xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision ecfb9f40)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "fs.h"
16 #include "messages.h"
17 #include "misc.h"
18 #include "free-space-cache.h"
19 #include "transaction.h"
20 #include "disk-io.h"
21 #include "extent_io.h"
22 #include "volumes.h"
23 #include "space-info.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "discard.h"
27 #include "subpage.h"
28 #include "inode-item.h"
29 #include "accessors.h"
30 #include "file-item.h"
31 #include "file.h"
32 #include "super.h"
33 
34 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
35 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
36 #define FORCE_EXTENT_THRESHOLD	SZ_1M
37 
38 static struct kmem_cache *btrfs_free_space_cachep;
39 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
40 
41 struct btrfs_trim_range {
42 	u64 start;
43 	u64 bytes;
44 	struct list_head list;
45 };
46 
47 static int link_free_space(struct btrfs_free_space_ctl *ctl,
48 			   struct btrfs_free_space *info);
49 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
50 			      struct btrfs_free_space *info, bool update_stat);
51 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 			 struct btrfs_free_space *bitmap_info, u64 *offset,
53 			 u64 *bytes, bool for_alloc);
54 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 			struct btrfs_free_space *bitmap_info);
56 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 			      struct btrfs_free_space *info, u64 offset,
58 			      u64 bytes, bool update_stats);
59 
60 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
61 {
62 	struct btrfs_free_space *info;
63 	struct rb_node *node;
64 
65 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
66 		info = rb_entry(node, struct btrfs_free_space, offset_index);
67 		if (!info->bitmap) {
68 			unlink_free_space(ctl, info, true);
69 			kmem_cache_free(btrfs_free_space_cachep, info);
70 		} else {
71 			free_bitmap(ctl, info);
72 		}
73 
74 		cond_resched_lock(&ctl->tree_lock);
75 	}
76 }
77 
78 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
79 					       struct btrfs_path *path,
80 					       u64 offset)
81 {
82 	struct btrfs_fs_info *fs_info = root->fs_info;
83 	struct btrfs_key key;
84 	struct btrfs_key location;
85 	struct btrfs_disk_key disk_key;
86 	struct btrfs_free_space_header *header;
87 	struct extent_buffer *leaf;
88 	struct inode *inode = NULL;
89 	unsigned nofs_flag;
90 	int ret;
91 
92 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
93 	key.offset = offset;
94 	key.type = 0;
95 
96 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
97 	if (ret < 0)
98 		return ERR_PTR(ret);
99 	if (ret > 0) {
100 		btrfs_release_path(path);
101 		return ERR_PTR(-ENOENT);
102 	}
103 
104 	leaf = path->nodes[0];
105 	header = btrfs_item_ptr(leaf, path->slots[0],
106 				struct btrfs_free_space_header);
107 	btrfs_free_space_key(leaf, header, &disk_key);
108 	btrfs_disk_key_to_cpu(&location, &disk_key);
109 	btrfs_release_path(path);
110 
111 	/*
112 	 * We are often under a trans handle at this point, so we need to make
113 	 * sure NOFS is set to keep us from deadlocking.
114 	 */
115 	nofs_flag = memalloc_nofs_save();
116 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
117 	btrfs_release_path(path);
118 	memalloc_nofs_restore(nofs_flag);
119 	if (IS_ERR(inode))
120 		return inode;
121 
122 	mapping_set_gfp_mask(inode->i_mapping,
123 			mapping_gfp_constraint(inode->i_mapping,
124 			~(__GFP_FS | __GFP_HIGHMEM)));
125 
126 	return inode;
127 }
128 
129 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
130 		struct btrfs_path *path)
131 {
132 	struct btrfs_fs_info *fs_info = block_group->fs_info;
133 	struct inode *inode = NULL;
134 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
135 
136 	spin_lock(&block_group->lock);
137 	if (block_group->inode)
138 		inode = igrab(block_group->inode);
139 	spin_unlock(&block_group->lock);
140 	if (inode)
141 		return inode;
142 
143 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
144 					  block_group->start);
145 	if (IS_ERR(inode))
146 		return inode;
147 
148 	spin_lock(&block_group->lock);
149 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
150 		btrfs_info(fs_info, "Old style space inode found, converting.");
151 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
152 			BTRFS_INODE_NODATACOW;
153 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
154 	}
155 
156 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
157 		block_group->inode = igrab(inode);
158 	spin_unlock(&block_group->lock);
159 
160 	return inode;
161 }
162 
163 static int __create_free_space_inode(struct btrfs_root *root,
164 				     struct btrfs_trans_handle *trans,
165 				     struct btrfs_path *path,
166 				     u64 ino, u64 offset)
167 {
168 	struct btrfs_key key;
169 	struct btrfs_disk_key disk_key;
170 	struct btrfs_free_space_header *header;
171 	struct btrfs_inode_item *inode_item;
172 	struct extent_buffer *leaf;
173 	/* We inline CRCs for the free disk space cache */
174 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
175 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
176 	int ret;
177 
178 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
179 	if (ret)
180 		return ret;
181 
182 	leaf = path->nodes[0];
183 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
184 				    struct btrfs_inode_item);
185 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
186 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
187 			     sizeof(*inode_item));
188 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
189 	btrfs_set_inode_size(leaf, inode_item, 0);
190 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
191 	btrfs_set_inode_uid(leaf, inode_item, 0);
192 	btrfs_set_inode_gid(leaf, inode_item, 0);
193 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
194 	btrfs_set_inode_flags(leaf, inode_item, flags);
195 	btrfs_set_inode_nlink(leaf, inode_item, 1);
196 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
197 	btrfs_set_inode_block_group(leaf, inode_item, offset);
198 	btrfs_mark_buffer_dirty(leaf);
199 	btrfs_release_path(path);
200 
201 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
202 	key.offset = offset;
203 	key.type = 0;
204 	ret = btrfs_insert_empty_item(trans, root, path, &key,
205 				      sizeof(struct btrfs_free_space_header));
206 	if (ret < 0) {
207 		btrfs_release_path(path);
208 		return ret;
209 	}
210 
211 	leaf = path->nodes[0];
212 	header = btrfs_item_ptr(leaf, path->slots[0],
213 				struct btrfs_free_space_header);
214 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
215 	btrfs_set_free_space_key(leaf, header, &disk_key);
216 	btrfs_mark_buffer_dirty(leaf);
217 	btrfs_release_path(path);
218 
219 	return 0;
220 }
221 
222 int create_free_space_inode(struct btrfs_trans_handle *trans,
223 			    struct btrfs_block_group *block_group,
224 			    struct btrfs_path *path)
225 {
226 	int ret;
227 	u64 ino;
228 
229 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
230 	if (ret < 0)
231 		return ret;
232 
233 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
234 					 ino, block_group->start);
235 }
236 
237 /*
238  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
239  * handles lookup, otherwise it takes ownership and iputs the inode.
240  * Don't reuse an inode pointer after passing it into this function.
241  */
242 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
243 				  struct inode *inode,
244 				  struct btrfs_block_group *block_group)
245 {
246 	struct btrfs_path *path;
247 	struct btrfs_key key;
248 	int ret = 0;
249 
250 	path = btrfs_alloc_path();
251 	if (!path)
252 		return -ENOMEM;
253 
254 	if (!inode)
255 		inode = lookup_free_space_inode(block_group, path);
256 	if (IS_ERR(inode)) {
257 		if (PTR_ERR(inode) != -ENOENT)
258 			ret = PTR_ERR(inode);
259 		goto out;
260 	}
261 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
262 	if (ret) {
263 		btrfs_add_delayed_iput(BTRFS_I(inode));
264 		goto out;
265 	}
266 	clear_nlink(inode);
267 	/* One for the block groups ref */
268 	spin_lock(&block_group->lock);
269 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
270 		block_group->inode = NULL;
271 		spin_unlock(&block_group->lock);
272 		iput(inode);
273 	} else {
274 		spin_unlock(&block_group->lock);
275 	}
276 	/* One for the lookup ref */
277 	btrfs_add_delayed_iput(BTRFS_I(inode));
278 
279 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
280 	key.type = 0;
281 	key.offset = block_group->start;
282 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
283 				-1, 1);
284 	if (ret) {
285 		if (ret > 0)
286 			ret = 0;
287 		goto out;
288 	}
289 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
290 out:
291 	btrfs_free_path(path);
292 	return ret;
293 }
294 
295 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
296 				       struct btrfs_block_rsv *rsv)
297 {
298 	u64 needed_bytes;
299 	int ret;
300 
301 	/* 1 for slack space, 1 for updating the inode */
302 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
303 		btrfs_calc_metadata_size(fs_info, 1);
304 
305 	spin_lock(&rsv->lock);
306 	if (rsv->reserved < needed_bytes)
307 		ret = -ENOSPC;
308 	else
309 		ret = 0;
310 	spin_unlock(&rsv->lock);
311 	return ret;
312 }
313 
314 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
315 				    struct btrfs_block_group *block_group,
316 				    struct inode *vfs_inode)
317 {
318 	struct btrfs_truncate_control control = {
319 		.inode = BTRFS_I(vfs_inode),
320 		.new_size = 0,
321 		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
322 		.min_type = BTRFS_EXTENT_DATA_KEY,
323 		.clear_extent_range = true,
324 	};
325 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
326 	struct btrfs_root *root = inode->root;
327 	struct extent_state *cached_state = NULL;
328 	int ret = 0;
329 	bool locked = false;
330 
331 	if (block_group) {
332 		struct btrfs_path *path = btrfs_alloc_path();
333 
334 		if (!path) {
335 			ret = -ENOMEM;
336 			goto fail;
337 		}
338 		locked = true;
339 		mutex_lock(&trans->transaction->cache_write_mutex);
340 		if (!list_empty(&block_group->io_list)) {
341 			list_del_init(&block_group->io_list);
342 
343 			btrfs_wait_cache_io(trans, block_group, path);
344 			btrfs_put_block_group(block_group);
345 		}
346 
347 		/*
348 		 * now that we've truncated the cache away, its no longer
349 		 * setup or written
350 		 */
351 		spin_lock(&block_group->lock);
352 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
353 		spin_unlock(&block_group->lock);
354 		btrfs_free_path(path);
355 	}
356 
357 	btrfs_i_size_write(inode, 0);
358 	truncate_pagecache(vfs_inode, 0);
359 
360 	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
361 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
362 
363 	/*
364 	 * We skip the throttling logic for free space cache inodes, so we don't
365 	 * need to check for -EAGAIN.
366 	 */
367 	ret = btrfs_truncate_inode_items(trans, root, &control);
368 
369 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
370 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
371 
372 	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
373 	if (ret)
374 		goto fail;
375 
376 	ret = btrfs_update_inode(trans, root, inode);
377 
378 fail:
379 	if (locked)
380 		mutex_unlock(&trans->transaction->cache_write_mutex);
381 	if (ret)
382 		btrfs_abort_transaction(trans, ret);
383 
384 	return ret;
385 }
386 
387 static void readahead_cache(struct inode *inode)
388 {
389 	struct file_ra_state ra;
390 	unsigned long last_index;
391 
392 	file_ra_state_init(&ra, inode->i_mapping);
393 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
394 
395 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
396 }
397 
398 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
399 		       int write)
400 {
401 	int num_pages;
402 
403 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
404 
405 	/* Make sure we can fit our crcs and generation into the first page */
406 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
407 		return -ENOSPC;
408 
409 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
410 
411 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
412 	if (!io_ctl->pages)
413 		return -ENOMEM;
414 
415 	io_ctl->num_pages = num_pages;
416 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
417 	io_ctl->inode = inode;
418 
419 	return 0;
420 }
421 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
422 
423 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
424 {
425 	kfree(io_ctl->pages);
426 	io_ctl->pages = NULL;
427 }
428 
429 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
430 {
431 	if (io_ctl->cur) {
432 		io_ctl->cur = NULL;
433 		io_ctl->orig = NULL;
434 	}
435 }
436 
437 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
438 {
439 	ASSERT(io_ctl->index < io_ctl->num_pages);
440 	io_ctl->page = io_ctl->pages[io_ctl->index++];
441 	io_ctl->cur = page_address(io_ctl->page);
442 	io_ctl->orig = io_ctl->cur;
443 	io_ctl->size = PAGE_SIZE;
444 	if (clear)
445 		clear_page(io_ctl->cur);
446 }
447 
448 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
449 {
450 	int i;
451 
452 	io_ctl_unmap_page(io_ctl);
453 
454 	for (i = 0; i < io_ctl->num_pages; i++) {
455 		if (io_ctl->pages[i]) {
456 			btrfs_page_clear_checked(io_ctl->fs_info,
457 					io_ctl->pages[i],
458 					page_offset(io_ctl->pages[i]),
459 					PAGE_SIZE);
460 			unlock_page(io_ctl->pages[i]);
461 			put_page(io_ctl->pages[i]);
462 		}
463 	}
464 }
465 
466 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
467 {
468 	struct page *page;
469 	struct inode *inode = io_ctl->inode;
470 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
471 	int i;
472 
473 	for (i = 0; i < io_ctl->num_pages; i++) {
474 		int ret;
475 
476 		page = find_or_create_page(inode->i_mapping, i, mask);
477 		if (!page) {
478 			io_ctl_drop_pages(io_ctl);
479 			return -ENOMEM;
480 		}
481 
482 		ret = set_page_extent_mapped(page);
483 		if (ret < 0) {
484 			unlock_page(page);
485 			put_page(page);
486 			io_ctl_drop_pages(io_ctl);
487 			return ret;
488 		}
489 
490 		io_ctl->pages[i] = page;
491 		if (uptodate && !PageUptodate(page)) {
492 			btrfs_read_folio(NULL, page_folio(page));
493 			lock_page(page);
494 			if (page->mapping != inode->i_mapping) {
495 				btrfs_err(BTRFS_I(inode)->root->fs_info,
496 					  "free space cache page truncated");
497 				io_ctl_drop_pages(io_ctl);
498 				return -EIO;
499 			}
500 			if (!PageUptodate(page)) {
501 				btrfs_err(BTRFS_I(inode)->root->fs_info,
502 					   "error reading free space cache");
503 				io_ctl_drop_pages(io_ctl);
504 				return -EIO;
505 			}
506 		}
507 	}
508 
509 	for (i = 0; i < io_ctl->num_pages; i++)
510 		clear_page_dirty_for_io(io_ctl->pages[i]);
511 
512 	return 0;
513 }
514 
515 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
516 {
517 	io_ctl_map_page(io_ctl, 1);
518 
519 	/*
520 	 * Skip the csum areas.  If we don't check crcs then we just have a
521 	 * 64bit chunk at the front of the first page.
522 	 */
523 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
524 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
525 
526 	put_unaligned_le64(generation, io_ctl->cur);
527 	io_ctl->cur += sizeof(u64);
528 }
529 
530 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
531 {
532 	u64 cache_gen;
533 
534 	/*
535 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
536 	 * chunk at the front of the first page.
537 	 */
538 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
539 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
540 
541 	cache_gen = get_unaligned_le64(io_ctl->cur);
542 	if (cache_gen != generation) {
543 		btrfs_err_rl(io_ctl->fs_info,
544 			"space cache generation (%llu) does not match inode (%llu)",
545 				cache_gen, generation);
546 		io_ctl_unmap_page(io_ctl);
547 		return -EIO;
548 	}
549 	io_ctl->cur += sizeof(u64);
550 	return 0;
551 }
552 
553 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
554 {
555 	u32 *tmp;
556 	u32 crc = ~(u32)0;
557 	unsigned offset = 0;
558 
559 	if (index == 0)
560 		offset = sizeof(u32) * io_ctl->num_pages;
561 
562 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
563 	btrfs_crc32c_final(crc, (u8 *)&crc);
564 	io_ctl_unmap_page(io_ctl);
565 	tmp = page_address(io_ctl->pages[0]);
566 	tmp += index;
567 	*tmp = crc;
568 }
569 
570 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
571 {
572 	u32 *tmp, val;
573 	u32 crc = ~(u32)0;
574 	unsigned offset = 0;
575 
576 	if (index == 0)
577 		offset = sizeof(u32) * io_ctl->num_pages;
578 
579 	tmp = page_address(io_ctl->pages[0]);
580 	tmp += index;
581 	val = *tmp;
582 
583 	io_ctl_map_page(io_ctl, 0);
584 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
585 	btrfs_crc32c_final(crc, (u8 *)&crc);
586 	if (val != crc) {
587 		btrfs_err_rl(io_ctl->fs_info,
588 			"csum mismatch on free space cache");
589 		io_ctl_unmap_page(io_ctl);
590 		return -EIO;
591 	}
592 
593 	return 0;
594 }
595 
596 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
597 			    void *bitmap)
598 {
599 	struct btrfs_free_space_entry *entry;
600 
601 	if (!io_ctl->cur)
602 		return -ENOSPC;
603 
604 	entry = io_ctl->cur;
605 	put_unaligned_le64(offset, &entry->offset);
606 	put_unaligned_le64(bytes, &entry->bytes);
607 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
608 		BTRFS_FREE_SPACE_EXTENT;
609 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
610 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
611 
612 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
613 		return 0;
614 
615 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
616 
617 	/* No more pages to map */
618 	if (io_ctl->index >= io_ctl->num_pages)
619 		return 0;
620 
621 	/* map the next page */
622 	io_ctl_map_page(io_ctl, 1);
623 	return 0;
624 }
625 
626 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
627 {
628 	if (!io_ctl->cur)
629 		return -ENOSPC;
630 
631 	/*
632 	 * If we aren't at the start of the current page, unmap this one and
633 	 * map the next one if there is any left.
