xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision df0e68c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "misc.h"
15 #include "ctree.h"
16 #include "free-space-cache.h"
17 #include "transaction.h"
18 #include "disk-io.h"
19 #include "extent_io.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 #include "discard.h"
25 #include "subpage.h"
26 
27 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
28 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
29 #define FORCE_EXTENT_THRESHOLD	SZ_1M
30 
31 struct btrfs_trim_range {
32 	u64 start;
33 	u64 bytes;
34 	struct list_head list;
35 };
36 
37 static int link_free_space(struct btrfs_free_space_ctl *ctl,
38 			   struct btrfs_free_space *info);
39 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
40 			      struct btrfs_free_space *info);
41 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
42 			 struct btrfs_free_space *bitmap_info, u64 *offset,
43 			 u64 *bytes, bool for_alloc);
44 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
45 			struct btrfs_free_space *bitmap_info);
46 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
47 			      struct btrfs_free_space *info, u64 offset,
48 			      u64 bytes);
49 
50 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
51 					       struct btrfs_path *path,
52 					       u64 offset)
53 {
54 	struct btrfs_fs_info *fs_info = root->fs_info;
55 	struct btrfs_key key;
56 	struct btrfs_key location;
57 	struct btrfs_disk_key disk_key;
58 	struct btrfs_free_space_header *header;
59 	struct extent_buffer *leaf;
60 	struct inode *inode = NULL;
61 	unsigned nofs_flag;
62 	int ret;
63 
64 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
65 	key.offset = offset;
66 	key.type = 0;
67 
68 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
69 	if (ret < 0)
70 		return ERR_PTR(ret);
71 	if (ret > 0) {
72 		btrfs_release_path(path);
73 		return ERR_PTR(-ENOENT);
74 	}
75 
76 	leaf = path->nodes[0];
77 	header = btrfs_item_ptr(leaf, path->slots[0],
78 				struct btrfs_free_space_header);
79 	btrfs_free_space_key(leaf, header, &disk_key);
80 	btrfs_disk_key_to_cpu(&location, &disk_key);
81 	btrfs_release_path(path);
82 
83 	/*
84 	 * We are often under a trans handle at this point, so we need to make
85 	 * sure NOFS is set to keep us from deadlocking.
86 	 */
87 	nofs_flag = memalloc_nofs_save();
88 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
89 	btrfs_release_path(path);
90 	memalloc_nofs_restore(nofs_flag);
91 	if (IS_ERR(inode))
92 		return inode;
93 
94 	mapping_set_gfp_mask(inode->i_mapping,
95 			mapping_gfp_constraint(inode->i_mapping,
96 			~(__GFP_FS | __GFP_HIGHMEM)));
97 
98 	return inode;
99 }
100 
101 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
102 		struct btrfs_path *path)
103 {
104 	struct btrfs_fs_info *fs_info = block_group->fs_info;
105 	struct inode *inode = NULL;
106 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
107 
108 	spin_lock(&block_group->lock);
109 	if (block_group->inode)
110 		inode = igrab(block_group->inode);
111 	spin_unlock(&block_group->lock);
112 	if (inode)
113 		return inode;
114 
115 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
116 					  block_group->start);
117 	if (IS_ERR(inode))
118 		return inode;
119 
120 	spin_lock(&block_group->lock);
121 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
122 		btrfs_info(fs_info, "Old style space inode found, converting.");
123 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
124 			BTRFS_INODE_NODATACOW;
125 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
126 	}
127 
128 	if (!block_group->iref) {
129 		block_group->inode = igrab(inode);
130 		block_group->iref = 1;
131 	}
132 	spin_unlock(&block_group->lock);
133 
134 	return inode;
135 }
136 
137 static int __create_free_space_inode(struct btrfs_root *root,
138 				     struct btrfs_trans_handle *trans,
139 				     struct btrfs_path *path,
140 				     u64 ino, u64 offset)
141 {
142 	struct btrfs_key key;
143 	struct btrfs_disk_key disk_key;
144 	struct btrfs_free_space_header *header;
145 	struct btrfs_inode_item *inode_item;
146 	struct extent_buffer *leaf;
147 	/* We inline CRCs for the free disk space cache */
148 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
149 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
150 	int ret;
151 
152 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
153 	if (ret)
154 		return ret;
155 
156 	leaf = path->nodes[0];
157 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
158 				    struct btrfs_inode_item);
159 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
160 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
161 			     sizeof(*inode_item));
162 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
163 	btrfs_set_inode_size(leaf, inode_item, 0);
164 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
165 	btrfs_set_inode_uid(leaf, inode_item, 0);
166 	btrfs_set_inode_gid(leaf, inode_item, 0);
167 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
168 	btrfs_set_inode_flags(leaf, inode_item, flags);
169 	btrfs_set_inode_nlink(leaf, inode_item, 1);
170 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
171 	btrfs_set_inode_block_group(leaf, inode_item, offset);
172 	btrfs_mark_buffer_dirty(leaf);
173 	btrfs_release_path(path);
174 
175 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
176 	key.offset = offset;
177 	key.type = 0;
178 	ret = btrfs_insert_empty_item(trans, root, path, &key,
179 				      sizeof(struct btrfs_free_space_header));
180 	if (ret < 0) {
181 		btrfs_release_path(path);
182 		return ret;
183 	}
184 
185 	leaf = path->nodes[0];
186 	header = btrfs_item_ptr(leaf, path->slots[0],
187 				struct btrfs_free_space_header);
188 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
189 	btrfs_set_free_space_key(leaf, header, &disk_key);
190 	btrfs_mark_buffer_dirty(leaf);
191 	btrfs_release_path(path);
192 
193 	return 0;
194 }
195 
196 int create_free_space_inode(struct btrfs_trans_handle *trans,
197 			    struct btrfs_block_group *block_group,
198 			    struct btrfs_path *path)
199 {
200 	int ret;
201 	u64 ino;
202 
203 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
204 	if (ret < 0)
205 		return ret;
206 
207 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
208 					 ino, block_group->start);
209 }
210 
211 /*
212  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
213  * handles lookup, otherwise it takes ownership and iputs the inode.
214  * Don't reuse an inode pointer after passing it into this function.
215  */
216 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
217 				  struct inode *inode,
218 				  struct btrfs_block_group *block_group)
219 {
220 	struct btrfs_path *path;
221 	struct btrfs_key key;
222 	int ret = 0;
223 
224 	path = btrfs_alloc_path();
225 	if (!path)
226 		return -ENOMEM;
227 
228 	if (!inode)
229 		inode = lookup_free_space_inode(block_group, path);
230 	if (IS_ERR(inode)) {
231 		if (PTR_ERR(inode) != -ENOENT)
232 			ret = PTR_ERR(inode);
233 		goto out;
234 	}
235 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
236 	if (ret) {
237 		btrfs_add_delayed_iput(inode);
238 		goto out;
239 	}
240 	clear_nlink(inode);
241 	/* One for the block groups ref */
242 	spin_lock(&block_group->lock);
243 	if (block_group->iref) {
244 		block_group->iref = 0;
245 		block_group->inode = NULL;
246 		spin_unlock(&block_group->lock);
247 		iput(inode);
248 	} else {
249 		spin_unlock(&block_group->lock);
250 	}
251 	/* One for the lookup ref */
252 	btrfs_add_delayed_iput(inode);
253 
254 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
255 	key.type = 0;
256 	key.offset = block_group->start;
257 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
258 				-1, 1);
259 	if (ret) {
260 		if (ret > 0)
261 			ret = 0;
262 		goto out;
263 	}
264 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
265 out:
266 	btrfs_free_path(path);
267 	return ret;
268 }
269 
270 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
271 				       struct btrfs_block_rsv *rsv)
272 {
273 	u64 needed_bytes;
274 	int ret;
275 
276 	/* 1 for slack space, 1 for updating the inode */
277 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
278 		btrfs_calc_metadata_size(fs_info, 1);
279 
280 	spin_lock(&rsv->lock);
281 	if (rsv->reserved < needed_bytes)
282 		ret = -ENOSPC;
283 	else
284 		ret = 0;
285 	spin_unlock(&rsv->lock);
286 	return ret;
287 }
288 
289 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
290 				    struct btrfs_block_group *block_group,
291 				    struct inode *inode)
292 {
293 	struct btrfs_root *root = BTRFS_I(inode)->root;
294 	int ret = 0;
295 	bool locked = false;
296 
297 	if (block_group) {
298 		struct btrfs_path *path = btrfs_alloc_path();
299 
300 		if (!path) {
301 			ret = -ENOMEM;
302 			goto fail;
303 		}
304 		locked = true;
305 		mutex_lock(&trans->transaction->cache_write_mutex);
306 		if (!list_empty(&block_group->io_list)) {
307 			list_del_init(&block_group->io_list);
308 
309 			btrfs_wait_cache_io(trans, block_group, path);
310 			btrfs_put_block_group(block_group);
311 		}
312 
313 		/*
314 		 * now that we've truncated the cache away, its no longer
315 		 * setup or written
316 		 */
317 		spin_lock(&block_group->lock);
318 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
319 		spin_unlock(&block_group->lock);
320 		btrfs_free_path(path);
321 	}
322 
323 	btrfs_i_size_write(BTRFS_I(inode), 0);
324 	truncate_pagecache(inode, 0);
325 
326 	/*
327 	 * We skip the throttling logic for free space cache inodes, so we don't
328 	 * need to check for -EAGAIN.
329 	 */
330 	ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
331 					 0, BTRFS_EXTENT_DATA_KEY, NULL);
332 	if (ret)
333 		goto fail;
334 
335 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
336 
337 fail:
338 	if (locked)
339 		mutex_unlock(&trans->transaction->cache_write_mutex);
340 	if (ret)
341 		btrfs_abort_transaction(trans, ret);
342 
343 	return ret;
344 }
345 
346 static void readahead_cache(struct inode *inode)
347 {
348 	struct file_ra_state ra;
349 	unsigned long last_index;
350 
351 	file_ra_state_init(&ra, inode->i_mapping);
352 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
353 
354 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
355 }
356 
357 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
358 		       int write)
359 {
360 	int num_pages;
361 
362 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
363 
364 	/* Make sure we can fit our crcs and generation into the first page */
365 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
366 		return -ENOSPC;
367 
368 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
369 
370 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
371 	if (!io_ctl->pages)
372 		return -ENOMEM;
373 
374 	io_ctl->num_pages = num_pages;
375 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
376 	io_ctl->inode = inode;
377 
378 	return 0;
379 }
380 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
381 
382 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
383 {
384 	kfree(io_ctl->pages);
385 	io_ctl->pages = NULL;
386 }
387 
388 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
389 {
390 	if (io_ctl->cur) {
391 		io_ctl->cur = NULL;
392 		io_ctl->orig = NULL;
393 	}
394 }
395 
396 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
397 {
398 	ASSERT(io_ctl->index < io_ctl->num_pages);
399 	io_ctl->page = io_ctl->pages[io_ctl->index++];
400 	io_ctl->cur = page_address(io_ctl->page);
401 	io_ctl->orig = io_ctl->cur;
402 	io_ctl->size = PAGE_SIZE;
403 	if (clear)
404 		clear_page(io_ctl->cur);
405 }
406 
407 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
408 {
409 	int i;
410 
411 	io_ctl_unmap_page(io_ctl);
412 
413 	for (i = 0; i < io_ctl->num_pages; i++) {
414 		if (io_ctl->pages[i]) {
415 			btrfs_page_clear_checked(io_ctl->fs_info,
416 					io_ctl->pages[i],
417 					page_offset(io_ctl->pages[i]),
418 					PAGE_SIZE);
419 			unlock_page(io_ctl->pages[i]);
420 			put_page(io_ctl->pages[i]);
421 		}
422 	}
423 }
424 
425 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
426 {
427 	struct page *page;
428 	struct inode *inode = io_ctl->inode;
429 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
430 	int i;
431 
432 	for (i = 0; i < io_ctl->num_pages; i++) {
433 		int ret;
434 
435 		page = find_or_create_page(inode->i_mapping, i, mask);
436 		if (!page) {
437 			io_ctl_drop_pages(io_ctl);
438 			return -ENOMEM;
439 		}
440 
441 		ret = set_page_extent_mapped(page);
442 		if (ret < 0) {
443 			unlock_page(page);
444 			put_page(page);
445 			io_ctl_drop_pages(io_ctl);
446 			return ret;
447 		}
448 
449 		io_ctl->pages[i] = page;
450 		if (uptodate && !PageUptodate(page)) {
451 			btrfs_readpage(NULL, page);
452 			lock_page(page);
453 			if (page->mapping != inode->i_mapping) {
454 				btrfs_err(BTRFS_I(inode)->root->fs_info,
455 					  "free space cache page truncated");
456 				io_ctl_drop_pages(io_ctl);
457 				return -EIO;
458 			}
459 			if (!PageUptodate(page)) {
460 				btrfs_err(BTRFS_I(inode)->root->fs_info,
461 					   "error reading free space cache");
462 				io_ctl_drop_pages(io_ctl);
463 				return -EIO;
464 			}
465 		}
466 	}
467 
468 	for (i = 0; i < io_ctl->num_pages; i++)
469 		clear_page_dirty_for_io(io_ctl->pages[i]);
470 
471 	return 0;
472 }
473 
474 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
475 {
476 	io_ctl_map_page(io_ctl, 1);
477 
478 	/*
479 	 * Skip the csum areas.  If we don't check crcs then we just have a
480 	 * 64bit chunk at the front of the first page.
481 	 */
482 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
483 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
484 
485 	put_unaligned_le64(generation, io_ctl->cur);
486 	io_ctl->cur += sizeof(u64);
487 }
488 
489 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
490 {
491 	u64 cache_gen;
492 
493 	/*
494 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
495 	 * chunk at the front of the first page.
496 	 */
497 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
498 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
499 
500 	cache_gen = get_unaligned_le64(io_ctl->cur);
501 	if (cache_gen != generation) {
502 		btrfs_err_rl(io_ctl->fs_info,
503 			"space cache generation (%llu) does not match inode (%llu)",
504 				cache_gen, generation);
505 		io_ctl_unmap_page(io_ctl);
506 		return -EIO;
507 	}
508 	io_ctl->cur += sizeof(u64);
509 	return 0;
510 }
511 
512 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
513 {
514 	u32 *tmp;
515 	u32 crc = ~(u32)0;
516 	unsigned offset = 0;
517 
518 	if (index == 0)
519 		offset = sizeof(u32) * io_ctl->num_pages;
520 
521 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
522 	btrfs_crc32c_final(crc, (u8 *)&crc);
523 	io_ctl_unmap_page(io_ctl);
524 	tmp = page_address(io_ctl->pages[0]);
525 	tmp += index;
526 	*tmp = crc;
527 }
528 
529 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
530 {
531 	u32 *tmp, val;
532 	u32 crc = ~(u32)0;
533 	unsigned offset = 0;
534 
535 	if (index == 0)
536 		offset = sizeof(u32) * io_ctl->num_pages;
537 
538 	tmp = page_address(io_ctl->pages[0]);
539 	tmp += index;
540 	val = *tmp;
541 
542 	io_ctl_map_page(io_ctl, 0);
543 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
544 	btrfs_crc32c_final(crc, (u8 *)&crc);
545 	if (val != crc) {
546 		btrfs_err_rl(io_ctl->fs_info,
547 			"csum mismatch on free space cache");
548 		io_ctl_unmap_page(io_ctl);
549 		return -EIO;
550 	}
551 
552 	return 0;
553 }
554 
555 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
556 			    void *bitmap)
557 {
558 	struct btrfs_free_space_entry *entry;
559 
560 	if (!io_ctl->cur)
561 		return -ENOSPC;
562 
563 	entry = io_ctl->cur;
564 	put_unaligned_le64(offset, &entry->offset);
565 	put_unaligned_le64(bytes, &entry->bytes);
566 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
567 		BTRFS_FREE_SPACE_EXTENT;
568 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
569 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
570 
571 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
572 		return 0;
573 
574 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
575 
576 	/* No more pages to map */
577 	if (io_ctl->index >= io_ctl->num_pages)
578 		return 0;
579 
580 	/* map the next page */
581 	io_ctl_map_page(io_ctl, 1);
582 	return 0;
583 }
584 
585 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
586 {
587 	if (!io_ctl->cur)
588 		return -ENOSPC;
589 
590 	/*
591 	 * If we aren't at the start of the current page, unmap this one and
592 	 * map the next one if there is any left.
