xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 #include "discard.h"
25 
26 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
28 #define FORCE_EXTENT_THRESHOLD	SZ_1M
29 
30 struct btrfs_trim_range {
31 	u64 start;
32 	u64 bytes;
33 	struct list_head list;
34 };
35 
36 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
37 				struct btrfs_free_space *bitmap_info);
38 static int link_free_space(struct btrfs_free_space_ctl *ctl,
39 			   struct btrfs_free_space *info);
40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
41 			      struct btrfs_free_space *info);
42 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
43 			     struct btrfs_trans_handle *trans,
44 			     struct btrfs_io_ctl *io_ctl,
45 			     struct btrfs_path *path);
46 
47 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
48 					       struct btrfs_path *path,
49 					       u64 offset)
50 {
51 	struct btrfs_fs_info *fs_info = root->fs_info;
52 	struct btrfs_key key;
53 	struct btrfs_key location;
54 	struct btrfs_disk_key disk_key;
55 	struct btrfs_free_space_header *header;
56 	struct extent_buffer *leaf;
57 	struct inode *inode = NULL;
58 	unsigned nofs_flag;
59 	int ret;
60 
61 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62 	key.offset = offset;
63 	key.type = 0;
64 
65 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66 	if (ret < 0)
67 		return ERR_PTR(ret);
68 	if (ret > 0) {
69 		btrfs_release_path(path);
70 		return ERR_PTR(-ENOENT);
71 	}
72 
73 	leaf = path->nodes[0];
74 	header = btrfs_item_ptr(leaf, path->slots[0],
75 				struct btrfs_free_space_header);
76 	btrfs_free_space_key(leaf, header, &disk_key);
77 	btrfs_disk_key_to_cpu(&location, &disk_key);
78 	btrfs_release_path(path);
79 
80 	/*
81 	 * We are often under a trans handle at this point, so we need to make
82 	 * sure NOFS is set to keep us from deadlocking.
83 	 */
84 	nofs_flag = memalloc_nofs_save();
85 	inode = btrfs_iget_path(fs_info->sb, &location, root, path);
86 	btrfs_release_path(path);
87 	memalloc_nofs_restore(nofs_flag);
88 	if (IS_ERR(inode))
89 		return inode;
90 
91 	mapping_set_gfp_mask(inode->i_mapping,
92 			mapping_gfp_constraint(inode->i_mapping,
93 			~(__GFP_FS | __GFP_HIGHMEM)));
94 
95 	return inode;
96 }
97 
98 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
99 		struct btrfs_path *path)
100 {
101 	struct btrfs_fs_info *fs_info = block_group->fs_info;
102 	struct inode *inode = NULL;
103 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 
105 	spin_lock(&block_group->lock);
106 	if (block_group->inode)
107 		inode = igrab(block_group->inode);
108 	spin_unlock(&block_group->lock);
109 	if (inode)
110 		return inode;
111 
112 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113 					  block_group->start);
114 	if (IS_ERR(inode))
115 		return inode;
116 
117 	spin_lock(&block_group->lock);
118 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119 		btrfs_info(fs_info, "Old style space inode found, converting.");
120 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
121 			BTRFS_INODE_NODATACOW;
122 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
123 	}
124 
125 	if (!block_group->iref) {
126 		block_group->inode = igrab(inode);
127 		block_group->iref = 1;
128 	}
129 	spin_unlock(&block_group->lock);
130 
131 	return inode;
132 }
133 
134 static int __create_free_space_inode(struct btrfs_root *root,
135 				     struct btrfs_trans_handle *trans,
136 				     struct btrfs_path *path,
137 				     u64 ino, u64 offset)
138 {
139 	struct btrfs_key key;
140 	struct btrfs_disk_key disk_key;
141 	struct btrfs_free_space_header *header;
142 	struct btrfs_inode_item *inode_item;
143 	struct extent_buffer *leaf;
144 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 	int ret;
146 
147 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 	if (ret)
149 		return ret;
150 
151 	/* We inline crc's for the free disk space cache */
152 	if (ino != BTRFS_FREE_INO_OBJECTID)