634 	 */
635 	if (io_ctl->cur != io_ctl->orig) {
636 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
637 		if (io_ctl->index >= io_ctl->num_pages)
638 			return -ENOSPC;
639 		io_ctl_map_page(io_ctl, 0);
640 	}
641 
642 	copy_page(io_ctl->cur, bitmap);
643 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 	if (io_ctl->index < io_ctl->num_pages)
645 		io_ctl_map_page(io_ctl, 0);
646 	return 0;
647 }
648 
649 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
650 {
651 	/*
652 	 * If we're not on the boundary we know we've modified the page and we
653 	 * need to crc the page.
654 	 */
655 	if (io_ctl->cur != io_ctl->orig)
656 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
657 	else
658 		io_ctl_unmap_page(io_ctl);
659 
660 	while (io_ctl->index < io_ctl->num_pages) {
661 		io_ctl_map_page(io_ctl, 1);
662 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
663 	}
664 }
665 
666 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
667 			    struct btrfs_free_space *entry, u8 *type)
668 {
669 	struct btrfs_free_space_entry *e;
670 	int ret;
671 
672 	if (!io_ctl->cur) {
673 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
674 		if (ret)
675 			return ret;
676 	}
677 
678 	e = io_ctl->cur;
679 	entry->offset = get_unaligned_le64(&e->offset);
680 	entry->bytes = get_unaligned_le64(&e->bytes);
681 	*type = e->type;
682 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
683 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
684 
685 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
686 		return 0;
687 
688 	io_ctl_unmap_page(io_ctl);
689 
690 	return 0;
691 }
692 
693 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
694 			      struct btrfs_free_space *entry)
695 {
696 	int ret;
697 
698 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
699 	if (ret)
700 		return ret;
701 
702 	copy_page(entry->bitmap, io_ctl->cur);
703 	io_ctl_unmap_page(io_ctl);
704 
705 	return 0;
706 }
707 
708 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
709 {
710 	struct btrfs_block_group *block_group = ctl->block_group;
711 	u64 max_bytes;
712 	u64 bitmap_bytes;
713 	u64 extent_bytes;
714 	u64 size = block_group->length;
715 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
716 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
717 
718 	max_bitmaps = max_t(u64, max_bitmaps, 1);
719 
720 	if (ctl->total_bitmaps > max_bitmaps)
721 		btrfs_err(block_group->fs_info,
722 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
723 			  block_group->start, block_group->length,
724 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
725 			  bytes_per_bg);
726 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
727 
728 	/*
729 	 * We are trying to keep the total amount of memory used per 1GiB of
730 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
731 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
732 	 * bitmaps, we may end up using more memory than this.
733 	 */
734 	if (size < SZ_1G)
735 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
736 	else
737 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
738 
739 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
740 
741 	/*
742 	 * we want the extent entry threshold to always be at most 1/2 the max
743 	 * bytes we can have, or whatever is less than that.
744 	 */
745 	extent_bytes = max_bytes - bitmap_bytes;
746 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
747 
748 	ctl->extents_thresh =
749 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
750 }
751 
752 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
753 				   struct btrfs_free_space_ctl *ctl,
754 				   struct btrfs_path *path, u64 offset)
755 {
756 	struct btrfs_fs_info *fs_info = root->fs_info;
757 	struct btrfs_free_space_header *header;
758 	struct extent_buffer *leaf;
759 	struct btrfs_io_ctl io_ctl;
760 	struct btrfs_key key;
761 	struct btrfs_free_space *e, *n;
762 	LIST_HEAD(bitmaps);
763 	u64 num_entries;
764 	u64 num_bitmaps;
765 	u64 generation;
766 	u8 type;
767 	int ret = 0;
768 
769 	/* Nothing in the space cache, goodbye */
770 	if (!i_size_read(inode))
771 		return 0;
772 
773 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
774 	key.offset = offset;
775 	key.type = 0;
776 
777 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
778 	if (ret < 0)
779 		return 0;
780 	else if (ret > 0) {
781 		btrfs_release_path(path);
782 		return 0;
783 	}
784 
785 	ret = -1;
786 
787 	leaf = path->nodes[0];
788 	header = btrfs_item_ptr(leaf, path->slots[0],
789 				struct btrfs_free_space_header);
790 	num_entries = btrfs_free_space_entries(leaf, header);
791 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
792 	generation = btrfs_free_space_generation(leaf, header);
793 	btrfs_release_path(path);
794 
795 	if (!BTRFS_I(inode)->generation) {
796 		btrfs_info(fs_info,
797 			   "the free space cache file (%llu) is invalid, skip it",
798 			   offset);
799 		return 0;
800 	}
801 
802 	if (BTRFS_I(inode)->generation != generation) {
803 		btrfs_err(fs_info,
804 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
805 			  BTRFS_I(inode)->generation, generation);
806 		return 0;
807 	}
808 
809 	if (!num_entries)
810 		return 0;
811 
812 	ret = io_ctl_init(&io_ctl, inode, 0);
813 	if (ret)
814 		return ret;
815 
816 	readahead_cache(inode);
817 
818 	ret = io_ctl_prepare_pages(&io_ctl, true);
819 	if (ret)
820 		goto out;
821 
822 	ret = io_ctl_check_crc(&io_ctl, 0);
823 	if (ret)
824 		goto free_cache;
825 
826 	ret = io_ctl_check_generation(&io_ctl, generation);
827 	if (ret)
828 		goto free_cache;
829 
830 	while (num_entries) {
831 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
832 				      GFP_NOFS);
833 		if (!e) {
834 			ret = -ENOMEM;
835 			goto free_cache;
836 		}
837 
838 		ret = io_ctl_read_entry(&io_ctl, e, &type);
839 		if (ret) {
840 			kmem_cache_free(btrfs_free_space_cachep, e);
841 			goto free_cache;
842 		}
843 
844 		if (!e->bytes) {
845 			ret = -1;
846 			kmem_cache_free(btrfs_free_space_cachep, e);
847 			goto free_cache;
848 		}
849 
850 		if (type == BTRFS_FREE_SPACE_EXTENT) {
851 			spin_lock(&ctl->tree_lock);
852 			ret = link_free_space(ctl, e);
853 			spin_unlock(&ctl->tree_lock);
854 			if (ret) {
855 				btrfs_err(fs_info,
856 					"Duplicate entries in free space cache, dumping");
857 				kmem_cache_free(btrfs_free_space_cachep, e);
858 				goto free_cache;
859 			}
860 		} else {
861 			ASSERT(num_bitmaps);
862 			num_bitmaps--;
863 			e->bitmap = kmem_cache_zalloc(
864 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
865 			if (!e->bitmap) {
866 				ret = -ENOMEM;
867 				kmem_cache_free(
868 					btrfs_free_space_cachep, e);
869 				goto free_cache;
870 			}
871 			spin_lock(&ctl->tree_lock);
872 			ret = link_free_space(ctl, e);
873 			ctl->total_bitmaps++;
874 			recalculate_thresholds(ctl);
875 			spin_unlock(&ctl->tree_lock);
876 			if (ret) {
877 				btrfs_err(fs_info,
878 					"Duplicate entries in free space cache, dumping");
879 				kmem_cache_free(btrfs_free_space_cachep, e);
880 				goto free_cache;
881 			}
882 			list_add_tail(&e->list, &bitmaps);
883 		}
884 
885 		num_entries--;
886 	}
887 
888 	io_ctl_unmap_page(&io_ctl);
889 
890 	/*
891 	 * We add the bitmaps at the end of the entries in order that
892 	 * the bitmap entries are added to the cache.
893 	 */
894 	list_for_each_entry_safe(e, n, &bitmaps, list) {
895 		list_del_init(&e->list);
896 		ret = io_ctl_read_bitmap(&io_ctl, e);
897 		if (ret)
898 			goto free_cache;
899 	}
900 
901 	io_ctl_drop_pages(&io_ctl);
902 	ret = 1;
903 out:
904 	io_ctl_free(&io_ctl);
905 	return ret;
906 free_cache:
907 	io_ctl_drop_pages(&io_ctl);
908 
909 	spin_lock(&ctl->tree_lock);
910 	__btrfs_remove_free_space_cache(ctl);
911 	spin_unlock(&ctl->tree_lock);
912 	goto out;
913 }
914 
915 static int copy_free_space_cache(struct btrfs_block_group *block_group,
916 				 struct btrfs_free_space_ctl *ctl)
917 {
918 	struct btrfs_free_space *info;
919 	struct rb_node *n;
920 	int ret = 0;
921 
922 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
923 		info = rb_entry(n, struct btrfs_free_space, offset_index);
924 		if (!info->bitmap) {
925 			unlink_free_space(ctl, info, true);
926 			ret = btrfs_add_free_space(block_group, info->offset,
927 						   info->bytes);
928 			kmem_cache_free(btrfs_free_space_cachep, info);
929 		} else {
930 			u64 offset = info->offset;
931 			u64 bytes = ctl->unit;
932 
933 			while (search_bitmap(ctl, info, &offset, &bytes,
934 					     false) == 0) {
935 				ret = btrfs_add_free_space(block_group, offset,
936 							   bytes);
937 				if (ret)
938 					break;
939 				bitmap_clear_bits(ctl, info, offset, bytes, true);
940 				offset = info->offset;
941 				bytes = ctl->unit;
942 			}
943 			free_bitmap(ctl, info);
944 		}
945 		cond_resched();
946 	}
947 	return ret;
948 }
949 
950 static struct lock_class_key btrfs_free_space_inode_key;
951 
952 int load_free_space_cache(struct btrfs_block_group *block_group)
953 {
954 	struct btrfs_fs_info *fs_info = block_group->fs_info;
955 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
956 	struct btrfs_free_space_ctl tmp_ctl = {};
957 	struct inode *inode;
958 	struct btrfs_path *path;
959 	int ret = 0;
960 	bool matched;
961 	u64 used = block_group->used;
962 
963 	/*
964 	 * Because we could potentially discard our loaded free space, we want
965 	 * to load everything into a temporary structure first, and then if it's
966 	 * valid copy it all into the actual free space ctl.
967 	 */
968 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
969 
970 	/*
971 	 * If this block group has been marked to be cleared for one reason or
972 	 * another then we can't trust the on disk cache, so just return.
973 	 */
974 	spin_lock(&block_group->lock);
975 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
976 		spin_unlock(&block_group->lock);
977 		return 0;
978 	}
979 	spin_unlock(&block_group->lock);
980 
981 	path = btrfs_alloc_path();
982 	if (!path)
983 		return 0;
984 	path->search_commit_root = 1;
985 	path->skip_locking = 1;
986 
987 	/*
988 	 * We must pass a path with search_commit_root set to btrfs_iget in
989 	 * order to avoid a deadlock when allocating extents for the tree root.
990 	 *
991 	 * When we are COWing an extent buffer from the tree root, when looking
992 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
993 	 * block group without its free space cache loaded. When we find one
994 	 * we must load its space cache which requires reading its free space
995 	 * cache's inode item from the root tree. If this inode item is located
996 	 * in the same leaf that we started COWing before, then we end up in
997 	 * deadlock on the extent buffer (trying to read lock it when we
998 	 * previously write locked it).
999 	 *
1000 	 * It's safe to read the inode item using the commit root because
1001 	 * block groups, once loaded, stay in memory forever (until they are
1002 	 * removed) as well as their space caches once loaded. New block groups
1003 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
1004 	 * we will never try to read their inode item while the fs is mounted.
1005 	 */
1006 	inode = lookup_free_space_inode(block_group, path);
1007 	if (IS_ERR(inode)) {
1008 		btrfs_free_path(path);
1009 		return 0;
1010 	}
1011 
1012 	/* We may have converted the inode and made the cache invalid. */
1013 	spin_lock(&block_group->lock);
1014 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1015 		spin_unlock(&block_group->lock);
1016 		btrfs_free_path(path);
1017 		goto out;
1018 	}
1019 	spin_unlock(&block_group->lock);
1020 
1021 	/*
1022 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1023 	 * free space inodes to prevent false positives related to locks for normal
1024 	 * inodes.
1025 	 */
1026 	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1027 			  &btrfs_free_space_inode_key);
1028 
1029 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1030 				      path, block_group->start);
1031 	btrfs_free_path(path);
1032 	if (ret <= 0)
1033 		goto out;
1034 
1035 	matched = (tmp_ctl.free_space == (block_group->length - used -
1036 					  block_group->bytes_super));
1037 
1038 	if (matched) {
1039 		ret = copy_free_space_cache(block_group, &tmp_ctl);
1040 		/*
1041 		 * ret == 1 means we successfully loaded the free space cache,
1042 		 * so we need to re-set it here.
1043 		 */
1044 		if (ret == 0)
1045 			ret = 1;
1046 	} else {
1047 		/*
1048 		 * We need to call the _locked variant so we don't try to update
1049 		 * the discard counters.
1050 		 */
1051 		spin_lock(&tmp_ctl.tree_lock);
1052 		__btrfs_remove_free_space_cache(&tmp_ctl);
1053 		spin_unlock(&tmp_ctl.tree_lock);
1054 		btrfs_warn(fs_info,
1055 			   "block group %llu has wrong amount of free space",
1056 			   block_group->start);
1057 		ret = -1;
1058 	}
1059 out:
1060 	if (ret < 0) {
1061 		/* This cache is bogus, make sure it gets cleared */
1062 		spin_lock(&block_group->lock);
1063 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1064 		spin_unlock(&block_group->lock);
1065 		ret = 0;
1066 
1067 		btrfs_warn(fs_info,
1068 			   "failed to load free space cache for block group %llu, rebuilding it now",
1069 			   block_group->start);
1070 	}
1071 
1072 	spin_lock(&ctl->tree_lock);
1073 	btrfs_discard_update_discardable(block_group);
1074 	spin_unlock(&ctl->tree_lock);
1075 	iput(inode);
1076 	return ret;
1077 }
1078 
1079 static noinline_for_stack
1080 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1081 			      struct btrfs_free_space_ctl *ctl,
1082 			      struct btrfs_block_group *block_group,
1083 			      int *entries, int *bitmaps,
1084 			      struct list_head *bitmap_list)
1085 {
1086 	int ret;
1087 	struct btrfs_free_cluster *cluster = NULL;
1088 	struct btrfs_free_cluster *cluster_locked = NULL;
1089 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1090 	struct btrfs_trim_range *trim_entry;
1091 
1092 	/* Get the cluster for this block_group if it exists */
1093 	if (block_group && !list_empty(&block_group->cluster_list)) {
1094 		cluster = list_entry(block_group->cluster_list.next,
1095 				     struct btrfs_free_cluster,
1096 				     block_group_list);
1097 	}
1098 
1099 	if (!node && cluster) {
1100 		cluster_locked = cluster;
1101 		spin_lock(&cluster_locked->lock);
1102 		node = rb_first(&cluster->root);
1103 		cluster = NULL;
1104 	}
1105 
1106 	/* Write out the extent entries */
1107 	while (node) {
1108 		struct btrfs_free_space *e;
1109 
1110 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1111 		*entries += 1;
1112 
1113 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1114 				       e->bitmap);
1115 		if (ret)
1116 			goto fail;
1117 
1118 		if (e->bitmap) {
1119 			list_add_tail(&e->list, bitmap_list);
1120 			*bitmaps += 1;
1121 		}
1122 		node = rb_next(node);
1123 		if (!node && cluster) {
1124 			node = rb_first(&cluster->root);
1125 			cluster_locked = cluster;
1126 			spin_lock(&cluster_locked->lock);
1127 			cluster = NULL;
1128 		}
1129 	}
1130 	if (cluster_locked) {
1131 		spin_unlock(&cluster_locked->lock);
1132 		cluster_locked = NULL;
1133 	}
1134 
1135 	/*
1136 	 * Make sure we don't miss any range that was removed from our rbtree
1137 	 * because trimming is running. Otherwise after a umount+mount (or crash
1138 	 * after committing the transaction) we would leak free space and get
1139 	 * an inconsistent free space cache report from fsck.