593 	 */
594 	if (io_ctl->cur != io_ctl->orig) {
595 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
596 		if (io_ctl->index >= io_ctl->num_pages)
597 			return -ENOSPC;
598 		io_ctl_map_page(io_ctl, 0);
599 	}
600 
601 	copy_page(io_ctl->cur, bitmap);
602 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
603 	if (io_ctl->index < io_ctl->num_pages)
604 		io_ctl_map_page(io_ctl, 0);
605 	return 0;
606 }
607 
608 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
609 {
610 	/*
611 	 * If we're not on the boundary we know we've modified the page and we
612 	 * need to crc the page.
613 	 */
614 	if (io_ctl->cur != io_ctl->orig)
615 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
616 	else
617 		io_ctl_unmap_page(io_ctl);
618 
619 	while (io_ctl->index < io_ctl->num_pages) {
620 		io_ctl_map_page(io_ctl, 1);
621 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
622 	}
623 }
624 
625 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
626 			    struct btrfs_free_space *entry, u8 *type)
627 {
628 	struct btrfs_free_space_entry *e;
629 	int ret;
630 
631 	if (!io_ctl->cur) {
632 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
633 		if (ret)
634 			return ret;
635 	}
636 
637 	e = io_ctl->cur;
638 	entry->offset = get_unaligned_le64(&e->offset);
639 	entry->bytes = get_unaligned_le64(&e->bytes);
640 	*type = e->type;
641 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
642 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
643 
644 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
645 		return 0;
646 
647 	io_ctl_unmap_page(io_ctl);
648 
649 	return 0;
650 }
651 
652 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
653 			      struct btrfs_free_space *entry)
654 {
655 	int ret;
656 
657 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
658 	if (ret)
659 		return ret;
660 
661 	copy_page(entry->bitmap, io_ctl->cur);
662 	io_ctl_unmap_page(io_ctl);
663 
664 	return 0;
665 }
666 
667 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
668 {
669 	struct btrfs_block_group *block_group = ctl->private;
670 	u64 max_bytes;
671 	u64 bitmap_bytes;
672 	u64 extent_bytes;
673 	u64 size = block_group->length;
674 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
675 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
676 
677 	max_bitmaps = max_t(u64, max_bitmaps, 1);
678 
679 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
680 
681 	/*
682 	 * We are trying to keep the total amount of memory used per 1GiB of
683 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
684 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
685 	 * bitmaps, we may end up using more memory than this.
686 	 */
687 	if (size < SZ_1G)
688 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
689 	else
690 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
691 
692 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
693 
694 	/*
695 	 * we want the extent entry threshold to always be at most 1/2 the max
696 	 * bytes we can have, or whatever is less than that.
697 	 */
698 	extent_bytes = max_bytes - bitmap_bytes;
699 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
700 
701 	ctl->extents_thresh =
702 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
703 }
704 
705 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
706 				   struct btrfs_free_space_ctl *ctl,
707 				   struct btrfs_path *path, u64 offset)
708 {
709 	struct btrfs_fs_info *fs_info = root->fs_info;
710 	struct btrfs_free_space_header *header;
711 	struct extent_buffer *leaf;
712 	struct btrfs_io_ctl io_ctl;
713 	struct btrfs_key key;
714 	struct btrfs_free_space *e, *n;
715 	LIST_HEAD(bitmaps);
716 	u64 num_entries;
717 	u64 num_bitmaps;
718 	u64 generation;
719 	u8 type;
720 	int ret = 0;
721 
722 	/* Nothing in the space cache, goodbye */
723 	if (!i_size_read(inode))
724 		return 0;
725 
726 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
727 	key.offset = offset;
728 	key.type = 0;
729 
730 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
731 	if (ret < 0)
732 		return 0;
733 	else if (ret > 0) {
734 		btrfs_release_path(path);
735 		return 0;
736 	}
737 
738 	ret = -1;
739 
740 	leaf = path->nodes[0];
741 	header = btrfs_item_ptr(leaf, path->slots[0],
742 				struct btrfs_free_space_header);
743 	num_entries = btrfs_free_space_entries(leaf, header);
744 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
745 	generation = btrfs_free_space_generation(leaf, header);
746 	btrfs_release_path(path);
747 
748 	if (!BTRFS_I(inode)->generation) {
749 		btrfs_info(fs_info,
750 			   "the free space cache file (%llu) is invalid, skip it",
751 			   offset);
752 		return 0;
753 	}
754 
755 	if (BTRFS_I(inode)->generation != generation) {
756 		btrfs_err(fs_info,
757 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
758 			  BTRFS_I(inode)->generation, generation);
759 		return 0;
760 	}
761 
762 	if (!num_entries)
763 		return 0;
764 
765 	ret = io_ctl_init(&io_ctl, inode, 0);
766 	if (ret)
767 		return ret;
768 
769 	readahead_cache(inode);
770 
771 	ret = io_ctl_prepare_pages(&io_ctl, true);
772 	if (ret)
773 		goto out;
774 
775 	ret = io_ctl_check_crc(&io_ctl, 0);
776 	if (ret)
777 		goto free_cache;
778 
779 	ret = io_ctl_check_generation(&io_ctl, generation);
780 	if (ret)
781 		goto free_cache;
782 
783 	while (num_entries) {
784 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
785 				      GFP_NOFS);
786 		if (!e) {
787 			ret = -ENOMEM;
788 			goto free_cache;
789 		}
790 
791 		ret = io_ctl_read_entry(&io_ctl, e, &type);
792 		if (ret) {
793 			kmem_cache_free(btrfs_free_space_cachep, e);
794 			goto free_cache;
795 		}
796 
797 		if (!e->bytes) {
798 			ret = -1;
799 			kmem_cache_free(btrfs_free_space_cachep, e);
800 			goto free_cache;
801 		}
802 
803 		if (type == BTRFS_FREE_SPACE_EXTENT) {
804 			spin_lock(&ctl->tree_lock);
805 			ret = link_free_space(ctl, e);
806 			spin_unlock(&ctl->tree_lock);
807 			if (ret) {
808 				btrfs_err(fs_info,
809 					"Duplicate entries in free space cache, dumping");
810 				kmem_cache_free(btrfs_free_space_cachep, e);
811 				goto free_cache;
812 			}
813 		} else {
814 			ASSERT(num_bitmaps);
815 			num_bitmaps--;
816 			e->bitmap = kmem_cache_zalloc(
817 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
818 			if (!e->bitmap) {
819 				ret = -ENOMEM;
820 				kmem_cache_free(
821 					btrfs_free_space_cachep, e);
822 				goto free_cache;
823 			}
824 			spin_lock(&ctl->tree_lock);
825 			ret = link_free_space(ctl, e);
826 			ctl->total_bitmaps++;
827 			recalculate_thresholds(ctl);
828 			spin_unlock(&ctl->tree_lock);
829 			if (ret) {
830 				btrfs_err(fs_info,
831 					"Duplicate entries in free space cache, dumping");
832 				kmem_cache_free(btrfs_free_space_cachep, e);
833 				goto free_cache;
834 			}
835 			list_add_tail(&e->list, &bitmaps);
836 		}
837 
838 		num_entries--;
839 	}
840 
841 	io_ctl_unmap_page(&io_ctl);
842 
843 	/*
844 	 * We add the bitmaps at the end of the entries in order that
845 	 * the bitmap entries are added to the cache.
846 	 */
847 	list_for_each_entry_safe(e, n, &bitmaps, list) {
848 		list_del_init(&e->list);
849 		ret = io_ctl_read_bitmap(&io_ctl, e);
850 		if (ret)
851 			goto free_cache;
852 	}
853 
854 	io_ctl_drop_pages(&io_ctl);
855 	ret = 1;
856 out:
857 	io_ctl_free(&io_ctl);
858 	return ret;
859 free_cache:
860 	io_ctl_drop_pages(&io_ctl);
861 	__btrfs_remove_free_space_cache(ctl);
862 	goto out;
863 }
864 
865 static int copy_free_space_cache(struct btrfs_block_group *block_group,
866 				 struct btrfs_free_space_ctl *ctl)
867 {
868 	struct btrfs_free_space *info;
869 	struct rb_node *n;
870 	int ret = 0;
871 
872 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
873 		info = rb_entry(n, struct btrfs_free_space, offset_index);
874 		if (!info->bitmap) {
875 			unlink_free_space(ctl, info);
876 			ret = btrfs_add_free_space(block_group, info->offset,
877 						   info->bytes);
878 			kmem_cache_free(btrfs_free_space_cachep, info);
879 		} else {
880 			u64 offset = info->offset;
881 			u64 bytes = ctl->unit;
882 
883 			while (search_bitmap(ctl, info, &offset, &bytes,
884 					     false) == 0) {
885 				ret = btrfs_add_free_space(block_group, offset,
886 							   bytes);
887 				if (ret)
888 					break;
889 				bitmap_clear_bits(ctl, info, offset, bytes);
890 				offset = info->offset;
891 				bytes = ctl->unit;
892 			}
893 			free_bitmap(ctl, info);
894 		}
895 		cond_resched();
896 	}
897 	return ret;
898 }
899 
900 int load_free_space_cache(struct btrfs_block_group *block_group)
901 {
902 	struct btrfs_fs_info *fs_info = block_group->fs_info;
903 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
904 	struct btrfs_free_space_ctl tmp_ctl = {};
905 	struct inode *inode;
906 	struct btrfs_path *path;
907 	int ret = 0;
908 	bool matched;
909 	u64 used = block_group->used;
910 
911 	/*
912 	 * Because we could potentially discard our loaded free space, we want
913 	 * to load everything into a temporary structure first, and then if it's
914 	 * valid copy it all into the actual free space ctl.
915 	 */
916 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
917 
918 	/*
919 	 * If this block group has been marked to be cleared for one reason or
920 	 * another then we can't trust the on disk cache, so just return.
921 	 */
922 	spin_lock(&block_group->lock);
923 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
924 		spin_unlock(&block_group->lock);
925 		return 0;
926 	}
927 	spin_unlock(&block_group->lock);
928 
929 	path = btrfs_alloc_path();
930 	if (!path)
931 		return 0;
932 	path->search_commit_root = 1;
933 	path->skip_locking = 1;
934 
935 	/*
936 	 * We must pass a path with search_commit_root set to btrfs_iget in
937 	 * order to avoid a deadlock when allocating extents for the tree root.
938 	 *
939 	 * When we are COWing an extent buffer from the tree root, when looking
940 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
941 	 * block group without its free space cache loaded. When we find one
942 	 * we must load its space cache which requires reading its free space
943 	 * cache's inode item from the root tree. If this inode item is located
944 	 * in the same leaf that we started COWing before, then we end up in
945 	 * deadlock on the extent buffer (trying to read lock it when we
946 	 * previously write locked it).
947 	 *
948 	 * It's safe to read the inode item using the commit root because
949 	 * block groups, once loaded, stay in memory forever (until they are
950 	 * removed) as well as their space caches once loaded. New block groups
951 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
952 	 * we will never try to read their inode item while the fs is mounted.
953 	 */
954 	inode = lookup_free_space_inode(block_group, path);
955 	if (IS_ERR(inode)) {
956 		btrfs_free_path(path);
957 		return 0;
958 	}
959 
960 	/* We may have converted the inode and made the cache invalid. */
961 	spin_lock(&block_group->lock);
962 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
963 		spin_unlock(&block_group->lock);
964 		btrfs_free_path(path);
965 		goto out;
966 	}
967 	spin_unlock(&block_group->lock);
968 
969 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
970 				      path, block_group->start);
971 	btrfs_free_path(path);
972 	if (ret <= 0)
973 		goto out;
974 
975 	matched = (tmp_ctl.free_space == (block_group->length - used -
976 					  block_group->bytes_super));
977 
978 	if (matched) {
979 		ret = copy_free_space_cache(block_group, &tmp_ctl);
980 		/*
981 		 * ret == 1 means we successfully loaded the free space cache,
982 		 * so we need to re-set it here.
983 		 */
984 		if (ret == 0)
985 			ret = 1;
986 	} else {
987 		__btrfs_remove_free_space_cache(&tmp_ctl);
988 		btrfs_warn(fs_info,
989 			   "block group %llu has wrong amount of free space",
990 			   block_group->start);
991 		ret = -1;
992 	}
993 out:
994 	if (ret < 0) {
995 		/* This cache is bogus, make sure it gets cleared */
996 		spin_lock(&block_group->lock);
997 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
998 		spin_unlock(&block_group->lock);
999 		ret = 0;
1000 
1001 		btrfs_warn(fs_info,
1002 			   "failed to load free space cache for block group %llu, rebuilding it now",
1003 			   block_group->start);
1004 	}
1005 
1006 	spin_lock(&ctl->tree_lock);
1007 	btrfs_discard_update_discardable(block_group);
1008 	spin_unlock(&ctl->tree_lock);
1009 	iput(inode);
1010 	return ret;
1011 }
1012 
1013 static noinline_for_stack
1014 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1015 			      struct btrfs_free_space_ctl *ctl,
1016 			      struct btrfs_block_group *block_group,
1017 			      int *entries, int *bitmaps,
1018 			      struct list_head *bitmap_list)
1019 {
1020 	int ret;
1021 	struct btrfs_free_cluster *cluster = NULL;
1022 	struct btrfs_free_cluster *cluster_locked = NULL;
1023 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1024 	struct btrfs_trim_range *trim_entry;
1025 
1026 	/* Get the cluster for this block_group if it exists */
1027 	if (block_group && !list_empty(&block_group->cluster_list)) {
1028 		cluster = list_entry(block_group->cluster_list.next,
1029 				     struct btrfs_free_cluster,
1030 				     block_group_list);
1031 	}
1032 
1033 	if (!node && cluster) {
1034 		cluster_locked = cluster;
1035 		spin_lock(&cluster_locked->lock);
1036 		node = rb_first(&cluster->root);
1037 		cluster = NULL;
1038 	}
1039 
1040 	/* Write out the extent entries */
1041 	while (node) {
1042 		struct btrfs_free_space *e;
1043 
1044 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1045 		*entries += 1;
1046 
1047 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1048 				       e->bitmap);
1049 		if (ret)
1050 			goto fail;
1051 
1052 		if (e->bitmap) {
1053 			list_add_tail(&e->list, bitmap_list);
1054 			*bitmaps += 1;
1055 		}
1056 		node = rb_next(node);
1057 		if (!node && cluster) {
1058 			node = rb_first(&cluster->root);
1059 			cluster_locked = cluster;
1060 			spin_lock(&cluster_locked->lock);
1061 			cluster = NULL;
1062 		}
1063 	}
1064 	if (cluster_locked) {
1065 		spin_unlock(&cluster_locked->lock);
1066 		cluster_locked = NULL;
1067 	}
1068 
1069 	/*
1070 	 * Make sure we don't miss any range that was removed from our rbtree
1071 	 * because trimming is running. Otherwise after a umount+mount (or crash
1072 	 * after committing the transaction) we would leak free space and get
1073 	 * an inconsistent free space cache report from fsck.
