xref: /openbmc/linux/fs/btrfs/inode.c (revision 003d2996)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_dio_data {
81 	ssize_t submitted;
82 	struct extent_changeset *data_reserved;
83 	struct btrfs_ordered_extent *ordered;
84 	bool data_space_reserved;
85 	bool nocow_done;
86 };
87 
88 struct btrfs_dio_private {
89 	/* Range of I/O */
90 	u64 file_offset;
91 	u32 bytes;
92 
93 	/* This must be last */
94 	struct btrfs_bio bbio;
95 };
96 
97 static struct bio_set btrfs_dio_bioset;
98 
99 struct btrfs_rename_ctx {
100 	/* Output field. Stores the index number of the old directory entry. */
101 	u64 index;
102 };
103 
104 /*
105  * Used by data_reloc_print_warning_inode() to pass needed info for filename
106  * resolution and output of error message.
107  */
108 struct data_reloc_warn {
109 	struct btrfs_path path;
110 	struct btrfs_fs_info *fs_info;
111 	u64 extent_item_size;
112 	u64 logical;
113 	int mirror_num;
114 };
115 
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122 
123 static struct kmem_cache *btrfs_inode_cachep;
124 
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 				     struct page *locked_page, u64 start,
130 				     u64 end, struct writeback_control *wbc,
131 				     bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 				       u64 len, u64 orig_start, u64 block_start,
134 				       u64 block_len, u64 orig_block_len,
135 				       u64 ram_bytes, int compress_type,
136 				       int type);
137 
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 					  u64 root, void *warn_ctx)
140 {
141 	struct data_reloc_warn *warn = warn_ctx;
142 	struct btrfs_fs_info *fs_info = warn->fs_info;
143 	struct extent_buffer *eb;
144 	struct btrfs_inode_item *inode_item;
145 	struct inode_fs_paths *ipath = NULL;
146 	struct btrfs_root *local_root;
147 	struct btrfs_key key;
148 	unsigned int nofs_flag;
149 	u32 nlink;
150 	int ret;
151 
152 	local_root = btrfs_get_fs_root(fs_info, root, true);
153 	if (IS_ERR(local_root)) {
154 		ret = PTR_ERR(local_root);
155 		goto err;
156 	}
157 
158 	/* This makes the path point to (inum INODE_ITEM ioff). */
159 	key.objectid = inum;
160 	key.type = BTRFS_INODE_ITEM_KEY;
161 	key.offset = 0;
162 
163 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 	if (ret) {
165 		btrfs_put_root(local_root);
166 		btrfs_release_path(&warn->path);
167 		goto err;
168 	}
169 
170 	eb = warn->path.nodes[0];
171 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 	nlink = btrfs_inode_nlink(eb, inode_item);
173 	btrfs_release_path(&warn->path);
174 
175 	nofs_flag = memalloc_nofs_save();
176 	ipath = init_ipath(4096, local_root, &warn->path);
177 	memalloc_nofs_restore(nofs_flag);
178 	if (IS_ERR(ipath)) {
179 		btrfs_put_root(local_root);
180 		ret = PTR_ERR(ipath);
181 		ipath = NULL;
182 		/*
183 		 * -ENOMEM, not a critical error, just output an generic error
184 		 * without filename.
185 		 */
186 		btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 			   warn->logical, warn->mirror_num, root, inum, offset);
189 		return ret;
190 	}
191 	ret = paths_from_inode(inum, ipath);
192 	if (ret < 0)
193 		goto err;
194 
195 	/*
196 	 * We deliberately ignore the bit ipath might have been too small to
197 	 * hold all of the paths here
198 	 */
199 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 		btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 			   warn->logical, warn->mirror_num, root, inum, offset,
203 			   fs_info->sectorsize, nlink,
204 			   (char *)(unsigned long)ipath->fspath->val[i]);
205 	}
206 
207 	btrfs_put_root(local_root);
208 	free_ipath(ipath);
209 	return 0;
210 
211 err:
212 	btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
215 
216 	free_ipath(ipath);
217 	return ret;
218 }
219 
220 /*
221  * Do extra user-friendly error output (e.g. lookup all the affected files).
222  *
223  * Return true if we succeeded doing the backref lookup.
224  * Return false if such lookup failed, and has to fallback to the old error message.
225  */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 				   const u8 *csum, const u8 *csum_expected,
228 				   int mirror_num)
229 {
230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 	struct btrfs_path path = { 0 };
232 	struct btrfs_key found_key = { 0 };
233 	struct extent_buffer *eb;
234 	struct btrfs_extent_item *ei;
235 	const u32 csum_size = fs_info->csum_size;
236 	u64 logical;
237 	u64 flags;
238 	u32 item_size;
239 	int ret;
240 
241 	mutex_lock(&fs_info->reloc_mutex);
242 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 	mutex_unlock(&fs_info->reloc_mutex);
244 
245 	if (logical == U64_MAX) {
246 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 		btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 			CSUM_FMT_VALUE(csum_size, csum),
251 			CSUM_FMT_VALUE(csum_size, csum_expected),
252 			mirror_num);
253 		return;
254 	}
255 
256 	logical += file_off;
257 	btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid,
260 			btrfs_ino(inode), file_off, logical,
261 			CSUM_FMT_VALUE(csum_size, csum),
262 			CSUM_FMT_VALUE(csum_size, csum_expected),
263 			mirror_num);
264 
265 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 	if (ret < 0) {
267 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 			     logical, ret);
269 		return;
270 	}
271 	eb = path.nodes[0];
272 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 	item_size = btrfs_item_size(eb, path.slots[0]);
274 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 		unsigned long ptr = 0;
276 		u64 ref_root;
277 		u8 ref_level;
278 
279 		while (true) {
280 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 						      item_size, &ref_root,
282 						      &ref_level);
283 			if (ret < 0) {
284 				btrfs_warn_rl(fs_info,
285 				"failed to resolve tree backref for logical %llu: %d",
286 					      logical, ret);
287 				break;
288 			}
289 			if (ret > 0)
290 				break;
291 
292 			btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 				logical, mirror_num,
295 				(ref_level ? "node" : "leaf"),
296 				ref_level, ref_root);
297 		}
298 		btrfs_release_path(&path);
299 	} else {
300 		struct btrfs_backref_walk_ctx ctx = { 0 };
301 		struct data_reloc_warn reloc_warn = { 0 };
302 
303 		btrfs_release_path(&path);
304 
305 		ctx.bytenr = found_key.objectid;
306 		ctx.extent_item_pos = logical - found_key.objectid;
307 		ctx.fs_info = fs_info;
308 
309 		reloc_warn.logical = logical;
310 		reloc_warn.extent_item_size = found_key.offset;
311 		reloc_warn.mirror_num = mirror_num;
312 		reloc_warn.fs_info = fs_info;
313 
314 		iterate_extent_inodes(&ctx, true,
315 				      data_reloc_print_warning_inode, &reloc_warn);
316 	}
317 }
318 
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 	struct btrfs_root *root = inode->root;
323 	const u32 csum_size = root->fs_info->csum_size;
324 
325 	/* For data reloc tree, it's better to do a backref lookup instead. */
326 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 		return print_data_reloc_error(inode, logical_start, csum,
328 					      csum_expected, mirror_num);
329 
330 	/* Output without objectid, which is more meaningful */
331 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 		btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 			root->root_key.objectid, btrfs_ino(inode),
335 			logical_start,
336 			CSUM_FMT_VALUE(csum_size, csum),
337 			CSUM_FMT_VALUE(csum_size, csum_expected),
338 			mirror_num);
339 	} else {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	}
348 }
349 
350 /*
351  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352  *
353  * ilock_flags can have the following bit set:
354  *
355  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357  *		     return -EAGAIN
358  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359  */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 		if (ilock_flags & BTRFS_ILOCK_TRY) {
364 			if (!inode_trylock_shared(&inode->vfs_inode))
365 				return -EAGAIN;
366 			else
367 				return 0;
368 		}
369 		inode_lock_shared(&inode->vfs_inode);
370 	} else {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock(&inode->vfs_inode);
378 	}
379 	if (ilock_flags & BTRFS_ILOCK_MMAP)
380 		down_write(&inode->i_mmap_lock);
381 	return 0;
382 }
383 
384 /*
385  * btrfs_inode_unlock - unock inode i_rwsem
386  *
387  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388  * to decide whether the lock acquired is shared or exclusive.
389  */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 	if (ilock_flags & BTRFS_ILOCK_MMAP)
393 		up_write(&inode->i_mmap_lock);
394 	if (ilock_flags & BTRFS_ILOCK_SHARED)
395 		inode_unlock_shared(&inode->vfs_inode);
396 	else
397 		inode_unlock(&inode->vfs_inode);
398 }
399 
400 /*
401  * Cleanup all submitted ordered extents in specified range to handle errors
402  * from the btrfs_run_delalloc_range() callback.
403  *
404  * NOTE: caller must ensure that when an error happens, it can not call
405  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407  * to be released, which we want to happen only when finishing the ordered
408  * extent (btrfs_finish_ordered_io()).
409  */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 						 struct page *locked_page,
412 						 u64 offset, u64 bytes)
413 {
414 	unsigned long index = offset >> PAGE_SHIFT;
415 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 	u64 page_start = 0, page_end = 0;
417 	struct page *page;
418 
419 	if (locked_page) {
420 		page_start = page_offset(locked_page);
421 		page_end = page_start + PAGE_SIZE - 1;
422 	}
423 
424 	while (index <= end_index) {
425 		/*
426 		 * For locked page, we will call btrfs_mark_ordered_io_finished
427 		 * through btrfs_mark_ordered_io_finished() on it
428 		 * in run_delalloc_range() for the error handling, which will
429 		 * clear page Ordered and run the ordered extent accounting.
430 		 *
431 		 * Here we can't just clear the Ordered bit, or
432 		 * btrfs_mark_ordered_io_finished() would skip the accounting
433 		 * for the page range, and the ordered extent will never finish.
434 		 */
435 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 			index++;
437 			continue;
438 		}
439 		page = find_get_page(inode->vfs_inode.i_mapping, index);
440 		index++;
441 		if (!page)
442 			continue;
443 
444 		/*
445 		 * Here we just clear all Ordered bits for every page in the
446 		 * range, then btrfs_mark_ordered_io_finished() will handle
447 		 * the ordered extent accounting for the range.
448 		 */
449 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 					       offset, bytes);
451 		put_page(page);
452 	}
453 
454 	if (locked_page) {
455 		/* The locked page covers the full range, nothing needs to be done */
456 		if (bytes + offset <= page_start + PAGE_SIZE)
457 			return;
458 		/*
459 		 * In case this page belongs to the delalloc range being
460 		 * instantiated then skip it, since the first page of a range is
461 		 * going to be properly cleaned up by the caller of
462 		 * run_delalloc_range
463 		 */
464 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 			offset = page_offset(locked_page) + PAGE_SIZE;
467 		}
468 	}
469 
470 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472 
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474 
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 				     struct btrfs_new_inode_args *args)
477 {
478 	int err;
479 
480 	if (args->default_acl) {
481 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 				      ACL_TYPE_DEFAULT);
483 		if (err)
484 			return err;
485 	}
486 	if (args->acl) {
487 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 		if (err)
489 			return err;
490 	}
491 	if (!args->default_acl && !args->acl)
492 		cache_no_acl(args->inode);
493 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 					 &args->dentry->d_name);
495 }
496 
497 /*
498  * this does all the hard work for inserting an inline extent into
499  * the btree.  The caller should have done a btrfs_drop_extents so that
500  * no overlapping inline items exist in the btree
501  */
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 				struct btrfs_path *path,
504 				struct btrfs_inode *inode, bool extent_inserted,
505 				size_t size, size_t compressed_size,
506 				int compress_type,
507 				struct page **compressed_pages,
508 				bool update_i_size)
509 {
510 	struct btrfs_root *root = inode->root;
511 	struct extent_buffer *leaf;
512 	struct page *page = NULL;
513 	char *kaddr;
514 	unsigned long ptr;
515 	struct btrfs_file_extent_item *ei;
516 	int ret;
517 	size_t cur_size = size;
518 	u64 i_size;
519 
520 	ASSERT((compressed_size > 0 && compressed_pages) ||
521 	       (compressed_size == 0 && !compressed_pages));
522 
523 	if (compressed_size && compressed_pages)
524 		cur_size = compressed_size;
525 
526 	if (!extent_inserted) {
527 		struct btrfs_key key;
528 		size_t datasize;
529 
530 		key.objectid = btrfs_ino(inode);
531 		key.offset = 0;
532 		key.type = BTRFS_EXTENT_DATA_KEY;
533 
534 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 		ret = btrfs_insert_empty_item(trans, root, path, &key,
536 					      datasize);
537 		if (ret)
538 			goto fail;
539 	}
540 	leaf = path->nodes[0];
541 	ei = btrfs_item_ptr(leaf, path->slots[0],
542 			    struct btrfs_file_extent_item);
543 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 	btrfs_set_file_extent_encryption(leaf, ei, 0);
546 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 	ptr = btrfs_file_extent_inline_start(ei);
549 
550 	if (compress_type != BTRFS_COMPRESS_NONE) {
551 		struct page *cpage;
552 		int i = 0;
553 		while (compressed_size > 0) {
554 			cpage = compressed_pages[i];
555 			cur_size = min_t(unsigned long, compressed_size,
556 				       PAGE_SIZE);
557 
558 			kaddr = kmap_local_page(cpage);
559 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 			kunmap_local(kaddr);
561 
562 			i++;
563 			ptr += cur_size;
564 			compressed_size -= cur_size;
565 		}
566 		btrfs_set_file_extent_compression(leaf, ei,
567 						  compress_type);
568 	} else {
569 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 		btrfs_set_file_extent_compression(leaf, ei, 0);
571 		kaddr = kmap_local_page(page);
572 		write_extent_buffer(leaf, kaddr, ptr, size);
573 		kunmap_local(kaddr);
574 		put_page(page);
575 	}
576 	btrfs_mark_buffer_dirty(trans, leaf);
577 	btrfs_release_path(path);
578 
579 	/*
580 	 * We align size to sectorsize for inline extents just for simplicity
581 	 * sake.
582 	 */
583 	ret = btrfs_inode_set_file_extent_range(inode, 0,
584 					ALIGN(size, root->fs_info->sectorsize));
585 	if (ret)
586 		goto fail;
587 
588 	/*
589 	 * We're an inline extent, so nobody can extend the file past i_size
590 	 * without locking a page we already have locked.
591 	 *
592 	 * We must do any i_size and inode updates before we unlock the pages.
593 	 * Otherwise we could end up racing with unlink.
594 	 */
595 	i_size = i_size_read(&inode->vfs_inode);
596 	if (update_i_size && size > i_size) {
597 		i_size_write(&inode->vfs_inode, size);
598 		i_size = size;
599 	}
600 	inode->disk_i_size = i_size;
601 
602 fail:
603 	return ret;
604 }
605 
606 
607 /*
608  * conditionally insert an inline extent into the file.  This
609  * does the checks required to make sure the data is small enough
610  * to fit as an inline extent.
611  */
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 					  size_t compressed_size,
614 					  int compress_type,
615 					  struct page **compressed_pages,
616 					  bool update_i_size)
617 {
618 	struct btrfs_drop_extents_args drop_args = { 0 };
619 	struct btrfs_root *root = inode->root;
620 	struct btrfs_fs_info *fs_info = root->fs_info;
621 	struct btrfs_trans_handle *trans;
622 	u64 data_len = (compressed_size ?: size);
623 	int ret;
624 	struct btrfs_path *path;
625 
626 	/*
627 	 * We can create an inline extent if it ends at or beyond the current
628 	 * i_size, is no larger than a sector (decompressed), and the (possibly
629 	 * compressed) data fits in a leaf and the configured maximum inline
630 	 * size.
631 	 */
632 	if (size < i_size_read(&inode->vfs_inode) ||
633 	    size > fs_info->sectorsize ||
634 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 	    data_len > fs_info->max_inline)
636 		return 1;
637 
638 	path = btrfs_alloc_path();
639 	if (!path)
640 		return -ENOMEM;
641 
642 	trans = btrfs_join_transaction(root);
643 	if (IS_ERR(trans)) {
644 		btrfs_free_path(path);
645 		return PTR_ERR(trans);
646 	}
647 	trans->block_rsv = &inode->block_rsv;
648 
649 	drop_args.path = path;
650 	drop_args.start = 0;
651 	drop_args.end = fs_info->sectorsize;
652 	drop_args.drop_cache = true;
653 	drop_args.replace_extent = true;
654 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 	if (ret) {
657 		btrfs_abort_transaction(trans, ret);
658 		goto out;
659 	}
660 
661 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 				   size, compressed_size, compress_type,
663 				   compressed_pages, update_i_size);
664 	if (ret && ret != -ENOSPC) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	} else if (ret == -ENOSPC) {
668 		ret = 1;
669 		goto out;
670 	}
671 
672 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 	ret = btrfs_update_inode(trans, root, inode);
674 	if (ret && ret != -ENOSPC) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto out;
677 	} else if (ret == -ENOSPC) {
678 		ret = 1;
679 		goto out;
680 	}
681 
682 	btrfs_set_inode_full_sync(inode);
683 out:
684 	/*
685 	 * Don't forget to free the reserved space, as for inlined extent
686 	 * it won't count as data extent, free them directly here.
687 	 * And at reserve time, it's always aligned to page size, so
688 	 * just free one page here.
689 	 */
690 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
691 	btrfs_free_path(path);
692 	btrfs_end_transaction(trans);
693 	return ret;
694 }
695 
696 struct async_extent {
697 	u64 start;
698 	u64 ram_size;
699 	u64 compressed_size;
700 	struct page **pages;
701 	unsigned long nr_pages;
702 	int compress_type;
703 	struct list_head list;
704 };
705 
706 struct async_chunk {
707 	struct btrfs_inode *inode;
708 	struct page *locked_page;
709 	u64 start;
710 	u64 end;
711 	blk_opf_t write_flags;
712 	struct list_head extents;
713 	struct cgroup_subsys_state *blkcg_css;
714 	struct btrfs_work work;
715 	struct async_cow *async_cow;
716 };
717 
718 struct async_cow {
719 	atomic_t num_chunks;
720 	struct async_chunk chunks[];
721 };
722 
723 static noinline int add_async_extent(struct async_chunk *cow,
724 				     u64 start, u64 ram_size,
725 				     u64 compressed_size,
726 				     struct page **pages,
727 				     unsigned long nr_pages,
728 				     int compress_type)
729 {
730 	struct async_extent *async_extent;
731 
732 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 	if (!async_extent)
734 		return -ENOMEM;
735 	async_extent->start = start;
736 	async_extent->ram_size = ram_size;
737 	async_extent->compressed_size = compressed_size;
738 	async_extent->pages = pages;
739 	async_extent->nr_pages = nr_pages;
740 	async_extent->compress_type = compress_type;
741 	list_add_tail(&async_extent->list, &cow->extents);
742 	return 0;
743 }
744 
745 /*
746  * Check if the inode needs to be submitted to compression, based on mount
747  * options, defragmentation, properties or heuristics.
748  */
749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
750 				      u64 end)
751 {
752 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
753 
754 	if (!btrfs_inode_can_compress(inode)) {
755 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
756 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
757 			btrfs_ino(inode));
758 		return 0;
759 	}
760 	/*
761 	 * Special check for subpage.
762 	 *
763 	 * We lock the full page then run each delalloc range in the page, thus
764 	 * for the following case, we will hit some subpage specific corner case:
765 	 *
766 	 * 0		32K		64K
767 	 * |	|///////|	|///////|
768 	 *		\- A		\- B
769 	 *
770 	 * In above case, both range A and range B will try to unlock the full
771 	 * page [0, 64K), causing the one finished later will have page
772 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
773 	 *
774 	 * So here we add an artificial limit that subpage compression can only
775 	 * if the range is fully page aligned.
776 	 *
777 	 * In theory we only need to ensure the first page is fully covered, but
778 	 * the tailing partial page will be locked until the full compression
779 	 * finishes, delaying the write of other range.
780 	 *
781 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
782 	 * first to prevent any submitted async extent to unlock the full page.
783 	 * By this, we can ensure for subpage case that only the last async_cow
784 	 * will unlock the full page.
785 	 */
786 	if (fs_info->sectorsize < PAGE_SIZE) {
787 		if (!PAGE_ALIGNED(start) ||
788 		    !PAGE_ALIGNED(end + 1))
789 			return 0;
790 	}
791 
792 	/* force compress */
793 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
794 		return 1;
795 	/* defrag ioctl */
796 	if (inode->defrag_compress)
797 		return 1;
798 	/* bad compression ratios */
799 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 		return 0;
801 	if (btrfs_test_opt(fs_info, COMPRESS) ||
802 	    inode->flags & BTRFS_INODE_COMPRESS ||
803 	    inode->prop_compress)
804 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
805 	return 0;
806 }
807 
808 static inline void inode_should_defrag(struct btrfs_inode *inode,
809 		u64 start, u64 end, u64 num_bytes, u32 small_write)
810 {
811 	/* If this is a small write inside eof, kick off a defrag */
812 	if (num_bytes < small_write &&
813 	    (start > 0 || end + 1 < inode->disk_i_size))
814 		btrfs_add_inode_defrag(NULL, inode, small_write);
815 }
816 
817 /*
818  * Work queue call back to started compression on a file and pages.
819  *
820  * This is done inside an ordered work queue, and the compression is spread
821  * across many cpus.  The actual IO submission is step two, and the ordered work
822  * queue takes care of making sure that happens in the same order things were
823  * put onto the queue by writepages and friends.
824  *
825  * If this code finds it can't get good compression, it puts an entry onto the
826  * work queue to write the uncompressed bytes.  This makes sure that both
827  * compressed inodes and uncompressed inodes are written in the same order that
828  * the flusher thread sent them down.
829  */
830 static void compress_file_range(struct btrfs_work *work)
831 {
832 	struct async_chunk *async_chunk =
833 		container_of(work, struct async_chunk, work);
834 	struct btrfs_inode *inode = async_chunk->inode;
835 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
836 	struct address_space *mapping = inode->vfs_inode.i_mapping;
837 	u64 blocksize = fs_info->sectorsize;
838 	u64 start = async_chunk->start;
839 	u64 end = async_chunk->end;
840 	u64 actual_end;
841 	u64 i_size;
842 	int ret = 0;
843 	struct page **pages;
844 	unsigned long nr_pages;
845 	unsigned long total_compressed = 0;
846 	unsigned long total_in = 0;
847 	unsigned int poff;
848 	int i;
849 	int compress_type = fs_info->compress_type;
850 
851 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
852 
853 	/*
854 	 * We need to call clear_page_dirty_for_io on each page in the range.
855 	 * Otherwise applications with the file mmap'd can wander in and change
856 	 * the page contents while we are compressing them.
857 	 */
858 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
859 
860 	/*
861 	 * We need to save i_size before now because it could change in between
862 	 * us evaluating the size and assigning it.  This is because we lock and
863 	 * unlock the page in truncate and fallocate, and then modify the i_size
864 	 * later on.
865 	 *
866 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
867 	 * does that for us.
868 	 */
869 	barrier();
870 	i_size = i_size_read(&inode->vfs_inode);
871 	barrier();
872 	actual_end = min_t(u64, i_size, end + 1);
873 again:
874 	pages = NULL;
875 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
876 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
877 
878 	/*
879 	 * we don't want to send crud past the end of i_size through
880 	 * compression, that's just a waste of CPU time.  So, if the
881 	 * end of the file is before the start of our current
882 	 * requested range of bytes, we bail out to the uncompressed
883 	 * cleanup code that can deal with all of this.
884 	 *
885 	 * It isn't really the fastest way to fix things, but this is a
886 	 * very uncommon corner.
887 	 */
888 	if (actual_end <= start)
889 		goto cleanup_and_bail_uncompressed;
890 
891 	total_compressed = actual_end - start;
892 
893 	/*
894 	 * Skip compression for a small file range(<=blocksize) that
895 	 * isn't an inline extent, since it doesn't save disk space at all.
896 	 */
897 	if (total_compressed <= blocksize &&
898 	   (start > 0 || end + 1 < inode->disk_i_size))
899 		goto cleanup_and_bail_uncompressed;
900 
901 	/*
902 	 * For subpage case, we require full page alignment for the sector
903 	 * aligned range.
904 	 * Thus we must also check against @actual_end, not just @end.
905 	 */
906 	if (blocksize < PAGE_SIZE) {
907 		if (!PAGE_ALIGNED(start) ||
908 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
909 			goto cleanup_and_bail_uncompressed;
910 	}
911 
912 	total_compressed = min_t(unsigned long, total_compressed,
913 			BTRFS_MAX_UNCOMPRESSED);
914 	total_in = 0;
915 	ret = 0;
916 
917 	/*
918 	 * We do compression for mount -o compress and when the inode has not
919 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
920 	 * discover bad compression ratios.
921 	 */
922 	if (!inode_need_compress(inode, start, end))
923 		goto cleanup_and_bail_uncompressed;
924 
925 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
926 	if (!pages) {
927 		/*
928 		 * Memory allocation failure is not a fatal error, we can fall
929 		 * back to uncompressed code.
930 		 */
931 		goto cleanup_and_bail_uncompressed;
932 	}
933 
934 	if (inode->defrag_compress)
935 		compress_type = inode->defrag_compress;
936 	else if (inode->prop_compress)
937 		compress_type = inode->prop_compress;
938 
939 	/* Compression level is applied here. */
940 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
941 				   mapping, start, pages, &nr_pages, &total_in,
942 				   &total_compressed);
943 	if (ret)
944 		goto mark_incompressible;
945 
946 	/*
947 	 * Zero the tail end of the last page, as we might be sending it down
948 	 * to disk.
949 	 */
950 	poff = offset_in_page(total_compressed);
951 	if (poff)
952 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
953 
954 	/*
955 	 * Try to create an inline extent.
956 	 *
957 	 * If we didn't compress the entire range, try to create an uncompressed
958 	 * inline extent, else a compressed one.
959 	 *
960 	 * Check cow_file_range() for why we don't even try to create inline
961 	 * extent for the subpage case.
962 	 */
963 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
964 		if (total_in < actual_end) {
965 			ret = cow_file_range_inline(inode, actual_end, 0,
966 						    BTRFS_COMPRESS_NONE, NULL,
967 						    false);
968 		} else {
969 			ret = cow_file_range_inline(inode, actual_end,
970 						    total_compressed,
971 						    compress_type, pages,
972 						    false);
973 		}
974 		if (ret <= 0) {
975 			unsigned long clear_flags = EXTENT_DELALLOC |
976 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
977 				EXTENT_DO_ACCOUNTING;
978 
979 			if (ret < 0)
980 				mapping_set_error(mapping, -EIO);
981 
982 			/*
983 			 * inline extent creation worked or returned error,
984 			 * we don't need to create any more async work items.
985 			 * Unlock and free up our temp pages.
986 			 *
987 			 * We use DO_ACCOUNTING here because we need the
988 			 * delalloc_release_metadata to be done _after_ we drop
989 			 * our outstanding extent for clearing delalloc for this
990 			 * range.
991 			 */
992 			extent_clear_unlock_delalloc(inode, start, end,
993 						     NULL,
994 						     clear_flags,
995 						     PAGE_UNLOCK |
996 						     PAGE_START_WRITEBACK |
997 						     PAGE_END_WRITEBACK);
998 			goto free_pages;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * We aren't doing an inline extent. Round the compressed size up to a
1004 	 * block size boundary so the allocator does sane things.
1005 	 */
1006 	total_compressed = ALIGN(total_compressed, blocksize);
1007 
1008 	/*
1009 	 * One last check to make sure the compression is really a win, compare
1010 	 * the page count read with the blocks on disk, compression must free at
1011 	 * least one sector.
1012 	 */
1013 	total_in = round_up(total_in, fs_info->sectorsize);
1014 	if (total_compressed + blocksize > total_in)
1015 		goto mark_incompressible;
1016 
1017 	/*
1018 	 * The async work queues will take care of doing actual allocation on
1019 	 * disk for these compressed pages, and will submit the bios.
1020 	 */
1021 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1022 			       nr_pages, compress_type);
1023 	BUG_ON(ret);
1024 	if (start + total_in < end) {
1025 		start += total_in;
1026 		cond_resched();
1027 		goto again;
1028 	}
1029 	return;
1030 
1031 mark_incompressible:
1032 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1033 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1034 cleanup_and_bail_uncompressed:
1035 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1036 			       BTRFS_COMPRESS_NONE);
1037 	BUG_ON(ret);
1038 free_pages:
1039 	if (pages) {
1040 		for (i = 0; i < nr_pages; i++) {
1041 			WARN_ON(pages[i]->mapping);
1042 			put_page(pages[i]);
1043 		}
1044 		kfree(pages);
1045 	}
1046 }
1047 
1048 static void free_async_extent_pages(struct async_extent *async_extent)
1049 {
1050 	int i;
1051 
1052 	if (!async_extent->pages)
1053 		return;
1054 
1055 	for (i = 0; i < async_extent->nr_pages; i++) {
1056 		WARN_ON(async_extent->pages[i]->mapping);
1057 		put_page(async_extent->pages[i]);
1058 	}
1059 	kfree(async_extent->pages);
1060 	async_extent->nr_pages = 0;
1061 	async_extent->pages = NULL;
1062 }
1063 
1064 static void submit_uncompressed_range(struct btrfs_inode *inode,
1065 				      struct async_extent *async_extent,
1066 				      struct page *locked_page)
1067 {
1068 	u64 start = async_extent->start;
1069 	u64 end = async_extent->start + async_extent->ram_size - 1;
1070 	int ret;
1071 	struct writeback_control wbc = {
1072 		.sync_mode		= WB_SYNC_ALL,
1073 		.range_start		= start,
1074 		.range_end		= end,
1075 		.no_cgroup_owner	= 1,
1076 	};
1077 
1078 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1079 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1080 	wbc_detach_inode(&wbc);
1081 	if (ret < 0) {
1082 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1083 		if (locked_page) {
1084 			const u64 page_start = page_offset(locked_page);
1085 
1086 			set_page_writeback(locked_page);
1087 			end_page_writeback(locked_page);
1088 			btrfs_mark_ordered_io_finished(inode, locked_page,
1089 						       page_start, PAGE_SIZE,
1090 						       !ret);
1091 			mapping_set_error(locked_page->mapping, ret);
1092 			unlock_page(locked_page);
1093 		}
1094 	}
1095 }
1096 
1097 static void submit_one_async_extent(struct async_chunk *async_chunk,
1098 				    struct async_extent *async_extent,
1099 				    u64 *alloc_hint)
1100 {
1101 	struct btrfs_inode *inode = async_chunk->inode;
1102 	struct extent_io_tree *io_tree = &inode->io_tree;
1103 	struct btrfs_root *root = inode->root;
1104 	struct btrfs_fs_info *fs_info = root->fs_info;
1105 	struct btrfs_ordered_extent *ordered;
1106 	struct btrfs_key ins;
1107 	struct page *locked_page = NULL;
1108 	struct extent_map *em;
1109 	int ret = 0;
1110 	u64 start = async_extent->start;
1111 	u64 end = async_extent->start + async_extent->ram_size - 1;
1112 
1113 	if (async_chunk->blkcg_css)
1114 		kthread_associate_blkcg(async_chunk->blkcg_css);
1115 
1116 	/*
1117 	 * If async_chunk->locked_page is in the async_extent range, we need to
1118 	 * handle it.
1119 	 */
1120 	if (async_chunk->locked_page) {
1121 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1122 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1123 
1124 		if (!(start >= locked_page_end || end <= locked_page_start))
1125 			locked_page = async_chunk->locked_page;
1126 	}
1127 	lock_extent(io_tree, start, end, NULL);
1128 
1129 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1130 		submit_uncompressed_range(inode, async_extent, locked_page);
1131 		goto done;
1132 	}
1133 
1134 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1135 				   async_extent->compressed_size,
1136 				   async_extent->compressed_size,
1137 				   0, *alloc_hint, &ins, 1, 1);
1138 	if (ret) {
1139 		/*
1140 		 * We can't reserve contiguous space for the compressed size.
1141 		 * Unlikely, but it's possible that we could have enough
1142 		 * non-contiguous space for the uncompressed size instead.  So
1143 		 * fall back to uncompressed.
1144 		 */
1145 		submit_uncompressed_range(inode, async_extent, locked_page);
1146 		goto done;
1147 	}
1148 
1149 	/* Here we're doing allocation and writeback of the compressed pages */
1150 	em = create_io_em(inode, start,
1151 			  async_extent->ram_size,	/* len */
1152 			  start,			/* orig_start */
1153 			  ins.objectid,			/* block_start */
1154 			  ins.offset,			/* block_len */
1155 			  ins.offset,			/* orig_block_len */
1156 			  async_extent->ram_size,	/* ram_bytes */
1157 			  async_extent->compress_type,
1158 			  BTRFS_ORDERED_COMPRESSED);
1159 	if (IS_ERR(em)) {
1160 		ret = PTR_ERR(em);
1161 		goto out_free_reserve;
1162 	}
1163 	free_extent_map(em);
1164 
1165 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1166 				       async_extent->ram_size,	/* num_bytes */
1167 				       async_extent->ram_size,	/* ram_bytes */
1168 				       ins.objectid,		/* disk_bytenr */
1169 				       ins.offset,		/* disk_num_bytes */
1170 				       0,			/* offset */
1171 				       1 << BTRFS_ORDERED_COMPRESSED,
1172 				       async_extent->compress_type);
1173 	if (IS_ERR(ordered)) {
1174 		btrfs_drop_extent_map_range(inode, start, end, false);
1175 		ret = PTR_ERR(ordered);
1176 		goto out_free_reserve;
1177 	}
1178 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1179 
1180 	/* Clear dirty, set writeback and unlock the pages. */
1181 	extent_clear_unlock_delalloc(inode, start, end,
1182 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1183 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1184 	btrfs_submit_compressed_write(ordered,
1185 			    async_extent->pages,	/* compressed_pages */
1186 			    async_extent->nr_pages,
1187 			    async_chunk->write_flags, true);
1188 	*alloc_hint = ins.objectid + ins.offset;
1189 done:
1190 	if (async_chunk->blkcg_css)
1191 		kthread_associate_blkcg(NULL);
1192 	kfree(async_extent);
1193 	return;
1194 
1195 out_free_reserve:
1196 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1197 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1198 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1199 	extent_clear_unlock_delalloc(inode, start, end,
1200 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1201 				     EXTENT_DELALLOC_NEW |
1202 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1203 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1204 				     PAGE_END_WRITEBACK);
1205 	free_async_extent_pages(async_extent);
1206 	if (async_chunk->blkcg_css)
1207 		kthread_associate_blkcg(NULL);
1208 	btrfs_debug(fs_info,
1209 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1210 		    root->root_key.objectid, btrfs_ino(inode), start,
1211 		    async_extent->ram_size, ret);
1212 	kfree(async_extent);
1213 }
1214 
1215 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1216 				      u64 num_bytes)
1217 {
1218 	struct extent_map_tree *em_tree = &inode->extent_tree;
1219 	struct extent_map *em;
1220 	u64 alloc_hint = 0;
1221 
1222 	read_lock(&em_tree->lock);
1223 	em = search_extent_mapping(em_tree, start, num_bytes);
1224 	if (em) {
1225 		/*
1226 		 * if block start isn't an actual block number then find the
1227 		 * first block in this inode and use that as a hint.  If that
1228 		 * block is also bogus then just don't worry about it.
1229 		 */
1230 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1231 			free_extent_map(em);
1232 			em = search_extent_mapping(em_tree, 0, 0);
1233 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1234 				alloc_hint = em->block_start;
1235 			if (em)
1236 				free_extent_map(em);
1237 		} else {
1238 			alloc_hint = em->block_start;
1239 			free_extent_map(em);
1240 		}
1241 	}
1242 	read_unlock(&em_tree->lock);
1243 
1244 	return alloc_hint;
1245 }
1246 
1247 /*
1248  * when extent_io.c finds a delayed allocation range in the file,
1249  * the call backs end up in this code.  The basic idea is to
1250  * allocate extents on disk for the range, and create ordered data structs
1251  * in ram to track those extents.
1252  *
1253  * locked_page is the page that writepage had locked already.  We use
1254  * it to make sure we don't do extra locks or unlocks.
1255  *
1256  * When this function fails, it unlocks all pages except @locked_page.
1257  *
1258  * When this function successfully creates an inline extent, it returns 1 and
1259  * unlocks all pages including locked_page and starts I/O on them.
1260  * (In reality inline extents are limited to a single page, so locked_page is
1261  * the only page handled anyway).
1262  *
1263  * When this function succeed and creates a normal extent, the page locking
1264  * status depends on the passed in flags:
1265  *
1266  * - If @keep_locked is set, all pages are kept locked.
1267  * - Else all pages except for @locked_page are unlocked.
1268  *
1269  * When a failure happens in the second or later iteration of the
1270  * while-loop, the ordered extents created in previous iterations are kept
1271  * intact. So, the caller must clean them up by calling
1272  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1273  * example.
1274  */
1275 static noinline int cow_file_range(struct btrfs_inode *inode,
1276 				   struct page *locked_page, u64 start, u64 end,
1277 				   u64 *done_offset,
1278 				   bool keep_locked, bool no_inline)
1279 {
1280 	struct btrfs_root *root = inode->root;
1281 	struct btrfs_fs_info *fs_info = root->fs_info;
1282 	u64 alloc_hint = 0;
1283 	u64 orig_start = start;
1284 	u64 num_bytes;
1285 	unsigned long ram_size;
1286 	u64 cur_alloc_size = 0;
1287 	u64 min_alloc_size;
1288 	u64 blocksize = fs_info->sectorsize;
1289 	struct btrfs_key ins;
1290 	struct extent_map *em;
1291 	unsigned clear_bits;
1292 	unsigned long page_ops;
1293 	bool extent_reserved = false;
1294 	int ret = 0;
1295 
1296 	if (btrfs_is_free_space_inode(inode)) {
1297 		ret = -EINVAL;
1298 		goto out_unlock;
1299 	}
1300 
1301 	num_bytes = ALIGN(end - start + 1, blocksize);
1302 	num_bytes = max(blocksize,  num_bytes);
1303 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1304 
1305 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1306 
1307 	/*
1308 	 * Due to the page size limit, for subpage we can only trigger the
1309 	 * writeback for the dirty sectors of page, that means data writeback
1310 	 * is doing more writeback than what we want.
1311 	 *
1312 	 * This is especially unexpected for some call sites like fallocate,
1313 	 * where we only increase i_size after everything is done.
1314 	 * This means we can trigger inline extent even if we didn't want to.
1315 	 * So here we skip inline extent creation completely.
1316 	 */
1317 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1318 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1319 				       end + 1);
1320 
1321 		/* lets try to make an inline extent */
1322 		ret = cow_file_range_inline(inode, actual_end, 0,
1323 					    BTRFS_COMPRESS_NONE, NULL, false);
1324 		if (ret == 0) {
1325 			/*
1326 			 * We use DO_ACCOUNTING here because we need the
1327 			 * delalloc_release_metadata to be run _after_ we drop
1328 			 * our outstanding extent for clearing delalloc for this
1329 			 * range.
1330 			 */
1331 			extent_clear_unlock_delalloc(inode, start, end,
1332 				     locked_page,
1333 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1334 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1335 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1336 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1337 			/*
1338 			 * locked_page is locked by the caller of
1339 			 * writepage_delalloc(), not locked by
1340 			 * __process_pages_contig().
1341 			 *
1342 			 * We can't let __process_pages_contig() to unlock it,
1343 			 * as it doesn't have any subpage::writers recorded.
1344 			 *
1345 			 * Here we manually unlock the page, since the caller
1346 			 * can't determine if it's an inline extent or a
1347 			 * compressed extent.
1348 			 */
1349 			unlock_page(locked_page);
1350 			ret = 1;
1351 			goto done;
1352 		} else if (ret < 0) {
1353 			goto out_unlock;
1354 		}
1355 	}
1356 
1357 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1358 
1359 	/*
1360 	 * Relocation relies on the relocated extents to have exactly the same
1361 	 * size as the original extents. Normally writeback for relocation data
1362 	 * extents follows a NOCOW path because relocation preallocates the
1363 	 * extents. However, due to an operation such as scrub turning a block
1364 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1365 	 * an extent allocated during COW has exactly the requested size and can
1366 	 * not be split into smaller extents, otherwise relocation breaks and
1367 	 * fails during the stage where it updates the bytenr of file extent
1368 	 * items.
1369 	 */
1370 	if (btrfs_is_data_reloc_root(root))
1371 		min_alloc_size = num_bytes;
1372 	else
1373 		min_alloc_size = fs_info->sectorsize;
1374 
1375 	while (num_bytes > 0) {
1376 		struct btrfs_ordered_extent *ordered;
1377 
1378 		cur_alloc_size = num_bytes;
1379 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1380 					   min_alloc_size, 0, alloc_hint,
1381 					   &ins, 1, 1);
1382 		if (ret == -EAGAIN) {
1383 			/*
1384 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1385 			 * file systems, which is an indication that there are
1386 			 * no active zones to allocate from at the moment.
1387 			 *
1388 			 * If this is the first loop iteration, wait for at
1389 			 * least one zone to finish before retrying the
1390 			 * allocation.  Otherwise ask the caller to write out
1391 			 * the already allocated blocks before coming back to
1392 			 * us, or return -ENOSPC if it can't handle retries.
1393 			 */
1394 			ASSERT(btrfs_is_zoned(fs_info));
1395 			if (start == orig_start) {
1396 				wait_on_bit_io(&inode->root->fs_info->flags,
1397 					       BTRFS_FS_NEED_ZONE_FINISH,
1398 					       TASK_UNINTERRUPTIBLE);
1399 				continue;
1400 			}
1401 			if (done_offset) {
1402 				*done_offset = start - 1;
1403 				return 0;
1404 			}
1405 			ret = -ENOSPC;
1406 		}
1407 		if (ret < 0)
1408 			goto out_unlock;
1409 		cur_alloc_size = ins.offset;
1410 		extent_reserved = true;
1411 
1412 		ram_size = ins.offset;
1413 		em = create_io_em(inode, start, ins.offset, /* len */
1414 				  start, /* orig_start */
1415 				  ins.objectid, /* block_start */
1416 				  ins.offset, /* block_len */
1417 				  ins.offset, /* orig_block_len */
1418 				  ram_size, /* ram_bytes */
1419 				  BTRFS_COMPRESS_NONE, /* compress_type */
1420 				  BTRFS_ORDERED_REGULAR /* type */);
1421 		if (IS_ERR(em)) {
1422 			ret = PTR_ERR(em);
1423 			goto out_reserve;
1424 		}
1425 		free_extent_map(em);
1426 
1427 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1428 					ram_size, ins.objectid, cur_alloc_size,
1429 					0, 1 << BTRFS_ORDERED_REGULAR,
1430 					BTRFS_COMPRESS_NONE);
1431 		if (IS_ERR(ordered)) {
1432 			ret = PTR_ERR(ordered);
1433 			goto out_drop_extent_cache;
1434 		}
1435 
1436 		if (btrfs_is_data_reloc_root(root)) {
1437 			ret = btrfs_reloc_clone_csums(ordered);
1438 
1439 			/*
1440 			 * Only drop cache here, and process as normal.
1441 			 *
1442 			 * We must not allow extent_clear_unlock_delalloc()
1443 			 * at out_unlock label to free meta of this ordered
1444 			 * extent, as its meta should be freed by
1445 			 * btrfs_finish_ordered_io().