1140 	 */
1141 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1142 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1143 				       trim_entry->bytes, NULL);
1144 		if (ret)
1145 			goto fail;
1146 		*entries += 1;
1147 	}
1148 
1149 	return 0;
1150 fail:
1151 	if (cluster_locked)
1152 		spin_unlock(&cluster_locked->lock);
1153 	return -ENOSPC;
1154 }
1155 
1156 static noinline_for_stack int
1157 update_cache_item(struct btrfs_trans_handle *trans,
1158 		  struct btrfs_root *root,
1159 		  struct inode *inode,
1160 		  struct btrfs_path *path, u64 offset,
1161 		  int entries, int bitmaps)
1162 {
1163 	struct btrfs_key key;
1164 	struct btrfs_free_space_header *header;
1165 	struct extent_buffer *leaf;
1166 	int ret;
1167 
1168 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1169 	key.offset = offset;
1170 	key.type = 0;
1171 
1172 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1173 	if (ret < 0) {
1174 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1175 				 EXTENT_DELALLOC, NULL);
1176 		goto fail;
1177 	}
1178 	leaf = path->nodes[0];
1179 	if (ret > 0) {
1180 		struct btrfs_key found_key;
1181 		ASSERT(path->slots[0]);
1182 		path->slots[0]--;
1183 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1184 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1185 		    found_key.offset != offset) {
1186 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1187 					 inode->i_size - 1, EXTENT_DELALLOC,
1188 					 NULL);
1189 			btrfs_release_path(path);
1190 			goto fail;
1191 		}
1192 	}
1193 
1194 	BTRFS_I(inode)->generation = trans->transid;
1195 	header = btrfs_item_ptr(leaf, path->slots[0],
1196 				struct btrfs_free_space_header);
1197 	btrfs_set_free_space_entries(leaf, header, entries);
1198 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1199 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1200 	btrfs_mark_buffer_dirty(leaf);
1201 	btrfs_release_path(path);
1202 
1203 	return 0;
1204 
1205 fail:
1206 	return -1;
1207 }
1208 
1209 static noinline_for_stack int write_pinned_extent_entries(
1210 			    struct btrfs_trans_handle *trans,
1211 			    struct btrfs_block_group *block_group,
1212 			    struct btrfs_io_ctl *io_ctl,
1213 			    int *entries)
1214 {
1215 	u64 start, extent_start, extent_end, len;
1216 	struct extent_io_tree *unpin = NULL;
1217 	int ret;
1218 
1219 	if (!block_group)
1220 		return 0;
1221 
1222 	/*
1223 	 * We want to add any pinned extents to our free space cache
1224 	 * so we don't leak the space
1225 	 *
1226 	 * We shouldn't have switched the pinned extents yet so this is the
1227 	 * right one
1228 	 */
1229 	unpin = &trans->transaction->pinned_extents;
1230 
1231 	start = block_group->start;
1232 
1233 	while (start < block_group->start + block_group->length) {
1234 		ret = find_first_extent_bit(unpin, start,
1235 					    &extent_start, &extent_end,
1236 					    EXTENT_DIRTY, NULL);
1237 		if (ret)
1238 			return 0;
1239 
1240 		/* This pinned extent is out of our range */
1241 		if (extent_start >= block_group->start + block_group->length)
1242 			return 0;
1243 
1244 		extent_start = max(extent_start, start);
1245 		extent_end = min(block_group->start + block_group->length,
1246 				 extent_end + 1);
1247 		len = extent_end - extent_start;
1248 
1249 		*entries += 1;
1250 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1251 		if (ret)
1252 			return -ENOSPC;
1253 
1254 		start = extent_end;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static noinline_for_stack int
1261 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1262 {
1263 	struct btrfs_free_space *entry, *next;
1264 	int ret;
1265 
1266 	/* Write out the bitmaps */
1267 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1268 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1269 		if (ret)
1270 			return -ENOSPC;
1271 		list_del_init(&entry->list);
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 static int flush_dirty_cache(struct inode *inode)
1278 {
1279 	int ret;
1280 
1281 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1282 	if (ret)
1283 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1284 				 EXTENT_DELALLOC, NULL);
1285 
1286 	return ret;
1287 }
1288 
1289 static void noinline_for_stack
1290 cleanup_bitmap_list(struct list_head *bitmap_list)
1291 {
1292 	struct btrfs_free_space *entry, *next;
1293 
1294 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1295 		list_del_init(&entry->list);
1296 }
1297 
1298 static void noinline_for_stack
1299 cleanup_write_cache_enospc(struct inode *inode,
1300 			   struct btrfs_io_ctl *io_ctl,
1301 			   struct extent_state **cached_state)
1302 {
1303 	io_ctl_drop_pages(io_ctl);
1304 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1305 		      cached_state);
1306 }
1307 
1308 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1309 				 struct btrfs_trans_handle *trans,
1310 				 struct btrfs_block_group *block_group,
1311 				 struct btrfs_io_ctl *io_ctl,
1312 				 struct btrfs_path *path, u64 offset)
1313 {
1314 	int ret;
1315 	struct inode *inode = io_ctl->inode;
1316 
1317 	if (!inode)
1318 		return 0;
1319 
1320 	/* Flush the dirty pages in the cache file. */
1321 	ret = flush_dirty_cache(inode);
1322 	if (ret)
1323 		goto out;
1324 
1325 	/* Update the cache item to tell everyone this cache file is valid. */
1326 	ret = update_cache_item(trans, root, inode, path, offset,
1327 				io_ctl->entries, io_ctl->bitmaps);
1328 out:
1329 	if (ret) {
1330 		invalidate_inode_pages2(inode->i_mapping);
1331 		BTRFS_I(inode)->generation = 0;
1332 		if (block_group)
1333 			btrfs_debug(root->fs_info,
1334 	  "failed to write free space cache for block group %llu error %d",
1335 				  block_group->start, ret);
1336 	}
1337 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1338 
1339 	if (block_group) {
1340 		/* the dirty list is protected by the dirty_bgs_lock */
1341 		spin_lock(&trans->transaction->dirty_bgs_lock);
1342 
1343 		/* the disk_cache_state is protected by the block group lock */
1344 		spin_lock(&block_group->lock);
1345 
1346 		/*
1347 		 * only mark this as written if we didn't get put back on
1348 		 * the dirty list while waiting for IO.   Otherwise our
1349 		 * cache state won't be right, and we won't get written again
1350 		 */
1351 		if (!ret && list_empty(&block_group->dirty_list))
1352 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1353 		else if (ret)
1354 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1355 
1356 		spin_unlock(&block_group->lock);
1357 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1358 		io_ctl->inode = NULL;
1359 		iput(inode);
1360 	}
1361 
1362 	return ret;
1363 
1364 }
1365 
1366 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1367 			struct btrfs_block_group *block_group,
1368 			struct btrfs_path *path)
1369 {
1370 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1371 				     block_group, &block_group->io_ctl,
1372 				     path, block_group->start);
1373 }
1374 
1375 /*
1376  * Write out cached info to an inode.
1377  *
1378  * @root:        root the inode belongs to
1379  * @inode:       freespace inode we are writing out
1380  * @ctl:         free space cache we are going to write out
1381  * @block_group: block_group for this cache if it belongs to a block_group
1382  * @io_ctl:      holds context for the io
1383  * @trans:       the trans handle
1384  *
1385  * This function writes out a free space cache struct to disk for quick recovery
1386  * on mount.  This will return 0 if it was successful in writing the cache out,
1387  * or an errno if it was not.
1388  */
1389 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1390 				   struct btrfs_free_space_ctl *ctl,
1391 				   struct btrfs_block_group *block_group,
1392 				   struct btrfs_io_ctl *io_ctl,
1393 				   struct btrfs_trans_handle *trans)
1394 {
1395 	struct extent_state *cached_state = NULL;
1396 	LIST_HEAD(bitmap_list);
1397 	int entries = 0;
1398 	int bitmaps = 0;
1399 	int ret;
1400 	int must_iput = 0;
1401 
1402 	if (!i_size_read(inode))
1403 		return -EIO;
1404 
1405 	WARN_ON(io_ctl->pages);
1406 	ret = io_ctl_init(io_ctl, inode, 1);
1407 	if (ret)
1408 		return ret;
1409 
1410 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1411 		down_write(&block_group->data_rwsem);
1412 		spin_lock(&block_group->lock);
1413 		if (block_group->delalloc_bytes) {
1414 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1415 			spin_unlock(&block_group->lock);
1416 			up_write(&block_group->data_rwsem);
1417 			BTRFS_I(inode)->generation = 0;
1418 			ret = 0;
1419 			must_iput = 1;
1420 			goto out;
1421 		}
1422 		spin_unlock(&block_group->lock);
1423 	}
1424 
1425 	/* Lock all pages first so we can lock the extent safely. */
1426 	ret = io_ctl_prepare_pages(io_ctl, false);
1427 	if (ret)
1428 		goto out_unlock;
1429 
1430 	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1431 		    &cached_state);
1432 
1433 	io_ctl_set_generation(io_ctl, trans->transid);
1434 
1435 	mutex_lock(&ctl->cache_writeout_mutex);
1436 	/* Write out the extent entries in the free space cache */
1437 	spin_lock(&ctl->tree_lock);
1438 	ret = write_cache_extent_entries(io_ctl, ctl,
1439 					 block_group, &entries, &bitmaps,
1440 					 &bitmap_list);
1441 	if (ret)
1442 		goto out_nospc_locked;
1443 
1444 	/*
1445 	 * Some spaces that are freed in the current transaction are pinned,
1446 	 * they will be added into free space cache after the transaction is
1447 	 * committed, we shouldn't lose them.
1448 	 *
1449 	 * If this changes while we are working we'll get added back to
1450 	 * the dirty list and redo it.  No locking needed
1451 	 */
1452 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1453 	if (ret)
1454 		goto out_nospc_locked;
1455 
1456 	/*
1457 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1458 	 * locked while doing it because a concurrent trim can be manipulating
1459 	 * or freeing the bitmap.
1460 	 */
1461 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1462 	spin_unlock(&ctl->tree_lock);
1463 	mutex_unlock(&ctl->cache_writeout_mutex);
1464 	if (ret)
1465 		goto out_nospc;
1466 
1467 	/* Zero out the rest of the pages just to make sure */
1468 	io_ctl_zero_remaining_pages(io_ctl);
1469 
1470 	/* Everything is written out, now we dirty the pages in the file. */
1471 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1472 				io_ctl->num_pages, 0, i_size_read(inode),
1473 				&cached_state, false);
1474 	if (ret)
1475 		goto out_nospc;
1476 
1477 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1478 		up_write(&block_group->data_rwsem);
1479 	/*
1480 	 * Release the pages and unlock the extent, we will flush
1481 	 * them out later
1482 	 */
1483 	io_ctl_drop_pages(io_ctl);
1484 	io_ctl_free(io_ctl);
1485 
1486 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1487 		      &cached_state);
1488 
1489 	/*
1490 	 * at this point the pages are under IO and we're happy,
1491 	 * The caller is responsible for waiting on them and updating
1492 	 * the cache and the inode
1493 	 */
1494 	io_ctl->entries = entries;
1495 	io_ctl->bitmaps = bitmaps;
1496 
1497 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1498 	if (ret)
1499 		goto out;
1500 
1501 	return 0;
1502 
1503 out_nospc_locked:
1504 	cleanup_bitmap_list(&bitmap_list);
1505 	spin_unlock(&ctl->tree_lock);
1506 	mutex_unlock(&ctl->cache_writeout_mutex);
1507 
1508 out_nospc:
1509 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1510 
1511 out_unlock:
1512 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1513 		up_write(&block_group->data_rwsem);
1514 
1515 out:
1516 	io_ctl->inode = NULL;
1517 	io_ctl_free(io_ctl);
1518 	if (ret) {
1519 		invalidate_inode_pages2(inode->i_mapping);
1520 		BTRFS_I(inode)->generation = 0;
1521 	}
1522 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1523 	if (must_iput)
1524 		iput(inode);
1525 	return ret;
1526 }
1527 
1528 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1529 			  struct btrfs_block_group *block_group,
1530 			  struct btrfs_path *path)
1531 {
1532 	struct btrfs_fs_info *fs_info = trans->fs_info;
1533 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1534 	struct inode *inode;
1535 	int ret = 0;
1536 
1537 	spin_lock(&block_group->lock);
1538 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1539 		spin_unlock(&block_group->lock);
1540 		return 0;
1541 	}
1542 	spin_unlock(&block_group->lock);
1543 
1544 	inode = lookup_free_space_inode(block_group, path);
1545 	if (IS_ERR(inode))
1546 		return 0;
1547 
1548 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1549 				block_group, &block_group->io_ctl, trans);
1550 	if (ret) {
1551 		btrfs_debug(fs_info,
1552 	  "failed to write free space cache for block group %llu error %d",
1553 			  block_group->start, ret);
1554 		spin_lock(&block_group->lock);
1555 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1556 		spin_unlock(&block_group->lock);
1557 
1558 		block_group->io_ctl.inode = NULL;
1559 		iput(inode);
1560 	}
1561 
1562 	/*
1563 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1564 	 * to wait for IO and put the inode
1565 	 */
1566 
1567 	return ret;
1568 }
1569 
1570 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1571 					  u64 offset)
1572 {
1573 	ASSERT(offset >= bitmap_start);
1574 	offset -= bitmap_start;
1575 	return (unsigned long)(div_u64(offset, unit));
1576 }
1577 
1578 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1579 {
1580 	return (unsigned long)(div_u64(bytes, unit));
1581 }
1582 
1583 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1584 				   u64 offset)
1585 {
1586 	u64 bitmap_start;
1587 	u64 bytes_per_bitmap;
1588 
1589 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1590 	bitmap_start = offset - ctl->start;
1591 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1592 	bitmap_start *= bytes_per_bitmap;
1593 	bitmap_start += ctl->start;
1594 
1595 	return bitmap_start;
1596 }
1597 
1598 static int tree_insert_offset(struct rb_root *root, u64 offset,
1599 			      struct rb_node *node, int bitmap)
1600 {
1601 	struct rb_node **p = &root->rb_node;
1602 	struct rb_node *parent = NULL;
1603 	struct btrfs_free_space *info;
1604 
1605 	while (*p) {
1606 		parent = *p;
1607 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1608 
1609 		if (offset < info->offset) {
1610 			p = &(*p)->rb_left;
1611 		} else if (offset > info->offset) {
1612 			p = &(*p)->rb_right;
1613 		} else {
1614 			/*
1615 			 * we could have a bitmap entry and an extent entry
1616 			 * share the same offset.  If this is the case, we want
1617 			 * the extent entry to always be found first if we do a
1618 			 * linear search through the tree, since we want to have
1619 			 * the quickest allocation time, and allocating from an
1620 			 * extent is faster than allocating from a bitmap.  So
1621 			 * if we're inserting a bitmap and we find an entry at
1622 			 * this offset, we want to go right, or after this entry
1623 			 * logically.  If we are inserting an extent and we've
1624 			 * found a bitmap, we want to go left, or before
1625 			 * logically.
1626 			 */
1627 			if (bitmap) {
1628 				if (info->bitmap) {
1629 					WARN_ON_ONCE(1);
1630 					return -EEXIST;
1631 				}
1632 				p = &(*p)->rb_right;
1633 			} else {
1634 				if (!info->bitmap) {
1635 					WARN_ON_ONCE(1);
1636 					return -EEXIST;
1637 				}
1638 				p = &(*p)->rb_left;
1639 			}
1640 		}
1641 	}
1642 
1643 	rb_link_node(node, parent, p);
1644 	rb_insert_color(node, root);
1645 
1646 	return 0;
1647 }
1648 
1649 /*
1650  * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1651  * searched through the bitmap and figured out the largest ->max_extent_size,
1652  * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1653  * allocator the wrong thing, we want to use the actual real max_extent_size
1654  * we've found already if it's larger, or we want to use ->bytes.