1074 	 */
1075 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1076 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1077 				       trim_entry->bytes, NULL);
1078 		if (ret)
1079 			goto fail;
1080 		*entries += 1;
1081 	}
1082 
1083 	return 0;
1084 fail:
1085 	if (cluster_locked)
1086 		spin_unlock(&cluster_locked->lock);
1087 	return -ENOSPC;
1088 }
1089 
1090 static noinline_for_stack int
1091 update_cache_item(struct btrfs_trans_handle *trans,
1092 		  struct btrfs_root *root,
1093 		  struct inode *inode,
1094 		  struct btrfs_path *path, u64 offset,
1095 		  int entries, int bitmaps)
1096 {
1097 	struct btrfs_key key;
1098 	struct btrfs_free_space_header *header;
1099 	struct extent_buffer *leaf;
1100 	int ret;
1101 
1102 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1103 	key.offset = offset;
1104 	key.type = 0;
1105 
1106 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1107 	if (ret < 0) {
1108 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1109 				 EXTENT_DELALLOC, 0, 0, NULL);
1110 		goto fail;
1111 	}
1112 	leaf = path->nodes[0];
1113 	if (ret > 0) {
1114 		struct btrfs_key found_key;
1115 		ASSERT(path->slots[0]);
1116 		path->slots[0]--;
1117 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1118 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1119 		    found_key.offset != offset) {
1120 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1121 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1122 					 0, NULL);
1123 			btrfs_release_path(path);
1124 			goto fail;
1125 		}
1126 	}
1127 
1128 	BTRFS_I(inode)->generation = trans->transid;
1129 	header = btrfs_item_ptr(leaf, path->slots[0],
1130 				struct btrfs_free_space_header);
1131 	btrfs_set_free_space_entries(leaf, header, entries);
1132 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1133 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1134 	btrfs_mark_buffer_dirty(leaf);
1135 	btrfs_release_path(path);
1136 
1137 	return 0;
1138 
1139 fail:
1140 	return -1;
1141 }
1142 
1143 static noinline_for_stack int write_pinned_extent_entries(
1144 			    struct btrfs_trans_handle *trans,
1145 			    struct btrfs_block_group *block_group,
1146 			    struct btrfs_io_ctl *io_ctl,
1147 			    int *entries)
1148 {
1149 	u64 start, extent_start, extent_end, len;
1150 	struct extent_io_tree *unpin = NULL;
1151 	int ret;
1152 
1153 	if (!block_group)
1154 		return 0;
1155 
1156 	/*
1157 	 * We want to add any pinned extents to our free space cache
1158 	 * so we don't leak the space
1159 	 *
1160 	 * We shouldn't have switched the pinned extents yet so this is the
1161 	 * right one
1162 	 */
1163 	unpin = &trans->transaction->pinned_extents;
1164 
1165 	start = block_group->start;
1166 
1167 	while (start < block_group->start + block_group->length) {
1168 		ret = find_first_extent_bit(unpin, start,
1169 					    &extent_start, &extent_end,
1170 					    EXTENT_DIRTY, NULL);
1171 		if (ret)
1172 			return 0;
1173 
1174 		/* This pinned extent is out of our range */
1175 		if (extent_start >= block_group->start + block_group->length)
1176 			return 0;
1177 
1178 		extent_start = max(extent_start, start);
1179 		extent_end = min(block_group->start + block_group->length,
1180 				 extent_end + 1);
1181 		len = extent_end - extent_start;
1182 
1183 		*entries += 1;
1184 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1185 		if (ret)
1186 			return -ENOSPC;
1187 
1188 		start = extent_end;
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 static noinline_for_stack int
1195 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1196 {
1197 	struct btrfs_free_space *entry, *next;
1198 	int ret;
1199 
1200 	/* Write out the bitmaps */
1201 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1202 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1203 		if (ret)
1204 			return -ENOSPC;
1205 		list_del_init(&entry->list);
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 static int flush_dirty_cache(struct inode *inode)
1212 {
1213 	int ret;
1214 
1215 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1216 	if (ret)
1217 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1218 				 EXTENT_DELALLOC, 0, 0, NULL);
1219 
1220 	return ret;
1221 }
1222 
1223 static void noinline_for_stack
1224 cleanup_bitmap_list(struct list_head *bitmap_list)
1225 {
1226 	struct btrfs_free_space *entry, *next;
1227 
1228 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1229 		list_del_init(&entry->list);
1230 }
1231 
1232 static void noinline_for_stack
1233 cleanup_write_cache_enospc(struct inode *inode,
1234 			   struct btrfs_io_ctl *io_ctl,
1235 			   struct extent_state **cached_state)
1236 {
1237 	io_ctl_drop_pages(io_ctl);
1238 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1239 			     i_size_read(inode) - 1, cached_state);
1240 }
1241 
1242 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1243 				 struct btrfs_trans_handle *trans,
1244 				 struct btrfs_block_group *block_group,
1245 				 struct btrfs_io_ctl *io_ctl,
1246 				 struct btrfs_path *path, u64 offset)
1247 {
1248 	int ret;
1249 	struct inode *inode = io_ctl->inode;
1250 
1251 	if (!inode)
1252 		return 0;
1253 
1254 	/* Flush the dirty pages in the cache file. */
1255 	ret = flush_dirty_cache(inode);
1256 	if (ret)
1257 		goto out;
1258 
1259 	/* Update the cache item to tell everyone this cache file is valid. */
1260 	ret = update_cache_item(trans, root, inode, path, offset,
1261 				io_ctl->entries, io_ctl->bitmaps);
1262 out:
1263 	if (ret) {
1264 		invalidate_inode_pages2(inode->i_mapping);
1265 		BTRFS_I(inode)->generation = 0;
1266 		if (block_group)
1267 			btrfs_debug(root->fs_info,
1268 	  "failed to write free space cache for block group %llu error %d",
1269 				  block_group->start, ret);
1270 	}
1271 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1272 
1273 	if (block_group) {
1274 		/* the dirty list is protected by the dirty_bgs_lock */
1275 		spin_lock(&trans->transaction->dirty_bgs_lock);
1276 
1277 		/* the disk_cache_state is protected by the block group lock */
1278 		spin_lock(&block_group->lock);
1279 
1280 		/*
1281 		 * only mark this as written if we didn't get put back on
1282 		 * the dirty list while waiting for IO.   Otherwise our
1283 		 * cache state won't be right, and we won't get written again
1284 		 */
1285 		if (!ret && list_empty(&block_group->dirty_list))
1286 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1287 		else if (ret)
1288 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1289 
1290 		spin_unlock(&block_group->lock);
1291 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1292 		io_ctl->inode = NULL;
1293 		iput(inode);
1294 	}
1295 
1296 	return ret;
1297 
1298 }
1299 
1300 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1301 			struct btrfs_block_group *block_group,
1302 			struct btrfs_path *path)
1303 {
1304 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1305 				     block_group, &block_group->io_ctl,
1306 				     path, block_group->start);
1307 }
1308 
1309 /**
1310  * Write out cached info to an inode
1311  *
1312  * @root:        root the inode belongs to
1313  * @inode:       freespace inode we are writing out
1314  * @ctl:         free space cache we are going to write out
1315  * @block_group: block_group for this cache if it belongs to a block_group
1316  * @io_ctl:      holds context for the io
1317  * @trans:       the trans handle
1318  *
1319  * This function writes out a free space cache struct to disk for quick recovery
1320  * on mount.  This will return 0 if it was successful in writing the cache out,
1321  * or an errno if it was not.
1322  */
1323 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1324 				   struct btrfs_free_space_ctl *ctl,
1325 				   struct btrfs_block_group *block_group,
1326 				   struct btrfs_io_ctl *io_ctl,
1327 				   struct btrfs_trans_handle *trans)
1328 {
1329 	struct extent_state *cached_state = NULL;
1330 	LIST_HEAD(bitmap_list);
1331 	int entries = 0;
1332 	int bitmaps = 0;
1333 	int ret;
1334 	int must_iput = 0;
1335 
1336 	if (!i_size_read(inode))
1337 		return -EIO;
1338 
1339 	WARN_ON(io_ctl->pages);
1340 	ret = io_ctl_init(io_ctl, inode, 1);
1341 	if (ret)
1342 		return ret;
1343 
1344 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1345 		down_write(&block_group->data_rwsem);
1346 		spin_lock(&block_group->lock);
1347 		if (block_group->delalloc_bytes) {
1348 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1349 			spin_unlock(&block_group->lock);
1350 			up_write(&block_group->data_rwsem);
1351 			BTRFS_I(inode)->generation = 0;
1352 			ret = 0;
1353 			must_iput = 1;
1354 			goto out;
1355 		}
1356 		spin_unlock(&block_group->lock);
1357 	}
1358 
1359 	/* Lock all pages first so we can lock the extent safely. */
1360 	ret = io_ctl_prepare_pages(io_ctl, false);
1361 	if (ret)
1362 		goto out_unlock;
1363 
1364 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1365 			 &cached_state);
1366 
1367 	io_ctl_set_generation(io_ctl, trans->transid);
1368 
1369 	mutex_lock(&ctl->cache_writeout_mutex);
1370 	/* Write out the extent entries in the free space cache */
1371 	spin_lock(&ctl->tree_lock);
1372 	ret = write_cache_extent_entries(io_ctl, ctl,
1373 					 block_group, &entries, &bitmaps,
1374 					 &bitmap_list);
1375 	if (ret)
1376 		goto out_nospc_locked;
1377 
1378 	/*
1379 	 * Some spaces that are freed in the current transaction are pinned,
1380 	 * they will be added into free space cache after the transaction is
1381 	 * committed, we shouldn't lose them.
1382 	 *
1383 	 * If this changes while we are working we'll get added back to
1384 	 * the dirty list and redo it.  No locking needed
1385 	 */
1386 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1387 	if (ret)
1388 		goto out_nospc_locked;
1389 
1390 	/*
1391 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1392 	 * locked while doing it because a concurrent trim can be manipulating
1393 	 * or freeing the bitmap.
1394 	 */
1395 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1396 	spin_unlock(&ctl->tree_lock);
1397 	mutex_unlock(&ctl->cache_writeout_mutex);
1398 	if (ret)
1399 		goto out_nospc;
1400 
1401 	/* Zero out the rest of the pages just to make sure */
1402 	io_ctl_zero_remaining_pages(io_ctl);
1403 
1404 	/* Everything is written out, now we dirty the pages in the file. */
1405 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1406 				io_ctl->num_pages, 0, i_size_read(inode),
1407 				&cached_state, false);
1408 	if (ret)
1409 		goto out_nospc;
1410 
1411 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1412 		up_write(&block_group->data_rwsem);
1413 	/*
1414 	 * Release the pages and unlock the extent, we will flush
1415 	 * them out later
1416 	 */
1417 	io_ctl_drop_pages(io_ctl);
1418 	io_ctl_free(io_ctl);
1419 
1420 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1421 			     i_size_read(inode) - 1, &cached_state);
1422 
1423 	/*
1424 	 * at this point the pages are under IO and we're happy,
1425 	 * The caller is responsible for waiting on them and updating
1426 	 * the cache and the inode
1427 	 */
1428 	io_ctl->entries = entries;
1429 	io_ctl->bitmaps = bitmaps;
1430 
1431 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1432 	if (ret)
1433 		goto out;
1434 
1435 	return 0;
1436 
1437 out_nospc_locked:
1438 	cleanup_bitmap_list(&bitmap_list);
1439 	spin_unlock(&ctl->tree_lock);
1440 	mutex_unlock(&ctl->cache_writeout_mutex);
1441 
1442 out_nospc:
1443 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1444 
1445 out_unlock:
1446 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1447 		up_write(&block_group->data_rwsem);
1448 
1449 out:
1450 	io_ctl->inode = NULL;
1451 	io_ctl_free(io_ctl);
1452 	if (ret) {
1453 		invalidate_inode_pages2(inode->i_mapping);
1454 		BTRFS_I(inode)->generation = 0;
1455 	}
1456 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1457 	if (must_iput)
1458 		iput(inode);
1459 	return ret;
1460 }
1461 
1462 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1463 			  struct btrfs_block_group *block_group,
1464 			  struct btrfs_path *path)
1465 {
1466 	struct btrfs_fs_info *fs_info = trans->fs_info;
1467 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1468 	struct inode *inode;
1469 	int ret = 0;
1470 
1471 	spin_lock(&block_group->lock);
1472 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1473 		spin_unlock(&block_group->lock);
1474 		return 0;
1475 	}
1476 	spin_unlock(&block_group->lock);
1477 
1478 	inode = lookup_free_space_inode(block_group, path);
1479 	if (IS_ERR(inode))
1480 		return 0;
1481 
1482 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1483 				block_group, &block_group->io_ctl, trans);
1484 	if (ret) {
1485 		btrfs_debug(fs_info,
1486 	  "failed to write free space cache for block group %llu error %d",
1487 			  block_group->start, ret);
1488 		spin_lock(&block_group->lock);
1489 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1490 		spin_unlock(&block_group->lock);
1491 
1492 		block_group->io_ctl.inode = NULL;
1493 		iput(inode);
1494 	}
1495 
1496 	/*
1497 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1498 	 * to wait for IO and put the inode
1499 	 */
1500 
1501 	return ret;
1502 }
1503 
1504 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1505 					  u64 offset)
1506 {
1507 	ASSERT(offset >= bitmap_start);
1508 	offset -= bitmap_start;
1509 	return (unsigned long)(div_u64(offset, unit));
1510 }
1511 
1512 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1513 {
1514 	return (unsigned long)(div_u64(bytes, unit));
1515 }
1516 
1517 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1518 				   u64 offset)
1519 {
1520 	u64 bitmap_start;
1521 	u64 bytes_per_bitmap;
1522 
1523 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1524 	bitmap_start = offset - ctl->start;
1525 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1526 	bitmap_start *= bytes_per_bitmap;
1527 	bitmap_start += ctl->start;
1528 
1529 	return bitmap_start;
1530 }
1531 
1532 static int tree_insert_offset(struct rb_root *root, u64 offset,
1533 			      struct rb_node *node, int bitmap)
1534 {
1535 	struct rb_node **p = &root->rb_node;
1536 	struct rb_node *parent = NULL;
1537 	struct btrfs_free_space *info;
1538 
1539 	while (*p) {
1540 		parent = *p;
1541 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1542 
1543 		if (offset < info->offset) {
1544 			p = &(*p)->rb_left;
1545 		} else if (offset > info->offset) {
1546 			p = &(*p)->rb_right;
1547 		} else {
1548 			/*
1549 			 * we could have a bitmap entry and an extent entry
1550 			 * share the same offset.  If this is the case, we want
1551 			 * the extent entry to always be found first if we do a
1552 			 * linear search through the tree, since we want to have
1553 			 * the quickest allocation time, and allocating from an
1554 			 * extent is faster than allocating from a bitmap.  So
1555 			 * if we're inserting a bitmap and we find an entry at
1556 			 * this offset, we want to go right, or after this entry
1557 			 * logically.  If we are inserting an extent and we've
1558 			 * found a bitmap, we want to go left, or before
1559 			 * logically.
1560 			 */
1561 			if (bitmap) {
1562 				if (info->bitmap) {
1563 					WARN_ON_ONCE(1);
1564 					return -EEXIST;
1565 				}
1566 				p = &(*p)->rb_right;
1567 			} else {
1568 				if (!info->bitmap) {
1569 					WARN_ON_ONCE(1);
1570 					return -EEXIST;
1571 				}
1572 				p = &(*p)->rb_left;
1573 			}
1574 		}
1575 	}
1576 
1577 	rb_link_node(node, parent, p);
1578 	rb_insert_color(node, root);
1579 
1580 	return 0;
1581 }
1582 
1583 /*
1584  * searches the tree for the given offset.
1585  *
1586  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1587  * want a section that has at least bytes size and comes at or after the given
1588  * offset.