1446 			 *
1447 			 * So we must continue until @start is increased to
1448 			 * skip current ordered extent.
1449 			 */
1450 			if (ret)
1451 				btrfs_drop_extent_map_range(inode, start,
1452 							    start + ram_size - 1,
1453 							    false);
1454 		}
1455 		btrfs_put_ordered_extent(ordered);
1456 
1457 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1458 
1459 		/*
1460 		 * We're not doing compressed IO, don't unlock the first page
1461 		 * (which the caller expects to stay locked), don't clear any
1462 		 * dirty bits and don't set any writeback bits
1463 		 *
1464 		 * Do set the Ordered (Private2) bit so we know this page was
1465 		 * properly setup for writepage.
1466 		 */
1467 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1468 		page_ops |= PAGE_SET_ORDERED;
1469 
1470 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1471 					     locked_page,
1472 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1473 					     page_ops);
1474 		if (num_bytes < cur_alloc_size)
1475 			num_bytes = 0;
1476 		else
1477 			num_bytes -= cur_alloc_size;
1478 		alloc_hint = ins.objectid + ins.offset;
1479 		start += cur_alloc_size;
1480 		extent_reserved = false;
1481 
1482 		/*
1483 		 * btrfs_reloc_clone_csums() error, since start is increased
1484 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1485 		 * free metadata of current ordered extent, we're OK to exit.
1486 		 */
1487 		if (ret)
1488 			goto out_unlock;
1489 	}
1490 done:
1491 	if (done_offset)
1492 		*done_offset = end;
1493 	return ret;
1494 
1495 out_drop_extent_cache:
1496 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1497 out_reserve:
1498 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1499 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1500 out_unlock:
1501 	/*
1502 	 * Now, we have three regions to clean up:
1503 	 *
1504 	 * |-------(1)----|---(2)---|-------------(3)----------|
1505 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1506 	 *
1507 	 * We process each region below.
1508 	 */
1509 
1510 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1511 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1512 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1513 
1514 	/*
1515 	 * For the range (1). We have already instantiated the ordered extents
1516 	 * for this region. They are cleaned up by
1517 	 * btrfs_cleanup_ordered_extents() in e.g,
1518 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1519 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1520 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1521 	 * function.
1522 	 *
1523 	 * However, in case of @keep_locked, we still need to unlock the pages
1524 	 * (except @locked_page) to ensure all the pages are unlocked.
1525 	 */
1526 	if (keep_locked && orig_start < start) {
1527 		if (!locked_page)
1528 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1529 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1530 					     locked_page, 0, page_ops);
1531 	}
1532 
1533 	/*
1534 	 * For the range (2). If we reserved an extent for our delalloc range
1535 	 * (or a subrange) and failed to create the respective ordered extent,
1536 	 * then it means that when we reserved the extent we decremented the
1537 	 * extent's size from the data space_info's bytes_may_use counter and
1538 	 * incremented the space_info's bytes_reserved counter by the same
1539 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1540 	 * to decrement again the data space_info's bytes_may_use counter,
1541 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1542 	 */
1543 	if (extent_reserved) {
1544 		extent_clear_unlock_delalloc(inode, start,
1545 					     start + cur_alloc_size - 1,
1546 					     locked_page,
1547 					     clear_bits,
1548 					     page_ops);
1549 		start += cur_alloc_size;
1550 	}
1551 
1552 	/*
1553 	 * For the range (3). We never touched the region. In addition to the
1554 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1555 	 * space_info's bytes_may_use counter, reserved in
1556 	 * btrfs_check_data_free_space().
1557 	 */
1558 	if (start < end) {
1559 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1560 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1561 					     clear_bits, page_ops);
1562 	}
1563 	return ret;
1564 }
1565 
1566 /*
1567  * Phase two of compressed writeback.  This is the ordered portion of the code,
1568  * which only gets called in the order the work was queued.  We walk all the
1569  * async extents created by compress_file_range and send them down to the disk.
1570  */
1571 static noinline void submit_compressed_extents(struct btrfs_work *work)
1572 {
1573 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1574 						     work);
1575 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1576 	struct async_extent *async_extent;
1577 	unsigned long nr_pages;
1578 	u64 alloc_hint = 0;
1579 
1580 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1581 		PAGE_SHIFT;
1582 
1583 	while (!list_empty(&async_chunk->extents)) {
1584 		async_extent = list_entry(async_chunk->extents.next,
1585 					  struct async_extent, list);
1586 		list_del(&async_extent->list);
1587 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1588 	}
1589 
1590 	/* atomic_sub_return implies a barrier */
1591 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1592 	    5 * SZ_1M)
1593 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1594 }
1595 
1596 static noinline void async_cow_free(struct btrfs_work *work)
1597 {
1598 	struct async_chunk *async_chunk;
1599 	struct async_cow *async_cow;
1600 
1601 	async_chunk = container_of(work, struct async_chunk, work);
1602 	btrfs_add_delayed_iput(async_chunk->inode);
1603 	if (async_chunk->blkcg_css)
1604 		css_put(async_chunk->blkcg_css);
1605 
1606 	async_cow = async_chunk->async_cow;
1607 	if (atomic_dec_and_test(&async_cow->num_chunks))
1608 		kvfree(async_cow);
1609 }
1610 
1611 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1612 				    struct page *locked_page, u64 start,
1613 				    u64 end, struct writeback_control *wbc)
1614 {
1615 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1616 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1617 	struct async_cow *ctx;
1618 	struct async_chunk *async_chunk;
1619 	unsigned long nr_pages;
1620 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1621 	int i;
1622 	unsigned nofs_flag;
1623 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1624 
1625 	nofs_flag = memalloc_nofs_save();
1626 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1627 	memalloc_nofs_restore(nofs_flag);
1628 	if (!ctx)
1629 		return false;
1630 
1631 	unlock_extent(&inode->io_tree, start, end, NULL);
1632 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1633 
1634 	async_chunk = ctx->chunks;
1635 	atomic_set(&ctx->num_chunks, num_chunks);
1636 
1637 	for (i = 0; i < num_chunks; i++) {
1638 		u64 cur_end = min(end, start + SZ_512K - 1);
1639 
1640 		/*
1641 		 * igrab is called higher up in the call chain, take only the
1642 		 * lightweight reference for the callback lifetime
1643 		 */
1644 		ihold(&inode->vfs_inode);
1645 		async_chunk[i].async_cow = ctx;
1646 		async_chunk[i].inode = inode;
1647 		async_chunk[i].start = start;
1648 		async_chunk[i].end = cur_end;
1649 		async_chunk[i].write_flags = write_flags;
1650 		INIT_LIST_HEAD(&async_chunk[i].extents);
1651 
1652 		/*
1653 		 * The locked_page comes all the way from writepage and its
1654 		 * the original page we were actually given.  As we spread
1655 		 * this large delalloc region across multiple async_chunk
1656 		 * structs, only the first struct needs a pointer to locked_page
1657 		 *
1658 		 * This way we don't need racey decisions about who is supposed
1659 		 * to unlock it.
1660 		 */
1661 		if (locked_page) {
1662 			/*
1663 			 * Depending on the compressibility, the pages might or
1664 			 * might not go through async.  We want all of them to
1665 			 * be accounted against wbc once.  Let's do it here
1666 			 * before the paths diverge.  wbc accounting is used
1667 			 * only for foreign writeback detection and doesn't
1668 			 * need full accuracy.  Just account the whole thing
1669 			 * against the first page.
1670 			 */
1671 			wbc_account_cgroup_owner(wbc, locked_page,
1672 						 cur_end - start);
1673 			async_chunk[i].locked_page = locked_page;
1674 			locked_page = NULL;
1675 		} else {
1676 			async_chunk[i].locked_page = NULL;
1677 		}
1678 
1679 		if (blkcg_css != blkcg_root_css) {
1680 			css_get(blkcg_css);
1681 			async_chunk[i].blkcg_css = blkcg_css;
1682 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1683 		} else {
1684 			async_chunk[i].blkcg_css = NULL;
1685 		}
1686 
1687 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1688 				submit_compressed_extents, async_cow_free);
1689 
1690 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1691 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1692 
1693 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1694 
1695 		start = cur_end + 1;
1696 	}
1697 	return true;
1698 }
1699 
1700 /*
1701  * Run the delalloc range from start to end, and write back any dirty pages
1702  * covered by the range.
1703  */
1704 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1705 				     struct page *locked_page, u64 start,
1706 				     u64 end, struct writeback_control *wbc,
1707 				     bool pages_dirty)
1708 {
1709 	u64 done_offset = end;
1710 	int ret;
1711 
1712 	while (start <= end) {
1713 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1714 				     true, false);
1715 		if (ret)
1716 			return ret;
1717 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1718 					  done_offset, wbc, pages_dirty);
1719 		start = done_offset + 1;
1720 	}
1721 
1722 	return 1;
1723 }
1724 
1725 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1726 					u64 bytenr, u64 num_bytes, bool nowait)
1727 {
1728 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1729 	struct btrfs_ordered_sum *sums;
1730 	int ret;
1731 	LIST_HEAD(list);
1732 
1733 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1734 				      &list, 0, nowait);
1735 	if (ret == 0 && list_empty(&list))
1736 		return 0;
1737 
1738 	while (!list_empty(&list)) {
1739 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1740 		list_del(&sums->list);
1741 		kfree(sums);
1742 	}
1743 	if (ret < 0)
1744 		return ret;
1745 	return 1;
1746 }
1747 
1748 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1749 			   const u64 start, const u64 end)
1750 {
1751 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1752 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1753 	const u64 range_bytes = end + 1 - start;
1754 	struct extent_io_tree *io_tree = &inode->io_tree;
1755 	u64 range_start = start;
1756 	u64 count;
1757 	int ret;
1758 
1759 	/*
1760 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1761 	 * made we had not enough available data space and therefore we did not
1762 	 * reserve data space for it, since we though we could do NOCOW for the
1763 	 * respective file range (either there is prealloc extent or the inode
1764 	 * has the NOCOW bit set).
1765 	 *
1766 	 * However when we need to fallback to COW mode (because for example the
1767 	 * block group for the corresponding extent was turned to RO mode by a
1768 	 * scrub or relocation) we need to do the following:
1769 	 *
1770 	 * 1) We increment the bytes_may_use counter of the data space info.
1771 	 *    If COW succeeds, it allocates a new data extent and after doing
1772 	 *    that it decrements the space info's bytes_may_use counter and
1773 	 *    increments its bytes_reserved counter by the same amount (we do
1774 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1775 	 *    bytes_may_use counter to compensate (when space is reserved at
1776 	 *    buffered write time, the bytes_may_use counter is incremented);
1777 	 *
1778 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1779 	 *    that if the COW path fails for any reason, it decrements (through
1780 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1781 	 *    data space info, which we incremented in the step above.
1782 	 *
1783 	 * If we need to fallback to cow and the inode corresponds to a free
1784 	 * space cache inode or an inode of the data relocation tree, we must
1785 	 * also increment bytes_may_use of the data space_info for the same
1786 	 * reason. Space caches and relocated data extents always get a prealloc
1787 	 * extent for them, however scrub or balance may have set the block
1788 	 * group that contains that extent to RO mode and therefore force COW
1789 	 * when starting writeback.
1790 	 */
1791 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1792 				 EXTENT_NORESERVE, 0, NULL);
1793 	if (count > 0 || is_space_ino || is_reloc_ino) {
1794 		u64 bytes = count;
1795 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1796 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1797 
1798 		if (is_space_ino || is_reloc_ino)
1799 			bytes = range_bytes;
1800 
1801 		spin_lock(&sinfo->lock);
1802 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1803 		spin_unlock(&sinfo->lock);
1804 
1805 		if (count > 0)
1806 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1807 					 NULL);
1808 	}
1809 
1810 	/*
1811 	 * Don't try to create inline extents, as a mix of inline extent that
1812 	 * is written out and unlocked directly and a normal NOCOW extent
1813 	 * doesn't work.
1814 	 */
1815 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1816 	ASSERT(ret != 1);
1817 	return ret;
1818 }
1819 
1820 struct can_nocow_file_extent_args {
1821 	/* Input fields. */
1822 
1823 	/* Start file offset of the range we want to NOCOW. */
1824 	u64 start;
1825 	/* End file offset (inclusive) of the range we want to NOCOW. */
1826 	u64 end;
1827 	bool writeback_path;
1828 	bool strict;
1829 	/*
1830 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1831 	 * anymore.
1832 	 */
1833 	bool free_path;
1834 
1835 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1836 
1837 	u64 disk_bytenr;
1838 	u64 disk_num_bytes;
1839 	u64 extent_offset;
1840 	/* Number of bytes that can be written to in NOCOW mode. */
1841 	u64 num_bytes;
1842 };
1843 
1844 /*
1845  * Check if we can NOCOW the file extent that the path points to.
1846  * This function may return with the path released, so the caller should check
1847  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1848  *
1849  * Returns: < 0 on error
1850  *            0 if we can not NOCOW
1851  *            1 if we can NOCOW
1852  */
1853 static int can_nocow_file_extent(struct btrfs_path *path,
1854 				 struct btrfs_key *key,
1855 				 struct btrfs_inode *inode,
1856 				 struct can_nocow_file_extent_args *args)
1857 {
1858 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1859 	struct extent_buffer *leaf = path->nodes[0];
1860 	struct btrfs_root *root = inode->root;
1861 	struct btrfs_file_extent_item *fi;
1862 	u64 extent_end;
1863 	u8 extent_type;
1864 	int can_nocow = 0;
1865 	int ret = 0;
1866 	bool nowait = path->nowait;
1867 
1868 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1869 	extent_type = btrfs_file_extent_type(leaf, fi);
1870 
1871 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1872 		goto out;
1873 
1874 	/* Can't access these fields unless we know it's not an inline extent. */
1875 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1876 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1877 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1878 
1879 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1880 	    extent_type == BTRFS_FILE_EXTENT_REG)
1881 		goto out;
1882 
1883 	/*
1884 	 * If the extent was created before the generation where the last snapshot
1885 	 * for its subvolume was created, then this implies the extent is shared,
1886 	 * hence we must COW.
1887 	 */
1888 	if (!args->strict &&
1889 	    btrfs_file_extent_generation(leaf, fi) <=
1890 	    btrfs_root_last_snapshot(&root->root_item))
1891 		goto out;
1892 
1893 	/* An explicit hole, must COW. */
1894 	if (args->disk_bytenr == 0)
1895 		goto out;
1896 
1897 	/* Compressed/encrypted/encoded extents must be COWed. */
1898 	if (btrfs_file_extent_compression(leaf, fi) ||
1899 	    btrfs_file_extent_encryption(leaf, fi) ||
1900 	    btrfs_file_extent_other_encoding(leaf, fi))
1901 		goto out;
1902 
1903 	extent_end = btrfs_file_extent_end(path);
1904 
1905 	/*
1906 	 * The following checks can be expensive, as they need to take other
1907 	 * locks and do btree or rbtree searches, so release the path to avoid
1908 	 * blocking other tasks for too long.
1909 	 */
1910 	btrfs_release_path(path);
1911 
1912 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1913 				    key->offset - args->extent_offset,
1914 				    args->disk_bytenr, args->strict, path);
1915 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1916 	if (ret != 0)
1917 		goto out;
1918 
1919 	if (args->free_path) {
1920 		/*
1921 		 * We don't need the path anymore, plus through the
1922 		 * csum_exist_in_range() call below we will end up allocating
1923 		 * another path. So free the path to avoid unnecessary extra
1924 		 * memory usage.
1925 		 */
1926 		btrfs_free_path(path);
1927 		path = NULL;
1928 	}
1929 
1930 	/* If there are pending snapshots for this root, we must COW. */
1931 	if (args->writeback_path && !is_freespace_inode &&
1932 	    atomic_read(&root->snapshot_force_cow))
1933 		goto out;
1934 
1935 	args->disk_bytenr += args->extent_offset;
1936 	args->disk_bytenr += args->start - key->offset;
1937 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1938 
1939 	/*
1940 	 * Force COW if csums exist in the range. This ensures that csums for a
1941 	 * given extent are either valid or do not exist.
1942 	 */
1943 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1944 				  nowait);
1945 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1946 	if (ret != 0)
1947 		goto out;
1948 
1949 	can_nocow = 1;
1950  out:
1951 	if (args->free_path && path)
1952 		btrfs_free_path(path);
1953 
1954 	return ret < 0 ? ret : can_nocow;
1955 }
1956 
1957 /*
1958  * when nowcow writeback call back.  This checks for snapshots or COW copies
1959  * of the extents that exist in the file, and COWs the file as required.
1960  *
1961  * If no cow copies or snapshots exist, we write directly to the existing
1962  * blocks on disk
1963  */
1964 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1965 				       struct page *locked_page,
1966 				       const u64 start, const u64 end)
1967 {
1968 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1969 	struct btrfs_root *root = inode->root;
1970 	struct btrfs_path *path;
1971 	u64 cow_start = (u64)-1;
1972 	u64 cur_offset = start;
1973 	int ret;
1974 	bool check_prev = true;
1975 	u64 ino = btrfs_ino(inode);
1976 	struct can_nocow_file_extent_args nocow_args = { 0 };
1977 
1978 	/*
1979 	 * Normally on a zoned device we're only doing COW writes, but in case
1980 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1981 	 * writing sequentially and can end up here as well.
1982 	 */
1983 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path) {
1987 		ret = -ENOMEM;
1988 		goto error;
1989 	}
1990 
1991 	nocow_args.end = end;
1992 	nocow_args.writeback_path = true;
1993 
1994 	while (1) {
1995 		struct btrfs_block_group *nocow_bg = NULL;
1996 		struct btrfs_ordered_extent *ordered;
1997 		struct btrfs_key found_key;
1998 		struct btrfs_file_extent_item *fi;
1999 		struct extent_buffer *leaf;
2000 		u64 extent_end;
2001 		u64 ram_bytes;
2002 		u64 nocow_end;
2003 		int extent_type;
2004 		bool is_prealloc;
2005 
2006 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2007 					       cur_offset, 0);
2008 		if (ret < 0)
2009 			goto error;
2010 
2011 		/*
2012 		 * If there is no extent for our range when doing the initial
2013 		 * search, then go back to the previous slot as it will be the
2014 		 * one containing the search offset
2015 		 */
2016 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2017 			leaf = path->nodes[0];
2018 			btrfs_item_key_to_cpu(leaf, &found_key,
2019 					      path->slots[0] - 1);
2020 			if (found_key.objectid == ino &&
2021 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2022 				path->slots[0]--;
2023 		}
2024 		check_prev = false;
2025 next_slot:
2026 		/* Go to next leaf if we have exhausted the current one */
2027 		leaf = path->nodes[0];
2028 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2029 			ret = btrfs_next_leaf(root, path);
2030 			if (ret < 0)
2031 				goto error;
2032 			if (ret > 0)
2033 				break;
2034 			leaf = path->nodes[0];
2035 		}
2036 
2037 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2038 
2039 		/* Didn't find anything for our INO */
2040 		if (found_key.objectid > ino)
2041 			break;
2042 		/*
2043 		 * Keep searching until we find an EXTENT_ITEM or there are no
2044 		 * more extents for this inode
2045 		 */
2046 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2047 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2048 			path->slots[0]++;
2049 			goto next_slot;
2050 		}
2051 
2052 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2053 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2054 		    found_key.offset > end)
2055 			break;
2056 
2057 		/*
2058 		 * If the found extent starts after requested offset, then
2059 		 * adjust extent_end to be right before this extent begins
2060 		 */
2061 		if (found_key.offset > cur_offset) {
2062 			extent_end = found_key.offset;
2063 			extent_type = 0;
2064 			goto must_cow;
2065 		}
2066 
2067 		/*
2068 		 * Found extent which begins before our range and potentially
2069 		 * intersect it
2070 		 */
2071 		fi = btrfs_item_ptr(leaf, path->slots[0],
2072 				    struct btrfs_file_extent_item);
2073 		extent_type = btrfs_file_extent_type(leaf, fi);
2074 		/* If this is triggered then we have a memory corruption. */
2075 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2076 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2077 			ret = -EUCLEAN;
2078 			goto error;
2079 		}
2080 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2081 		extent_end = btrfs_file_extent_end(path);
2082 
2083 		/*
2084 		 * If the extent we got ends before our current offset, skip to
2085 		 * the next extent.
2086 		 */
2087 		if (extent_end <= cur_offset) {
2088 			path->slots[0]++;
2089 			goto next_slot;
2090 		}
2091 
2092 		nocow_args.start = cur_offset;
2093 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2094 		if (ret < 0)
2095 			goto error;
2096 		if (ret == 0)
2097 			goto must_cow;
2098 
2099 		ret = 0;
2100 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2101 		if (!nocow_bg) {
2102 must_cow:
2103 			/*
2104 			 * If we can't perform NOCOW writeback for the range,
2105 			 * then record the beginning of the range that needs to
2106 			 * be COWed.  It will be written out before the next
2107 			 * NOCOW range if we find one, or when exiting this
2108 			 * loop.
2109 			 */
2110 			if (cow_start == (u64)-1)
2111 				cow_start = cur_offset;
2112 			cur_offset = extent_end;
2113 			if (cur_offset > end)
2114 				break;
2115 			if (!path->nodes[0])
2116 				continue;
2117 			path->slots[0]++;
2118 			goto next_slot;
2119 		}
2120 
2121 		/*
2122 		 * COW range from cow_start to found_key.offset - 1. As the key
2123 		 * will contain the beginning of the first extent that can be
2124 		 * NOCOW, following one which needs to be COW'ed
2125 		 */
2126 		if (cow_start != (u64)-1) {
2127 			ret = fallback_to_cow(inode, locked_page,
2128 					      cow_start, found_key.offset - 1);
2129 			cow_start = (u64)-1;
2130 			if (ret) {
2131 				btrfs_dec_nocow_writers(nocow_bg);
2132 				goto error;
2133 			}
2134 		}
2135 
2136 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2137 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2138 		if (is_prealloc) {
2139 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2140 			struct extent_map *em;
2141 
2142 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2143 					  orig_start,
2144 					  nocow_args.disk_bytenr, /* block_start */
2145 					  nocow_args.num_bytes, /* block_len */
2146 					  nocow_args.disk_num_bytes, /* orig_block_len */
2147 					  ram_bytes, BTRFS_COMPRESS_NONE,
2148 					  BTRFS_ORDERED_PREALLOC);
2149 			if (IS_ERR(em)) {
2150 				btrfs_dec_nocow_writers(nocow_bg);
2151 				ret = PTR_ERR(em);
2152 				goto error;
2153 			}
2154 			free_extent_map(em);
2155 		}
2156 
2157 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2158 				nocow_args.num_bytes, nocow_args.num_bytes,
2159 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2160 				is_prealloc
2161 				? (1 << BTRFS_ORDERED_PREALLOC)
2162 				: (1 << BTRFS_ORDERED_NOCOW),
2163 				BTRFS_COMPRESS_NONE);
2164 		btrfs_dec_nocow_writers(nocow_bg);
2165 		if (IS_ERR(ordered)) {
2166 			if (is_prealloc) {
2167 				btrfs_drop_extent_map_range(inode, cur_offset,
2168 							    nocow_end, false);
2169 			}
2170 			ret = PTR_ERR(ordered);
2171 			goto error;
2172 		}
2173 
2174 		if (btrfs_is_data_reloc_root(root))
2175 			/*
2176 			 * Error handled later, as we must prevent
2177 			 * extent_clear_unlock_delalloc() in error handler
2178 			 * from freeing metadata of created ordered extent.
2179 			 */
2180 			ret = btrfs_reloc_clone_csums(ordered);
2181 		btrfs_put_ordered_extent(ordered);
2182 
2183 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2184 					     locked_page, EXTENT_LOCKED |
2185 					     EXTENT_DELALLOC |
2186 					     EXTENT_CLEAR_DATA_RESV,
2187 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2188 
2189 		cur_offset = extent_end;
2190 
2191 		/*
2192 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2193 		 * handler, as metadata for created ordered extent will only
2194 		 * be freed by btrfs_finish_ordered_io().
2195 		 */
2196 		if (ret)
2197 			goto error;
2198 		if (cur_offset > end)
2199 			break;
2200 	}
2201 	btrfs_release_path(path);
2202 
2203 	if (cur_offset <= end && cow_start == (u64)-1)
2204 		cow_start = cur_offset;
2205 
2206 	if (cow_start != (u64)-1) {
2207 		cur_offset = end;
2208 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2209 		cow_start = (u64)-1;
2210 		if (ret)
2211 			goto error;
2212 	}
2213 
2214 	btrfs_free_path(path);
2215 	return 0;
2216 
2217 error:
2218 	/*
2219 	 * If an error happened while a COW region is outstanding, cur_offset
2220 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2221 	 * as well.
2222 	 */
2223 	if (cow_start != (u64)-1)
2224 		cur_offset = cow_start;
2225 	if (cur_offset < end)
2226 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2227 					     locked_page, EXTENT_LOCKED |
2228 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2229 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2230 					     PAGE_START_WRITEBACK |
2231 					     PAGE_END_WRITEBACK);
2232 	btrfs_free_path(path);
2233 	return ret;
2234 }
2235 
2236 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2237 {
2238 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2239 		if (inode->defrag_bytes &&
2240 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2241 				   0, NULL))
2242 			return false;
2243 		return true;
2244 	}
2245 	return false;
2246 }
2247 
2248 /*
2249  * Function to process delayed allocation (create CoW) for ranges which are
2250  * being touched for the first time.
2251  */
2252 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2253 			     u64 start, u64 end, struct writeback_control *wbc)
2254 {
2255 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2256 	int ret;
2257 
2258 	/*
2259 	 * The range must cover part of the @locked_page, or a return of 1
2260 	 * can confuse the caller.
2261 	 */
2262 	ASSERT(!(end <= page_offset(locked_page) ||
2263 		 start >= page_offset(locked_page) + PAGE_SIZE));
2264 
2265 	if (should_nocow(inode, start, end)) {
2266 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2267 		goto out;
2268 	}
2269 
2270 	if (btrfs_inode_can_compress(inode) &&
2271 	    inode_need_compress(inode, start, end) &&
2272 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2273 		return 1;
2274 
2275 	if (zoned)
2276 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2277 				       true);
2278 	else
2279 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2280 				     false, false);
2281 
2282 out:
2283 	if (ret < 0)
2284 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2285 					      end - start + 1);
2286 	return ret;
2287 }
2288 
2289 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2290 				 struct extent_state *orig, u64 split)
2291 {
2292 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2293 	u64 size;
2294 
2295 	/* not delalloc, ignore it */
2296 	if (!(orig->state & EXTENT_DELALLOC))
2297 		return;
2298 
2299 	size = orig->end - orig->start + 1;
2300 	if (size > fs_info->max_extent_size) {
2301 		u32 num_extents;
2302 		u64 new_size;
2303 
2304 		/*
2305 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2306 		 * applies here, just in reverse.
2307 		 */
2308 		new_size = orig->end - split + 1;
2309 		num_extents = count_max_extents(fs_info, new_size);
2310 		new_size = split - orig->start;
2311 		num_extents += count_max_extents(fs_info, new_size);
2312 		if (count_max_extents(fs_info, size) >= num_extents)
2313 			return;
2314 	}
2315 
2316 	spin_lock(&inode->lock);
2317 	btrfs_mod_outstanding_extents(inode, 1);
2318 	spin_unlock(&inode->lock);
2319 }
2320 
2321 /*
2322  * Handle merged delayed allocation extents so we can keep track of new extents
2323  * that are just merged onto old extents, such as when we are doing sequential
2324  * writes, so we can properly account for the metadata space we'll need.
2325  */
2326 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2327 				 struct extent_state *other)
2328 {
2329 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2330 	u64 new_size, old_size;
2331 	u32 num_extents;
2332 
2333 	/* not delalloc, ignore it */
2334 	if (!(other->state & EXTENT_DELALLOC))
2335 		return;
2336 
2337 	if (new->start > other->start)
2338 		new_size = new->end - other->start + 1;
2339 	else
2340 		new_size = other->end - new->start + 1;
2341 
2342 	/* we're not bigger than the max, unreserve the space and go */
2343 	if (new_size <= fs_info->max_extent_size) {
2344 		spin_lock(&inode->lock);
2345 		btrfs_mod_outstanding_extents(inode, -1);
2346 		spin_unlock(&inode->lock);
2347 		return;
2348 	}
2349 
2350 	/*
2351 	 * We have to add up either side to figure out how many extents were
2352 	 * accounted for before we merged into one big extent.  If the number of
2353 	 * extents we accounted for is <= the amount we need for the new range
2354 	 * then we can return, otherwise drop.  Think of it like this
2355 	 *
2356 	 * [ 4k][MAX_SIZE]
2357 	 *
2358 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2359 	 * need 2 outstanding extents, on one side we have 1 and the other side
2360 	 * we have 1 so they are == and we can return.  But in this case
2361 	 *
2362 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2363 	 *
2364 	 * Each range on their own accounts for 2 extents, but merged together
2365 	 * they are only 3 extents worth of accounting, so we need to drop in
2366 	 * this case.
2367 	 */
2368 	old_size = other->end - other->start + 1;
2369 	num_extents = count_max_extents(fs_info, old_size);
2370 	old_size = new->end - new->start + 1;
2371 	num_extents += count_max_extents(fs_info, old_size);
2372 	if (count_max_extents(fs_info, new_size) >= num_extents)
2373 		return;
2374 
2375 	spin_lock(&inode->lock);
2376 	btrfs_mod_outstanding_extents(inode, -1);
2377 	spin_unlock(&inode->lock);
2378 }
2379 
2380 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2381 				      struct btrfs_inode *inode)
2382 {
2383 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2384 
2385 	spin_lock(&root->delalloc_lock);
2386 	if (list_empty(&inode->delalloc_inodes)) {
2387 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2388 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2389 		root->nr_delalloc_inodes++;
2390 		if (root->nr_delalloc_inodes == 1) {
2391 			spin_lock(&fs_info->delalloc_root_lock);
2392 			BUG_ON(!list_empty(&root->delalloc_root));
2393 			list_add_tail(&root->delalloc_root,
2394 				      &fs_info->delalloc_roots);
2395 			spin_unlock(&fs_info->delalloc_root_lock);
2396 		}
2397 	}
2398 	spin_unlock(&root->delalloc_lock);
2399 }
2400 
2401 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2402 				struct btrfs_inode *inode)
2403 {
2404 	struct btrfs_fs_info *fs_info = root->fs_info;
2405 
2406 	if (!list_empty(&inode->delalloc_inodes)) {
2407 		list_del_init(&inode->delalloc_inodes);
2408 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2409 			  &inode->runtime_flags);
2410 		root->nr_delalloc_inodes--;
2411 		if (!root->nr_delalloc_inodes) {
2412 			ASSERT(list_empty(&root->delalloc_inodes));
2413 			spin_lock(&fs_info->delalloc_root_lock);
2414 			BUG_ON(list_empty(&root->delalloc_root));
2415 			list_del_init(&root->delalloc_root);
2416 			spin_unlock(&fs_info->delalloc_root_lock);
2417 		}
2418 	}
2419 }
2420 
2421 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2422 				     struct btrfs_inode *inode)
2423 {
2424 	spin_lock(&root->delalloc_lock);
2425 	__btrfs_del_delalloc_inode(root, inode);
2426 	spin_unlock(&root->delalloc_lock);
2427 }
2428 
2429 /*
2430  * Properly track delayed allocation bytes in the inode and to maintain the
2431  * list of inodes that have pending delalloc work to be done.
2432  */
2433 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2434 			       u32 bits)
2435 {
2436 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2437 
2438 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2439 		WARN_ON(1);
2440 	/*
2441 	 * set_bit and clear bit hooks normally require _irqsave/restore
2442 	 * but in this case, we are only testing for the DELALLOC
2443 	 * bit, which is only set or cleared with irqs on
2444 	 */
2445 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2446 		struct btrfs_root *root = inode->root;
2447 		u64 len = state->end + 1 - state->start;
2448 		u32 num_extents = count_max_extents(fs_info, len);
2449 		bool do_list = !btrfs_is_free_space_inode(inode);
2450 
2451 		spin_lock(&inode->lock);
2452 		btrfs_mod_outstanding_extents(inode, num_extents);
2453 		spin_unlock(&inode->lock);
2454 
2455 		/* For sanity tests */
2456 		if (btrfs_is_testing(fs_info))
2457 			return;
2458 
2459 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2460 					 fs_info->delalloc_batch);
2461 		spin_lock(&inode->lock);
2462 		inode->delalloc_bytes += len;
2463 		if (bits & EXTENT_DEFRAG)
2464 			inode->defrag_bytes += len;
2465 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2466 					 &inode->runtime_flags))
2467 			btrfs_add_delalloc_inodes(root, inode);
2468 		spin_unlock(&inode->lock);
2469 	}
2470 
2471 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2472 	    (bits & EXTENT_DELALLOC_NEW)) {
2473 		spin_lock(&inode->lock);
2474 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2475 		spin_unlock(&inode->lock);
2476 	}
2477 }
2478 
2479 /*
2480  * Once a range is no longer delalloc this function ensures that proper
2481  * accounting happens.
2482  */
2483 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2484 				 struct extent_state *state, u32 bits)
2485 {
2486 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2487 	u64 len = state->end + 1 - state->start;
2488 	u32 num_extents = count_max_extents(fs_info, len);
2489 
2490 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2491 		spin_lock(&inode->lock);
2492 		inode->defrag_bytes -= len;
2493 		spin_unlock(&inode->lock);
2494 	}
2495 
2496 	/*
2497 	 * set_bit and clear bit hooks normally require _irqsave/restore
2498 	 * but in this case, we are only testing for the DELALLOC
2499 	 * bit, which is only set or cleared with irqs on
2500 	 */
2501 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2502 		struct btrfs_root *root = inode->root;
2503 		bool do_list = !btrfs_is_free_space_inode(inode);
2504 
2505 		spin_lock(&inode->lock);
2506 		btrfs_mod_outstanding_extents(inode, -num_extents);
2507 		spin_unlock(&inode->lock);
2508 
2509 		/*
2510 		 * We don't reserve metadata space for space cache inodes so we
2511 		 * don't need to call delalloc_release_metadata if there is an
2512 		 * error.
2513 		 */
2514 		if (bits & EXTENT_CLEAR_META_RESV &&
2515 		    root != fs_info->tree_root)
2516 			btrfs_delalloc_release_metadata(inode, len, true);
2517 
2518 		/* For sanity tests. */
2519 		if (btrfs_is_testing(fs_info))
2520 			return;
2521 
2522 		if (!btrfs_is_data_reloc_root(root) &&
2523 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2524 		    (bits & EXTENT_CLEAR_DATA_RESV))
2525 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2526 
2527 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2528 					 fs_info->delalloc_batch);
2529 		spin_lock(&inode->lock);
2530 		inode->delalloc_bytes -= len;
2531 		if (do_list && inode->delalloc_bytes == 0 &&
2532 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2533 					&inode->runtime_flags))
2534 			btrfs_del_delalloc_inode(root, inode);
2535 		spin_unlock(&inode->lock);
2536 	}
2537 
2538 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2539 	    (bits & EXTENT_DELALLOC_NEW)) {
2540 		spin_lock(&inode->lock);
2541 		ASSERT(inode->new_delalloc_bytes >= len);
2542 		inode->new_delalloc_bytes -= len;
2543 		if (bits & EXTENT_ADD_INODE_BYTES)
2544 			inode_add_bytes(&inode->vfs_inode, len);
2545 		spin_unlock(&inode->lock);
2546 	}
2547 }
2548 
2549 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2550 					struct btrfs_ordered_extent *ordered)
2551 {
2552 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2553 	u64 len = bbio->bio.bi_iter.bi_size;
2554 	struct btrfs_ordered_extent *new;
2555 	int ret;
2556 
2557 	/* Must always be called for the beginning of an ordered extent. */
2558 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2559 		return -EINVAL;
2560 
2561 	/* No need to split if the ordered extent covers the entire bio. */
2562 	if (ordered->disk_num_bytes == len) {
2563 		refcount_inc(&ordered->refs);
2564 		bbio->ordered = ordered;
2565 		return 0;
2566 	}
2567 
2568 	/*
2569 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2570 	 * a pre-existing one.
2571 	 */
2572 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2573 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2574 				       ordered->num_bytes, len,
2575 				       ordered->disk_bytenr);
2576 		if (ret)
2577 			return ret;
2578 	}
2579 
2580 	new = btrfs_split_ordered_extent(ordered, len);
2581 	if (IS_ERR(new))
2582 		return PTR_ERR(new);
2583 	bbio->ordered = new;
2584 	return 0;
2585 }
2586 
2587 /*
2588  * given a list of ordered sums record them in the inode.  This happens
2589  * at IO completion time based on sums calculated at bio submission time.
2590  */
2591 static int add_pending_csums(struct btrfs_trans_handle *trans,
2592 			     struct list_head *list)
2593 {
2594 	struct btrfs_ordered_sum *sum;
2595 	struct btrfs_root *csum_root = NULL;
2596 	int ret;
2597 
2598 	list_for_each_entry(sum, list, list) {
2599 		trans->adding_csums = true;
2600 		if (!csum_root)
2601 			csum_root = btrfs_csum_root(trans->fs_info,
2602 						    sum->logical);
2603 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2604 		trans->adding_csums = false;
2605 		if (ret)
2606 			return ret;
2607 	}
2608 	return 0;
2609 }
2610 
2611 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2612 					 const u64 start,
2613 					 const u64 len,
2614 					 struct extent_state **cached_state)
2615 {
2616 	u64 search_start = start;
2617 	const u64 end = start + len - 1;
2618 
2619 	while (search_start < end) {
2620 		const u64 search_len = end - search_start + 1;
2621 		struct extent_map *em;
2622 		u64 em_len;
2623 		int ret = 0;
2624 
2625 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2626 		if (IS_ERR(em))
2627 			return PTR_ERR(em);
2628 
2629 		if (em->block_start != EXTENT_MAP_HOLE)
2630 			goto next;
2631 
2632 		em_len = em->len;
2633 		if (em->start < search_start)
2634 			em_len -= search_start - em->start;
2635 		if (em_len > search_len)
2636 			em_len = search_len;
2637 
2638 		ret = set_extent_bit(&inode->io_tree, search_start,
2639 				     search_start + em_len - 1,
2640 				     EXTENT_DELALLOC_NEW, cached_state);
2641 next:
2642 		search_start = extent_map_end(em);
2643 		free_extent_map(em);
2644 		if (ret)
2645 			return ret;
2646 	}
2647 	return 0;
2648 }
2649 
2650 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2651 			      unsigned int extra_bits,
2652 			      struct extent_state **cached_state)
2653 {
2654 	WARN_ON(PAGE_ALIGNED(end));
2655 
2656 	if (start >= i_size_read(&inode->vfs_inode) &&
2657 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2658 		/*
2659 		 * There can't be any extents following eof in this case so just
2660 		 * set the delalloc new bit for the range directly.
2661 		 */
2662 		extra_bits |= EXTENT_DELALLOC_NEW;
2663 	} else {
2664 		int ret;
2665 
2666 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2667 						    end + 1 - start,
2668 						    cached_state);
2669 		if (ret)
2670 			return ret;
2671 	}
2672 
2673 	return set_extent_bit(&inode->io_tree, start, end,
2674 			      EXTENT_DELALLOC | extra_bits, cached_state);
2675 }
2676 
2677 /* see btrfs_writepage_start_hook for details on why this is required */
2678 struct btrfs_writepage_fixup {
2679 	struct page *page;
2680 	struct btrfs_inode *inode;
2681 	struct btrfs_work work;
2682 };
2683 
2684 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2685 {
2686 	struct btrfs_writepage_fixup *fixup =
2687 		container_of(work, struct btrfs_writepage_fixup, work);
2688 	struct btrfs_ordered_extent *ordered;
2689 	struct extent_state *cached_state = NULL;
2690 	struct extent_changeset *data_reserved = NULL;
2691 	struct page *page = fixup->page;
2692 	struct btrfs_inode *inode = fixup->inode;
2693 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2694 	u64 page_start = page_offset(page);
2695 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2696 	int ret = 0;
2697 	bool free_delalloc_space = true;
2698 
2699 	/*
2700 	 * This is similar to page_mkwrite, we need to reserve the space before
2701 	 * we take the page lock.
2702 	 */
2703 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2704 					   PAGE_SIZE);
2705 again:
2706 	lock_page(page);
2707 
2708 	/*
2709 	 * Before we queued this fixup, we took a reference on the page.
2710 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2711 	 * address space.
2712 	 */
2713 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2714 		/*
2715 		 * Unfortunately this is a little tricky, either
2716 		 *
2717 		 * 1) We got here and our page had already been dealt with and
2718 		 *    we reserved our space, thus ret == 0, so we need to just
2719 		 *    drop our space reservation and bail.  This can happen the
2720 		 *    first time we come into the fixup worker, or could happen
2721 		 *    while waiting for the ordered extent.
2722 		 * 2) Our page was already dealt with, but we happened to get an
2723 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2724 		 *    this case we obviously don't have anything to release, but
2725 		 *    because the page was already dealt with we don't want to
2726 		 *    mark the page with an error, so make sure we're resetting
2727 		 *    ret to 0.  This is why we have this check _before_ the ret
2728 		 *    check, because we do not want to have a surprise ENOSPC
2729 		 *    when the page was already properly dealt with.
2730 		 */
2731 		if (!ret) {
2732 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2733 			btrfs_delalloc_release_space(inode, data_reserved,
2734 						     page_start, PAGE_SIZE,
2735 						     true);
2736 		}
2737 		ret = 0;
2738 		goto out_page;
2739 	}
2740 
2741 	/*
2742 	 * We can't mess with the page state unless it is locked, so now that
2743 	 * it is locked bail if we failed to make our space reservation.
2744 	 */
2745 	if (ret)
2746 		goto out_page;
2747 
2748 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2749 
2750 	/* already ordered? We're done */
2751 	if (PageOrdered(page))
2752 		goto out_reserved;
2753 
2754 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2755 	if (ordered) {
2756 		unlock_extent(&inode->io_tree, page_start, page_end,
2757 			      &cached_state);
2758 		unlock_page(page);
2759 		btrfs_start_ordered_extent(ordered);
2760 		btrfs_put_ordered_extent(ordered);
2761 		goto again;
2762 	}
2763 
2764 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2765 					&cached_state);
2766 	if (ret)
2767 		goto out_reserved;
2768 
2769 	/*
2770 	 * Everything went as planned, we're now the owner of a dirty page with
2771 	 * delayed allocation bits set and space reserved for our COW
2772 	 * destination.
2773 	 *
2774 	 * The page was dirty when we started, nothing should have cleaned it.
2775 	 */
2776 	BUG_ON(!PageDirty(page));
2777 	free_delalloc_space = false;
2778 out_reserved:
2779 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2780 	if (free_delalloc_space)
2781 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2782 					     PAGE_SIZE, true);
2783 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2784 out_page:
2785 	if (ret) {
2786 		/*
2787 		 * We hit ENOSPC or other errors.  Update the mapping and page
2788 		 * to reflect the errors and clean the page.
2789 		 */
2790 		mapping_set_error(page->mapping, ret);
2791 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2792 					       PAGE_SIZE, !ret);
2793 		clear_page_dirty_for_io(page);
2794 	}
2795 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2796 	unlock_page(page);
2797 	put_page(page);
2798 	kfree(fixup);
2799 	extent_changeset_free(data_reserved);
2800 	/*
2801 	 * As a precaution, do a delayed iput in case it would be the last iput
2802 	 * that could need flushing space. Recursing back to fixup worker would
2803 	 * deadlock.
