 lockend = start + len - 1; 7669 7670 if (current->journal_info) { 7671 /* 7672 * Need to pull our outstanding extents and set journal_info to NULL so 7673 * that anything that needs to check if there's a transaction doesn't get 7674 * confused. 7675 */ 7676 dio_data = current->journal_info; 7677 current->journal_info = NULL; 7678 } 7679 7680 /* 7681 * If this errors out it's because we couldn't invalidate pagecache for 7682 * this range and we need to fallback to buffered. 7683 */ 7684 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7685 create)) { 7686 ret = -ENOTBLK; 7687 goto err; 7688 } 7689 7690 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7691 if (IS_ERR(em)) { 7692 ret = PTR_ERR(em); 7693 goto unlock_err; 7694 } 7695 7696 /* 7697 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7698 * io. INLINE is special, and we could probably kludge it in here, but 7699 * it's still buffered so for safety lets just fall back to the generic 7700 * buffered path. 7701 * 7702 * For COMPRESSED we _have_ to read the entire extent in so we can 7703 * decompress it, so there will be buffering required no matter what we 7704 * do, so go ahead and fallback to buffered. 7705 * 7706 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7707 * to buffered IO. Don't blame me, this is the price we pay for using 7708 * the generic code. 7709 */ 7710 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7711 em->block_start == EXTENT_MAP_INLINE) { 7712 free_extent_map(em); 7713 ret = -ENOTBLK; 7714 goto unlock_err; 7715 } 7716 7717 /* Just a good old fashioned hole, return */ 7718 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7719 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7720 free_extent_map(em); 7721 goto unlock_err; 7722 } 7723 7724 /* 7725 * We don't allocate a new extent in the following cases 7726 * 7727 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7728 * existing extent. 7729 * 2) The extent is marked as PREALLOC. We're good to go here and can 7730 * just use the extent. 7731 * 7732 */ 7733 if (!create) { 7734 len = min(len, em->len - (start - em->start)); 7735 lockstart = start + len; 7736 goto unlock; 7737 } 7738 7739 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7740 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7741 em->block_start != EXTENT_MAP_HOLE)) { 7742 int type; 7743 u64 block_start, orig_start, orig_block_len, ram_bytes; 7744 7745 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7746 type = BTRFS_ORDERED_PREALLOC; 7747 else 7748 type = BTRFS_ORDERED_NOCOW; 7749 len = min(len, em->len - (start - em->start)); 7750 block_start = em->block_start + (start - em->start); 7751 7752 if (can_nocow_extent(inode, start, &len, &orig_start, 7753 &orig_block_len, &ram_bytes) == 1 && 7754 btrfs_inc_nocow_writers(fs_info, block_start)) { 7755 struct extent_map *em2; 7756 7757 em2 = btrfs_create_dio_extent(inode, start, len, 7758 orig_start, block_start, 7759 len, orig_block_len, 7760 ram_bytes, type); 7761 btrfs_dec_nocow_writers(fs_info, block_start); 7762 if (type == BTRFS_ORDERED_PREALLOC) { 7763 free_extent_map(em); 7764 em = em2; 7765 } 7766 if (em2 && IS_ERR(em2)) { 7767 ret = PTR_ERR(em2); 7768 goto unlock_err; 7769 } 7770 /* 7771 * For inode marked NODATACOW or extent marked PREALLOC, 7772 * use the existing or preallocated extent, so does not 7773 * need to adjust btrfs_space_info's bytes_may_use. 7774 */ 7775 btrfs_free_reserved_data_space_noquota(inode, 7776 start, len); 7777 goto unlock; 7778 } 7779 } 7780 7781 /* 7782 * this will cow the extent, reset the len in case we changed 7783 * it above 7784 */ 7785 len = bh_result->b_size; 7786 free_extent_map(em); 7787 em = btrfs_new_extent_direct(inode, start, len); 7788 if (IS_ERR(em)) { 7789 ret = PTR_ERR(em); 7790 goto unlock_err; 7791 } 7792 len = min(len, em->len - (start - em->start)); 7793 unlock: 7794 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7795 inode->i_blkbits; 7796 bh_result->b_size = len; 7797 bh_result->b_bdev = em->bdev; 7798 set_buffer_mapped(bh_result); 7799 if (create) { 7800 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7801 set_buffer_new(bh_result); 7802 7803 /* 7804 * Need to update the i_size under the extent lock so buffered 7805 * readers will get the updated i_size when we unlock. 7806 */ 7807 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7808 i_size_write(inode, start + len); 7809 7810 WARN_ON(dio_data->reserve < len); 7811 dio_data->reserve -= len; 7812 dio_data->unsubmitted_oe_range_end = start + len; 7813 current->journal_info = dio_data; 7814 } 7815 7816 /* 7817 * In the case of write we need to clear and unlock the entire range, 7818 * in the case of read we need to unlock only the end area that we 7819 * aren't using if there is any left over space. 7820 */ 7821 if (lockstart < lockend) { 7822 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7823 lockend, unlock_bits, 1, 0, 7824 &cached_state); 7825 } else { 7826 free_extent_state(cached_state); 7827 } 7828 7829 free_extent_map(em); 7830 7831 return 0; 7832 7833 unlock_err: 7834 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7835 unlock_bits, 1, 0, &cached_state); 7836 err: 7837 if (dio_data) 7838 current->journal_info = dio_data; 7839 return ret; 7840 } 7841 7842 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7843 struct bio *bio, 7844 int mirror_num) 7845 { 7846 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7847 blk_status_t ret; 7848 7849 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7850 7851 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7852 if (ret) 7853 return ret; 7854 7855 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7856 7857 return ret; 7858 } 7859 7860 static int btrfs_check_dio_repairable(struct inode *inode, 7861 struct bio *failed_bio, 7862 struct io_failure_record *failrec, 7863 int failed_mirror) 7864 { 7865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7866 int num_copies; 7867 7868 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7869 if (num_copies == 1) { 7870 /* 7871 * we only have a single copy of the data, so don't bother with 7872 * all the retry and error correction code that follows. no 7873 * matter what the error is, it is very likely to persist. 7874 */ 7875 btrfs_debug(fs_info, 7876 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7877 num_copies, failrec->this_mirror, failed_mirror); 7878 return 0; 7879 } 7880 7881 failrec->failed_mirror = failed_mirror; 7882 failrec->this_mirror++; 7883 if (failrec->this_mirror == failed_mirror) 7884 failrec->this_mirror++; 7885 7886 if (failrec->this_mirror > num_copies) { 7887 btrfs_debug(fs_info, 7888 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7889 num_copies, failrec->this_mirror, failed_mirror); 7890 return 0; 7891 } 7892 7893 return 1; 7894 } 7895 7896 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7897 struct page *page, unsigned int pgoff, 7898 u64 start, u64 end, int failed_mirror, 7899 bio_end_io_t *repair_endio, void *repair_arg) 7900 { 7901 struct io_failure_record *failrec; 7902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7903 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7904 struct bio *bio; 7905 int isector; 7906 unsigned int read_mode = 0; 7907 int segs; 7908 int ret; 7909 blk_status_t status; 7910 struct bio_vec bvec; 7911 7912 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7913 7914 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7915 if (ret) 7916 return errno_to_blk_status(ret); 7917 7918 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7919 failed_mirror); 7920 if (!ret) { 7921 free_io_failure(failure_tree, io_tree, failrec); 7922 return BLK_STS_IOERR; 7923 } 7924 7925 segs = bio_segments(failed_bio); 7926 bio_get_first_bvec(failed_bio, &bvec); 7927 if (segs > 1 || 7928 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7929 read_mode |= REQ_FAILFAST_DEV; 7930 7931 isector = start - btrfs_io_bio(failed_bio)->logical; 7932 isector >>= inode->i_sb->s_blocksize_bits; 7933 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7934 pgoff, isector, repair_endio, repair_arg); 7935 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7936 7937 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7938 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7939 read_mode, failrec->this_mirror, failrec->in_validation); 7940 7941 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7942 if (status) { 7943 free_io_failure(failure_tree, io_tree, failrec); 7944 bio_put(bio); 7945 } 7946 7947 return status; 7948 } 7949 7950 struct btrfs_retry_complete { 7951 struct completion done; 7952 struct inode *inode; 7953 u64 start; 7954 int uptodate; 7955 }; 7956 7957 static void btrfs_retry_endio_nocsum(struct bio *bio) 7958 { 7959 struct btrfs_retry_complete *done = bio->bi_private; 7960 struct inode *inode = done->inode; 7961 struct bio_vec *bvec; 7962 struct extent_io_tree *io_tree, *failure_tree; 7963 int i; 7964 7965 if (bio->bi_status) 7966 goto end; 7967 7968 ASSERT(bio->bi_vcnt == 1); 7969 io_tree = &BTRFS_I(inode)->io_tree; 7970 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7971 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7972 7973 done->uptodate = 1; 7974 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7975 bio_for_each_segment_all(bvec, bio, i) 7976 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7977 io_tree, done->start, bvec->bv_page, 7978 btrfs_ino(BTRFS_I(inode)), 0); 7979 end: 7980 complete(&done->done); 7981 bio_put(bio); 7982 } 7983 7984 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7985 struct btrfs_io_bio *io_bio) 7986 { 7987 struct btrfs_fs_info *fs_info; 7988 struct bio_vec bvec; 7989 struct bvec_iter iter; 7990 struct btrfs_retry_complete done; 7991 u64 start; 7992 unsigned int pgoff; 7993 u32 sectorsize; 7994 int nr_sectors; 7995 blk_status_t ret; 7996 blk_status_t err = BLK_STS_OK; 7997 7998 fs_info = BTRFS_I(inode)->root->fs_info; 7999 sectorsize = fs_info->sectorsize; 8000 8001 start = io_bio->logical; 8002 done.inode = inode; 8003 io_bio->bio.bi_iter = io_bio->iter; 8004 8005 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8006 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8007 pgoff = bvec.bv_offset; 8008 8009 next_block_or_try_again: 8010 done.uptodate = 0; 8011 done.start = start; 8012 init_completion(&done.done); 8013 8014 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8015 pgoff, start, start + sectorsize - 1, 8016 io_bio->mirror_num, 8017 btrfs_retry_endio_nocsum, &done); 8018 if (ret) { 8019 err = ret; 8020 goto next; 8021 } 8022 8023 wait_for_completion_io(&done.done); 8024 8025 if (!done.uptodate) { 8026 /* We might have another mirror, so try again */ 8027 goto next_block_or_try_again; 8028 } 8029 8030 next: 8031 start += sectorsize; 8032 8033 nr_sectors--; 8034 if (nr_sectors) { 8035 pgoff += sectorsize; 8036 ASSERT(pgoff < PAGE_SIZE); 8037 goto next_block_or_try_again; 8038 } 8039 } 8040 8041 return err; 8042 } 8043 8044 static void btrfs_retry_endio(struct bio *bio) 8045 { 8046 struct btrfs_retry_complete *done = bio->bi_private; 8047 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8048 struct extent_io_tree *io_tree, *failure_tree; 8049 struct inode *inode = done->inode; 8050 struct bio_vec *bvec; 8051 int uptodate; 8052 int ret; 8053 int i; 8054 8055 if (bio->bi_status) 8056 goto end; 8057 8058 uptodate = 1; 8059 8060 ASSERT(bio->bi_vcnt == 1); 8061 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 8062 8063 io_tree = &BTRFS_I(inode)->io_tree; 8064 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8065 8066 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8067 bio_for_each_segment_all(bvec, bio, i) { 8068 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8069 bvec->bv_offset, done->start, 