1589  */
1590 static struct btrfs_free_space *
1591 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1592 		   u64 offset, int bitmap_only, int fuzzy)
1593 {
1594 	struct rb_node *n = ctl->free_space_offset.rb_node;
1595 	struct btrfs_free_space *entry, *prev = NULL;
1596 
1597 	/* find entry that is closest to the 'offset' */
1598 	while (1) {
1599 		if (!n) {
1600 			entry = NULL;
1601 			break;
1602 		}
1603 
1604 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1605 		prev = entry;
1606 
1607 		if (offset < entry->offset)
1608 			n = n->rb_left;
1609 		else if (offset > entry->offset)
1610 			n = n->rb_right;
1611 		else
1612 			break;
1613 	}
1614 
1615 	if (bitmap_only) {
1616 		if (!entry)
1617 			return NULL;
1618 		if (entry->bitmap)
1619 			return entry;
1620 
1621 		/*
1622 		 * bitmap entry and extent entry may share same offset,
1623 		 * in that case, bitmap entry comes after extent entry.
1624 		 */
1625 		n = rb_next(n);
1626 		if (!n)
1627 			return NULL;
1628 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1629 		if (entry->offset != offset)
1630 			return NULL;
1631 
1632 		WARN_ON(!entry->bitmap);
1633 		return entry;
1634 	} else if (entry) {
1635 		if (entry->bitmap) {
1636 			/*
1637 			 * if previous extent entry covers the offset,
1638 			 * we should return it instead of the bitmap entry
1639 			 */
1640 			n = rb_prev(&entry->offset_index);
1641 			if (n) {
1642 				prev = rb_entry(n, struct btrfs_free_space,
1643 						offset_index);
1644 				if (!prev->bitmap &&
1645 				    prev->offset + prev->bytes > offset)
1646 					entry = prev;
1647 			}
1648 		}
1649 		return entry;
1650 	}
1651 
1652 	if (!prev)
1653 		return NULL;
1654 
1655 	/* find last entry before the 'offset' */
1656 	entry = prev;
1657 	if (entry->offset > offset) {
1658 		n = rb_prev(&entry->offset_index);
1659 		if (n) {
1660 			entry = rb_entry(n, struct btrfs_free_space,
1661 					offset_index);
1662 			ASSERT(entry->offset <= offset);
1663 		} else {
1664 			if (fuzzy)
1665 				return entry;
1666 			else
1667 				return NULL;
1668 		}
1669 	}
1670 
1671 	if (entry->bitmap) {
1672 		n = rb_prev(&entry->offset_index);
1673 		if (n) {
1674 			prev = rb_entry(n, struct btrfs_free_space,
1675 					offset_index);
1676 			if (!prev->bitmap &&
1677 			    prev->offset + prev->bytes > offset)
1678 				return prev;
1679 		}
1680 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1681 			return entry;
1682 	} else if (entry->offset + entry->bytes > offset)
1683 		return entry;
1684 
1685 	if (!fuzzy)
1686 		return NULL;
1687 
1688 	while (1) {
1689 		if (entry->bitmap) {
1690 			if (entry->offset + BITS_PER_BITMAP *
1691 			    ctl->unit > offset)
1692 				break;
1693 		} else {
1694 			if (entry->offset + entry->bytes > offset)
1695 				break;
1696 		}
1697 
1698 		n = rb_next(&entry->offset_index);
1699 		if (!n)
1700 			return NULL;
1701 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1702 	}
1703 	return entry;
1704 }
1705 
1706 static inline void
1707 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1708 		    struct btrfs_free_space *info)
1709 {
1710 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1711 	ctl->free_extents--;
1712 
1713 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1714 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1715 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1716 	}
1717 }
1718 
1719 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1720 			      struct btrfs_free_space *info)
1721 {
1722 	__unlink_free_space(ctl, info);
1723 	ctl->free_space -= info->bytes;
1724 }
1725 
1726 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1727 			   struct btrfs_free_space *info)
1728 {
1729 	int ret = 0;
1730 
1731 	ASSERT(info->bytes || info->bitmap);
1732 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1733 				 &info->offset_index, (info->bitmap != NULL));
1734 	if (ret)
1735 		return ret;
1736 
1737 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1738 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1739 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1740 	}
1741 
1742 	ctl->free_space += info->bytes;
1743 	ctl->free_extents++;
1744 	return ret;
1745 }
1746 
1747 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1748 				       struct btrfs_free_space *info,
1749 				       u64 offset, u64 bytes)
1750 {
1751 	unsigned long start, count, end;
1752 	int extent_delta = -1;
1753 
1754 	start = offset_to_bit(info->offset, ctl->unit, offset);
1755 	count = bytes_to_bits(bytes, ctl->unit);
1756 	end = start + count;
1757 	ASSERT(end <= BITS_PER_BITMAP);
1758 
1759 	bitmap_clear(info->bitmap, start, count);
1760 
1761 	info->bytes -= bytes;
1762 	if (info->max_extent_size > ctl->unit)
1763 		info->max_extent_size = 0;
1764 
1765 	if (start && test_bit(start - 1, info->bitmap))
1766 		extent_delta++;
1767 
1768 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1769 		extent_delta++;
1770 
1771 	info->bitmap_extents += extent_delta;
1772 	if (!btrfs_free_space_trimmed(info)) {
1773 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1774 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1775 	}
1776 }
1777 
1778 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1779 			      struct btrfs_free_space *info, u64 offset,
1780 			      u64 bytes)
1781 {
1782 	__bitmap_clear_bits(ctl, info, offset, bytes);
1783 	ctl->free_space -= bytes;
1784 }
1785 
1786 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1787 			    struct btrfs_free_space *info, u64 offset,
1788 			    u64 bytes)
1789 {
1790 	unsigned long start, count, end;
1791 	int extent_delta = 1;
1792 
1793 	start = offset_to_bit(info->offset, ctl->unit, offset);
1794 	count = bytes_to_bits(bytes, ctl->unit);
1795 	end = start + count;
1796 	ASSERT(end <= BITS_PER_BITMAP);
1797 
1798 	bitmap_set(info->bitmap, start, count);
1799 
1800 	info->bytes += bytes;
1801 	ctl->free_space += bytes;
1802 
1803 	if (start && test_bit(start - 1, info->bitmap))
1804 		extent_delta--;
1805 
1806 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1807 		extent_delta--;
1808 
1809 	info->bitmap_extents += extent_delta;
1810 	if (!btrfs_free_space_trimmed(info)) {
1811 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1812 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1813 	}
1814 }
1815 
1816 /*
1817  * If we can not find suitable extent, we will use bytes to record
1818  * the size of the max extent.
1819  */
1820 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1821 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1822 			 u64 *bytes, bool for_alloc)
1823 {
1824 	unsigned long found_bits = 0;
1825 	unsigned long max_bits = 0;
1826 	unsigned long bits, i;
1827 	unsigned long next_zero;
1828 	unsigned long extent_bits;
1829 
1830 	/*
1831 	 * Skip searching the bitmap if we don't have a contiguous section that
1832 	 * is large enough for this allocation.
1833 	 */
1834 	if (for_alloc &&
1835 	    bitmap_info->max_extent_size &&
1836 	    bitmap_info->max_extent_size < *bytes) {
1837 		*bytes = bitmap_info->max_extent_size;
1838 		return -1;
1839 	}
1840 
1841 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1842 			  max_t(u64, *offset, bitmap_info->offset));
1843 	bits = bytes_to_bits(*bytes, ctl->unit);
1844 
1845 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1846 		if (for_alloc && bits == 1) {
1847 			found_bits = 1;
1848 			break;
1849 		}
1850 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1851 					       BITS_PER_BITMAP, i);
1852 		extent_bits = next_zero - i;
1853 		if (extent_bits >= bits) {
1854 			found_bits = extent_bits;
1855 			break;
1856 		} else if (extent_bits > max_bits) {
1857 			max_bits = extent_bits;
1858 		}
1859 		i = next_zero;
1860 	}
1861 
1862 	if (found_bits) {
1863 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1864 		*bytes = (u64)(found_bits) * ctl->unit;
1865 		return 0;
1866 	}
1867 
1868 	*bytes = (u64)(max_bits) * ctl->unit;
1869 	bitmap_info->max_extent_size = *bytes;
1870 	return -1;
1871 }
1872 
1873 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1874 {
1875 	if (entry->bitmap)
1876 		return entry->max_extent_size;
1877 	return entry->bytes;
1878 }
1879 
1880 /* Cache the size of the max extent in bytes */
1881 static struct btrfs_free_space *
1882 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1883 		unsigned long align, u64 *max_extent_size)
1884 {
1885 	struct btrfs_free_space *entry;
1886 	struct rb_node *node;
1887 	u64 tmp;
1888 	u64 align_off;
1889 	int ret;
1890 
1891 	if (!ctl->free_space_offset.rb_node)
1892 		goto out;
1893 
1894 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1895 	if (!entry)
1896 		goto out;
1897 
1898 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1899 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1900 		if (entry->bytes < *bytes) {
1901 			*max_extent_size = max(get_max_extent_size(entry),
1902 					       *max_extent_size);
1903 			continue;
1904 		}
1905 
1906 		/* make sure the space returned is big enough
1907 		 * to match our requested alignment
1908 		 */
1909 		if (*bytes >= align) {
1910 			tmp = entry->offset - ctl->start + align - 1;
1911 			tmp = div64_u64(tmp, align);
1912 			tmp = tmp * align + ctl->start;
1913 			align_off = tmp - entry->offset;
1914 		} else {
1915 			align_off = 0;
1916 			tmp = entry->offset;
1917 		}
1918 
1919 		if (entry->bytes < *bytes + align_off) {
1920 			*max_extent_size = max(get_max_extent_size(entry),
1921 					       *max_extent_size);
1922 			continue;
1923 		}
1924 
1925 		if (entry->bitmap) {
1926 			u64 size = *bytes;
1927 
1928 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1929 			if (!ret) {
1930 				*offset = tmp;
1931 				*bytes = size;
1932 				return entry;
1933 			} else {
1934 				*max_extent_size =
1935 					max(get_max_extent_size(entry),
1936 					    *max_extent_size);
1937 			}
1938 			continue;
1939 		}
1940 
1941 		*offset = tmp;
1942 		*bytes = entry->bytes - align_off;
1943 		return entry;
1944 	}
1945 out:
1946 	return NULL;
1947 }
1948 
1949 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1950 			   struct btrfs_free_space *info, u64 offset)
1951 {
1952 	info->offset = offset_to_bitmap(ctl, offset);
1953 	info->bytes = 0;
1954 	info->bitmap_extents = 0;
1955 	INIT_LIST_HEAD(&info->list);
1956 	link_free_space(ctl, info);
1957 	ctl->total_bitmaps++;
1958 	recalculate_thresholds(ctl);
1959 }
1960 
1961 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1962 			struct btrfs_free_space *bitmap_info)
1963 {
1964 	/*
1965 	 * Normally when this is called, the bitmap is completely empty. However,
1966 	 * if we are blowing up the free space cache for one reason or another
1967 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1968 	 * we may leave stats on the table.
1969 	 */
1970 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1971 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1972 			bitmap_info->bitmap_extents;
1973 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1974 
1975 	}
1976 	unlink_free_space(ctl, bitmap_info);
1977 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1978 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1979 	ctl->total_bitmaps--;
1980 	recalculate_thresholds(ctl);
1981 }
1982 
1983 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1984 			      struct btrfs_free_space *bitmap_info,
1985 			      u64 *offset, u64 *bytes)
1986 {
1987 	u64 end;
1988 	u64 search_start, search_bytes;
1989 	int ret;
1990 
1991 again:
1992 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1993 
1994 	/*
1995 	 * We need to search for bits in this bitmap.  We could only cover some
1996 	 * of the extent in this bitmap thanks to how we add space, so we need
1997 	 * to search for as much as it as we can and clear that amount, and then
1998 	 * go searching for the next bit.
1999 	 */
2000 	search_start = *offset;
2001 	search_bytes = ctl->unit;
2002 	search_bytes = min(search_bytes, end - search_start + 1);
2003 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2004 			    false);
2005 	if (ret < 0 || search_start != *offset)
2006 		return -EINVAL;
2007 
2008 	/* We may have found more bits than what we need */
2009 	search_bytes = min(search_bytes, *bytes);
2010 
2011 	/* Cannot clear past the end of the bitmap */
2012 	search_bytes = min(search_bytes, end - search_start + 1);
2013 
2014 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2015 	*offset += search_bytes;
2016 	*bytes -= search_bytes;
2017 
2018 	if (*bytes) {
2019 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2020 		if (!bitmap_info->bytes)
2021 			free_bitmap(ctl, bitmap_info);
2022 
2023 		/*
2024 		 * no entry after this bitmap, but we still have bytes to
2025 		 * remove, so something has gone wrong.
2026 		 */
2027 		if (!next)
2028 			return -EINVAL;
2029 
2030 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2031 				       offset_index);
2032 
2033 		/*
2034 		 * if the next entry isn't a bitmap we need to return to let the
2035 		 * extent stuff do its work.
2036 		 */
2037 		if (!bitmap_info->bitmap)
2038 			return -EAGAIN;
2039 
2040 		/*
2041 		 * Ok the next item is a bitmap, but it may not actually hold
2042 		 * the information for the rest of this free space stuff, so
2043 		 * look for it, and if we don't find it return so we can try
2044 		 * everything over again.
2045 		 */
2046 		search_start = *offset;
2047 		search_bytes = ctl->unit;
2048 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2049 				    &search_bytes, false);
2050 		if (ret < 0 || search_start != *offset)
2051 			return -EAGAIN;
2052 
2053 		goto again;
2054 	} else if (!bitmap_info->bytes)
2055 		free_bitmap(ctl, bitmap_info);
2056 
2057 	return 0;
2058 }
2059 
2060 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2061 			       struct btrfs_free_space *info, u64 offset,
2062 			       u64 bytes, enum btrfs_trim_state trim_state)
2063 {
2064 	u64 bytes_to_set = 0;
2065 	u64 end;
2066 
2067 	/*
2068 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2069 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2070 	 */
2071 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2072 		if (btrfs_free_space_trimmed(info)) {
2073 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2074 				info->bitmap_extents;
2075 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2076 		}
2077 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2078 	}
2079 
2080 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2081 
2082 	bytes_to_set = min(end - offset, bytes);
2083 
2084 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2085 
2086 	/*
2087 	 * We set some bytes, we have no idea what the max extent size is
2088 	 * anymore.
2089 	 */
2090 	info->max_extent_size = 0;
2091 
2092 	return bytes_to_set;
2093 
2094 }
2095 
2096 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2097 		      struct btrfs_free_space *info)
2098 {
2099 	struct btrfs_block_group *block_group = ctl->private;
2100 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2101 	bool forced = false;
2102 
2103 #ifdef CONFIG_BTRFS_DEBUG
2104 	if (btrfs_should_fragment_free_space(block_group))
2105 		forced = true;
2106 #endif
2107 
2108 	/* This is a way to reclaim large regions from the bitmaps. */
2109 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2110 		return false;
2111 
2112 	/*
2113 	 * If we are below the extents threshold then we can add this as an
2114 	 * extent, and don't have to deal with the bitmap
2115 	 */
2116 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2117 		/*
2118 		 * If this block group has some small extents we don't want to
2119 		 * use up all of our free slots in the cache with them, we want
2120 		 * to reserve them to larger extents, however if we have plenty
2121 		 * of cache left then go ahead an dadd them, no sense in adding
2122 		 * the overhead of a bitmap if we don't have to.
2123 		 */
2124 		if (info->bytes <= fs_info->sectorsize * 8) {
2125 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2126 				return false;
2127 		} else {
2128 			return false;
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * The original block groups from mkfs can be really small, like 8
2134 	 * megabytes, so don't bother with a bitmap for those entries.  However
2135 	 * some block groups can be smaller than what a bitmap would cover but
2136 	 * are still large enough that they could overflow the 32k memory limit,
2137 	 * so allow those block groups to still be allowed to have a bitmap
2138 	 * entry.