153 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
154 
155 	leaf = path->nodes[0];
156 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 				    struct btrfs_inode_item);
158 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 			     sizeof(*inode_item));
161 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 	btrfs_set_inode_size(leaf, inode_item, 0);
163 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 	btrfs_set_inode_uid(leaf, inode_item, 0);
165 	btrfs_set_inode_gid(leaf, inode_item, 0);
166 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167 	btrfs_set_inode_flags(leaf, inode_item, flags);
168 	btrfs_set_inode_nlink(leaf, inode_item, 1);
169 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170 	btrfs_set_inode_block_group(leaf, inode_item, offset);
171 	btrfs_mark_buffer_dirty(leaf);
172 	btrfs_release_path(path);
173 
174 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175 	key.offset = offset;
176 	key.type = 0;
177 	ret = btrfs_insert_empty_item(trans, root, path, &key,
178 				      sizeof(struct btrfs_free_space_header));
179 	if (ret < 0) {
180 		btrfs_release_path(path);
181 		return ret;
182 	}
183 
184 	leaf = path->nodes[0];
185 	header = btrfs_item_ptr(leaf, path->slots[0],
186 				struct btrfs_free_space_header);
187 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 	btrfs_set_free_space_key(leaf, header, &disk_key);
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_release_path(path);
191 
192 	return 0;
193 }
194 
195 int create_free_space_inode(struct btrfs_trans_handle *trans,
196 			    struct btrfs_block_group *block_group,
197 			    struct btrfs_path *path)
198 {
199 	int ret;
200 	u64 ino;
201 
202 	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
203 	if (ret < 0)
204 		return ret;
205 
206 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207 					 ino, block_group->start);
208 }
209 
210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211 				       struct btrfs_block_rsv *rsv)
212 {
213 	u64 needed_bytes;
214 	int ret;
215 
216 	/* 1 for slack space, 1 for updating the inode */
217 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
218 		btrfs_calc_metadata_size(fs_info, 1);
219 
220 	spin_lock(&rsv->lock);
221 	if (rsv->reserved < needed_bytes)
222 		ret = -ENOSPC;
223 	else
224 		ret = 0;
225 	spin_unlock(&rsv->lock);
226 	return ret;
227 }
228 
229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230 				    struct btrfs_block_group *block_group,
231 				    struct inode *inode)
232 {
233 	struct btrfs_root *root = BTRFS_I(inode)->root;
234 	int ret = 0;
235 	bool locked = false;
236 
237 	if (block_group) {
238 		struct btrfs_path *path = btrfs_alloc_path();
239 
240 		if (!path) {
241 			ret = -ENOMEM;
242 			goto fail;
243 		}
244 		locked = true;
245 		mutex_lock(&trans->transaction->cache_write_mutex);
246 		if (!list_empty(&block_group->io_list)) {
247 			list_del_init(&block_group->io_list);
248 
249 			btrfs_wait_cache_io(trans, block_group, path);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 		btrfs_free_path(path);
261 	}
262 
263 	btrfs_i_size_write(BTRFS_I(inode), 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We skip the throttling logic for free space cache inodes, so we don't
268 	 * need to check for -EAGAIN.
269 	 */
270 	ret = btrfs_truncate_inode_items(trans, root, inode,
271 					 0, BTRFS_EXTENT_DATA_KEY);
272 	if (ret)
273 		goto fail;
274 
275 	ret = btrfs_update_inode(trans, root, inode);
276 
277 fail:
278 	if (locked)
279 		mutex_unlock(&trans->transaction->cache_write_mutex);
280 	if (ret)
281 		btrfs_abort_transaction(trans, ret);
282 
283 	return ret;
284 }
285 
286 static void readahead_cache(struct inode *inode)
287 {
288 	struct file_ra_state *ra;
289 	unsigned long last_index;
290 
291 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
292 	if (!ra)
293 		return;
294 
295 	file_ra_state_init(ra, inode->i_mapping);