8070 bvec->bv_len); 8071 if (!ret) 8072 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8073 failure_tree, io_tree, done->start, 8074 bvec->bv_page, 8075 btrfs_ino(BTRFS_I(inode)), 8076 bvec->bv_offset); 8077 else 8078 uptodate = 0; 8079 } 8080 8081 done->uptodate = uptodate; 8082 end: 8083 complete(&done->done); 8084 bio_put(bio); 8085 } 8086 8087 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8088 struct btrfs_io_bio *io_bio, blk_status_t err) 8089 { 8090 struct btrfs_fs_info *fs_info; 8091 struct bio_vec bvec; 8092 struct bvec_iter iter; 8093 struct btrfs_retry_complete done; 8094 u64 start; 8095 u64 offset = 0; 8096 u32 sectorsize; 8097 int nr_sectors; 8098 unsigned int pgoff; 8099 int csum_pos; 8100 bool uptodate = (err == 0); 8101 int ret; 8102 blk_status_t status; 8103 8104 fs_info = BTRFS_I(inode)->root->fs_info; 8105 sectorsize = fs_info->sectorsize; 8106 8107 err = BLK_STS_OK; 8108 start = io_bio->logical; 8109 done.inode = inode; 8110 io_bio->bio.bi_iter = io_bio->iter; 8111 8112 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8113 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8114 8115 pgoff = bvec.bv_offset; 8116 next_block: 8117 if (uptodate) { 8118 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8119 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8120 bvec.bv_page, pgoff, start, sectorsize); 8121 if (likely(!ret)) 8122 goto next; 8123 } 8124 try_again: 8125 done.uptodate = 0; 8126 done.start = start; 8127 init_completion(&done.done); 8128 8129 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8130 pgoff, start, start + sectorsize - 1, 8131 io_bio->mirror_num, btrfs_retry_endio, 8132 &done); 8133 if (status) { 8134 err = status; 8135 goto next; 8136 } 8137 8138 wait_for_completion_io(&done.done); 8139 8140 if (!done.uptodate) { 8141 /* We might have another mirror, so try again */ 8142 goto try_again; 8143 } 8144 next: 8145 offset += sectorsize; 8146 start += sectorsize; 8147 8148 ASSERT(nr_sectors); 8149 8150 nr_sectors--; 8151 if (nr_sectors) { 8152 pgoff += sectorsize; 8153 ASSERT(pgoff < PAGE_SIZE); 8154 goto next_block; 8155 } 8156 } 8157 8158 return err; 8159 } 8160 8161 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8162 struct btrfs_io_bio *io_bio, blk_status_t err) 8163 { 8164 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8165 8166 if (skip_csum) { 8167 if (unlikely(err)) 8168 return __btrfs_correct_data_nocsum(inode, io_bio); 8169 else 8170 return BLK_STS_OK; 8171 } else { 8172 return __btrfs_subio_endio_read(inode, io_bio, err); 8173 } 8174 } 8175 8176 static void btrfs_endio_direct_read(struct bio *bio) 8177 { 8178 struct btrfs_dio_private *dip = bio->bi_private; 8179 struct inode *inode = dip->inode; 8180 struct bio *dio_bio; 8181 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8182 blk_status_t err = bio->bi_status; 8183 8184 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8185 err = btrfs_subio_endio_read(inode, io_bio, err); 8186 8187 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8188 dip->logical_offset + dip->bytes - 1); 8189 dio_bio = dip->dio_bio; 8190 8191 kfree(dip); 8192 8193 dio_bio->bi_status = err; 8194 dio_end_io(dio_bio); 8195 8196 if (io_bio->end_io) 8197 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8198 bio_put(bio); 8199 } 8200 8201 static void __endio_write_update_ordered(struct inode *inode, 8202 const u64 offset, const u64 bytes, 8203 const bool uptodate) 8204 { 8205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8206 struct btrfs_ordered_extent *ordered = NULL; 8207 struct btrfs_workqueue *wq; 8208 btrfs_work_func_t func; 8209 u64 ordered_offset = offset; 8210 u64 ordered_bytes = bytes; 8211 u64 last_offset; 8212 int ret; 8213 8214 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8215 wq = fs_info->endio_freespace_worker; 8216 func = btrfs_freespace_write_helper; 8217 } else { 8218 wq = fs_info->endio_write_workers; 8219 func = btrfs_endio_write_helper; 8220 } 8221 8222 again: 8223 last_offset = ordered_offset; 8224 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8225 &ordered_offset, 8226 ordered_bytes, 8227 uptodate); 8228 if (!ret) 8229 goto out_test; 8230 8231 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8232 btrfs_queue_work(wq, &ordered->work); 8233 out_test: 8234 /* 8235 * If btrfs_dec_test_ordered_pending does not find any ordered extent 8236 * in the range, we can exit. 8237 */ 8238 if (ordered_offset == last_offset) 8239 return; 8240 /* 8241 * our bio might span multiple ordered extents. If we haven't 8242 * completed the accounting for the whole dio, go back and try again 8243 */ 8244 if (ordered_offset < offset + bytes) { 8245 ordered_bytes = offset + bytes - ordered_offset; 8246 ordered = NULL; 8247 goto again; 8248 } 8249 } 8250 8251 static void btrfs_endio_direct_write(struct bio *bio) 8252 { 8253 struct btrfs_dio_private *dip = bio->bi_private; 8254 struct bio *dio_bio = dip->dio_bio; 8255 8256 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8257 dip->bytes, !bio->bi_status); 8258 8259 kfree(dip); 8260 8261 dio_bio->bi_status = bio->bi_status; 8262 dio_end_io(dio_bio); 8263 bio_put(bio); 8264 } 8265 8266 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data, 8267 struct bio *bio, int mirror_num, 8268 unsigned long bio_flags, u64 offset) 8269 { 8270 struct inode *inode = private_data; 8271 blk_status_t ret; 8272 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8273 BUG_ON(ret); /* -ENOMEM */ 8274 return 0; 8275 } 8276 8277 static void btrfs_end_dio_bio(struct bio *bio) 8278 { 8279 struct btrfs_dio_private *dip = bio->bi_private; 8280 blk_status_t err = bio->bi_status; 8281 8282 if (err) 8283 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8284 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8285 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8286 bio->bi_opf, 8287 (unsigned long long)bio->bi_iter.bi_sector, 8288 bio->bi_iter.bi_size, err); 8289 8290 if (dip->subio_endio) 8291 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8292 8293 if (err) { 8294 dip->errors = 1; 8295 8296 /* 8297 * before atomic variable goto zero, we must make sure 8298 * dip->errors is perceived to be set. 8299 */ 8300 smp_mb__before_atomic(); 8301 } 8302 8303 /* if there are more bios still pending for this dio, just exit */ 8304 if (!atomic_dec_and_test(&dip->pending_bios)) 8305 goto out; 8306 8307 if (dip->errors) { 8308 bio_io_error(dip->orig_bio); 8309 } else { 8310 dip->dio_bio->bi_status = BLK_STS_OK; 8311 bio_endio(dip->orig_bio); 8312 } 8313 out: 8314 bio_put(bio); 8315 } 8316 8317 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8318 struct btrfs_dio_private *dip, 8319 struct bio *bio, 8320 u64 file_offset) 8321 { 8322 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8323 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8324 blk_status_t ret; 8325 8326 /* 8327 * We load all the csum data we need when we submit 8328 * the first bio to reduce the csum tree search and 8329 * contention. 8330 */ 8331 if (dip->logical_offset == file_offset) { 8332 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8333 file_offset); 8334 if (ret) 8335 return ret; 8336 } 8337 8338 if (bio == dip->orig_bio) 8339 return 0; 8340 8341 file_offset -= dip->logical_offset; 8342 file_offset >>= inode->i_sb->s_blocksize_bits; 8343 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8344 8345 return 0; 8346 } 8347 8348 static inline blk_status_t 8349 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, 8350 int async_submit) 8351 { 8352 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8353 struct btrfs_dio_private *dip = bio->bi_private; 8354 bool write = bio_op(bio) == REQ_OP_WRITE; 8355 blk_status_t ret; 8356 8357 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8358 if (async_submit) 8359 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8360 8361 if (!write) { 8362 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8363 if (ret) 8364 goto err; 8365 } 8366 8367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8368 goto map; 8369 8370 if (write && async_submit) { 8371 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8372 file_offset, inode, 8373 __btrfs_submit_bio_start_direct_io, 8374 __btrfs_submit_bio_done); 8375 goto err; 8376 } else if (write) { 8377 /* 8378 * If we aren't doing async submit, calculate the csum of the 8379 * bio now. 8380 */ 8381 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8382 if (ret) 8383 goto err; 8384 } else { 8385 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8386 file_offset); 8387 if (ret) 8388 goto err; 8389 } 8390 map: 8391 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8392 err: 8393 return ret; 8394 } 8395 8396 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8397 { 8398 struct inode *inode = dip->inode; 8399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8400 struct bio *bio; 8401 struct bio *orig_bio = dip->orig_bio; 8402 u64 start_sector = orig_bio->bi_iter.bi_sector; 8403 u64 file_offset = dip->logical_offset; 8404 u64 map_length; 8405 int async_submit = 0; 8406 u64 submit_len; 8407 int clone_offset = 0; 8408 int clone_len; 8409 int ret; 8410 blk_status_t status; 8411 8412 map_length = orig_bio->bi_iter.bi_size; 8413 submit_len = map_length; 8414 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8415 &map_length, NULL, 0); 8416 if (ret) 8417 return -EIO; 8418 8419 if (map_length >= submit_len) { 8420 bio = orig_bio; 8421 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8422 goto submit; 8423 } 8424 8425 /* async crcs make it difficult to collect full stripe writes. */ 8426 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8427 async_submit = 0; 8428 else 8429 async_submit = 1; 8430 8431 /* bio split */ 8432 ASSERT(map_length <= INT_MAX); 8433 atomic_inc(&dip->pending_bios); 8434 do { 8435 clone_len = min_t(int, submit_len, map_length); 8436 8437 /* 8438 * This will never fail as it's passing GPF_NOFS and 8439 * the allocation is backed by btrfs_bioset. 8440 */ 8441 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8442 clone_len); 8443 bio->bi_private = dip; 8444 bio->bi_end_io = btrfs_end_dio_bio; 8445 btrfs_io_bio(bio)->logical = file_offset; 8446 8447 ASSERT(submit_len >= clone_len); 8448 submit_len -= clone_len; 8449 if (submit_len == 0) 8450 break; 8451 8452 /* 8453 * Increase the count before we submit the bio so we know 8454 * the end IO handler won't happen before we increase the 8455 * count. Otherwise, the dip might get freed before we're 8456 * done setting it up. 8457 */ 8458 atomic_inc(&dip->pending_bios); 8459 8460 status = __btrfs_submit_dio_bio(bio, inode, file_offset, 8461 async_submit); 8462 if (status) { 8463 bio_put(bio); 8464 atomic_dec(&dip->pending_bios); 8465 goto out_err; 8466 } 8467 8468 clone_offset += clone_len; 8469 start_sector += clone_len >> 9; 8470 file_offset += clone_len; 8471 8472 map_length = submit_len; 8473 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8474 start_sector << 9, &map_length, NULL, 0); 8475 if (ret) 8476 goto out_err; 8477 } while (submit_len > 0); 8478 8479 submit: 8480 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8481 if (!status) 8482 return 0; 8483 8484 bio_put(bio); 8485 out_err: 8486 dip->errors = 1; 8487 /* 8488 * before atomic variable goto zero, we must 8489 * make sure dip->errors is perceived to be set. 8490 */ 8491 smp_mb__before_atomic(); 8492 if (atomic_dec_and_test(&dip->pending_bios)) 8493 bio_io_error(dip->orig_bio); 8494 8495 /* bio_end_io() will handle error, so we needn't return it */ 8496 return 0; 8497 } 8498 8499 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8500 loff_t file_offset) 8501 { 8502 struct btrfs_dio_private *dip = NULL; 8503 struct bio *bio = NULL; 8504 struct btrfs_io_bio *io_bio; 8505 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8506 int ret = 0; 8507 8508 bio = btrfs_bio_clone(dio_bio); 8509 8510 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8511 if (!dip) { 8512 ret = -ENOMEM; 8513 goto free_ordered; 8514 } 8515 8516 dip->private = dio_bio->bi_private; 8517 dip->inode = inode; 8518 dip->logical_offset = file_offset; 8519 dip->bytes = dio_bio->bi_iter.bi_size; 8520 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8521 bio->bi_private = dip; 8522 dip->orig_bio = bio; 8523 dip->dio_bio = dio_bio; 8524 atomic_set(&dip->pending_bios, 0); 8525 io_bio = btrfs_io_bio(bio); 8526 io_bio->logical = file_offset; 8527 8528 if (write) { 8529 bio->bi_end_io = btrfs_endio_direct_write; 8530 } else { 8531 bio->bi_end_io = btrfs_endio_direct_read; 8532 dip->subio_endio = btrfs_subio_endio_read; 8533 } 8534 8535 /* 8536 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8537 * even if we fail to submit a bio, because in such case we do the 8538 * corresponding error handling below and it must not be done a second 8539 * time by btrfs_direct_IO(). 