2139 	 */
2140 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2141 		return false;
2142 
2143 	return true;
2144 }
2145 
2146 static const struct btrfs_free_space_op free_space_op = {
2147 	.use_bitmap		= use_bitmap,
2148 };
2149 
2150 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2151 			      struct btrfs_free_space *info)
2152 {
2153 	struct btrfs_free_space *bitmap_info;
2154 	struct btrfs_block_group *block_group = NULL;
2155 	int added = 0;
2156 	u64 bytes, offset, bytes_added;
2157 	enum btrfs_trim_state trim_state;
2158 	int ret;
2159 
2160 	bytes = info->bytes;
2161 	offset = info->offset;
2162 	trim_state = info->trim_state;
2163 
2164 	if (!ctl->op->use_bitmap(ctl, info))
2165 		return 0;
2166 
2167 	if (ctl->op == &free_space_op)
2168 		block_group = ctl->private;
2169 again:
2170 	/*
2171 	 * Since we link bitmaps right into the cluster we need to see if we
2172 	 * have a cluster here, and if so and it has our bitmap we need to add
2173 	 * the free space to that bitmap.
2174 	 */
2175 	if (block_group && !list_empty(&block_group->cluster_list)) {
2176 		struct btrfs_free_cluster *cluster;
2177 		struct rb_node *node;
2178 		struct btrfs_free_space *entry;
2179 
2180 		cluster = list_entry(block_group->cluster_list.next,
2181 				     struct btrfs_free_cluster,
2182 				     block_group_list);
2183 		spin_lock(&cluster->lock);
2184 		node = rb_first(&cluster->root);
2185 		if (!node) {
2186 			spin_unlock(&cluster->lock);
2187 			goto no_cluster_bitmap;
2188 		}
2189 
2190 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2191 		if (!entry->bitmap) {
2192 			spin_unlock(&cluster->lock);
2193 			goto no_cluster_bitmap;
2194 		}
2195 
2196 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2197 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2198 							  bytes, trim_state);
2199 			bytes -= bytes_added;
2200 			offset += bytes_added;
2201 		}
2202 		spin_unlock(&cluster->lock);
2203 		if (!bytes) {
2204 			ret = 1;
2205 			goto out;
2206 		}
2207 	}
2208 
2209 no_cluster_bitmap:
2210 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2211 					 1, 0);
2212 	if (!bitmap_info) {
2213 		ASSERT(added == 0);
2214 		goto new_bitmap;
2215 	}
2216 
2217 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2218 					  trim_state);
2219 	bytes -= bytes_added;
2220 	offset += bytes_added;
2221 	added = 0;
2222 
2223 	if (!bytes) {
2224 		ret = 1;
2225 		goto out;
2226 	} else
2227 		goto again;
2228 
2229 new_bitmap:
2230 	if (info && info->bitmap) {
2231 		add_new_bitmap(ctl, info, offset);
2232 		added = 1;
2233 		info = NULL;
2234 		goto again;
2235 	} else {
2236 		spin_unlock(&ctl->tree_lock);
2237 
2238 		/* no pre-allocated info, allocate a new one */
2239 		if (!info) {
2240 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2241 						 GFP_NOFS);
2242 			if (!info) {
2243 				spin_lock(&ctl->tree_lock);
2244 				ret = -ENOMEM;
2245 				goto out;
2246 			}
2247 		}
2248 
2249 		/* allocate the bitmap */
2250 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2251 						 GFP_NOFS);
2252 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2253 		spin_lock(&ctl->tree_lock);
2254 		if (!info->bitmap) {
2255 			ret = -ENOMEM;
2256 			goto out;
2257 		}
2258 		goto again;
2259 	}
2260 
2261 out:
2262 	if (info) {
2263 		if (info->bitmap)
2264 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2265 					info->bitmap);
2266 		kmem_cache_free(btrfs_free_space_cachep, info);
2267 	}
2268 
2269 	return ret;
2270 }
2271 
2272 /*
2273  * Free space merging rules:
2274  *  1) Merge trimmed areas together
2275  *  2) Let untrimmed areas coalesce with trimmed areas
2276  *  3) Always pull neighboring regions from bitmaps
2277  *
2278  * The above rules are for when we merge free space based on btrfs_trim_state.
2279  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2280  * same reason: to promote larger extent regions which makes life easier for
2281  * find_free_extent().  Rule 2 enables coalescing based on the common path
2282  * being returning free space from btrfs_finish_extent_commit().  So when free
2283  * space is trimmed, it will prevent aggregating trimmed new region and
2284  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2285  * and provide find_free_extent() with the largest extents possible hoping for
2286  * the reuse path.
2287  */
2288 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2289 			  struct btrfs_free_space *info, bool update_stat)
2290 {
2291 	struct btrfs_free_space *left_info = NULL;
2292 	struct btrfs_free_space *right_info;
2293 	bool merged = false;
2294 	u64 offset = info->offset;
2295 	u64 bytes = info->bytes;
2296 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2297 
2298 	/*
2299 	 * first we want to see if there is free space adjacent to the range we
2300 	 * are adding, if there is remove that struct and add a new one to
2301 	 * cover the entire range
2302 	 */
2303 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2304 	if (right_info && rb_prev(&right_info->offset_index))
2305 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2306 				     struct btrfs_free_space, offset_index);
2307 	else if (!right_info)
2308 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2309 
2310 	/* See try_merge_free_space() comment. */
2311 	if (right_info && !right_info->bitmap &&
2312 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2313 		if (update_stat)
2314 			unlink_free_space(ctl, right_info);
2315 		else
2316 			__unlink_free_space(ctl, right_info);
2317 		info->bytes += right_info->bytes;
2318 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2319 		merged = true;
2320 	}
2321 
2322 	/* See try_merge_free_space() comment. */
2323 	if (left_info && !left_info->bitmap &&
2324 	    left_info->offset + left_info->bytes == offset &&
2325 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2326 		if (update_stat)
2327 			unlink_free_space(ctl, left_info);
2328 		else
2329 			__unlink_free_space(ctl, left_info);
2330 		info->offset = left_info->offset;
2331 		info->bytes += left_info->bytes;
2332 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2333 		merged = true;
2334 	}
2335 
2336 	return merged;
2337 }
2338 
2339 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2340 				     struct btrfs_free_space *info,
2341 				     bool update_stat)
2342 {
2343 	struct btrfs_free_space *bitmap;
2344 	unsigned long i;
2345 	unsigned long j;
2346 	const u64 end = info->offset + info->bytes;
2347 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2348 	u64 bytes;
2349 
2350 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2351 	if (!bitmap)
2352 		return false;
2353 
2354 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2355 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2356 	if (j == i)
2357 		return false;
2358 	bytes = (j - i) * ctl->unit;
2359 	info->bytes += bytes;
2360 
2361 	/* See try_merge_free_space() comment. */
2362 	if (!btrfs_free_space_trimmed(bitmap))
2363 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2364 
2365 	if (update_stat)
2366 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2367 	else
2368 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2369 
2370 	if (!bitmap->bytes)
2371 		free_bitmap(ctl, bitmap);
2372 
2373 	return true;
2374 }
2375 
2376 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2377 				       struct btrfs_free_space *info,
2378 				       bool update_stat)
2379 {
2380 	struct btrfs_free_space *bitmap;
2381 	u64 bitmap_offset;
2382 	unsigned long i;
2383 	unsigned long j;
2384 	unsigned long prev_j;
2385 	u64 bytes;
2386 
2387 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2388 	/* If we're on a boundary, try the previous logical bitmap. */
2389 	if (bitmap_offset == info->offset) {
2390 		if (info->offset == 0)
2391 			return false;
2392 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2393 	}
2394 
2395 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2396 	if (!bitmap)
2397 		return false;
2398 
2399 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2400 	j = 0;
2401 	prev_j = (unsigned long)-1;
2402 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2403 		if (j > i)
2404 			break;
2405 		prev_j = j;
2406 	}
2407 	if (prev_j == i)
2408 		return false;
2409 
2410 	if (prev_j == (unsigned long)-1)
2411 		bytes = (i + 1) * ctl->unit;
2412 	else
2413 		bytes = (i - prev_j) * ctl->unit;
2414 
2415 	info->offset -= bytes;
2416 	info->bytes += bytes;
2417 
2418 	/* See try_merge_free_space() comment. */
2419 	if (!btrfs_free_space_trimmed(bitmap))
2420 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2421 
2422 	if (update_stat)
2423 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2424 	else
2425 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2426 
2427 	if (!bitmap->bytes)
2428 		free_bitmap(ctl, bitmap);
2429 
2430 	return true;
2431 }
2432 
2433 /*
2434  * We prefer always to allocate from extent entries, both for clustered and
2435  * non-clustered allocation requests. So when attempting to add a new extent
2436  * entry, try to see if there's adjacent free space in bitmap entries, and if
2437  * there is, migrate that space from the bitmaps to the extent.
2438  * Like this we get better chances of satisfying space allocation requests
2439  * because we attempt to satisfy them based on a single cache entry, and never
2440  * on 2 or more entries - even if the entries represent a contiguous free space
2441  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2442  * ends).
2443  */
2444 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2445 			      struct btrfs_free_space *info,
2446 			      bool update_stat)
2447 {
2448 	/*
2449 	 * Only work with disconnected entries, as we can change their offset,
2450 	 * and must be extent entries.
2451 	 */
2452 	ASSERT(!info->bitmap);
2453 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2454 
2455 	if (ctl->total_bitmaps > 0) {
2456 		bool stole_end;
2457 		bool stole_front = false;
2458 
2459 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2460 		if (ctl->total_bitmaps > 0)
2461 			stole_front = steal_from_bitmap_to_front(ctl, info,
2462 								 update_stat);
2463 
2464 		if (stole_end || stole_front)
2465 			try_merge_free_space(ctl, info, update_stat);
2466 	}
2467 }
2468 
2469 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2470 			   struct btrfs_free_space_ctl *ctl,
2471 			   u64 offset, u64 bytes,
2472 			   enum btrfs_trim_state trim_state)
2473 {
2474 	struct btrfs_block_group *block_group = ctl->private;
2475 	struct btrfs_free_space *info;
2476 	int ret = 0;
2477 	u64 filter_bytes = bytes;
2478 
2479 	ASSERT(!btrfs_is_zoned(fs_info));
2480 
2481 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2482 	if (!info)
2483 		return -ENOMEM;
2484 
2485 	info->offset = offset;
2486 	info->bytes = bytes;
2487 	info->trim_state = trim_state;
2488 	RB_CLEAR_NODE(&info->offset_index);
2489 
2490 	spin_lock(&ctl->tree_lock);
2491 
2492 	if (try_merge_free_space(ctl, info, true))
2493 		goto link;
2494 
2495 	/*
2496 	 * There was no extent directly to the left or right of this new
2497 	 * extent then we know we're going to have to allocate a new extent, so
2498 	 * before we do that see if we need to drop this into a bitmap
2499 	 */
2500 	ret = insert_into_bitmap(ctl, info);
2501 	if (ret < 0) {
2502 		goto out;
2503 	} else if (ret) {
2504 		ret = 0;
2505 		goto out;
2506 	}
2507 link:
2508 	/*
2509 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2510 	 * going to add the new free space to existing bitmap entries - because
2511 	 * that would mean unnecessary work that would be reverted. Therefore
2512 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2513 	 */
2514 	steal_from_bitmap(ctl, info, true);
2515 
2516 	filter_bytes = max(filter_bytes, info->bytes);
2517 
2518 	ret = link_free_space(ctl, info);
2519 	if (ret)
2520 		kmem_cache_free(btrfs_free_space_cachep, info);
2521 out:
2522 	btrfs_discard_update_discardable(block_group);
2523 	spin_unlock(&ctl->tree_lock);
2524 
2525 	if (ret) {
2526 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2527 		ASSERT(ret != -EEXIST);
2528 	}
2529 
2530 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2531 		btrfs_discard_check_filter(block_group, filter_bytes);
2532 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2533 	}
2534 
2535 	return ret;
2536 }
2537 
2538 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2539 					u64 bytenr, u64 size, bool used)
2540 {
2541 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2542 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2543 	u64 offset = bytenr - block_group->start;
2544 	u64 to_free, to_unusable;
2545 	const int bg_reclaim_threshold = READ_ONCE(fs_info->bg_reclaim_threshold);
2546 	bool initial = (size == block_group->length);
2547 	u64 reclaimable_unusable;
2548 
2549 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2550 
2551 	spin_lock(&ctl->tree_lock);
2552 	if (!used)
2553 		to_free = size;
2554 	else if (initial)
2555 		to_free = block_group->zone_capacity;
2556 	else if (offset >= block_group->alloc_offset)
2557 		to_free = size;
2558 	else if (offset + size <= block_group->alloc_offset)
2559 		to_free = 0;
2560 	else
2561 		to_free = offset + size - block_group->alloc_offset;
2562 	to_unusable = size - to_free;
2563 
2564 	ctl->free_space += to_free;
2565 	/*
2566 	 * If the block group is read-only, we should account freed space into
2567 	 * bytes_readonly.
2568 	 */
2569 	if (!block_group->ro)
2570 		block_group->zone_unusable += to_unusable;
2571 	spin_unlock(&ctl->tree_lock);
2572 	if (!used) {
2573 		spin_lock(&block_group->lock);
2574 		block_group->alloc_offset -= size;
2575 		spin_unlock(&block_group->lock);
2576 	}
2577 
2578 	reclaimable_unusable = block_group->zone_unusable -
2579 			       (block_group->length - block_group->zone_capacity);
2580 	/* All the region is now unusable. Mark it as unused and reclaim */
2581 	if (block_group->zone_unusable == block_group->length) {
2582 		btrfs_mark_bg_unused(block_group);
2583 	} else if (bg_reclaim_threshold &&
2584 		   reclaimable_unusable >=
2585 		   div_factor_fine(block_group->zone_capacity,
2586 				   bg_reclaim_threshold)) {
2587 		btrfs_mark_bg_to_reclaim(block_group);
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2594 			 u64 bytenr, u64 size)
2595 {
2596 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2597 
2598 	if (btrfs_is_zoned(block_group->fs_info))
2599 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2600 						    true);
2601 
2602 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2603 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2604 
2605 	return __btrfs_add_free_space(block_group->fs_info,
2606 				      block_group->free_space_ctl,
2607 				      bytenr, size, trim_state);
2608 }
2609 
2610 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2611 				u64 bytenr, u64 size)
2612 {
2613 	if (btrfs_is_zoned(block_group->fs_info))
2614 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2615 						    false);
2616 
2617 	return btrfs_add_free_space(block_group, bytenr, size);
2618 }
2619 
2620 /*
2621  * This is a subtle distinction because when adding free space back in general,
2622  * we want it to be added as untrimmed for async. But in the case where we add
2623  * it on loading of a block group, we want to consider it trimmed.
2624  */
2625 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2626 				       u64 bytenr, u64 size)
2627 {
2628 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2629 
2630 	if (btrfs_is_zoned(block_group->fs_info))
2631 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2632 						    true);
2633 
2634 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2635 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2636 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2637 
2638 	return __btrfs_add_free_space(block_group->fs_info,
2639 				      block_group->free_space_ctl,
2640 				      bytenr, size, trim_state);
2641 }
2642 
2643 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2644 			    u64 offset, u64 bytes)
2645 {
2646 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2647 	struct btrfs_free_space *info;
2648 	int ret;
2649 	bool re_search = false;
2650 
2651 	if (btrfs_is_zoned(block_group->fs_info)) {
2652 		/*
2653 		 * This can happen with conventional zones when replaying log.
2654 		 * Since the allocation info of tree-log nodes are not recorded
2655 		 * to the extent-tree, calculate_alloc_pointer() failed to
2656 		 * advance the allocation pointer after last allocated tree log
2657 		 * node blocks.