2804 	 */
2805 	btrfs_add_delayed_iput(inode);
2806 }
2807 
2808 /*
2809  * There are a few paths in the higher layers of the kernel that directly
2810  * set the page dirty bit without asking the filesystem if it is a
2811  * good idea.  This causes problems because we want to make sure COW
2812  * properly happens and the data=ordered rules are followed.
2813  *
2814  * In our case any range that doesn't have the ORDERED bit set
2815  * hasn't been properly setup for IO.  We kick off an async process
2816  * to fix it up.  The async helper will wait for ordered extents, set
2817  * the delalloc bit and make it safe to write the page.
2818  */
2819 int btrfs_writepage_cow_fixup(struct page *page)
2820 {
2821 	struct inode *inode = page->mapping->host;
2822 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2823 	struct btrfs_writepage_fixup *fixup;
2824 
2825 	/* This page has ordered extent covering it already */
2826 	if (PageOrdered(page))
2827 		return 0;
2828 
2829 	/*
2830 	 * PageChecked is set below when we create a fixup worker for this page,
2831 	 * don't try to create another one if we're already PageChecked()
2832 	 *
2833 	 * The extent_io writepage code will redirty the page if we send back
2834 	 * EAGAIN.
2835 	 */
2836 	if (PageChecked(page))
2837 		return -EAGAIN;
2838 
2839 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2840 	if (!fixup)
2841 		return -EAGAIN;
2842 
2843 	/*
2844 	 * We are already holding a reference to this inode from
2845 	 * write_cache_pages.  We need to hold it because the space reservation
2846 	 * takes place outside of the page lock, and we can't trust
2847 	 * page->mapping outside of the page lock.
2848 	 */
2849 	ihold(inode);
2850 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2851 	get_page(page);
2852 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2853 	fixup->page = page;
2854 	fixup->inode = BTRFS_I(inode);
2855 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2856 
2857 	return -EAGAIN;
2858 }
2859 
2860 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2861 				       struct btrfs_inode *inode, u64 file_pos,
2862 				       struct btrfs_file_extent_item *stack_fi,
2863 				       const bool update_inode_bytes,
2864 				       u64 qgroup_reserved)
2865 {
2866 	struct btrfs_root *root = inode->root;
2867 	const u64 sectorsize = root->fs_info->sectorsize;
2868 	struct btrfs_path *path;
2869 	struct extent_buffer *leaf;
2870 	struct btrfs_key ins;
2871 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2872 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2873 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2874 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2875 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2876 	struct btrfs_drop_extents_args drop_args = { 0 };
2877 	int ret;
2878 
2879 	path = btrfs_alloc_path();
2880 	if (!path)
2881 		return -ENOMEM;
2882 
2883 	/*
2884 	 * we may be replacing one extent in the tree with another.
2885 	 * The new extent is pinned in the extent map, and we don't want
2886 	 * to drop it from the cache until it is completely in the btree.
2887 	 *
2888 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2889 	 * the caller is expected to unpin it and allow it to be merged
2890 	 * with the others.
2891 	 */
2892 	drop_args.path = path;
2893 	drop_args.start = file_pos;
2894 	drop_args.end = file_pos + num_bytes;
2895 	drop_args.replace_extent = true;
2896 	drop_args.extent_item_size = sizeof(*stack_fi);
2897 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2898 	if (ret)
2899 		goto out;
2900 
2901 	if (!drop_args.extent_inserted) {
2902 		ins.objectid = btrfs_ino(inode);
2903 		ins.offset = file_pos;
2904 		ins.type = BTRFS_EXTENT_DATA_KEY;
2905 
2906 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2907 					      sizeof(*stack_fi));
2908 		if (ret)
2909 			goto out;
2910 	}
2911 	leaf = path->nodes[0];
2912 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2913 	write_extent_buffer(leaf, stack_fi,
2914 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2915 			sizeof(struct btrfs_file_extent_item));
2916 
2917 	btrfs_mark_buffer_dirty(trans, leaf);
2918 	btrfs_release_path(path);
2919 
2920 	/*
2921 	 * If we dropped an inline extent here, we know the range where it is
2922 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2923 	 * number of bytes only for that range containing the inline extent.
2924 	 * The remaining of the range will be processed when clearning the
2925 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2926 	 */
2927 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2928 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2929 
2930 		inline_size = drop_args.bytes_found - inline_size;
2931 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2932 		drop_args.bytes_found -= inline_size;
2933 		num_bytes -= sectorsize;
2934 	}
2935 
2936 	if (update_inode_bytes)
2937 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2938 
2939 	ins.objectid = disk_bytenr;
2940 	ins.offset = disk_num_bytes;
2941 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2942 
2943 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2944 	if (ret)
2945 		goto out;
2946 
2947 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2948 					       file_pos - offset,
2949 					       qgroup_reserved, &ins);
2950 out:
2951 	btrfs_free_path(path);
2952 
2953 	return ret;
2954 }
2955 
2956 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2957 					 u64 start, u64 len)
2958 {
2959 	struct btrfs_block_group *cache;
2960 
2961 	cache = btrfs_lookup_block_group(fs_info, start);
2962 	ASSERT(cache);
2963 
2964 	spin_lock(&cache->lock);
2965 	cache->delalloc_bytes -= len;
2966 	spin_unlock(&cache->lock);
2967 
2968 	btrfs_put_block_group(cache);
2969 }
2970 
2971 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2972 					     struct btrfs_ordered_extent *oe)
2973 {
2974 	struct btrfs_file_extent_item stack_fi;
2975 	bool update_inode_bytes;
2976 	u64 num_bytes = oe->num_bytes;
2977 	u64 ram_bytes = oe->ram_bytes;
2978 
2979 	memset(&stack_fi, 0, sizeof(stack_fi));
2980 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2981 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2982 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2983 						   oe->disk_num_bytes);
2984 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2985 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2986 		num_bytes = oe->truncated_len;
2987 		ram_bytes = num_bytes;
2988 	}
2989 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2990 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2991 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2992 	/* Encryption and other encoding is reserved and all 0 */
2993 
2994 	/*
2995 	 * For delalloc, when completing an ordered extent we update the inode's
2996 	 * bytes when clearing the range in the inode's io tree, so pass false
2997 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2998 	 * except if the ordered extent was truncated.
2999 	 */
3000 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3001 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3002 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3003 
3004 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3005 					   oe->file_offset, &stack_fi,
3006 					   update_inode_bytes, oe->qgroup_rsv);
3007 }
3008 
3009 /*
3010  * As ordered data IO finishes, this gets called so we can finish
3011  * an ordered extent if the range of bytes in the file it covers are
3012  * fully written.
3013  */
3014 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3015 {
3016 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3017 	struct btrfs_root *root = inode->root;
3018 	struct btrfs_fs_info *fs_info = root->fs_info;
3019 	struct btrfs_trans_handle *trans = NULL;
3020 	struct extent_io_tree *io_tree = &inode->io_tree;
3021 	struct extent_state *cached_state = NULL;
3022 	u64 start, end;
3023 	int compress_type = 0;
3024 	int ret = 0;
3025 	u64 logical_len = ordered_extent->num_bytes;
3026 	bool freespace_inode;
3027 	bool truncated = false;
3028 	bool clear_reserved_extent = true;
3029 	unsigned int clear_bits = EXTENT_DEFRAG;
3030 
3031 	start = ordered_extent->file_offset;
3032 	end = start + ordered_extent->num_bytes - 1;
3033 
3034 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3035 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3036 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3037 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3038 		clear_bits |= EXTENT_DELALLOC_NEW;
3039 
3040 	freespace_inode = btrfs_is_free_space_inode(inode);
3041 	if (!freespace_inode)
3042 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3043 
3044 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3045 		ret = -EIO;
3046 		goto out;
3047 	}
3048 
3049 	if (btrfs_is_zoned(fs_info))
3050 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3051 					ordered_extent->disk_num_bytes);
3052 
3053 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3054 		truncated = true;
3055 		logical_len = ordered_extent->truncated_len;
3056 		/* Truncated the entire extent, don't bother adding */
3057 		if (!logical_len)
3058 			goto out;
3059 	}
3060 
3061 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3062 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3063 
3064 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3065 		if (freespace_inode)
3066 			trans = btrfs_join_transaction_spacecache(root);
3067 		else
3068 			trans = btrfs_join_transaction(root);
3069 		if (IS_ERR(trans)) {
3070 			ret = PTR_ERR(trans);
3071 			trans = NULL;
3072 			goto out;
3073 		}
3074 		trans->block_rsv = &inode->block_rsv;
3075 		ret = btrfs_update_inode_fallback(trans, root, inode);
3076 		if (ret) /* -ENOMEM or corruption */
3077 			btrfs_abort_transaction(trans, ret);
3078 		goto out;
3079 	}
3080 
3081 	clear_bits |= EXTENT_LOCKED;
3082 	lock_extent(io_tree, start, end, &cached_state);
3083 
3084 	if (freespace_inode)
3085 		trans = btrfs_join_transaction_spacecache(root);
3086 	else
3087 		trans = btrfs_join_transaction(root);
3088 	if (IS_ERR(trans)) {
3089 		ret = PTR_ERR(trans);
3090 		trans = NULL;
3091 		goto out;
3092 	}
3093 
3094 	trans->block_rsv = &inode->block_rsv;
3095 
3096 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3097 		compress_type = ordered_extent->compress_type;
3098 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3099 		BUG_ON(compress_type);
3100 		ret = btrfs_mark_extent_written(trans, inode,
3101 						ordered_extent->file_offset,
3102 						ordered_extent->file_offset +
3103 						logical_len);
3104 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3105 						  ordered_extent->disk_num_bytes);
3106 	} else {
3107 		BUG_ON(root == fs_info->tree_root);
3108 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3109 		if (!ret) {
3110 			clear_reserved_extent = false;
3111 			btrfs_release_delalloc_bytes(fs_info,
3112 						ordered_extent->disk_bytenr,
3113 						ordered_extent->disk_num_bytes);
3114 		}
3115 	}
3116 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3117 			   ordered_extent->num_bytes, trans->transid);
3118 	if (ret < 0) {
3119 		btrfs_abort_transaction(trans, ret);
3120 		goto out;
3121 	}
3122 
3123 	ret = add_pending_csums(trans, &ordered_extent->list);
3124 	if (ret) {
3125 		btrfs_abort_transaction(trans, ret);
3126 		goto out;
3127 	}
3128 
3129 	/*
3130 	 * If this is a new delalloc range, clear its new delalloc flag to
3131 	 * update the inode's number of bytes. This needs to be done first
3132 	 * before updating the inode item.
3133 	 */
3134 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3135 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3136 		clear_extent_bit(&inode->io_tree, start, end,
3137 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3138 				 &cached_state);
3139 
3140 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3141 	ret = btrfs_update_inode_fallback(trans, root, inode);
3142 	if (ret) { /* -ENOMEM or corruption */
3143 		btrfs_abort_transaction(trans, ret);
3144 		goto out;
3145 	}
3146 	ret = 0;
3147 out:
3148 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3149 			 &cached_state);
3150 
3151 	if (trans)
3152 		btrfs_end_transaction(trans);
3153 
3154 	if (ret || truncated) {
3155 		u64 unwritten_start = start;
3156 
3157 		/*
3158 		 * If we failed to finish this ordered extent for any reason we
3159 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3160 		 * extent, and mark the inode with the error if it wasn't
3161 		 * already set.  Any error during writeback would have already
3162 		 * set the mapping error, so we need to set it if we're the ones
3163 		 * marking this ordered extent as failed.
3164 		 */
3165 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3166 					     &ordered_extent->flags))
3167 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3168 
3169 		if (truncated)
3170 			unwritten_start += logical_len;
3171 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3172 
3173 		/*
3174 		 * Drop extent maps for the part of the extent we didn't write.
3175 		 *
3176 		 * We have an exception here for the free_space_inode, this is
3177 		 * because when we do btrfs_get_extent() on the free space inode
3178 		 * we will search the commit root.  If this is a new block group
3179 		 * we won't find anything, and we will trip over the assert in
3180 		 * writepage where we do ASSERT(em->block_start !=
3181 		 * EXTENT_MAP_HOLE).
3182 		 *
3183 		 * Theoretically we could also skip this for any NOCOW extent as
3184 		 * we don't mess with the extent map tree in the NOCOW case, but
3185 		 * for now simply skip this if we are the free space inode.
3186 		 */
3187 		if (!btrfs_is_free_space_inode(inode))
3188 			btrfs_drop_extent_map_range(inode, unwritten_start,
3189 						    end, false);
3190 
3191 		/*
3192 		 * If the ordered extent had an IOERR or something else went
3193 		 * wrong we need to return the space for this ordered extent
3194 		 * back to the allocator.  We only free the extent in the
3195 		 * truncated case if we didn't write out the extent at all.
3196 		 *
3197 		 * If we made it past insert_reserved_file_extent before we
3198 		 * errored out then we don't need to do this as the accounting
3199 		 * has already been done.
3200 		 */
3201 		if ((ret || !logical_len) &&
3202 		    clear_reserved_extent &&
3203 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3204 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3205 			/*
3206 			 * Discard the range before returning it back to the
3207 			 * free space pool
3208 			 */
3209 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3210 				btrfs_discard_extent(fs_info,
3211 						ordered_extent->disk_bytenr,
3212 						ordered_extent->disk_num_bytes,
3213 						NULL);
3214 			btrfs_free_reserved_extent(fs_info,
3215 					ordered_extent->disk_bytenr,
3216 					ordered_extent->disk_num_bytes, 1);
3217 			/*
3218 			 * Actually free the qgroup rsv which was released when
3219 			 * the ordered extent was created.
3220 			 */
3221 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3222 						  ordered_extent->qgroup_rsv,
3223 						  BTRFS_QGROUP_RSV_DATA);
3224 		}
3225 	}
3226 
3227 	/*
3228 	 * This needs to be done to make sure anybody waiting knows we are done
3229 	 * updating everything for this ordered extent.
3230 	 */
3231 	btrfs_remove_ordered_extent(inode, ordered_extent);
3232 
3233 	/* once for us */
3234 	btrfs_put_ordered_extent(ordered_extent);
3235 	/* once for the tree */
3236 	btrfs_put_ordered_extent(ordered_extent);
3237 
3238 	return ret;
3239 }
3240 
3241 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3242 {
3243 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3244 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3245 		btrfs_finish_ordered_zoned(ordered);
3246 	return btrfs_finish_one_ordered(ordered);
3247 }
3248 
3249 /*
3250  * Verify the checksum for a single sector without any extra action that depend
3251  * on the type of I/O.
3252  */
3253 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3254 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3255 {
3256 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3257 	char *kaddr;
3258 
3259 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3260 
3261 	shash->tfm = fs_info->csum_shash;
3262 
3263 	kaddr = kmap_local_page(page) + pgoff;
3264 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3265 	kunmap_local(kaddr);
3266 
3267 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3268 		return -EIO;
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Verify the checksum of a single data sector.
3274  *
3275  * @bbio:	btrfs_io_bio which contains the csum
3276  * @dev:	device the sector is on
3277  * @bio_offset:	offset to the beginning of the bio (in bytes)
3278  * @bv:		bio_vec to check
3279  *
3280  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3281  * detected, report the error and fill the corrupted range with zero.
3282  *
3283  * Return %true if the sector is ok or had no checksum to start with, else %false.
3284  */
3285 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3286 			u32 bio_offset, struct bio_vec *bv)
3287 {
3288 	struct btrfs_inode *inode = bbio->inode;
3289 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3290 	u64 file_offset = bbio->file_offset + bio_offset;
3291 	u64 end = file_offset + bv->bv_len - 1;
3292 	u8 *csum_expected;
3293 	u8 csum[BTRFS_CSUM_SIZE];
3294 
3295 	ASSERT(bv->bv_len == fs_info->sectorsize);
3296 
3297 	if (!bbio->csum)
3298 		return true;
3299 
3300 	if (btrfs_is_data_reloc_root(inode->root) &&
3301 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3302 			   1, NULL)) {
3303 		/* Skip the range without csum for data reloc inode */
3304 		clear_extent_bits(&inode->io_tree, file_offset, end,
3305 				  EXTENT_NODATASUM);
3306 		return true;
3307 	}
3308 
3309 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3310 				fs_info->csum_size;
3311 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3312 				    csum_expected))
3313 		goto zeroit;
3314 	return true;
3315 
3316 zeroit:
3317 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3318 				    bbio->mirror_num);
3319 	if (dev)
3320 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3321 	memzero_bvec(bv);
3322 	return false;
3323 }
3324 
3325 /*
3326  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3327  *
3328  * @inode: The inode we want to perform iput on
3329  *
3330  * This function uses the generic vfs_inode::i_count to track whether we should
3331  * just decrement it (in case it's > 1) or if this is the last iput then link
3332  * the inode to the delayed iput machinery. Delayed iputs are processed at
3333  * transaction commit time/superblock commit/cleaner kthread.
3334  */
3335 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3336 {
3337 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3338 	unsigned long flags;
3339 
3340 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3341 		return;
3342 
3343 	atomic_inc(&fs_info->nr_delayed_iputs);
3344 	/*
3345 	 * Need to be irq safe here because we can be called from either an irq
3346 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3347 	 * context.
3348 	 */
3349 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3350 	ASSERT(list_empty(&inode->delayed_iput));
3351 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3352 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3353 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3354 		wake_up_process(fs_info->cleaner_kthread);
3355 }
3356 
3357 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3358 				    struct btrfs_inode *inode)
3359 {
3360 	list_del_init(&inode->delayed_iput);
3361 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3362 	iput(&inode->vfs_inode);
3363 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3364 		wake_up(&fs_info->delayed_iputs_wait);
3365 	spin_lock_irq(&fs_info->delayed_iput_lock);
3366 }
3367 
3368 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3369 				   struct btrfs_inode *inode)
3370 {
3371 	if (!list_empty(&inode->delayed_iput)) {
3372 		spin_lock_irq(&fs_info->delayed_iput_lock);
3373 		if (!list_empty(&inode->delayed_iput))
3374 			run_delayed_iput_locked(fs_info, inode);
3375 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3376 	}
3377 }
3378 
3379 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3380 {
3381 	/*
3382 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3383 	 * calls btrfs_add_delayed_iput() and that needs to lock
3384 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3385 	 * prevent a deadlock.
3386 	 */
3387 	spin_lock_irq(&fs_info->delayed_iput_lock);
3388 	while (!list_empty(&fs_info->delayed_iputs)) {
3389 		struct btrfs_inode *inode;
3390 
3391 		inode = list_first_entry(&fs_info->delayed_iputs,
3392 				struct btrfs_inode, delayed_iput);
3393 		run_delayed_iput_locked(fs_info, inode);
3394 		if (need_resched()) {
3395 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3396 			cond_resched();
3397 			spin_lock_irq(&fs_info->delayed_iput_lock);
3398 		}
3399 	}
3400 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3401 }
3402 
3403 /*
3404  * Wait for flushing all delayed iputs
3405  *
3406  * @fs_info:  the filesystem
3407  *
3408  * This will wait on any delayed iputs that are currently running with KILLABLE
3409  * set.  Once they are all done running we will return, unless we are killed in
3410  * which case we return EINTR. This helps in user operations like fallocate etc
3411  * that might get blocked on the iputs.
3412  *
3413  * Return EINTR if we were killed, 0 if nothing's pending
3414  */
3415 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3416 {
3417 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3418 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3419 	if (ret)
3420 		return -EINTR;
3421 	return 0;
3422 }
3423 
3424 /*
3425  * This creates an orphan entry for the given inode in case something goes wrong
3426  * in the middle of an unlink.
3427  */
3428 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3429 		     struct btrfs_inode *inode)
3430 {
3431 	int ret;
3432 
3433 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3434 	if (ret && ret != -EEXIST) {
3435 		btrfs_abort_transaction(trans, ret);
3436 		return ret;
3437 	}
3438 
3439 	return 0;
3440 }
3441 
3442 /*
3443  * We have done the delete so we can go ahead and remove the orphan item for
3444  * this particular inode.
3445  */
3446 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3447 			    struct btrfs_inode *inode)
3448 {
3449 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3450 }
3451 
3452 /*
3453  * this cleans up any orphans that may be left on the list from the last use
3454  * of this root.
3455  */
3456 int btrfs_orphan_cleanup(struct btrfs_root *root)
3457 {
3458 	struct btrfs_fs_info *fs_info = root->fs_info;
3459 	struct btrfs_path *path;
3460 	struct extent_buffer *leaf;
3461 	struct btrfs_key key, found_key;
3462 	struct btrfs_trans_handle *trans;
3463 	struct inode *inode;
3464 	u64 last_objectid = 0;
3465 	int ret = 0, nr_unlink = 0;
3466 
3467 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3468 		return 0;
3469 
3470 	path = btrfs_alloc_path();
3471 	if (!path) {
3472 		ret = -ENOMEM;
3473 		goto out;
3474 	}
3475 	path->reada = READA_BACK;
3476 
3477 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3478 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3479 	key.offset = (u64)-1;
3480 
3481 	while (1) {
3482 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483 		if (ret < 0)
3484 			goto out;
3485 
3486 		/*
3487 		 * if ret == 0 means we found what we were searching for, which
3488 		 * is weird, but possible, so only screw with path if we didn't
3489 		 * find the key and see if we have stuff that matches
3490 		 */
3491 		if (ret > 0) {
3492 			ret = 0;
3493 			if (path->slots[0] == 0)
3494 				break;
3495 			path->slots[0]--;
3496 		}
3497 
3498 		/* pull out the item */
3499 		leaf = path->nodes[0];
3500 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3501 
3502 		/* make sure the item matches what we want */
3503 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3504 			break;
3505 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3506 			break;
3507 
3508 		/* release the path since we're done with it */
3509 		btrfs_release_path(path);
3510 
3511 		/*
3512 		 * this is where we are basically btrfs_lookup, without the
3513 		 * crossing root thing.  we store the inode number in the
3514 		 * offset of the orphan item.
3515 		 */
3516 
3517 		if (found_key.offset == last_objectid) {
3518 			/*
3519 			 * We found the same inode as before. This means we were
3520 			 * not able to remove its items via eviction triggered
3521 			 * by an iput(). A transaction abort may have happened,
3522 			 * due to -ENOSPC for example, so try to grab the error
3523 			 * that lead to a transaction abort, if any.
3524 			 */
3525 			btrfs_err(fs_info,
3526 				  "Error removing orphan entry, stopping orphan cleanup");
3527 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3528 			goto out;
3529 		}
3530 
3531 		last_objectid = found_key.offset;
3532 
3533 		found_key.objectid = found_key.offset;
3534 		found_key.type = BTRFS_INODE_ITEM_KEY;
3535 		found_key.offset = 0;
3536 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3537 		if (IS_ERR(inode)) {
3538 			ret = PTR_ERR(inode);
3539 			inode = NULL;
3540 			if (ret != -ENOENT)
3541 				goto out;
3542 		}
3543 
3544 		if (!inode && root == fs_info->tree_root) {
3545 			struct btrfs_root *dead_root;
3546 			int is_dead_root = 0;
3547 
3548 			/*
3549 			 * This is an orphan in the tree root. Currently these
3550 			 * could come from 2 sources:
3551 			 *  a) a root (snapshot/subvolume) deletion in progress
3552 			 *  b) a free space cache inode
3553 			 * We need to distinguish those two, as the orphan item
3554 			 * for a root must not get deleted before the deletion
3555 			 * of the snapshot/subvolume's tree completes.
3556 			 *
3557 			 * btrfs_find_orphan_roots() ran before us, which has
3558 			 * found all deleted roots and loaded them into
3559 			 * fs_info->fs_roots_radix. So here we can find if an
3560 			 * orphan item corresponds to a deleted root by looking
3561 			 * up the root from that radix tree.
3562 			 */
3563 
3564 			spin_lock(&fs_info->fs_roots_radix_lock);
3565 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3566 							 (unsigned long)found_key.objectid);
3567 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3568 				is_dead_root = 1;
3569 			spin_unlock(&fs_info->fs_roots_radix_lock);
3570 
3571 			if (is_dead_root) {
3572 				/* prevent this orphan from being found again */
3573 				key.offset = found_key.objectid - 1;
3574 				continue;
3575 			}
3576 
3577 		}
3578 
3579 		/*
3580 		 * If we have an inode with links, there are a couple of
3581 		 * possibilities:
3582 		 *
3583 		 * 1. We were halfway through creating fsverity metadata for the
3584 		 * file. In that case, the orphan item represents incomplete
3585 		 * fsverity metadata which must be cleaned up with
3586 		 * btrfs_drop_verity_items and deleting the orphan item.
3587 
3588 		 * 2. Old kernels (before v3.12) used to create an
3589 		 * orphan item for truncate indicating that there were possibly
3590 		 * extent items past i_size that needed to be deleted. In v3.12,
3591 		 * truncate was changed to update i_size in sync with the extent
3592 		 * items, but the (useless) orphan item was still created. Since
3593 		 * v4.18, we don't create the orphan item for truncate at all.
3594 		 *
3595 		 * So, this item could mean that we need to do a truncate, but
3596 		 * only if this filesystem was last used on a pre-v3.12 kernel
3597 		 * and was not cleanly unmounted. The odds of that are quite
3598 		 * slim, and it's a pain to do the truncate now, so just delete
3599 		 * the orphan item.
3600 		 *
3601 		 * It's also possible that this orphan item was supposed to be
3602 		 * deleted but wasn't. The inode number may have been reused,
3603 		 * but either way, we can delete the orphan item.
3604 		 */
3605 		if (!inode || inode->i_nlink) {
3606 			if (inode) {
3607 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3608 				iput(inode);
3609 				inode = NULL;
3610 				if (ret)
3611 					goto out;
3612 			}
3613 			trans = btrfs_start_transaction(root, 1);
3614 			if (IS_ERR(trans)) {
3615 				ret = PTR_ERR(trans);
3616 				goto out;
3617 			}
3618 			btrfs_debug(fs_info, "auto deleting %Lu",
3619 				    found_key.objectid);
3620 			ret = btrfs_del_orphan_item(trans, root,
3621 						    found_key.objectid);
3622 			btrfs_end_transaction(trans);
3623 			if (ret)
3624 				goto out;
3625 			continue;
3626 		}
3627 
3628 		nr_unlink++;
3629 
3630 		/* this will do delete_inode and everything for us */
3631 		iput(inode);
3632 	}
3633 	/* release the path since we're done with it */
3634 	btrfs_release_path(path);
3635 
3636 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3637 		trans = btrfs_join_transaction(root);
3638 		if (!IS_ERR(trans))
3639 			btrfs_end_transaction(trans);
3640 	}
3641 
3642 	if (nr_unlink)
3643 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3644 
3645 out:
3646 	if (ret)
3647 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3648 	btrfs_free_path(path);
3649 	return ret;
3650 }
3651 
3652 /*
3653  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3654  * don't find any xattrs, we know there can't be any acls.
3655  *
3656  * slot is the slot the inode is in, objectid is the objectid of the inode
3657  */
3658 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3659 					  int slot, u64 objectid,
3660 					  int *first_xattr_slot)
3661 {
3662 	u32 nritems = btrfs_header_nritems(leaf);
3663 	struct btrfs_key found_key;
3664 	static u64 xattr_access = 0;
3665 	static u64 xattr_default = 0;
3666 	int scanned = 0;
3667 
3668 	if (!xattr_access) {
3669 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3670 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3671 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3672 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3673 	}
3674 
3675 	slot++;
3676 	*first_xattr_slot = -1;
3677 	while (slot < nritems) {
3678 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3679 
3680 		/* we found a different objectid, there must not be acls */
3681 		if (found_key.objectid != objectid)
3682 			return 0;
3683 
3684 		/* we found an xattr, assume we've got an acl */
3685 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3686 			if (*first_xattr_slot == -1)
3687 				*first_xattr_slot = slot;
3688 			if (found_key.offset == xattr_access ||
3689 			    found_key.offset == xattr_default)
3690 				return 1;
3691 		}
3692 
3693 		/*
3694 		 * we found a key greater than an xattr key, there can't
3695 		 * be any acls later on
3696 		 */
3697 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3698 			return 0;
3699 
3700 		slot++;
3701 		scanned++;
3702 
3703 		/*
3704 		 * it goes inode, inode backrefs, xattrs, extents,
3705 		 * so if there are a ton of hard links to an inode there can
3706 		 * be a lot of backrefs.  Don't waste time searching too hard,
3707 		 * this is just an optimization
3708 		 */
3709 		if (scanned >= 8)
3710 			break;
3711 	}
3712 	/* we hit the end of the leaf before we found an xattr or
3713 	 * something larger than an xattr.  We have to assume the inode
3714 	 * has acls
3715 	 */
3716 	if (*first_xattr_slot == -1)
3717 		*first_xattr_slot = slot;
3718 	return 1;
3719 }
3720 
3721 /*
3722  * read an inode from the btree into the in-memory inode
3723  */
3724 static int btrfs_read_locked_inode(struct inode *inode,
3725 				   struct btrfs_path *in_path)
3726 {
3727 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3728 	struct btrfs_path *path = in_path;
3729 	struct extent_buffer *leaf;
3730 	struct btrfs_inode_item *inode_item;
3731 	struct btrfs_root *root = BTRFS_I(inode)->root;
3732 	struct btrfs_key location;
3733 	unsigned long ptr;
3734 	int maybe_acls;
3735 	u32 rdev;
3736 	int ret;
3737 	bool filled = false;
3738 	int first_xattr_slot;
3739 
3740 	ret = btrfs_fill_inode(inode, &rdev);
3741 	if (!ret)
3742 		filled = true;
3743 
3744 	if (!path) {
3745 		path = btrfs_alloc_path();
3746 		if (!path)
3747 			return -ENOMEM;
3748 	}
3749 
3750 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3751 
3752 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3753 	if (ret) {
3754 		if (path != in_path)
3755 			btrfs_free_path(path);
3756 		return ret;
3757 	}
3758 
3759 	leaf = path->nodes[0];
3760 
3761 	if (filled)
3762 		goto cache_index;
3763 
3764 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3765 				    struct btrfs_inode_item);
3766 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3767 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3768 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3769 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3770 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3771 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3772 			round_up(i_size_read(inode), fs_info->sectorsize));
3773 
3774 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3775 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3776 
3777 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3778 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3779 
3780 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3781 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3782 
3783 	BTRFS_I(inode)->i_otime.tv_sec =
3784 		btrfs_timespec_sec(leaf, &inode_item->otime);
3785 	BTRFS_I(inode)->i_otime.tv_nsec =
3786 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3787 
3788 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3789 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3790 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3791 
3792 	inode_set_iversion_queried(inode,
3793 				   btrfs_inode_sequence(leaf, inode_item));
3794 	inode->i_generation = BTRFS_I(inode)->generation;
3795 	inode->i_rdev = 0;
3796 	rdev = btrfs_inode_rdev(leaf, inode_item);
3797 
3798 	BTRFS_I(inode)->index_cnt = (u64)-1;
3799 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3800 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3801 
3802 cache_index:
3803 	/*
3804 	 * If we were modified in the current generation and evicted from memory
3805 	 * and then re-read we need to do a full sync since we don't have any
3806 	 * idea about which extents were modified before we were evicted from
3807 	 * cache.
3808 	 *
3809 	 * This is required for both inode re-read from disk and delayed inode
3810 	 * in delayed_nodes_tree.
3811 	 */
3812 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3813 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3814 			&BTRFS_I(inode)->runtime_flags);
3815 
3816 	/*
3817 	 * We don't persist the id of the transaction where an unlink operation
3818 	 * against the inode was last made. So here we assume the inode might
3819 	 * have been evicted, and therefore the exact value of last_unlink_trans
3820 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3821 	 * between the inode and its parent if the inode is fsync'ed and the log
3822 	 * replayed. For example, in the scenario:
3823 	 *
3824 	 * touch mydir/foo
3825 	 * ln mydir/foo mydir/bar
3826 	 * sync
3827 	 * unlink mydir/bar
3828 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3829 	 * xfs_io -c fsync mydir/foo
3830 	 * <power failure>
3831 	 * mount fs, triggers fsync log replay
3832 	 *
3833 	 * We must make sure that when we fsync our inode foo we also log its
3834 	 * parent inode, otherwise after log replay the parent still has the
3835 	 * dentry with the "bar" name but our inode foo has a link count of 1
3836 	 * and doesn't have an inode ref with the name "bar" anymore.
3837 	 *
3838 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3839 	 * but it guarantees correctness at the expense of occasional full
3840 	 * transaction commits on fsync if our inode is a directory, or if our
3841 	 * inode is not a directory, logging its parent unnecessarily.
3842 	 */
3843 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3844 
3845 	/*
3846 	 * Same logic as for last_unlink_trans. We don't persist the generation
3847 	 * of the last transaction where this inode was used for a reflink
3848 	 * operation, so after eviction and reloading the inode we must be
3849 	 * pessimistic and assume the last transaction that modified the inode.
3850 	 */
3851 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3852 
3853 	path->slots[0]++;
3854 	if (inode->i_nlink != 1 ||
3855 	    path->slots[0] >= btrfs_header_nritems(leaf))
3856 		goto cache_acl;
3857 
3858 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3859 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3860 		goto cache_acl;
3861 
3862 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3863 	if (location.type == BTRFS_INODE_REF_KEY) {
3864 		struct btrfs_inode_ref *ref;
3865 
3866 		ref = (struct btrfs_inode_ref *)ptr;
3867 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3868 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3869 		struct btrfs_inode_extref *extref;
3870 
3871 		extref = (struct btrfs_inode_extref *)ptr;
3872 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3873 								     extref);
3874 	}
3875 cache_acl:
3876 	/*
3877 	 * try to precache a NULL acl entry for files that don't have
3878 	 * any xattrs or acls
3879 	 */
3880 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3881 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3882 	if (first_xattr_slot != -1) {
3883 		path->slots[0] = first_xattr_slot;
3884 		ret = btrfs_load_inode_props(inode, path);
3885 		if (ret)
3886 			btrfs_err(fs_info,
3887 				  "error loading props for ino %llu (root %llu): %d",
3888 				  btrfs_ino(BTRFS_I(inode)),
3889 				  root->root_key.objectid, ret);
3890 	}
3891 	if (path != in_path)
3892 		btrfs_free_path(path);
3893 
3894 	if (!maybe_acls)
3895 		cache_no_acl(inode);
3896 
3897 	switch (inode->i_mode & S_IFMT) {
3898 	case S_IFREG:
3899 		inode->i_mapping->a_ops = &btrfs_aops;
3900 		inode->i_fop = &btrfs_file_operations;
3901 		inode->i_op = &btrfs_file_inode_operations;
3902 		break;
3903 	case S_IFDIR:
3904 		inode->i_fop = &btrfs_dir_file_operations;
3905 		inode->i_op = &btrfs_dir_inode_operations;
3906 		break;
3907 	case S_IFLNK:
3908 		inode->i_op = &btrfs_symlink_inode_operations;
3909 		inode_nohighmem(inode);
3910 		inode->i_mapping->a_ops = &btrfs_aops;
3911 		break;
3912 	default:
3913 		inode->i_op = &btrfs_special_inode_operations;
3914 		init_special_inode(inode, inode->i_mode, rdev);
3915 		break;
3916 	}
3917 
3918 	btrfs_sync_inode_flags_to_i_flags(inode);
3919 	return 0;
3920 }
3921 
3922 /*
3923  * given a leaf and an inode, copy the inode fields into the leaf
3924  */
3925 static void fill_inode_item(struct btrfs_trans_handle *trans,
3926 			    struct extent_buffer *leaf,
3927 			    struct btrfs_inode_item *item,
3928 			    struct inode *inode)
3929 {
3930 	struct btrfs_map_token token;
3931 	u64 flags;
3932 
3933 	btrfs_init_map_token(&token, leaf);
3934 
3935 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3936 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3937 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3938 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3939 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3940 
3941 	btrfs_set_token_timespec_sec(&token, &item->atime,
3942 				     inode->i_atime.tv_sec);
3943 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3944 				      inode->i_atime.tv_nsec);
3945 
3946 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3947 				     inode->i_mtime.tv_sec);
3948 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3949 				      inode->i_mtime.tv_nsec);
3950 
3951 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3952 				     inode_get_ctime(inode).tv_sec);
3953 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3954 				      inode_get_ctime(inode).tv_nsec);
3955 
3956 	btrfs_set_token_timespec_sec(&token, &item->otime,
3957 				     BTRFS_I(inode)->i_otime.tv_sec);
3958 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3959 				      BTRFS_I(inode)->i_otime.tv_nsec);
3960 
3961 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3962 	btrfs_set_token_inode_generation(&token, item,
3963 					 BTRFS_I(inode)->generation);
3964 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3965 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3966 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3967 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3968 					  BTRFS_I(inode)->ro_flags);
3969 	btrfs_set_token_inode_flags(&token, item, flags);
3970 	btrfs_set_token_inode_block_group(&token, item, 0);
3971 }
3972 
3973 /*
3974  * copy everything in the in-memory inode into the btree.
3975  */
3976 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3977 				struct btrfs_root *root,
3978 				struct btrfs_inode *inode)
3979 {
3980 	struct btrfs_inode_item *inode_item;
3981 	struct btrfs_path *path;
3982 	struct extent_buffer *leaf;
3983 	int ret;
3984 
3985 	path = btrfs_alloc_path();
3986 	if (!path)
3987 		return -ENOMEM;
3988 
3989 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3990 	if (ret) {
3991 		if (ret > 0)
3992 			ret = -ENOENT;
3993 		goto failed;
3994 	}
3995 
3996 	leaf = path->nodes[0];
3997 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3998 				    struct btrfs_inode_item);
3999 
4000 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4001 	btrfs_mark_buffer_dirty(trans, leaf);
4002 	btrfs_set_inode_last_trans(trans, inode);
4003 	ret = 0;
4004 failed:
4005 	btrfs_free_path(path);
4006 	return ret;
4007 }
4008 
4009 /*
4010  * copy everything in the in-memory inode into the btree.
4011  */
4012 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4013 				struct btrfs_root *root,
4014 				struct btrfs_inode *inode)
4015 {
4016 	struct btrfs_fs_info *fs_info = root->fs_info;
4017 	int ret;
4018 
4019 	/*
4020 	 * If the inode is a free space inode, we can deadlock during commit
4021 	 * if we put it into the delayed code.
4022 	 *
4023 	 * The data relocation inode should also be directly updated
4024 	 * without delay
4025 	 */
4026 	if (!btrfs_is_free_space_inode(inode)
4027 	    && !btrfs_is_data_reloc_root(root)
4028 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4029 		btrfs_update_root_times(trans, root);
4030 
4031 		ret = btrfs_delayed_update_inode(trans, root, inode);
4032 		if (!ret)
4033 			btrfs_set_inode_last_trans(trans, inode);
4034 		return ret;
4035 	}
4036 
4037 	return btrfs_update_inode_item(trans, root, inode);
4038 }
4039 
4040 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4041 				struct btrfs_root *root, struct btrfs_inode *inode)
4042 {
4043 	int ret;
4044 
4045 	ret = btrfs_update_inode(trans, root, inode);
4046 	if (ret == -ENOSPC)
4047 		return btrfs_update_inode_item(trans, root, inode);
4048 	return ret;
4049 }
4050 
4051 /*
4052  * unlink helper that gets used here in inode.c and in the tree logging
4053  * recovery code.  It remove a link in a directory with a given name, and
4054  * also drops the back refs in the inode to the directory
4055  */
4056 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4057 				struct btrfs_inode *dir,
4058 				struct btrfs_inode *inode,
4059 				const struct fscrypt_str *name,
4060 				struct btrfs_rename_ctx *rename_ctx)
4061 {
4062 	struct btrfs_root *root = dir->root;
4063 	struct btrfs_fs_info *fs_info = root->fs_info;
4064 	struct btrfs_path *path;
4065 	int ret = 0;
4066 	struct btrfs_dir_item *di;
4067 	u64 index;
4068 	u64 ino = btrfs_ino(inode);
4069 	u64 dir_ino = btrfs_ino(dir);
4070 
4071 	path = btrfs_alloc_path();
4072 	if (!path) {
4073 		ret = -ENOMEM;
4074 		goto out;
4075 	}
4076 
4077 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4078 	if (IS_ERR_OR_NULL(di)) {
4079 		ret = di ? PTR_ERR(di) : -ENOENT;
4080 		goto err;
4081 	}
4082 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4083 	if (ret)
4084 		goto err;
4085 	btrfs_release_path(path);
4086 
4087 	/*
4088 	 * If we don't have dir index, we have to get it by looking up
4089 	 * the inode ref, since we get the inode ref, remove it directly,
4090 	 * it is unnecessary to do delayed deletion.
4091 	 *
4092 	 * But if we have dir index, needn't search inode ref to get it.
4093 	 * Since the inode ref is close to the inode item, it is better
4094 	 * that we delay to delete it, and just do this deletion when
4095 	 * we update the inode item.
4096 	 */
4097 	if (inode->dir_index) {
4098 		ret = btrfs_delayed_delete_inode_ref(inode);
4099 		if (!ret) {
4100 			index = inode->dir_index;
4101 			goto skip_backref;
4102 		}
4103 	}
4104 
4105 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4106 	if (ret) {
4107 		btrfs_info(fs_info,
4108 			"failed to delete reference to %.*s, inode %llu parent %llu",
4109 			name->len, name->name, ino, dir_ino);
4110 		btrfs_abort_transaction(trans, ret);
4111 		goto err;
4112 	}
4113 skip_backref:
4114 	if (rename_ctx)
4115 		rename_ctx->index = index;
4116 
4117 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4118 	if (ret) {
4119 		btrfs_abort_transaction(trans, ret);
4120 		goto err;
4121 	}
4122 
4123 	/*
4124 	 * If we are in a rename context, we don't need to update anything in the
4125 	 * log. That will be done later during the rename by btrfs_log_new_name().
4126 	 * Besides that, doing it here would only cause extra unnecessary btree
4127 	 * operations on the log tree, increasing latency for applications.
4128 	 */
4129 	if (!rename_ctx) {
4130 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4131 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4132 	}
4133 
4134 	/*
4135 	 * If we have a pending delayed iput we could end up with the final iput
4136 	 * being run in btrfs-cleaner context.  If we have enough of these built
4137 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4138 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4139 	 * the inode we can run the delayed iput here without any issues as the
4140 	 * final iput won't be done until after we drop the ref we're currently
4141 	 * holding.
4142 	 */
4143 	btrfs_run_delayed_iput(fs_info, inode);
4144 err:
4145 	btrfs_free_path(path);
4146 	if (ret)
4147 		goto out;
4148 
4149 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4150 	inode_inc_iversion(&inode->vfs_inode);
4151 	inode_set_ctime_current(&inode->vfs_inode);
4152 	inode_inc_iversion(&dir->vfs_inode);
4153 	inode_set_ctime_current(&inode->vfs_inode);
4154 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4155 	ret = btrfs_update_inode(trans, root, dir);
4156 out:
4157 	return ret;
4158 }
4159 
4160 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4161 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4162 		       const struct fscrypt_str *name)
4163 {
4164 	int ret;
4165 
4166 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4167 	if (!ret) {
4168 		drop_nlink(&inode->vfs_inode);
4169 		ret = btrfs_update_inode(trans, inode->root, inode);
4170 	}
4171 	return ret;
4172 }
4173 
4174 /*
4175  * helper to start transaction for unlink and rmdir.