8540 */ 8541 if (write) { 8542 struct btrfs_dio_data *dio_data = current->journal_info; 8543 8544 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8545 dip->bytes; 8546 dio_data->unsubmitted_oe_range_start = 8547 dio_data->unsubmitted_oe_range_end; 8548 } 8549 8550 ret = btrfs_submit_direct_hook(dip); 8551 if (!ret) 8552 return; 8553 8554 if (io_bio->end_io) 8555 io_bio->end_io(io_bio, ret); 8556 8557 free_ordered: 8558 /* 8559 * If we arrived here it means either we failed to submit the dip 8560 * or we either failed to clone the dio_bio or failed to allocate the 8561 * dip. If we cloned the dio_bio and allocated the dip, we can just 8562 * call bio_endio against our io_bio so that we get proper resource 8563 * cleanup if we fail to submit the dip, otherwise, we must do the 8564 * same as btrfs_endio_direct_[write|read] because we can't call these 8565 * callbacks - they require an allocated dip and a clone of dio_bio. 8566 */ 8567 if (bio && dip) { 8568 bio_io_error(bio); 8569 /* 8570 * The end io callbacks free our dip, do the final put on bio 8571 * and all the cleanup and final put for dio_bio (through 8572 * dio_end_io()). 8573 */ 8574 dip = NULL; 8575 bio = NULL; 8576 } else { 8577 if (write) 8578 __endio_write_update_ordered(inode, 8579 file_offset, 8580 dio_bio->bi_iter.bi_size, 8581 false); 8582 else 8583 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8584 file_offset + dio_bio->bi_iter.bi_size - 1); 8585 8586 dio_bio->bi_status = BLK_STS_IOERR; 8587 /* 8588 * Releases and cleans up our dio_bio, no need to bio_put() 8589 * nor bio_endio()/bio_io_error() against dio_bio. 8590 */ 8591 dio_end_io(dio_bio); 8592 } 8593 if (bio) 8594 bio_put(bio); 8595 kfree(dip); 8596 } 8597 8598 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8599 const struct iov_iter *iter, loff_t offset) 8600 { 8601 int seg; 8602 int i; 8603 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8604 ssize_t retval = -EINVAL; 8605 8606 if (offset & blocksize_mask) 8607 goto out; 8608 8609 if (iov_iter_alignment(iter) & blocksize_mask) 8610 goto out; 8611 8612 /* If this is a write we don't need to check anymore */ 8613 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8614 return 0; 8615 /* 8616 * Check to make sure we don't have duplicate iov_base's in this 8617 * iovec, if so return EINVAL, otherwise we'll get csum errors 8618 * when reading back. 8619 */ 8620 for (seg = 0; seg < iter->nr_segs; seg++) { 8621 for (i = seg + 1; i < iter->nr_segs; i++) { 8622 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8623 goto out; 8624 } 8625 } 8626 retval = 0; 8627 out: 8628 return retval; 8629 } 8630 8631 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8632 { 8633 struct file *file = iocb->ki_filp; 8634 struct inode *inode = file->f_mapping->host; 8635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8636 struct btrfs_dio_data dio_data = { 0 }; 8637 struct extent_changeset *data_reserved = NULL; 8638 loff_t offset = iocb->ki_pos; 8639 size_t count = 0; 8640 int flags = 0; 8641 bool wakeup = true; 8642 bool relock = false; 8643 ssize_t ret; 8644 8645 if (check_direct_IO(fs_info, iter, offset)) 8646 return 0; 8647 8648 inode_dio_begin(inode); 8649 8650 /* 8651 * The generic stuff only does filemap_write_and_wait_range, which 8652 * isn't enough if we've written compressed pages to this area, so 8653 * we need to flush the dirty pages again to make absolutely sure 8654 * that any outstanding dirty pages are on disk. 8655 */ 8656 count = iov_iter_count(iter); 8657 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8658 &BTRFS_I(inode)->runtime_flags)) 8659 filemap_fdatawrite_range(inode->i_mapping, offset, 8660 offset + count - 1); 8661 8662 if (iov_iter_rw(iter) == WRITE) { 8663 /* 8664 * If the write DIO is beyond the EOF, we need update 8665 * the isize, but it is protected by i_mutex. So we can 8666 * not unlock the i_mutex at this case. 8667 */ 8668 if (offset + count <= inode->i_size) { 8669 dio_data.overwrite = 1; 8670 inode_unlock(inode); 8671 relock = true; 8672 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8673 ret = -EAGAIN; 8674 goto out; 8675 } 8676 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8677 offset, count); 8678 if (ret) 8679 goto out; 8680 8681 /* 8682 * We need to know how many extents we reserved so that we can 8683 * do the accounting properly if we go over the number we 8684 * originally calculated. Abuse current->journal_info for this. 8685 */ 8686 dio_data.reserve = round_up(count, 8687 fs_info->sectorsize); 8688 dio_data.unsubmitted_oe_range_start = (u64)offset; 8689 dio_data.unsubmitted_oe_range_end = (u64)offset; 8690 current->journal_info = &dio_data; 8691 down_read(&BTRFS_I(inode)->dio_sem); 8692 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8693 &BTRFS_I(inode)->runtime_flags)) { 8694 inode_dio_end(inode); 8695 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8696 wakeup = false; 8697 } 8698 8699 ret = __blockdev_direct_IO(iocb, inode, 8700 fs_info->fs_devices->latest_bdev, 8701 iter, btrfs_get_blocks_direct, NULL, 8702 btrfs_submit_direct, flags); 8703 if (iov_iter_rw(iter) == WRITE) { 8704 up_read(&BTRFS_I(inode)->dio_sem); 8705 current->journal_info = NULL; 8706 if (ret < 0 && ret != -EIOCBQUEUED) { 8707 if (dio_data.reserve) 8708 btrfs_delalloc_release_space(inode, data_reserved, 8709 offset, dio_data.reserve); 8710 /* 8711 * On error we might have left some ordered extents 8712 * without submitting corresponding bios for them, so 8713 * cleanup them up to avoid other tasks getting them 8714 * and waiting for them to complete forever. 8715 */ 8716 if (dio_data.unsubmitted_oe_range_start < 8717 dio_data.unsubmitted_oe_range_end) 8718 __endio_write_update_ordered(inode, 8719 dio_data.unsubmitted_oe_range_start, 8720 dio_data.unsubmitted_oe_range_end - 8721 dio_data.unsubmitted_oe_range_start, 8722 false); 8723 } else if (ret >= 0 && (size_t)ret < count) 8724 btrfs_delalloc_release_space(inode, data_reserved, 8725 offset, count - (size_t)ret); 8726 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8727 } 8728 out: 8729 if (wakeup) 8730 inode_dio_end(inode); 8731 if (relock) 8732 inode_lock(inode); 8733 8734 extent_changeset_free(data_reserved); 8735 return ret; 8736 } 8737 8738 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8739 8740 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8741 __u64 start, __u64 len) 8742 { 8743 int ret; 8744 8745 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8746 if (ret) 8747 return ret; 8748 8749 return extent_fiemap(inode, fieinfo, start, len); 8750 } 8751 8752 int btrfs_readpage(struct file *file, struct page *page) 8753 { 8754 struct extent_io_tree *tree; 8755 tree = &BTRFS_I(page->mapping->host)->io_tree; 8756 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8757 } 8758 8759 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8760 { 8761 struct inode *inode = page->mapping->host; 8762 int ret; 8763 8764 if (current->flags & PF_MEMALLOC) { 8765 redirty_page_for_writepage(wbc, page); 8766 unlock_page(page); 8767 return 0; 8768 } 8769 8770 /* 8771 * If we are under memory pressure we will call this directly from the 8772 * VM, we need to make sure we have the inode referenced for the ordered 8773 * extent. If not just return like we didn't do anything. 8774 */ 8775 if (!igrab(inode)) { 8776 redirty_page_for_writepage(wbc, page); 8777 return AOP_WRITEPAGE_ACTIVATE; 8778 } 8779 ret = extent_write_full_page(page, wbc); 8780 btrfs_add_delayed_iput(inode); 8781 return ret; 8782 } 8783 8784 static int btrfs_writepages(struct address_space *mapping, 8785 struct writeback_control *wbc) 8786 { 8787 struct extent_io_tree *tree; 8788 8789 tree = &BTRFS_I(mapping->host)->io_tree; 8790 return extent_writepages(tree, mapping, wbc); 8791 } 8792 8793 static int 8794 btrfs_readpages(struct file *file, struct address_space *mapping, 8795 struct list_head *pages, unsigned nr_pages) 8796 { 8797 struct extent_io_tree *tree; 8798 tree = &BTRFS_I(mapping->host)->io_tree; 8799 return extent_readpages(tree, mapping, pages, nr_pages); 8800 } 8801 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8802 { 8803 struct extent_io_tree *tree; 8804 struct extent_map_tree *map; 8805 int ret; 8806 8807 tree = &BTRFS_I(page->mapping->host)->io_tree; 8808 map = &BTRFS_I(page->mapping->host)->extent_tree; 8809 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8810 if (ret == 1) { 8811 ClearPagePrivate(page); 8812 set_page_private(page, 0); 8813 put_page(page); 8814 } 8815 return ret; 8816 } 8817 8818 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8819 { 8820 if (PageWriteback(page) || PageDirty(page)) 8821 return 0; 8822 return __btrfs_releasepage(page, gfp_flags); 8823 } 8824 8825 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8826 unsigned int length) 8827 { 8828 struct inode *inode = page->mapping->host; 8829 struct extent_io_tree *tree; 8830 struct btrfs_ordered_extent *ordered; 8831 struct extent_state *cached_state = NULL; 8832 u64 page_start = page_offset(page); 8833 u64 page_end = page_start + PAGE_SIZE - 1; 8834 u64 start; 8835 u64 end; 8836 int inode_evicting = inode->i_state & I_FREEING; 8837 8838 /* 8839 * we have the page locked, so new writeback can't start, 8840 * and the dirty bit won't be cleared while we are here. 8841 * 8842 * Wait for IO on this page so that we can safely clear 8843 * the PagePrivate2 bit and do ordered accounting 8844 */ 8845 wait_on_page_writeback(page); 8846 8847 tree = &BTRFS_I(inode)->io_tree; 8848 if (offset) { 8849 btrfs_releasepage(page, GFP_NOFS); 8850 return; 8851 } 8852 8853 if (!inode_evicting) 8854 lock_extent_bits(tree, page_start, page_end, &cached_state); 8855 again: 8856 start = page_start; 8857 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8858 page_end - start + 1); 8859 if (ordered) { 8860 end = min(page_end, ordered->file_offset + ordered->len - 1); 8861 /* 8862 * IO on this page will never be started, so we need 8863 * to account for any ordered extents now 8864 */ 8865 if (!inode_evicting) 8866 clear_extent_bit(tree, start, end, 8867 EXTENT_DIRTY | EXTENT_DELALLOC | 8868 EXTENT_DELALLOC_NEW | 8869 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8870 EXTENT_DEFRAG, 1, 0, &cached_state); 8871 /* 8872 * whoever cleared the private bit is responsible 8873 * for the finish_ordered_io 8874 */ 8875 if (TestClearPagePrivate2(page)) { 8876 struct btrfs_ordered_inode_tree *tree; 8877 u64 new_len; 8878 8879 tree = &BTRFS_I(inode)->ordered_tree; 8880 8881 spin_lock_irq(&tree->lock); 8882 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8883 new_len = start - ordered->file_offset; 8884 if (new_len < ordered->truncated_len) 8885 ordered->truncated_len = new_len; 8886 spin_unlock_irq(&tree->lock); 8887 8888 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8889 start, 8890 end - start + 1, 1)) 8891 btrfs_finish_ordered_io(ordered); 8892 } 8893 btrfs_put_ordered_extent(ordered); 8894 if (!inode_evicting) { 8895 cached_state = NULL; 8896 lock_extent_bits(tree, start, end, 8897 &cached_state); 8898 } 8899 8900 start = end + 1; 8901 if (start < page_end) 8902 goto again; 8903 } 8904 8905 /* 8906 * Qgroup reserved space handler 8907 * Page here will be either 8908 * 1) Already written to disk 8909 * In this case, its reserved space is released from data rsv map 8910 * and will be freed by delayed_ref handler finally. 