2658 		 *
2659 		 * This function is called from
2660 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2661 		 * Advance the pointer not to overwrite the tree-log nodes.
2662 		 */
2663 		if (block_group->start + block_group->alloc_offset <
2664 		    offset + bytes) {
2665 			block_group->alloc_offset =
2666 				offset + bytes - block_group->start;
2667 		}
2668 		return 0;
2669 	}
2670 
2671 	spin_lock(&ctl->tree_lock);
2672 
2673 again:
2674 	ret = 0;
2675 	if (!bytes)
2676 		goto out_lock;
2677 
2678 	info = tree_search_offset(ctl, offset, 0, 0);
2679 	if (!info) {
2680 		/*
2681 		 * oops didn't find an extent that matched the space we wanted
2682 		 * to remove, look for a bitmap instead
2683 		 */
2684 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2685 					  1, 0);
2686 		if (!info) {
2687 			/*
2688 			 * If we found a partial bit of our free space in a
2689 			 * bitmap but then couldn't find the other part this may
2690 			 * be a problem, so WARN about it.
2691 			 */
2692 			WARN_ON(re_search);
2693 			goto out_lock;
2694 		}
2695 	}
2696 
2697 	re_search = false;
2698 	if (!info->bitmap) {
2699 		unlink_free_space(ctl, info);
2700 		if (offset == info->offset) {
2701 			u64 to_free = min(bytes, info->bytes);
2702 
2703 			info->bytes -= to_free;
2704 			info->offset += to_free;
2705 			if (info->bytes) {
2706 				ret = link_free_space(ctl, info);
2707 				WARN_ON(ret);
2708 			} else {
2709 				kmem_cache_free(btrfs_free_space_cachep, info);
2710 			}
2711 
2712 			offset += to_free;
2713 			bytes -= to_free;
2714 			goto again;
2715 		} else {
2716 			u64 old_end = info->bytes + info->offset;
2717 
2718 			info->bytes = offset - info->offset;
2719 			ret = link_free_space(ctl, info);
2720 			WARN_ON(ret);
2721 			if (ret)
2722 				goto out_lock;
2723 
2724 			/* Not enough bytes in this entry to satisfy us */
2725 			if (old_end < offset + bytes) {
2726 				bytes -= old_end - offset;
2727 				offset = old_end;
2728 				goto again;
2729 			} else if (old_end == offset + bytes) {
2730 				/* all done */
2731 				goto out_lock;
2732 			}
2733 			spin_unlock(&ctl->tree_lock);
2734 
2735 			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2736 						     offset + bytes,
2737 						     old_end - (offset + bytes),
2738 						     info->trim_state);
2739 			WARN_ON(ret);
2740 			goto out;
2741 		}
2742 	}
2743 
2744 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2745 	if (ret == -EAGAIN) {
2746 		re_search = true;
2747 		goto again;
2748 	}
2749 out_lock:
2750 	btrfs_discard_update_discardable(block_group);
2751 	spin_unlock(&ctl->tree_lock);
2752 out:
2753 	return ret;
2754 }
2755 
2756 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2757 			   u64 bytes)
2758 {
2759 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2760 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2761 	struct btrfs_free_space *info;
2762 	struct rb_node *n;
2763 	int count = 0;
2764 
2765 	/*
2766 	 * Zoned btrfs does not use free space tree and cluster. Just print
2767 	 * out the free space after the allocation offset.
2768 	 */
2769 	if (btrfs_is_zoned(fs_info)) {
2770 		btrfs_info(fs_info, "free space %llu active %d",
2771 			   block_group->zone_capacity - block_group->alloc_offset,
2772 			   block_group->zone_is_active);
2773 		return;
2774 	}
2775 
2776 	spin_lock(&ctl->tree_lock);
2777 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2778 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2779 		if (info->bytes >= bytes && !block_group->ro)
2780 			count++;
2781 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2782 			   info->offset, info->bytes,
2783 		       (info->bitmap) ? "yes" : "no");
2784 	}
2785 	spin_unlock(&ctl->tree_lock);
2786 	btrfs_info(fs_info, "block group has cluster?: %s",
2787 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2788 	btrfs_info(fs_info,
2789 		   "%d blocks of free space at or bigger than bytes is", count);
2790 }
2791 
2792 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2793 			       struct btrfs_free_space_ctl *ctl)
2794 {
2795 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2796 
2797 	spin_lock_init(&ctl->tree_lock);
2798 	ctl->unit = fs_info->sectorsize;
2799 	ctl->start = block_group->start;
2800 	ctl->private = block_group;
2801 	ctl->op = &free_space_op;
2802 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2803 	mutex_init(&ctl->cache_writeout_mutex);
2804 
2805 	/*
2806 	 * we only want to have 32k of ram per block group for keeping
2807 	 * track of free space, and if we pass 1/2 of that we want to
2808 	 * start converting things over to using bitmaps
2809 	 */
2810 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2811 }
2812 
2813 /*
2814  * for a given cluster, put all of its extents back into the free
2815  * space cache.  If the block group passed doesn't match the block group
2816  * pointed to by the cluster, someone else raced in and freed the
2817  * cluster already.  In that case, we just return without changing anything
2818  */
2819 static void __btrfs_return_cluster_to_free_space(
2820 			     struct btrfs_block_group *block_group,
2821 			     struct btrfs_free_cluster *cluster)
2822 {
2823 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2824 	struct btrfs_free_space *entry;
2825 	struct rb_node *node;
2826 
2827 	spin_lock(&cluster->lock);
2828 	if (cluster->block_group != block_group) {
2829 		spin_unlock(&cluster->lock);
2830 		return;
2831 	}
2832 
2833 	cluster->block_group = NULL;
2834 	cluster->window_start = 0;
2835 	list_del_init(&cluster->block_group_list);
2836 
2837 	node = rb_first(&cluster->root);
2838 	while (node) {
2839 		bool bitmap;
2840 
2841 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2842 		node = rb_next(&entry->offset_index);
2843 		rb_erase(&entry->offset_index, &cluster->root);
2844 		RB_CLEAR_NODE(&entry->offset_index);
2845 
2846 		bitmap = (entry->bitmap != NULL);
2847 		if (!bitmap) {
2848 			/* Merging treats extents as if they were new */
2849 			if (!btrfs_free_space_trimmed(entry)) {
2850 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2851 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2852 					entry->bytes;
2853 			}
2854 
2855 			try_merge_free_space(ctl, entry, false);
2856 			steal_from_bitmap(ctl, entry, false);
2857 
2858 			/* As we insert directly, update these statistics */
2859 			if (!btrfs_free_space_trimmed(entry)) {
2860 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2861 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2862 					entry->bytes;
2863 			}
2864 		}
2865 		tree_insert_offset(&ctl->free_space_offset,
2866 				   entry->offset, &entry->offset_index, bitmap);
2867 	}
2868 	cluster->root = RB_ROOT;
2869 	spin_unlock(&cluster->lock);
2870 	btrfs_put_block_group(block_group);
2871 }
2872 
2873 static void __btrfs_remove_free_space_cache_locked(
2874 				struct btrfs_free_space_ctl *ctl)
2875 {
2876 	struct btrfs_free_space *info;
2877 	struct rb_node *node;
2878 
2879 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2880 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2881 		if (!info->bitmap) {
2882 			unlink_free_space(ctl, info);
2883 			kmem_cache_free(btrfs_free_space_cachep, info);
2884 		} else {
2885 			free_bitmap(ctl, info);
2886 		}
2887 
2888 		cond_resched_lock(&ctl->tree_lock);
2889 	}
2890 }
2891 
2892 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2893 {
2894 	spin_lock(&ctl->tree_lock);
2895 	__btrfs_remove_free_space_cache_locked(ctl);
2896 	if (ctl->private)
2897 		btrfs_discard_update_discardable(ctl->private);
2898 	spin_unlock(&ctl->tree_lock);
2899 }
2900 
2901 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2902 {
2903 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2904 	struct btrfs_free_cluster *cluster;
2905 	struct list_head *head;
2906 
2907 	spin_lock(&ctl->tree_lock);
2908 	while ((head = block_group->cluster_list.next) !=
2909 	       &block_group->cluster_list) {
2910 		cluster = list_entry(head, struct btrfs_free_cluster,
2911 				     block_group_list);
2912 
2913 		WARN_ON(cluster->block_group != block_group);
2914 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2915 
2916 		cond_resched_lock(&ctl->tree_lock);
2917 	}
2918 	__btrfs_remove_free_space_cache_locked(ctl);
2919 	btrfs_discard_update_discardable(block_group);
2920 	spin_unlock(&ctl->tree_lock);
2921 
2922 }
2923 
2924 /**
2925  * btrfs_is_free_space_trimmed - see if everything is trimmed
2926  * @block_group: block_group of interest
2927  *
2928  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2929  */
2930 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2931 {
2932 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2933 	struct btrfs_free_space *info;
2934 	struct rb_node *node;
2935 	bool ret = true;
2936 
2937 	spin_lock(&ctl->tree_lock);
2938 	node = rb_first(&ctl->free_space_offset);
2939 
2940 	while (node) {
2941 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2942 
2943 		if (!btrfs_free_space_trimmed(info)) {
2944 			ret = false;
2945 			break;
2946 		}
2947 
2948 		node = rb_next(node);
2949 	}
2950 
2951 	spin_unlock(&ctl->tree_lock);
2952 	return ret;
2953 }
2954 
2955 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2956 			       u64 offset, u64 bytes, u64 empty_size,
2957 			       u64 *max_extent_size)
2958 {
2959 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2960 	struct btrfs_discard_ctl *discard_ctl =
2961 					&block_group->fs_info->discard_ctl;
2962 	struct btrfs_free_space *entry = NULL;
2963 	u64 bytes_search = bytes + empty_size;
2964 	u64 ret = 0;
2965 	u64 align_gap = 0;
2966 	u64 align_gap_len = 0;
2967 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2968 
2969 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
2970 
2971 	spin_lock(&ctl->tree_lock);
2972 	entry = find_free_space(ctl, &offset, &bytes_search,
2973 				block_group->full_stripe_len, max_extent_size);
2974 	if (!entry)
2975 		goto out;
2976 
2977 	ret = offset;
2978 	if (entry->bitmap) {
2979 		bitmap_clear_bits(ctl, entry, offset, bytes);
2980 
2981 		if (!btrfs_free_space_trimmed(entry))
2982 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2983 
2984 		if (!entry->bytes)
2985 			free_bitmap(ctl, entry);
2986 	} else {
2987 		unlink_free_space(ctl, entry);
2988 		align_gap_len = offset - entry->offset;
2989 		align_gap = entry->offset;
2990 		align_gap_trim_state = entry->trim_state;
2991 
2992 		if (!btrfs_free_space_trimmed(entry))
2993 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2994 
2995 		entry->offset = offset + bytes;
2996 		WARN_ON(entry->bytes < bytes + align_gap_len);
2997 
2998 		entry->bytes -= bytes + align_gap_len;
2999 		if (!entry->bytes)
3000 			kmem_cache_free(btrfs_free_space_cachep, entry);
3001 		else
3002 			link_free_space(ctl, entry);
3003 	}
3004 out:
3005 	btrfs_discard_update_discardable(block_group);
3006 	spin_unlock(&ctl->tree_lock);
3007 
3008 	if (align_gap_len)
3009 		__btrfs_add_free_space(block_group->fs_info, ctl,
3010 				       align_gap, align_gap_len,
3011 				       align_gap_trim_state);
3012 	return ret;
3013 }
3014 
3015 /*
3016  * given a cluster, put all of its extents back into the free space
3017  * cache.  If a block group is passed, this function will only free
3018  * a cluster that belongs to the passed block group.
3019  *
3020  * Otherwise, it'll get a reference on the block group pointed to by the
3021  * cluster and remove the cluster from it.
3022  */
3023 void btrfs_return_cluster_to_free_space(
3024 			       struct btrfs_block_group *block_group,
3025 			       struct btrfs_free_cluster *cluster)
3026 {
3027 	struct btrfs_free_space_ctl *ctl;
3028 
3029 	/* first, get a safe pointer to the block group */
3030 	spin_lock(&cluster->lock);
3031 	if (!block_group) {
3032 		block_group = cluster->block_group;
3033 		if (!block_group) {
3034 			spin_unlock(&cluster->lock);
3035 			return;
3036 		}
3037 	} else if (cluster->block_group != block_group) {
3038 		/* someone else has already freed it don't redo their work */
3039 		spin_unlock(&cluster->lock);
3040 		return;
3041 	}
3042 	btrfs_get_block_group(block_group);
3043 	spin_unlock(&cluster->lock);
3044 
3045 	ctl = block_group->free_space_ctl;
3046 
3047 	/* now return any extents the cluster had on it */
3048 	spin_lock(&ctl->tree_lock);
3049 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3050 	spin_unlock(&ctl->tree_lock);
3051 
3052 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3053 
3054 	/* finally drop our ref */
3055 	btrfs_put_block_group(block_group);
3056 }
3057 
3058 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3059 				   struct btrfs_free_cluster *cluster,
3060 				   struct btrfs_free_space *entry,
3061 				   u64 bytes, u64 min_start,
3062 				   u64 *max_extent_size)
3063 {
3064 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3065 	int err;
3066 	u64 search_start = cluster->window_start;
3067 	u64 search_bytes = bytes;
3068 	u64 ret = 0;
3069 
3070 	search_start = min_start;
3071 	search_bytes = bytes;
3072 
3073 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3074 	if (err) {
3075 		*max_extent_size = max(get_max_extent_size(entry),
3076 				       *max_extent_size);
3077 		return 0;
3078 	}
3079 
3080 	ret = search_start;
3081 	__bitmap_clear_bits(ctl, entry, ret, bytes);
3082 
3083 	return ret;
3084 }
3085 
3086 /*
3087  * given a cluster, try to allocate 'bytes' from it, returns 0
3088  * if it couldn't find anything suitably large, or a logical disk offset
3089  * if things worked out
3090  */
3091 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3092 			     struct btrfs_free_cluster *cluster, u64 bytes,
3093 			     u64 min_start, u64 *max_extent_size)
3094 {
3095 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3096 	struct btrfs_discard_ctl *discard_ctl =
3097 					&block_group->fs_info->discard_ctl;
3098 	struct btrfs_free_space *entry = NULL;
3099 	struct rb_node *node;
3100 	u64 ret = 0;
3101 
3102 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3103 
3104 	spin_lock(&cluster->lock);
3105 	if (bytes > cluster->max_size)
3106 		goto out;
3107 
3108 	if (cluster->block_group != block_group)
3109 		goto out;
3110 
3111 	node = rb_first(&cluster->root);
3112 	if (!node)
3113 		goto out;
3114 
3115 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3116 	while (1) {
3117 		if (entry->bytes < bytes)
3118 			*max_extent_size = max(get_max_extent_size(entry),
3119 					       *max_extent_size);
3120 
3121 		if (entry->bytes < bytes ||
3122 		    (!entry->bitmap && entry->offset < min_start)) {
3123 			node = rb_next(&entry->offset_index);
3124 			if (!node)
3125 				break;
3126 			entry = rb_entry(node, struct btrfs_free_space,
3127 					 offset_index);
3128 			continue;
3129 		}
3130 
3131 		if (entry->bitmap) {
3132 			ret = btrfs_alloc_from_bitmap(block_group,
3133 						      cluster, entry, bytes,
3134 						      cluster->window_start,
3135 						      max_extent_size);
3136 			if (ret == 0) {
3137 				node = rb_next(&entry->offset_index);
3138 				if (!node)
3139 					break;
3140 				entry = rb_entry(node, struct btrfs_free_space,
3141 						 offset_index);
3142 				continue;
3143 			}
3144 			cluster->window_start += bytes;
3145 		} else {
3146 			ret = entry->offset;
3147 
3148 			entry->offset += bytes;
3149 			entry->bytes -= bytes;
3150 		}
3151 
3152 		break;
3153 	}
3154 out:
3155 	spin_unlock(&cluster->lock);
3156 
3157 	if (!ret)
3158 		return 0;
3159 
3160 	spin_lock(&ctl->tree_lock);
3161 
3162 	if (!btrfs_free_space_trimmed(entry))
3163 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3164 
3165 	ctl->free_space -= bytes;
3166 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3167 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3168 
3169 	spin_lock(&cluster->lock);
3170 	if (entry->bytes == 0) {
3171 		rb_erase(&entry->offset_index, &cluster->root);
3172 		ctl->free_extents--;
3173 		if (entry->bitmap) {
3174 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3175 					entry->bitmap);
3176 			ctl->total_bitmaps--;
3177 			recalculate_thresholds(ctl);
3178 		} else if (!btrfs_free_space_trimmed(entry)) {
3179 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3180 		}
3181 		kmem_cache_free(btrfs_free_space_cachep, entry);
3182 	}
3183 
3184 	spin_unlock(&cluster->lock);
3185 	spin_unlock(&ctl->tree_lock);
3186 
3187 	return ret;
3188 }
3189 
3190 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3191 				struct btrfs_free_space *entry,
3192 				struct btrfs_free_cluster *cluster,
3193 				u64 offset, u64 bytes,
3194 				u64 cont1_bytes, u64 min_bytes)
3195 {
3196 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3197 	unsigned long next_zero;
3198 	unsigned long i;
3199 	unsigned long want_bits;
3200 	unsigned long min_bits;
3201 	unsigned long found_bits;
3202 	unsigned long max_bits = 0;
3203 	unsigned long start = 0;
3204 	unsigned long total_found = 0;
3205 	int ret;
3206 
3207 	i = offset_to_bit(entry->offset, ctl->unit,
3208 			  max_t(u64, offset, entry->offset));
3209 	want_bits = bytes_to_bits(bytes, ctl->unit);
3210 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3211 
3212 	/*
3213 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3214 	 * fragmented.