4176  *
4177  * unlink and rmdir are special in btrfs, they do not always free space, so
4178  * if we cannot make our reservations the normal way try and see if there is
4179  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4180  * allow the unlink to occur.
4181  */
4182 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4183 {
4184 	struct btrfs_root *root = dir->root;
4185 
4186 	return btrfs_start_transaction_fallback_global_rsv(root,
4187 						   BTRFS_UNLINK_METADATA_UNITS);
4188 }
4189 
4190 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4191 {
4192 	struct btrfs_trans_handle *trans;
4193 	struct inode *inode = d_inode(dentry);
4194 	int ret;
4195 	struct fscrypt_name fname;
4196 
4197 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4198 	if (ret)
4199 		return ret;
4200 
4201 	/* This needs to handle no-key deletions later on */
4202 
4203 	trans = __unlink_start_trans(BTRFS_I(dir));
4204 	if (IS_ERR(trans)) {
4205 		ret = PTR_ERR(trans);
4206 		goto fscrypt_free;
4207 	}
4208 
4209 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4210 				false);
4211 
4212 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4213 				 &fname.disk_name);
4214 	if (ret)
4215 		goto end_trans;
4216 
4217 	if (inode->i_nlink == 0) {
4218 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4219 		if (ret)
4220 			goto end_trans;
4221 	}
4222 
4223 end_trans:
4224 	btrfs_end_transaction(trans);
4225 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4226 fscrypt_free:
4227 	fscrypt_free_filename(&fname);
4228 	return ret;
4229 }
4230 
4231 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4232 			       struct btrfs_inode *dir, struct dentry *dentry)
4233 {
4234 	struct btrfs_root *root = dir->root;
4235 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4236 	struct btrfs_path *path;
4237 	struct extent_buffer *leaf;
4238 	struct btrfs_dir_item *di;
4239 	struct btrfs_key key;
4240 	u64 index;
4241 	int ret;
4242 	u64 objectid;
4243 	u64 dir_ino = btrfs_ino(dir);
4244 	struct fscrypt_name fname;
4245 
4246 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4247 	if (ret)
4248 		return ret;
4249 
4250 	/* This needs to handle no-key deletions later on */
4251 
4252 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4253 		objectid = inode->root->root_key.objectid;
4254 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4255 		objectid = inode->location.objectid;
4256 	} else {
4257 		WARN_ON(1);
4258 		fscrypt_free_filename(&fname);
4259 		return -EINVAL;
4260 	}
4261 
4262 	path = btrfs_alloc_path();
4263 	if (!path) {
4264 		ret = -ENOMEM;
4265 		goto out;
4266 	}
4267 
4268 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4269 				   &fname.disk_name, -1);
4270 	if (IS_ERR_OR_NULL(di)) {
4271 		ret = di ? PTR_ERR(di) : -ENOENT;
4272 		goto out;
4273 	}
4274 
4275 	leaf = path->nodes[0];
4276 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4277 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4278 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4279 	if (ret) {
4280 		btrfs_abort_transaction(trans, ret);
4281 		goto out;
4282 	}
4283 	btrfs_release_path(path);
4284 
4285 	/*
4286 	 * This is a placeholder inode for a subvolume we didn't have a
4287 	 * reference to at the time of the snapshot creation.  In the meantime
4288 	 * we could have renamed the real subvol link into our snapshot, so
4289 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4290 	 * Instead simply lookup the dir_index_item for this entry so we can
4291 	 * remove it.  Otherwise we know we have a ref to the root and we can
4292 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4293 	 */
4294 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4295 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4296 		if (IS_ERR(di)) {
4297 			ret = PTR_ERR(di);
4298 			btrfs_abort_transaction(trans, ret);
4299 			goto out;
4300 		}
4301 
4302 		leaf = path->nodes[0];
4303 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4304 		index = key.offset;
4305 		btrfs_release_path(path);
4306 	} else {
4307 		ret = btrfs_del_root_ref(trans, objectid,
4308 					 root->root_key.objectid, dir_ino,
4309 					 &index, &fname.disk_name);
4310 		if (ret) {
4311 			btrfs_abort_transaction(trans, ret);
4312 			goto out;
4313 		}
4314 	}
4315 
4316 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4317 	if (ret) {
4318 		btrfs_abort_transaction(trans, ret);
4319 		goto out;
4320 	}
4321 
4322 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4323 	inode_inc_iversion(&dir->vfs_inode);
4324 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4325 	ret = btrfs_update_inode_fallback(trans, root, dir);
4326 	if (ret)
4327 		btrfs_abort_transaction(trans, ret);
4328 out:
4329 	btrfs_free_path(path);
4330 	fscrypt_free_filename(&fname);
4331 	return ret;
4332 }
4333 
4334 /*
4335  * Helper to check if the subvolume references other subvolumes or if it's
4336  * default.
4337  */
4338 static noinline int may_destroy_subvol(struct btrfs_root *root)
4339 {
4340 	struct btrfs_fs_info *fs_info = root->fs_info;
4341 	struct btrfs_path *path;
4342 	struct btrfs_dir_item *di;
4343 	struct btrfs_key key;
4344 	struct fscrypt_str name = FSTR_INIT("default", 7);
4345 	u64 dir_id;
4346 	int ret;
4347 
4348 	path = btrfs_alloc_path();
4349 	if (!path)
4350 		return -ENOMEM;
4351 
4352 	/* Make sure this root isn't set as the default subvol */
4353 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4354 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4355 				   dir_id, &name, 0);
4356 	if (di && !IS_ERR(di)) {
4357 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4358 		if (key.objectid == root->root_key.objectid) {
4359 			ret = -EPERM;
4360 			btrfs_err(fs_info,
4361 				  "deleting default subvolume %llu is not allowed",
4362 				  key.objectid);
4363 			goto out;
4364 		}
4365 		btrfs_release_path(path);
4366 	}
4367 
4368 	key.objectid = root->root_key.objectid;
4369 	key.type = BTRFS_ROOT_REF_KEY;
4370 	key.offset = (u64)-1;
4371 
4372 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4373 	if (ret < 0)
4374 		goto out;
4375 	if (ret == 0) {
4376 		/*
4377 		 * Key with offset -1 found, there would have to exist a root
4378 		 * with such id, but this is out of valid range.
4379 		 */
4380 		ret = -EUCLEAN;
4381 		goto out;
4382 	}
4383 
4384 	ret = 0;
4385 	if (path->slots[0] > 0) {
4386 		path->slots[0]--;
4387 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4388 		if (key.objectid == root->root_key.objectid &&
4389 		    key.type == BTRFS_ROOT_REF_KEY)
4390 			ret = -ENOTEMPTY;
4391 	}
4392 out:
4393 	btrfs_free_path(path);
4394 	return ret;
4395 }
4396 
4397 /* Delete all dentries for inodes belonging to the root */
4398 static void btrfs_prune_dentries(struct btrfs_root *root)
4399 {
4400 	struct btrfs_fs_info *fs_info = root->fs_info;
4401 	struct rb_node *node;
4402 	struct rb_node *prev;
4403 	struct btrfs_inode *entry;
4404 	struct inode *inode;
4405 	u64 objectid = 0;
4406 
4407 	if (!BTRFS_FS_ERROR(fs_info))
4408 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4409 
4410 	spin_lock(&root->inode_lock);
4411 again:
4412 	node = root->inode_tree.rb_node;
4413 	prev = NULL;
4414 	while (node) {
4415 		prev = node;
4416 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4417 
4418 		if (objectid < btrfs_ino(entry))
4419 			node = node->rb_left;
4420 		else if (objectid > btrfs_ino(entry))
4421 			node = node->rb_right;
4422 		else
4423 			break;
4424 	}
4425 	if (!node) {
4426 		while (prev) {
4427 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4428 			if (objectid <= btrfs_ino(entry)) {
4429 				node = prev;
4430 				break;
4431 			}
4432 			prev = rb_next(prev);
4433 		}
4434 	}
4435 	while (node) {
4436 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4437 		objectid = btrfs_ino(entry) + 1;
4438 		inode = igrab(&entry->vfs_inode);
4439 		if (inode) {
4440 			spin_unlock(&root->inode_lock);
4441 			if (atomic_read(&inode->i_count) > 1)
4442 				d_prune_aliases(inode);
4443 			/*
4444 			 * btrfs_drop_inode will have it removed from the inode
4445 			 * cache when its usage count hits zero.
4446 			 */
4447 			iput(inode);
4448 			cond_resched();
4449 			spin_lock(&root->inode_lock);
4450 			goto again;
4451 		}
4452 
4453 		if (cond_resched_lock(&root->inode_lock))
4454 			goto again;
4455 
4456 		node = rb_next(node);
4457 	}
4458 	spin_unlock(&root->inode_lock);
4459 }
4460 
4461 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4462 {
4463 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4464 	struct btrfs_root *root = dir->root;
4465 	struct inode *inode = d_inode(dentry);
4466 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4467 	struct btrfs_trans_handle *trans;
4468 	struct btrfs_block_rsv block_rsv;
4469 	u64 root_flags;
4470 	u64 qgroup_reserved = 0;
4471 	int ret;
4472 
4473 	down_write(&fs_info->subvol_sem);
4474 
4475 	/*
4476 	 * Don't allow to delete a subvolume with send in progress. This is
4477 	 * inside the inode lock so the error handling that has to drop the bit
4478 	 * again is not run concurrently.
4479 	 */
4480 	spin_lock(&dest->root_item_lock);
4481 	if (dest->send_in_progress) {
4482 		spin_unlock(&dest->root_item_lock);
4483 		btrfs_warn(fs_info,
4484 			   "attempt to delete subvolume %llu during send",
4485 			   dest->root_key.objectid);
4486 		ret = -EPERM;
4487 		goto out_up_write;
4488 	}
4489 	if (atomic_read(&dest->nr_swapfiles)) {
4490 		spin_unlock(&dest->root_item_lock);
4491 		btrfs_warn(fs_info,
4492 			   "attempt to delete subvolume %llu with active swapfile",
4493 			   root->root_key.objectid);
4494 		ret = -EPERM;
4495 		goto out_up_write;
4496 	}
4497 	root_flags = btrfs_root_flags(&dest->root_item);
4498 	btrfs_set_root_flags(&dest->root_item,
4499 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4500 	spin_unlock(&dest->root_item_lock);
4501 
4502 	ret = may_destroy_subvol(dest);
4503 	if (ret)
4504 		goto out_undead;
4505 
4506 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4507 	/*
4508 	 * One for dir inode,
4509 	 * two for dir entries,
4510 	 * two for root ref/backref.
4511 	 */
4512 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4513 	if (ret)
4514 		goto out_undead;
4515 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4516 
4517 	trans = btrfs_start_transaction(root, 0);
4518 	if (IS_ERR(trans)) {
4519 		ret = PTR_ERR(trans);
4520 		goto out_release;
4521 	}
4522 	ret = btrfs_record_root_in_trans(trans, root);
4523 	if (ret) {
4524 		btrfs_abort_transaction(trans, ret);
4525 		goto out_end_trans;
4526 	}
4527 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4528 	qgroup_reserved = 0;
4529 	trans->block_rsv = &block_rsv;
4530 	trans->bytes_reserved = block_rsv.size;
4531 
4532 	btrfs_record_snapshot_destroy(trans, dir);
4533 
4534 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4535 	if (ret) {
4536 		btrfs_abort_transaction(trans, ret);
4537 		goto out_end_trans;
4538 	}
4539 
4540 	ret = btrfs_record_root_in_trans(trans, dest);
4541 	if (ret) {
4542 		btrfs_abort_transaction(trans, ret);
4543 		goto out_end_trans;
4544 	}
4545 
4546 	memset(&dest->root_item.drop_progress, 0,
4547 		sizeof(dest->root_item.drop_progress));
4548 	btrfs_set_root_drop_level(&dest->root_item, 0);
4549 	btrfs_set_root_refs(&dest->root_item, 0);
4550 
4551 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4552 		ret = btrfs_insert_orphan_item(trans,
4553 					fs_info->tree_root,
4554 					dest->root_key.objectid);
4555 		if (ret) {
4556 			btrfs_abort_transaction(trans, ret);
4557 			goto out_end_trans;
4558 		}
4559 	}
4560 
4561 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4562 				  BTRFS_UUID_KEY_SUBVOL,
4563 				  dest->root_key.objectid);
4564 	if (ret && ret != -ENOENT) {
4565 		btrfs_abort_transaction(trans, ret);
4566 		goto out_end_trans;
4567 	}
4568 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4569 		ret = btrfs_uuid_tree_remove(trans,
4570 					  dest->root_item.received_uuid,
4571 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4572 					  dest->root_key.objectid);
4573 		if (ret && ret != -ENOENT) {
4574 			btrfs_abort_transaction(trans, ret);
4575 			goto out_end_trans;
4576 		}
4577 	}
4578 
4579 	free_anon_bdev(dest->anon_dev);
4580 	dest->anon_dev = 0;
4581 out_end_trans:
4582 	trans->block_rsv = NULL;
4583 	trans->bytes_reserved = 0;
4584 	ret = btrfs_end_transaction(trans);
4585 	inode->i_flags |= S_DEAD;
4586 out_release:
4587 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4588 	if (qgroup_reserved)
4589 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4590 out_undead:
4591 	if (ret) {
4592 		spin_lock(&dest->root_item_lock);
4593 		root_flags = btrfs_root_flags(&dest->root_item);
4594 		btrfs_set_root_flags(&dest->root_item,
4595 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4596 		spin_unlock(&dest->root_item_lock);
4597 	}
4598 out_up_write:
4599 	up_write(&fs_info->subvol_sem);
4600 	if (!ret) {
4601 		d_invalidate(dentry);
4602 		btrfs_prune_dentries(dest);
4603 		ASSERT(dest->send_in_progress == 0);
4604 	}
4605 
4606 	return ret;
4607 }
4608 
4609 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4610 {
4611 	struct inode *inode = d_inode(dentry);
4612 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4613 	int err = 0;
4614 	struct btrfs_trans_handle *trans;
4615 	u64 last_unlink_trans;
4616 	struct fscrypt_name fname;
4617 
4618 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4619 		return -ENOTEMPTY;
4620 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4621 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4622 			btrfs_err(fs_info,
4623 			"extent tree v2 doesn't support snapshot deletion yet");
4624 			return -EOPNOTSUPP;
4625 		}
4626 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4627 	}
4628 
4629 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4630 	if (err)
4631 		return err;
4632 
4633 	/* This needs to handle no-key deletions later on */
4634 
4635 	trans = __unlink_start_trans(BTRFS_I(dir));
4636 	if (IS_ERR(trans)) {
4637 		err = PTR_ERR(trans);
4638 		goto out_notrans;
4639 	}
4640 
4641 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4642 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4643 		goto out;
4644 	}
4645 
4646 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4647 	if (err)
4648 		goto out;
4649 
4650 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4651 
4652 	/* now the directory is empty */
4653 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4654 				 &fname.disk_name);
4655 	if (!err) {
4656 		btrfs_i_size_write(BTRFS_I(inode), 0);
4657 		/*
4658 		 * Propagate the last_unlink_trans value of the deleted dir to
4659 		 * its parent directory. This is to prevent an unrecoverable
4660 		 * log tree in the case we do something like this:
4661 		 * 1) create dir foo
4662 		 * 2) create snapshot under dir foo
4663 		 * 3) delete the snapshot
4664 		 * 4) rmdir foo
4665 		 * 5) mkdir foo
4666 		 * 6) fsync foo or some file inside foo
4667 		 */
4668 		if (last_unlink_trans >= trans->transid)
4669 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4670 	}
4671 out:
4672 	btrfs_end_transaction(trans);
4673 out_notrans:
4674 	btrfs_btree_balance_dirty(fs_info);
4675 	fscrypt_free_filename(&fname);
4676 
4677 	return err;
4678 }
4679 
4680 /*
4681  * btrfs_truncate_block - read, zero a chunk and write a block
4682  * @inode - inode that we're zeroing
4683  * @from - the offset to start zeroing
4684  * @len - the length to zero, 0 to zero the entire range respective to the
4685  *	offset
4686  * @front - zero up to the offset instead of from the offset on
4687  *
4688  * This will find the block for the "from" offset and cow the block and zero the
4689  * part we want to zero.  This is used with truncate and hole punching.
4690  */
4691 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4692 			 int front)
4693 {
4694 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4695 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4696 	struct extent_io_tree *io_tree = &inode->io_tree;
4697 	struct btrfs_ordered_extent *ordered;
4698 	struct extent_state *cached_state = NULL;
4699 	struct extent_changeset *data_reserved = NULL;
4700 	bool only_release_metadata = false;
4701 	u32 blocksize = fs_info->sectorsize;
4702 	pgoff_t index = from >> PAGE_SHIFT;
4703 	unsigned offset = from & (blocksize - 1);
4704 	struct page *page;
4705 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4706 	size_t write_bytes = blocksize;
4707 	int ret = 0;
4708 	u64 block_start;
4709 	u64 block_end;
4710 
4711 	if (IS_ALIGNED(offset, blocksize) &&
4712 	    (!len || IS_ALIGNED(len, blocksize)))
4713 		goto out;
4714 
4715 	block_start = round_down(from, blocksize);
4716 	block_end = block_start + blocksize - 1;
4717 
4718 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4719 					  blocksize, false);
4720 	if (ret < 0) {
4721 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4722 			/* For nocow case, no need to reserve data space */
4723 			only_release_metadata = true;
4724 		} else {
4725 			goto out;
4726 		}
4727 	}
4728 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4729 	if (ret < 0) {
4730 		if (!only_release_metadata)
4731 			btrfs_free_reserved_data_space(inode, data_reserved,
4732 						       block_start, blocksize);
4733 		goto out;
4734 	}
4735 again:
4736 	page = find_or_create_page(mapping, index, mask);
4737 	if (!page) {
4738 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4739 					     blocksize, true);
4740 		btrfs_delalloc_release_extents(inode, blocksize);
4741 		ret = -ENOMEM;
4742 		goto out;
4743 	}
4744 
4745 	if (!PageUptodate(page)) {
4746 		ret = btrfs_read_folio(NULL, page_folio(page));
4747 		lock_page(page);
4748 		if (page->mapping != mapping) {
4749 			unlock_page(page);
4750 			put_page(page);
4751 			goto again;
4752 		}
4753 		if (!PageUptodate(page)) {
4754 			ret = -EIO;
4755 			goto out_unlock;
4756 		}
4757 	}
4758 
4759 	/*
4760 	 * We unlock the page after the io is completed and then re-lock it
4761 	 * above.  release_folio() could have come in between that and cleared
4762 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4763 	 * here to make sure it's properly set for the subpage stuff.
4764 	 */
4765 	ret = set_page_extent_mapped(page);
4766 	if (ret < 0)
4767 		goto out_unlock;
4768 
4769 	wait_on_page_writeback(page);
4770 
4771 	lock_extent(io_tree, block_start, block_end, &cached_state);
4772 
4773 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4774 	if (ordered) {
4775 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4776 		unlock_page(page);
4777 		put_page(page);
4778 		btrfs_start_ordered_extent(ordered);
4779 		btrfs_put_ordered_extent(ordered);
4780 		goto again;
4781 	}
4782 
4783 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4784 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4785 			 &cached_state);
4786 
4787 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4788 					&cached_state);
4789 	if (ret) {
4790 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4791 		goto out_unlock;
4792 	}
4793 
4794 	if (offset != blocksize) {
4795 		if (!len)
4796 			len = blocksize - offset;
4797 		if (front)
4798 			memzero_page(page, (block_start - page_offset(page)),
4799 				     offset);
4800 		else
4801 			memzero_page(page, (block_start - page_offset(page)) + offset,
4802 				     len);
4803 	}
4804 	btrfs_page_clear_checked(fs_info, page, block_start,
4805 				 block_end + 1 - block_start);
4806 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4807 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4808 
4809 	if (only_release_metadata)
4810 		set_extent_bit(&inode->io_tree, block_start, block_end,
4811 			       EXTENT_NORESERVE, NULL);
4812 
4813 out_unlock:
4814 	if (ret) {
4815 		if (only_release_metadata)
4816 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4817 		else
4818 			btrfs_delalloc_release_space(inode, data_reserved,
4819 					block_start, blocksize, true);
4820 	}
4821 	btrfs_delalloc_release_extents(inode, blocksize);
4822 	unlock_page(page);
4823 	put_page(page);
4824 out:
4825 	if (only_release_metadata)
4826 		btrfs_check_nocow_unlock(inode);
4827 	extent_changeset_free(data_reserved);
4828 	return ret;
4829 }
4830 
4831 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4832 			     u64 offset, u64 len)
4833 {
4834 	struct btrfs_fs_info *fs_info = root->fs_info;
4835 	struct btrfs_trans_handle *trans;
4836 	struct btrfs_drop_extents_args drop_args = { 0 };
4837 	int ret;
4838 
4839 	/*
4840 	 * If NO_HOLES is enabled, we don't need to do anything.
4841 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4842 	 * or btrfs_update_inode() will be called, which guarantee that the next
4843 	 * fsync will know this inode was changed and needs to be logged.
4844 	 */
4845 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4846 		return 0;
4847 
4848 	/*
4849 	 * 1 - for the one we're dropping
4850 	 * 1 - for the one we're adding
4851 	 * 1 - for updating the inode.
4852 	 */
4853 	trans = btrfs_start_transaction(root, 3);
4854 	if (IS_ERR(trans))
4855 		return PTR_ERR(trans);
4856 
4857 	drop_args.start = offset;
4858 	drop_args.end = offset + len;
4859 	drop_args.drop_cache = true;
4860 
4861 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4862 	if (ret) {
4863 		btrfs_abort_transaction(trans, ret);
4864 		btrfs_end_transaction(trans);
4865 		return ret;
4866 	}
4867 
4868 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4869 	if (ret) {
4870 		btrfs_abort_transaction(trans, ret);
4871 	} else {
4872 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4873 		btrfs_update_inode(trans, root, inode);
4874 	}
4875 	btrfs_end_transaction(trans);
4876 	return ret;
4877 }
4878 
4879 /*
4880  * This function puts in dummy file extents for the area we're creating a hole
4881  * for.  So if we are truncating this file to a larger size we need to insert
4882  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4883  * the range between oldsize and size
4884  */
4885 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4886 {
4887 	struct btrfs_root *root = inode->root;
4888 	struct btrfs_fs_info *fs_info = root->fs_info;
4889 	struct extent_io_tree *io_tree = &inode->io_tree;
4890 	struct extent_map *em = NULL;
4891 	struct extent_state *cached_state = NULL;
4892 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4893 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4894 	u64 last_byte;
4895 	u64 cur_offset;
4896 	u64 hole_size;
4897 	int err = 0;
4898 
4899 	/*
4900 	 * If our size started in the middle of a block we need to zero out the
4901 	 * rest of the block before we expand the i_size, otherwise we could
4902 	 * expose stale data.
4903 	 */
4904 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4905 	if (err)
4906 		return err;
4907 
4908 	if (size <= hole_start)
4909 		return 0;
4910 
4911 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4912 					   &cached_state);
4913 	cur_offset = hole_start;
4914 	while (1) {
4915 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4916 				      block_end - cur_offset);
4917 		if (IS_ERR(em)) {
4918 			err = PTR_ERR(em);
4919 			em = NULL;
4920 			break;
4921 		}
4922 		last_byte = min(extent_map_end(em), block_end);
4923 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4924 		hole_size = last_byte - cur_offset;
4925 
4926 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4927 			struct extent_map *hole_em;
4928 
4929 			err = maybe_insert_hole(root, inode, cur_offset,
4930 						hole_size);
4931 			if (err)
4932 				break;
4933 
4934 			err = btrfs_inode_set_file_extent_range(inode,
4935 							cur_offset, hole_size);
4936 			if (err)
4937 				break;
4938 
4939 			hole_em = alloc_extent_map();
4940 			if (!hole_em) {
4941 				btrfs_drop_extent_map_range(inode, cur_offset,
4942 						    cur_offset + hole_size - 1,
4943 						    false);
4944 				btrfs_set_inode_full_sync(inode);
4945 				goto next;
4946 			}
4947 			hole_em->start = cur_offset;
4948 			hole_em->len = hole_size;
4949 			hole_em->orig_start = cur_offset;
4950 
4951 			hole_em->block_start = EXTENT_MAP_HOLE;
4952 			hole_em->block_len = 0;
4953 			hole_em->orig_block_len = 0;
4954 			hole_em->ram_bytes = hole_size;
4955 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4956 			hole_em->generation = fs_info->generation;
4957 
4958 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4959 			free_extent_map(hole_em);
4960 		} else {
4961 			err = btrfs_inode_set_file_extent_range(inode,
4962 							cur_offset, hole_size);
4963 			if (err)
4964 				break;
4965 		}
4966 next:
4967 		free_extent_map(em);
4968 		em = NULL;
4969 		cur_offset = last_byte;
4970 		if (cur_offset >= block_end)
4971 			break;
4972 	}
4973 	free_extent_map(em);
4974 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4975 	return err;
4976 }
4977 
4978 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4979 {
4980 	struct btrfs_root *root = BTRFS_I(inode)->root;
4981 	struct btrfs_trans_handle *trans;
4982 	loff_t oldsize = i_size_read(inode);
4983 	loff_t newsize = attr->ia_size;
4984 	int mask = attr->ia_valid;
4985 	int ret;
4986 
4987 	/*
4988 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4989 	 * special case where we need to update the times despite not having
4990 	 * these flags set.  For all other operations the VFS set these flags
4991 	 * explicitly if it wants a timestamp update.
4992 	 */
4993 	if (newsize != oldsize) {
4994 		inode_inc_iversion(inode);
4995 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4996 			inode->i_mtime = inode_set_ctime_current(inode);
4997 		}
4998 	}
4999 
5000 	if (newsize > oldsize) {
5001 		/*
5002 		 * Don't do an expanding truncate while snapshotting is ongoing.
5003 		 * This is to ensure the snapshot captures a fully consistent
5004 		 * state of this file - if the snapshot captures this expanding
5005 		 * truncation, it must capture all writes that happened before
5006 		 * this truncation.
5007 		 */
5008 		btrfs_drew_write_lock(&root->snapshot_lock);
5009 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5010 		if (ret) {
5011 			btrfs_drew_write_unlock(&root->snapshot_lock);
5012 			return ret;
5013 		}
5014 
5015 		trans = btrfs_start_transaction(root, 1);
5016 		if (IS_ERR(trans)) {
5017 			btrfs_drew_write_unlock(&root->snapshot_lock);
5018 			return PTR_ERR(trans);
5019 		}
5020 
5021 		i_size_write(inode, newsize);
5022 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5023 		pagecache_isize_extended(inode, oldsize, newsize);
5024 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5025 		btrfs_drew_write_unlock(&root->snapshot_lock);
5026 		btrfs_end_transaction(trans);
5027 	} else {
5028 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5029 
5030 		if (btrfs_is_zoned(fs_info)) {
5031 			ret = btrfs_wait_ordered_range(inode,
5032 					ALIGN(newsize, fs_info->sectorsize),
5033 					(u64)-1);
5034 			if (ret)
5035 				return ret;
5036 		}
5037 
5038 		/*
5039 		 * We're truncating a file that used to have good data down to
5040 		 * zero. Make sure any new writes to the file get on disk
5041 		 * on close.
5042 		 */
5043 		if (newsize == 0)
5044 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5045 				&BTRFS_I(inode)->runtime_flags);
5046 
5047 		truncate_setsize(inode, newsize);
5048 
5049 		inode_dio_wait(inode);
5050 
5051 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5052 		if (ret && inode->i_nlink) {
5053 			int err;
5054 
5055 			/*
5056 			 * Truncate failed, so fix up the in-memory size. We
5057 			 * adjusted disk_i_size down as we removed extents, so
5058 			 * wait for disk_i_size to be stable and then update the
5059 			 * in-memory size to match.
5060 			 */
5061 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5062 			if (err)
5063 				return err;
5064 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5065 		}
5066 	}
5067 
5068 	return ret;
5069 }
5070 
5071 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5072 			 struct iattr *attr)
5073 {
5074 	struct inode *inode = d_inode(dentry);
5075 	struct btrfs_root *root = BTRFS_I(inode)->root;
5076 	int err;
5077 
5078 	if (btrfs_root_readonly(root))
5079 		return -EROFS;
5080 
5081 	err = setattr_prepare(idmap, dentry, attr);
5082 	if (err)
5083 		return err;
5084 
5085 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5086 		err = btrfs_setsize(inode, attr);
5087 		if (err)
5088 			return err;
5089 	}
5090 
5091 	if (attr->ia_valid) {
5092 		setattr_copy(idmap, inode, attr);
5093 		inode_inc_iversion(inode);
5094 		err = btrfs_dirty_inode(BTRFS_I(inode));
5095 
5096 		if (!err && attr->ia_valid & ATTR_MODE)
5097 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5098 	}
5099 
5100 	return err;
5101 }
5102 
5103 /*
5104  * While truncating the inode pages during eviction, we get the VFS
5105  * calling btrfs_invalidate_folio() against each folio of the inode. This
5106  * is slow because the calls to btrfs_invalidate_folio() result in a
5107  * huge amount of calls to lock_extent() and clear_extent_bit(),
5108  * which keep merging and splitting extent_state structures over and over,
5109  * wasting lots of time.
5110  *
5111  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5112  * skip all those expensive operations on a per folio basis and do only
5113  * the ordered io finishing, while we release here the extent_map and
5114  * extent_state structures, without the excessive merging and splitting.
5115  */
5116 static void evict_inode_truncate_pages(struct inode *inode)
5117 {
5118 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5119 	struct rb_node *node;
5120 
5121 	ASSERT(inode->i_state & I_FREEING);
5122 	truncate_inode_pages_final(&inode->i_data);
5123 
5124 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5125 
5126 	/*
5127 	 * Keep looping until we have no more ranges in the io tree.
5128 	 * We can have ongoing bios started by readahead that have
5129 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5130 	 * still in progress (unlocked the pages in the bio but did not yet
5131 	 * unlocked the ranges in the io tree). Therefore this means some
5132 	 * ranges can still be locked and eviction started because before
5133 	 * submitting those bios, which are executed by a separate task (work
5134 	 * queue kthread), inode references (inode->i_count) were not taken
5135 	 * (which would be dropped in the end io callback of each bio).
5136 	 * Therefore here we effectively end up waiting for those bios and
5137 	 * anyone else holding locked ranges without having bumped the inode's
5138 	 * reference count - if we don't do it, when they access the inode's
5139 	 * io_tree to unlock a range it may be too late, leading to an
5140 	 * use-after-free issue.
5141 	 */
5142 	spin_lock(&io_tree->lock);
5143 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5144 		struct extent_state *state;
5145 		struct extent_state *cached_state = NULL;
5146 		u64 start;
5147 		u64 end;
5148 		unsigned state_flags;
5149 
5150 		node = rb_first(&io_tree->state);
5151 		state = rb_entry(node, struct extent_state, rb_node);
5152 		start = state->start;
5153 		end = state->end;
5154 		state_flags = state->state;
5155 		spin_unlock(&io_tree->lock);
5156 
5157 		lock_extent(io_tree, start, end, &cached_state);
5158 
5159 		/*
5160 		 * If still has DELALLOC flag, the extent didn't reach disk,
5161 		 * and its reserved space won't be freed by delayed_ref.
5162 		 * So we need to free its reserved space here.
5163 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5164 		 *
5165 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5166 		 */
5167 		if (state_flags & EXTENT_DELALLOC)
5168 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5169 					       end - start + 1, NULL);
5170 
5171 		clear_extent_bit(io_tree, start, end,
5172 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5173 				 &cached_state);
5174 
5175 		cond_resched();
5176 		spin_lock(&io_tree->lock);
5177 	}
5178 	spin_unlock(&io_tree->lock);
5179 }
5180 
5181 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5182 							struct btrfs_block_rsv *rsv)
5183 {
5184 	struct btrfs_fs_info *fs_info = root->fs_info;
5185 	struct btrfs_trans_handle *trans;
5186 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5187 	int ret;
5188 
5189 	/*
5190 	 * Eviction should be taking place at some place safe because of our
5191 	 * delayed iputs.  However the normal flushing code will run delayed
5192 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5193 	 *
5194 	 * We reserve the delayed_refs_extra here again because we can't use
5195 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5196 	 * above.  We reserve our extra bit here because we generate a ton of
5197 	 * delayed refs activity by truncating.
5198 	 *
5199 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5200 	 * if we fail to make this reservation we can re-try without the
5201 	 * delayed_refs_extra so we can make some forward progress.
5202 	 */
5203 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5204 				     BTRFS_RESERVE_FLUSH_EVICT);
5205 	if (ret) {
5206 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5207 					     BTRFS_RESERVE_FLUSH_EVICT);
5208 		if (ret) {
5209 			btrfs_warn(fs_info,
5210 				   "could not allocate space for delete; will truncate on mount");
5211 			return ERR_PTR(-ENOSPC);
5212 		}
5213 		delayed_refs_extra = 0;
5214 	}
5215 
5216 	trans = btrfs_join_transaction(root);
5217 	if (IS_ERR(trans))
5218 		return trans;
5219 
5220 	if (delayed_refs_extra) {
5221 		trans->block_rsv = &fs_info->trans_block_rsv;
5222 		trans->bytes_reserved = delayed_refs_extra;
5223 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5224 					delayed_refs_extra, true);
5225 	}
5226 	return trans;
5227 }
5228 
5229 void btrfs_evict_inode(struct inode *inode)
5230 {
5231 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5232 	struct btrfs_trans_handle *trans;
5233 	struct btrfs_root *root = BTRFS_I(inode)->root;
5234 	struct btrfs_block_rsv *rsv = NULL;
5235 	int ret;
5236 
5237 	trace_btrfs_inode_evict(inode);
5238 
5239 	if (!root) {
5240 		fsverity_cleanup_inode(inode);
5241 		clear_inode(inode);
5242 		return;
5243 	}
5244 
5245 	evict_inode_truncate_pages(inode);
5246 
5247 	if (inode->i_nlink &&
5248 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5249 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5250 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5251 		goto out;
5252 
5253 	if (is_bad_inode(inode))
5254 		goto out;
5255 
5256 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5257 		goto out;
5258 
5259 	if (inode->i_nlink > 0) {
5260 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5261 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5262 		goto out;
5263 	}
5264 
5265 	/*
5266 	 * This makes sure the inode item in tree is uptodate and the space for
5267 	 * the inode update is released.
5268 	 */
5269 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5270 	if (ret)
5271 		goto out;
5272 
5273 	/*
5274 	 * This drops any pending insert or delete operations we have for this
5275 	 * inode.  We could have a delayed dir index deletion queued up, but
5276 	 * we're removing the inode completely so that'll be taken care of in
5277 	 * the truncate.
5278 	 */
5279 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5280 
5281 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5282 	if (!rsv)
5283 		goto out;
5284 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5285 	rsv->failfast = true;
5286 
5287 	btrfs_i_size_write(BTRFS_I(inode), 0);
5288 
5289 	while (1) {
5290 		struct btrfs_truncate_control control = {
5291 			.inode = BTRFS_I(inode),
5292 			.ino = btrfs_ino(BTRFS_I(inode)),
5293 			.new_size = 0,
5294 			.min_type = 0,
5295 		};
5296 
5297 		trans = evict_refill_and_join(root, rsv);
5298 		if (IS_ERR(trans))
5299 			goto out;
5300 
5301 		trans->block_rsv = rsv;
5302 
5303 		ret = btrfs_truncate_inode_items(trans, root, &control);
5304 		trans->block_rsv = &fs_info->trans_block_rsv;
5305 		btrfs_end_transaction(trans);
5306 		/*
5307 		 * We have not added new delayed items for our inode after we
5308 		 * have flushed its delayed items, so no need to throttle on
5309 		 * delayed items. However we have modified extent buffers.
5310 		 */
5311 		btrfs_btree_balance_dirty_nodelay(fs_info);
5312 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5313 			goto out;
5314 		else if (!ret)
5315 			break;
5316 	}
5317 
5318 	/*
5319 	 * Errors here aren't a big deal, it just means we leave orphan items in
5320 	 * the tree. They will be cleaned up on the next mount. If the inode
5321 	 * number gets reused, cleanup deletes the orphan item without doing
5322 	 * anything, and unlink reuses the existing orphan item.
5323 	 *
5324 	 * If it turns out that we are dropping too many of these, we might want
5325 	 * to add a mechanism for retrying these after a commit.
5326 	 */
5327 	trans = evict_refill_and_join(root, rsv);
5328 	if (!IS_ERR(trans)) {
5329 		trans->block_rsv = rsv;
5330 		btrfs_orphan_del(trans, BTRFS_I(inode));
5331 		trans->block_rsv = &fs_info->trans_block_rsv;
5332 		btrfs_end_transaction(trans);
5333 	}
5334 
5335 out:
5336 	btrfs_free_block_rsv(fs_info, rsv);
5337 	/*
5338 	 * If we didn't successfully delete, the orphan item will still be in
5339 	 * the tree and we'll retry on the next mount. Again, we might also want
5340 	 * to retry these periodically in the future.
5341 	 */
5342 	btrfs_remove_delayed_node(BTRFS_I(inode));
5343 	fsverity_cleanup_inode(inode);
5344 	clear_inode(inode);
5345 }
5346 
5347 /*
5348  * Return the key found in the dir entry in the location pointer, fill @type
5349  * with BTRFS_FT_*, and return 0.
5350  *
5351  * If no dir entries were found, returns -ENOENT.
5352  * If found a corrupted location in dir entry, returns -EUCLEAN.
5353  */
5354 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5355 			       struct btrfs_key *location, u8 *type)
5356 {
5357 	struct btrfs_dir_item *di;
5358 	struct btrfs_path *path;
5359 	struct btrfs_root *root = dir->root;
5360 	int ret = 0;
5361 	struct fscrypt_name fname;
5362 
5363 	path = btrfs_alloc_path();
5364 	if (!path)
5365 		return -ENOMEM;
5366 
5367 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5368 	if (ret < 0)
5369 		goto out;
5370 	/*
5371 	 * fscrypt_setup_filename() should never return a positive value, but
5372 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5373 	 */
5374 	ASSERT(ret == 0);
5375 
5376 	/* This needs to handle no-key deletions later on */
5377 
5378 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5379 				   &fname.disk_name, 0);
5380 	if (IS_ERR_OR_NULL(di)) {
5381 		ret = di ? PTR_ERR(di) : -ENOENT;
5382 		goto out;
5383 	}
5384 
5385 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5386 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5387 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5388 		ret = -EUCLEAN;
5389 		btrfs_warn(root->fs_info,
5390 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5391 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5392 			   location->objectid, location->type, location->offset);
5393 	}
5394 	if (!ret)
5395 		*type = btrfs_dir_ftype(path->nodes[0], di);
5396 out:
5397 	fscrypt_free_filename(&fname);
5398 	btrfs_free_path(path);
5399 	return ret;
5400 }
5401 
5402 /*
5403  * when we hit a tree root in a directory, the btrfs part of the inode
5404  * needs to be changed to reflect the root directory of the tree root.  This
5405  * is kind of like crossing a mount point.
5406  */
5407 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5408 				    struct btrfs_inode *dir,
5409 				    struct dentry *dentry,
5410 				    struct btrfs_key *location,
5411 				    struct btrfs_root **sub_root)
5412 {
5413 	struct btrfs_path *path;
5414 	struct btrfs_root *new_root;
5415 	struct btrfs_root_ref *ref;
5416 	struct extent_buffer *leaf;
5417 	struct btrfs_key key;
5418 	int ret;
5419 	int err = 0;
5420 	struct fscrypt_name fname;
5421 
5422 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5423 	if (ret)
5424 		return ret;
5425 
5426 	path = btrfs_alloc_path();
5427 	if (!path) {
5428 		err = -ENOMEM;
5429 		goto out;
5430 	}
5431 
5432 	err = -ENOENT;
5433 	key.objectid = dir->root->root_key.objectid;
5434 	key.type = BTRFS_ROOT_REF_KEY;
5435 	key.offset = location->objectid;
5436 
5437 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5438 	if (ret) {
5439 		if (ret < 0)
5440 			err = ret;
5441 		goto out;
5442 	}
5443 
5444 	leaf = path->nodes[0];
5445 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5446 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5447 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5448 		goto out;
5449 
5450 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5451 				   (unsigned long)(ref + 1), fname.disk_name.len);
5452 	if (ret)
5453 		goto out;
5454 
5455 	btrfs_release_path(path);
5456 
5457 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5458 	if (IS_ERR(new_root)) {
5459 		err = PTR_ERR(new_root);
5460 		goto out;
5461 	}
5462 
5463 	*sub_root = new_root;
5464 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5465 	location->type = BTRFS_INODE_ITEM_KEY;
5466 	location->offset = 0;
5467 	err = 0;
5468 out:
5469 	btrfs_free_path(path);
5470 	fscrypt_free_filename(&fname);
5471 	return err;
5472 }
5473 
5474 static void inode_tree_add(struct btrfs_inode *inode)
5475 {
5476 	struct btrfs_root *root = inode->root;
5477 	struct btrfs_inode *entry;
5478 	struct rb_node **p;
5479 	struct rb_node *parent;
5480 	struct rb_node *new = &inode->rb_node;
5481 	u64 ino = btrfs_ino(inode);
5482 
5483 	if (inode_unhashed(&inode->vfs_inode))
5484 		return;
5485 	parent = NULL;
5486 	spin_lock(&root->inode_lock);
5487 	p = &root->inode_tree.rb_node;
5488 	while (*p) {
5489 		parent = *p;
5490 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5491 
5492 		if (ino < btrfs_ino(entry))
5493 			p = &parent->rb_left;
5494 		else if (ino > btrfs_ino(entry))
5495 			p = &parent->rb_right;
5496 		else {
5497 			WARN_ON(!(entry->vfs_inode.i_state &
5498 				  (I_WILL_FREE | I_FREEING)));
5499 			rb_replace_node(parent, new, &root->inode_tree);
5500 			RB_CLEAR_NODE(parent);
5501 			spin_unlock(&root->inode_lock);
5502 			return;
5503 		}
5504 	}
5505 	rb_link_node(new, parent, p);
5506 	rb_insert_color(new, &root->inode_tree);
5507 	spin_unlock(&root->inode_lock);
5508 }
5509 
5510 static void inode_tree_del(struct btrfs_inode *inode)
5511 {
5512 	struct btrfs_root *root = inode->root;
5513 	int empty = 0;
5514 
5515 	spin_lock(&root->inode_lock);
5516 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5517 		rb_erase(&inode->rb_node, &root->inode_tree);
5518 		RB_CLEAR_NODE(&inode->rb_node);
5519 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5520 	}
5521 	spin_unlock(&root->inode_lock);
5522 
5523 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5524 		spin_lock(&root->inode_lock);
5525 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5526 		spin_unlock(&root->inode_lock);
5527 		if (empty)
5528 			btrfs_add_dead_root(root);
5529 	}
5530 }
5531 
5532 
5533 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5534 {
5535 	struct btrfs_iget_args *args = p;
5536 
5537 	inode->i_ino = args->ino;
5538 	BTRFS_I(inode)->location.objectid = args->ino;
5539 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5540 	BTRFS_I(inode)->location.offset = 0;
5541 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5542 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5543 
5544 	if (args->root && args->root == args->root->fs_info->tree_root &&
5545 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5546 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5547 			&BTRFS_I(inode)->runtime_flags);
5548 	return 0;
5549 }
5550 
5551 static int btrfs_find_actor(struct inode *inode, void *opaque)
5552 {
5553 	struct btrfs_iget_args *args = opaque;
5554 
5555 	return args->ino == BTRFS_I(inode)->location.objectid &&
5556 		args->root == BTRFS_I(inode)->root;
5557 }
5558 
5559 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5560 				       struct btrfs_root *root)
5561 {
5562 	struct inode *inode;
5563 	struct btrfs_iget_args args;
5564 	unsigned long hashval = btrfs_inode_hash(ino, root);
5565 
5566 	args.ino = ino;
5567 	args.root = root;
5568 
5569 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5570 			     btrfs_init_locked_inode,
5571 			     (void *)&args);
5572 	return inode;
5573 }
5574 
5575 /*
5576  * Get an inode object given its inode number and corresponding root.