8911 * So even we call qgroup_free_data(), it won't decrease reserved 8912 * space. 8913 * 2) Not written to disk 8914 * This means the reserved space should be freed here. However, 8915 * if a truncate invalidates the page (by clearing PageDirty) 8916 * and the page is accounted for while allocating extent 8917 * in btrfs_check_data_free_space() we let delayed_ref to 8918 * free the entire extent. 8919 */ 8920 if (PageDirty(page)) 8921 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8922 if (!inode_evicting) { 8923 clear_extent_bit(tree, page_start, page_end, 8924 EXTENT_LOCKED | EXTENT_DIRTY | 8925 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8926 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8927 &cached_state); 8928 8929 __btrfs_releasepage(page, GFP_NOFS); 8930 } 8931 8932 ClearPageChecked(page); 8933 if (PagePrivate(page)) { 8934 ClearPagePrivate(page); 8935 set_page_private(page, 0); 8936 put_page(page); 8937 } 8938 } 8939 8940 /* 8941 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8942 * called from a page fault handler when a page is first dirtied. Hence we must 8943 * be careful to check for EOF conditions here. We set the page up correctly 8944 * for a written page which means we get ENOSPC checking when writing into 8945 * holes and correct delalloc and unwritten extent mapping on filesystems that 8946 * support these features. 8947 * 8948 * We are not allowed to take the i_mutex here so we have to play games to 8949 * protect against truncate races as the page could now be beyond EOF. Because 8950 * vmtruncate() writes the inode size before removing pages, once we have the 8951 * page lock we can determine safely if the page is beyond EOF. If it is not 8952 * beyond EOF, then the page is guaranteed safe against truncation until we 8953 * unlock the page. 8954 */ 8955 int btrfs_page_mkwrite(struct vm_fault *vmf) 8956 { 8957 struct page *page = vmf->page; 8958 struct inode *inode = file_inode(vmf->vma->vm_file); 8959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8961 struct btrfs_ordered_extent *ordered; 8962 struct extent_state *cached_state = NULL; 8963 struct extent_changeset *data_reserved = NULL; 8964 char *kaddr; 8965 unsigned long zero_start; 8966 loff_t size; 8967 int ret; 8968 int reserved = 0; 8969 u64 reserved_space; 8970 u64 page_start; 8971 u64 page_end; 8972 u64 end; 8973 8974 reserved_space = PAGE_SIZE; 8975 8976 sb_start_pagefault(inode->i_sb); 8977 page_start = page_offset(page); 8978 page_end = page_start + PAGE_SIZE - 1; 8979 end = page_end; 8980 8981 /* 8982 * Reserving delalloc space after obtaining the page lock can lead to 8983 * deadlock. For example, if a dirty page is locked by this function 8984 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8985 * dirty page write out, then the btrfs_writepage() function could 8986 * end up waiting indefinitely to get a lock on the page currently 8987 * being processed by btrfs_page_mkwrite() function. 8988 */ 8989 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8990 reserved_space); 8991 if (!ret) { 8992 ret = file_update_time(vmf->vma->vm_file); 8993 reserved = 1; 8994 } 8995 if (ret) { 8996 if (ret == -ENOMEM) 8997 ret = VM_FAULT_OOM; 8998 else /* -ENOSPC, -EIO, etc */ 8999 ret = VM_FAULT_SIGBUS; 9000 if (reserved) 9001 goto out; 9002 goto out_noreserve; 9003 } 9004 9005 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9006 again: 9007 lock_page(page); 9008 size = i_size_read(inode); 9009 9010 if ((page->mapping != inode->i_mapping) || 9011 (page_start >= size)) { 9012 /* page got truncated out from underneath us */ 9013 goto out_unlock; 9014 } 9015 wait_on_page_writeback(page); 9016 9017 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9018 set_page_extent_mapped(page); 9019 9020 /* 9021 * we can't set the delalloc bits if there are pending ordered 9022 * extents. Drop our locks and wait for them to finish 9023 */ 9024 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9025 PAGE_SIZE); 9026 if (ordered) { 9027 unlock_extent_cached(io_tree, page_start, page_end, 9028 &cached_state); 9029 unlock_page(page); 9030 btrfs_start_ordered_extent(inode, ordered, 1); 9031 btrfs_put_ordered_extent(ordered); 9032 goto again; 9033 } 9034 9035 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9036 reserved_space = round_up(size - page_start, 9037 fs_info->sectorsize); 9038 if (reserved_space < PAGE_SIZE) { 9039 end = page_start + reserved_space - 1; 9040 btrfs_delalloc_release_space(inode, data_reserved, 9041 page_start, PAGE_SIZE - reserved_space); 9042 } 9043 } 9044 9045 /* 9046 * page_mkwrite gets called when the page is firstly dirtied after it's 9047 * faulted in, but write(2) could also dirty a page and set delalloc 9048 * bits, thus in this case for space account reason, we still need to 9049 * clear any delalloc bits within this page range since we have to 9050 * reserve data&meta space before lock_page() (see above comments). 9051 */ 9052 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9053 EXTENT_DIRTY | EXTENT_DELALLOC | 9054 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9055 0, 0, &cached_state); 9056 9057 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9058 &cached_state, 0); 9059 if (ret) { 9060 unlock_extent_cached(io_tree, page_start, page_end, 9061 &cached_state); 9062 ret = VM_FAULT_SIGBUS; 9063 goto out_unlock; 9064 } 9065 ret = 0; 9066 9067 /* page is wholly or partially inside EOF */ 9068 if (page_start + PAGE_SIZE > size) 9069 zero_start = size & ~PAGE_MASK; 9070 else 9071 zero_start = PAGE_SIZE; 9072 9073 if (zero_start != PAGE_SIZE) { 9074 kaddr = kmap(page); 9075 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9076 flush_dcache_page(page); 9077 kunmap(page); 9078 } 9079 ClearPageChecked(page); 9080 set_page_dirty(page); 9081 SetPageUptodate(page); 9082 9083 BTRFS_I(inode)->last_trans = fs_info->generation; 9084 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9085 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9086 9087 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9088 9089 out_unlock: 9090 if (!ret) { 9091 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9092 sb_end_pagefault(inode->i_sb); 9093 extent_changeset_free(data_reserved); 9094 return VM_FAULT_LOCKED; 9095 } 9096 unlock_page(page); 9097 out: 9098 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9099 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9100 reserved_space); 9101 out_noreserve: 9102 sb_end_pagefault(inode->i_sb); 9103 extent_changeset_free(data_reserved); 9104 return ret; 9105 } 9106 9107 static int btrfs_truncate(struct inode *inode) 9108 { 9109 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9110 struct btrfs_root *root = BTRFS_I(inode)->root; 9111 struct btrfs_block_rsv *rsv; 9112 int ret = 0; 9113 int err = 0; 9114 struct btrfs_trans_handle *trans; 9115 u64 mask = fs_info->sectorsize - 1; 9116 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9117 9118 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9119 (u64)-1); 9120 if (ret) 9121 return ret; 9122 9123 /* 9124 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9125 * 3 things going on here 9126 * 9127 * 1) We need to reserve space for our orphan item and the space to 9128 * delete our orphan item. Lord knows we don't want to have a dangling 9129 * orphan item because we didn't reserve space to remove it. 9130 * 9131 * 2) We need to reserve space to update our inode. 9132 * 9133 * 3) We need to have something to cache all the space that is going to 9134 * be free'd up by the truncate operation, but also have some slack 9135 * space reserved in case it uses space during the truncate (thank you 9136 * very much snapshotting). 9137 * 9138 * And we need these to all be separate. The fact is we can use a lot of 9139 * space doing the truncate, and we have no earthly idea how much space 9140 * we will use, so we need the truncate reservation to be separate so it 9141 * doesn't end up using space reserved for updating the inode or 9142 * removing the orphan item. We also need to be able to stop the 9143 * transaction and start a new one, which means we need to be able to 9144 * update the inode several times, and we have no idea of knowing how 9145 * many times that will be, so we can't just reserve 1 item for the 9146 * entirety of the operation, so that has to be done separately as well. 9147 * Then there is the orphan item, which does indeed need to be held on 9148 * to for the whole operation, and we need nobody to touch this reserved 9149 * space except the orphan code. 9150 * 9151 * So that leaves us with 9152 * 9153 * 1) root->orphan_block_rsv - for the orphan deletion. 9154 * 2) rsv - for the truncate reservation, which we will steal from the 9155 * transaction reservation. 9156 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9157 * updating the inode. 9158 */ 9159 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9160 if (!rsv) 9161 return -ENOMEM; 9162 rsv->size = min_size; 9163 rsv->failfast = 1; 9164 9165 /* 9166 * 1 for the truncate slack space 9167 * 1 for updating the inode. 9168 */ 9169 trans = btrfs_start_transaction(root, 2); 9170 if (IS_ERR(trans)) { 9171 err = PTR_ERR(trans); 9172 goto out; 9173 } 9174 9175 /* Migrate the slack space for the truncate to our reserve */ 9176 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9177 min_size, 0); 9178 BUG_ON(ret); 9179 9180 /* 9181 * So if we truncate and then write and fsync we normally would just 9182 * write the extents that changed, which is a problem if we need to 9183 * first truncate that entire inode. So set this flag so we write out 9184 * all of the extents in the inode to the sync log so we're completely 9185 * safe. 9186 */ 9187 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9188 trans->block_rsv = rsv; 9189 9190 while (1) { 9191 ret = btrfs_truncate_inode_items(trans, root, inode, 9192 inode->i_size, 9193 BTRFS_EXTENT_DATA_KEY); 9194 trans->block_rsv = &fs_info->trans_block_rsv; 9195 if (ret != -ENOSPC && ret != -EAGAIN) { 9196 err = ret; 9197 break; 9198 } 9199 9200 ret = btrfs_update_inode(trans, root, inode); 9201 if (ret) { 9202 err = ret; 9203 break; 9204 } 9205 9206 btrfs_end_transaction(trans); 9207 btrfs_btree_balance_dirty(fs_info); 9208 9209 trans = btrfs_start_transaction(root, 2); 9210 if (IS_ERR(trans)) { 9211 ret = err = PTR_ERR(trans); 9212 trans = NULL; 9213 break; 9214 } 9215 9216 btrfs_block_rsv_release(fs_info, rsv, -1); 9217 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9218 rsv, min_size, 0); 9219 BUG_ON(ret); /* shouldn't happen */ 9220 trans->block_rsv = rsv; 9221 } 9222 9223 /* 9224 * We can't call btrfs_truncate_block inside a trans handle as we could 9225 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9226 * we've truncated everything except the last little bit, and can do 9227 * btrfs_truncate_block and then update the disk_i_size. 9228 */ 9229 if (ret == NEED_TRUNCATE_BLOCK) { 9230 btrfs_end_transaction(trans); 9231 btrfs_btree_balance_dirty(fs_info); 9232 9233 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9234 if (ret) 9235 goto out; 9236 trans = btrfs_start_transaction(root, 1); 9237 if (IS_ERR(trans)) { 9238 ret = PTR_ERR(trans); 9239 goto out; 9240 } 9241 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9242 } 9243 9244 if (ret == 0 && inode->i_nlink > 0) { 9245 trans->block_rsv = root->orphan_block_rsv; 9246 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9247 if (ret) 9248 err = ret; 9249 } 9250 9251 if (trans) { 9252 trans->block_rsv = &fs_info->trans_block_rsv; 9253 ret = btrfs_update_inode(trans, root, inode); 9254 if (ret && !err) 9255 err = ret; 9256 9257 ret = btrfs_end_transaction(trans); 9258 btrfs_btree_balance_dirty(fs_info); 9259 } 9260 out: 9261 btrfs_free_block_rsv(fs_info, rsv); 9262 9263 if (ret && !err) 9264 err = ret; 9265 9266 return err; 9267 } 9268 9269 /* 9270 * create a new subvolume directory/inode (helper for the ioctl). 