3215 	 */
3216 	if (entry->max_extent_size &&
3217 	    entry->max_extent_size < cont1_bytes)
3218 		return -ENOSPC;
3219 again:
3220 	found_bits = 0;
3221 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3222 		next_zero = find_next_zero_bit(entry->bitmap,
3223 					       BITS_PER_BITMAP, i);
3224 		if (next_zero - i >= min_bits) {
3225 			found_bits = next_zero - i;
3226 			if (found_bits > max_bits)
3227 				max_bits = found_bits;
3228 			break;
3229 		}
3230 		if (next_zero - i > max_bits)
3231 			max_bits = next_zero - i;
3232 		i = next_zero;
3233 	}
3234 
3235 	if (!found_bits) {
3236 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3237 		return -ENOSPC;
3238 	}
3239 
3240 	if (!total_found) {
3241 		start = i;
3242 		cluster->max_size = 0;
3243 	}
3244 
3245 	total_found += found_bits;
3246 
3247 	if (cluster->max_size < found_bits * ctl->unit)
3248 		cluster->max_size = found_bits * ctl->unit;
3249 
3250 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3251 		i = next_zero + 1;
3252 		goto again;
3253 	}
3254 
3255 	cluster->window_start = start * ctl->unit + entry->offset;
3256 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3257 	ret = tree_insert_offset(&cluster->root, entry->offset,
3258 				 &entry->offset_index, 1);
3259 	ASSERT(!ret); /* -EEXIST; Logic error */
3260 
3261 	trace_btrfs_setup_cluster(block_group, cluster,
3262 				  total_found * ctl->unit, 1);
3263 	return 0;
3264 }
3265 
3266 /*
3267  * This searches the block group for just extents to fill the cluster with.
3268  * Try to find a cluster with at least bytes total bytes, at least one
3269  * extent of cont1_bytes, and other clusters of at least min_bytes.
3270  */
3271 static noinline int
3272 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3273 			struct btrfs_free_cluster *cluster,
3274 			struct list_head *bitmaps, u64 offset, u64 bytes,
3275 			u64 cont1_bytes, u64 min_bytes)
3276 {
3277 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3278 	struct btrfs_free_space *first = NULL;
3279 	struct btrfs_free_space *entry = NULL;
3280 	struct btrfs_free_space *last;
3281 	struct rb_node *node;
3282 	u64 window_free;
3283 	u64 max_extent;
3284 	u64 total_size = 0;
3285 
3286 	entry = tree_search_offset(ctl, offset, 0, 1);
3287 	if (!entry)
3288 		return -ENOSPC;
3289 
3290 	/*
3291 	 * We don't want bitmaps, so just move along until we find a normal
3292 	 * extent entry.
3293 	 */
3294 	while (entry->bitmap || entry->bytes < min_bytes) {
3295 		if (entry->bitmap && list_empty(&entry->list))
3296 			list_add_tail(&entry->list, bitmaps);
3297 		node = rb_next(&entry->offset_index);
3298 		if (!node)
3299 			return -ENOSPC;
3300 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3301 	}
3302 
3303 	window_free = entry->bytes;
3304 	max_extent = entry->bytes;
3305 	first = entry;
3306 	last = entry;
3307 
3308 	for (node = rb_next(&entry->offset_index); node;
3309 	     node = rb_next(&entry->offset_index)) {
3310 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3311 
3312 		if (entry->bitmap) {
3313 			if (list_empty(&entry->list))
3314 				list_add_tail(&entry->list, bitmaps);
3315 			continue;
3316 		}
3317 
3318 		if (entry->bytes < min_bytes)
3319 			continue;
3320 
3321 		last = entry;
3322 		window_free += entry->bytes;
3323 		if (entry->bytes > max_extent)
3324 			max_extent = entry->bytes;
3325 	}
3326 
3327 	if (window_free < bytes || max_extent < cont1_bytes)
3328 		return -ENOSPC;
3329 
3330 	cluster->window_start = first->offset;
3331 
3332 	node = &first->offset_index;
3333 
3334 	/*
3335 	 * now we've found our entries, pull them out of the free space
3336 	 * cache and put them into the cluster rbtree
3337 	 */
3338 	do {
3339 		int ret;
3340 
3341 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3342 		node = rb_next(&entry->offset_index);
3343 		if (entry->bitmap || entry->bytes < min_bytes)
3344 			continue;
3345 
3346 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3347 		ret = tree_insert_offset(&cluster->root, entry->offset,
3348 					 &entry->offset_index, 0);
3349 		total_size += entry->bytes;
3350 		ASSERT(!ret); /* -EEXIST; Logic error */
3351 	} while (node && entry != last);
3352 
3353 	cluster->max_size = max_extent;
3354 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3355 	return 0;
3356 }
3357 
3358 /*
3359  * This specifically looks for bitmaps that may work in the cluster, we assume
3360  * that we have already failed to find extents that will work.
3361  */
3362 static noinline int
3363 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3364 		     struct btrfs_free_cluster *cluster,
3365 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3366 		     u64 cont1_bytes, u64 min_bytes)
3367 {
3368 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3369 	struct btrfs_free_space *entry = NULL;
3370 	int ret = -ENOSPC;
3371 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3372 
3373 	if (ctl->total_bitmaps == 0)
3374 		return -ENOSPC;
3375 
3376 	/*
3377 	 * The bitmap that covers offset won't be in the list unless offset
3378 	 * is just its start offset.
3379 	 */
3380 	if (!list_empty(bitmaps))
3381 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3382 
3383 	if (!entry || entry->offset != bitmap_offset) {
3384 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3385 		if (entry && list_empty(&entry->list))
3386 			list_add(&entry->list, bitmaps);
3387 	}
3388 
3389 	list_for_each_entry(entry, bitmaps, list) {
3390 		if (entry->bytes < bytes)
3391 			continue;
3392 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3393 					   bytes, cont1_bytes, min_bytes);
3394 		if (!ret)
3395 			return 0;
3396 	}
3397 
3398 	/*
3399 	 * The bitmaps list has all the bitmaps that record free space
3400 	 * starting after offset, so no more search is required.
3401 	 */
3402 	return -ENOSPC;
3403 }
3404 
3405 /*
3406  * here we try to find a cluster of blocks in a block group.  The goal
3407  * is to find at least bytes+empty_size.
3408  * We might not find them all in one contiguous area.
3409  *
3410  * returns zero and sets up cluster if things worked out, otherwise
3411  * it returns -enospc
3412  */
3413 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3414 			     struct btrfs_free_cluster *cluster,
3415 			     u64 offset, u64 bytes, u64 empty_size)
3416 {
3417 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3418 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3419 	struct btrfs_free_space *entry, *tmp;
3420 	LIST_HEAD(bitmaps);
3421 	u64 min_bytes;
3422 	u64 cont1_bytes;
3423 	int ret;
3424 
3425 	/*
3426 	 * Choose the minimum extent size we'll require for this
3427 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3428 	 * For metadata, allow allocates with smaller extents.  For
3429 	 * data, keep it dense.
3430 	 */
3431 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3432 		cont1_bytes = min_bytes = bytes + empty_size;
3433 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3434 		cont1_bytes = bytes;
3435 		min_bytes = fs_info->sectorsize;
3436 	} else {
3437 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3438 		min_bytes = fs_info->sectorsize;
3439 	}
3440 
3441 	spin_lock(&ctl->tree_lock);
3442 
3443 	/*
3444 	 * If we know we don't have enough space to make a cluster don't even
3445 	 * bother doing all the work to try and find one.
3446 	 */
3447 	if (ctl->free_space < bytes) {
3448 		spin_unlock(&ctl->tree_lock);
3449 		return -ENOSPC;
3450 	}
3451 
3452 	spin_lock(&cluster->lock);
3453 
3454 	/* someone already found a cluster, hooray */
3455 	if (cluster->block_group) {
3456 		ret = 0;
3457 		goto out;
3458 	}
3459 
3460 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3461 				 min_bytes);
3462 
3463 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3464 				      bytes + empty_size,
3465 				      cont1_bytes, min_bytes);
3466 	if (ret)
3467 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3468 					   offset, bytes + empty_size,
3469 					   cont1_bytes, min_bytes);
3470 
3471 	/* Clear our temporary list */
3472 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3473 		list_del_init(&entry->list);
3474 
3475 	if (!ret) {
3476 		btrfs_get_block_group(block_group);
3477 		list_add_tail(&cluster->block_group_list,
3478 			      &block_group->cluster_list);
3479 		cluster->block_group = block_group;
3480 	} else {
3481 		trace_btrfs_failed_cluster_setup(block_group);
3482 	}
3483 out:
3484 	spin_unlock(&cluster->lock);
3485 	spin_unlock(&ctl->tree_lock);
3486 
3487 	return ret;
3488 }
3489 
3490 /*
3491  * simple code to zero out a cluster
3492  */
3493 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3494 {
3495 	spin_lock_init(&cluster->lock);
3496 	spin_lock_init(&cluster->refill_lock);
3497 	cluster->root = RB_ROOT;
3498 	cluster->max_size = 0;
3499 	cluster->fragmented = false;
3500 	INIT_LIST_HEAD(&cluster->block_group_list);
3501 	cluster->block_group = NULL;
3502 }
3503 
3504 static int do_trimming(struct btrfs_block_group *block_group,
3505 		       u64 *total_trimmed, u64 start, u64 bytes,
3506 		       u64 reserved_start, u64 reserved_bytes,
3507 		       enum btrfs_trim_state reserved_trim_state,
3508 		       struct btrfs_trim_range *trim_entry)
3509 {
3510 	struct btrfs_space_info *space_info = block_group->space_info;
3511 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3512 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3513 	int ret;
3514 	int update = 0;
3515 	const u64 end = start + bytes;
3516 	const u64 reserved_end = reserved_start + reserved_bytes;
3517 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3518 	u64 trimmed = 0;
3519 
3520 	spin_lock(&space_info->lock);
3521 	spin_lock(&block_group->lock);
3522 	if (!block_group->ro) {
3523 		block_group->reserved += reserved_bytes;
3524 		space_info->bytes_reserved += reserved_bytes;
3525 		update = 1;
3526 	}
3527 	spin_unlock(&block_group->lock);
3528 	spin_unlock(&space_info->lock);
3529 
3530 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3531 	if (!ret) {
3532 		*total_trimmed += trimmed;
3533 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3534 	}
3535 
3536 	mutex_lock(&ctl->cache_writeout_mutex);
3537 	if (reserved_start < start)
3538 		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3539 				       start - reserved_start,
3540 				       reserved_trim_state);
3541 	if (start + bytes < reserved_start + reserved_bytes)
3542 		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3543 				       reserved_trim_state);
3544 	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3545 	list_del(&trim_entry->list);
3546 	mutex_unlock(&ctl->cache_writeout_mutex);
3547 
3548 	if (update) {
3549 		spin_lock(&space_info->lock);
3550 		spin_lock(&block_group->lock);
3551 		if (block_group->ro)
3552 			space_info->bytes_readonly += reserved_bytes;
3553 		block_group->reserved -= reserved_bytes;
3554 		space_info->bytes_reserved -= reserved_bytes;
3555 		spin_unlock(&block_group->lock);
3556 		spin_unlock(&space_info->lock);
3557 	}
3558 
3559 	return ret;
3560 }
3561 
3562 /*
3563  * If @async is set, then we will trim 1 region and return.
3564  */
3565 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3566 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3567 			  bool async)
3568 {
3569 	struct btrfs_discard_ctl *discard_ctl =
3570 					&block_group->fs_info->discard_ctl;
3571 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3572 	struct btrfs_free_space *entry;
3573 	struct rb_node *node;
3574 	int ret = 0;
3575 	u64 extent_start;
3576 	u64 extent_bytes;
3577 	enum btrfs_trim_state extent_trim_state;
3578 	u64 bytes;
3579 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3580 
3581 	while (start < end) {
3582 		struct btrfs_trim_range trim_entry;
3583 
3584 		mutex_lock(&ctl->cache_writeout_mutex);
3585 		spin_lock(&ctl->tree_lock);
3586 
3587 		if (ctl->free_space < minlen)
3588 			goto out_unlock;
3589 
3590 		entry = tree_search_offset(ctl, start, 0, 1);
3591 		if (!entry)
3592 			goto out_unlock;
3593 
3594 		/* Skip bitmaps and if async, already trimmed entries */
3595 		while (entry->bitmap ||
3596 		       (async && btrfs_free_space_trimmed(entry))) {
3597 			node = rb_next(&entry->offset_index);
3598 			if (!node)
3599 				goto out_unlock;
3600 			entry = rb_entry(node, struct btrfs_free_space,
3601 					 offset_index);
3602 		}
3603 
3604 		if (entry->offset >= end)
3605 			goto out_unlock;
3606 
3607 		extent_start = entry->offset;
3608 		extent_bytes = entry->bytes;
3609 		extent_trim_state = entry->trim_state;
3610 		if (async) {
3611 			start = entry->offset;
3612 			bytes = entry->bytes;
3613 			if (bytes < minlen) {
3614 				spin_unlock(&ctl->tree_lock);
3615 				mutex_unlock(&ctl->cache_writeout_mutex);
3616 				goto next;
3617 			}
3618 			unlink_free_space(ctl, entry);
3619 			/*
3620 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3621 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3622 			 * X when we come back around.  So trim it now.