5577  * Path can be preallocated to prevent recursing back to iget through
5578  * allocator. NULL is also valid but may require an additional allocation
5579  * later.
5580  */
5581 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5582 			      struct btrfs_root *root, struct btrfs_path *path)
5583 {
5584 	struct inode *inode;
5585 
5586 	inode = btrfs_iget_locked(s, ino, root);
5587 	if (!inode)
5588 		return ERR_PTR(-ENOMEM);
5589 
5590 	if (inode->i_state & I_NEW) {
5591 		int ret;
5592 
5593 		ret = btrfs_read_locked_inode(inode, path);
5594 		if (!ret) {
5595 			inode_tree_add(BTRFS_I(inode));
5596 			unlock_new_inode(inode);
5597 		} else {
5598 			iget_failed(inode);
5599 			/*
5600 			 * ret > 0 can come from btrfs_search_slot called by
5601 			 * btrfs_read_locked_inode, this means the inode item
5602 			 * was not found.
5603 			 */
5604 			if (ret > 0)
5605 				ret = -ENOENT;
5606 			inode = ERR_PTR(ret);
5607 		}
5608 	}
5609 
5610 	return inode;
5611 }
5612 
5613 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5614 {
5615 	return btrfs_iget_path(s, ino, root, NULL);
5616 }
5617 
5618 static struct inode *new_simple_dir(struct inode *dir,
5619 				    struct btrfs_key *key,
5620 				    struct btrfs_root *root)
5621 {
5622 	struct inode *inode = new_inode(dir->i_sb);
5623 
5624 	if (!inode)
5625 		return ERR_PTR(-ENOMEM);
5626 
5627 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5628 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5629 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5630 
5631 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5632 	/*
5633 	 * We only need lookup, the rest is read-only and there's no inode
5634 	 * associated with the dentry
5635 	 */
5636 	inode->i_op = &simple_dir_inode_operations;
5637 	inode->i_opflags &= ~IOP_XATTR;
5638 	inode->i_fop = &simple_dir_operations;
5639 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5640 	inode->i_mtime = inode_set_ctime_current(inode);
5641 	inode->i_atime = dir->i_atime;
5642 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5643 	inode->i_uid = dir->i_uid;
5644 	inode->i_gid = dir->i_gid;
5645 
5646 	return inode;
5647 }
5648 
5649 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5650 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5651 static_assert(BTRFS_FT_DIR == FT_DIR);
5652 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5653 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5654 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5655 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5656 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5657 
5658 static inline u8 btrfs_inode_type(struct inode *inode)
5659 {
5660 	return fs_umode_to_ftype(inode->i_mode);
5661 }
5662 
5663 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5664 {
5665 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5666 	struct inode *inode;
5667 	struct btrfs_root *root = BTRFS_I(dir)->root;
5668 	struct btrfs_root *sub_root = root;
5669 	struct btrfs_key location = { 0 };
5670 	u8 di_type = 0;
5671 	int ret = 0;
5672 
5673 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5674 		return ERR_PTR(-ENAMETOOLONG);
5675 
5676 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5677 	if (ret < 0)
5678 		return ERR_PTR(ret);
5679 
5680 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5681 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5682 		if (IS_ERR(inode))
5683 			return inode;
5684 
5685 		/* Do extra check against inode mode with di_type */
5686 		if (btrfs_inode_type(inode) != di_type) {
5687 			btrfs_crit(fs_info,
5688 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5689 				  inode->i_mode, btrfs_inode_type(inode),
5690 				  di_type);
5691 			iput(inode);
5692 			return ERR_PTR(-EUCLEAN);
5693 		}
5694 		return inode;
5695 	}
5696 
5697 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5698 				       &location, &sub_root);
5699 	if (ret < 0) {
5700 		if (ret != -ENOENT)
5701 			inode = ERR_PTR(ret);
5702 		else
5703 			inode = new_simple_dir(dir, &location, root);
5704 	} else {
5705 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5706 		btrfs_put_root(sub_root);
5707 
5708 		if (IS_ERR(inode))
5709 			return inode;
5710 
5711 		down_read(&fs_info->cleanup_work_sem);
5712 		if (!sb_rdonly(inode->i_sb))
5713 			ret = btrfs_orphan_cleanup(sub_root);
5714 		up_read(&fs_info->cleanup_work_sem);
5715 		if (ret) {
5716 			iput(inode);
5717 			inode = ERR_PTR(ret);
5718 		}
5719 	}
5720 
5721 	return inode;
5722 }
5723 
5724 static int btrfs_dentry_delete(const struct dentry *dentry)
5725 {
5726 	struct btrfs_root *root;
5727 	struct inode *inode = d_inode(dentry);
5728 
5729 	if (!inode && !IS_ROOT(dentry))
5730 		inode = d_inode(dentry->d_parent);
5731 
5732 	if (inode) {
5733 		root = BTRFS_I(inode)->root;
5734 		if (btrfs_root_refs(&root->root_item) == 0)
5735 			return 1;
5736 
5737 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5738 			return 1;
5739 	}
5740 	return 0;
5741 }
5742 
5743 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5744 				   unsigned int flags)
5745 {
5746 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5747 
5748 	if (inode == ERR_PTR(-ENOENT))
5749 		inode = NULL;
5750 	return d_splice_alias(inode, dentry);
5751 }
5752 
5753 /*
5754  * Find the highest existing sequence number in a directory and then set the
5755  * in-memory index_cnt variable to the first free sequence number.
5756  */
5757 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5758 {
5759 	struct btrfs_root *root = inode->root;
5760 	struct btrfs_key key, found_key;
5761 	struct btrfs_path *path;
5762 	struct extent_buffer *leaf;
5763 	int ret;
5764 
5765 	key.objectid = btrfs_ino(inode);
5766 	key.type = BTRFS_DIR_INDEX_KEY;
5767 	key.offset = (u64)-1;
5768 
5769 	path = btrfs_alloc_path();
5770 	if (!path)
5771 		return -ENOMEM;
5772 
5773 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5774 	if (ret < 0)
5775 		goto out;
5776 	/* FIXME: we should be able to handle this */
5777 	if (ret == 0)
5778 		goto out;
5779 	ret = 0;
5780 
5781 	if (path->slots[0] == 0) {
5782 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5783 		goto out;
5784 	}
5785 
5786 	path->slots[0]--;
5787 
5788 	leaf = path->nodes[0];
5789 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5790 
5791 	if (found_key.objectid != btrfs_ino(inode) ||
5792 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5793 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5794 		goto out;
5795 	}
5796 
5797 	inode->index_cnt = found_key.offset + 1;
5798 out:
5799 	btrfs_free_path(path);
5800 	return ret;
5801 }
5802 
5803 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5804 {
5805 	int ret = 0;
5806 
5807 	btrfs_inode_lock(dir, 0);
5808 	if (dir->index_cnt == (u64)-1) {
5809 		ret = btrfs_inode_delayed_dir_index_count(dir);
5810 		if (ret) {
5811 			ret = btrfs_set_inode_index_count(dir);
5812 			if (ret)
5813 				goto out;
5814 		}
5815 	}
5816 
5817 	/* index_cnt is the index number of next new entry, so decrement it. */
5818 	*index = dir->index_cnt - 1;
5819 out:
5820 	btrfs_inode_unlock(dir, 0);
5821 
5822 	return ret;
5823 }
5824 
5825 /*
5826  * All this infrastructure exists because dir_emit can fault, and we are holding
5827  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5828  * our information into that, and then dir_emit from the buffer.  This is
5829  * similar to what NFS does, only we don't keep the buffer around in pagecache
5830  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5831  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5832  * tree lock.
5833  */
5834 static int btrfs_opendir(struct inode *inode, struct file *file)
5835 {
5836 	struct btrfs_file_private *private;
5837 	u64 last_index;
5838 	int ret;
5839 
5840 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5841 	if (ret)
5842 		return ret;
5843 
5844 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5845 	if (!private)
5846 		return -ENOMEM;
5847 	private->last_index = last_index;
5848 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5849 	if (!private->filldir_buf) {
5850 		kfree(private);
5851 		return -ENOMEM;
5852 	}
5853 	file->private_data = private;
5854 	return 0;
5855 }
5856 
5857 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5858 {
5859 	struct btrfs_file_private *private = file->private_data;
5860 	int ret;
5861 
5862 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5863 				       &private->last_index);
5864 	if (ret)
5865 		return ret;
5866 
5867 	return generic_file_llseek(file, offset, whence);
5868 }
5869 
5870 struct dir_entry {
5871 	u64 ino;
5872 	u64 offset;
5873 	unsigned type;
5874 	int name_len;
5875 };
5876 
5877 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5878 {
5879 	while (entries--) {
5880 		struct dir_entry *entry = addr;
5881 		char *name = (char *)(entry + 1);
5882 
5883 		ctx->pos = get_unaligned(&entry->offset);
5884 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5885 					 get_unaligned(&entry->ino),
5886 					 get_unaligned(&entry->type)))
5887 			return 1;
5888 		addr += sizeof(struct dir_entry) +
5889 			get_unaligned(&entry->name_len);
5890 		ctx->pos++;
5891 	}
5892 	return 0;
5893 }
5894 
5895 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5896 {
5897 	struct inode *inode = file_inode(file);
5898 	struct btrfs_root *root = BTRFS_I(inode)->root;
5899 	struct btrfs_file_private *private = file->private_data;
5900 	struct btrfs_dir_item *di;
5901 	struct btrfs_key key;
5902 	struct btrfs_key found_key;
5903 	struct btrfs_path *path;
5904 	void *addr;
5905 	LIST_HEAD(ins_list);
5906 	LIST_HEAD(del_list);
5907 	int ret;
5908 	char *name_ptr;
5909 	int name_len;
5910 	int entries = 0;
5911 	int total_len = 0;
5912 	bool put = false;
5913 	struct btrfs_key location;
5914 
5915 	if (!dir_emit_dots(file, ctx))
5916 		return 0;
5917 
5918 	path = btrfs_alloc_path();
5919 	if (!path)
5920 		return -ENOMEM;
5921 
5922 	addr = private->filldir_buf;
5923 	path->reada = READA_FORWARD;
5924 
5925 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5926 					      &ins_list, &del_list);
5927 
5928 again:
5929 	key.type = BTRFS_DIR_INDEX_KEY;
5930 	key.offset = ctx->pos;
5931 	key.objectid = btrfs_ino(BTRFS_I(inode));
5932 
5933 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5934 		struct dir_entry *entry;
5935 		struct extent_buffer *leaf = path->nodes[0];
5936 		u8 ftype;
5937 
5938 		if (found_key.objectid != key.objectid)
5939 			break;
5940 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5941 			break;
5942 		if (found_key.offset < ctx->pos)
5943 			continue;
5944 		if (found_key.offset > private->last_index)
5945 			break;
5946 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5947 			continue;
5948 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5949 		name_len = btrfs_dir_name_len(leaf, di);
5950 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5951 		    PAGE_SIZE) {
5952 			btrfs_release_path(path);
5953 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5954 			if (ret)
5955 				goto nopos;
5956 			addr = private->filldir_buf;
5957 			entries = 0;
5958 			total_len = 0;
5959 			goto again;
5960 		}
5961 
5962 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5963 		entry = addr;
5964 		name_ptr = (char *)(entry + 1);
5965 		read_extent_buffer(leaf, name_ptr,
5966 				   (unsigned long)(di + 1), name_len);
5967 		put_unaligned(name_len, &entry->name_len);
5968 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5969 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5970 		put_unaligned(location.objectid, &entry->ino);
5971 		put_unaligned(found_key.offset, &entry->offset);
5972 		entries++;
5973 		addr += sizeof(struct dir_entry) + name_len;
5974 		total_len += sizeof(struct dir_entry) + name_len;
5975 	}
5976 	/* Catch error encountered during iteration */
5977 	if (ret < 0)
5978 		goto err;
5979 
5980 	btrfs_release_path(path);
5981 
5982 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5983 	if (ret)
5984 		goto nopos;
5985 
5986 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5987 	if (ret)
5988 		goto nopos;
5989 
5990 	/*
5991 	 * Stop new entries from being returned after we return the last
5992 	 * entry.
5993 	 *
5994 	 * New directory entries are assigned a strictly increasing
5995 	 * offset.  This means that new entries created during readdir
5996 	 * are *guaranteed* to be seen in the future by that readdir.
5997 	 * This has broken buggy programs which operate on names as
5998 	 * they're returned by readdir.  Until we re-use freed offsets
5999 	 * we have this hack to stop new entries from being returned
6000 	 * under the assumption that they'll never reach this huge
6001 	 * offset.
6002 	 *
6003 	 * This is being careful not to overflow 32bit loff_t unless the
6004 	 * last entry requires it because doing so has broken 32bit apps
6005 	 * in the past.
6006 	 */
6007 	if (ctx->pos >= INT_MAX)
6008 		ctx->pos = LLONG_MAX;
6009 	else
6010 		ctx->pos = INT_MAX;
6011 nopos:
6012 	ret = 0;
6013 err:
6014 	if (put)
6015 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6016 	btrfs_free_path(path);
6017 	return ret;
6018 }
6019 
6020 /*
6021  * This is somewhat expensive, updating the tree every time the
6022  * inode changes.  But, it is most likely to find the inode in cache.
6023  * FIXME, needs more benchmarking...there are no reasons other than performance
6024  * to keep or drop this code.
6025  */
6026 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6027 {
6028 	struct btrfs_root *root = inode->root;
6029 	struct btrfs_fs_info *fs_info = root->fs_info;
6030 	struct btrfs_trans_handle *trans;
6031 	int ret;
6032 
6033 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6034 		return 0;
6035 
6036 	trans = btrfs_join_transaction(root);
6037 	if (IS_ERR(trans))
6038 		return PTR_ERR(trans);
6039 
6040 	ret = btrfs_update_inode(trans, root, inode);
6041 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6042 		/* whoops, lets try again with the full transaction */
6043 		btrfs_end_transaction(trans);
6044 		trans = btrfs_start_transaction(root, 1);
6045 		if (IS_ERR(trans))
6046 			return PTR_ERR(trans);
6047 
6048 		ret = btrfs_update_inode(trans, root, inode);
6049 	}
6050 	btrfs_end_transaction(trans);
6051 	if (inode->delayed_node)
6052 		btrfs_balance_delayed_items(fs_info);
6053 
6054 	return ret;
6055 }
6056 
6057 /*
6058  * This is a copy of file_update_time.  We need this so we can return error on
6059  * ENOSPC for updating the inode in the case of file write and mmap writes.
6060  */
6061 static int btrfs_update_time(struct inode *inode, int flags)
6062 {
6063 	struct btrfs_root *root = BTRFS_I(inode)->root;
6064 	bool dirty = flags & ~S_VERSION;
6065 
6066 	if (btrfs_root_readonly(root))
6067 		return -EROFS;
6068 
6069 	dirty = inode_update_timestamps(inode, flags);
6070 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6071 }
6072 
6073 /*
6074  * helper to find a free sequence number in a given directory.  This current
6075  * code is very simple, later versions will do smarter things in the btree
6076  */
6077 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6078 {
6079 	int ret = 0;
6080 
6081 	if (dir->index_cnt == (u64)-1) {
6082 		ret = btrfs_inode_delayed_dir_index_count(dir);
6083 		if (ret) {
6084 			ret = btrfs_set_inode_index_count(dir);
6085 			if (ret)
6086 				return ret;
6087 		}
6088 	}
6089 
6090 	*index = dir->index_cnt;
6091 	dir->index_cnt++;
6092 
6093 	return ret;
6094 }
6095 
6096 static int btrfs_insert_inode_locked(struct inode *inode)
6097 {
6098 	struct btrfs_iget_args args;
6099 
6100 	args.ino = BTRFS_I(inode)->location.objectid;
6101 	args.root = BTRFS_I(inode)->root;
6102 
6103 	return insert_inode_locked4(inode,
6104 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6105 		   btrfs_find_actor, &args);
6106 }
6107 
6108 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6109 			    unsigned int *trans_num_items)
6110 {
6111 	struct inode *dir = args->dir;
6112 	struct inode *inode = args->inode;
6113 	int ret;
6114 
6115 	if (!args->orphan) {
6116 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6117 					     &args->fname);
6118 		if (ret)
6119 			return ret;
6120 	}
6121 
6122 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6123 	if (ret) {
6124 		fscrypt_free_filename(&args->fname);
6125 		return ret;
6126 	}
6127 
6128 	/* 1 to add inode item */
6129 	*trans_num_items = 1;
6130 	/* 1 to add compression property */
6131 	if (BTRFS_I(dir)->prop_compress)
6132 		(*trans_num_items)++;
6133 	/* 1 to add default ACL xattr */
6134 	if (args->default_acl)
6135 		(*trans_num_items)++;
6136 	/* 1 to add access ACL xattr */
6137 	if (args->acl)
6138 		(*trans_num_items)++;
6139 #ifdef CONFIG_SECURITY
6140 	/* 1 to add LSM xattr */
6141 	if (dir->i_security)
6142 		(*trans_num_items)++;
6143 #endif
6144 	if (args->orphan) {
6145 		/* 1 to add orphan item */
6146 		(*trans_num_items)++;
6147 	} else {
6148 		/*
6149 		 * 1 to add dir item
6150 		 * 1 to add dir index
6151 		 * 1 to update parent inode item
6152 		 *
6153 		 * No need for 1 unit for the inode ref item because it is
6154 		 * inserted in a batch together with the inode item at
6155 		 * btrfs_create_new_inode().
6156 		 */
6157 		*trans_num_items += 3;
6158 	}
6159 	return 0;
6160 }
6161 
6162 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6163 {
6164 	posix_acl_release(args->acl);
6165 	posix_acl_release(args->default_acl);
6166 	fscrypt_free_filename(&args->fname);
6167 }
6168 
6169 /*
6170  * Inherit flags from the parent inode.
6171  *
6172  * Currently only the compression flags and the cow flags are inherited.
6173  */
6174 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6175 {
6176 	unsigned int flags;
6177 
6178 	flags = dir->flags;
6179 
6180 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6181 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6182 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6183 	} else if (flags & BTRFS_INODE_COMPRESS) {
6184 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6185 		inode->flags |= BTRFS_INODE_COMPRESS;
6186 	}
6187 
6188 	if (flags & BTRFS_INODE_NODATACOW) {
6189 		inode->flags |= BTRFS_INODE_NODATACOW;
6190 		if (S_ISREG(inode->vfs_inode.i_mode))
6191 			inode->flags |= BTRFS_INODE_NODATASUM;
6192 	}
6193 
6194 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6195 }
6196 
6197 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6198 			   struct btrfs_new_inode_args *args)
6199 {
6200 	struct inode *dir = args->dir;
6201 	struct inode *inode = args->inode;
6202 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6203 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6204 	struct btrfs_root *root;
6205 	struct btrfs_inode_item *inode_item;
6206 	struct btrfs_key *location;
6207 	struct btrfs_path *path;
6208 	u64 objectid;
6209 	struct btrfs_inode_ref *ref;
6210 	struct btrfs_key key[2];
6211 	u32 sizes[2];
6212 	struct btrfs_item_batch batch;
6213 	unsigned long ptr;
6214 	int ret;
6215 
6216 	path = btrfs_alloc_path();
6217 	if (!path)
6218 		return -ENOMEM;
6219 
6220 	if (!args->subvol)
6221 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6222 	root = BTRFS_I(inode)->root;
6223 
6224 	ret = btrfs_get_free_objectid(root, &objectid);
6225 	if (ret)
6226 		goto out;
6227 	inode->i_ino = objectid;
6228 
6229 	if (args->orphan) {
6230 		/*
6231 		 * O_TMPFILE, set link count to 0, so that after this point, we
6232 		 * fill in an inode item with the correct link count.
6233 		 */
6234 		set_nlink(inode, 0);
6235 	} else {
6236 		trace_btrfs_inode_request(dir);
6237 
6238 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6239 		if (ret)
6240 			goto out;
6241 	}
6242 	/* index_cnt is ignored for everything but a dir. */
6243 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6244 	BTRFS_I(inode)->generation = trans->transid;
6245 	inode->i_generation = BTRFS_I(inode)->generation;
6246 
6247 	/*
6248 	 * Subvolumes don't inherit flags from their parent directory.
6249 	 * Originally this was probably by accident, but we probably can't
6250 	 * change it now without compatibility issues.
6251 	 */
6252 	if (!args->subvol)
6253 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6254 
6255 	if (S_ISREG(inode->i_mode)) {
6256 		if (btrfs_test_opt(fs_info, NODATASUM))
6257 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6258 		if (btrfs_test_opt(fs_info, NODATACOW))
6259 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6260 				BTRFS_INODE_NODATASUM;
6261 	}
6262 
6263 	location = &BTRFS_I(inode)->location;
6264 	location->objectid = objectid;
6265 	location->offset = 0;
6266 	location->type = BTRFS_INODE_ITEM_KEY;
6267 
6268 	ret = btrfs_insert_inode_locked(inode);
6269 	if (ret < 0) {
6270 		if (!args->orphan)
6271 			BTRFS_I(dir)->index_cnt--;
6272 		goto out;
6273 	}
6274 
6275 	/*
6276 	 * We could have gotten an inode number from somebody who was fsynced
6277 	 * and then removed in this same transaction, so let's just set full
6278 	 * sync since it will be a full sync anyway and this will blow away the
6279 	 * old info in the log.
6280 	 */
6281 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6282 
6283 	key[0].objectid = objectid;
6284 	key[0].type = BTRFS_INODE_ITEM_KEY;
6285 	key[0].offset = 0;
6286 
6287 	sizes[0] = sizeof(struct btrfs_inode_item);
6288 
6289 	if (!args->orphan) {
6290 		/*
6291 		 * Start new inodes with an inode_ref. This is slightly more
6292 		 * efficient for small numbers of hard links since they will
6293 		 * be packed into one item. Extended refs will kick in if we
6294 		 * add more hard links than can fit in the ref item.
6295 		 */
6296 		key[1].objectid = objectid;
6297 		key[1].type = BTRFS_INODE_REF_KEY;
6298 		if (args->subvol) {
6299 			key[1].offset = objectid;
6300 			sizes[1] = 2 + sizeof(*ref);
6301 		} else {
6302 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6303 			sizes[1] = name->len + sizeof(*ref);
6304 		}
6305 	}
6306 
6307 	batch.keys = &key[0];
6308 	batch.data_sizes = &sizes[0];
6309 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6310 	batch.nr = args->orphan ? 1 : 2;
6311 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6312 	if (ret != 0) {
6313 		btrfs_abort_transaction(trans, ret);
6314 		goto discard;
6315 	}
6316 
6317 	inode->i_mtime = inode_set_ctime_current(inode);
6318 	inode->i_atime = inode->i_mtime;
6319 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6320 
6321 	/*
6322 	 * We're going to fill the inode item now, so at this point the inode
6323 	 * must be fully initialized.
6324 	 */
6325 
6326 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6327 				  struct btrfs_inode_item);
6328 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6329 			     sizeof(*inode_item));
6330 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6331 
6332 	if (!args->orphan) {
6333 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6334 				     struct btrfs_inode_ref);
6335 		ptr = (unsigned long)(ref + 1);
6336 		if (args->subvol) {
6337 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6338 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6339 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6340 		} else {
6341 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6342 						     name->len);
6343 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6344 						  BTRFS_I(inode)->dir_index);
6345 			write_extent_buffer(path->nodes[0], name->name, ptr,
6346 					    name->len);
6347 		}
6348 	}
6349 
6350 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6351 	/*
6352 	 * We don't need the path anymore, plus inheriting properties, adding
6353 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6354 	 * allocating yet another path. So just free our path.
6355 	 */
6356 	btrfs_free_path(path);
6357 	path = NULL;
6358 
6359 	if (args->subvol) {
6360 		struct inode *parent;
6361 
6362 		/*
6363 		 * Subvolumes inherit properties from their parent subvolume,
6364 		 * not the directory they were created in.
6365 		 */
6366 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6367 				    BTRFS_I(dir)->root);
6368 		if (IS_ERR(parent)) {
6369 			ret = PTR_ERR(parent);
6370 		} else {
6371 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6372 			iput(parent);
6373 		}
6374 	} else {
6375 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6376 	}
6377 	if (ret) {
6378 		btrfs_err(fs_info,
6379 			  "error inheriting props for ino %llu (root %llu): %d",
6380 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6381 			  ret);
6382 	}
6383 
6384 	/*
6385 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6386 	 * probably a bug.
6387 	 */
6388 	if (!args->subvol) {
6389 		ret = btrfs_init_inode_security(trans, args);
6390 		if (ret) {
6391 			btrfs_abort_transaction(trans, ret);
6392 			goto discard;
6393 		}
6394 	}
6395 
6396 	inode_tree_add(BTRFS_I(inode));
6397 
6398 	trace_btrfs_inode_new(inode);
6399 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6400 
6401 	btrfs_update_root_times(trans, root);
6402 
6403 	if (args->orphan) {
6404 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6405 	} else {
6406 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6407 				     0, BTRFS_I(inode)->dir_index);
6408 	}
6409 	if (ret) {
6410 		btrfs_abort_transaction(trans, ret);
6411 		goto discard;
6412 	}
6413 
6414 	return 0;
6415 
6416 discard:
6417 	/*
6418 	 * discard_new_inode() calls iput(), but the caller owns the reference
6419 	 * to the inode.
6420 	 */
6421 	ihold(inode);
6422 	discard_new_inode(inode);
6423 out:
6424 	btrfs_free_path(path);
6425 	return ret;
6426 }
6427 
6428 /*
6429  * utility function to add 'inode' into 'parent_inode' with
6430  * a give name and a given sequence number.
6431  * if 'add_backref' is true, also insert a backref from the
6432  * inode to the parent directory.
6433  */
6434 int btrfs_add_link(struct btrfs_trans_handle *trans,
6435 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6436 		   const struct fscrypt_str *name, int add_backref, u64 index)
6437 {
6438 	int ret = 0;
6439 	struct btrfs_key key;
6440 	struct btrfs_root *root = parent_inode->root;
6441 	u64 ino = btrfs_ino(inode);
6442 	u64 parent_ino = btrfs_ino(parent_inode);
6443 
6444 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6445 		memcpy(&key, &inode->root->root_key, sizeof(key));
6446 	} else {
6447 		key.objectid = ino;
6448 		key.type = BTRFS_INODE_ITEM_KEY;
6449 		key.offset = 0;
6450 	}
6451 
6452 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6453 		ret = btrfs_add_root_ref(trans, key.objectid,
6454 					 root->root_key.objectid, parent_ino,
6455 					 index, name);
6456 	} else if (add_backref) {
6457 		ret = btrfs_insert_inode_ref(trans, root, name,
6458 					     ino, parent_ino, index);
6459 	}
6460 
6461 	/* Nothing to clean up yet */
6462 	if (ret)
6463 		return ret;
6464 
6465 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6466 				    btrfs_inode_type(&inode->vfs_inode), index);
6467 	if (ret == -EEXIST || ret == -EOVERFLOW)
6468 		goto fail_dir_item;
6469 	else if (ret) {
6470 		btrfs_abort_transaction(trans, ret);
6471 		return ret;
6472 	}
6473 
6474 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6475 			   name->len * 2);
6476 	inode_inc_iversion(&parent_inode->vfs_inode);
6477 	/*
6478 	 * If we are replaying a log tree, we do not want to update the mtime
6479 	 * and ctime of the parent directory with the current time, since the
6480 	 * log replay procedure is responsible for setting them to their correct
6481 	 * values (the ones it had when the fsync was done).
6482 	 */
6483 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6484 		parent_inode->vfs_inode.i_mtime =
6485 			inode_set_ctime_current(&parent_inode->vfs_inode);
6486 
6487 	ret = btrfs_update_inode(trans, root, parent_inode);
6488 	if (ret)
6489 		btrfs_abort_transaction(trans, ret);
6490 	return ret;
6491 
6492 fail_dir_item:
6493 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6494 		u64 local_index;
6495 		int err;
6496 		err = btrfs_del_root_ref(trans, key.objectid,
6497 					 root->root_key.objectid, parent_ino,
6498 					 &local_index, name);
6499 		if (err)
6500 			btrfs_abort_transaction(trans, err);
6501 	} else if (add_backref) {
6502 		u64 local_index;
6503 		int err;
6504 
6505 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6506 					  &local_index);
6507 		if (err)
6508 			btrfs_abort_transaction(trans, err);
6509 	}
6510 
6511 	/* Return the original error code */
6512 	return ret;
6513 }
6514 
6515 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6516 			       struct inode *inode)
6517 {
6518 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6519 	struct btrfs_root *root = BTRFS_I(dir)->root;
6520 	struct btrfs_new_inode_args new_inode_args = {
6521 		.dir = dir,
6522 		.dentry = dentry,
6523 		.inode = inode,
6524 	};
6525 	unsigned int trans_num_items;
6526 	struct btrfs_trans_handle *trans;
6527 	int err;
6528 
6529 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6530 	if (err)
6531 		goto out_inode;
6532 
6533 	trans = btrfs_start_transaction(root, trans_num_items);
6534 	if (IS_ERR(trans)) {
6535 		err = PTR_ERR(trans);
6536 		goto out_new_inode_args;
6537 	}
6538 
6539 	err = btrfs_create_new_inode(trans, &new_inode_args);
6540 	if (!err)
6541 		d_instantiate_new(dentry, inode);
6542 
6543 	btrfs_end_transaction(trans);
6544 	btrfs_btree_balance_dirty(fs_info);
6545 out_new_inode_args:
6546 	btrfs_new_inode_args_destroy(&new_inode_args);
6547 out_inode:
6548 	if (err)
6549 		iput(inode);
6550 	return err;
6551 }
6552 
6553 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6554 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6555 {
6556 	struct inode *inode;
6557 
6558 	inode = new_inode(dir->i_sb);
6559 	if (!inode)
6560 		return -ENOMEM;
6561 	inode_init_owner(idmap, inode, dir, mode);
6562 	inode->i_op = &btrfs_special_inode_operations;
6563 	init_special_inode(inode, inode->i_mode, rdev);
6564 	return btrfs_create_common(dir, dentry, inode);
6565 }
6566 
6567 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6568 			struct dentry *dentry, umode_t mode, bool excl)
6569 {
6570 	struct inode *inode;
6571 
6572 	inode = new_inode(dir->i_sb);
6573 	if (!inode)
6574 		return -ENOMEM;
6575 	inode_init_owner(idmap, inode, dir, mode);
6576 	inode->i_fop = &btrfs_file_operations;
6577 	inode->i_op = &btrfs_file_inode_operations;
6578 	inode->i_mapping->a_ops = &btrfs_aops;
6579 	return btrfs_create_common(dir, dentry, inode);
6580 }
6581 
6582 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6583 		      struct dentry *dentry)
6584 {
6585 	struct btrfs_trans_handle *trans = NULL;
6586 	struct btrfs_root *root = BTRFS_I(dir)->root;
6587 	struct inode *inode = d_inode(old_dentry);
6588 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6589 	struct fscrypt_name fname;
6590 	u64 index;
6591 	int err;
6592 	int drop_inode = 0;
6593 
6594 	/* do not allow sys_link's with other subvols of the same device */
6595 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6596 		return -EXDEV;
6597 
6598 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6599 		return -EMLINK;
6600 
6601 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6602 	if (err)
6603 		goto fail;
6604 
6605 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6606 	if (err)
6607 		goto fail;
6608 
6609 	/*
6610 	 * 2 items for inode and inode ref
6611 	 * 2 items for dir items
6612 	 * 1 item for parent inode
6613 	 * 1 item for orphan item deletion if O_TMPFILE
6614 	 */
6615 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6616 	if (IS_ERR(trans)) {
6617 		err = PTR_ERR(trans);
6618 		trans = NULL;
6619 		goto fail;
6620 	}
6621 
6622 	/* There are several dir indexes for this inode, clear the cache. */
6623 	BTRFS_I(inode)->dir_index = 0ULL;
6624 	inc_nlink(inode);
6625 	inode_inc_iversion(inode);
6626 	inode_set_ctime_current(inode);
6627 	ihold(inode);
6628 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6629 
6630 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6631 			     &fname.disk_name, 1, index);
6632 
6633 	if (err) {
6634 		drop_inode = 1;
6635 	} else {
6636 		struct dentry *parent = dentry->d_parent;
6637 
6638 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6639 		if (err)
6640 			goto fail;
6641 		if (inode->i_nlink == 1) {
6642 			/*
6643 			 * If new hard link count is 1, it's a file created
6644 			 * with open(2) O_TMPFILE flag.
6645 			 */
6646 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6647 			if (err)
6648 				goto fail;
6649 		}
6650 		d_instantiate(dentry, inode);
6651 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6652 	}
6653 
6654 fail:
6655 	fscrypt_free_filename(&fname);
6656 	if (trans)
6657 		btrfs_end_transaction(trans);
6658 	if (drop_inode) {
6659 		inode_dec_link_count(inode);
6660 		iput(inode);
6661 	}
6662 	btrfs_btree_balance_dirty(fs_info);
6663 	return err;
6664 }
6665 
6666 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6667 		       struct dentry *dentry, umode_t mode)
6668 {
6669 	struct inode *inode;
6670 
6671 	inode = new_inode(dir->i_sb);
6672 	if (!inode)
6673 		return -ENOMEM;
6674 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6675 	inode->i_op = &btrfs_dir_inode_operations;
6676 	inode->i_fop = &btrfs_dir_file_operations;
6677 	return btrfs_create_common(dir, dentry, inode);
6678 }
6679 
6680 static noinline int uncompress_inline(struct btrfs_path *path,
6681 				      struct page *page,
6682 				      struct btrfs_file_extent_item *item)
6683 {
6684 	int ret;
6685 	struct extent_buffer *leaf = path->nodes[0];
6686 	char *tmp;
6687 	size_t max_size;
6688 	unsigned long inline_size;
6689 	unsigned long ptr;
6690 	int compress_type;
6691 
6692 	compress_type = btrfs_file_extent_compression(leaf, item);
6693 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6694 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6695 	tmp = kmalloc(inline_size, GFP_NOFS);
6696 	if (!tmp)
6697 		return -ENOMEM;
6698 	ptr = btrfs_file_extent_inline_start(item);
6699 
6700 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6701 
6702 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6703 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6704 
6705 	/*
6706 	 * decompression code contains a memset to fill in any space between the end
6707 	 * of the uncompressed data and the end of max_size in case the decompressed
6708 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6709 	 * the end of an inline extent and the beginning of the next block, so we
6710 	 * cover that region here.
6711 	 */
6712 
6713 	if (max_size < PAGE_SIZE)
6714 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6715 	kfree(tmp);
6716 	return ret;
6717 }
6718 
6719 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6720 			      struct page *page)
6721 {
6722 	struct btrfs_file_extent_item *fi;
6723 	void *kaddr;
6724 	size_t copy_size;
6725 
6726 	if (!page || PageUptodate(page))
6727 		return 0;
6728 
6729 	ASSERT(page_offset(page) == 0);
6730 
6731 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6732 			    struct btrfs_file_extent_item);
6733 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6734 		return uncompress_inline(path, page, fi);
6735 
6736 	copy_size = min_t(u64, PAGE_SIZE,
6737 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6738 	kaddr = kmap_local_page(page);
6739 	read_extent_buffer(path->nodes[0], kaddr,
6740 			   btrfs_file_extent_inline_start(fi), copy_size);
6741 	kunmap_local(kaddr);
6742 	if (copy_size < PAGE_SIZE)
6743 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6744 	return 0;
6745 }
6746 
6747 /*
6748  * Lookup the first extent overlapping a range in a file.
6749  *
6750  * @inode:	file to search in
6751  * @page:	page to read extent data into if the extent is inline
6752  * @pg_offset:	offset into @page to copy to
6753  * @start:	file offset
6754  * @len:	length of range starting at @start
6755  *
6756  * Return the first &struct extent_map which overlaps the given range, reading
6757  * it from the B-tree and caching it if necessary. Note that there may be more
6758  * extents which overlap the given range after the returned extent_map.
6759  *
6760  * If @page is not NULL and the extent is inline, this also reads the extent
6761  * data directly into the page and marks the extent up to date in the io_tree.
6762  *
6763  * Return: ERR_PTR on error, non-NULL extent_map on success.
6764  */
6765 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6766 				    struct page *page, size_t pg_offset,
6767 				    u64 start, u64 len)
6768 {
6769 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6770 	int ret = 0;
6771 	u64 extent_start = 0;
6772 	u64 extent_end = 0;
6773 	u64 objectid = btrfs_ino(inode);
6774 	int extent_type = -1;
6775 	struct btrfs_path *path = NULL;
6776 	struct btrfs_root *root = inode->root;
6777 	struct btrfs_file_extent_item *item;
6778 	struct extent_buffer *leaf;
6779 	struct btrfs_key found_key;
6780 	struct extent_map *em = NULL;
6781 	struct extent_map_tree *em_tree = &inode->extent_tree;
6782 
6783 	read_lock(&em_tree->lock);
6784 	em = lookup_extent_mapping(em_tree, start, len);
6785 	read_unlock(&em_tree->lock);
6786 
6787 	if (em) {
6788 		if (em->start > start || em->start + em->len <= start)
6789 			free_extent_map(em);
6790 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6791 			free_extent_map(em);
6792 		else
6793 			goto out;
6794 	}
6795 	em = alloc_extent_map();
6796 	if (!em) {
6797 		ret = -ENOMEM;
6798 		goto out;
6799 	}
6800 	em->start = EXTENT_MAP_HOLE;
6801 	em->orig_start = EXTENT_MAP_HOLE;
6802 	em->len = (u64)-1;
6803 	em->block_len = (u64)-1;
6804 
6805 	path = btrfs_alloc_path();
6806 	if (!path) {
6807 		ret = -ENOMEM;
6808 		goto out;
6809 	}
6810 
6811 	/* Chances are we'll be called again, so go ahead and do readahead */
6812 	path->reada = READA_FORWARD;
6813 
6814 	/*
6815 	 * The same explanation in load_free_space_cache applies here as well,
6816 	 * we only read when we're loading the free space cache, and at that
6817 	 * point the commit_root has everything we need.
6818 	 */
6819 	if (btrfs_is_free_space_inode(inode)) {
6820 		path->search_commit_root = 1;
6821 		path->skip_locking = 1;
6822 	}
6823 
6824 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6825 	if (ret < 0) {
6826 		goto out;
6827 	} else if (ret > 0) {
6828 		if (path->slots[0] == 0)
6829 			goto not_found;
6830 		path->slots[0]--;
6831 		ret = 0;
6832 	}
6833 
6834 	leaf = path->nodes[0];
6835 	item = btrfs_item_ptr(leaf, path->slots[0],
6836 			      struct btrfs_file_extent_item);
6837 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6838 	if (found_key.objectid != objectid ||
6839 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6840 		/*
6841 		 * If we backup past the first extent we want to move forward
6842 		 * and see if there is an extent in front of us, otherwise we'll
6843 		 * say there is a hole for our whole search range which can
6844 		 * cause problems.
6845 		 */
6846 		extent_end = start;
6847 		goto next;
6848 	}
6849 
6850 	extent_type = btrfs_file_extent_type(leaf, item);
6851 	extent_start = found_key.offset;
6852 	extent_end = btrfs_file_extent_end(path);
6853 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6854 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6855 		/* Only regular file could have regular/prealloc extent */
6856 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6857 			ret = -EUCLEAN;
6858 			btrfs_crit(fs_info,
6859 		"regular/prealloc extent found for non-regular inode %llu",
6860 				   btrfs_ino(inode));
6861 			goto out;
6862 		}
6863 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6864 						       extent_start);
6865 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6866 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6867 						      path->slots[0],
6868 						      extent_start);
6869 	}
6870 next:
6871 	if (start >= extent_end) {
6872 		path->slots[0]++;
6873 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6874 			ret = btrfs_next_leaf(root, path);
6875 			if (ret < 0)
6876 				goto out;
6877 			else if (ret > 0)
6878 				goto not_found;
6879 
6880 			leaf = path->nodes[0];
6881 		}
6882 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6883 		if (found_key.objectid != objectid ||
6884 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6885 			goto not_found;
6886 		if (start + len <= found_key.offset)
6887 			goto not_found;
6888 		if (start > found_key.offset)
6889 			goto next;
6890 
6891 		/* New extent overlaps with existing one */
6892 		em->start = start;
6893 		em->orig_start = start;
6894 		em->len = found_key.offset - start;
6895 		em->block_start = EXTENT_MAP_HOLE;
6896 		goto insert;
6897 	}
6898 
6899 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6900 
6901 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6902 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6903 		goto insert;
6904 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6905 		/*
6906 		 * Inline extent can only exist at file offset 0. This is
6907 		 * ensured by tree-checker and inline extent creation path.
6908 		 * Thus all members representing file offsets should be zero.
6909 		 */
6910 		ASSERT(pg_offset == 0);
6911 		ASSERT(extent_start == 0);
6912 		ASSERT(em->start == 0);
6913 
6914 		/*
6915 		 * btrfs_extent_item_to_extent_map() should have properly
6916 		 * initialized em members already.
6917 		 *
6918 		 * Other members are not utilized for inline extents.