9271 */ 9272 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9273 struct btrfs_root *new_root, 9274 struct btrfs_root *parent_root, 9275 u64 new_dirid) 9276 { 9277 struct inode *inode; 9278 int err; 9279 u64 index = 0; 9280 9281 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9282 new_dirid, new_dirid, 9283 S_IFDIR | (~current_umask() & S_IRWXUGO), 9284 &index); 9285 if (IS_ERR(inode)) 9286 return PTR_ERR(inode); 9287 inode->i_op = &btrfs_dir_inode_operations; 9288 inode->i_fop = &btrfs_dir_file_operations; 9289 9290 set_nlink(inode, 1); 9291 btrfs_i_size_write(BTRFS_I(inode), 0); 9292 unlock_new_inode(inode); 9293 9294 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9295 if (err) 9296 btrfs_err(new_root->fs_info, 9297 "error inheriting subvolume %llu properties: %d", 9298 new_root->root_key.objectid, err); 9299 9300 err = btrfs_update_inode(trans, new_root, inode); 9301 9302 iput(inode); 9303 return err; 9304 } 9305 9306 struct inode *btrfs_alloc_inode(struct super_block *sb) 9307 { 9308 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9309 struct btrfs_inode *ei; 9310 struct inode *inode; 9311 9312 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9313 if (!ei) 9314 return NULL; 9315 9316 ei->root = NULL; 9317 ei->generation = 0; 9318 ei->last_trans = 0; 9319 ei->last_sub_trans = 0; 9320 ei->logged_trans = 0; 9321 ei->delalloc_bytes = 0; 9322 ei->new_delalloc_bytes = 0; 9323 ei->defrag_bytes = 0; 9324 ei->disk_i_size = 0; 9325 ei->flags = 0; 9326 ei->csum_bytes = 0; 9327 ei->index_cnt = (u64)-1; 9328 ei->dir_index = 0; 9329 ei->last_unlink_trans = 0; 9330 ei->last_log_commit = 0; 9331 ei->delayed_iput_count = 0; 9332 9333 spin_lock_init(&ei->lock); 9334 ei->outstanding_extents = 0; 9335 if (sb->s_magic != BTRFS_TEST_MAGIC) 9336 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9337 BTRFS_BLOCK_RSV_DELALLOC); 9338 ei->runtime_flags = 0; 9339 ei->prop_compress = BTRFS_COMPRESS_NONE; 9340 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9341 9342 ei->delayed_node = NULL; 9343 9344 ei->i_otime.tv_sec = 0; 9345 ei->i_otime.tv_nsec = 0; 9346 9347 inode = &ei->vfs_inode; 9348 extent_map_tree_init(&ei->extent_tree); 9349 extent_io_tree_init(&ei->io_tree, inode); 9350 extent_io_tree_init(&ei->io_failure_tree, inode); 9351 ei->io_tree.track_uptodate = 1; 9352 ei->io_failure_tree.track_uptodate = 1; 9353 atomic_set(&ei->sync_writers, 0); 9354 mutex_init(&ei->log_mutex); 9355 mutex_init(&ei->delalloc_mutex); 9356 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9357 INIT_LIST_HEAD(&ei->delalloc_inodes); 9358 INIT_LIST_HEAD(&ei->delayed_iput); 9359 RB_CLEAR_NODE(&ei->rb_node); 9360 init_rwsem(&ei->dio_sem); 9361 9362 return inode; 9363 } 9364 9365 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9366 void btrfs_test_destroy_inode(struct inode *inode) 9367 { 9368 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9369 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9370 } 9371 #endif 9372 9373 static void btrfs_i_callback(struct rcu_head *head) 9374 { 9375 struct inode *inode = container_of(head, struct inode, i_rcu); 9376 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9377 } 9378 9379 void btrfs_destroy_inode(struct inode *inode) 9380 { 9381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9382 struct btrfs_ordered_extent *ordered; 9383 struct btrfs_root *root = BTRFS_I(inode)->root; 9384 9385 WARN_ON(!hlist_empty(&inode->i_dentry)); 9386 WARN_ON(inode->i_data.nrpages); 9387 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9388 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9389 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9390 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9391 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9392 WARN_ON(BTRFS_I(inode)->csum_bytes); 9393 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9394 9395 /* 9396 * This can happen where we create an inode, but somebody else also 9397 * created the same inode and we need to destroy the one we already 9398 * created. 9399 */ 9400 if (!root) 9401 goto free; 9402 9403 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9404 &BTRFS_I(inode)->runtime_flags)) { 9405 btrfs_info(fs_info, "inode %llu still on the orphan list", 9406 btrfs_ino(BTRFS_I(inode))); 9407 atomic_dec(&root->orphan_inodes); 9408 } 9409 9410 while (1) { 9411 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9412 if (!ordered) 9413 break; 9414 else { 9415 btrfs_err(fs_info, 9416 "found ordered extent %llu %llu on inode cleanup", 9417 ordered->file_offset, ordered->len); 9418 btrfs_remove_ordered_extent(inode, ordered); 9419 btrfs_put_ordered_extent(ordered); 9420 btrfs_put_ordered_extent(ordered); 9421 } 9422 } 9423 btrfs_qgroup_check_reserved_leak(inode); 9424 inode_tree_del(inode); 9425 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9426 free: 9427 call_rcu(&inode->i_rcu, btrfs_i_callback); 9428 } 9429 9430 int btrfs_drop_inode(struct inode *inode) 9431 { 9432 struct btrfs_root *root = BTRFS_I(inode)->root; 9433 9434 if (root == NULL) 9435 return 1; 9436 9437 /* the snap/subvol tree is on deleting */ 9438 if (btrfs_root_refs(&root->root_item) == 0) 9439 return 1; 9440 else 9441 return generic_drop_inode(inode); 9442 } 9443 9444 static void init_once(void *foo) 9445 { 9446 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9447 9448 inode_init_once(&ei->vfs_inode); 9449 } 9450 9451 void btrfs_destroy_cachep(void) 9452 { 9453 /* 9454 * Make sure all delayed rcu free inodes are flushed before we 9455 * destroy cache. 9456 */ 9457 rcu_barrier(); 9458 kmem_cache_destroy(btrfs_inode_cachep); 9459 kmem_cache_destroy(btrfs_trans_handle_cachep); 9460 kmem_cache_destroy(btrfs_path_cachep); 9461 kmem_cache_destroy(btrfs_free_space_cachep); 9462 } 9463 9464 int __init btrfs_init_cachep(void) 9465 { 9466 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9467 sizeof(struct btrfs_inode), 0, 9468 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9469 init_once); 9470 if (!btrfs_inode_cachep) 9471 goto fail; 9472 9473 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9474 sizeof(struct btrfs_trans_handle), 0, 9475 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9476 if (!btrfs_trans_handle_cachep) 9477 goto fail; 9478 9479 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9480 sizeof(struct btrfs_path), 0, 9481 SLAB_MEM_SPREAD, NULL); 9482 if (!btrfs_path_cachep) 9483 goto fail; 9484 9485 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9486 sizeof(struct btrfs_free_space), 0, 9487 SLAB_MEM_SPREAD, NULL); 9488 if (!btrfs_free_space_cachep) 9489 goto fail; 9490 9491 return 0; 9492 fail: 9493 btrfs_destroy_cachep(); 9494 return -ENOMEM; 9495 } 9496 9497 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9498 u32 request_mask, unsigned int flags) 9499 { 9500 u64 delalloc_bytes; 9501 struct inode *inode = d_inode(path->dentry); 9502 u32 blocksize = inode->i_sb->s_blocksize; 9503 u32 bi_flags = BTRFS_I(inode)->flags; 9504 9505 stat->result_mask |= STATX_BTIME; 9506 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9507 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9508 if (bi_flags & BTRFS_INODE_APPEND) 9509 stat->attributes |= STATX_ATTR_APPEND; 9510 if (bi_flags & BTRFS_INODE_COMPRESS) 9511 stat->attributes |= STATX_ATTR_COMPRESSED; 9512 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9513 stat->attributes |= STATX_ATTR_IMMUTABLE; 9514 if (bi_flags & BTRFS_INODE_NODUMP) 9515 stat->attributes |= STATX_ATTR_NODUMP; 9516 9517 stat->attributes_mask |= (STATX_ATTR_APPEND | 9518 STATX_ATTR_COMPRESSED | 9519 STATX_ATTR_IMMUTABLE | 9520 STATX_ATTR_NODUMP); 9521 9522 generic_fillattr(inode, stat); 9523 stat->dev = BTRFS_I(inode)->root->anon_dev; 9524 9525 spin_lock(&BTRFS_I(inode)->lock); 9526 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9527 spin_unlock(&BTRFS_I(inode)->lock); 9528 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9529 ALIGN(delalloc_bytes, blocksize)) >> 9; 9530 return 0; 9531 } 9532 9533 static int btrfs_rename_exchange(struct inode *old_dir, 9534 struct dentry *old_dentry, 9535 struct inode *new_dir, 9536 struct dentry *new_dentry) 9537 { 9538 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9539 struct btrfs_trans_handle *trans; 9540 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9541 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9542 struct inode *new_inode = new_dentry->d_inode; 9543 struct inode *old_inode = old_dentry->d_inode; 9544 struct timespec ctime = current_time(old_inode); 9545 struct dentry *parent; 9546 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9547 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9548 u64 old_idx = 0; 9549 u64 new_idx = 0; 9550 u64 root_objectid; 9551 int ret; 9552 bool root_log_pinned = false; 9553 bool dest_log_pinned = false; 9554 9555 /* we only allow rename subvolume link between subvolumes */ 9556 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9557 return -EXDEV; 9558 9559 /* close the race window with snapshot create/destroy ioctl */ 9560 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9561 down_read(&fs_info->subvol_sem); 9562 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9563 down_read(&fs_info->subvol_sem); 9564 9565 /* 9566 * We want to reserve the absolute worst case amount of items. So if 9567 * both inodes are subvols and we need to unlink them then that would 9568 * require 4 item modifications, but if they are both normal inodes it 9569 * would require 5 item modifications, so we'll assume their normal 9570 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9571 * should cover the worst case number of items we'll modify. 9572 */ 9573 trans = btrfs_start_transaction(root, 12); 9574 if (IS_ERR(trans)) { 9575 ret = PTR_ERR(trans); 9576 goto out_notrans; 9577 } 9578 9579 /* 9580 * We need to find a free sequence number both in the source and 9581 * in the destination directory for the exchange. 