1655  *
1656  * This matters because find_free_space() will skip entries who's ->bytes is
1657  * less than the required bytes.  So if we didn't search down this bitmap, we
1658  * may pick some previous entry that has a smaller ->max_extent_size than we
1659  * have.  For example, assume we have two entries, one that has
1660  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1661  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1662  *  call into find_free_space(), and return with max_extent_size == 4K, because
1663  *  that first bitmap entry had ->max_extent_size set, but the second one did
1664  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1665  *  8K contiguous range.
1666  *
1667  *  Consider the other case, we have 2 8K chunks in that second entry and still
1668  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1669  *  allocator comes in it'll fully search our second bitmap, and this time it'll
1670  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1671  *  right allocation the next loop through.
1672  */
1673 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1674 {
1675 	if (entry->bitmap && entry->max_extent_size)
1676 		return entry->max_extent_size;
1677 	return entry->bytes;
1678 }
1679 
1680 /*
1681  * We want the largest entry to be leftmost, so this is inverted from what you'd
1682  * normally expect.
1683  */
1684 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1685 {
1686 	const struct btrfs_free_space *entry, *exist;
1687 
1688 	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1689 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1690 	return get_max_extent_size(exist) < get_max_extent_size(entry);
1691 }
1692 
1693 /*
1694  * searches the tree for the given offset.
1695  *
1696  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1697  * want a section that has at least bytes size and comes at or after the given
1698  * offset.
1699  */
1700 static struct btrfs_free_space *
1701 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1702 		   u64 offset, int bitmap_only, int fuzzy)
1703 {
1704 	struct rb_node *n = ctl->free_space_offset.rb_node;
1705 	struct btrfs_free_space *entry = NULL, *prev = NULL;
1706 
1707 	/* find entry that is closest to the 'offset' */
1708 	while (n) {
1709 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1710 		prev = entry;
1711 
1712 		if (offset < entry->offset)
1713 			n = n->rb_left;
1714 		else if (offset > entry->offset)
1715 			n = n->rb_right;
1716 		else
1717 			break;
1718 
1719 		entry = NULL;
1720 	}
1721 
1722 	if (bitmap_only) {
1723 		if (!entry)
1724 			return NULL;
1725 		if (entry->bitmap)
1726 			return entry;
1727 
1728 		/*
1729 		 * bitmap entry and extent entry may share same offset,
1730 		 * in that case, bitmap entry comes after extent entry.
1731 		 */
1732 		n = rb_next(n);
1733 		if (!n)
1734 			return NULL;
1735 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1736 		if (entry->offset != offset)
1737 			return NULL;
1738 
1739 		WARN_ON(!entry->bitmap);
1740 		return entry;
1741 	} else if (entry) {
1742 		if (entry->bitmap) {
1743 			/*
1744 			 * if previous extent entry covers the offset,
1745 			 * we should return it instead of the bitmap entry
1746 			 */
1747 			n = rb_prev(&entry->offset_index);
1748 			if (n) {
1749 				prev = rb_entry(n, struct btrfs_free_space,
1750 						offset_index);
1751 				if (!prev->bitmap &&
1752 				    prev->offset + prev->bytes > offset)
1753 					entry = prev;
1754 			}
1755 		}
1756 		return entry;
1757 	}
1758 
1759 	if (!prev)
1760 		return NULL;
1761 
1762 	/* find last entry before the 'offset' */
1763 	entry = prev;
1764 	if (entry->offset > offset) {
1765 		n = rb_prev(&entry->offset_index);
1766 		if (n) {
1767 			entry = rb_entry(n, struct btrfs_free_space,
1768 					offset_index);
1769 			ASSERT(entry->offset <= offset);
1770 		} else {
1771 			if (fuzzy)
1772 				return entry;
1773 			else
1774 				return NULL;
1775 		}
1776 	}
1777 
1778 	if (entry->bitmap) {
1779 		n = rb_prev(&entry->offset_index);
1780 		if (n) {
1781 			prev = rb_entry(n, struct btrfs_free_space,
1782 					offset_index);
1783 			if (!prev->bitmap &&
1784 			    prev->offset + prev->bytes > offset)
1785 				return prev;
1786 		}
1787 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1788 			return entry;
1789 	} else if (entry->offset + entry->bytes > offset)
1790 		return entry;
1791 
1792 	if (!fuzzy)
1793 		return NULL;
1794 
1795 	while (1) {
1796 		n = rb_next(&entry->offset_index);
1797 		if (!n)
1798 			return NULL;
1799 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1800 		if (entry->bitmap) {
1801 			if (entry->offset + BITS_PER_BITMAP *
1802 			    ctl->unit > offset)
1803 				break;
1804 		} else {
1805 			if (entry->offset + entry->bytes > offset)
1806 				break;
1807 		}
1808 	}
1809 	return entry;
1810 }
1811 
1812 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1813 				     struct btrfs_free_space *info,
1814 				     bool update_stat)
1815 {
1816 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1817 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1818 	ctl->free_extents--;
1819 
1820 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1821 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1822 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1823 	}
1824 
1825 	if (update_stat)
1826 		ctl->free_space -= info->bytes;
1827 }
1828 
1829 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1830 			   struct btrfs_free_space *info)
1831 {
1832 	int ret = 0;
1833 
1834 	ASSERT(info->bytes || info->bitmap);
1835 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1836 				 &info->offset_index, (info->bitmap != NULL));
1837 	if (ret)
1838 		return ret;
1839 
1840 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1841 
1842 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1843 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1844 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1845 	}
1846 
1847 	ctl->free_space += info->bytes;
1848 	ctl->free_extents++;
1849 	return ret;
1850 }
1851 
1852 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1853 				struct btrfs_free_space *info)
1854 {
1855 	ASSERT(info->bitmap);
1856 
1857 	/*
1858 	 * If our entry is empty it's because we're on a cluster and we don't
1859 	 * want to re-link it into our ctl bytes index.
1860 	 */
1861 	if (RB_EMPTY_NODE(&info->bytes_index))
1862 		return;
1863 
1864 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1865 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1866 }
1867 
1868 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1869 				     struct btrfs_free_space *info,
1870 				     u64 offset, u64 bytes, bool update_stat)
1871 {
1872 	unsigned long start, count, end;
1873 	int extent_delta = -1;
1874 
1875 	start = offset_to_bit(info->offset, ctl->unit, offset);
1876 	count = bytes_to_bits(bytes, ctl->unit);
1877 	end = start + count;
1878 	ASSERT(end <= BITS_PER_BITMAP);
1879 
1880 	bitmap_clear(info->bitmap, start, count);
1881 
1882 	info->bytes -= bytes;
1883 	if (info->max_extent_size > ctl->unit)
1884 		info->max_extent_size = 0;
1885 
1886 	relink_bitmap_entry(ctl, info);
1887 
1888 	if (start && test_bit(start - 1, info->bitmap))
1889 		extent_delta++;
1890 
1891 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1892 		extent_delta++;
1893 
1894 	info->bitmap_extents += extent_delta;
1895 	if (!btrfs_free_space_trimmed(info)) {
1896 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1897 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1898 	}
1899 
1900 	if (update_stat)
1901 		ctl->free_space -= bytes;
1902 }
1903 
1904 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1905 			    struct btrfs_free_space *info, u64 offset,
1906 			    u64 bytes)
1907 {
1908 	unsigned long start, count, end;
1909 	int extent_delta = 1;
1910 
1911 	start = offset_to_bit(info->offset, ctl->unit, offset);
1912 	count = bytes_to_bits(bytes, ctl->unit);
1913 	end = start + count;
1914 	ASSERT(end <= BITS_PER_BITMAP);
1915 
1916 	bitmap_set(info->bitmap, start, count);
1917 
1918 	/*
1919 	 * We set some bytes, we have no idea what the max extent size is
1920 	 * anymore.
1921 	 */
1922 	info->max_extent_size = 0;
1923 	info->bytes += bytes;
1924 	ctl->free_space += bytes;
1925 
1926 	relink_bitmap_entry(ctl, info);
1927 
1928 	if (start && test_bit(start - 1, info->bitmap))
1929 		extent_delta--;
1930 
1931 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1932 		extent_delta--;
1933 
1934 	info->bitmap_extents += extent_delta;
1935 	if (!btrfs_free_space_trimmed(info)) {
1936 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1937 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1938 	}
1939 }
1940 
1941 /*
1942  * If we can not find suitable extent, we will use bytes to record
1943  * the size of the max extent.
1944  */
1945 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1946 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1947 			 u64 *bytes, bool for_alloc)
1948 {
1949 	unsigned long found_bits = 0;
1950 	unsigned long max_bits = 0;
1951 	unsigned long bits, i;
1952 	unsigned long next_zero;
1953 	unsigned long extent_bits;
1954 
1955 	/*
1956 	 * Skip searching the bitmap if we don't have a contiguous section that
1957 	 * is large enough for this allocation.
1958 	 */
1959 	if (for_alloc &&
1960 	    bitmap_info->max_extent_size &&
1961 	    bitmap_info->max_extent_size < *bytes) {
1962 		*bytes = bitmap_info->max_extent_size;
1963 		return -1;
1964 	}
1965 
1966 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1967 			  max_t(u64, *offset, bitmap_info->offset));
1968 	bits = bytes_to_bits(*bytes, ctl->unit);
1969 
1970 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1971 		if (for_alloc && bits == 1) {
1972 			found_bits = 1;
1973 			break;
1974 		}
1975 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1976 					       BITS_PER_BITMAP, i);
1977 		extent_bits = next_zero - i;
1978 		if (extent_bits >= bits) {
1979 			found_bits = extent_bits;
1980 			break;
1981 		} else if (extent_bits > max_bits) {
1982 			max_bits = extent_bits;
1983 		}
1984 		i = next_zero;
1985 	}
1986 
1987 	if (found_bits) {
1988 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1989 		*bytes = (u64)(found_bits) * ctl->unit;
1990 		return 0;
1991 	}
1992 
1993 	*bytes = (u64)(max_bits) * ctl->unit;
1994 	bitmap_info->max_extent_size = *bytes;
1995 	relink_bitmap_entry(ctl, bitmap_info);
1996 	return -1;
1997 }
1998 
1999 /* Cache the size of the max extent in bytes */
2000 static struct btrfs_free_space *
2001 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2002 		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2003 {
2004 	struct btrfs_free_space *entry;
2005 	struct rb_node *node;
2006 	u64 tmp;
2007 	u64 align_off;
2008 	int ret;
2009 
2010 	if (!ctl->free_space_offset.rb_node)
2011 		goto out;
2012 again:
2013 	if (use_bytes_index) {
2014 		node = rb_first_cached(&ctl->free_space_bytes);
2015 	} else {
2016 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2017 					   0, 1);
2018 		if (!entry)
2019 			goto out;
2020 		node = &entry->offset_index;
2021 	}
2022 
2023 	for (; node; node = rb_next(node)) {
2024 		if (use_bytes_index)
2025 			entry = rb_entry(node, struct btrfs_free_space,
2026 					 bytes_index);
2027 		else
2028 			entry = rb_entry(node, struct btrfs_free_space,
2029 					 offset_index);
2030 
2031 		/*
2032 		 * If we are using the bytes index then all subsequent entries
2033 		 * in this tree are going to be < bytes, so simply set the max
2034 		 * extent size and exit the loop.
2035 		 *
2036 		 * If we're using the offset index then we need to keep going
2037 		 * through the rest of the tree.
2038 		 */
2039 		if (entry->bytes < *bytes) {
2040 			*max_extent_size = max(get_max_extent_size(entry),
2041 					       *max_extent_size);
2042 			if (use_bytes_index)
2043 				break;
2044 			continue;
2045 		}
2046 
2047 		/* make sure the space returned is big enough
2048 		 * to match our requested alignment
2049 		 */
2050 		if (*bytes >= align) {
2051 			tmp = entry->offset - ctl->start + align - 1;
2052 			tmp = div64_u64(tmp, align);
2053 			tmp = tmp * align + ctl->start;
2054 			align_off = tmp - entry->offset;
2055 		} else {
2056 			align_off = 0;
2057 			tmp = entry->offset;
2058 		}
2059 
2060 		/*
2061 		 * We don't break here if we're using the bytes index because we
2062 		 * may have another entry that has the correct alignment that is
2063 		 * the right size, so we don't want to miss that possibility.
2064 		 * At worst this adds another loop through the logic, but if we
2065 		 * broke here we could prematurely ENOSPC.
2066 		 */
2067 		if (entry->bytes < *bytes + align_off) {
2068 			*max_extent_size = max(get_max_extent_size(entry),
2069 					       *max_extent_size);
2070 			continue;
2071 		}
2072 
2073 		if (entry->bitmap) {
2074 			struct rb_node *old_next = rb_next(node);
2075 			u64 size = *bytes;
2076 
2077 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2078 			if (!ret) {
2079 				*offset = tmp;
2080 				*bytes = size;
2081 				return entry;
2082 			} else {
2083 				*max_extent_size =
2084 					max(get_max_extent_size(entry),
2085 					    *max_extent_size);
2086 			}
2087 
2088 			/*
2089 			 * The bitmap may have gotten re-arranged in the space
2090 			 * index here because the max_extent_size may have been
2091 			 * updated.  Start from the beginning again if this
2092 			 * happened.
2093 			 */
2094 			if (use_bytes_index && old_next != rb_next(node))
2095 				goto again;
2096 			continue;
2097 		}
2098 
2099 		*offset = tmp;
2100 		*bytes = entry->bytes - align_off;
2101 		return entry;
2102 	}
2103 out:
2104 	return NULL;
2105 }
2106 
2107 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2108 			   struct btrfs_free_space *info, u64 offset)
2109 {
2110 	info->offset = offset_to_bitmap(ctl, offset);
2111 	info->bytes = 0;
2112 	info->bitmap_extents = 0;
2113 	INIT_LIST_HEAD(&info->list);
2114 	link_free_space(ctl, info);
2115 	ctl->total_bitmaps++;
2116 	recalculate_thresholds(ctl);
2117 }
2118 
2119 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2120 			struct btrfs_free_space *bitmap_info)
2121 {
2122 	/*
2123 	 * Normally when this is called, the bitmap is completely empty. However,
2124 	 * if we are blowing up the free space cache for one reason or another
2125 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2126 	 * we may leave stats on the table.
2127 	 */
2128 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2129 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2130 			bitmap_info->bitmap_extents;
2131 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2132 
2133 	}
2134 	unlink_free_space(ctl, bitmap_info, true);
2135 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2136 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2137 	ctl->total_bitmaps--;
2138 	recalculate_thresholds(ctl);
2139 }
2140 
2141 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2142 			      struct btrfs_free_space *bitmap_info,
2143 			      u64 *offset, u64 *bytes)
2144 {
2145 	u64 end;
2146 	u64 search_start, search_bytes;
2147 	int ret;
2148 
2149 again:
2150 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2151 
2152 	/*
2153 	 * We need to search for bits in this bitmap.  We could only cover some
2154 	 * of the extent in this bitmap thanks to how we add space, so we need
2155 	 * to search for as much as it as we can and clear that amount, and then
2156 	 * go searching for the next bit.
2157 	 */
2158 	search_start = *offset;
2159 	search_bytes = ctl->unit;
2160 	search_bytes = min(search_bytes, end - search_start + 1);
2161 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2162 			    false);
2163 	if (ret < 0 || search_start != *offset)
2164 		return -EINVAL;
2165 
2166 	/* We may have found more bits than what we need */
2167 	search_bytes = min(search_bytes, *bytes);
2168 
2169 	/* Cannot clear past the end of the bitmap */
2170 	search_bytes = min(search_bytes, end - search_start + 1);
2171 
2172 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2173 	*offset += search_bytes;
2174 	*bytes -= search_bytes;
2175 
2176 	if (*bytes) {
2177 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2178 		if (!bitmap_info->bytes)
2179 			free_bitmap(ctl, bitmap_info);
2180 
2181 		/*
2182 		 * no entry after this bitmap, but we still have bytes to
2183 		 * remove, so something has gone wrong.
2184 		 */
2185 		if (!next)
2186 			return -EINVAL;
2187 
2188 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2189 				       offset_index);
2190 
2191 		/*
2192 		 * if the next entry isn't a bitmap we need to return to let the
2193 		 * extent stuff do its work.