6919 		 */
6920 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6921 		ASSERT(em->len == fs_info->sectorsize);
6922 
6923 		ret = read_inline_extent(inode, path, page);
6924 		if (ret < 0)
6925 			goto out;
6926 		goto insert;
6927 	}
6928 not_found:
6929 	em->start = start;
6930 	em->orig_start = start;
6931 	em->len = len;
6932 	em->block_start = EXTENT_MAP_HOLE;
6933 insert:
6934 	ret = 0;
6935 	btrfs_release_path(path);
6936 	if (em->start > start || extent_map_end(em) <= start) {
6937 		btrfs_err(fs_info,
6938 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6939 			  em->start, em->len, start, len);
6940 		ret = -EIO;
6941 		goto out;
6942 	}
6943 
6944 	write_lock(&em_tree->lock);
6945 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6946 	write_unlock(&em_tree->lock);
6947 out:
6948 	btrfs_free_path(path);
6949 
6950 	trace_btrfs_get_extent(root, inode, em);
6951 
6952 	if (ret) {
6953 		free_extent_map(em);
6954 		return ERR_PTR(ret);
6955 	}
6956 	return em;
6957 }
6958 
6959 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6960 						  struct btrfs_dio_data *dio_data,
6961 						  const u64 start,
6962 						  const u64 len,
6963 						  const u64 orig_start,
6964 						  const u64 block_start,
6965 						  const u64 block_len,
6966 						  const u64 orig_block_len,
6967 						  const u64 ram_bytes,
6968 						  const int type)
6969 {
6970 	struct extent_map *em = NULL;
6971 	struct btrfs_ordered_extent *ordered;
6972 
6973 	if (type != BTRFS_ORDERED_NOCOW) {
6974 		em = create_io_em(inode, start, len, orig_start, block_start,
6975 				  block_len, orig_block_len, ram_bytes,
6976 				  BTRFS_COMPRESS_NONE, /* compress_type */
6977 				  type);
6978 		if (IS_ERR(em))
6979 			goto out;
6980 	}
6981 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6982 					     block_start, block_len, 0,
6983 					     (1 << type) |
6984 					     (1 << BTRFS_ORDERED_DIRECT),
6985 					     BTRFS_COMPRESS_NONE);
6986 	if (IS_ERR(ordered)) {
6987 		if (em) {
6988 			free_extent_map(em);
6989 			btrfs_drop_extent_map_range(inode, start,
6990 						    start + len - 1, false);
6991 		}
6992 		em = ERR_CAST(ordered);
6993 	} else {
6994 		ASSERT(!dio_data->ordered);
6995 		dio_data->ordered = ordered;
6996 	}
6997  out:
6998 
6999 	return em;
7000 }
7001 
7002 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7003 						  struct btrfs_dio_data *dio_data,
7004 						  u64 start, u64 len)
7005 {
7006 	struct btrfs_root *root = inode->root;
7007 	struct btrfs_fs_info *fs_info = root->fs_info;
7008 	struct extent_map *em;
7009 	struct btrfs_key ins;
7010 	u64 alloc_hint;
7011 	int ret;
7012 
7013 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7014 again:
7015 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7016 				   0, alloc_hint, &ins, 1, 1);
7017 	if (ret == -EAGAIN) {
7018 		ASSERT(btrfs_is_zoned(fs_info));
7019 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7020 			       TASK_UNINTERRUPTIBLE);
7021 		goto again;
7022 	}
7023 	if (ret)
7024 		return ERR_PTR(ret);
7025 
7026 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7027 				     ins.objectid, ins.offset, ins.offset,
7028 				     ins.offset, BTRFS_ORDERED_REGULAR);
7029 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7030 	if (IS_ERR(em))
7031 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7032 					   1);
7033 
7034 	return em;
7035 }
7036 
7037 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7038 {
7039 	struct btrfs_block_group *block_group;
7040 	bool readonly = false;
7041 
7042 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7043 	if (!block_group || block_group->ro)
7044 		readonly = true;
7045 	if (block_group)
7046 		btrfs_put_block_group(block_group);
7047 	return readonly;
7048 }
7049 
7050 /*
7051  * Check if we can do nocow write into the range [@offset, @offset + @len)
7052  *
7053  * @offset:	File offset
7054  * @len:	The length to write, will be updated to the nocow writeable
7055  *		range
7056  * @orig_start:	(optional) Return the original file offset of the file extent
7057  * @orig_len:	(optional) Return the original on-disk length of the file extent
7058  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7059  * @strict:	if true, omit optimizations that might force us into unnecessary
7060  *		cow. e.g., don't trust generation number.
7061  *
7062  * Return:
7063  * >0	and update @len if we can do nocow write
7064  *  0	if we can't do nocow write
7065  * <0	if error happened
7066  *
7067  * NOTE: This only checks the file extents, caller is responsible to wait for
7068  *	 any ordered extents.
7069  */
7070 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7071 			      u64 *orig_start, u64 *orig_block_len,
7072 			      u64 *ram_bytes, bool nowait, bool strict)
7073 {
7074 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7075 	struct can_nocow_file_extent_args nocow_args = { 0 };
7076 	struct btrfs_path *path;
7077 	int ret;
7078 	struct extent_buffer *leaf;
7079 	struct btrfs_root *root = BTRFS_I(inode)->root;
7080 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7081 	struct btrfs_file_extent_item *fi;
7082 	struct btrfs_key key;
7083 	int found_type;
7084 
7085 	path = btrfs_alloc_path();
7086 	if (!path)
7087 		return -ENOMEM;
7088 	path->nowait = nowait;
7089 
7090 	ret = btrfs_lookup_file_extent(NULL, root, path,
7091 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7092 	if (ret < 0)
7093 		goto out;
7094 
7095 	if (ret == 1) {
7096 		if (path->slots[0] == 0) {
7097 			/* can't find the item, must cow */
7098 			ret = 0;
7099 			goto out;
7100 		}
7101 		path->slots[0]--;
7102 	}
7103 	ret = 0;
7104 	leaf = path->nodes[0];
7105 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7106 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7107 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7108 		/* not our file or wrong item type, must cow */
7109 		goto out;
7110 	}
7111 
7112 	if (key.offset > offset) {
7113 		/* Wrong offset, must cow */
7114 		goto out;
7115 	}
7116 
7117 	if (btrfs_file_extent_end(path) <= offset)
7118 		goto out;
7119 
7120 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7121 	found_type = btrfs_file_extent_type(leaf, fi);
7122 	if (ram_bytes)
7123 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7124 
7125 	nocow_args.start = offset;
7126 	nocow_args.end = offset + *len - 1;
7127 	nocow_args.strict = strict;
7128 	nocow_args.free_path = true;
7129 
7130 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7131 	/* can_nocow_file_extent() has freed the path. */
7132 	path = NULL;
7133 
7134 	if (ret != 1) {
7135 		/* Treat errors as not being able to NOCOW. */
7136 		ret = 0;
7137 		goto out;
7138 	}
7139 
7140 	ret = 0;
7141 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7142 		goto out;
7143 
7144 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7145 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7146 		u64 range_end;
7147 
7148 		range_end = round_up(offset + nocow_args.num_bytes,
7149 				     root->fs_info->sectorsize) - 1;
7150 		ret = test_range_bit(io_tree, offset, range_end,
7151 				     EXTENT_DELALLOC, 0, NULL);
7152 		if (ret) {
7153 			ret = -EAGAIN;
7154 			goto out;
7155 		}
7156 	}
7157 
7158 	if (orig_start)
7159 		*orig_start = key.offset - nocow_args.extent_offset;
7160 	if (orig_block_len)
7161 		*orig_block_len = nocow_args.disk_num_bytes;
7162 
7163 	*len = nocow_args.num_bytes;
7164 	ret = 1;
7165 out:
7166 	btrfs_free_path(path);
7167 	return ret;
7168 }
7169 
7170 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7171 			      struct extent_state **cached_state,
7172 			      unsigned int iomap_flags)
7173 {
7174 	const bool writing = (iomap_flags & IOMAP_WRITE);
7175 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7176 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7177 	struct btrfs_ordered_extent *ordered;
7178 	int ret = 0;
7179 
7180 	while (1) {
7181 		if (nowait) {
7182 			if (!try_lock_extent(io_tree, lockstart, lockend,
7183 					     cached_state))
7184 				return -EAGAIN;
7185 		} else {
7186 			lock_extent(io_tree, lockstart, lockend, cached_state);
7187 		}
7188 		/*
7189 		 * We're concerned with the entire range that we're going to be
7190 		 * doing DIO to, so we need to make sure there's no ordered
7191 		 * extents in this range.
7192 		 */
7193 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7194 						     lockend - lockstart + 1);
7195 
7196 		/*
7197 		 * We need to make sure there are no buffered pages in this
7198 		 * range either, we could have raced between the invalidate in
7199 		 * generic_file_direct_write and locking the extent.  The
7200 		 * invalidate needs to happen so that reads after a write do not
7201 		 * get stale data.
7202 		 */
7203 		if (!ordered &&
7204 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7205 							 lockstart, lockend)))
7206 			break;
7207 
7208 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7209 
7210 		if (ordered) {
7211 			if (nowait) {
7212 				btrfs_put_ordered_extent(ordered);
7213 				ret = -EAGAIN;
7214 				break;
7215 			}
7216 			/*
7217 			 * If we are doing a DIO read and the ordered extent we
7218 			 * found is for a buffered write, we can not wait for it
7219 			 * to complete and retry, because if we do so we can
7220 			 * deadlock with concurrent buffered writes on page
7221 			 * locks. This happens only if our DIO read covers more
7222 			 * than one extent map, if at this point has already
7223 			 * created an ordered extent for a previous extent map
7224 			 * and locked its range in the inode's io tree, and a
7225 			 * concurrent write against that previous extent map's
7226 			 * range and this range started (we unlock the ranges
7227 			 * in the io tree only when the bios complete and
7228 			 * buffered writes always lock pages before attempting
7229 			 * to lock range in the io tree).
7230 			 */
7231 			if (writing ||
7232 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7233 				btrfs_start_ordered_extent(ordered);
7234 			else
7235 				ret = nowait ? -EAGAIN : -ENOTBLK;
7236 			btrfs_put_ordered_extent(ordered);
7237 		} else {
7238 			/*
7239 			 * We could trigger writeback for this range (and wait
7240 			 * for it to complete) and then invalidate the pages for
7241 			 * this range (through invalidate_inode_pages2_range()),
7242 			 * but that can lead us to a deadlock with a concurrent
7243 			 * call to readahead (a buffered read or a defrag call
7244 			 * triggered a readahead) on a page lock due to an
7245 			 * ordered dio extent we created before but did not have
7246 			 * yet a corresponding bio submitted (whence it can not
7247 			 * complete), which makes readahead wait for that
7248 			 * ordered extent to complete while holding a lock on
7249 			 * that page.
7250 			 */
7251 			ret = nowait ? -EAGAIN : -ENOTBLK;
7252 		}
7253 
7254 		if (ret)
7255 			break;
7256 
7257 		cond_resched();
7258 	}
7259 
7260 	return ret;
7261 }
7262 
7263 /* The callers of this must take lock_extent() */
7264 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7265 				       u64 len, u64 orig_start, u64 block_start,
7266 				       u64 block_len, u64 orig_block_len,
7267 				       u64 ram_bytes, int compress_type,
7268 				       int type)
7269 {
7270 	struct extent_map *em;
7271 	int ret;
7272 
7273 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7274 	       type == BTRFS_ORDERED_COMPRESSED ||
7275 	       type == BTRFS_ORDERED_NOCOW ||
7276 	       type == BTRFS_ORDERED_REGULAR);
7277 
7278 	em = alloc_extent_map();
7279 	if (!em)
7280 		return ERR_PTR(-ENOMEM);
7281 
7282 	em->start = start;
7283 	em->orig_start = orig_start;
7284 	em->len = len;
7285 	em->block_len = block_len;
7286 	em->block_start = block_start;
7287 	em->orig_block_len = orig_block_len;
7288 	em->ram_bytes = ram_bytes;
7289 	em->generation = -1;
7290 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7291 	if (type == BTRFS_ORDERED_PREALLOC) {
7292 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7293 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7294 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7295 		em->compress_type = compress_type;
7296 	}
7297 
7298 	ret = btrfs_replace_extent_map_range(inode, em, true);
7299 	if (ret) {
7300 		free_extent_map(em);
7301 		return ERR_PTR(ret);
7302 	}
7303 
7304 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7305 	return em;
7306 }
7307 
7308 
7309 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7310 					 struct inode *inode,
7311 					 struct btrfs_dio_data *dio_data,
7312 					 u64 start, u64 *lenp,
7313 					 unsigned int iomap_flags)
7314 {
7315 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7316 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7317 	struct extent_map *em = *map;
7318 	int type;
7319 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7320 	struct btrfs_block_group *bg;
7321 	bool can_nocow = false;
7322 	bool space_reserved = false;
7323 	u64 len = *lenp;
7324 	u64 prev_len;
7325 	int ret = 0;
7326 
7327 	/*
7328 	 * We don't allocate a new extent in the following cases
7329 	 *
7330 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7331 	 * existing extent.
7332 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7333 	 * just use the extent.
7334 	 *
7335 	 */
7336 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7337 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7338 	     em->block_start != EXTENT_MAP_HOLE)) {
7339 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7340 			type = BTRFS_ORDERED_PREALLOC;
7341 		else
7342 			type = BTRFS_ORDERED_NOCOW;
7343 		len = min(len, em->len - (start - em->start));
7344 		block_start = em->block_start + (start - em->start);
7345 
7346 		if (can_nocow_extent(inode, start, &len, &orig_start,
7347 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7348 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7349 			if (bg)
7350 				can_nocow = true;
7351 		}
7352 	}
7353 
7354 	prev_len = len;
7355 	if (can_nocow) {
7356 		struct extent_map *em2;
7357 
7358 		/* We can NOCOW, so only need to reserve metadata space. */
7359 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7360 						      nowait);
7361 		if (ret < 0) {
7362 			/* Our caller expects us to free the input extent map. */
7363 			free_extent_map(em);
7364 			*map = NULL;
7365 			btrfs_dec_nocow_writers(bg);
7366 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7367 				ret = -EAGAIN;
7368 			goto out;
7369 		}
7370 		space_reserved = true;
7371 
7372 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7373 					      orig_start, block_start,
7374 					      len, orig_block_len,
7375 					      ram_bytes, type);
7376 		btrfs_dec_nocow_writers(bg);
7377 		if (type == BTRFS_ORDERED_PREALLOC) {
7378 			free_extent_map(em);
7379 			*map = em2;
7380 			em = em2;
7381 		}
7382 
7383 		if (IS_ERR(em2)) {
7384 			ret = PTR_ERR(em2);
7385 			goto out;
7386 		}
7387 
7388 		dio_data->nocow_done = true;
7389 	} else {
7390 		/* Our caller expects us to free the input extent map. */
7391 		free_extent_map(em);
7392 		*map = NULL;
7393 
7394 		if (nowait) {
7395 			ret = -EAGAIN;
7396 			goto out;
7397 		}
7398 
7399 		/*
7400 		 * If we could not allocate data space before locking the file
7401 		 * range and we can't do a NOCOW write, then we have to fail.
7402 		 */
7403 		if (!dio_data->data_space_reserved) {
7404 			ret = -ENOSPC;
7405 			goto out;
7406 		}
7407 
7408 		/*
7409 		 * We have to COW and we have already reserved data space before,
7410 		 * so now we reserve only metadata.
7411 		 */
7412 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7413 						      false);
7414 		if (ret < 0)
7415 			goto out;
7416 		space_reserved = true;
7417 
7418 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7419 		if (IS_ERR(em)) {
7420 			ret = PTR_ERR(em);
7421 			goto out;
7422 		}
7423 		*map = em;
7424 		len = min(len, em->len - (start - em->start));
7425 		if (len < prev_len)
7426 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7427 							prev_len - len, true);
7428 	}
7429 
7430 	/*
7431 	 * We have created our ordered extent, so we can now release our reservation
7432 	 * for an outstanding extent.
7433 	 */
7434 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7435 
7436 	/*
7437 	 * Need to update the i_size under the extent lock so buffered
7438 	 * readers will get the updated i_size when we unlock.
7439 	 */
7440 	if (start + len > i_size_read(inode))
7441 		i_size_write(inode, start + len);
7442 out:
7443 	if (ret && space_reserved) {
7444 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7445 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7446 	}
7447 	*lenp = len;
7448 	return ret;
7449 }
7450 
7451 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7452 		loff_t length, unsigned int flags, struct iomap *iomap,
7453 		struct iomap *srcmap)
7454 {
7455 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7456 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7457 	struct extent_map *em;
7458 	struct extent_state *cached_state = NULL;
7459 	struct btrfs_dio_data *dio_data = iter->private;
7460 	u64 lockstart, lockend;
7461 	const bool write = !!(flags & IOMAP_WRITE);
7462 	int ret = 0;
7463 	u64 len = length;
7464 	const u64 data_alloc_len = length;
7465 	bool unlock_extents = false;
7466 
7467 	/*
7468 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7469 	 * we're NOWAIT we may submit a bio for a partial range and return
7470 	 * EIOCBQUEUED, which would result in an errant short read.
7471 	 *
7472 	 * The best way to handle this would be to allow for partial completions
7473 	 * of iocb's, so we could submit the partial bio, return and fault in
7474 	 * the rest of the pages, and then submit the io for the rest of the
7475 	 * range.  However we don't have that currently, so simply return
7476 	 * -EAGAIN at this point so that the normal path is used.
7477 	 */
7478 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7479 		return -EAGAIN;
7480 
7481 	/*
7482 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7483 	 * to allocate a contiguous array for the checksums.
7484 	 */
7485 	if (!write)
7486 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7487 
7488 	lockstart = start;
7489 	lockend = start + len - 1;
7490 
7491 	/*
7492 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7493 	 * enough if we've written compressed pages to this area, so we need to
7494 	 * flush the dirty pages again to make absolutely sure that any
7495 	 * outstanding dirty pages are on disk - the first flush only starts
7496 	 * compression on the data, while keeping the pages locked, so by the
7497 	 * time the second flush returns we know bios for the compressed pages
7498 	 * were submitted and finished, and the pages no longer under writeback.
7499 	 *
7500 	 * If we have a NOWAIT request and we have any pages in the range that
7501 	 * are locked, likely due to compression still in progress, we don't want
7502 	 * to block on page locks. We also don't want to block on pages marked as
7503 	 * dirty or under writeback (same as for the non-compression case).
7504 	 * iomap_dio_rw() did the same check, but after that and before we got
7505 	 * here, mmap'ed writes may have happened or buffered reads started
7506 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7507 	 * the file range yet.
7508 	 */
7509 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7510 		     &BTRFS_I(inode)->runtime_flags)) {
7511 		if (flags & IOMAP_NOWAIT) {
7512 			if (filemap_range_needs_writeback(inode->i_mapping,
7513 							  lockstart, lockend))
7514 				return -EAGAIN;
7515 		} else {
7516 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7517 						       start + length - 1);
7518 			if (ret)
7519 				return ret;
7520 		}
7521 	}
7522 
7523 	memset(dio_data, 0, sizeof(*dio_data));
7524 
7525 	/*
7526 	 * We always try to allocate data space and must do it before locking
7527 	 * the file range, to avoid deadlocks with concurrent writes to the same
7528 	 * range if the range has several extents and the writes don't expand the
7529 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7530 	 * allocate data space here we continue and later, after locking the
7531 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7532 	 * NOCOW write.
7533 	 */
7534 	if (write && !(flags & IOMAP_NOWAIT)) {
7535 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7536 						  &dio_data->data_reserved,
7537 						  start, data_alloc_len, false);
7538 		if (!ret)
7539 			dio_data->data_space_reserved = true;
7540 		else if (ret && !(BTRFS_I(inode)->flags &
7541 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7542 			goto err;
7543 	}
7544 
7545 	/*
7546 	 * If this errors out it's because we couldn't invalidate pagecache for
7547 	 * this range and we need to fallback to buffered IO, or we are doing a
7548 	 * NOWAIT read/write and we need to block.
7549 	 */
7550 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7551 	if (ret < 0)
7552 		goto err;
7553 
7554 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7555 	if (IS_ERR(em)) {
7556 		ret = PTR_ERR(em);
7557 		goto unlock_err;
7558 	}
7559 
7560 	/*
7561 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7562 	 * io.  INLINE is special, and we could probably kludge it in here, but
7563 	 * it's still buffered so for safety lets just fall back to the generic
7564 	 * buffered path.
7565 	 *
7566 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7567 	 * decompress it, so there will be buffering required no matter what we
7568 	 * do, so go ahead and fallback to buffered.
7569 	 *
7570 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7571 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7572 	 * the generic code.
7573 	 */
7574 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7575 	    em->block_start == EXTENT_MAP_INLINE) {
7576 		free_extent_map(em);
7577 		/*
7578 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7579 		 * fallback to buffered IO. This is not only because we can
7580 		 * block with buffered IO (no support for NOWAIT semantics at
7581 		 * the moment) but also to avoid returning short reads to user
7582 		 * space - this happens if we were able to read some data from
7583 		 * previous non-compressed extents and then when we fallback to
7584 		 * buffered IO, at btrfs_file_read_iter() by calling
7585 		 * filemap_read(), we fail to fault in pages for the read buffer,
7586 		 * in which case filemap_read() returns a short read (the number
7587 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7588 		 */
7589 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7590 		goto unlock_err;
7591 	}
7592 
7593 	len = min(len, em->len - (start - em->start));
7594 
7595 	/*
7596 	 * If we have a NOWAIT request and the range contains multiple extents
7597 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7598 	 * caller fallback to a context where it can do a blocking (without
7599 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7600 	 * success to the caller, which is not optimal for writes and for reads
7601 	 * it can result in unexpected behaviour for an application.
7602 	 *
7603 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7604 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7605 	 * asked for, resulting in an unexpected, and incorrect, short read.
7606 	 * That is, the caller asked to read N bytes and we return less than that,
7607 	 * which is wrong unless we are crossing EOF. This happens if we get a
7608 	 * page fault error when trying to fault in pages for the buffer that is
7609 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7610 	 * have previously submitted bios for other extents in the range, in
7611 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7612 	 * those bios have completed by the time we get the page fault error,
7613 	 * which we return back to our caller - we should only return EIOCBQUEUED
7614 	 * after we have submitted bios for all the extents in the range.
7615 	 */
7616 	if ((flags & IOMAP_NOWAIT) && len < length) {
7617 		free_extent_map(em);
7618 		ret = -EAGAIN;
7619 		goto unlock_err;
7620 	}
7621 
7622 	if (write) {
7623 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7624 						    start, &len, flags);
7625 		if (ret < 0)
7626 			goto unlock_err;
7627 		unlock_extents = true;
7628 		/* Recalc len in case the new em is smaller than requested */
7629 		len = min(len, em->len - (start - em->start));
7630 		if (dio_data->data_space_reserved) {
7631 			u64 release_offset;
7632 			u64 release_len = 0;
7633 
7634 			if (dio_data->nocow_done) {
7635 				release_offset = start;
7636 				release_len = data_alloc_len;
7637 			} else if (len < data_alloc_len) {
7638 				release_offset = start + len;
7639 				release_len = data_alloc_len - len;
7640 			}
7641 
7642 			if (release_len > 0)
7643 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7644 							       dio_data->data_reserved,
7645 							       release_offset,
7646 							       release_len);
7647 		}
7648 	} else {
7649 		/*
7650 		 * We need to unlock only the end area that we aren't using.
7651 		 * The rest is going to be unlocked by the endio routine.
7652 		 */
7653 		lockstart = start + len;
7654 		if (lockstart < lockend)
7655 			unlock_extents = true;
7656 	}
7657 
7658 	if (unlock_extents)
7659 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7660 			      &cached_state);
7661 	else
7662 		free_extent_state(cached_state);
7663 
7664 	/*
7665 	 * Translate extent map information to iomap.
7666 	 * We trim the extents (and move the addr) even though iomap code does
7667 	 * that, since we have locked only the parts we are performing I/O in.
7668 	 */
7669 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7670 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7671 		iomap->addr = IOMAP_NULL_ADDR;
7672 		iomap->type = IOMAP_HOLE;
7673 	} else {
7674 		iomap->addr = em->block_start + (start - em->start);
7675 		iomap->type = IOMAP_MAPPED;
7676 	}
7677 	iomap->offset = start;
7678 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7679 	iomap->length = len;
7680 	free_extent_map(em);
7681 
7682 	return 0;
7683 
7684 unlock_err:
7685 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7686 		      &cached_state);
7687 err:
7688 	if (dio_data->data_space_reserved) {
7689 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7690 					       dio_data->data_reserved,
7691 					       start, data_alloc_len);
7692 		extent_changeset_free(dio_data->data_reserved);
7693 	}
7694 
7695 	return ret;
7696 }
7697 
7698 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7699 		ssize_t written, unsigned int flags, struct iomap *iomap)
7700 {
7701 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7702 	struct btrfs_dio_data *dio_data = iter->private;
7703 	size_t submitted = dio_data->submitted;
7704 	const bool write = !!(flags & IOMAP_WRITE);
7705 	int ret = 0;
7706 
7707 	if (!write && (iomap->type == IOMAP_HOLE)) {
7708 		/* If reading from a hole, unlock and return */
7709 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7710 			      NULL);
7711 		return 0;
7712 	}
7713 
7714 	if (submitted < length) {
7715 		pos += submitted;
7716 		length -= submitted;
7717 		if (write)
7718 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7719 						    pos, length, false);
7720 		else
7721 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7722 				      pos + length - 1, NULL);
7723 		ret = -ENOTBLK;
7724 	}
7725 	if (write) {
7726 		btrfs_put_ordered_extent(dio_data->ordered);
7727 		dio_data->ordered = NULL;
7728 	}
7729 
7730 	if (write)
7731 		extent_changeset_free(dio_data->data_reserved);
7732 	return ret;
7733 }
7734 
7735 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7736 {
7737 	struct btrfs_dio_private *dip =
7738 		container_of(bbio, struct btrfs_dio_private, bbio);
7739 	struct btrfs_inode *inode = bbio->inode;
7740 	struct bio *bio = &bbio->bio;
7741 
7742 	if (bio->bi_status) {
7743 		btrfs_warn(inode->root->fs_info,
7744 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7745 			   btrfs_ino(inode), bio->bi_opf,
7746 			   dip->file_offset, dip->bytes, bio->bi_status);
7747 	}
7748 
7749 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7750 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7751 					    dip->file_offset, dip->bytes,
7752 					    !bio->bi_status);
7753 	} else {
7754 		unlock_extent(&inode->io_tree, dip->file_offset,
7755 			      dip->file_offset + dip->bytes - 1, NULL);
7756 	}
7757 
7758 	bbio->bio.bi_private = bbio->private;
7759 	iomap_dio_bio_end_io(bio);
7760 }
7761 
7762 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7763 				loff_t file_offset)
7764 {
7765 	struct btrfs_bio *bbio = btrfs_bio(bio);
7766 	struct btrfs_dio_private *dip =
7767 		container_of(bbio, struct btrfs_dio_private, bbio);
7768 	struct btrfs_dio_data *dio_data = iter->private;
7769 
7770 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7771 		       btrfs_dio_end_io, bio->bi_private);
7772 	bbio->inode = BTRFS_I(iter->inode);
7773 	bbio->file_offset = file_offset;
7774 
7775 	dip->file_offset = file_offset;
7776 	dip->bytes = bio->bi_iter.bi_size;
7777 
7778 	dio_data->submitted += bio->bi_iter.bi_size;
7779 
7780 	/*
7781 	 * Check if we are doing a partial write.  If we are, we need to split
7782 	 * the ordered extent to match the submitted bio.  Hang on to the
7783 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7784 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7785 	 * remaining pages is blocked on the outstanding ordered extent.
7786 	 */
7787 	if (iter->flags & IOMAP_WRITE) {
7788 		int ret;
7789 
7790 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7791 		if (ret) {
7792 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7793 						    file_offset, dip->bytes,
7794 						    !ret);
7795 			bio->bi_status = errno_to_blk_status(ret);
7796 			iomap_dio_bio_end_io(bio);
7797 			return;
7798 		}
7799 	}
7800 
7801 	btrfs_submit_bio(bbio, 0);
7802 }
7803 
7804 static const struct iomap_ops btrfs_dio_iomap_ops = {
7805 	.iomap_begin            = btrfs_dio_iomap_begin,
7806 	.iomap_end              = btrfs_dio_iomap_end,
7807 };
7808 
7809 static const struct iomap_dio_ops btrfs_dio_ops = {
7810 	.submit_io		= btrfs_dio_submit_io,
7811 	.bio_set		= &btrfs_dio_bioset,
7812 };
7813 
7814 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7815 {
7816 	struct btrfs_dio_data data = { 0 };
7817 
7818 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7819 			    IOMAP_DIO_PARTIAL, &data, done_before);
7820 }
7821 
7822 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7823 				  size_t done_before)
7824 {
7825 	struct btrfs_dio_data data = { 0 };
7826 
7827 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7828 			    IOMAP_DIO_PARTIAL, &data, done_before);
7829 }
7830 
7831 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7832 			u64 start, u64 len)
7833 {
7834 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7835 	int	ret;
7836 
7837 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7838 	if (ret)
7839 		return ret;
7840 
7841 	/*
7842 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7843 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7844 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7845 	 * in the compression of data (in an async thread) and will return
7846 	 * before the compression is done and writeback is started. A second
7847 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7848 	 * complete and writeback to start. We also need to wait for ordered
7849 	 * extents to complete, because our fiemap implementation uses mainly
7850 	 * file extent items to list the extents, searching for extent maps
7851 	 * only for file ranges with holes or prealloc extents to figure out
7852 	 * if we have delalloc in those ranges.
7853 	 */
7854 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7855 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7856 		if (ret)
7857 			return ret;
7858 	}
7859 
7860 	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7861 
7862 	/*
7863 	 * We did an initial flush to avoid holding the inode's lock while
7864 	 * triggering writeback and waiting for the completion of IO and ordered
7865 	 * extents. Now after we locked the inode we do it again, because it's
7866 	 * possible a new write may have happened in between those two steps.
7867 	 */
7868 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7869 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7870 		if (ret) {
7871 			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7872 			return ret;
7873 		}
7874 	}
7875 
7876 	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7877 	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7878 
7879 	return ret;
7880 }
7881 
7882 static int btrfs_writepages(struct address_space *mapping,
7883 			    struct writeback_control *wbc)
7884 {
7885 	return extent_writepages(mapping, wbc);
7886 }
7887 
7888 static void btrfs_readahead(struct readahead_control *rac)
7889 {
7890 	extent_readahead(rac);
7891 }
7892 
7893 /*
7894  * For release_folio() and invalidate_folio() we have a race window where
7895  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7896  * If we continue to release/invalidate the page, we could cause use-after-free
7897  * for subpage spinlock.  So this function is to spin and wait for subpage
7898  * spinlock.
7899  */
7900 static void wait_subpage_spinlock(struct page *page)
7901 {
7902 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7903 	struct btrfs_subpage *subpage;
7904 
7905 	if (!btrfs_is_subpage(fs_info, page))
7906 		return;
7907 
7908 	ASSERT(PagePrivate(page) && page->private);
7909 	subpage = (struct btrfs_subpage *)page->private;
7910 
7911 	/*
7912 	 * This may look insane as we just acquire the spinlock and release it,
7913 	 * without doing anything.  But we just want to make sure no one is
7914 	 * still holding the subpage spinlock.
7915 	 * And since the page is not dirty nor writeback, and we have page
7916 	 * locked, the only possible way to hold a spinlock is from the endio
7917 	 * function to clear page writeback.
7918 	 *
7919 	 * Here we just acquire the spinlock so that all existing callers
7920 	 * should exit and we're safe to release/invalidate the page.
7921 	 */
7922 	spin_lock_irq(&subpage->lock);
7923 	spin_unlock_irq(&subpage->lock);
7924 }
7925 
7926 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7927 {
7928 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7929 
7930 	if (ret == 1) {
7931 		wait_subpage_spinlock(&folio->page);
7932 		clear_page_extent_mapped(&folio->page);
7933 	}
7934 	return ret;
7935 }
7936 
7937 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7938 {
7939 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7940 		return false;
7941 	return __btrfs_release_folio(folio, gfp_flags);
7942 }
7943 
7944 #ifdef CONFIG_MIGRATION
7945 static int btrfs_migrate_folio(struct address_space *mapping,
7946 			     struct folio *dst, struct folio *src,
7947 			     enum migrate_mode mode)
7948 {
7949 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7950 
7951 	if (ret != MIGRATEPAGE_SUCCESS)
7952 		return ret;
7953 
7954 	if (folio_test_ordered(src)) {
7955 		folio_clear_ordered(src);
7956 		folio_set_ordered(dst);
7957 	}
7958 
7959 	return MIGRATEPAGE_SUCCESS;
7960 }
7961 #else
7962 #define btrfs_migrate_folio NULL
7963 #endif
7964 
7965 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7966 				 size_t length)
7967 {
7968 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7969 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7970 	struct extent_io_tree *tree = &inode->io_tree;
7971 	struct extent_state *cached_state = NULL;
7972 	u64 page_start = folio_pos(folio);
7973 	u64 page_end = page_start + folio_size(folio) - 1;
7974 	u64 cur;
7975 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7976 
7977 	/*
7978 	 * We have folio locked so no new ordered extent can be created on this
7979 	 * page, nor bio can be submitted for this folio.
7980 	 *
7981 	 * But already submitted bio can still be finished on this folio.
7982 	 * Furthermore, endio function won't skip folio which has Ordered
7983 	 * (Private2) already cleared, so it's possible for endio and
7984 	 * invalidate_folio to do the same ordered extent accounting twice
7985 	 * on one folio.
7986 	 *
7987 	 * So here we wait for any submitted bios to finish, so that we won't
7988 	 * do double ordered extent accounting on the same folio.
7989 	 */
7990 	folio_wait_writeback(folio);
7991 	wait_subpage_spinlock(&folio->page);
7992 
7993 	/*
7994 	 * For subpage case, we have call sites like
7995 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7996 	 * sectorsize.
7997 	 * If the range doesn't cover the full folio, we don't need to and
7998 	 * shouldn't clear page extent mapped, as folio->private can still
7999 	 * record subpage dirty bits for other part of the range.
8000 	 *
8001 	 * For cases that invalidate the full folio even the range doesn't
8002 	 * cover the full folio, like invalidating the last folio, we're
8003 	 * still safe to wait for ordered extent to finish.
8004 	 */
8005 	if (!(offset == 0 && length == folio_size(folio))) {
8006 		btrfs_release_folio(folio, GFP_NOFS);
8007 		return;
8008 	}
8009 
8010 	if (!inode_evicting)
8011 		lock_extent(tree, page_start, page_end, &cached_state);
8012 
8013 	cur = page_start;
8014 	while (cur < page_end) {
8015 		struct btrfs_ordered_extent *ordered;
8016 		u64 range_end;
8017 		u32 range_len;
8018 		u32 extra_flags = 0;
8019 
8020 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8021 							   page_end + 1 - cur);
8022 		if (!ordered) {
8023 			range_end = page_end;
8024 			/*
8025 			 * No ordered extent covering this range, we are safe
8026 			 * to delete all extent states in the range.
8027 			 */
8028 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8029 			goto next;
8030 		}
8031 		if (ordered->file_offset > cur) {
8032 			/*
8033 			 * There is a range between [cur, oe->file_offset) not
8034 			 * covered by any ordered extent.
8035 			 * We are safe to delete all extent states, and handle
8036 			 * the ordered extent in the next iteration.
8037 			 */
8038 			range_end = ordered->file_offset - 1;
8039 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8040 			goto next;
8041 		}
8042 
8043 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8044 				page_end);
8045 		ASSERT(range_end + 1 - cur < U32_MAX);
8046 		range_len = range_end + 1 - cur;
8047 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8048 			/*
8049 			 * If Ordered (Private2) is cleared, it means endio has
8050 			 * already been executed for the range.
8051 			 * We can't delete the extent states as
8052 			 * btrfs_finish_ordered_io() may still use some of them.
8053 			 */
8054 			goto next;
8055 		}
8056 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8057 
8058 		/*
8059 		 * IO on this page will never be started, so we need to account
8060 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8061 		 * here, must leave that up for the ordered extent completion.
8062 		 *
8063 		 * This will also unlock the range for incoming
8064 		 * btrfs_finish_ordered_io().
8065 		 */
8066 		if (!inode_evicting)
8067 			clear_extent_bit(tree, cur, range_end,
8068 					 EXTENT_DELALLOC |
8069 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8070 					 EXTENT_DEFRAG, &cached_state);
8071 
8072 		spin_lock_irq(&inode->ordered_tree.lock);
8073 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8074 		ordered->truncated_len = min(ordered->truncated_len,
8075 					     cur - ordered->file_offset);
8076 		spin_unlock_irq(&inode->ordered_tree.lock);
8077 
8078 		/*
8079 		 * If the ordered extent has finished, we're safe to delete all
8080 		 * the extent states of the range, otherwise
8081 		 * btrfs_finish_ordered_io() will get executed by endio for
8082 		 * other pages, so we can't delete extent states.
8083 		 */
8084 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8085 						   cur, range_end + 1 - cur)) {
8086 			btrfs_finish_ordered_io(ordered);
8087 			/*
8088 			 * The ordered extent has finished, now we're again
8089 			 * safe to delete all extent states of the range.
8090 			 */
8091 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8092 		}
8093 next:
8094 		if (ordered)
8095 			btrfs_put_ordered_extent(ordered);
8096 		/*
8097 		 * Qgroup reserved space handler
8098 		 * Sector(s) here will be either:
8099 		 *
8100 		 * 1) Already written to disk or bio already finished
8101 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8102 		 *    Qgroup will be handled by its qgroup_record then.
8103 		 *    btrfs_qgroup_free_data() call will do nothing here.
8104 		 *
8105 		 * 2) Not written to disk yet
8106 		 *    Then btrfs_qgroup_free_data() call will clear the
8107 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8108 		 *    reserved data space.
8109 		 *    Since the IO will never happen for this page.
8110 		 */
8111 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8112 		if (!inode_evicting) {
8113 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8114 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8115 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8116 				 extra_flags, &cached_state);
8117 		}
8118 		cur = range_end + 1;
8119 	}
8120 	/*
8121 	 * We have iterated through all ordered extents of the page, the page
8122 	 * should not have Ordered (Private2) anymore, or the above iteration
8123 	 * did something wrong.
8124 	 */
8125 	ASSERT(!folio_test_ordered(folio));
8126 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8127 	if (!inode_evicting)
8128 		__btrfs_release_folio(folio, GFP_NOFS);
8129 	clear_page_extent_mapped(&folio->page);
8130 }
8131 
8132 /*
8133  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8134  * called from a page fault handler when a page is first dirtied. Hence we must
8135  * be careful to check for EOF conditions here. We set the page up correctly
8136  * for a written page which means we get ENOSPC checking when writing into
8137  * holes and correct delalloc and unwritten extent mapping on filesystems that
8138  * support these features.
8139  *
8140  * We are not allowed to take the i_mutex here so we have to play games to
8141  * protect against truncate races as the page could now be beyond EOF.  Because
8142  * truncate_setsize() writes the inode size before removing pages, once we have
8143  * the page lock we can determine safely if the page is beyond EOF. If it is not
8144  * beyond EOF, then the page is guaranteed safe against truncation until we
8145  * unlock the page.
8146  */
8147 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8148 {
8149 	struct page *page = vmf->page;
8150 	struct inode *inode = file_inode(vmf->vma->vm_file);
8151 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8152 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8153 	struct btrfs_ordered_extent *ordered;
8154 	struct extent_state *cached_state = NULL;
8155 	struct extent_changeset *data_reserved = NULL;
8156 	unsigned long zero_start;
8157 	loff_t size;
8158 	vm_fault_t ret;
8159 	int ret2;
8160 	int reserved = 0;
8161 	u64 reserved_space;
8162 	u64 page_start;
8163 	u64 page_end;
8164 	u64 end;
8165 
8166 	reserved_space = PAGE_SIZE;
8167 
8168 	sb_start_pagefault(inode->i_sb);
8169 	page_start = page_offset(page);
8170 	page_end = page_start + PAGE_SIZE - 1;
8171 	end = page_end;
8172 
8173 	/*
8174 	 * Reserving delalloc space after obtaining the page lock can lead to
8175 	 * deadlock. For example, if a dirty page is locked by this function
8176 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8177 	 * dirty page write out, then the btrfs_writepages() function could
8178 	 * end up waiting indefinitely to get a lock on the page currently
8179 	 * being processed by btrfs_page_mkwrite() function.
8180 	 */
8181 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8182 					    page_start, reserved_space);
8183 	if (!ret2) {
8184 		ret2 = file_update_time(vmf->vma->vm_file);
8185 		reserved = 1;
8186 	}
8187 	if (ret2) {
8188 		ret = vmf_error(ret2);
8189 		if (reserved)
8190 			goto out;
8191 		goto out_noreserve;
8192 	}
8193 
8194 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8195 again:
8196 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8197 	lock_page(page);
8198 	size = i_size_read(inode);
8199 
8200 	if ((page->mapping != inode->i_mapping) ||
8201 	    (page_start >= size)) {
8202 		/* page got truncated out from underneath us */
8203 		goto out_unlock;
8204 	}
8205 	wait_on_page_writeback(page);
8206 
8207 	lock_extent(io_tree, page_start, page_end, &cached_state);
8208 	ret2 = set_page_extent_mapped(page);
8209 	if (ret2 < 0) {
8210 		ret = vmf_error(ret2);
8211 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8212 		goto out_unlock;
8213 	}
8214 
8215 	/*
8216 	 * we can't set the delalloc bits if there are pending ordered
8217 	 * extents.  Drop our locks and wait for them to finish
8218 	 */
8219 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8220 			PAGE_SIZE);
8221 	if (ordered) {
8222 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8223 		unlock_page(page);
8224 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8225 		btrfs_start_ordered_extent(ordered);
8226 		btrfs_put_ordered_extent(ordered);
8227 		goto again;
8228 	}
8229 
8230 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8231 		reserved_space = round_up(size - page_start,
8232 					  fs_info->sectorsize);
8233 		if (reserved_space < PAGE_SIZE) {
8234 			end = page_start + reserved_space - 1;
8235 			btrfs_delalloc_release_space(BTRFS_I(inode),
8236 					data_reserved, page_start,
8237 					PAGE_SIZE - reserved_space, true);
8238 		}
8239 	}
8240 
8241 	/*
8242 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8243 	 * faulted in, but write(2) could also dirty a page and set delalloc
8244 	 * bits, thus in this case for space account reason, we still need to
8245 	 * clear any delalloc bits within this page range since we have to
8246 	 * reserve data&meta space before lock_page() (see above comments).
8247 	 */
8248 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8249 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8250 			  EXTENT_DEFRAG, &cached_state);
8251 
8252 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8253 					&cached_state);
8254 	if (ret2) {
8255 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8256 		ret = VM_FAULT_SIGBUS;
8257 		goto out_unlock;
8258 	}
8259 
8260 	/* page is wholly or partially inside EOF */
8261 	if (page_start + PAGE_SIZE > size)
8262 		zero_start = offset_in_page(size);
8263 	else
8264 		zero_start = PAGE_SIZE;
8265 
8266 	if (zero_start != PAGE_SIZE)
8267 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8268 
8269 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8270 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8271 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8272 
8273 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8274 
8275 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8276 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8277 
8278 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8279 	sb_end_pagefault(inode->i_sb);
8280 	extent_changeset_free(data_reserved);
8281 	return VM_FAULT_LOCKED;
8282 
8283 out_unlock:
8284 	unlock_page(page);
8285 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8286 out:
8287 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8288 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8289 				     reserved_space, (ret != 0));
8290 out_noreserve:
8291 	sb_end_pagefault(inode->i_sb);
8292 	extent_changeset_free(data_reserved);
8293 	return ret;
8294 }
8295 
8296 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8297 {
8298 	struct btrfs_truncate_control control = {
8299 		.inode = inode,
8300 		.ino = btrfs_ino(inode),
8301 		.min_type = BTRFS_EXTENT_DATA_KEY,
8302 		.clear_extent_range = true,
8303 	};
8304 	struct btrfs_root *root = inode->root;
8305 	struct btrfs_fs_info *fs_info = root->fs_info;
8306 	struct btrfs_block_rsv *rsv;
8307 	int ret;
8308 	struct btrfs_trans_handle *trans;
8309 	u64 mask = fs_info->sectorsize - 1;
8310 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8311 
8312 	if (!skip_writeback) {
8313 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8314 					       inode->vfs_inode.i_size & (~mask),
8315 					       (u64)-1);
8316 		if (ret)
8317 			return ret;
8318 	}
8319 
8320 	/*
8321 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8322 	 * things going on here:
8323 	 *
8324 	 * 1) We need to reserve space to update our inode.