9582 */ 9583 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9584 if (ret) 9585 goto out_fail; 9586 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9587 if (ret) 9588 goto out_fail; 9589 9590 BTRFS_I(old_inode)->dir_index = 0ULL; 9591 BTRFS_I(new_inode)->dir_index = 0ULL; 9592 9593 /* Reference for the source. */ 9594 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9595 /* force full log commit if subvolume involved. */ 9596 btrfs_set_log_full_commit(fs_info, trans); 9597 } else { 9598 btrfs_pin_log_trans(root); 9599 root_log_pinned = true; 9600 ret = btrfs_insert_inode_ref(trans, dest, 9601 new_dentry->d_name.name, 9602 new_dentry->d_name.len, 9603 old_ino, 9604 btrfs_ino(BTRFS_I(new_dir)), 9605 old_idx); 9606 if (ret) 9607 goto out_fail; 9608 } 9609 9610 /* And now for the dest. */ 9611 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9612 /* force full log commit if subvolume involved. */ 9613 btrfs_set_log_full_commit(fs_info, trans); 9614 } else { 9615 btrfs_pin_log_trans(dest); 9616 dest_log_pinned = true; 9617 ret = btrfs_insert_inode_ref(trans, root, 9618 old_dentry->d_name.name, 9619 old_dentry->d_name.len, 9620 new_ino, 9621 btrfs_ino(BTRFS_I(old_dir)), 9622 new_idx); 9623 if (ret) 9624 goto out_fail; 9625 } 9626 9627 /* Update inode version and ctime/mtime. */ 9628 inode_inc_iversion(old_dir); 9629 inode_inc_iversion(new_dir); 9630 inode_inc_iversion(old_inode); 9631 inode_inc_iversion(new_inode); 9632 old_dir->i_ctime = old_dir->i_mtime = ctime; 9633 new_dir->i_ctime = new_dir->i_mtime = ctime; 9634 old_inode->i_ctime = ctime; 9635 new_inode->i_ctime = ctime; 9636 9637 if (old_dentry->d_parent != new_dentry->d_parent) { 9638 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9639 BTRFS_I(old_inode), 1); 9640 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9641 BTRFS_I(new_inode), 1); 9642 } 9643 9644 /* src is a subvolume */ 9645 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9646 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9647 ret = btrfs_unlink_subvol(trans, root, old_dir, 9648 root_objectid, 9649 old_dentry->d_name.name, 9650 old_dentry->d_name.len); 9651 } else { /* src is an inode */ 9652 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9653 BTRFS_I(old_dentry->d_inode), 9654 old_dentry->d_name.name, 9655 old_dentry->d_name.len); 9656 if (!ret) 9657 ret = btrfs_update_inode(trans, root, old_inode); 9658 } 9659 if (ret) { 9660 btrfs_abort_transaction(trans, ret); 9661 goto out_fail; 9662 } 9663 9664 /* dest is a subvolume */ 9665 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9666 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9667 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9668 root_objectid, 9669 new_dentry->d_name.name, 9670 new_dentry->d_name.len); 9671 } else { /* dest is an inode */ 9672 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9673 BTRFS_I(new_dentry->d_inode), 9674 new_dentry->d_name.name, 9675 new_dentry->d_name.len); 9676 if (!ret) 9677 ret = btrfs_update_inode(trans, dest, new_inode); 9678 } 9679 if (ret) { 9680 btrfs_abort_transaction(trans, ret); 9681 goto out_fail; 9682 } 9683 9684 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9685 new_dentry->d_name.name, 9686 new_dentry->d_name.len, 0, old_idx); 9687 if (ret) { 9688 btrfs_abort_transaction(trans, ret); 9689 goto out_fail; 9690 } 9691 9692 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9693 old_dentry->d_name.name, 9694 old_dentry->d_name.len, 0, new_idx); 9695 if (ret) { 9696 btrfs_abort_transaction(trans, ret); 9697 goto out_fail; 9698 } 9699 9700 if (old_inode->i_nlink == 1) 9701 BTRFS_I(old_inode)->dir_index = old_idx; 9702 if (new_inode->i_nlink == 1) 9703 BTRFS_I(new_inode)->dir_index = new_idx; 9704 9705 if (root_log_pinned) { 9706 parent = new_dentry->d_parent; 9707 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9708 parent); 9709 btrfs_end_log_trans(root); 9710 root_log_pinned = false; 9711 } 9712 if (dest_log_pinned) { 9713 parent = old_dentry->d_parent; 9714 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9715 parent); 9716 btrfs_end_log_trans(dest); 9717 dest_log_pinned = false; 9718 } 9719 out_fail: 9720 /* 9721 * If we have pinned a log and an error happened, we unpin tasks 9722 * trying to sync the log and force them to fallback to a transaction 9723 * commit if the log currently contains any of the inodes involved in 9724 * this rename operation (to ensure we do not persist a log with an 9725 * inconsistent state for any of these inodes or leading to any 9726 * inconsistencies when replayed). If the transaction was aborted, the 9727 * abortion reason is propagated to userspace when attempting to commit 9728 * the transaction. If the log does not contain any of these inodes, we 9729 * allow the tasks to sync it. 9730 */ 9731 if (ret && (root_log_pinned || dest_log_pinned)) { 9732 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9733 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9734 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9735 (new_inode && 9736 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9737 btrfs_set_log_full_commit(fs_info, trans); 9738 9739 if (root_log_pinned) { 9740 btrfs_end_log_trans(root); 9741 root_log_pinned = false; 9742 } 9743 if (dest_log_pinned) { 9744 btrfs_end_log_trans(dest); 9745 dest_log_pinned = false; 9746 } 9747 } 9748 ret = btrfs_end_transaction(trans); 9749 out_notrans: 9750 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9751 up_read(&fs_info->subvol_sem); 9752 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9753 up_read(&fs_info->subvol_sem); 9754 9755 return ret; 9756 } 9757 9758 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9759 struct btrfs_root *root, 9760 struct inode *dir, 9761 struct dentry *dentry) 9762 { 9763 int ret; 9764 struct inode *inode; 9765 u64 objectid; 9766 u64 index; 9767 9768 ret = btrfs_find_free_ino(root, &objectid); 9769 if (ret) 9770 return ret; 9771 9772 inode = btrfs_new_inode(trans, root, dir, 9773 dentry->d_name.name, 9774 dentry->d_name.len, 9775 btrfs_ino(BTRFS_I(dir)), 9776 objectid, 9777 S_IFCHR | WHITEOUT_MODE, 9778 &index); 9779 9780 if (IS_ERR(inode)) { 9781 ret = PTR_ERR(inode); 9782 return ret; 9783 } 9784 9785 inode->i_op = &btrfs_special_inode_operations; 9786 init_special_inode(inode, inode->i_mode, 9787 WHITEOUT_DEV); 9788 9789 ret = btrfs_init_inode_security(trans, inode, dir, 9790 &dentry->d_name); 9791 if (ret) 9792 goto out; 9793 9794 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9795 BTRFS_I(inode), 0, index); 9796 if (ret) 9797 goto out; 9798 9799 ret = btrfs_update_inode(trans, root, inode); 9800 out: 9801 unlock_new_inode(inode); 9802 if (ret) 9803 inode_dec_link_count(inode); 9804 iput(inode); 9805 9806 return ret; 9807 } 9808 9809 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9810 struct inode *new_dir, struct dentry *new_dentry, 9811 unsigned int flags) 9812 { 9813 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9814 struct btrfs_trans_handle *trans; 9815 unsigned int trans_num_items; 9816 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9817 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9818 struct inode *new_inode = d_inode(new_dentry); 9819 struct inode *old_inode = d_inode(old_dentry); 9820 u64 index = 0; 9821 u64 root_objectid; 9822 int ret; 9823 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9824 bool log_pinned = false; 9825 9826 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9827 return -EPERM; 9828 9829 /* we only allow rename subvolume link between subvolumes */ 9830 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9831 return -EXDEV; 9832 9833 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9834 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9835 return -ENOTEMPTY; 9836 9837 if (S_ISDIR(old_inode->i_mode) && new_inode && 9838 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9839 return -ENOTEMPTY; 9840 9841 9842 /* check for collisions, even if the name isn't there */ 9843 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9844 new_dentry->d_name.name, 9845 new_dentry->d_name.len); 9846 9847 if (ret) { 9848 if (ret == -EEXIST) { 9849 /* we shouldn't get 9850 * eexist without a new_inode */ 9851 if (WARN_ON(!new_inode)) { 9852 return ret; 9853 } 9854 } else { 9855 /* maybe -EOVERFLOW */ 9856 return ret; 9857 } 9858 } 9859 ret = 0; 9860 9861 /* 9862 * we're using rename to replace one file with another. Start IO on it 9863 * now so we don't add too much work to the end of the transaction 9864 */ 9865 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9866 filemap_flush(old_inode->i_mapping); 9867 9868 /* close the racy window with snapshot create/destroy ioctl */ 9869 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9870 down_read(&fs_info->subvol_sem); 9871 /* 9872 * We want to reserve the absolute worst case amount of items. So if 9873 * both inodes are subvols and we need to unlink them then that would 9874 * require 4 item modifications, but if they are both normal inodes it 9875 * would require 5 item modifications, so we'll assume they are normal 9876 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9877 * should cover the worst case number of items we'll modify. 9878 * If our rename has the whiteout flag, we need more 5 units for the 9879 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9880 * when selinux is enabled). 9881 */ 9882 trans_num_items = 11; 9883 if (flags & RENAME_WHITEOUT) 9884 trans_num_items += 5; 9885 trans = btrfs_start_transaction(root, trans_num_items); 9886 if (IS_ERR(trans)) { 9887 ret = PTR_ERR(trans); 9888 goto out_notrans; 9889 } 9890 9891 if (dest != root) 9892 btrfs_record_root_in_trans(trans, dest); 9893 9894 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9895 if (ret) 9896 goto out_fail; 9897 9898 BTRFS_I(old_inode)->dir_index = 0ULL; 9899 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9900 /* force full log commit if subvolume involved. */ 9901 btrfs_set_log_full_commit(fs_info, trans); 9902 } else { 9903 btrfs_pin_log_trans(root); 9904 log_pinned = true; 9905 ret = btrfs_insert_inode_ref(trans, dest, 9906 new_dentry->d_name.name, 9907 new_dentry->d_name.len, 9908 old_ino, 9909 btrfs_ino(BTRFS_I(new_dir)), index); 9910 if (ret) 9911 goto out_fail; 9912 } 9913 9914 inode_inc_iversion(old_dir); 9915 inode_inc_iversion(new_dir); 9916 inode_inc_iversion(old_inode); 9917 old_dir->i_ctime = old_dir->i_mtime = 9918 new_dir->i_ctime = new_dir->i_mtime = 9919 old_inode->i_ctime = current_time(old_dir); 9920 9921 if (old_dentry->d_parent != new_dentry->d_parent) 9922 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9923 BTRFS_I(old_inode), 1); 9924 9925 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9926 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9927 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9928 old_dentry->d_name.name, 9929 old_dentry->d_name.len); 9930 } else { 9931 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9932 BTRFS_I(d_inode(old_dentry)), 9933 old_dentry->d_name.name, 9934 old_dentry->d_name.len); 9935 if (!ret) 9936 ret = btrfs_update_inode(trans, root, old_inode); 9937 } 9938 if (ret) { 9939 btrfs_abort_transaction(trans, ret); 9940 goto out_fail; 9941 } 9942 9943 if (new_inode) { 9944 inode_inc_iversion(new_inode); 9945 new_inode->i_ctime = current_time(new_inode); 9946 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9947 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9948 root_objectid = BTRFS_I(new_inode)->location.objectid; 9949 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9950 root_objectid, 9951 new_dentry->d_name.name, 9952 new_dentry->d_name.len); 9953 BUG_ON(new_inode->i_nlink == 0); 9954 } else { 9955 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9956 BTRFS_I(d_inode(new_dentry)), 9957 new_dentry->d_name.name, 9958 new_dentry->d_name.len); 9959 } 9960 if (!ret && new_inode->i_nlink == 0) 9961 ret = btrfs_orphan_add(trans, 9962 BTRFS_I(d_inode(new_dentry))); 9963 if (ret) { 9964 btrfs_abort_transaction(trans, ret); 9965 goto out_fail; 9966 } 9967 } 9968 9969 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9970 new_dentry->d_name.name, 9971 new_dentry->d_name.len, 0, index); 9972 if (ret) { 9973 btrfs_abort_transaction(trans, ret); 9974 goto out_fail; 9975 } 9976 9977 if (old_inode->i_nlink == 1) 9978 BTRFS_I(old_inode)->dir_index = index; 9979 9980 if (log_pinned) { 9981 struct dentry *parent = new_dentry->d_parent; 9982 9983 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9984 parent); 9985 btrfs_end_log_trans(root); 9986 log_pinned = false; 9987 } 9988 9989 if (flags & RENAME_WHITEOUT) { 9990 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9991 old_dentry); 9992 