2194 		 */
2195 		if (!bitmap_info->bitmap)
2196 			return -EAGAIN;
2197 
2198 		/*
2199 		 * Ok the next item is a bitmap, but it may not actually hold
2200 		 * the information for the rest of this free space stuff, so
2201 		 * look for it, and if we don't find it return so we can try
2202 		 * everything over again.
2203 		 */
2204 		search_start = *offset;
2205 		search_bytes = ctl->unit;
2206 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2207 				    &search_bytes, false);
2208 		if (ret < 0 || search_start != *offset)
2209 			return -EAGAIN;
2210 
2211 		goto again;
2212 	} else if (!bitmap_info->bytes)
2213 		free_bitmap(ctl, bitmap_info);
2214 
2215 	return 0;
2216 }
2217 
2218 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2219 			       struct btrfs_free_space *info, u64 offset,
2220 			       u64 bytes, enum btrfs_trim_state trim_state)
2221 {
2222 	u64 bytes_to_set = 0;
2223 	u64 end;
2224 
2225 	/*
2226 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2227 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2228 	 */
2229 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2230 		if (btrfs_free_space_trimmed(info)) {
2231 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2232 				info->bitmap_extents;
2233 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2234 		}
2235 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2236 	}
2237 
2238 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2239 
2240 	bytes_to_set = min(end - offset, bytes);
2241 
2242 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2243 
2244 	return bytes_to_set;
2245 
2246 }
2247 
2248 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2249 		      struct btrfs_free_space *info)
2250 {
2251 	struct btrfs_block_group *block_group = ctl->block_group;
2252 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2253 	bool forced = false;
2254 
2255 #ifdef CONFIG_BTRFS_DEBUG
2256 	if (btrfs_should_fragment_free_space(block_group))
2257 		forced = true;
2258 #endif
2259 
2260 	/* This is a way to reclaim large regions from the bitmaps. */
2261 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2262 		return false;
2263 
2264 	/*
2265 	 * If we are below the extents threshold then we can add this as an
2266 	 * extent, and don't have to deal with the bitmap
2267 	 */
2268 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2269 		/*
2270 		 * If this block group has some small extents we don't want to
2271 		 * use up all of our free slots in the cache with them, we want
2272 		 * to reserve them to larger extents, however if we have plenty
2273 		 * of cache left then go ahead an dadd them, no sense in adding
2274 		 * the overhead of a bitmap if we don't have to.
2275 		 */
2276 		if (info->bytes <= fs_info->sectorsize * 8) {
2277 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2278 				return false;
2279 		} else {
2280 			return false;
2281 		}
2282 	}
2283 
2284 	/*
2285 	 * The original block groups from mkfs can be really small, like 8
2286 	 * megabytes, so don't bother with a bitmap for those entries.  However
2287 	 * some block groups can be smaller than what a bitmap would cover but
2288 	 * are still large enough that they could overflow the 32k memory limit,
2289 	 * so allow those block groups to still be allowed to have a bitmap
2290 	 * entry.
2291 	 */
2292 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2293 		return false;
2294 
2295 	return true;
2296 }
2297 
2298 static const struct btrfs_free_space_op free_space_op = {
2299 	.use_bitmap		= use_bitmap,
2300 };
2301 
2302 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2303 			      struct btrfs_free_space *info)
2304 {
2305 	struct btrfs_free_space *bitmap_info;
2306 	struct btrfs_block_group *block_group = NULL;
2307 	int added = 0;
2308 	u64 bytes, offset, bytes_added;
2309 	enum btrfs_trim_state trim_state;
2310 	int ret;
2311 
2312 	bytes = info->bytes;
2313 	offset = info->offset;
2314 	trim_state = info->trim_state;
2315 
2316 	if (!ctl->op->use_bitmap(ctl, info))
2317 		return 0;
2318 
2319 	if (ctl->op == &free_space_op)
2320 		block_group = ctl->block_group;
2321 again:
2322 	/*
2323 	 * Since we link bitmaps right into the cluster we need to see if we
2324 	 * have a cluster here, and if so and it has our bitmap we need to add
2325 	 * the free space to that bitmap.
2326 	 */
2327 	if (block_group && !list_empty(&block_group->cluster_list)) {
2328 		struct btrfs_free_cluster *cluster;
2329 		struct rb_node *node;
2330 		struct btrfs_free_space *entry;
2331 
2332 		cluster = list_entry(block_group->cluster_list.next,
2333 				     struct btrfs_free_cluster,
2334 				     block_group_list);
2335 		spin_lock(&cluster->lock);
2336 		node = rb_first(&cluster->root);
2337 		if (!node) {
2338 			spin_unlock(&cluster->lock);
2339 			goto no_cluster_bitmap;
2340 		}
2341 
2342 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2343 		if (!entry->bitmap) {
2344 			spin_unlock(&cluster->lock);
2345 			goto no_cluster_bitmap;
2346 		}
2347 
2348 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2349 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2350 							  bytes, trim_state);
2351 			bytes -= bytes_added;
2352 			offset += bytes_added;
2353 		}
2354 		spin_unlock(&cluster->lock);
2355 		if (!bytes) {
2356 			ret = 1;
2357 			goto out;
2358 		}
2359 	}
2360 
2361 no_cluster_bitmap:
2362 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2363 					 1, 0);
2364 	if (!bitmap_info) {
2365 		ASSERT(added == 0);
2366 		goto new_bitmap;
2367 	}
2368 
2369 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2370 					  trim_state);
2371 	bytes -= bytes_added;
2372 	offset += bytes_added;
2373 	added = 0;
2374 
2375 	if (!bytes) {
2376 		ret = 1;
2377 		goto out;
2378 	} else
2379 		goto again;
2380 
2381 new_bitmap:
2382 	if (info && info->bitmap) {
2383 		add_new_bitmap(ctl, info, offset);
2384 		added = 1;
2385 		info = NULL;
2386 		goto again;
2387 	} else {
2388 		spin_unlock(&ctl->tree_lock);
2389 
2390 		/* no pre-allocated info, allocate a new one */
2391 		if (!info) {
2392 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2393 						 GFP_NOFS);
2394 			if (!info) {
2395 				spin_lock(&ctl->tree_lock);
2396 				ret = -ENOMEM;
2397 				goto out;
2398 			}
2399 		}
2400 
2401 		/* allocate the bitmap */
2402 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2403 						 GFP_NOFS);
2404 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2405 		spin_lock(&ctl->tree_lock);
2406 		if (!info->bitmap) {
2407 			ret = -ENOMEM;
2408 			goto out;
2409 		}
2410 		goto again;
2411 	}
2412 
2413 out:
2414 	if (info) {
2415 		if (info->bitmap)
2416 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2417 					info->bitmap);
2418 		kmem_cache_free(btrfs_free_space_cachep, info);
2419 	}
2420 
2421 	return ret;
2422 }
2423 
2424 /*
2425  * Free space merging rules:
2426  *  1) Merge trimmed areas together
2427  *  2) Let untrimmed areas coalesce with trimmed areas
2428  *  3) Always pull neighboring regions from bitmaps
2429  *
2430  * The above rules are for when we merge free space based on btrfs_trim_state.
2431  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2432  * same reason: to promote larger extent regions which makes life easier for
2433  * find_free_extent().  Rule 2 enables coalescing based on the common path
2434  * being returning free space from btrfs_finish_extent_commit().  So when free
2435  * space is trimmed, it will prevent aggregating trimmed new region and
2436  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2437  * and provide find_free_extent() with the largest extents possible hoping for
2438  * the reuse path.
2439  */
2440 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2441 			  struct btrfs_free_space *info, bool update_stat)
2442 {
2443 	struct btrfs_free_space *left_info = NULL;
2444 	struct btrfs_free_space *right_info;
2445 	bool merged = false;
2446 	u64 offset = info->offset;
2447 	u64 bytes = info->bytes;
2448 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2449 
2450 	/*
2451 	 * first we want to see if there is free space adjacent to the range we
2452 	 * are adding, if there is remove that struct and add a new one to
2453 	 * cover the entire range
2454 	 */
2455 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2456 	if (right_info && rb_prev(&right_info->offset_index))
2457 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2458 				     struct btrfs_free_space, offset_index);
2459 	else if (!right_info)
2460 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2461 
2462 	/* See try_merge_free_space() comment. */
2463 	if (right_info && !right_info->bitmap &&
2464 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2465 		unlink_free_space(ctl, right_info, update_stat);
2466 		info->bytes += right_info->bytes;
2467 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2468 		merged = true;
2469 	}
2470 
2471 	/* See try_merge_free_space() comment. */
2472 	if (left_info && !left_info->bitmap &&
2473 	    left_info->offset + left_info->bytes == offset &&
2474 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2475 		unlink_free_space(ctl, left_info, update_stat);
2476 		info->offset = left_info->offset;
2477 		info->bytes += left_info->bytes;
2478 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2479 		merged = true;
2480 	}
2481 
2482 	return merged;
2483 }
2484 
2485 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2486 				     struct btrfs_free_space *info,
2487 				     bool update_stat)
2488 {
2489 	struct btrfs_free_space *bitmap;
2490 	unsigned long i;
2491 	unsigned long j;
2492 	const u64 end = info->offset + info->bytes;
2493 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2494 	u64 bytes;
2495 
2496 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2497 	if (!bitmap)
2498 		return false;
2499 
2500 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2501 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2502 	if (j == i)
2503 		return false;
2504 	bytes = (j - i) * ctl->unit;
2505 	info->bytes += bytes;
2506 
2507 	/* See try_merge_free_space() comment. */
2508 	if (!btrfs_free_space_trimmed(bitmap))
2509 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2510 
2511 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2512 
2513 	if (!bitmap->bytes)
2514 		free_bitmap(ctl, bitmap);
2515 
2516 	return true;
2517 }
2518 
2519 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2520 				       struct btrfs_free_space *info,
2521 				       bool update_stat)
2522 {
2523 	struct btrfs_free_space *bitmap;
2524 	u64 bitmap_offset;
2525 	unsigned long i;
2526 	unsigned long j;
2527 	unsigned long prev_j;
2528 	u64 bytes;
2529 
2530 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2531 	/* If we're on a boundary, try the previous logical bitmap. */
2532 	if (bitmap_offset == info->offset) {
2533 		if (info->offset == 0)
2534 			return false;
2535 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2536 	}
2537 
2538 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2539 	if (!bitmap)
2540 		return false;
2541 
2542 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2543 	j = 0;
2544 	prev_j = (unsigned long)-1;
2545 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2546 		if (j > i)
2547 			break;
2548 		prev_j = j;
2549 	}
2550 	if (prev_j == i)
2551 		return false;
2552 
2553 	if (prev_j == (unsigned long)-1)
2554 		bytes = (i + 1) * ctl->unit;
2555 	else
2556 		bytes = (i - prev_j) * ctl->unit;
2557 
2558 	info->offset -= bytes;
2559 	info->bytes += bytes;
2560 
2561 	/* See try_merge_free_space() comment. */
2562 	if (!btrfs_free_space_trimmed(bitmap))
2563 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2564 
2565 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2566 
2567 	if (!bitmap->bytes)
2568 		free_bitmap(ctl, bitmap);
2569 
2570 	return true;
2571 }
2572 
2573 /*
2574  * We prefer always to allocate from extent entries, both for clustered and
2575  * non-clustered allocation requests. So when attempting to add a new extent
2576  * entry, try to see if there's adjacent free space in bitmap entries, and if
2577  * there is, migrate that space from the bitmaps to the extent.
2578  * Like this we get better chances of satisfying space allocation requests
2579  * because we attempt to satisfy them based on a single cache entry, and never
2580  * on 2 or more entries - even if the entries represent a contiguous free space
2581  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2582  * ends).
2583  */
2584 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2585 			      struct btrfs_free_space *info,
2586 			      bool update_stat)
2587 {
2588 	/*
2589 	 * Only work with disconnected entries, as we can change their offset,
2590 	 * and must be extent entries.
2591 	 */
2592 	ASSERT(!info->bitmap);
2593 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2594 
2595 	if (ctl->total_bitmaps > 0) {
2596 		bool stole_end;
2597 		bool stole_front = false;
2598 
2599 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2600 		if (ctl->total_bitmaps > 0)
2601 			stole_front = steal_from_bitmap_to_front(ctl, info,
2602 								 update_stat);
2603 
2604 		if (stole_end || stole_front)
2605 			try_merge_free_space(ctl, info, update_stat);
2606 	}
2607 }
2608 
2609 int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2610 			   u64 offset, u64 bytes,
2611 			   enum btrfs_trim_state trim_state)
2612 {
2613 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2614 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2615 	struct btrfs_free_space *info;
2616 	int ret = 0;
2617 	u64 filter_bytes = bytes;
2618 
2619 	ASSERT(!btrfs_is_zoned(fs_info));
2620 
2621 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2622 	if (!info)
2623 		return -ENOMEM;
2624 
2625 	info->offset = offset;
2626 	info->bytes = bytes;
2627 	info->trim_state = trim_state;
2628 	RB_CLEAR_NODE(&info->offset_index);
2629 	RB_CLEAR_NODE(&info->bytes_index);
2630 
2631 	spin_lock(&ctl->tree_lock);
2632 
2633 	if (try_merge_free_space(ctl, info, true))
2634 		goto link;
2635 
2636 	/*
2637 	 * There was no extent directly to the left or right of this new
2638 	 * extent then we know we're going to have to allocate a new extent, so
2639 	 * before we do that see if we need to drop this into a bitmap
2640 	 */
2641 	ret = insert_into_bitmap(ctl, info);
2642 	if (ret < 0) {
2643 		goto out;
2644 	} else if (ret) {
2645 		ret = 0;
2646 		goto out;
2647 	}
2648 link:
2649 	/*
2650 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2651 	 * going to add the new free space to existing bitmap entries - because
2652 	 * that would mean unnecessary work that would be reverted. Therefore
2653 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2654 	 */
2655 	steal_from_bitmap(ctl, info, true);
2656 
2657 	filter_bytes = max(filter_bytes, info->bytes);
2658 
2659 	ret = link_free_space(ctl, info);
2660 	if (ret)
2661 		kmem_cache_free(btrfs_free_space_cachep, info);
2662 out:
2663 	btrfs_discard_update_discardable(block_group);
2664 	spin_unlock(&ctl->tree_lock);
2665 
2666 	if (ret) {
2667 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2668 		ASSERT(ret != -EEXIST);
2669 	}
2670 
2671 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2672 		btrfs_discard_check_filter(block_group, filter_bytes);
2673 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2674 	}
2675 
2676 	return ret;
2677 }
2678 
2679 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2680 					u64 bytenr, u64 size, bool used)
2681 {
2682 	struct btrfs_space_info *sinfo = block_group->space_info;
2683 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2684 	u64 offset = bytenr - block_group->start;
2685 	u64 to_free, to_unusable;
2686 	int bg_reclaim_threshold = 0;
2687 	bool initial = (size == block_group->length);
2688 	u64 reclaimable_unusable;
2689 
2690 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2691 
2692 	if (!initial)
2693 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2694 
2695 	spin_lock(&ctl->tree_lock);
2696 	if (!used)
2697 		to_free = size;
2698 	else if (initial)
2699 		to_free = block_group->zone_capacity;
2700 	else if (offset >= block_group->alloc_offset)
2701 		to_free = size;
2702 	else if (offset + size <= block_group->alloc_offset)
2703 		to_free = 0;
2704 	else
2705 		to_free = offset + size - block_group->alloc_offset;
2706 	to_unusable = size - to_free;
2707 
2708 	ctl->free_space += to_free;
2709 	/*
2710 	 * If the block group is read-only, we should account freed space into
2711 	 * bytes_readonly.
2712 	 */
2713 	if (!block_group->ro)
2714 		block_group->zone_unusable += to_unusable;
2715 	spin_unlock(&ctl->tree_lock);
2716 	if (!used) {
2717 		spin_lock(&block_group->lock);
2718 		block_group->alloc_offset -= size;
2719 		spin_unlock(&block_group->lock);
2720 	}
2721 
2722 	reclaimable_unusable = block_group->zone_unusable -
2723 			       (block_group->length - block_group->zone_capacity);
2724 	/* All the region is now unusable. Mark it as unused and reclaim */
2725 	if (block_group->zone_unusable == block_group->length) {
2726 		btrfs_mark_bg_unused(block_group);
2727 	} else if (bg_reclaim_threshold &&
2728 		   reclaimable_unusable >=
2729 		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2730 		btrfs_mark_bg_to_reclaim(block_group);
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2737 			 u64 bytenr, u64 size)
2738 {
2739 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2740 
2741 	if (btrfs_is_zoned(block_group->fs_info))
2742 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2743 						    true);
2744 
2745 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2746 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2747 
2748 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2749 }
2750 
2751 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2752 				u64 bytenr, u64 size)
2753 {
2754 	if (btrfs_is_zoned(block_group->fs_info))
2755 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2756 						    false);
2757 
2758 	return btrfs_add_free_space(block_group, bytenr, size);
2759 }
2760 
2761 /*
2762  * This is a subtle distinction because when adding free space back in general,
2763  * we want it to be added as untrimmed for async. But in the case where we add
2764  * it on loading of a block group, we want to consider it trimmed.