8325 	 *
8326 	 * 2) We need to have something to cache all the space that is going to
8327 	 * be free'd up by the truncate operation, but also have some slack
8328 	 * space reserved in case it uses space during the truncate (thank you
8329 	 * very much snapshotting).
8330 	 *
8331 	 * And we need these to be separate.  The fact is we can use a lot of
8332 	 * space doing the truncate, and we have no earthly idea how much space
8333 	 * we will use, so we need the truncate reservation to be separate so it
8334 	 * doesn't end up using space reserved for updating the inode.  We also
8335 	 * need to be able to stop the transaction and start a new one, which
8336 	 * means we need to be able to update the inode several times, and we
8337 	 * have no idea of knowing how many times that will be, so we can't just
8338 	 * reserve 1 item for the entirety of the operation, so that has to be
8339 	 * done separately as well.
8340 	 *
8341 	 * So that leaves us with
8342 	 *
8343 	 * 1) rsv - for the truncate reservation, which we will steal from the
8344 	 * transaction reservation.
8345 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8346 	 * updating the inode.
8347 	 */
8348 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8349 	if (!rsv)
8350 		return -ENOMEM;
8351 	rsv->size = min_size;
8352 	rsv->failfast = true;
8353 
8354 	/*
8355 	 * 1 for the truncate slack space
8356 	 * 1 for updating the inode.
8357 	 */
8358 	trans = btrfs_start_transaction(root, 2);
8359 	if (IS_ERR(trans)) {
8360 		ret = PTR_ERR(trans);
8361 		goto out;
8362 	}
8363 
8364 	/* Migrate the slack space for the truncate to our reserve */
8365 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8366 				      min_size, false);
8367 	/*
8368 	 * We have reserved 2 metadata units when we started the transaction and
8369 	 * min_size matches 1 unit, so this should never fail, but if it does,
8370 	 * it's not critical we just fail truncation.
8371 	 */
8372 	if (WARN_ON(ret)) {
8373 		btrfs_end_transaction(trans);
8374 		goto out;
8375 	}
8376 
8377 	trans->block_rsv = rsv;
8378 
8379 	while (1) {
8380 		struct extent_state *cached_state = NULL;
8381 		const u64 new_size = inode->vfs_inode.i_size;
8382 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8383 
8384 		control.new_size = new_size;
8385 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8386 		/*
8387 		 * We want to drop from the next block forward in case this new
8388 		 * size is not block aligned since we will be keeping the last
8389 		 * block of the extent just the way it is.
8390 		 */
8391 		btrfs_drop_extent_map_range(inode,
8392 					    ALIGN(new_size, fs_info->sectorsize),
8393 					    (u64)-1, false);
8394 
8395 		ret = btrfs_truncate_inode_items(trans, root, &control);
8396 
8397 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8398 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8399 
8400 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8401 
8402 		trans->block_rsv = &fs_info->trans_block_rsv;
8403 		if (ret != -ENOSPC && ret != -EAGAIN)
8404 			break;
8405 
8406 		ret = btrfs_update_inode(trans, root, inode);
8407 		if (ret)
8408 			break;
8409 
8410 		btrfs_end_transaction(trans);
8411 		btrfs_btree_balance_dirty(fs_info);
8412 
8413 		trans = btrfs_start_transaction(root, 2);
8414 		if (IS_ERR(trans)) {
8415 			ret = PTR_ERR(trans);
8416 			trans = NULL;
8417 			break;
8418 		}
8419 
8420 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8421 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8422 					      rsv, min_size, false);
8423 		/*
8424 		 * We have reserved 2 metadata units when we started the
8425 		 * transaction and min_size matches 1 unit, so this should never
8426 		 * fail, but if it does, it's not critical we just fail truncation.
8427 		 */
8428 		if (WARN_ON(ret))
8429 			break;
8430 
8431 		trans->block_rsv = rsv;
8432 	}
8433 
8434 	/*
8435 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8436 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8437 	 * know we've truncated everything except the last little bit, and can
8438 	 * do btrfs_truncate_block and then update the disk_i_size.
8439 	 */
8440 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8441 		btrfs_end_transaction(trans);
8442 		btrfs_btree_balance_dirty(fs_info);
8443 
8444 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8445 		if (ret)
8446 			goto out;
8447 		trans = btrfs_start_transaction(root, 1);
8448 		if (IS_ERR(trans)) {
8449 			ret = PTR_ERR(trans);
8450 			goto out;
8451 		}
8452 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8453 	}
8454 
8455 	if (trans) {
8456 		int ret2;
8457 
8458 		trans->block_rsv = &fs_info->trans_block_rsv;
8459 		ret2 = btrfs_update_inode(trans, root, inode);
8460 		if (ret2 && !ret)
8461 			ret = ret2;
8462 
8463 		ret2 = btrfs_end_transaction(trans);
8464 		if (ret2 && !ret)
8465 			ret = ret2;
8466 		btrfs_btree_balance_dirty(fs_info);
8467 	}
8468 out:
8469 	btrfs_free_block_rsv(fs_info, rsv);
8470 	/*
8471 	 * So if we truncate and then write and fsync we normally would just
8472 	 * write the extents that changed, which is a problem if we need to
8473 	 * first truncate that entire inode.  So set this flag so we write out
8474 	 * all of the extents in the inode to the sync log so we're completely
8475 	 * safe.
8476 	 *
8477 	 * If no extents were dropped or trimmed we don't need to force the next
8478 	 * fsync to truncate all the inode's items from the log and re-log them
8479 	 * all. This means the truncate operation did not change the file size,
8480 	 * or changed it to a smaller size but there was only an implicit hole
8481 	 * between the old i_size and the new i_size, and there were no prealloc
8482 	 * extents beyond i_size to drop.
8483 	 */
8484 	if (control.extents_found > 0)
8485 		btrfs_set_inode_full_sync(inode);
8486 
8487 	return ret;
8488 }
8489 
8490 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8491 				     struct inode *dir)
8492 {
8493 	struct inode *inode;
8494 
8495 	inode = new_inode(dir->i_sb);
8496 	if (inode) {
8497 		/*
8498 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8499 		 * the parent's sgid bit is set. This is probably a bug.
8500 		 */
8501 		inode_init_owner(idmap, inode, NULL,
8502 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8503 		inode->i_op = &btrfs_dir_inode_operations;
8504 		inode->i_fop = &btrfs_dir_file_operations;
8505 	}
8506 	return inode;
8507 }
8508 
8509 struct inode *btrfs_alloc_inode(struct super_block *sb)
8510 {
8511 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8512 	struct btrfs_inode *ei;
8513 	struct inode *inode;
8514 
8515 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8516 	if (!ei)
8517 		return NULL;
8518 
8519 	ei->root = NULL;
8520 	ei->generation = 0;
8521 	ei->last_trans = 0;
8522 	ei->last_sub_trans = 0;
8523 	ei->logged_trans = 0;
8524 	ei->delalloc_bytes = 0;
8525 	ei->new_delalloc_bytes = 0;
8526 	ei->defrag_bytes = 0;
8527 	ei->disk_i_size = 0;
8528 	ei->flags = 0;
8529 	ei->ro_flags = 0;
8530 	ei->csum_bytes = 0;
8531 	ei->index_cnt = (u64)-1;
8532 	ei->dir_index = 0;
8533 	ei->last_unlink_trans = 0;
8534 	ei->last_reflink_trans = 0;
8535 	ei->last_log_commit = 0;
8536 
8537 	spin_lock_init(&ei->lock);
8538 	ei->outstanding_extents = 0;
8539 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8540 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8541 					      BTRFS_BLOCK_RSV_DELALLOC);
8542 	ei->runtime_flags = 0;
8543 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8544 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8545 
8546 	ei->delayed_node = NULL;
8547 
8548 	ei->i_otime.tv_sec = 0;
8549 	ei->i_otime.tv_nsec = 0;
8550 
8551 	inode = &ei->vfs_inode;
8552 	extent_map_tree_init(&ei->extent_tree);
8553 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8554 	ei->io_tree.inode = ei;
8555 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8556 			    IO_TREE_INODE_FILE_EXTENT);
8557 	mutex_init(&ei->log_mutex);
8558 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8559 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8560 	INIT_LIST_HEAD(&ei->delayed_iput);
8561 	RB_CLEAR_NODE(&ei->rb_node);
8562 	init_rwsem(&ei->i_mmap_lock);
8563 
8564 	return inode;
8565 }
8566 
8567 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8568 void btrfs_test_destroy_inode(struct inode *inode)
8569 {
8570 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8571 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8572 }
8573 #endif
8574 
8575 void btrfs_free_inode(struct inode *inode)
8576 {
8577 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8578 }
8579 
8580 void btrfs_destroy_inode(struct inode *vfs_inode)
8581 {
8582 	struct btrfs_ordered_extent *ordered;
8583 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8584 	struct btrfs_root *root = inode->root;
8585 	bool freespace_inode;
8586 
8587 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8588 	WARN_ON(vfs_inode->i_data.nrpages);
8589 	WARN_ON(inode->block_rsv.reserved);
8590 	WARN_ON(inode->block_rsv.size);
8591 	WARN_ON(inode->outstanding_extents);
8592 	if (!S_ISDIR(vfs_inode->i_mode)) {
8593 		WARN_ON(inode->delalloc_bytes);
8594 		WARN_ON(inode->new_delalloc_bytes);
8595 	}
8596 	WARN_ON(inode->csum_bytes);
8597 	WARN_ON(inode->defrag_bytes);
8598 
8599 	/*
8600 	 * This can happen where we create an inode, but somebody else also
8601 	 * created the same inode and we need to destroy the one we already
8602 	 * created.
8603 	 */
8604 	if (!root)
8605 		return;
8606 
8607 	/*
8608 	 * If this is a free space inode do not take the ordered extents lockdep
8609 	 * map.
8610 	 */
8611 	freespace_inode = btrfs_is_free_space_inode(inode);
8612 
8613 	while (1) {
8614 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8615 		if (!ordered)
8616 			break;
8617 		else {
8618 			btrfs_err(root->fs_info,
8619 				  "found ordered extent %llu %llu on inode cleanup",
8620 				  ordered->file_offset, ordered->num_bytes);
8621 
8622 			if (!freespace_inode)
8623 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8624 
8625 			btrfs_remove_ordered_extent(inode, ordered);
8626 			btrfs_put_ordered_extent(ordered);
8627 			btrfs_put_ordered_extent(ordered);
8628 		}
8629 	}
8630 	btrfs_qgroup_check_reserved_leak(inode);
8631 	inode_tree_del(inode);
8632 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8633 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8634 	btrfs_put_root(inode->root);
8635 }
8636 
8637 int btrfs_drop_inode(struct inode *inode)
8638 {
8639 	struct btrfs_root *root = BTRFS_I(inode)->root;
8640 
8641 	if (root == NULL)
8642 		return 1;
8643 
8644 	/* the snap/subvol tree is on deleting */
8645 	if (btrfs_root_refs(&root->root_item) == 0)
8646 		return 1;
8647 	else
8648 		return generic_drop_inode(inode);
8649 }
8650 
8651 static void init_once(void *foo)
8652 {
8653 	struct btrfs_inode *ei = foo;
8654 
8655 	inode_init_once(&ei->vfs_inode);
8656 }
8657 
8658 void __cold btrfs_destroy_cachep(void)
8659 {
8660 	/*
8661 	 * Make sure all delayed rcu free inodes are flushed before we
8662 	 * destroy cache.
8663 	 */
8664 	rcu_barrier();
8665 	bioset_exit(&btrfs_dio_bioset);
8666 	kmem_cache_destroy(btrfs_inode_cachep);
8667 }
8668 
8669 int __init btrfs_init_cachep(void)
8670 {
8671 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8672 			sizeof(struct btrfs_inode), 0,
8673 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8674 			init_once);
8675 	if (!btrfs_inode_cachep)
8676 		goto fail;
8677 
8678 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8679 			offsetof(struct btrfs_dio_private, bbio.bio),
8680 			BIOSET_NEED_BVECS))
8681 		goto fail;
8682 
8683 	return 0;
8684 fail:
8685 	btrfs_destroy_cachep();
8686 	return -ENOMEM;
8687 }
8688 
8689 static int btrfs_getattr(struct mnt_idmap *idmap,
8690 			 const struct path *path, struct kstat *stat,
8691 			 u32 request_mask, unsigned int flags)
8692 {
8693 	u64 delalloc_bytes;
8694 	u64 inode_bytes;
8695 	struct inode *inode = d_inode(path->dentry);
8696 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8697 	u32 bi_flags = BTRFS_I(inode)->flags;
8698 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8699 
8700 	stat->result_mask |= STATX_BTIME;
8701 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8702 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8703 	if (bi_flags & BTRFS_INODE_APPEND)
8704 		stat->attributes |= STATX_ATTR_APPEND;
8705 	if (bi_flags & BTRFS_INODE_COMPRESS)
8706 		stat->attributes |= STATX_ATTR_COMPRESSED;
8707 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8708 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8709 	if (bi_flags & BTRFS_INODE_NODUMP)
8710 		stat->attributes |= STATX_ATTR_NODUMP;
8711 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8712 		stat->attributes |= STATX_ATTR_VERITY;
8713 
8714 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8715 				  STATX_ATTR_COMPRESSED |
8716 				  STATX_ATTR_IMMUTABLE |
8717 				  STATX_ATTR_NODUMP);
8718 
8719 	generic_fillattr(idmap, request_mask, inode, stat);
8720 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8721 
8722 	spin_lock(&BTRFS_I(inode)->lock);
8723 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8724 	inode_bytes = inode_get_bytes(inode);
8725 	spin_unlock(&BTRFS_I(inode)->lock);
8726 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8727 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8728 	return 0;
8729 }
8730 
8731 static int btrfs_rename_exchange(struct inode *old_dir,
8732 			      struct dentry *old_dentry,
8733 			      struct inode *new_dir,
8734 			      struct dentry *new_dentry)
8735 {
8736 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8737 	struct btrfs_trans_handle *trans;
8738 	unsigned int trans_num_items;
8739 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8740 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8741 	struct inode *new_inode = new_dentry->d_inode;
8742 	struct inode *old_inode = old_dentry->d_inode;
8743 	struct btrfs_rename_ctx old_rename_ctx;
8744 	struct btrfs_rename_ctx new_rename_ctx;
8745 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8746 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8747 	u64 old_idx = 0;
8748 	u64 new_idx = 0;
8749 	int ret;
8750 	int ret2;
8751 	bool need_abort = false;
8752 	struct fscrypt_name old_fname, new_fname;
8753 	struct fscrypt_str *old_name, *new_name;
8754 
8755 	/*
8756 	 * For non-subvolumes allow exchange only within one subvolume, in the
8757 	 * same inode namespace. Two subvolumes (represented as directory) can
8758 	 * be exchanged as they're a logical link and have a fixed inode number.
8759 	 */
8760 	if (root != dest &&
8761 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8762 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8763 		return -EXDEV;
8764 
8765 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8766 	if (ret)
8767 		return ret;
8768 
8769 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8770 	if (ret) {
8771 		fscrypt_free_filename(&old_fname);
8772 		return ret;
8773 	}
8774 
8775 	old_name = &old_fname.disk_name;
8776 	new_name = &new_fname.disk_name;
8777 
8778 	/* close the race window with snapshot create/destroy ioctl */
8779 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8780 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8781 		down_read(&fs_info->subvol_sem);
8782 
8783 	/*
8784 	 * For each inode:
8785 	 * 1 to remove old dir item
8786 	 * 1 to remove old dir index
8787 	 * 1 to add new dir item
8788 	 * 1 to add new dir index
8789 	 * 1 to update parent inode
8790 	 *
8791 	 * If the parents are the same, we only need to account for one
8792 	 */
8793 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8794 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8795 		/*
8796 		 * 1 to remove old root ref
8797 		 * 1 to remove old root backref
8798 		 * 1 to add new root ref
8799 		 * 1 to add new root backref
8800 		 */
8801 		trans_num_items += 4;
8802 	} else {
8803 		/*
8804 		 * 1 to update inode item
8805 		 * 1 to remove old inode ref
8806 		 * 1 to add new inode ref
8807 		 */
8808 		trans_num_items += 3;
8809 	}
8810 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8811 		trans_num_items += 4;
8812 	else
8813 		trans_num_items += 3;
8814 	trans = btrfs_start_transaction(root, trans_num_items);
8815 	if (IS_ERR(trans)) {
8816 		ret = PTR_ERR(trans);
8817 		goto out_notrans;
8818 	}
8819 
8820 	if (dest != root) {
8821 		ret = btrfs_record_root_in_trans(trans, dest);
8822 		if (ret)
8823 			goto out_fail;
8824 	}
8825 
8826 	/*
8827 	 * We need to find a free sequence number both in the source and
8828 	 * in the destination directory for the exchange.
8829 	 */
8830 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8831 	if (ret)
8832 		goto out_fail;
8833 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8834 	if (ret)
8835 		goto out_fail;
8836 
8837 	BTRFS_I(old_inode)->dir_index = 0ULL;
8838 	BTRFS_I(new_inode)->dir_index = 0ULL;
8839 
8840 	/* Reference for the source. */
8841 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8842 		/* force full log commit if subvolume involved. */
8843 		btrfs_set_log_full_commit(trans);
8844 	} else {
8845 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8846 					     btrfs_ino(BTRFS_I(new_dir)),
8847 					     old_idx);
8848 		if (ret)
8849 			goto out_fail;
8850 		need_abort = true;
8851 	}
8852 
8853 	/* And now for the dest. */
8854 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8855 		/* force full log commit if subvolume involved. */
8856 		btrfs_set_log_full_commit(trans);
8857 	} else {
8858 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8859 					     btrfs_ino(BTRFS_I(old_dir)),
8860 					     new_idx);
8861 		if (ret) {
8862 			if (need_abort)
8863 				btrfs_abort_transaction(trans, ret);
8864 			goto out_fail;
8865 		}
8866 	}
8867 
8868 	/* Update inode version and ctime/mtime. */
8869 	inode_inc_iversion(old_dir);
8870 	inode_inc_iversion(new_dir);
8871 	inode_inc_iversion(old_inode);
8872 	inode_inc_iversion(new_inode);
8873 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8874 
8875 	if (old_dentry->d_parent != new_dentry->d_parent) {
8876 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8877 					BTRFS_I(old_inode), true);
8878 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8879 					BTRFS_I(new_inode), true);
8880 	}
8881 
8882 	/* src is a subvolume */
8883 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8884 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8885 	} else { /* src is an inode */
8886 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8887 					   BTRFS_I(old_dentry->d_inode),
8888 					   old_name, &old_rename_ctx);
8889 		if (!ret)
8890 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8891 	}
8892 	if (ret) {
8893 		btrfs_abort_transaction(trans, ret);
8894 		goto out_fail;
8895 	}
8896 
8897 	/* dest is a subvolume */
8898 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8899 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8900 	} else { /* dest is an inode */
8901 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8902 					   BTRFS_I(new_dentry->d_inode),
8903 					   new_name, &new_rename_ctx);
8904 		if (!ret)
8905 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8906 	}
8907 	if (ret) {
8908 		btrfs_abort_transaction(trans, ret);
8909 		goto out_fail;
8910 	}
8911 
8912 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8913 			     new_name, 0, old_idx);
8914 	if (ret) {
8915 		btrfs_abort_transaction(trans, ret);
8916 		goto out_fail;
8917 	}
8918 
8919 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8920 			     old_name, 0, new_idx);
8921 	if (ret) {
8922 		btrfs_abort_transaction(trans, ret);
8923 		goto out_fail;
8924 	}
8925 
8926 	if (old_inode->i_nlink == 1)
8927 		BTRFS_I(old_inode)->dir_index = old_idx;
8928 	if (new_inode->i_nlink == 1)
8929 		BTRFS_I(new_inode)->dir_index = new_idx;
8930 
8931 	/*
8932 	 * Now pin the logs of the roots. We do it to ensure that no other task
8933 	 * can sync the logs while we are in progress with the rename, because
8934 	 * that could result in an inconsistency in case any of the inodes that
8935 	 * are part of this rename operation were logged before.
8936 	 */
8937 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8938 		btrfs_pin_log_trans(root);
8939 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8940 		btrfs_pin_log_trans(dest);
8941 
8942 	/* Do the log updates for all inodes. */
8943 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8944 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8945 				   old_rename_ctx.index, new_dentry->d_parent);
8946 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8947 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8948 				   new_rename_ctx.index, old_dentry->d_parent);
8949 
8950 	/* Now unpin the logs. */
8951 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8952 		btrfs_end_log_trans(root);
8953 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8954 		btrfs_end_log_trans(dest);
8955 out_fail:
8956 	ret2 = btrfs_end_transaction(trans);
8957 	ret = ret ? ret : ret2;
8958 out_notrans:
8959 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8960 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8961 		up_read(&fs_info->subvol_sem);
8962 
8963 	fscrypt_free_filename(&new_fname);
8964 	fscrypt_free_filename(&old_fname);
8965 	return ret;
8966 }
8967 
8968 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8969 					struct inode *dir)
8970 {
8971 	struct inode *inode;
8972 
8973 	inode = new_inode(dir->i_sb);
8974 	if (inode) {
8975 		inode_init_owner(idmap, inode, dir,
8976 				 S_IFCHR | WHITEOUT_MODE);
8977 		inode->i_op = &btrfs_special_inode_operations;
8978 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8979 	}
8980 	return inode;
8981 }
8982 
8983 static int btrfs_rename(struct mnt_idmap *idmap,
8984 			struct inode *old_dir, struct dentry *old_dentry,
8985 			struct inode *new_dir, struct dentry *new_dentry,
8986 			unsigned int flags)
8987 {
8988 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8989 	struct btrfs_new_inode_args whiteout_args = {
8990 		.dir = old_dir,
8991 		.dentry = old_dentry,
8992 	};
8993 	struct btrfs_trans_handle *trans;
8994 	unsigned int trans_num_items;
8995 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8996 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8997 	struct inode *new_inode = d_inode(new_dentry);
8998 	struct inode *old_inode = d_inode(old_dentry);
8999 	struct btrfs_rename_ctx rename_ctx;
9000 	u64 index = 0;
9001 	int ret;
9002 	int ret2;
9003 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9004 	struct fscrypt_name old_fname, new_fname;
9005 
9006 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9007 		return -EPERM;
9008 
9009 	/* we only allow rename subvolume link between subvolumes */
9010 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9011 		return -EXDEV;
9012 
9013 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9014 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9015 		return -ENOTEMPTY;
9016 
9017 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9018 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9019 		return -ENOTEMPTY;
9020 
9021 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9022 	if (ret)
9023 		return ret;
9024 
9025 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9026 	if (ret) {
9027 		fscrypt_free_filename(&old_fname);
9028 		return ret;
9029 	}
9030 
9031 	/* check for collisions, even if the  name isn't there */
9032 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9033 	if (ret) {
9034 		if (ret == -EEXIST) {
9035 			/* we shouldn't get
9036 			 * eexist without a new_inode */
9037 			if (WARN_ON(!new_inode)) {
9038 				goto out_fscrypt_names;
9039 			}
9040 		} else {
9041 			/* maybe -EOVERFLOW */
9042 			goto out_fscrypt_names;
9043 		}
9044 	}
9045 	ret = 0;
9046 
9047 	/*
9048 	 * we're using rename to replace one file with another.  Start IO on it
9049 	 * now so  we don't add too much work to the end of the transaction
9050 	 */
9051 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9052 		filemap_flush(old_inode->i_mapping);
9053 
9054 	if (flags & RENAME_WHITEOUT) {
9055 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9056 		if (!whiteout_args.inode) {
9057 			ret = -ENOMEM;
9058 			goto out_fscrypt_names;
9059 		}
9060 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9061 		if (ret)
9062 			goto out_whiteout_inode;
9063 	} else {
9064 		/* 1 to update the old parent inode. */
9065 		trans_num_items = 1;
9066 	}
9067 
9068 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9069 		/* Close the race window with snapshot create/destroy ioctl */
9070 		down_read(&fs_info->subvol_sem);
9071 		/*
9072 		 * 1 to remove old root ref
9073 		 * 1 to remove old root backref
9074 		 * 1 to add new root ref
9075 		 * 1 to add new root backref
9076 		 */
9077 		trans_num_items += 4;
9078 	} else {
9079 		/*
9080 		 * 1 to update inode
9081 		 * 1 to remove old inode ref
9082 		 * 1 to add new inode ref
9083 		 */
9084 		trans_num_items += 3;
9085 	}
9086 	/*
9087 	 * 1 to remove old dir item
9088 	 * 1 to remove old dir index
9089 	 * 1 to add new dir item
9090 	 * 1 to add new dir index
9091 	 */
9092 	trans_num_items += 4;
9093 	/* 1 to update new parent inode if it's not the same as the old parent */
9094 	if (new_dir != old_dir)
9095 		trans_num_items++;
9096 	if (new_inode) {
9097 		/*
9098 		 * 1 to update inode
9099 		 * 1 to remove inode ref
9100 		 * 1 to remove dir item
9101 		 * 1 to remove dir index
9102 		 * 1 to possibly add orphan item
9103 		 */
9104 		trans_num_items += 5;
9105 	}
9106 	trans = btrfs_start_transaction(root, trans_num_items);
9107 	if (IS_ERR(trans)) {
9108 		ret = PTR_ERR(trans);
9109 		goto out_notrans;
9110 	}
9111 
9112 	if (dest != root) {
9113 		ret = btrfs_record_root_in_trans(trans, dest);
9114 		if (ret)
9115 			goto out_fail;
9116 	}
9117 
9118 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9119 	if (ret)
9120 		goto out_fail;
9121 
9122 	BTRFS_I(old_inode)->dir_index = 0ULL;
9123 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9124 		/* force full log commit if subvolume involved. */
9125 		btrfs_set_log_full_commit(trans);
9126 	} else {
9127 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9128 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9129 					     index);
9130 		if (ret)
9131 			goto out_fail;
9132 	}
9133 
9134 	inode_inc_iversion(old_dir);
9135 	inode_inc_iversion(new_dir);
9136 	inode_inc_iversion(old_inode);
9137 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9138 
9139 	if (old_dentry->d_parent != new_dentry->d_parent)
9140 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9141 					BTRFS_I(old_inode), true);
9142 
9143 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9144 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9145 	} else {
9146 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9147 					   BTRFS_I(d_inode(old_dentry)),
9148 					   &old_fname.disk_name, &rename_ctx);
9149 		if (!ret)
9150 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9151 	}
9152 	if (ret) {
9153 		btrfs_abort_transaction(trans, ret);
9154 		goto out_fail;
9155 	}
9156 
9157 	if (new_inode) {
9158 		inode_inc_iversion(new_inode);
9159 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9160 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9161 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9162 			BUG_ON(new_inode->i_nlink == 0);
9163 		} else {
9164 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9165 						 BTRFS_I(d_inode(new_dentry)),
9166 						 &new_fname.disk_name);
9167 		}
9168 		if (!ret && new_inode->i_nlink == 0)
9169 			ret = btrfs_orphan_add(trans,
9170 					BTRFS_I(d_inode(new_dentry)));
9171 		if (ret) {
9172 			btrfs_abort_transaction(trans, ret);
9173 			goto out_fail;
9174 		}
9175 	}
9176 
9177 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9178 			     &new_fname.disk_name, 0, index);
9179 	if (ret) {
9180 		btrfs_abort_transaction(trans, ret);
9181 		goto out_fail;
9182 	}
9183 
9184 	if (old_inode->i_nlink == 1)
9185 		BTRFS_I(old_inode)->dir_index = index;
9186 
9187 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9188 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9189 				   rename_ctx.index, new_dentry->d_parent);
9190 
9191 	if (flags & RENAME_WHITEOUT) {
9192 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9193 		if (ret) {
9194 			btrfs_abort_transaction(trans, ret);
9195 			goto out_fail;
9196 		} else {
9197 			unlock_new_inode(whiteout_args.inode);
9198 			iput(whiteout_args.inode);
9199 			whiteout_args.inode = NULL;
9200 		}
9201 	}
9202 out_fail:
9203 	ret2 = btrfs_end_transaction(trans);
9204 	ret = ret ? ret : ret2;
9205 out_notrans:
9206 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9207 		up_read(&fs_info->subvol_sem);
9208 	if (flags & RENAME_WHITEOUT)
9209 		btrfs_new_inode_args_destroy(&whiteout_args);
9210 out_whiteout_inode:
9211 	if (flags & RENAME_WHITEOUT)
9212 		iput(whiteout_args.inode);
9213 out_fscrypt_names:
9214 	fscrypt_free_filename(&old_fname);
9215 	fscrypt_free_filename(&new_fname);
9216 	return ret;
9217 }
9218 
9219 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9220 			 struct dentry *old_dentry, struct inode *new_dir,
9221 			 struct dentry *new_dentry, unsigned int flags)
9222 {
9223 	int ret;
9224 
9225 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9226 		return -EINVAL;
9227 
9228 	if (flags & RENAME_EXCHANGE)
9229 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9230 					    new_dentry);
9231 	else
9232 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9233 				   new_dentry, flags);
9234 
9235 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9236 
9237 	return ret;
9238 }
9239 
9240 struct btrfs_delalloc_work {
9241 	struct inode *inode;
9242 	struct completion completion;
9243 	struct list_head list;
9244 	struct btrfs_work work;
9245 };
9246 
9247 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9248 {
9249 	struct btrfs_delalloc_work *delalloc_work;
9250 	struct inode *inode;
9251 
9252 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9253 				     work);
9254 	inode = delalloc_work->inode;
9255 	filemap_flush(inode->i_mapping);
9256 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9257 				&BTRFS_I(inode)->runtime_flags))
9258 		filemap_flush(inode->i_mapping);
9259 
9260 	iput(inode);
9261 	complete(&delalloc_work->completion);
9262 }
9263 
9264 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9265 {
9266 	struct btrfs_delalloc_work *work;
9267 
9268 	work = kmalloc(sizeof(*work), GFP_NOFS);
9269 	if (!work)
9270 		return NULL;
9271 
9272 	init_completion(&work->completion);
9273 	INIT_LIST_HEAD(&work->list);
9274 	work->inode = inode;
9275 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9276 
9277 	return work;
9278 }
9279 
9280 /*
9281  * some fairly slow code that needs optimization. This walks the list
9282  * of all the inodes with pending delalloc and forces them to disk.
9283  */
9284 static int start_delalloc_inodes(struct btrfs_root *root,
9285 				 struct writeback_control *wbc, bool snapshot,
9286 				 bool in_reclaim_context)
9287 {
9288 	struct btrfs_inode *binode;
9289 	struct inode *inode;
9290 	struct btrfs_delalloc_work *work, *next;
9291 	LIST_HEAD(works);
9292 	LIST_HEAD(splice);
9293 	int ret = 0;
9294 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9295 
9296 	mutex_lock(&root->delalloc_mutex);
9297 	spin_lock(&root->delalloc_lock);
9298 	list_splice_init(&root->delalloc_inodes, &splice);
9299 	while (!list_empty(&splice)) {
9300 		binode = list_entry(splice.next, struct btrfs_inode,
9301 				    delalloc_inodes);
9302 
9303 		list_move_tail(&binode->delalloc_inodes,
9304 			       &root->delalloc_inodes);
9305 
9306 		if (in_reclaim_context &&
9307 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9308 			continue;
9309 
9310 		inode = igrab(&binode->vfs_inode);
9311 		if (!inode) {
9312 			cond_resched_lock(&root->delalloc_lock);
9313 			continue;
9314 		}
9315 		spin_unlock(&root->delalloc_lock);
9316 
9317 		if (snapshot)
9318 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9319 				&binode->runtime_flags);
9320 		if (full_flush) {
9321 			work = btrfs_alloc_delalloc_work(inode);
9322 			if (!work) {
9323 				iput(inode);
9324 				ret = -ENOMEM;
9325 				goto out;
9326 			}
9327 			list_add_tail(&work->list, &works);
9328 			btrfs_queue_work(root->fs_info->flush_workers,
9329 					 &work->work);
9330 		} else {
9331 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9332 			btrfs_add_delayed_iput(BTRFS_I(inode));
9333 			if (ret || wbc->nr_to_write <= 0)
9334 				goto out;
9335 		}
9336 		cond_resched();
9337 		spin_lock(&root->delalloc_lock);
9338 	}
9339 	spin_unlock(&root->delalloc_lock);
9340 
9341 out:
9342 	list_for_each_entry_safe(work, next, &works, list) {
9343 		list_del_init(&work->list);
9344 		wait_for_completion(&work->completion);
9345 		kfree(work);
9346 	}
9347 
9348 	if (!list_empty(&splice)) {
9349 		spin_lock(&root->delalloc_lock);
9350 		list_splice_tail(&splice, &root->delalloc_inodes);
9351 		spin_unlock(&root->delalloc_lock);
9352 	}
9353 	mutex_unlock(&root->delalloc_mutex);
9354 	return ret;
9355 }
9356 
9357 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9358 {
9359 	struct writeback_control wbc = {
9360 		.nr_to_write = LONG_MAX,
9361 		.sync_mode = WB_SYNC_NONE,
9362 		.range_start = 0,
9363 		.range_end = LLONG_MAX,
9364 	};
9365 	struct btrfs_fs_info *fs_info = root->fs_info;
9366 
9367 	if (BTRFS_FS_ERROR(fs_info))
9368 		return -EROFS;
9369 
9370 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9371 }
9372 
9373 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9374 			       bool in_reclaim_context)
9375 {
9376 	struct writeback_control wbc = {
9377 		.nr_to_write = nr,
9378 		.sync_mode = WB_SYNC_NONE,
9379 		.range_start = 0,
9380 		.range_end = LLONG_MAX,
9381 	};
9382 	struct btrfs_root *root;
9383 	LIST_HEAD(splice);
9384 	int ret;
9385 
9386 	if (BTRFS_FS_ERROR(fs_info))
9387 		return -EROFS;
9388 
9389 	mutex_lock(&fs_info->delalloc_root_mutex);
9390 	spin_lock(&fs_info->delalloc_root_lock);
9391 	list_splice_init(&fs_info->delalloc_roots, &splice);
9392 	while (!list_empty(&splice)) {
9393 		/*
9394 		 * Reset nr_to_write here so we know that we're doing a full
9395 		 * flush.
9396 		 */
9397 		if (nr == LONG_MAX)
9398 			wbc.nr_to_write = LONG_MAX;
9399 
9400 		root = list_first_entry(&splice, struct btrfs_root,
9401 					delalloc_root);
9402 		root = btrfs_grab_root(root);
9403 		BUG_ON(!root);
9404 		list_move_tail(&root->delalloc_root,
9405 			       &fs_info->delalloc_roots);
9406 		spin_unlock(&fs_info->delalloc_root_lock);
9407 
9408 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9409 		btrfs_put_root(root);
9410 		if (ret < 0 || wbc.nr_to_write <= 0)
9411 			goto out;
9412 		spin_lock(&fs_info->delalloc_root_lock);
9413 	}
9414 	spin_unlock(&fs_info->delalloc_root_lock);
9415 
9416 	ret = 0;
9417 out:
9418 	if (!list_empty(&splice)) {
9419 		spin_lock(&fs_info->delalloc_root_lock);
9420 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9421 		spin_unlock(&fs_info->delalloc_root_lock);
9422 	}
9423 	mutex_unlock(&fs_info->delalloc_root_mutex);
9424 	return ret;
9425 }
9426 
9427 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9428 			 struct dentry *dentry, const char *symname)
9429 {
9430 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9431 	struct btrfs_trans_handle *trans;
9432 	struct btrfs_root *root = BTRFS_I(dir)->root;
9433 	struct btrfs_path *path;
9434 	struct btrfs_key key;
9435 	struct inode *inode;
9436 	struct btrfs_new_inode_args new_inode_args = {
9437 		.dir = dir,
9438 		.dentry = dentry,
9439 	};
9440 	unsigned int trans_num_items;
9441 	int err;
9442 	int name_len;
9443 	int datasize;
9444 	unsigned long ptr;
9445 	struct btrfs_file_extent_item *ei;
9446 	struct extent_buffer *leaf;
9447 
9448 	name_len = strlen(symname);
9449 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9450 		return -ENAMETOOLONG;
9451 
9452 	inode = new_inode(dir->i_sb);
9453 	if (!inode)
9454 		return -ENOMEM;
9455 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9456 	inode->i_op = &btrfs_symlink_inode_operations;
9457 	inode_nohighmem(inode);
9458 	inode->i_mapping->a_ops = &btrfs_aops;
9459 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9460 	inode_set_bytes(inode, name_len);
9461 
9462 	new_inode_args.inode = inode;
9463 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9464 	if (err)
9465 		goto out_inode;
9466 	/* 1 additional item for the inline extent */
9467 	trans_num_items++;
9468 
9469 	trans = btrfs_start_transaction(root, trans_num_items);
9470 	if (IS_ERR(trans)) {
9471 		err = PTR_ERR(trans);
9472 		goto out_new_inode_args;
9473 	}
9474 
9475 	err = btrfs_create_new_inode(trans, &new_inode_args);
9476 	if (err)
9477 		goto out;
9478 
9479 	path = btrfs_alloc_path();
9480 	if (!path) {
9481 		err = -ENOMEM;
9482 		btrfs_abort_transaction(trans, err);
9483 		discard_new_inode(inode);
9484 		inode = NULL;
9485 		goto out;
9486 	}
9487 	key.objectid = btrfs_ino(BTRFS_I(inode));
9488 	key.offset = 0;
9489 	key.type = BTRFS_EXTENT_DATA_KEY;
9490 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9491 	err = btrfs_insert_empty_item(trans, root, path, &key,
9492 				      datasize);
9493 	if (err) {
9494 		btrfs_abort_transaction(trans, err);
9495 		btrfs_free_path(path);
9496 		discard_new_inode(inode);
9497 		inode = NULL;
9498 		goto out;
9499 	}
9500 	leaf = path->nodes[0];
9501 	ei = btrfs_item_ptr(leaf, path->slots[0],
9502 			    struct btrfs_file_extent_item);
9503 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9504 	btrfs_set_file_extent_type(leaf, ei,
9505 				   BTRFS_FILE_EXTENT_INLINE);
9506 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9507 	btrfs_set_file_extent_compression(leaf, ei, 0);
9508 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9509 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9510 
9511 	ptr = btrfs_file_extent_inline_start(ei);
9512 	write_extent_buffer(leaf, symname, ptr, name_len);
9513 	btrfs_mark_buffer_dirty(trans, leaf);
9514 	btrfs_free_path(path);
9515 
9516 	d_instantiate_new(dentry, inode);
9517 	err = 0;
9518 out:
9519 	btrfs_end_transaction(trans);
9520 	btrfs_btree_balance_dirty(fs_info);
9521 out_new_inode_args:
9522 	btrfs_new_inode_args_destroy(&new_inode_args);
9523 out_inode:
9524 	if (err)
9525 		iput(inode);
9526 	return err;
9527 }
9528 
9529 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9530 				       struct btrfs_trans_handle *trans_in,
9531 				       struct btrfs_inode *inode,
9532 				       struct btrfs_key *ins,
9533 				       u64 file_offset)
9534 {
9535 	struct btrfs_file_extent_item stack_fi;
9536 	struct btrfs_replace_extent_info extent_info;
9537 	struct btrfs_trans_handle *trans = trans_in;
9538 	struct btrfs_path *path;
9539 	u64 start = ins->objectid;
9540 	u64 len = ins->offset;
9541 	u64 qgroup_released = 0;
9542 	int ret;
9543 
9544 	memset(&stack_fi, 0, sizeof(stack_fi));
9545 
9546 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9547 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9548 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9549 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9550 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9551 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9552 	/* Encryption and other encoding is reserved and all 0 */
9553 
9554 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9555 	if (ret < 0)
9556 		return ERR_PTR(ret);
9557 
9558 	if (trans) {
9559 		ret = insert_reserved_file_extent(trans, inode,
9560 						  file_offset, &stack_fi,
9561 						  true, qgroup_released);
9562 		if (ret)
9563 			goto free_qgroup;
9564 		return trans;
9565 	}
9566 
9567 	extent_info.disk_offset = start;
9568 	extent_info.disk_len = len;
9569 	extent_info.data_offset = 0;
9570 	extent_info.data_len = len;
9571 	extent_info.file_offset = file_offset;
9572 	extent_info.extent_buf = (char *)&stack_fi;
9573 	extent_info.is_new_extent = true;
9574 	extent_info.update_times = true;
9575 	extent_info.qgroup_reserved = qgroup_released;
9576 	extent_info.insertions = 0;
9577 
9578 	path = btrfs_alloc_path();
9579 	if (!path) {
9580 		ret = -ENOMEM;
9581 		goto free_qgroup;
9582 	}
9583 
9584 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9585 				     file_offset + len - 1, &extent_info,
9586 				     &trans);
9587 	btrfs_free_path(path);
9588 	if (ret)
9589 		goto free_qgroup;
9590 	return trans;
9591 
9592 free_qgroup:
9593 	/*
9594 	 * We have released qgroup data range at the beginning of the function,
9595 	 * and normally qgroup_released bytes will be freed when committing
9596 	 * transaction.
9597 	 * But if we error out early, we have to free what we have released
9598 	 * or we leak qgroup data reservation.
9599 	 */
9600 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9601 			inode->root->root_key.objectid, qgroup_released,
9602 			BTRFS_QGROUP_RSV_DATA);
9603 	return ERR_PTR(ret);
9604 }
9605 
9606 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9607 				       u64 start, u64 num_bytes, u64 min_size,
9608 				       loff_t actual_len, u64 *alloc_hint,
9609 				       struct btrfs_trans_handle *trans)
9610 {
9611 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9612 	struct extent_map *em;
9613 	struct btrfs_root *root = BTRFS_I(inode)->root;
9614 	struct btrfs_key ins;
9615 	u64 cur_offset = start;
9616 	u64 clear_offset = start;
9617 	u64 i_size;
9618 	u64 cur_bytes;
9619 	u64 last_alloc = (u64)-1;
9620 	int ret = 0;
9621 	bool own_trans = true;
9622 	u64 end = start + num_bytes - 1;
9623 
9624 	if (trans)
9625 		own_trans = false;
9626 	while (num_bytes > 0) {
9627 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9628 		cur_bytes = max(cur_bytes, min_size);
9629 		/*
9630 		 * If we are severely fragmented we could end up with really
9631 		 * small allocations, so if the allocator is returning small
9632 		 * chunks lets make its job easier by only searching for those
9633 		 * sized chunks.
9634 		 */
9635 		cur_bytes = min(cur_bytes, last_alloc);
9636 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9637 				min_size, 0, *alloc_hint, &ins, 1, 0);
9638 		if (ret)
9639 			break;
9640 
9641 		/*
9642 		 * We've reserved this space, and thus converted it from
9643 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9644 		 * from here on out we will only need to clear our reservation
9645 		 * for the remaining unreserved area, so advance our
9646 		 * clear_offset by our extent size.
9647 		 */
9648 		clear_offset += ins.offset;
9649 
9650 		last_alloc = ins.offset;
9651 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9652 						    &ins, cur_offset);
9653 		/*
9654 		 * Now that we inserted the prealloc extent we can finally
9655 		 * decrement the number of reservations in the block group.
9656 		 * If we did it before, we could race with relocation and have
9657 		 * relocation miss the reserved extent, making it fail later.