3623 			 */
3624 			if (max_discard_size &&
3625 			    bytes >= (max_discard_size +
3626 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3627 				bytes = max_discard_size;
3628 				extent_bytes = max_discard_size;
3629 				entry->offset += max_discard_size;
3630 				entry->bytes -= max_discard_size;
3631 				link_free_space(ctl, entry);
3632 			} else {
3633 				kmem_cache_free(btrfs_free_space_cachep, entry);
3634 			}
3635 		} else {
3636 			start = max(start, extent_start);
3637 			bytes = min(extent_start + extent_bytes, end) - start;
3638 			if (bytes < minlen) {
3639 				spin_unlock(&ctl->tree_lock);
3640 				mutex_unlock(&ctl->cache_writeout_mutex);
3641 				goto next;
3642 			}
3643 
3644 			unlink_free_space(ctl, entry);
3645 			kmem_cache_free(btrfs_free_space_cachep, entry);
3646 		}
3647 
3648 		spin_unlock(&ctl->tree_lock);
3649 		trim_entry.start = extent_start;
3650 		trim_entry.bytes = extent_bytes;
3651 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3652 		mutex_unlock(&ctl->cache_writeout_mutex);
3653 
3654 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3655 				  extent_start, extent_bytes, extent_trim_state,
3656 				  &trim_entry);
3657 		if (ret) {
3658 			block_group->discard_cursor = start + bytes;
3659 			break;
3660 		}
3661 next:
3662 		start += bytes;
3663 		block_group->discard_cursor = start;
3664 		if (async && *total_trimmed)
3665 			break;
3666 
3667 		if (fatal_signal_pending(current)) {
3668 			ret = -ERESTARTSYS;
3669 			break;
3670 		}
3671 
3672 		cond_resched();
3673 	}
3674 
3675 	return ret;
3676 
3677 out_unlock:
3678 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3679 	spin_unlock(&ctl->tree_lock);
3680 	mutex_unlock(&ctl->cache_writeout_mutex);
3681 
3682 	return ret;
3683 }
3684 
3685 /*
3686  * If we break out of trimming a bitmap prematurely, we should reset the
3687  * trimming bit.  In a rather contrieved case, it's possible to race here so
3688  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3689  *
3690  * start = start of bitmap
3691  * end = near end of bitmap
3692  *
3693  * Thread 1:			Thread 2:
3694  * trim_bitmaps(start)
3695  *				trim_bitmaps(end)
3696  *				end_trimming_bitmap()
3697  * reset_trimming_bitmap()
3698  */
3699 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3700 {
3701 	struct btrfs_free_space *entry;
3702 
3703 	spin_lock(&ctl->tree_lock);
3704 	entry = tree_search_offset(ctl, offset, 1, 0);
3705 	if (entry) {
3706 		if (btrfs_free_space_trimmed(entry)) {
3707 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3708 				entry->bitmap_extents;
3709 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3710 		}
3711 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3712 	}
3713 
3714 	spin_unlock(&ctl->tree_lock);
3715 }
3716 
3717 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3718 				struct btrfs_free_space *entry)
3719 {
3720 	if (btrfs_free_space_trimming_bitmap(entry)) {
3721 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3722 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3723 			entry->bitmap_extents;
3724 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3725 	}
3726 }
3727 
3728 /*
3729  * If @async is set, then we will trim 1 region and return.
3730  */
3731 static int trim_bitmaps(struct btrfs_block_group *block_group,
3732 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3733 			u64 maxlen, bool async)
3734 {
3735 	struct btrfs_discard_ctl *discard_ctl =
3736 					&block_group->fs_info->discard_ctl;
3737 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3738 	struct btrfs_free_space *entry;
3739 	int ret = 0;
3740 	int ret2;
3741 	u64 bytes;
3742 	u64 offset = offset_to_bitmap(ctl, start);
3743 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3744 
3745 	while (offset < end) {
3746 		bool next_bitmap = false;
3747 		struct btrfs_trim_range trim_entry;
3748 
3749 		mutex_lock(&ctl->cache_writeout_mutex);
3750 		spin_lock(&ctl->tree_lock);
3751 
3752 		if (ctl->free_space < minlen) {
3753 			block_group->discard_cursor =
3754 				btrfs_block_group_end(block_group);
3755 			spin_unlock(&ctl->tree_lock);
3756 			mutex_unlock(&ctl->cache_writeout_mutex);
3757 			break;
3758 		}
3759 
3760 		entry = tree_search_offset(ctl, offset, 1, 0);
3761 		/*
3762 		 * Bitmaps are marked trimmed lossily now to prevent constant
3763 		 * discarding of the same bitmap (the reason why we are bound
3764 		 * by the filters).  So, retrim the block group bitmaps when we
3765 		 * are preparing to punt to the unused_bgs list.  This uses
3766 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3767 		 * which is the only discard index which sets minlen to 0.
3768 		 */
3769 		if (!entry || (async && minlen && start == offset &&
3770 			       btrfs_free_space_trimmed(entry))) {
3771 			spin_unlock(&ctl->tree_lock);
3772 			mutex_unlock(&ctl->cache_writeout_mutex);
3773 			next_bitmap = true;
3774 			goto next;
3775 		}
3776 
3777 		/*
3778 		 * Async discard bitmap trimming begins at by setting the start
3779 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3780 		 * start of the bitmap.  This lets us know we are fully
3781 		 * scanning the bitmap rather than only some portion of it.
3782 		 */
3783 		if (start == offset)
3784 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3785 
3786 		bytes = minlen;
3787 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3788 		if (ret2 || start >= end) {
3789 			/*
3790 			 * We lossily consider a bitmap trimmed if we only skip
3791 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3792 			 */
3793 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3794 				end_trimming_bitmap(ctl, entry);
3795 			else
3796 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3797 			spin_unlock(&ctl->tree_lock);
3798 			mutex_unlock(&ctl->cache_writeout_mutex);
3799 			next_bitmap = true;
3800 			goto next;
3801 		}
3802 
3803 		/*
3804 		 * We already trimmed a region, but are using the locking above
3805 		 * to reset the trim_state.
3806 		 */
3807 		if (async && *total_trimmed) {
3808 			spin_unlock(&ctl->tree_lock);
3809 			mutex_unlock(&ctl->cache_writeout_mutex);
3810 			goto out;
3811 		}
3812 
3813 		bytes = min(bytes, end - start);
3814 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3815 			spin_unlock(&ctl->tree_lock);
3816 			mutex_unlock(&ctl->cache_writeout_mutex);
3817 			goto next;
3818 		}
3819 
3820 		/*
3821 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3822 		 * If X < @minlen, we won't trim X when we come back around.
3823 		 * So trim it now.  We differ here from trimming extents as we
3824 		 * don't keep individual state per bit.
3825 		 */
3826 		if (async &&
3827 		    max_discard_size &&
3828 		    bytes > (max_discard_size + minlen))
3829 			bytes = max_discard_size;
3830 
3831 		bitmap_clear_bits(ctl, entry, start, bytes);
3832 		if (entry->bytes == 0)
3833 			free_bitmap(ctl, entry);
3834 
3835 		spin_unlock(&ctl->tree_lock);
3836 		trim_entry.start = start;
3837 		trim_entry.bytes = bytes;
3838 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3839 		mutex_unlock(&ctl->cache_writeout_mutex);
3840 
3841 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3842 				  start, bytes, 0, &trim_entry);
3843 		if (ret) {
3844 			reset_trimming_bitmap(ctl, offset);
3845 			block_group->discard_cursor =
3846 				btrfs_block_group_end(block_group);
3847 			break;
3848 		}
3849 next:
3850 		if (next_bitmap) {
3851 			offset += BITS_PER_BITMAP * ctl->unit;
3852 			start = offset;
3853 		} else {
3854 			start += bytes;
3855 		}
3856 		block_group->discard_cursor = start;
3857 
3858 		if (fatal_signal_pending(current)) {
3859 			if (start != offset)
3860 				reset_trimming_bitmap(ctl, offset);
3861 			ret = -ERESTARTSYS;
3862 			break;
3863 		}
3864 
3865 		cond_resched();
3866 	}
3867 
3868 	if (offset >= end)
3869 		block_group->discard_cursor = end;
3870 
3871 out:
3872 	return ret;
3873 }
3874 
3875 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3876 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3877 {
3878 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3879 	int ret;
3880 	u64 rem = 0;
3881 
3882 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3883 
3884 	*trimmed = 0;
3885 
3886 	spin_lock(&block_group->lock);
3887 	if (block_group->removed) {
3888 		spin_unlock(&block_group->lock);
3889 		return 0;
3890 	}
3891 	btrfs_freeze_block_group(block_group);
3892 	spin_unlock(&block_group->lock);
3893 
3894 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3895 	if (ret)
3896 		goto out;
3897 
3898 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3899 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3900 	/* If we ended in the middle of a bitmap, reset the trimming flag */
3901 	if (rem)
3902 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3903 out:
3904 	btrfs_unfreeze_block_group(block_group);
3905 	return ret;
3906 }
3907 
3908 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3909 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3910 				   bool async)
3911 {
3912 	int ret;
3913 
3914 	*trimmed = 0;
3915 
3916 	spin_lock(&block_group->lock);
3917 	if (block_group->removed) {
3918 		spin_unlock(&block_group->lock);
3919 		return 0;
3920 	}
3921 	btrfs_freeze_block_group(block_group);
3922 	spin_unlock(&block_group->lock);
3923 
3924 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3925 	btrfs_unfreeze_block_group(block_group);
3926 
3927 	return ret;
3928 }
3929 
3930 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3931 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3932 				   u64 maxlen, bool async)
3933 {
3934 	int ret;
3935 
3936 	*trimmed = 0;
3937 
3938 	spin_lock(&block_group->lock);
3939 	if (block_group->removed) {
3940 		spin_unlock(&block_group->lock);
3941 		return 0;
3942 	}
3943 	btrfs_freeze_block_group(block_group);
3944 	spin_unlock(&block_group->lock);
3945 
3946 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3947 			   async);
3948 
3949 	btrfs_unfreeze_block_group(block_group);
3950 
3951 	return ret;
3952 }
3953 
3954 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
3955 {
3956 	return btrfs_super_cache_generation(fs_info->super_copy);
3957 }
3958 
3959 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
3960 				       struct btrfs_trans_handle *trans)
3961 {
3962 	struct btrfs_block_group *block_group;
3963 	struct rb_node *node;
3964 	int ret = 0;
3965 
3966 	btrfs_info(fs_info, "cleaning free space cache v1");
3967 
3968 	node = rb_first(&fs_info->block_group_cache_tree);
3969 	while (node) {
3970 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
3971 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
3972 		if (ret)
3973 			goto out;
3974 		node = rb_next(node);
3975 	}
3976 out:
3977 	return ret;
3978 }
3979 
3980 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
3981 {
3982 	struct btrfs_trans_handle *trans;
3983 	int ret;
3984 
3985 	/*
3986 	 * update_super_roots will appropriately set or unset
3987 	 * super_copy->cache_generation based on SPACE_CACHE and
3988 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
3989 	 * transaction commit whether we are enabling space cache v1 and don't
3990 	 * have any other work to do, or are disabling it and removing free
3991 	 * space inodes.
3992 	 */
3993 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3994 	if (IS_ERR(trans))
3995 		return PTR_ERR(trans);
3996 
3997 	if (!active) {
3998 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3999 		ret = cleanup_free_space_cache_v1(fs_info, trans);
4000 		if (ret) {
4001 			btrfs_abort_transaction(trans, ret);
4002 			btrfs_end_transaction(trans);
4003 			goto out;
4004 		}
4005 	}
4006 
4007 	ret = btrfs_commit_transaction(trans);
4008 out:
4009 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4010 
4011 	return ret;
4012 }
4013 
4014 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4015 /*
4016  * Use this if you need to make a bitmap or extent entry specifically, it
4017  * doesn't do any of the merging that add_free_space does, this acts a lot like
4018  * how the free space cache loading stuff works, so you can get really weird
4019  * configurations.
4020  */
4021 int test_add_free_space_entry(struct btrfs_block_group *cache,
4022 			      u64 offset, u64 bytes, bool bitmap)
4023 {
4024 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4025 	struct btrfs_free_space *info = NULL, *bitmap_info;
4026 	void *map = NULL;
4027 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4028 	u64 bytes_added;
4029 	int ret;
4030 
4031 again:
4032 	if (!info) {
4033 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4034 		if (!info)
4035 			return -ENOMEM;
4036 	}
4037 
4038 	if (!bitmap) {
4039 		spin_lock(&ctl->tree_lock);
4040 		info->offset = offset;
4041 		info->bytes = bytes;
4042 		info->max_extent_size = 0;
4043 		ret = link_free_space(ctl, info);
4044 		spin_unlock(&ctl->tree_lock);
4045 		if (ret)
4046 			kmem_cache_free(btrfs_free_space_cachep, info);
4047 		return ret;
4048 	}
4049 
4050 	if (!map) {
4051 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4052 		if (!map) {
4053 			kmem_cache_free(btrfs_free_space_cachep, info);
4054 			return -ENOMEM;
4055 		}
4056 	}
4057 
4058 	spin_lock(&ctl->tree_lock);
4059 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4060 					 1, 0);
4061 	if (!bitmap_info) {
4062 		info->bitmap = map;
4063 		map = NULL;
4064 		add_new_bitmap(ctl, info, offset);
4065 		bitmap_info = info;
4066 		info = NULL;
4067 	}
4068 
4069 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4070 					  trim_state);
4071 
4072 	bytes -= bytes_added;
4073 	offset += bytes_added;
4074 	spin_unlock(&ctl->tree_lock);
4075 
4076 	if (bytes)
4077 		goto again;
4078 
4079 	if (info)
4080 		kmem_cache_free(btrfs_free_space_cachep, info);
4081 	if (map)
4082 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4083 	return 0;
4084 }
4085 
4086 /*
4087  * Checks to see if the given range is in the free space cache.  This is really
4088  * just used to check the absence of space, so if there is free space in the
4089  * range at all we will return 1.
4090  */
4091 int test_check_exists(struct btrfs_block_group *cache,
4092 		      u64 offset, u64 bytes)
4093 {
4094 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4095 	struct btrfs_free_space *info;
4096 	int ret = 0;
4097 
4098 	spin_lock(&ctl->tree_lock);
4099 	info = tree_search_offset(ctl, offset, 0, 0);
4100 	if (!info) {
4101 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4102 					  1, 0);
4103 		if (!info)
4104 			goto out;
4105 	}
4106 
4107 have_info:
4108 	if (info->bitmap) {
4109 		u64 bit_off, bit_bytes;
4110 		struct rb_node *n;
4111 		struct btrfs_free_space *tmp;
4112 
4113 		bit_off = offset;
4114 		bit_bytes = ctl->unit;
4115 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4116 		if (!ret) {
4117 			if (bit_off == offset) {
4118 				ret = 1;
4119 				goto out;
4120 			} else if (bit_off > offset &&
4121 				   offset + bytes > bit_off) {
4122 				ret = 1;
4123 				goto out;
4124 			}
4125 		}
4126 
4127 		n = rb_prev(&info->offset_index);
4128 		while (n) {
4129 			tmp = rb_entry(n, struct btrfs_free_space,
4130 				       offset_index);
4131 			if (tmp->offset + tmp->bytes < offset)
4132 				break;
4133 			if (offset + bytes < tmp->offset) {
4134 				n = rb_prev(&tmp->offset_index);
4135 				continue;
4136 			}
4137 			info = tmp;
4138 			goto have_info;
4139 		}
4140 
4141 		n = rb_next(&info->offset_index);
4142 		while (n) {
4143 			tmp = rb_entry(n, struct btrfs_free_space,
4144 				       offset_index);
4145 			if (offset + bytes < tmp->offset)
4146 				break;
4147 			if (tmp->offset + tmp->bytes < offset) {
4148 				n = rb_next(&tmp->offset_index);
4149 				continue;
4150 			}
4151 			info = tmp;
4152 			goto have_info;
4153 		}
4154 
4155 		ret = 0;
4156 		goto out;
4157 	}
4158 
4159 	if (info->offset == offset) {
4160 		ret = 1;
4161 		goto out;
4162 	}
4163 
4164 	if (offset > info->offset && offset < info->offset + info->bytes)
4165 		ret = 1;
4166 out:
4167 	spin_unlock(&ctl->tree_lock);
4168 	return ret;
4169 }
4170 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4171