9993 if (ret) { 9994 btrfs_abort_transaction(trans, ret); 9995 goto out_fail; 9996 } 9997 } 9998 out_fail: 9999 /* 10000 * If we have pinned the log and an error happened, we unpin tasks 10001 * trying to sync the log and force them to fallback to a transaction 10002 * commit if the log currently contains any of the inodes involved in 10003 * this rename operation (to ensure we do not persist a log with an 10004 * inconsistent state for any of these inodes or leading to any 10005 * inconsistencies when replayed). If the transaction was aborted, the 10006 * abortion reason is propagated to userspace when attempting to commit 10007 * the transaction. If the log does not contain any of these inodes, we 10008 * allow the tasks to sync it. 10009 */ 10010 if (ret && log_pinned) { 10011 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10012 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10013 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10014 (new_inode && 10015 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10016 btrfs_set_log_full_commit(fs_info, trans); 10017 10018 btrfs_end_log_trans(root); 10019 log_pinned = false; 10020 } 10021 btrfs_end_transaction(trans); 10022 out_notrans: 10023 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10024 up_read(&fs_info->subvol_sem); 10025 10026 return ret; 10027 } 10028 10029 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10030 struct inode *new_dir, struct dentry *new_dentry, 10031 unsigned int flags) 10032 { 10033 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10034 return -EINVAL; 10035 10036 if (flags & RENAME_EXCHANGE) 10037 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10038 new_dentry); 10039 10040 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10041 } 10042 10043 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10044 { 10045 struct btrfs_delalloc_work *delalloc_work; 10046 struct inode *inode; 10047 10048 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10049 work); 10050 inode = delalloc_work->inode; 10051 filemap_flush(inode->i_mapping); 10052 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10053 &BTRFS_I(inode)->runtime_flags)) 10054 filemap_flush(inode->i_mapping); 10055 10056 if (delalloc_work->delay_iput) 10057 btrfs_add_delayed_iput(inode); 10058 else 10059 iput(inode); 10060 complete(&delalloc_work->completion); 10061 } 10062 10063 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10064 int delay_iput) 10065 { 10066 struct btrfs_delalloc_work *work; 10067 10068 work = kmalloc(sizeof(*work), GFP_NOFS); 10069 if (!work) 10070 return NULL; 10071 10072 init_completion(&work->completion); 10073 INIT_LIST_HEAD(&work->list); 10074 work->inode = inode; 10075 work->delay_iput = delay_iput; 10076 WARN_ON_ONCE(!inode); 10077 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10078 btrfs_run_delalloc_work, NULL, NULL); 10079 10080 return work; 10081 } 10082 10083 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10084 { 10085 wait_for_completion(&work->completion); 10086 kfree(work); 10087 } 10088 10089 /* 10090 * some fairly slow code that needs optimization. This walks the list 10091 * of all the inodes with pending delalloc and forces them to disk. 10092 */ 10093 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10094 int nr) 10095 { 10096 struct btrfs_inode *binode; 10097 struct inode *inode; 10098 struct btrfs_delalloc_work *work, *next; 10099 struct list_head works; 10100 struct list_head splice; 10101 int ret = 0; 10102 10103 INIT_LIST_HEAD(&works); 10104 INIT_LIST_HEAD(&splice); 10105 10106 mutex_lock(&root->delalloc_mutex); 10107 spin_lock(&root->delalloc_lock); 10108 list_splice_init(&root->delalloc_inodes, &splice); 10109 while (!list_empty(&splice)) { 10110 binode = list_entry(splice.next, struct btrfs_inode, 10111 delalloc_inodes); 10112 10113 list_move_tail(&binode->delalloc_inodes, 10114 &root->delalloc_inodes); 10115 inode = igrab(&binode->vfs_inode); 10116 if (!inode) { 10117 cond_resched_lock(&root->delalloc_lock); 10118 continue; 10119 } 10120 spin_unlock(&root->delalloc_lock); 10121 10122 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10123 if (!work) { 10124 if (delay_iput) 10125 btrfs_add_delayed_iput(inode); 10126 else 10127 iput(inode); 10128 ret = -ENOMEM; 10129 goto out; 10130 } 10131 list_add_tail(&work->list, &works); 10132 btrfs_queue_work(root->fs_info->flush_workers, 10133 &work->work); 10134 ret++; 10135 if (nr != -1 && ret >= nr) 10136 goto out; 10137 cond_resched(); 10138 spin_lock(&root->delalloc_lock); 10139 } 10140 spin_unlock(&root->delalloc_lock); 10141 10142 out: 10143 list_for_each_entry_safe(work, next, &works, list) { 10144 list_del_init(&work->list); 10145 btrfs_wait_and_free_delalloc_work(work); 10146 } 10147 10148 if (!list_empty_careful(&splice)) { 10149 spin_lock(&root->delalloc_lock); 10150 list_splice_tail(&splice, &root->delalloc_inodes); 10151 spin_unlock(&root->delalloc_lock); 10152 } 10153 mutex_unlock(&root->delalloc_mutex); 10154 return ret; 10155 } 10156 10157 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10158 { 10159 struct btrfs_fs_info *fs_info = root->fs_info; 10160 int ret; 10161 10162 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10163 return -EROFS; 10164 10165 ret = __start_delalloc_inodes(root, delay_iput, -1); 10166 if (ret > 0) 10167 ret = 0; 10168 return ret; 10169 } 10170 10171 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10172 int nr) 10173 { 10174 struct btrfs_root *root; 10175 struct list_head splice; 10176 int ret; 10177 10178 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10179 return -EROFS; 10180 10181 INIT_LIST_HEAD(&splice); 10182 10183 mutex_lock(&fs_info->delalloc_root_mutex); 10184 spin_lock(&fs_info->delalloc_root_lock); 10185 list_splice_init(&fs_info->delalloc_roots, &splice); 10186 while (!list_empty(&splice) && nr) { 10187 root = list_first_entry(&splice, struct btrfs_root, 10188 delalloc_root); 10189 root = btrfs_grab_fs_root(root); 10190 BUG_ON(!root); 10191 list_move_tail(&root->delalloc_root, 10192 &fs_info->delalloc_roots); 10193 spin_unlock(&fs_info->delalloc_root_lock); 10194 10195 ret = __start_delalloc_inodes(root, delay_iput, nr); 10196 btrfs_put_fs_root(root); 10197 if (ret < 0) 10198 goto out; 10199 10200 if (nr != -1) { 10201 nr -= ret; 10202 WARN_ON(nr < 0); 10203 } 10204 spin_lock(&fs_info->delalloc_root_lock); 10205 } 10206 spin_unlock(&fs_info->delalloc_root_lock); 10207 10208 ret = 0; 10209 out: 10210 if (!list_empty_careful(&splice)) { 10211 spin_lock(&fs_info->delalloc_root_lock); 10212 list_splice_tail(&splice, &fs_info->delalloc_roots); 10213 spin_unlock(&fs_info->delalloc_root_lock); 10214 } 10215 mutex_unlock(&fs_info->delalloc_root_mutex); 10216 return ret; 10217 } 10218 10219 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10220 const char *symname) 10221 { 10222 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10223 struct btrfs_trans_handle *trans; 10224 struct btrfs_root *root = BTRFS_I(dir)->root; 10225 struct btrfs_path *path; 10226 struct btrfs_key key; 10227 struct inode *inode = NULL; 10228 int err; 10229 int drop_inode = 0; 10230 u64 objectid; 10231 u64 index = 0; 10232 int name_len; 10233 int datasize; 10234 unsigned long ptr; 10235 struct btrfs_file_extent_item *ei; 10236 struct extent_buffer *leaf; 10237 10238 name_len = strlen(symname); 10239 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10240 return -ENAMETOOLONG; 10241 10242 /* 10243 * 2 items for inode item and ref 10244 * 2 items for dir items 10245 * 1 item for updating parent inode item 10246 * 1 item for the inline extent item 10247 * 1 item for xattr if selinux is on 10248 */ 10249 trans = btrfs_start_transaction(root, 7); 10250 if (IS_ERR(trans)) 10251 return PTR_ERR(trans); 10252 10253 err = btrfs_find_free_ino(root, &objectid); 10254 if (err) 10255 goto out_unlock; 10256 10257 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10258 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10259 objectid, S_IFLNK|S_IRWXUGO, &index); 10260 if (IS_ERR(inode)) { 10261 err = PTR_ERR(inode); 10262 goto out_unlock; 10263 } 10264 10265 /* 10266 * If the active LSM wants to access the inode during 10267 * d_instantiate it needs these. Smack checks to see 10268 * if the filesystem supports xattrs by looking at the 10269 * ops vector. 10270 */ 10271 inode->i_fop = &btrfs_file_operations; 10272 inode->i_op = &btrfs_file_inode_operations; 10273 inode->i_mapping->a_ops = &btrfs_aops; 10274 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10275 10276 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10277 if (err) 10278 goto out_unlock_inode; 10279 10280 path = btrfs_alloc_path(); 10281 if (!path) { 10282 err = -ENOMEM; 10283 goto out_unlock_inode; 10284 } 10285 key.objectid = btrfs_ino(BTRFS_I(inode)); 10286 key.offset = 0; 10287 key.type = BTRFS_EXTENT_DATA_KEY; 10288 datasize = btrfs_file_extent_calc_inline_size(name_len); 10289 err = btrfs_insert_empty_item(trans, root, path, &key, 10290 datasize); 10291 if (err) { 10292 btrfs_free_path(path); 10293 goto out_unlock_inode; 10294 } 10295 leaf = path->nodes[0]; 10296 ei = btrfs_item_ptr(leaf, path->slots[0], 10297 struct btrfs_file_extent_item); 10298 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10299 btrfs_set_file_extent_type(leaf, ei, 10300 BTRFS_FILE_EXTENT_INLINE); 10301 btrfs_set_file_extent_encryption(leaf, ei, 0); 10302 btrfs_set_file_extent_compression(leaf, ei, 0); 10303 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10304 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10305 10306 ptr = btrfs_file_extent_inline_start(ei); 10307 write_extent_buffer(leaf, symname, ptr, name_len); 10308 btrfs_mark_buffer_dirty(leaf); 10309 btrfs_free_path(path); 10310 10311 inode->i_op = &btrfs_symlink_inode_operations; 10312 inode_nohighmem(inode); 10313 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10314 inode_set_bytes(inode, name_len); 10315 btrfs_i_size_write(BTRFS_I(inode), name_len); 10316 err = btrfs_update_inode(trans, root, inode); 10317 /* 10318 * Last step, add directory indexes for our symlink inode. This is the 10319 * last step to avoid extra cleanup of these indexes if an error happens 10320 * elsewhere above. 10321 */ 10322 if (!err) 10323 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10324 BTRFS_I(inode), 0, index); 10325 if (err) { 10326 drop_inode = 1; 10327 goto out_unlock_inode; 10328 } 10329 10330 unlock_new_inode(inode); 10331 d_instantiate(dentry, inode); 10332 10333 out_unlock: 10334 btrfs_end_transaction(trans); 10335 if (drop_inode) { 10336 inode_dec_link_count(inode); 10337 iput(inode); 10338 } 10339 btrfs_btree_balance_dirty(fs_info); 10340 return err; 10341 10342 out_unlock_inode: 10343 drop_inode = 1; 10344 unlock_new_inode(inode); 10345 goto out_unlock; 10346 } 10347 10348 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10349 u64 start, u64 num_bytes, u64 min_size, 10350 loff_t actual_len, u64 *alloc_hint, 10351 struct btrfs_trans_handle *trans) 10352 { 10353 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10354 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10355 struct extent_map *em; 10356 struct btrfs_root *root = BTRFS_I(inode)->root; 10357 struct btrfs_key ins; 10358 u64 cur_offset = start; 10359 u64 i_size; 10360 u64 cur_bytes; 10361 u64 last_alloc = (u64)-1; 10362 int ret = 0; 10363 bool own_trans = true; 10364 u64 end = start + num_bytes - 1; 10365 10366 if (trans) 10367 own_trans = false; 10368 while (num_bytes > 0) { 10369 if (own_trans) { 10370 trans = btrfs_start_transaction(root, 3); 10371 if (IS_ERR(trans)) { 10372 ret = PTR_ERR(trans); 10373 break; 10374 } 10375 } 10376 10377 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10378 cur_bytes = max(cur_bytes, min_size); 10379 /* 10380 * If we are severely fragmented we could end up with really 10381 * small allocations, so if the allocator is returning small 10382 * chunks lets make its job easier by only searching for those 10383 * sized chunks. 