9658 		 */
9659 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9660 		if (IS_ERR(trans)) {
9661 			ret = PTR_ERR(trans);
9662 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9663 						   ins.offset, 0);
9664 			break;
9665 		}
9666 
9667 		em = alloc_extent_map();
9668 		if (!em) {
9669 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9670 					    cur_offset + ins.offset - 1, false);
9671 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9672 			goto next;
9673 		}
9674 
9675 		em->start = cur_offset;
9676 		em->orig_start = cur_offset;
9677 		em->len = ins.offset;
9678 		em->block_start = ins.objectid;
9679 		em->block_len = ins.offset;
9680 		em->orig_block_len = ins.offset;
9681 		em->ram_bytes = ins.offset;
9682 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9683 		em->generation = trans->transid;
9684 
9685 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9686 		free_extent_map(em);
9687 next:
9688 		num_bytes -= ins.offset;
9689 		cur_offset += ins.offset;
9690 		*alloc_hint = ins.objectid + ins.offset;
9691 
9692 		inode_inc_iversion(inode);
9693 		inode_set_ctime_current(inode);
9694 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9695 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9696 		    (actual_len > inode->i_size) &&
9697 		    (cur_offset > inode->i_size)) {
9698 			if (cur_offset > actual_len)
9699 				i_size = actual_len;
9700 			else
9701 				i_size = cur_offset;
9702 			i_size_write(inode, i_size);
9703 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9704 		}
9705 
9706 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9707 
9708 		if (ret) {
9709 			btrfs_abort_transaction(trans, ret);
9710 			if (own_trans)
9711 				btrfs_end_transaction(trans);
9712 			break;
9713 		}
9714 
9715 		if (own_trans) {
9716 			btrfs_end_transaction(trans);
9717 			trans = NULL;
9718 		}
9719 	}
9720 	if (clear_offset < end)
9721 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9722 			end - clear_offset + 1);
9723 	return ret;
9724 }
9725 
9726 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9727 			      u64 start, u64 num_bytes, u64 min_size,
9728 			      loff_t actual_len, u64 *alloc_hint)
9729 {
9730 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9731 					   min_size, actual_len, alloc_hint,
9732 					   NULL);
9733 }
9734 
9735 int btrfs_prealloc_file_range_trans(struct inode *inode,
9736 				    struct btrfs_trans_handle *trans, int mode,
9737 				    u64 start, u64 num_bytes, u64 min_size,
9738 				    loff_t actual_len, u64 *alloc_hint)
9739 {
9740 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9741 					   min_size, actual_len, alloc_hint, trans);
9742 }
9743 
9744 static int btrfs_permission(struct mnt_idmap *idmap,
9745 			    struct inode *inode, int mask)
9746 {
9747 	struct btrfs_root *root = BTRFS_I(inode)->root;
9748 	umode_t mode = inode->i_mode;
9749 
9750 	if (mask & MAY_WRITE &&
9751 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9752 		if (btrfs_root_readonly(root))
9753 			return -EROFS;
9754 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9755 			return -EACCES;
9756 	}
9757 	return generic_permission(idmap, inode, mask);
9758 }
9759 
9760 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9761 			 struct file *file, umode_t mode)
9762 {
9763 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9764 	struct btrfs_trans_handle *trans;
9765 	struct btrfs_root *root = BTRFS_I(dir)->root;
9766 	struct inode *inode;
9767 	struct btrfs_new_inode_args new_inode_args = {
9768 		.dir = dir,
9769 		.dentry = file->f_path.dentry,
9770 		.orphan = true,
9771 	};
9772 	unsigned int trans_num_items;
9773 	int ret;
9774 
9775 	inode = new_inode(dir->i_sb);
9776 	if (!inode)
9777 		return -ENOMEM;
9778 	inode_init_owner(idmap, inode, dir, mode);
9779 	inode->i_fop = &btrfs_file_operations;
9780 	inode->i_op = &btrfs_file_inode_operations;
9781 	inode->i_mapping->a_ops = &btrfs_aops;
9782 
9783 	new_inode_args.inode = inode;
9784 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9785 	if (ret)
9786 		goto out_inode;
9787 
9788 	trans = btrfs_start_transaction(root, trans_num_items);
9789 	if (IS_ERR(trans)) {
9790 		ret = PTR_ERR(trans);
9791 		goto out_new_inode_args;
9792 	}
9793 
9794 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9795 
9796 	/*
9797 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9798 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9799 	 * 0, through:
9800 	 *
9801 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9802 	 */
9803 	set_nlink(inode, 1);
9804 
9805 	if (!ret) {
9806 		d_tmpfile(file, inode);
9807 		unlock_new_inode(inode);
9808 		mark_inode_dirty(inode);
9809 	}
9810 
9811 	btrfs_end_transaction(trans);
9812 	btrfs_btree_balance_dirty(fs_info);
9813 out_new_inode_args:
9814 	btrfs_new_inode_args_destroy(&new_inode_args);
9815 out_inode:
9816 	if (ret)
9817 		iput(inode);
9818 	return finish_open_simple(file, ret);
9819 }
9820 
9821 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9822 {
9823 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9824 	unsigned long index = start >> PAGE_SHIFT;
9825 	unsigned long end_index = end >> PAGE_SHIFT;
9826 	struct page *page;
9827 	u32 len;
9828 
9829 	ASSERT(end + 1 - start <= U32_MAX);
9830 	len = end + 1 - start;
9831 	while (index <= end_index) {
9832 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9833 		ASSERT(page); /* Pages should be in the extent_io_tree */
9834 
9835 		btrfs_page_set_writeback(fs_info, page, start, len);
9836 		put_page(page);
9837 		index++;
9838 	}
9839 }
9840 
9841 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9842 					     int compress_type)
9843 {
9844 	switch (compress_type) {
9845 	case BTRFS_COMPRESS_NONE:
9846 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9847 	case BTRFS_COMPRESS_ZLIB:
9848 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9849 	case BTRFS_COMPRESS_LZO:
9850 		/*
9851 		 * The LZO format depends on the sector size. 64K is the maximum
9852 		 * sector size that we support.
9853 		 */
9854 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9855 			return -EINVAL;
9856 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9857 		       (fs_info->sectorsize_bits - 12);
9858 	case BTRFS_COMPRESS_ZSTD:
9859 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9860 	default:
9861 		return -EUCLEAN;
9862 	}
9863 }
9864 
9865 static ssize_t btrfs_encoded_read_inline(
9866 				struct kiocb *iocb,
9867 				struct iov_iter *iter, u64 start,
9868 				u64 lockend,
9869 				struct extent_state **cached_state,
9870 				u64 extent_start, size_t count,
9871 				struct btrfs_ioctl_encoded_io_args *encoded,
9872 				bool *unlocked)
9873 {
9874 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9875 	struct btrfs_root *root = inode->root;
9876 	struct btrfs_fs_info *fs_info = root->fs_info;
9877 	struct extent_io_tree *io_tree = &inode->io_tree;
9878 	struct btrfs_path *path;
9879 	struct extent_buffer *leaf;
9880 	struct btrfs_file_extent_item *item;
9881 	u64 ram_bytes;
9882 	unsigned long ptr;
9883 	void *tmp;
9884 	ssize_t ret;
9885 
9886 	path = btrfs_alloc_path();
9887 	if (!path) {
9888 		ret = -ENOMEM;
9889 		goto out;
9890 	}
9891 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9892 				       extent_start, 0);
9893 	if (ret) {
9894 		if (ret > 0) {
9895 			/* The extent item disappeared? */
9896 			ret = -EIO;
9897 		}
9898 		goto out;
9899 	}
9900 	leaf = path->nodes[0];
9901 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9902 
9903 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9904 	ptr = btrfs_file_extent_inline_start(item);
9905 
9906 	encoded->len = min_t(u64, extent_start + ram_bytes,
9907 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9908 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9909 				 btrfs_file_extent_compression(leaf, item));
9910 	if (ret < 0)
9911 		goto out;
9912 	encoded->compression = ret;
9913 	if (encoded->compression) {
9914 		size_t inline_size;
9915 
9916 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9917 								path->slots[0]);
9918 		if (inline_size > count) {
9919 			ret = -ENOBUFS;
9920 			goto out;
9921 		}
9922 		count = inline_size;
9923 		encoded->unencoded_len = ram_bytes;
9924 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9925 	} else {
9926 		count = min_t(u64, count, encoded->len);
9927 		encoded->len = count;
9928 		encoded->unencoded_len = count;
9929 		ptr += iocb->ki_pos - extent_start;
9930 	}
9931 
9932 	tmp = kmalloc(count, GFP_NOFS);
9933 	if (!tmp) {
9934 		ret = -ENOMEM;
9935 		goto out;
9936 	}
9937 	read_extent_buffer(leaf, tmp, ptr, count);
9938 	btrfs_release_path(path);
9939 	unlock_extent(io_tree, start, lockend, cached_state);
9940 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9941 	*unlocked = true;
9942 
9943 	ret = copy_to_iter(tmp, count, iter);
9944 	if (ret != count)
9945 		ret = -EFAULT;
9946 	kfree(tmp);
9947 out:
9948 	btrfs_free_path(path);
9949 	return ret;
9950 }
9951 
9952 struct btrfs_encoded_read_private {
9953 	wait_queue_head_t wait;
9954 	atomic_t pending;
9955 	blk_status_t status;
9956 };
9957 
9958 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9959 {
9960 	struct btrfs_encoded_read_private *priv = bbio->private;
9961 
9962 	if (bbio->bio.bi_status) {
9963 		/*
9964 		 * The memory barrier implied by the atomic_dec_return() here
9965 		 * pairs with the memory barrier implied by the
9966 		 * atomic_dec_return() or io_wait_event() in
9967 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9968 		 * write is observed before the load of status in
9969 		 * btrfs_encoded_read_regular_fill_pages().
9970 		 */
9971 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9972 	}
9973 	if (!atomic_dec_return(&priv->pending))
9974 		wake_up(&priv->wait);
9975 	bio_put(&bbio->bio);
9976 }
9977 
9978 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9979 					  u64 file_offset, u64 disk_bytenr,
9980 					  u64 disk_io_size, struct page **pages)
9981 {
9982 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9983 	struct btrfs_encoded_read_private priv = {
9984 		.pending = ATOMIC_INIT(1),
9985 	};
9986 	unsigned long i = 0;
9987 	struct btrfs_bio *bbio;
9988 
9989 	init_waitqueue_head(&priv.wait);
9990 
9991 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9992 			       btrfs_encoded_read_endio, &priv);
9993 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9994 	bbio->inode = inode;
9995 
9996 	do {
9997 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9998 
9999 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10000 			atomic_inc(&priv.pending);
10001 			btrfs_submit_bio(bbio, 0);
10002 
10003 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10004 					       btrfs_encoded_read_endio, &priv);
10005 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10006 			bbio->inode = inode;
10007 			continue;
10008 		}
10009 
10010 		i++;
10011 		disk_bytenr += bytes;
10012 		disk_io_size -= bytes;
10013 	} while (disk_io_size);
10014 
10015 	atomic_inc(&priv.pending);
10016 	btrfs_submit_bio(bbio, 0);
10017 
10018 	if (atomic_dec_return(&priv.pending))
10019 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10020 	/* See btrfs_encoded_read_endio() for ordering. */
10021 	return blk_status_to_errno(READ_ONCE(priv.status));
10022 }
10023 
10024 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10025 					  struct iov_iter *iter,
10026 					  u64 start, u64 lockend,
10027 					  struct extent_state **cached_state,
10028 					  u64 disk_bytenr, u64 disk_io_size,
10029 					  size_t count, bool compressed,
10030 					  bool *unlocked)
10031 {
10032 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10033 	struct extent_io_tree *io_tree = &inode->io_tree;
10034 	struct page **pages;
10035 	unsigned long nr_pages, i;
10036 	u64 cur;
10037 	size_t page_offset;
10038 	ssize_t ret;
10039 
10040 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10041 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10042 	if (!pages)
10043 		return -ENOMEM;
10044 	ret = btrfs_alloc_page_array(nr_pages, pages);
10045 	if (ret) {
10046 		ret = -ENOMEM;
10047 		goto out;
10048 		}
10049 
10050 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10051 						    disk_io_size, pages);
10052 	if (ret)
10053 		goto out;
10054 
10055 	unlock_extent(io_tree, start, lockend, cached_state);
10056 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10057 	*unlocked = true;
10058 
10059 	if (compressed) {
10060 		i = 0;
10061 		page_offset = 0;
10062 	} else {
10063 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10064 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10065 	}
10066 	cur = 0;
10067 	while (cur < count) {
10068 		size_t bytes = min_t(size_t, count - cur,
10069 				     PAGE_SIZE - page_offset);
10070 
10071 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10072 				      iter) != bytes) {
10073 			ret = -EFAULT;
10074 			goto out;
10075 		}
10076 		i++;
10077 		cur += bytes;
10078 		page_offset = 0;
10079 	}
10080 	ret = count;
10081 out:
10082 	for (i = 0; i < nr_pages; i++) {
10083 		if (pages[i])
10084 			__free_page(pages[i]);
10085 	}
10086 	kfree(pages);
10087 	return ret;
10088 }
10089 
10090 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10091 			   struct btrfs_ioctl_encoded_io_args *encoded)
10092 {
10093 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10094 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10095 	struct extent_io_tree *io_tree = &inode->io_tree;
10096 	ssize_t ret;
10097 	size_t count = iov_iter_count(iter);
10098 	u64 start, lockend, disk_bytenr, disk_io_size;
10099 	struct extent_state *cached_state = NULL;
10100 	struct extent_map *em;
10101 	bool unlocked = false;
10102 
10103 	file_accessed(iocb->ki_filp);
10104 
10105 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10106 
10107 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10108 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10109 		return 0;
10110 	}
10111 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10112 	/*
10113 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10114 	 * it's compressed we know that it won't be longer than this.
10115 	 */
10116 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10117 
10118 	for (;;) {
10119 		struct btrfs_ordered_extent *ordered;
10120 
10121 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10122 					       lockend - start + 1);
10123 		if (ret)
10124 			goto out_unlock_inode;
10125 		lock_extent(io_tree, start, lockend, &cached_state);
10126 		ordered = btrfs_lookup_ordered_range(inode, start,
10127 						     lockend - start + 1);
10128 		if (!ordered)
10129 			break;
10130 		btrfs_put_ordered_extent(ordered);
10131 		unlock_extent(io_tree, start, lockend, &cached_state);
10132 		cond_resched();
10133 	}
10134 
10135 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10136 	if (IS_ERR(em)) {
10137 		ret = PTR_ERR(em);
10138 		goto out_unlock_extent;
10139 	}
10140 
10141 	if (em->block_start == EXTENT_MAP_INLINE) {
10142 		u64 extent_start = em->start;
10143 
10144 		/*
10145 		 * For inline extents we get everything we need out of the
10146 		 * extent item.
10147 		 */
10148 		free_extent_map(em);
10149 		em = NULL;
10150 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10151 						&cached_state, extent_start,
10152 						count, encoded, &unlocked);
10153 		goto out;
10154 	}
10155 
10156 	/*
10157 	 * We only want to return up to EOF even if the extent extends beyond
10158 	 * that.
10159 	 */
10160 	encoded->len = min_t(u64, extent_map_end(em),
10161 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10162 	if (em->block_start == EXTENT_MAP_HOLE ||
10163 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10164 		disk_bytenr = EXTENT_MAP_HOLE;
10165 		count = min_t(u64, count, encoded->len);
10166 		encoded->len = count;
10167 		encoded->unencoded_len = count;
10168 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10169 		disk_bytenr = em->block_start;
10170 		/*
10171 		 * Bail if the buffer isn't large enough to return the whole
10172 		 * compressed extent.
10173 		 */
10174 		if (em->block_len > count) {
10175 			ret = -ENOBUFS;
10176 			goto out_em;
10177 		}
10178 		disk_io_size = em->block_len;
10179 		count = em->block_len;
10180 		encoded->unencoded_len = em->ram_bytes;
10181 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10182 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10183 							     em->compress_type);
10184 		if (ret < 0)
10185 			goto out_em;
10186 		encoded->compression = ret;
10187 	} else {
10188 		disk_bytenr = em->block_start + (start - em->start);
10189 		if (encoded->len > count)
10190 			encoded->len = count;
10191 		/*
10192 		 * Don't read beyond what we locked. This also limits the page
10193 		 * allocations that we'll do.
10194 		 */
10195 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10196 		count = start + disk_io_size - iocb->ki_pos;
10197 		encoded->len = count;
10198 		encoded->unencoded_len = count;
10199 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10200 	}
10201 	free_extent_map(em);
10202 	em = NULL;
10203 
10204 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10205 		unlock_extent(io_tree, start, lockend, &cached_state);
10206 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10207 		unlocked = true;
10208 		ret = iov_iter_zero(count, iter);
10209 		if (ret != count)
10210 			ret = -EFAULT;
10211 	} else {
10212 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10213 						 &cached_state, disk_bytenr,
10214 						 disk_io_size, count,
10215 						 encoded->compression,
10216 						 &unlocked);
10217 	}
10218 
10219 out:
10220 	if (ret >= 0)
10221 		iocb->ki_pos += encoded->len;
10222 out_em:
10223 	free_extent_map(em);
10224 out_unlock_extent:
10225 	if (!unlocked)
10226 		unlock_extent(io_tree, start, lockend, &cached_state);
10227 out_unlock_inode:
10228 	if (!unlocked)
10229 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10230 	return ret;
10231 }
10232 
10233 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10234 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10235 {
10236 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10237 	struct btrfs_root *root = inode->root;
10238 	struct btrfs_fs_info *fs_info = root->fs_info;
10239 	struct extent_io_tree *io_tree = &inode->io_tree;
10240 	struct extent_changeset *data_reserved = NULL;
10241 	struct extent_state *cached_state = NULL;
10242 	struct btrfs_ordered_extent *ordered;
10243 	int compression;
10244 	size_t orig_count;
10245 	u64 start, end;
10246 	u64 num_bytes, ram_bytes, disk_num_bytes;
10247 	unsigned long nr_pages, i;
10248 	struct page **pages;
10249 	struct btrfs_key ins;
10250 	bool extent_reserved = false;
10251 	struct extent_map *em;
10252 	ssize_t ret;
10253 
10254 	switch (encoded->compression) {
10255 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10256 		compression = BTRFS_COMPRESS_ZLIB;
10257 		break;
10258 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10259 		compression = BTRFS_COMPRESS_ZSTD;
10260 		break;
10261 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10262 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10263 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10264 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10265 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10266 		/* The sector size must match for LZO. */
10267 		if (encoded->compression -
10268 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10269 		    fs_info->sectorsize_bits)
10270 			return -EINVAL;
10271 		compression = BTRFS_COMPRESS_LZO;
10272 		break;
10273 	default:
10274 		return -EINVAL;
10275 	}
10276 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10277 		return -EINVAL;
10278 
10279 	/*
10280 	 * Compressed extents should always have checksums, so error out if we
10281 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10282 	 */
10283 	if (inode->flags & BTRFS_INODE_NODATASUM)
10284 		return -EINVAL;
10285 
10286 	orig_count = iov_iter_count(from);
10287 
10288 	/* The extent size must be sane. */
10289 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10290 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10291 		return -EINVAL;
10292 
10293 	/*
10294 	 * The compressed data must be smaller than the decompressed data.
10295 	 *
10296 	 * It's of course possible for data to compress to larger or the same
10297 	 * size, but the buffered I/O path falls back to no compression for such
10298 	 * data, and we don't want to break any assumptions by creating these
10299 	 * extents.
10300 	 *
10301 	 * Note that this is less strict than the current check we have that the
10302 	 * compressed data must be at least one sector smaller than the
10303 	 * decompressed data. We only want to enforce the weaker requirement
10304 	 * from old kernels that it is at least one byte smaller.
10305 	 */
10306 	if (orig_count >= encoded->unencoded_len)
10307 		return -EINVAL;
10308 
10309 	/* The extent must start on a sector boundary. */
10310 	start = iocb->ki_pos;
10311 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10312 		return -EINVAL;
10313 
10314 	/*
10315 	 * The extent must end on a sector boundary. However, we allow a write
10316 	 * which ends at or extends i_size to have an unaligned length; we round
10317 	 * up the extent size and set i_size to the unaligned end.
10318 	 */
10319 	if (start + encoded->len < inode->vfs_inode.i_size &&
10320 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10321 		return -EINVAL;
10322 
10323 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10324 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10325 		return -EINVAL;
10326 
10327 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10328 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10329 	end = start + num_bytes - 1;
10330 
10331 	/*
10332 	 * If the extent cannot be inline, the compressed data on disk must be
10333 	 * sector-aligned. For convenience, we extend it with zeroes if it
10334 	 * isn't.
10335 	 */
10336 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10337 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10338 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10339 	if (!pages)
10340 		return -ENOMEM;
10341 	for (i = 0; i < nr_pages; i++) {
10342 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10343 		char *kaddr;
10344 
10345 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10346 		if (!pages[i]) {
10347 			ret = -ENOMEM;
10348 			goto out_pages;
10349 		}
10350 		kaddr = kmap_local_page(pages[i]);
10351 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10352 			kunmap_local(kaddr);
10353 			ret = -EFAULT;
10354 			goto out_pages;
10355 		}
10356 		if (bytes < PAGE_SIZE)
10357 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10358 		kunmap_local(kaddr);
10359 	}
10360 
10361 	for (;;) {
10362 		struct btrfs_ordered_extent *ordered;
10363 
10364 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10365 		if (ret)
10366 			goto out_pages;
10367 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10368 						    start >> PAGE_SHIFT,
10369 						    end >> PAGE_SHIFT);
10370 		if (ret)
10371 			goto out_pages;
10372 		lock_extent(io_tree, start, end, &cached_state);
10373 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10374 		if (!ordered &&
10375 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10376 			break;
10377 		if (ordered)
10378 			btrfs_put_ordered_extent(ordered);
10379 		unlock_extent(io_tree, start, end, &cached_state);
10380 		cond_resched();
10381 	}
10382 
10383 	/*
10384 	 * We don't use the higher-level delalloc space functions because our
10385 	 * num_bytes and disk_num_bytes are different.
10386 	 */
10387 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10388 	if (ret)
10389 		goto out_unlock;
10390 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10391 	if (ret)
10392 		goto out_free_data_space;
10393 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10394 					      false);
10395 	if (ret)
10396 		goto out_qgroup_free_data;
10397 
10398 	/* Try an inline extent first. */
10399 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10400 	    encoded->unencoded_offset == 0) {
10401 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10402 					    compression, pages, true);
10403 		if (ret <= 0) {
10404 			if (ret == 0)
10405 				ret = orig_count;
10406 			goto out_delalloc_release;
10407 		}
10408 	}
10409 
10410 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10411 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10412 	if (ret)
10413 		goto out_delalloc_release;
10414 	extent_reserved = true;
10415 
10416 	em = create_io_em(inode, start, num_bytes,
10417 			  start - encoded->unencoded_offset, ins.objectid,
10418 			  ins.offset, ins.offset, ram_bytes, compression,
10419 			  BTRFS_ORDERED_COMPRESSED);
10420 	if (IS_ERR(em)) {
10421 		ret = PTR_ERR(em);
10422 		goto out_free_reserved;
10423 	}
10424 	free_extent_map(em);
10425 
10426 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10427 				       ins.objectid, ins.offset,
10428 				       encoded->unencoded_offset,
10429 				       (1 << BTRFS_ORDERED_ENCODED) |
10430 				       (1 << BTRFS_ORDERED_COMPRESSED),
10431 				       compression);
10432 	if (IS_ERR(ordered)) {
10433 		btrfs_drop_extent_map_range(inode, start, end, false);
10434 		ret = PTR_ERR(ordered);
10435 		goto out_free_reserved;
10436 	}
10437 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10438 
10439 	if (start + encoded->len > inode->vfs_inode.i_size)
10440 		i_size_write(&inode->vfs_inode, start + encoded->len);
10441 
10442 	unlock_extent(io_tree, start, end, &cached_state);
10443 
10444 	btrfs_delalloc_release_extents(inode, num_bytes);
10445 
10446 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10447 	ret = orig_count;
10448 	goto out;
10449 
10450 out_free_reserved:
10451 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10452 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10453 out_delalloc_release:
10454 	btrfs_delalloc_release_extents(inode, num_bytes);
10455 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10456 out_qgroup_free_data:
10457 	if (ret < 0)
10458 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10459 out_free_data_space:
10460 	/*
10461 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10462 	 * bytes_may_use.
10463 	 */
10464 	if (!extent_reserved)
10465 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10466 out_unlock:
10467 	unlock_extent(io_tree, start, end, &cached_state);
10468 out_pages:
10469 	for (i = 0; i < nr_pages; i++) {
10470 		if (pages[i])
10471 			__free_page(pages[i]);
10472 	}
10473 	kvfree(pages);
10474 out:
10475 	if (ret >= 0)
10476 		iocb->ki_pos += encoded->len;
10477 	return ret;
10478 }
10479 
10480 #ifdef CONFIG_SWAP
10481 /*
10482  * Add an entry indicating a block group or device which is pinned by a
10483  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10484  * negative errno on failure.
10485  */
10486 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10487 				  bool is_block_group)
10488 {
10489 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10490 	struct btrfs_swapfile_pin *sp, *entry;
10491 	struct rb_node **p;
10492 	struct rb_node *parent = NULL;
10493 
10494 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10495 	if (!sp)
10496 		return -ENOMEM;
10497 	sp->ptr = ptr;
10498 	sp->inode = inode;
10499 	sp->is_block_group = is_block_group;
10500 	sp->bg_extent_count = 1;
10501 
10502 	spin_lock(&fs_info->swapfile_pins_lock);
10503 	p = &fs_info->swapfile_pins.rb_node;
10504 	while (*p) {
10505 		parent = *p;
10506 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10507 		if (sp->ptr < entry->ptr ||
10508 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10509 			p = &(*p)->rb_left;
10510 		} else if (sp->ptr > entry->ptr ||
10511 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10512 			p = &(*p)->rb_right;
10513 		} else {
10514 			if (is_block_group)
10515 				entry->bg_extent_count++;
10516 			spin_unlock(&fs_info->swapfile_pins_lock);
10517 			kfree(sp);
10518 			return 1;
10519 		}
10520 	}
10521 	rb_link_node(&sp->node, parent, p);
10522 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10523 	spin_unlock(&fs_info->swapfile_pins_lock);
10524 	return 0;
10525 }
10526 
10527 /* Free all of the entries pinned by this swapfile. */
10528 static void btrfs_free_swapfile_pins(struct inode *inode)
10529 {
10530 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10531 	struct btrfs_swapfile_pin *sp;
10532 	struct rb_node *node, *next;
10533 
10534 	spin_lock(&fs_info->swapfile_pins_lock);
10535 	node = rb_first(&fs_info->swapfile_pins);
10536 	while (node) {
10537 		next = rb_next(node);
10538 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10539 		if (sp->inode == inode) {
10540 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10541 			if (sp->is_block_group) {
10542 				btrfs_dec_block_group_swap_extents(sp->ptr,
10543 							   sp->bg_extent_count);
10544 				btrfs_put_block_group(sp->ptr);
10545 			}
10546 			kfree(sp);
10547 		}
10548 		node = next;
10549 	}
10550 	spin_unlock(&fs_info->swapfile_pins_lock);
10551 }
10552 
10553 struct btrfs_swap_info {
10554 	u64 start;
10555 	u64 block_start;
10556 	u64 block_len;
10557 	u64 lowest_ppage;
10558 	u64 highest_ppage;
10559 	unsigned long nr_pages;
10560 	int nr_extents;
10561 };
10562 
10563 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10564 				 struct btrfs_swap_info *bsi)
10565 {
10566 	unsigned long nr_pages;
10567 	unsigned long max_pages;
10568 	u64 first_ppage, first_ppage_reported, next_ppage;
10569 	int ret;
10570 
10571 	/*
10572 	 * Our swapfile may have had its size extended after the swap header was
10573 	 * written. In that case activating the swapfile should not go beyond
10574 	 * the max size set in the swap header.
10575 	 */
10576 	if (bsi->nr_pages >= sis->max)
10577 		return 0;
10578 
10579 	max_pages = sis->max - bsi->nr_pages;
10580 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10581 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10582 
10583 	if (first_ppage >= next_ppage)
10584 		return 0;
10585 	nr_pages = next_ppage - first_ppage;
10586 	nr_pages = min(nr_pages, max_pages);
10587 
10588 	first_ppage_reported = first_ppage;
10589 	if (bsi->start == 0)
10590 		first_ppage_reported++;
10591 	if (bsi->lowest_ppage > first_ppage_reported)
10592 		bsi->lowest_ppage = first_ppage_reported;
10593 	if (bsi->highest_ppage < (next_ppage - 1))
10594 		bsi->highest_ppage = next_ppage - 1;
10595 
10596 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10597 	if (ret < 0)
10598 		return ret;
10599 	bsi->nr_extents += ret;
10600 	bsi->nr_pages += nr_pages;
10601 	return 0;
10602 }
10603 
10604 static void btrfs_swap_deactivate(struct file *file)
10605 {
10606 	struct inode *inode = file_inode(file);
10607 
10608 	btrfs_free_swapfile_pins(inode);
10609 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10610 }
10611 
10612 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10613 			       sector_t *span)
10614 {
10615 	struct inode *inode = file_inode(file);
10616 	struct btrfs_root *root = BTRFS_I(inode)->root;
10617 	struct btrfs_fs_info *fs_info = root->fs_info;
10618 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10619 	struct extent_state *cached_state = NULL;
10620 	struct extent_map *em = NULL;
10621 	struct btrfs_device *device = NULL;
10622 	struct btrfs_swap_info bsi = {
10623 		.lowest_ppage = (sector_t)-1ULL,
10624 	};
10625 	int ret = 0;
10626 	u64 isize;
10627 	u64 start;
10628 
10629 	/*
10630 	 * If the swap file was just created, make sure delalloc is done. If the
10631 	 * file changes again after this, the user is doing something stupid and
10632 	 * we don't really care.
10633 	 */
10634 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10635 	if (ret)
10636 		return ret;
10637 
10638 	/*
10639 	 * The inode is locked, so these flags won't change after we check them.
10640 	 */
10641 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10642 		btrfs_warn(fs_info, "swapfile must not be compressed");
10643 		return -EINVAL;
10644 	}
10645 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10646 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10647 		return -EINVAL;
10648 	}
10649 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10650 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10651 		return -EINVAL;
10652 	}
10653 
10654 	/*
10655 	 * Balance or device remove/replace/resize can move stuff around from
10656 	 * under us. The exclop protection makes sure they aren't running/won't
10657 	 * run concurrently while we are mapping the swap extents, and
10658 	 * fs_info->swapfile_pins prevents them from running while the swap
10659 	 * file is active and moving the extents. Note that this also prevents
10660 	 * a concurrent device add which isn't actually necessary, but it's not
10661 	 * really worth the trouble to allow it.
10662 	 */
10663 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10664 		btrfs_warn(fs_info,
10665 	   "cannot activate swapfile while exclusive operation is running");
10666 		return -EBUSY;
10667 	}
10668 
10669 	/*
10670 	 * Prevent snapshot creation while we are activating the swap file.
10671 	 * We do not want to race with snapshot creation. If snapshot creation
10672 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10673 	 * completes before the first write into the swap file after it is
10674 	 * activated, than that write would fallback to COW.
10675 	 */
10676 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10677 		btrfs_exclop_finish(fs_info);
10678 		btrfs_warn(fs_info,
10679 	   "cannot activate swapfile because snapshot creation is in progress");
10680 		return -EINVAL;
10681 	}
10682 	/*
10683 	 * Snapshots can create extents which require COW even if NODATACOW is
10684 	 * set. We use this counter to prevent snapshots. We must increment it
10685 	 * before walking the extents because we don't want a concurrent
10686 	 * snapshot to run after we've already checked the extents.
10687 	 *
10688 	 * It is possible that subvolume is marked for deletion but still not
10689 	 * removed yet. To prevent this race, we check the root status before
10690 	 * activating the swapfile.
10691 	 */
10692 	spin_lock(&root->root_item_lock);
10693 	if (btrfs_root_dead(root)) {
10694 		spin_unlock(&root->root_item_lock);
10695 
10696 		btrfs_exclop_finish(fs_info);
10697 		btrfs_warn(fs_info,
10698 		"cannot activate swapfile because subvolume %llu is being deleted",
10699 			root->root_key.objectid);
10700 		return -EPERM;
10701 	}
10702 	atomic_inc(&root->nr_swapfiles);
10703 	spin_unlock(&root->root_item_lock);
10704 
10705 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10706 
10707 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10708 	start = 0;
10709 	while (start < isize) {
10710 		u64 logical_block_start, physical_block_start;
10711 		struct btrfs_block_group *bg;
10712 		u64 len = isize - start;
10713 
10714 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10715 		if (IS_ERR(em)) {
10716 			ret = PTR_ERR(em);
10717 			goto out;
10718 		}
10719 
10720 		if (em->block_start == EXTENT_MAP_HOLE) {
10721 			btrfs_warn(fs_info, "swapfile must not have holes");
10722 			ret = -EINVAL;
10723 			goto out;
10724 		}
10725 		if (em->block_start == EXTENT_MAP_INLINE) {
10726 			/*
10727 			 * It's unlikely we'll ever actually find ourselves
10728 			 * here, as a file small enough to fit inline won't be
10729 			 * big enough to store more than the swap header, but in
10730 			 * case something changes in the future, let's catch it
10731 			 * here rather than later.
10732 			 */
10733 			btrfs_warn(fs_info, "swapfile must not be inline");
10734 			ret = -EINVAL;
10735 			goto out;
10736 		}
10737 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10738 			btrfs_warn(fs_info, "swapfile must not be compressed");
10739 			ret = -EINVAL;
10740 			goto out;
10741 		}
10742 
10743 		logical_block_start = em->block_start + (start - em->start);
10744 		len = min(len, em->len - (start - em->start));
10745 		free_extent_map(em);
10746 		em = NULL;
10747 
10748 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10749 		if (ret < 0) {
10750 			goto out;
10751 		} else if (ret) {
10752 			ret = 0;
10753 		} else {
10754 			btrfs_warn(fs_info,
10755 				   "swapfile must not be copy-on-write");
10756 			ret = -EINVAL;
10757 			goto out;
10758 		}
10759 
10760 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10761 		if (IS_ERR(em)) {
10762 			ret = PTR_ERR(em);
10763 			goto out;
10764 		}
10765 
10766 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10767 			btrfs_warn(fs_info,
10768 				   "swapfile must have single data profile");
10769 			ret = -EINVAL;
10770 			goto out;
10771 		}
10772 
10773 		if (device == NULL) {
10774 			device = em->map_lookup->stripes[0].dev;
10775 			ret = btrfs_add_swapfile_pin(inode, device, false);
10776 			if (ret == 1)
10777 				ret = 0;
10778 			else if (ret)
10779 				goto out;
10780 		} else if (device != em->map_lookup->stripes[0].dev) {
10781 			btrfs_warn(fs_info, "swapfile must be on one device");
10782 			ret = -EINVAL;
10783 			goto out;
10784 		}
10785 
10786 		physical_block_start = (em->map_lookup->stripes[0].physical +
10787 					(logical_block_start - em->start));
10788 		len = min(len, em->len - (logical_block_start - em->start));
10789 		free_extent_map(em);
10790 		em = NULL;
10791 
10792 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10793 		if (!bg) {
10794 			btrfs_warn(fs_info,
10795 			   "could not find block group containing swapfile");
10796 			ret = -EINVAL;
10797 			goto out;
10798 		}
10799 
10800 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10801 			btrfs_warn(fs_info,
10802 			   "block group for swapfile at %llu is read-only%s",
10803 			   bg->start,
10804 			   atomic_read(&fs_info->scrubs_running) ?
10805 				       " (scrub running)" : "");
10806 			btrfs_put_block_group(bg);
10807 			ret = -EINVAL;
10808 			goto out;
10809 		}
10810 
10811 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10812 		if (ret) {
10813 			btrfs_put_block_group(bg);
10814 			if (ret == 1)
10815 				ret = 0;
10816 			else
10817 				goto out;
10818 		}
10819 
10820 		if (bsi.block_len &&
10821 		    bsi.block_start + bsi.block_len == physical_block_start) {
10822 			bsi.block_len += len;
10823 		} else {
10824 			if (bsi.block_len) {
10825 				ret = btrfs_add_swap_extent(sis, &bsi);
10826 				if (ret)
10827 					goto out;
10828 			}
10829 			bsi.start = start;
10830 			bsi.block_start = physical_block_start;
10831 			bsi.block_len = len;
10832 		}
10833 
10834 		start += len;
10835 	}
10836 
10837 	if (bsi.block_len)
10838 		ret = btrfs_add_swap_extent(sis, &bsi);
10839 
10840 out:
10841 	if (!IS_ERR_OR_NULL(em))
10842 		free_extent_map(em);
10843 
10844 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10845 
10846 	if (ret)
10847 		btrfs_swap_deactivate(file);
10848 
10849 	btrfs_drew_write_unlock(&root->snapshot_lock);
10850 
10851 	btrfs_exclop_finish(fs_info);
10852 
10853 	if (ret)
10854 		return ret;
10855 
10856 	if (device)
10857 		sis->bdev = device->bdev;
10858 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10859 	sis->max = bsi.nr_pages;
10860 	sis->pages = bsi.nr_pages - 1;
10861 	sis->highest_bit = bsi.nr_pages - 1;
10862 	return bsi.nr_extents;
10863 }
10864 #else
10865 static void btrfs_swap_deactivate(struct file *file)
10866 {
10867 }
10868 
10869 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10870 			       sector_t *span)
10871 {
10872 	return -EOPNOTSUPP;
10873 }
10874 #endif
10875 
10876 /*
10877  * Update the number of bytes used in the VFS' inode. When we replace extents in
10878  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10879  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10880  * always get a correct value.
10881  */
10882 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10883 			      const u64 add_bytes,
10884 			      const u64 del_bytes)
10885 {
10886 	if (add_bytes == del_bytes)
10887 		return;
10888 
10889 	spin_lock(&inode->lock);
10890 	if (del_bytes > 0)
10891 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10892 	if (add_bytes > 0)
10893 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10894 	spin_unlock(&inode->lock);
10895 }
10896 
10897 /*
10898  * Verify that there are no ordered extents for a given file range.
10899  *
10900  * @inode:   The target inode.
10901  * @start:   Start offset of the file range, should be sector size aligned.
10902  * @end:     End offset (inclusive) of the file range, its value +1 should be
10903  *           sector size aligned.
10904  *
10905  * This should typically be used for cases where we locked an inode's VFS lock in
10906  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10907  * we have flushed all delalloc in the range, we have waited for all ordered
10908  * extents in the range to complete and finally we have locked the file range in
10909  * the inode's io_tree.
10910  */
10911 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10912 {
10913 	struct btrfs_root *root = inode->root;
10914 	struct btrfs_ordered_extent *ordered;
10915 
10916 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10917 		return;
10918 
10919 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10920 	if (ordered) {
10921 		btrfs_err(root->fs_info,
10922 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10923 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10924 			  ordered->file_offset,
10925 			  ordered->file_offset + ordered->num_bytes - 1);
10926 		btrfs_put_ordered_extent(ordered);
10927 	}
10928 
10929 	ASSERT(ordered == NULL);
10930 }
10931 
10932 static const struct inode_operations btrfs_dir_inode_operations = {
10933 	.getattr	= btrfs_getattr,
10934 	.lookup		= btrfs_lookup,
10935 	.create		= btrfs_create,
10936 	.unlink		= btrfs_unlink,
10937 	.link		= btrfs_link,
10938 	.mkdir		= btrfs_mkdir,
10939 	.rmdir		= btrfs_rmdir,
10940 	.rename		= btrfs_rename2,
10941 	.symlink	= btrfs_symlink,
10942 	.setattr	= btrfs_setattr,
10943 	.mknod		= btrfs_mknod,
10944 	.listxattr	= btrfs_listxattr,
10945 	.permission	= btrfs_permission,
10946 	.get_inode_acl	= btrfs_get_acl,
10947 	.set_acl	= btrfs_set_acl,
10948 	.update_time	= btrfs_update_time,
10949 	.tmpfile        = btrfs_tmpfile,
10950 	.fileattr_get	= btrfs_fileattr_get,
10951 	.fileattr_set	= btrfs_fileattr_set,
10952 };
10953 
10954 static const struct file_operations btrfs_dir_file_operations = {
10955 	.llseek		= btrfs_dir_llseek,
10956 	.read		= generic_read_dir,
10957 	.iterate_shared	= btrfs_real_readdir,
10958 	.open		= btrfs_opendir,
10959 	.unlocked_ioctl	= btrfs_ioctl,
10960 #ifdef CONFIG_COMPAT
10961 	.compat_ioctl	= btrfs_compat_ioctl,
10962 #endif
10963 	.release        = btrfs_release_file,
10964 	.fsync		= btrfs_sync_file,
10965 };
10966 
10967 /*
10968  * btrfs doesn't support the bmap operation because swapfiles
10969  * use bmap to make a mapping of extents in the file.  They assume
10970  * these extents won't change over the life of the file and they
10971  * use the bmap result to do IO directly to the drive.
10972  *
10973  * the btrfs bmap call would return logical addresses that aren't
10974  * suitable for IO and they also will change frequently as COW
10975  * operations happen.  So, swapfile + btrfs == corruption.
10976  *
10977  * For now we're avoiding this by dropping bmap.
10978  */
10979 static const struct address_space_operations btrfs_aops = {
10980 	.read_folio	= btrfs_read_folio,
10981 	.writepages	= btrfs_writepages,
10982 	.readahead	= btrfs_readahead,
10983 	.invalidate_folio = btrfs_invalidate_folio,
10984 	.release_folio	= btrfs_release_folio,
10985 	.migrate_folio	= btrfs_migrate_folio,
10986 	.dirty_folio	= filemap_dirty_folio,
10987 	.error_remove_page = generic_error_remove_page,
10988 	.swap_activate	= btrfs_swap_activate,
10989 	.swap_deactivate = btrfs_swap_deactivate,
10990 };
10991 
10992 static const struct inode_operations btrfs_file_inode_operations = {
10993 	.getattr	= btrfs_getattr,
10994 	.setattr	= btrfs_setattr,
10995 	.listxattr      = btrfs_listxattr,
10996 	.permission	= btrfs_permission,
10997 	.fiemap		= btrfs_fiemap,
10998 	.get_inode_acl	= btrfs_get_acl,
10999 	.set_acl	= btrfs_set_acl,
11000 	.update_time	= btrfs_update_time,
11001 	.fileattr_get	= btrfs_fileattr_get,
11002 	.fileattr_set	= btrfs_fileattr_set,
11003 };
11004 static const struct inode_operations btrfs_special_inode_operations = {
11005 	.getattr	= btrfs_getattr,
11006 	.setattr	= btrfs_setattr,
11007 	.permission	= btrfs_permission,
11008 	.listxattr	= btrfs_listxattr,
11009 	.get_inode_acl	= btrfs_get_acl,
11010 	.set_acl	= btrfs_set_acl,
11011 	.update_time	= btrfs_update_time,
11012 };
11013 static const struct inode_operations btrfs_symlink_inode_operations = {
11014 	.get_link	= page_get_link,
11015 	.getattr	= btrfs_getattr,
11016 	.setattr	= btrfs_setattr,
11017 	.permission	= btrfs_permission,
11018 	.listxattr	= btrfs_listxattr,
11019 	.update_time	= btrfs_update_time,
11020 };
11021 
11022 const struct dentry_operations btrfs_dentry_operations = {
11023 	.d_delete	= btrfs_dentry_delete,
11024 };
11025