2765  */
2766 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2767 				       u64 bytenr, u64 size)
2768 {
2769 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2770 
2771 	if (btrfs_is_zoned(block_group->fs_info))
2772 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2773 						    true);
2774 
2775 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2776 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2777 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2778 
2779 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2780 }
2781 
2782 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2783 			    u64 offset, u64 bytes)
2784 {
2785 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2786 	struct btrfs_free_space *info;
2787 	int ret;
2788 	bool re_search = false;
2789 
2790 	if (btrfs_is_zoned(block_group->fs_info)) {
2791 		/*
2792 		 * This can happen with conventional zones when replaying log.
2793 		 * Since the allocation info of tree-log nodes are not recorded
2794 		 * to the extent-tree, calculate_alloc_pointer() failed to
2795 		 * advance the allocation pointer after last allocated tree log
2796 		 * node blocks.
2797 		 *
2798 		 * This function is called from
2799 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2800 		 * Advance the pointer not to overwrite the tree-log nodes.
2801 		 */
2802 		if (block_group->start + block_group->alloc_offset <
2803 		    offset + bytes) {
2804 			block_group->alloc_offset =
2805 				offset + bytes - block_group->start;
2806 		}
2807 		return 0;
2808 	}
2809 
2810 	spin_lock(&ctl->tree_lock);
2811 
2812 again:
2813 	ret = 0;
2814 	if (!bytes)
2815 		goto out_lock;
2816 
2817 	info = tree_search_offset(ctl, offset, 0, 0);
2818 	if (!info) {
2819 		/*
2820 		 * oops didn't find an extent that matched the space we wanted
2821 		 * to remove, look for a bitmap instead
2822 		 */
2823 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2824 					  1, 0);
2825 		if (!info) {
2826 			/*
2827 			 * If we found a partial bit of our free space in a
2828 			 * bitmap but then couldn't find the other part this may
2829 			 * be a problem, so WARN about it.
2830 			 */
2831 			WARN_ON(re_search);
2832 			goto out_lock;
2833 		}
2834 	}
2835 
2836 	re_search = false;
2837 	if (!info->bitmap) {
2838 		unlink_free_space(ctl, info, true);
2839 		if (offset == info->offset) {
2840 			u64 to_free = min(bytes, info->bytes);
2841 
2842 			info->bytes -= to_free;
2843 			info->offset += to_free;
2844 			if (info->bytes) {
2845 				ret = link_free_space(ctl, info);
2846 				WARN_ON(ret);
2847 			} else {
2848 				kmem_cache_free(btrfs_free_space_cachep, info);
2849 			}
2850 
2851 			offset += to_free;
2852 			bytes -= to_free;
2853 			goto again;
2854 		} else {
2855 			u64 old_end = info->bytes + info->offset;
2856 
2857 			info->bytes = offset - info->offset;
2858 			ret = link_free_space(ctl, info);
2859 			WARN_ON(ret);
2860 			if (ret)
2861 				goto out_lock;
2862 
2863 			/* Not enough bytes in this entry to satisfy us */
2864 			if (old_end < offset + bytes) {
2865 				bytes -= old_end - offset;
2866 				offset = old_end;
2867 				goto again;
2868 			} else if (old_end == offset + bytes) {
2869 				/* all done */
2870 				goto out_lock;
2871 			}
2872 			spin_unlock(&ctl->tree_lock);
2873 
2874 			ret = __btrfs_add_free_space(block_group,
2875 						     offset + bytes,
2876 						     old_end - (offset + bytes),
2877 						     info->trim_state);
2878 			WARN_ON(ret);
2879 			goto out;
2880 		}
2881 	}
2882 
2883 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2884 	if (ret == -EAGAIN) {
2885 		re_search = true;
2886 		goto again;
2887 	}
2888 out_lock:
2889 	btrfs_discard_update_discardable(block_group);
2890 	spin_unlock(&ctl->tree_lock);
2891 out:
2892 	return ret;
2893 }
2894 
2895 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2896 			   u64 bytes)
2897 {
2898 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2899 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2900 	struct btrfs_free_space *info;
2901 	struct rb_node *n;
2902 	int count = 0;
2903 
2904 	/*
2905 	 * Zoned btrfs does not use free space tree and cluster. Just print
2906 	 * out the free space after the allocation offset.
2907 	 */
2908 	if (btrfs_is_zoned(fs_info)) {
2909 		btrfs_info(fs_info, "free space %llu active %d",
2910 			   block_group->zone_capacity - block_group->alloc_offset,
2911 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2912 				    &block_group->runtime_flags));
2913 		return;
2914 	}
2915 
2916 	spin_lock(&ctl->tree_lock);
2917 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2918 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2919 		if (info->bytes >= bytes && !block_group->ro)
2920 			count++;
2921 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2922 			   info->offset, info->bytes,
2923 		       (info->bitmap) ? "yes" : "no");
2924 	}
2925 	spin_unlock(&ctl->tree_lock);
2926 	btrfs_info(fs_info, "block group has cluster?: %s",
2927 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2928 	btrfs_info(fs_info,
2929 		   "%d blocks of free space at or bigger than bytes is", count);
2930 }
2931 
2932 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2933 			       struct btrfs_free_space_ctl *ctl)
2934 {
2935 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2936 
2937 	spin_lock_init(&ctl->tree_lock);
2938 	ctl->unit = fs_info->sectorsize;
2939 	ctl->start = block_group->start;
2940 	ctl->block_group = block_group;
2941 	ctl->op = &free_space_op;
2942 	ctl->free_space_bytes = RB_ROOT_CACHED;
2943 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2944 	mutex_init(&ctl->cache_writeout_mutex);
2945 
2946 	/*
2947 	 * we only want to have 32k of ram per block group for keeping
2948 	 * track of free space, and if we pass 1/2 of that we want to
2949 	 * start converting things over to using bitmaps
2950 	 */
2951 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2952 }
2953 
2954 /*
2955  * for a given cluster, put all of its extents back into the free
2956  * space cache.  If the block group passed doesn't match the block group
2957  * pointed to by the cluster, someone else raced in and freed the
2958  * cluster already.  In that case, we just return without changing anything
2959  */
2960 static void __btrfs_return_cluster_to_free_space(
2961 			     struct btrfs_block_group *block_group,
2962 			     struct btrfs_free_cluster *cluster)
2963 {
2964 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2965 	struct btrfs_free_space *entry;
2966 	struct rb_node *node;
2967 
2968 	spin_lock(&cluster->lock);
2969 	if (cluster->block_group != block_group) {
2970 		spin_unlock(&cluster->lock);
2971 		return;
2972 	}
2973 
2974 	cluster->block_group = NULL;
2975 	cluster->window_start = 0;
2976 	list_del_init(&cluster->block_group_list);
2977 
2978 	node = rb_first(&cluster->root);
2979 	while (node) {
2980 		bool bitmap;
2981 
2982 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2983 		node = rb_next(&entry->offset_index);
2984 		rb_erase(&entry->offset_index, &cluster->root);
2985 		RB_CLEAR_NODE(&entry->offset_index);
2986 
2987 		bitmap = (entry->bitmap != NULL);
2988 		if (!bitmap) {
2989 			/* Merging treats extents as if they were new */
2990 			if (!btrfs_free_space_trimmed(entry)) {
2991 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2992 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2993 					entry->bytes;
2994 			}
2995 
2996 			try_merge_free_space(ctl, entry, false);
2997 			steal_from_bitmap(ctl, entry, false);
2998 
2999 			/* As we insert directly, update these statistics */
3000 			if (!btrfs_free_space_trimmed(entry)) {
3001 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3002 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3003 					entry->bytes;
3004 			}
3005 		}
3006 		tree_insert_offset(&ctl->free_space_offset,
3007 				   entry->offset, &entry->offset_index, bitmap);
3008 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3009 			      entry_less);
3010 	}
3011 	cluster->root = RB_ROOT;
3012 	spin_unlock(&cluster->lock);
3013 	btrfs_put_block_group(block_group);
3014 }
3015 
3016 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3017 {
3018 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3019 	struct btrfs_free_cluster *cluster;
3020 	struct list_head *head;
3021 
3022 	spin_lock(&ctl->tree_lock);
3023 	while ((head = block_group->cluster_list.next) !=
3024 	       &block_group->cluster_list) {
3025 		cluster = list_entry(head, struct btrfs_free_cluster,
3026 				     block_group_list);
3027 
3028 		WARN_ON(cluster->block_group != block_group);
3029 		__btrfs_return_cluster_to_free_space(block_group, cluster);
3030 
3031 		cond_resched_lock(&ctl->tree_lock);
3032 	}
3033 	__btrfs_remove_free_space_cache(ctl);
3034 	btrfs_discard_update_discardable(block_group);
3035 	spin_unlock(&ctl->tree_lock);
3036 
3037 }
3038 
3039 /*
3040  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3041  */
3042 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3043 {
3044 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3045 	struct btrfs_free_space *info;
3046 	struct rb_node *node;
3047 	bool ret = true;
3048 
3049 	spin_lock(&ctl->tree_lock);
3050 	node = rb_first(&ctl->free_space_offset);
3051 
3052 	while (node) {
3053 		info = rb_entry(node, struct btrfs_free_space, offset_index);
3054 
3055 		if (!btrfs_free_space_trimmed(info)) {
3056 			ret = false;
3057 			break;
3058 		}
3059 
3060 		node = rb_next(node);
3061 	}
3062 
3063 	spin_unlock(&ctl->tree_lock);
3064 	return ret;
3065 }
3066 
3067 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3068 			       u64 offset, u64 bytes, u64 empty_size,
3069 			       u64 *max_extent_size)
3070 {
3071 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3072 	struct btrfs_discard_ctl *discard_ctl =
3073 					&block_group->fs_info->discard_ctl;
3074 	struct btrfs_free_space *entry = NULL;
3075 	u64 bytes_search = bytes + empty_size;
3076 	u64 ret = 0;
3077 	u64 align_gap = 0;
3078 	u64 align_gap_len = 0;
3079 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3080 	bool use_bytes_index = (offset == block_group->start);
3081 
3082 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3083 
3084 	spin_lock(&ctl->tree_lock);
3085 	entry = find_free_space(ctl, &offset, &bytes_search,
3086 				block_group->full_stripe_len, max_extent_size,
3087 				use_bytes_index);
3088 	if (!entry)
3089 		goto out;
3090 
3091 	ret = offset;
3092 	if (entry->bitmap) {
3093 		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3094 
3095 		if (!btrfs_free_space_trimmed(entry))
3096 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3097 
3098 		if (!entry->bytes)
3099 			free_bitmap(ctl, entry);
3100 	} else {
3101 		unlink_free_space(ctl, entry, true);
3102 		align_gap_len = offset - entry->offset;
3103 		align_gap = entry->offset;
3104 		align_gap_trim_state = entry->trim_state;
3105 
3106 		if (!btrfs_free_space_trimmed(entry))
3107 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3108 
3109 		entry->offset = offset + bytes;
3110 		WARN_ON(entry->bytes < bytes + align_gap_len);
3111 
3112 		entry->bytes -= bytes + align_gap_len;
3113 		if (!entry->bytes)
3114 			kmem_cache_free(btrfs_free_space_cachep, entry);
3115 		else
3116 			link_free_space(ctl, entry);
3117 	}
3118 out:
3119 	btrfs_discard_update_discardable(block_group);
3120 	spin_unlock(&ctl->tree_lock);
3121 
3122 	if (align_gap_len)
3123 		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3124 				       align_gap_trim_state);
3125 	return ret;
3126 }
3127 
3128 /*
3129  * given a cluster, put all of its extents back into the free space
3130  * cache.  If a block group is passed, this function will only free
3131  * a cluster that belongs to the passed block group.
3132  *
3133  * Otherwise, it'll get a reference on the block group pointed to by the
3134  * cluster and remove the cluster from it.
3135  */
3136 void btrfs_return_cluster_to_free_space(
3137 			       struct btrfs_block_group *block_group,
3138 			       struct btrfs_free_cluster *cluster)
3139 {
3140 	struct btrfs_free_space_ctl *ctl;
3141 
3142 	/* first, get a safe pointer to the block group */
3143 	spin_lock(&cluster->lock);
3144 	if (!block_group) {
3145 		block_group = cluster->block_group;
3146 		if (!block_group) {
3147 			spin_unlock(&cluster->lock);
3148 			return;
3149 		}
3150 	} else if (cluster->block_group != block_group) {
3151 		/* someone else has already freed it don't redo their work */
3152 		spin_unlock(&cluster->lock);
3153 		return;
3154 	}
3155 	btrfs_get_block_group(block_group);
3156 	spin_unlock(&cluster->lock);
3157 
3158 	ctl = block_group->free_space_ctl;
3159 
3160 	/* now return any extents the cluster had on it */
3161 	spin_lock(&ctl->tree_lock);
3162 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3163 	spin_unlock(&ctl->tree_lock);
3164 
3165 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3166 
3167 	/* finally drop our ref */
3168 	btrfs_put_block_group(block_group);
3169 }
3170 
3171 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3172 				   struct btrfs_free_cluster *cluster,
3173 				   struct btrfs_free_space *entry,
3174 				   u64 bytes, u64 min_start,
3175 				   u64 *max_extent_size)
3176 {
3177 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3178 	int err;
3179 	u64 search_start = cluster->window_start;
3180 	u64 search_bytes = bytes;
3181 	u64 ret = 0;
3182 
3183 	search_start = min_start;
3184 	search_bytes = bytes;
3185 
3186 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3187 	if (err) {
3188 		*max_extent_size = max(get_max_extent_size(entry),
3189 				       *max_extent_size);
3190 		return 0;
3191 	}
3192 
3193 	ret = search_start;
3194 	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3195 
3196 	return ret;
3197 }
3198 
3199 /*
3200  * given a cluster, try to allocate 'bytes' from it, returns 0
3201  * if it couldn't find anything suitably large, or a logical disk offset
3202  * if things worked out
3203  */
3204 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3205 			     struct btrfs_free_cluster *cluster, u64 bytes,
3206 			     u64 min_start, u64 *max_extent_size)
3207 {
3208 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3209 	struct btrfs_discard_ctl *discard_ctl =
3210 					&block_group->fs_info->discard_ctl;
3211 	struct btrfs_free_space *entry = NULL;
3212 	struct rb_node *node;
3213 	u64 ret = 0;
3214 
3215 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3216 
3217 	spin_lock(&cluster->lock);
3218 	if (bytes > cluster->max_size)
3219 		goto out;
3220 
3221 	if (cluster->block_group != block_group)
3222 		goto out;
3223 
3224 	node = rb_first(&cluster->root);
3225 	if (!node)
3226 		goto out;
3227 
3228 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3229 	while (1) {
3230 		if (entry->bytes < bytes)
3231 			*max_extent_size = max(get_max_extent_size(entry),
3232 					       *max_extent_size);
3233 
3234 		if (entry->bytes < bytes ||
3235 		    (!entry->bitmap && entry->offset < min_start)) {
3236 			node = rb_next(&entry->offset_index);
3237 			if (!node)
3238 				break;
3239 			entry = rb_entry(node, struct btrfs_free_space,
3240 					 offset_index);
3241 			continue;
3242 		}
3243 
3244 		if (entry->bitmap) {
3245 			ret = btrfs_alloc_from_bitmap(block_group,
3246 						      cluster, entry, bytes,
3247 						      cluster->window_start,
3248 						      max_extent_size);
3249 			if (ret == 0) {
3250 				node = rb_next(&entry->offset_index);
3251 				if (!node)
3252 					break;
3253 				entry = rb_entry(node, struct btrfs_free_space,
3254 						 offset_index);
3255 				continue;
3256 			}
3257 			cluster->window_start += bytes;
3258 		} else {
3259 			ret = entry->offset;
3260 
3261 			entry->offset += bytes;
3262 			entry->bytes -= bytes;
3263 		}
3264 
3265 		break;
3266 	}
3267 out:
3268 	spin_unlock(&cluster->lock);
3269 
3270 	if (!ret)
3271 		return 0;
3272 
3273 	spin_lock(&ctl->tree_lock);
3274 
3275 	if (!btrfs_free_space_trimmed(entry))
3276 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3277 
3278 	ctl->free_space -= bytes;
3279 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3280 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3281 
3282 	spin_lock(&cluster->lock);
3283 	if (entry->bytes == 0) {
3284 		rb_erase(&entry->offset_index, &cluster->root);
3285 		ctl->free_extents--;
3286 		if (entry->bitmap) {
3287 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3288 					entry->bitmap);
3289 			ctl->total_bitmaps--;
3290 			recalculate_thresholds(ctl);
3291 		} else if (!btrfs_free_space_trimmed(entry)) {
3292 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3293 		}
3294 		kmem_cache_free(btrfs_free_space_cachep, entry);
3295 	}
3296 
3297 	spin_unlock(&cluster->lock);
3298 	spin_unlock(&ctl->tree_lock);
3299 
3300 	return ret;
3301 }
3302 
3303 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3304 				struct btrfs_free_space *entry,
3305 				struct btrfs_free_cluster *cluster,
3306 				u64 offset, u64 bytes,
3307 				u64 cont1_bytes, u64 min_bytes)
3308 {
3309 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3310 	unsigned long next_zero;
3311 	unsigned long i;
3312 	unsigned long want_bits;
3313 	unsigned long min_bits;
3314 	unsigned long found_bits;
3315 	unsigned long max_bits = 0;
3316 	unsigned long start = 0;
3317 	unsigned long total_found = 0;
3318 	int ret;
3319 
3320 	i = offset_to_bit(entry->offset, ctl->unit,
3321 			  max_t(u64, offset, entry->offset));
3322 	want_bits = bytes_to_bits(bytes, ctl->unit);
3323 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3324 
3325 	/*
3326 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3327 	 * fragmented.