10384 */ 10385 cur_bytes = min(cur_bytes, last_alloc); 10386 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10387 min_size, 0, *alloc_hint, &ins, 1, 0); 10388 if (ret) { 10389 if (own_trans) 10390 btrfs_end_transaction(trans); 10391 break; 10392 } 10393 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10394 10395 last_alloc = ins.offset; 10396 ret = insert_reserved_file_extent(trans, inode, 10397 cur_offset, ins.objectid, 10398 ins.offset, ins.offset, 10399 ins.offset, 0, 0, 0, 10400 BTRFS_FILE_EXTENT_PREALLOC); 10401 if (ret) { 10402 btrfs_free_reserved_extent(fs_info, ins.objectid, 10403 ins.offset, 0); 10404 btrfs_abort_transaction(trans, ret); 10405 if (own_trans) 10406 btrfs_end_transaction(trans); 10407 break; 10408 } 10409 10410 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10411 cur_offset + ins.offset -1, 0); 10412 10413 em = alloc_extent_map(); 10414 if (!em) { 10415 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10416 &BTRFS_I(inode)->runtime_flags); 10417 goto next; 10418 } 10419 10420 em->start = cur_offset; 10421 em->orig_start = cur_offset; 10422 em->len = ins.offset; 10423 em->block_start = ins.objectid; 10424 em->block_len = ins.offset; 10425 em->orig_block_len = ins.offset; 10426 em->ram_bytes = ins.offset; 10427 em->bdev = fs_info->fs_devices->latest_bdev; 10428 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10429 em->generation = trans->transid; 10430 10431 while (1) { 10432 write_lock(&em_tree->lock); 10433 ret = add_extent_mapping(em_tree, em, 1); 10434 write_unlock(&em_tree->lock); 10435 if (ret != -EEXIST) 10436 break; 10437 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10438 cur_offset + ins.offset - 1, 10439 0); 10440 } 10441 free_extent_map(em); 10442 next: 10443 num_bytes -= ins.offset; 10444 cur_offset += ins.offset; 10445 *alloc_hint = ins.objectid + ins.offset; 10446 10447 inode_inc_iversion(inode); 10448 inode->i_ctime = current_time(inode); 10449 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10450 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10451 (actual_len > inode->i_size) && 10452 (cur_offset > inode->i_size)) { 10453 if (cur_offset > actual_len) 10454 i_size = actual_len; 10455 else 10456 i_size = cur_offset; 10457 i_size_write(inode, i_size); 10458 btrfs_ordered_update_i_size(inode, i_size, NULL); 10459 } 10460 10461 ret = btrfs_update_inode(trans, root, inode); 10462 10463 if (ret) { 10464 btrfs_abort_transaction(trans, ret); 10465 if (own_trans) 10466 btrfs_end_transaction(trans); 10467 break; 10468 } 10469 10470 if (own_trans) 10471 btrfs_end_transaction(trans); 10472 } 10473 if (cur_offset < end) 10474 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10475 end - cur_offset + 1); 10476 return ret; 10477 } 10478 10479 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10480 u64 start, u64 num_bytes, u64 min_size, 10481 loff_t actual_len, u64 *alloc_hint) 10482 { 10483 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10484 min_size, actual_len, alloc_hint, 10485 NULL); 10486 } 10487 10488 int btrfs_prealloc_file_range_trans(struct inode *inode, 10489 struct btrfs_trans_handle *trans, int mode, 10490 u64 start, u64 num_bytes, u64 min_size, 10491 loff_t actual_len, u64 *alloc_hint) 10492 { 10493 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10494 min_size, actual_len, alloc_hint, trans); 10495 } 10496 10497 static int btrfs_set_page_dirty(struct page *page) 10498 { 10499 return __set_page_dirty_nobuffers(page); 10500 } 10501 10502 static int btrfs_permission(struct inode *inode, int mask) 10503 { 10504 struct btrfs_root *root = BTRFS_I(inode)->root; 10505 umode_t mode = inode->i_mode; 10506 10507 if (mask & MAY_WRITE && 10508 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10509 if (btrfs_root_readonly(root)) 10510 return -EROFS; 10511 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10512 return -EACCES; 10513 } 10514 return generic_permission(inode, mask); 10515 } 10516 10517 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10518 { 10519 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10520 struct btrfs_trans_handle *trans; 10521 struct btrfs_root *root = BTRFS_I(dir)->root; 10522 struct inode *inode = NULL; 10523 u64 objectid; 10524 u64 index; 10525 int ret = 0; 10526 10527 /* 10528 * 5 units required for adding orphan entry 10529 */ 10530 trans = btrfs_start_transaction(root, 5); 10531 if (IS_ERR(trans)) 10532 return PTR_ERR(trans); 10533 10534 ret = btrfs_find_free_ino(root, &objectid); 10535 if (ret) 10536 goto out; 10537 10538 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10539 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10540 if (IS_ERR(inode)) { 10541 ret = PTR_ERR(inode); 10542 inode = NULL; 10543 goto out; 10544 } 10545 10546 inode->i_fop = &btrfs_file_operations; 10547 inode->i_op = &btrfs_file_inode_operations; 10548 10549 inode->i_mapping->a_ops = &btrfs_aops; 10550 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10551 10552 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10553 if (ret) 10554 goto out_inode; 10555 10556 ret = btrfs_update_inode(trans, root, inode); 10557 if (ret) 10558 goto out_inode; 10559 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10560 if (ret) 10561 goto out_inode; 10562 10563 /* 10564 * We set number of links to 0 in btrfs_new_inode(), and here we set 10565 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10566 * through: 10567 * 10568 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10569 */ 10570 set_nlink(inode, 1); 10571 unlock_new_inode(inode); 10572 d_tmpfile(dentry, inode); 10573 mark_inode_dirty(inode); 10574 10575 out: 10576 btrfs_end_transaction(trans); 10577 if (ret) 10578 iput(inode); 10579 btrfs_btree_balance_dirty(fs_info); 10580 return ret; 10581 10582 out_inode: 10583 unlock_new_inode(inode); 10584 goto out; 10585 10586 } 10587 10588 __attribute__((const)) 10589 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10590 { 10591 return -EAGAIN; 10592 } 10593 10594 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10595 { 10596 struct inode *inode = private_data; 10597 return btrfs_sb(inode->i_sb); 10598 } 10599 10600 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10601 u64 start, u64 end) 10602 { 10603 struct inode *inode = private_data; 10604 u64 isize; 10605 10606 isize = i_size_read(inode); 10607 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10608 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10609 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10610 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10611 } 10612 } 10613 10614 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10615 { 10616 struct inode *inode = private_data; 10617 unsigned long index = start >> PAGE_SHIFT; 10618 unsigned long end_index = end >> PAGE_SHIFT; 10619 struct page *page; 10620 10621 while (index <= end_index) { 10622 page = find_get_page(inode->i_mapping, index); 10623 ASSERT(page); /* Pages should be in the extent_io_tree */ 10624 set_page_writeback(page); 10625 put_page(page); 10626 index++; 10627 } 10628 } 10629 10630 static const struct inode_operations btrfs_dir_inode_operations = { 10631 .getattr = btrfs_getattr, 10632 .lookup = btrfs_lookup, 10633 .create = btrfs_create, 10634 .unlink = btrfs_unlink, 10635 .link = btrfs_link, 10636 .mkdir = btrfs_mkdir, 10637 .rmdir = btrfs_rmdir, 10638 .rename = btrfs_rename2, 10639 .symlink = btrfs_symlink, 10640 .setattr = btrfs_setattr, 10641 .mknod = btrfs_mknod, 10642 .listxattr = btrfs_listxattr, 10643 .permission = btrfs_permission, 10644 .get_acl = btrfs_get_acl, 10645 .set_acl = btrfs_set_acl, 10646 .update_time = btrfs_update_time, 10647 .tmpfile = btrfs_tmpfile, 10648 }; 10649 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10650 .lookup = btrfs_lookup, 10651 .permission = btrfs_permission, 10652 .update_time = btrfs_update_time, 10653 }; 10654 10655 static const struct file_operations btrfs_dir_file_operations = { 10656 .llseek = generic_file_llseek, 10657 .read = generic_read_dir, 10658 .iterate_shared = btrfs_real_readdir, 10659 .open = btrfs_opendir, 10660 .unlocked_ioctl = btrfs_ioctl, 10661 #ifdef CONFIG_COMPAT 10662 .compat_ioctl = btrfs_compat_ioctl, 10663 #endif 10664 .release = btrfs_release_file, 10665 .fsync = btrfs_sync_file, 10666 }; 10667 10668 static const struct extent_io_ops btrfs_extent_io_ops = { 10669 /* mandatory callbacks */ 10670 .submit_bio_hook = btrfs_submit_bio_hook, 10671 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10672 .merge_bio_hook = btrfs_merge_bio_hook, 10673 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10674 .tree_fs_info = iotree_fs_info, 10675 .set_range_writeback = btrfs_set_range_writeback, 10676 10677 /* optional callbacks */ 10678 .fill_delalloc = run_delalloc_range, 10679 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10680 .writepage_start_hook = btrfs_writepage_start_hook, 10681 .set_bit_hook = btrfs_set_bit_hook, 10682 .clear_bit_hook = btrfs_clear_bit_hook, 10683 .merge_extent_hook = btrfs_merge_extent_hook, 10684 .split_extent_hook = btrfs_split_extent_hook, 10685 .check_extent_io_range = btrfs_check_extent_io_range, 10686 }; 10687 10688 /* 10689 * btrfs doesn't support the bmap operation because swapfiles 10690 * use bmap to make a mapping of extents in the file. They assume 10691 * these extents won't change over the life of the file and they 10692 * use the bmap result to do IO directly to the drive. 10693 * 10694 * the btrfs bmap call would return logical addresses that aren't 10695 * suitable for IO and they also will change frequently as COW 10696 * operations happen. So, swapfile + btrfs == corruption. 10697 * 10698 * For now we're avoiding this by dropping bmap. 10699 */ 10700 static const struct address_space_operations btrfs_aops = { 10701 .readpage = btrfs_readpage, 10702 .writepage = btrfs_writepage, 10703 .writepages = btrfs_writepages, 10704 .readpages = btrfs_readpages, 10705 .direct_IO = btrfs_direct_IO, 10706 .invalidatepage = btrfs_invalidatepage, 10707 .releasepage = btrfs_releasepage, 10708 .set_page_dirty = btrfs_set_page_dirty, 10709 .error_remove_page = generic_error_remove_page, 10710 }; 10711 10712 static const struct address_space_operations btrfs_symlink_aops = { 10713 .readpage = btrfs_readpage, 10714 .writepage = btrfs_writepage, 10715 .invalidatepage = btrfs_invalidatepage, 10716 .releasepage = btrfs_releasepage, 10717 }; 10718 10719 static const struct inode_operations btrfs_file_inode_operations = { 10720 .getattr = btrfs_getattr, 10721 .setattr = btrfs_setattr, 10722 .listxattr = btrfs_listxattr, 10723 .permission = btrfs_permission, 10724 .fiemap = btrfs_fiemap, 10725 .get_acl = btrfs_get_acl, 10726 .set_acl = btrfs_set_acl, 10727 .update_time = btrfs_update_time, 10728 }; 10729 static const struct inode_operations btrfs_special_inode_operations = { 10730 .getattr = btrfs_getattr, 10731 .setattr = btrfs_setattr, 10732 .permission = btrfs_permission, 10733 .listxattr = btrfs_listxattr, 10734 .get_acl = btrfs_get_acl, 10735 .set_acl = btrfs_set_acl, 10736 .update_time = btrfs_update_time, 10737 }; 10738 static const struct inode_operations btrfs_symlink_inode_operations = { 10739 .get_link = page_get_link, 10740 .getattr = btrfs_getattr, 10741 .setattr = btrfs_setattr, 10742 .permission = btrfs_permission, 10743 .listxattr = btrfs_listxattr, 10744 .update_time = btrfs_update_time, 10745 }; 10746 10747 const struct dentry_operations btrfs_dentry_operations = { 10748 .d_delete = btrfs_dentry_delete, 10749 .d_release = btrfs_dentry_release, 10750 }; 10751