296 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
297 
298 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
299 
300 	kfree(ra);
301 }
302 
303 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
304 		       int write)
305 {
306 	int num_pages;
307 	int check_crcs = 0;
308 
309 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
310 
311 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
312 		check_crcs = 1;
313 
314 	/* Make sure we can fit our crcs and generation into the first page */
315 	if (write && check_crcs &&
316 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
317 		return -ENOSPC;
318 
319 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
320 
321 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
322 	if (!io_ctl->pages)
323 		return -ENOMEM;
324 
325 	io_ctl->num_pages = num_pages;
326 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
327 	io_ctl->check_crcs = check_crcs;
328 	io_ctl->inode = inode;
329 
330 	return 0;
331 }
332 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
333 
334 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
335 {
336 	kfree(io_ctl->pages);
337 	io_ctl->pages = NULL;
338 }
339 
340 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
341 {
342 	if (io_ctl->cur) {
343 		io_ctl->cur = NULL;
344 		io_ctl->orig = NULL;
345 	}
346 }
347 
348 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
349 {
350 	ASSERT(io_ctl->index < io_ctl->num_pages);
351 	io_ctl->page = io_ctl->pages[io_ctl->index++];
352 	io_ctl->cur = page_address(io_ctl->page);
353 	io_ctl->orig = io_ctl->cur;
354 	io_ctl->size = PAGE_SIZE;
355 	if (clear)
356 		clear_page(io_ctl->cur);
357 }
358 
359 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
360 {
361 	int i;
362 
363 	io_ctl_unmap_page(io_ctl);
364 
365 	for (i = 0; i < io_ctl->num_pages; i++) {
366 		if (io_ctl->pages[i]) {
367 			ClearPageChecked(io_ctl->pages[i]);
368 			unlock_page(io_ctl->pages[i]);
369 			put_page(io_ctl->pages[i]);
370 		}
371 	}
372 }
373 
374 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
375 				int uptodate)
376 {
377 	struct page *page;
378 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
379 	int i;
380 
381 	for (i = 0; i < io_ctl->num_pages; i++) {
382 		page = find_or_create_page(inode->i_mapping, i, mask);
383 		if (!page) {
384 			io_ctl_drop_pages(io_ctl);
385 			return -ENOMEM;
386 		}
387 		io_ctl->pages[i] = page;
388 		if (uptodate && !PageUptodate(page)) {
389 			btrfs_readpage(NULL, page);
390 			lock_page(page);
391 			if (page->mapping != inode->i_mapping) {
392 				btrfs_err(BTRFS_I(inode)->root->fs_info,
393 					  "free space cache page truncated");
394 				io_ctl_drop_pages(io_ctl);
395 				return -EIO;
396 			}
397 			if (!PageUptodate(page)) {
398 				btrfs_err(BTRFS_I(inode)->root->fs_info,
399 					   "error reading free space cache");
400 				io_ctl_drop_pages(io_ctl);
401 				return -EIO;
402 			}
403 		}
404 	}
405 
406 	for (i = 0; i < io_ctl->num_pages; i++) {
407 		clear_page_dirty_for_io(io_ctl->pages[i]);
408 		set_page_extent_mapped(io_ctl->pages[i]);
409 	}
410 
411 	return 0;
412 }
413 
414 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
415 {
416 	__le64 *val;
417 
418 	io_ctl_map_page(io_ctl, 1);
419 
420 	/*
421 	 * Skip the csum areas.  If we don't check crcs then we just have a
422 	 * 64bit chunk at the front of the first page.
423 	 */
424 	if (io_ctl->check_crcs) {
425 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
426 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
427 	} else {
428 		io_ctl->cur += sizeof(u64);
429 		io_ctl->size -= sizeof(u64) * 2;
430 	}
431 
432 	val = io_ctl->cur;
433 	*val = cpu_to_le64(generation);
434 	io_ctl->cur += sizeof(u64);
435 }
436 
437 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
438 {
439 	__le64 *gen;
440 
441 	/*
442 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
443 	 * chunk at the front of the first page.