3328 	 */
3329 	if (entry->max_extent_size &&
3330 	    entry->max_extent_size < cont1_bytes)
3331 		return -ENOSPC;
3332 again:
3333 	found_bits = 0;
3334 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3335 		next_zero = find_next_zero_bit(entry->bitmap,
3336 					       BITS_PER_BITMAP, i);
3337 		if (next_zero - i >= min_bits) {
3338 			found_bits = next_zero - i;
3339 			if (found_bits > max_bits)
3340 				max_bits = found_bits;
3341 			break;
3342 		}
3343 		if (next_zero - i > max_bits)
3344 			max_bits = next_zero - i;
3345 		i = next_zero;
3346 	}
3347 
3348 	if (!found_bits) {
3349 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3350 		return -ENOSPC;
3351 	}
3352 
3353 	if (!total_found) {
3354 		start = i;
3355 		cluster->max_size = 0;
3356 	}
3357 
3358 	total_found += found_bits;
3359 
3360 	if (cluster->max_size < found_bits * ctl->unit)
3361 		cluster->max_size = found_bits * ctl->unit;
3362 
3363 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3364 		i = next_zero + 1;
3365 		goto again;
3366 	}
3367 
3368 	cluster->window_start = start * ctl->unit + entry->offset;
3369 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3370 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3371 
3372 	/*
3373 	 * We need to know if we're currently on the normal space index when we
3374 	 * manipulate the bitmap so that we know we need to remove and re-insert
3375 	 * it into the space_index tree.  Clear the bytes_index node here so the
3376 	 * bitmap manipulation helpers know not to mess with the space_index
3377 	 * until this bitmap entry is added back into the normal cache.
3378 	 */
3379 	RB_CLEAR_NODE(&entry->bytes_index);
3380 
3381 	ret = tree_insert_offset(&cluster->root, entry->offset,
3382 				 &entry->offset_index, 1);
3383 	ASSERT(!ret); /* -EEXIST; Logic error */
3384 
3385 	trace_btrfs_setup_cluster(block_group, cluster,
3386 				  total_found * ctl->unit, 1);
3387 	return 0;
3388 }
3389 
3390 /*
3391  * This searches the block group for just extents to fill the cluster with.
3392  * Try to find a cluster with at least bytes total bytes, at least one
3393  * extent of cont1_bytes, and other clusters of at least min_bytes.
3394  */
3395 static noinline int
3396 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3397 			struct btrfs_free_cluster *cluster,
3398 			struct list_head *bitmaps, u64 offset, u64 bytes,
3399 			u64 cont1_bytes, u64 min_bytes)
3400 {
3401 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3402 	struct btrfs_free_space *first = NULL;
3403 	struct btrfs_free_space *entry = NULL;
3404 	struct btrfs_free_space *last;
3405 	struct rb_node *node;
3406 	u64 window_free;
3407 	u64 max_extent;
3408 	u64 total_size = 0;
3409 
3410 	entry = tree_search_offset(ctl, offset, 0, 1);
3411 	if (!entry)
3412 		return -ENOSPC;
3413 
3414 	/*
3415 	 * We don't want bitmaps, so just move along until we find a normal
3416 	 * extent entry.
3417 	 */
3418 	while (entry->bitmap || entry->bytes < min_bytes) {
3419 		if (entry->bitmap && list_empty(&entry->list))
3420 			list_add_tail(&entry->list, bitmaps);
3421 		node = rb_next(&entry->offset_index);
3422 		if (!node)
3423 			return -ENOSPC;
3424 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3425 	}
3426 
3427 	window_free = entry->bytes;
3428 	max_extent = entry->bytes;
3429 	first = entry;
3430 	last = entry;
3431 
3432 	for (node = rb_next(&entry->offset_index); node;
3433 	     node = rb_next(&entry->offset_index)) {
3434 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3435 
3436 		if (entry->bitmap) {
3437 			if (list_empty(&entry->list))
3438 				list_add_tail(&entry->list, bitmaps);
3439 			continue;
3440 		}
3441 
3442 		if (entry->bytes < min_bytes)
3443 			continue;
3444 
3445 		last = entry;
3446 		window_free += entry->bytes;
3447 		if (entry->bytes > max_extent)
3448 			max_extent = entry->bytes;
3449 	}
3450 
3451 	if (window_free < bytes || max_extent < cont1_bytes)
3452 		return -ENOSPC;
3453 
3454 	cluster->window_start = first->offset;
3455 
3456 	node = &first->offset_index;
3457 
3458 	/*
3459 	 * now we've found our entries, pull them out of the free space
3460 	 * cache and put them into the cluster rbtree
3461 	 */
3462 	do {
3463 		int ret;
3464 
3465 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3466 		node = rb_next(&entry->offset_index);
3467 		if (entry->bitmap || entry->bytes < min_bytes)
3468 			continue;
3469 
3470 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3471 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3472 		ret = tree_insert_offset(&cluster->root, entry->offset,
3473 					 &entry->offset_index, 0);
3474 		total_size += entry->bytes;
3475 		ASSERT(!ret); /* -EEXIST; Logic error */
3476 	} while (node && entry != last);
3477 
3478 	cluster->max_size = max_extent;
3479 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3480 	return 0;
3481 }
3482 
3483 /*
3484  * This specifically looks for bitmaps that may work in the cluster, we assume
3485  * that we have already failed to find extents that will work.
3486  */
3487 static noinline int
3488 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3489 		     struct btrfs_free_cluster *cluster,
3490 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3491 		     u64 cont1_bytes, u64 min_bytes)
3492 {
3493 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3494 	struct btrfs_free_space *entry = NULL;
3495 	int ret = -ENOSPC;
3496 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3497 
3498 	if (ctl->total_bitmaps == 0)
3499 		return -ENOSPC;
3500 
3501 	/*
3502 	 * The bitmap that covers offset won't be in the list unless offset
3503 	 * is just its start offset.
3504 	 */
3505 	if (!list_empty(bitmaps))
3506 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3507 
3508 	if (!entry || entry->offset != bitmap_offset) {
3509 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3510 		if (entry && list_empty(&entry->list))
3511 			list_add(&entry->list, bitmaps);
3512 	}
3513 
3514 	list_for_each_entry(entry, bitmaps, list) {
3515 		if (entry->bytes < bytes)
3516 			continue;
3517 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3518 					   bytes, cont1_bytes, min_bytes);
3519 		if (!ret)
3520 			return 0;
3521 	}
3522 
3523 	/*
3524 	 * The bitmaps list has all the bitmaps that record free space
3525 	 * starting after offset, so no more search is required.
3526 	 */
3527 	return -ENOSPC;
3528 }
3529 
3530 /*
3531  * here we try to find a cluster of blocks in a block group.  The goal
3532  * is to find at least bytes+empty_size.
3533  * We might not find them all in one contiguous area.
3534  *
3535  * returns zero and sets up cluster if things worked out, otherwise
3536  * it returns -enospc
3537  */
3538 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3539 			     struct btrfs_free_cluster *cluster,
3540 			     u64 offset, u64 bytes, u64 empty_size)
3541 {
3542 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3543 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3544 	struct btrfs_free_space *entry, *tmp;
3545 	LIST_HEAD(bitmaps);
3546 	u64 min_bytes;
3547 	u64 cont1_bytes;
3548 	int ret;
3549 
3550 	/*
3551 	 * Choose the minimum extent size we'll require for this
3552 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3553 	 * For metadata, allow allocates with smaller extents.  For
3554 	 * data, keep it dense.
3555 	 */
3556 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3557 		cont1_bytes = bytes + empty_size;
3558 		min_bytes = cont1_bytes;
3559 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3560 		cont1_bytes = bytes;
3561 		min_bytes = fs_info->sectorsize;
3562 	} else {
3563 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3564 		min_bytes = fs_info->sectorsize;
3565 	}
3566 
3567 	spin_lock(&ctl->tree_lock);
3568 
3569 	/*
3570 	 * If we know we don't have enough space to make a cluster don't even
3571 	 * bother doing all the work to try and find one.
3572 	 */
3573 	if (ctl->free_space < bytes) {
3574 		spin_unlock(&ctl->tree_lock);
3575 		return -ENOSPC;
3576 	}
3577 
3578 	spin_lock(&cluster->lock);
3579 
3580 	/* someone already found a cluster, hooray */
3581 	if (cluster->block_group) {
3582 		ret = 0;
3583 		goto out;
3584 	}
3585 
3586 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3587 				 min_bytes);
3588 
3589 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3590 				      bytes + empty_size,
3591 				      cont1_bytes, min_bytes);
3592 	if (ret)
3593 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3594 					   offset, bytes + empty_size,
3595 					   cont1_bytes, min_bytes);
3596 
3597 	/* Clear our temporary list */
3598 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3599 		list_del_init(&entry->list);
3600 
3601 	if (!ret) {
3602 		btrfs_get_block_group(block_group);
3603 		list_add_tail(&cluster->block_group_list,
3604 			      &block_group->cluster_list);
3605 		cluster->block_group = block_group;
3606 	} else {
3607 		trace_btrfs_failed_cluster_setup(block_group);
3608 	}
3609 out:
3610 	spin_unlock(&cluster->lock);
3611 	spin_unlock(&ctl->tree_lock);
3612 
3613 	return ret;
3614 }
3615 
3616 /*
3617  * simple code to zero out a cluster
3618  */
3619 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3620 {
3621 	spin_lock_init(&cluster->lock);
3622 	spin_lock_init(&cluster->refill_lock);
3623 	cluster->root = RB_ROOT;
3624 	cluster->max_size = 0;
3625 	cluster->fragmented = false;
3626 	INIT_LIST_HEAD(&cluster->block_group_list);
3627 	cluster->block_group = NULL;
3628 }
3629 
3630 static int do_trimming(struct btrfs_block_group *block_group,
3631 		       u64 *total_trimmed, u64 start, u64 bytes,
3632 		       u64 reserved_start, u64 reserved_bytes,
3633 		       enum btrfs_trim_state reserved_trim_state,
3634 		       struct btrfs_trim_range *trim_entry)
3635 {
3636 	struct btrfs_space_info *space_info = block_group->space_info;
3637 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3638 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3639 	int ret;
3640 	int update = 0;
3641 	const u64 end = start + bytes;
3642 	const u64 reserved_end = reserved_start + reserved_bytes;
3643 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3644 	u64 trimmed = 0;
3645 
3646 	spin_lock(&space_info->lock);
3647 	spin_lock(&block_group->lock);
3648 	if (!block_group->ro) {
3649 		block_group->reserved += reserved_bytes;
3650 		space_info->bytes_reserved += reserved_bytes;
3651 		update = 1;
3652 	}
3653 	spin_unlock(&block_group->lock);
3654 	spin_unlock(&space_info->lock);
3655 
3656 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3657 	if (!ret) {
3658 		*total_trimmed += trimmed;
3659 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3660 	}
3661 
3662 	mutex_lock(&ctl->cache_writeout_mutex);
3663 	if (reserved_start < start)
3664 		__btrfs_add_free_space(block_group, reserved_start,
3665 				       start - reserved_start,
3666 				       reserved_trim_state);
3667 	if (start + bytes < reserved_start + reserved_bytes)
3668 		__btrfs_add_free_space(block_group, end, reserved_end - end,
3669 				       reserved_trim_state);
3670 	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3671 	list_del(&trim_entry->list);
3672 	mutex_unlock(&ctl->cache_writeout_mutex);
3673 
3674 	if (update) {
3675 		spin_lock(&space_info->lock);
3676 		spin_lock(&block_group->lock);
3677 		if (block_group->ro)
3678 			space_info->bytes_readonly += reserved_bytes;
3679 		block_group->reserved -= reserved_bytes;
3680 		space_info->bytes_reserved -= reserved_bytes;
3681 		spin_unlock(&block_group->lock);
3682 		spin_unlock(&space_info->lock);
3683 	}
3684 
3685 	return ret;
3686 }
3687 
3688 /*
3689  * If @async is set, then we will trim 1 region and return.
3690  */
3691 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3692 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3693 			  bool async)
3694 {
3695 	struct btrfs_discard_ctl *discard_ctl =
3696 					&block_group->fs_info->discard_ctl;
3697 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3698 	struct btrfs_free_space *entry;
3699 	struct rb_node *node;
3700 	int ret = 0;
3701 	u64 extent_start;
3702 	u64 extent_bytes;
3703 	enum btrfs_trim_state extent_trim_state;
3704 	u64 bytes;
3705 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3706 
3707 	while (start < end) {
3708 		struct btrfs_trim_range trim_entry;
3709 
3710 		mutex_lock(&ctl->cache_writeout_mutex);
3711 		spin_lock(&ctl->tree_lock);
3712 
3713 		if (ctl->free_space < minlen)
3714 			goto out_unlock;
3715 
3716 		entry = tree_search_offset(ctl, start, 0, 1);
3717 		if (!entry)
3718 			goto out_unlock;
3719 
3720 		/* Skip bitmaps and if async, already trimmed entries */
3721 		while (entry->bitmap ||
3722 		       (async && btrfs_free_space_trimmed(entry))) {
3723 			node = rb_next(&entry->offset_index);
3724 			if (!node)
3725 				goto out_unlock;
3726 			entry = rb_entry(node, struct btrfs_free_space,
3727 					 offset_index);
3728 		}
3729 
3730 		if (entry->offset >= end)
3731 			goto out_unlock;
3732 
3733 		extent_start = entry->offset;
3734 		extent_bytes = entry->bytes;
3735 		extent_trim_state = entry->trim_state;
3736 		if (async) {
3737 			start = entry->offset;
3738 			bytes = entry->bytes;
3739 			if (bytes < minlen) {
3740 				spin_unlock(&ctl->tree_lock);
3741 				mutex_unlock(&ctl->cache_writeout_mutex);
3742 				goto next;
3743 			}
3744 			unlink_free_space(ctl, entry, true);
3745 			/*
3746 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3747 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3748 			 * X when we come back around.  So trim it now.
3749 			 */
3750 			if (max_discard_size &&
3751 			    bytes >= (max_discard_size +
3752 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3753 				bytes = max_discard_size;
3754 				extent_bytes = max_discard_size;
3755 				entry->offset += max_discard_size;
3756 				entry->bytes -= max_discard_size;
3757 				link_free_space(ctl, entry);
3758 			} else {
3759 				kmem_cache_free(btrfs_free_space_cachep, entry);
3760 			}
3761 		} else {
3762 			start = max(start, extent_start);
3763 			bytes = min(extent_start + extent_bytes, end) - start;
3764 			if (bytes < minlen) {
3765 				spin_unlock(&ctl->tree_lock);
3766 				mutex_unlock(&ctl->cache_writeout_mutex);
3767 				goto next;
3768 			}
3769 
3770 			unlink_free_space(ctl, entry, true);
3771 			kmem_cache_free(btrfs_free_space_cachep, entry);
3772 		}
3773 
3774 		spin_unlock(&ctl->tree_lock);
3775 		trim_entry.start = extent_start;
3776 		trim_entry.bytes = extent_bytes;
3777 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3778 		mutex_unlock(&ctl->cache_writeout_mutex);
3779 
3780 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3781 				  extent_start, extent_bytes, extent_trim_state,
3782 				  &trim_entry);
3783 		if (ret) {
3784 			block_group->discard_cursor = start + bytes;
3785 			break;
3786 		}
3787 next:
3788 		start += bytes;
3789 		block_group->discard_cursor = start;
3790 		if (async && *total_trimmed)
3791 			break;
3792 
3793 		if (fatal_signal_pending(current)) {
3794 			ret = -ERESTARTSYS;
3795 			break;
3796 		}
3797 
3798 		cond_resched();
3799 	}
3800 
3801 	return ret;
3802 
3803 out_unlock:
3804 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3805 	spin_unlock(&ctl->tree_lock);
3806 	mutex_unlock(&ctl->cache_writeout_mutex);
3807 
3808 	return ret;
3809 }
3810 
3811 /*
3812  * If we break out of trimming a bitmap prematurely, we should reset the
3813  * trimming bit.  In a rather contrieved case, it's possible to race here so
3814  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3815  *
3816  * start = start of bitmap
3817  * end = near end of bitmap
3818  *
3819  * Thread 1:			Thread 2:
3820  * trim_bitmaps(start)
3821  *				trim_bitmaps(end)
3822  *				end_trimming_bitmap()
3823  * reset_trimming_bitmap()
3824  */
3825 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3826 {
3827 	struct btrfs_free_space *entry;
3828 
3829 	spin_lock(&ctl->tree_lock);
3830 	entry = tree_search_offset(ctl, offset, 1, 0);
3831 	if (entry) {
3832 		if (btrfs_free_space_trimmed(entry)) {
3833 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3834 				entry->bitmap_extents;
3835 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3836 		}
3837 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3838 	}
3839 
3840 	spin_unlock(&ctl->tree_lock);
3841 }
3842 
3843 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3844 				struct btrfs_free_space *entry)
3845 {
3846 	if (btrfs_free_space_trimming_bitmap(entry)) {
3847 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3848 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3849 			entry->bitmap_extents;
3850 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3851 	}
3852 }
3853 
3854 /*
3855  * If @async is set, then we will trim 1 region and return.
3856  */
3857 static int trim_bitmaps(struct btrfs_block_group *block_group,
3858 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3859 			u64 maxlen, bool async)
3860 {
3861 	struct btrfs_discard_ctl *discard_ctl =
3862 					&block_group->fs_info->discard_ctl;
3863 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3864 	struct btrfs_free_space *entry;
3865 	int ret = 0;
3866 	int ret2;
3867 	u64 bytes;
3868 	u64 offset = offset_to_bitmap(ctl, start);
3869 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3870 
3871 	while (offset < end) {
3872 		bool next_bitmap = false;
3873 		struct btrfs_trim_range trim_entry;
3874 
3875 		mutex_lock(&ctl->cache_writeout_mutex);
3876 		spin_lock(&ctl->tree_lock);
3877 
3878 		if (ctl->free_space < minlen) {
3879 			block_group->discard_cursor =
3880 				btrfs_block_group_end(block_group);
3881 			spin_unlock(&ctl->tree_lock);
3882 			mutex_unlock(&ctl->cache_writeout_mutex);
3883 			break;
3884 		}
3885 
3886 		entry = tree_search_offset(ctl, offset, 1, 0);
3887 		/*
3888 		 * Bitmaps are marked trimmed lossily now to prevent constant
3889 		 * discarding of the same bitmap (the reason why we are bound
3890 		 * by the filters).  So, retrim the block group bitmaps when we
3891 		 * are preparing to punt to the unused_bgs list.  This uses
3892 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3893 		 * which is the only discard index which sets minlen to 0.
3894 		 */
3895 		if (!entry || (async && minlen && start == offset &&
3896 			       btrfs_free_space_trimmed(entry))) {
3897 			spin_unlock(&ctl->tree_lock);
3898 			mutex_unlock(&ctl->cache_writeout_mutex);
3899 			next_bitmap = true;
3900 			goto next;
3901 		}
3902 
3903 		/*
3904 		 * Async discard bitmap trimming begins at by setting the start
3905 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3906 		 * start of the bitmap.  This lets us know we are fully
3907 		 * scanning the bitmap rather than only some portion of it.
3908 		 */
3909 		if (start == offset)
3910 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3911 
3912 		bytes = minlen;
3913 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3914 		if (ret2 || start >= end) {
3915 			/*
3916 			 * We lossily consider a bitmap trimmed if we only skip
3917 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3918 			 */
3919 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3920 				end_trimming_bitmap(ctl, entry);
3921 			else
3922 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3923 			spin_unlock(&ctl->tree_lock);
3924 			mutex_unlock(&ctl->cache_writeout_mutex);
3925 			next_bitmap = true;
3926 			goto next;
3927 		}
3928 
3929 		/*
3930 		 * We already trimmed a region, but are using the locking above
3931 		 * to reset the trim_state.
3932 		 */
3933 		if (async && *total_trimmed) {
3934 			spin_unlock(&ctl->tree_lock);
3935 			mutex_unlock(&ctl->cache_writeout_mutex);
3936 			goto out;
3937 		}
3938 
3939 		bytes = min(bytes, end - start);
3940 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3941 			spin_unlock(&ctl->tree_lock);
3942 			mutex_unlock(&ctl->cache_writeout_mutex);
3943 			goto next;
3944 		}
3945 
3946 		/*
3947 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3948 		 * If X < @minlen, we won't trim X when we come back around.
3949 		 * So trim it now.  We differ here from trimming extents as we
3950 		 * don't keep individual state per bit.
3951 		 */
3952 		if (async &&
3953 		    max_discard_size &&
3954 		    bytes > (max_discard_size + minlen))
3955 			bytes = max_discard_size;
3956 
3957 		bitmap_clear_bits(ctl, entry, start, bytes, true);
3958 		if (entry->bytes == 0)
3959 			free_bitmap(ctl, entry);
3960 
3961 		spin_unlock(&ctl->tree_lock);
3962 		trim_entry.start = start;
3963 		trim_entry.bytes = bytes;
3964 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3965 		mutex_unlock(&ctl->cache_writeout_mutex);
3966 
3967 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3968 				  start, bytes, 0, &trim_entry);
3969 		if (ret) {
3970 			reset_trimming_bitmap(ctl, offset);
3971 			block_group->discard_cursor =
3972 				btrfs_block_group_end(block_group);
3973 			break;
3974 		}
3975 next:
3976 		if (next_bitmap) {
3977 			offset += BITS_PER_BITMAP * ctl->unit;
3978 			start = offset;
3979 		} else {
3980 			start += bytes;
3981 		}
3982 		block_group->discard_cursor = start;
3983 
3984 		if (fatal_signal_pending(current)) {
3985 			if (start != offset)
3986 				reset_trimming_bitmap(ctl, offset);
3987 			ret = -ERESTARTSYS;
3988 			break;
3989 		}
3990 
3991 		cond_resched();
3992 	}
3993 
3994 	if (offset >= end)
3995 		block_group->discard_cursor = end;
3996 
3997 out:
3998 	return ret;
3999 }
4000 
4001 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4002 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4003 {
4004 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4005 	int ret;
4006 	u64 rem = 0;
4007 
4008 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4009 
4010 	*trimmed = 0;
4011 
4012 	spin_lock(&block_group->lock);
4013 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4014 		spin_unlock(&block_group->lock);
4015 		return 0;
4016 	}
4017 	btrfs_freeze_block_group(block_group);
4018 	spin_unlock(&block_group->lock);
4019 
4020 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4021 	if (ret)
4022 		goto out;
4023 
4024 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4025 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4026 	/* If we ended in the middle of a bitmap, reset the trimming flag */
4027 	if (rem)
4028 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4029 out:
4030 	btrfs_unfreeze_block_group(block_group);
4031 	return ret;
4032 }
4033 
4034 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4035 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4036 				   bool async)
4037 {
4038 	int ret;
4039 
4040 	*trimmed = 0;
4041 
4042 	spin_lock(&block_group->lock);
4043 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4044 		spin_unlock(&block_group->lock);
4045 		return 0;
4046 	}
4047 	btrfs_freeze_block_group(block_group);
4048 	spin_unlock(&block_group->lock);
4049 
4050 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4051 	btrfs_unfreeze_block_group(block_group);
4052 
4053 	return ret;
4054 }
4055 
4056 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4057 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4058 				   u64 maxlen, bool async)
4059 {
4060 	int ret;
4061 
4062 	*trimmed = 0;
4063 
4064 	spin_lock(&block_group->lock);
4065 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4066 		spin_unlock(&block_group->lock);
4067 		return 0;
4068 	}
4069 	btrfs_freeze_block_group(block_group);
4070 	spin_unlock(&block_group->lock);
4071 
4072 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4073 			   async);
4074 
4075 	btrfs_unfreeze_block_group(block_group);
4076 
4077 	return ret;
4078 }
4079 
4080 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4081 {
4082 	return btrfs_super_cache_generation(fs_info->super_copy);
4083 }
4084 
4085 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4086 				       struct btrfs_trans_handle *trans)
4087 {
4088 	struct btrfs_block_group *block_group;
4089 	struct rb_node *node;
4090 	int ret = 0;
4091 
4092 	btrfs_info(fs_info, "cleaning free space cache v1");
4093 
4094 	node = rb_first_cached(&fs_info->block_group_cache_tree);
4095 	while (node) {
4096 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4097 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4098 		if (ret)
4099 			goto out;
4100 		node = rb_next(node);
4101 	}
4102 out:
4103 	return ret;
4104 }
4105 
4106 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4107 {
4108 	struct btrfs_trans_handle *trans;
4109 	int ret;
4110 
4111 	/*
4112 	 * update_super_roots will appropriately set or unset
4113 	 * super_copy->cache_generation based on SPACE_CACHE and
4114 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4115 	 * transaction commit whether we are enabling space cache v1 and don't
4116 	 * have any other work to do, or are disabling it and removing free
4117 	 * space inodes.
4118 	 */
4119 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4120 	if (IS_ERR(trans))
4121 		return PTR_ERR(trans);
4122 
4123 	if (!active) {
4124 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4125 		ret = cleanup_free_space_cache_v1(fs_info, trans);
4126 		if (ret) {
4127 			btrfs_abort_transaction(trans, ret);
4128 			btrfs_end_transaction(trans);
4129 			goto out;
4130 		}
4131 	}
4132 
4133 	ret = btrfs_commit_transaction(trans);
4134 out:
4135 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4136 
4137 	return ret;
4138 }
4139 
4140 int __init btrfs_free_space_init(void)
4141 {
4142 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4143 			sizeof(struct btrfs_free_space), 0,
4144 			SLAB_MEM_SPREAD, NULL);
4145 	if (!btrfs_free_space_cachep)
4146 		return -ENOMEM;
4147 
4148 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4149 							PAGE_SIZE, PAGE_SIZE,
4150 							SLAB_MEM_SPREAD, NULL);
4151 	if (!btrfs_free_space_bitmap_cachep) {
4152 		kmem_cache_destroy(btrfs_free_space_cachep);
4153 		return -ENOMEM;
4154 	}
4155 
4156 	return 0;
4157 }
4158 
4159 void __cold btrfs_free_space_exit(void)
4160 {
4161 	kmem_cache_destroy(btrfs_free_space_cachep);
4162 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4163 }
4164 
4165 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4166 /*
4167  * Use this if you need to make a bitmap or extent entry specifically, it
4168  * doesn't do any of the merging that add_free_space does, this acts a lot like
4169  * how the free space cache loading stuff works, so you can get really weird
4170  * configurations.
4171  */
4172 int test_add_free_space_entry(struct btrfs_block_group *cache,
4173 			      u64 offset, u64 bytes, bool bitmap)
4174 {
4175 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4176 	struct btrfs_free_space *info = NULL, *bitmap_info;
4177 	void *map = NULL;
4178 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4179 	u64 bytes_added;
4180 	int ret;
4181 
4182 again:
4183 	if (!info) {
4184 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4185 		if (!info)
4186 			return -ENOMEM;
4187 	}
4188 
4189 	if (!bitmap) {
4190 		spin_lock(&ctl->tree_lock);
4191 		info->offset = offset;
4192 		info->bytes = bytes;
4193 		info->max_extent_size = 0;
4194 		ret = link_free_space(ctl, info);
4195 		spin_unlock(&ctl->tree_lock);
4196 		if (ret)
4197 			kmem_cache_free(btrfs_free_space_cachep, info);
4198 		return ret;
4199 	}
4200 
4201 	if (!map) {
4202 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4203 		if (!map) {
4204 			kmem_cache_free(btrfs_free_space_cachep, info);
4205 			return -ENOMEM;
4206 		}
4207 	}
4208 
4209 	spin_lock(&ctl->tree_lock);
4210 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4211 					 1, 0);
4212 	if (!bitmap_info) {
4213 		info->bitmap = map;
4214 		map = NULL;
4215 		add_new_bitmap(ctl, info, offset);
4216 		bitmap_info = info;
4217 		info = NULL;
4218 	}
4219 
4220 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4221 					  trim_state);
4222 
4223 	bytes -= bytes_added;
4224 	offset += bytes_added;
4225 	spin_unlock(&ctl->tree_lock);
4226 
4227 	if (bytes)
4228 		goto again;
4229 
4230 	if (info)
4231 		kmem_cache_free(btrfs_free_space_cachep, info);
4232 	if (map)
4233 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4234 	return 0;
4235 }
4236 
4237 /*
4238  * Checks to see if the given range is in the free space cache.  This is really
4239  * just used to check the absence of space, so if there is free space in the
4240  * range at all we will return 1.
4241  */
4242 int test_check_exists(struct btrfs_block_group *cache,
4243 		      u64 offset, u64 bytes)
4244 {
4245 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4246 	struct btrfs_free_space *info;
4247 	int ret = 0;
4248 
4249 	spin_lock(&ctl->tree_lock);
4250 	info = tree_search_offset(ctl, offset, 0, 0);
4251 	if (!info) {
4252 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4253 					  1, 0);
4254 		if (!info)
4255 			goto out;
4256 	}
4257 
4258 have_info:
4259 	if (info->bitmap) {
4260 		u64 bit_off, bit_bytes;
4261 		struct rb_node *n;
4262 		struct btrfs_free_space *tmp;
4263 
4264 		bit_off = offset;
4265 		bit_bytes = ctl->unit;
4266 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4267 		if (!ret) {
4268 			if (bit_off == offset) {
4269 				ret = 1;
4270 				goto out;
4271 			} else if (bit_off > offset &&
4272 				   offset + bytes > bit_off) {
4273 				ret = 1;
4274 				goto out;
4275 			}
4276 		}
4277 
4278 		n = rb_prev(&info->offset_index);
4279 		while (n) {
4280 			tmp = rb_entry(n, struct btrfs_free_space,
4281 				       offset_index);
4282 			if (tmp->offset + tmp->bytes < offset)
4283 				break;
4284 			if (offset + bytes < tmp->offset) {
4285 				n = rb_prev(&tmp->offset_index);
4286 				continue;
4287 			}
4288 			info = tmp;
4289 			goto have_info;
4290 		}
4291 
4292 		n = rb_next(&info->offset_index);
4293 		while (n) {
4294 			tmp = rb_entry(n, struct btrfs_free_space,
4295 				       offset_index);
4296 			if (offset + bytes < tmp->offset)
4297 				break;
4298 			if (tmp->offset + tmp->bytes < offset) {
4299 				n = rb_next(&tmp->offset_index);
4300 				continue;
4301 			}
4302 			info = tmp;
4303 			goto have_info;
4304 		}
4305 
4306 		ret = 0;
4307 		goto out;
4308 	}
4309 
4310 	if (info->offset == offset) {
4311 		ret = 1;
4312 		goto out;
4313 	}
4314 
4315 	if (offset > info->offset && offset < info->offset + info->bytes)
4316 		ret = 1;
4317 out:
4318 	spin_unlock(&ctl->tree_lock);
4319 	return ret;
4320 }
4321 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4322