444 	 */
445 	if (io_ctl->check_crcs) {
446 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
447 		io_ctl->size -= sizeof(u64) +
448 			(sizeof(u32) * io_ctl->num_pages);
449 	} else {
450 		io_ctl->cur += sizeof(u64);
451 		io_ctl->size -= sizeof(u64) * 2;
452 	}
453 
454 	gen = io_ctl->cur;
455 	if (le64_to_cpu(*gen) != generation) {
456 		btrfs_err_rl(io_ctl->fs_info,
457 			"space cache generation (%llu) does not match inode (%llu)",
458 				*gen, generation);
459 		io_ctl_unmap_page(io_ctl);
460 		return -EIO;
461 	}
462 	io_ctl->cur += sizeof(u64);
463 	return 0;
464 }
465 
466 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
467 {
468 	u32 *tmp;
469 	u32 crc = ~(u32)0;
470 	unsigned offset = 0;
471 
472 	if (!io_ctl->check_crcs) {
473 		io_ctl_unmap_page(io_ctl);
474 		return;
475 	}
476 
477 	if (index == 0)
478 		offset = sizeof(u32) * io_ctl->num_pages;
479 
480 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
481 	btrfs_crc32c_final(crc, (u8 *)&crc);
482 	io_ctl_unmap_page(io_ctl);
483 	tmp = page_address(io_ctl->pages[0]);
484 	tmp += index;
485 	*tmp = crc;
486 }
487 
488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 {
490 	u32 *tmp, val;
491 	u32 crc = ~(u32)0;
492 	unsigned offset = 0;
493 
494 	if (!io_ctl->check_crcs) {
495 		io_ctl_map_page(io_ctl, 0);
496 		return 0;
497 	}
498 
499 	if (index == 0)
500 		offset = sizeof(u32) * io_ctl->num_pages;
501 
502 	tmp = page_address(io_ctl->pages[0]);
503 	tmp += index;
504 	val = *tmp;
505 
506 	io_ctl_map_page(io_ctl, 0);
507 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
508 	btrfs_crc32c_final(crc, (u8 *)&crc);
509 	if (val != crc) {
510 		btrfs_err_rl(io_ctl->fs_info,
511 			"csum mismatch on free space cache");
512 		io_ctl_unmap_page(io_ctl);
513 		return -EIO;
514 	}
515 
516 	return 0;
517 }
518 
519 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
520 			    void *bitmap)
521 {
522 	struct btrfs_free_space_entry *entry;
523 
524 	if (!io_ctl->cur)
525 		return -ENOSPC;
526 
527 	entry = io_ctl->cur;
528 	entry->offset = cpu_to_le64(offset);
529 	entry->bytes = cpu_to_le64(bytes);
530 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
531 		BTRFS_FREE_SPACE_EXTENT;
532 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
533 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
534 
535 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
536 		return 0;
537 
538 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 
540 	/* No more pages to map */
541 	if (io_ctl->index >= io_ctl->num_pages)
542 		return 0;
543 
544 	/* map the next page */
545 	io_ctl_map_page(io_ctl, 1);
546 	return 0;
547 }
548 
549 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
550 {
551 	if (!io_ctl->cur)
552 		return -ENOSPC;
553 
554 	/*
555 	 * If we aren't at the start of the current page, unmap this one and
556 	 * map the next one if there is any left.
557 	 */
558 	if (io_ctl->cur != io_ctl->orig) {
559 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
560 		if (io_ctl->index >= io_ctl->num_pages)
561 			return -ENOSPC;
562 		io_ctl_map_page(io_ctl, 0);
563 	}
564 
565 	copy_page(io_ctl->cur, bitmap);
566 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
567 	if (io_ctl->index < io_ctl->num_pages)
568 		io_ctl_map_page(io_ctl, 0);
569 	return 0;
570 }
571 
572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
573 {
574 	/*
575 	 * If we're not on the boundary we know we've modified the page and we
576 	 * need to crc the page.
577 	 */
578 	if (io_ctl->cur != io_ctl->orig)
579 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
580 	else
581 		io_ctl_unmap_page(io_ctl);
582 
583 	while (io_ctl->index < io_ctl->num_pages) {
584 		io_ctl_map_page(io_ctl, 1);
585 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
586 	}
587 }
588 
589 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
590 			    struct btrfs_free_space *entry, u8 *type)
591 {
592 	struct btrfs_free_space_entry *e;
593 	int ret;
594 
595 	if (!io_ctl->cur) {
596 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
597 		if (ret)
598 			return ret;
599 	}
600 
601 	e = io_ctl->cur;
602 	entry->offset = le64_to_cpu(e->offset);
603 	entry->bytes = le64_to_cpu(e->bytes);
604 	*type = e->type;
605 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
606 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
607 
608 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
609 		return 0;
610 
611 	io_ctl_unmap_page(io_ctl);
612 
613 	return 0;
614 }
615 
616 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
617 			      struct btrfs_free_space *entry)
618 {
619 	int ret;
620 
621 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
622 	if (ret)
623 		return ret;
624 
625 	copy_page(entry->bitmap, io_ctl->cur);
626 	io_ctl_unmap_page(io_ctl);
627 
628 	return 0;
629 }
630 
631 /*
632  * Since we attach pinned extents after the fact we can have contiguous sections
633  * of free space that are split up in entries.  This poses a problem with the
634  * tree logging stuff since it could have allocated across what appears to be 2
635  * entries since we would have merged the entries when adding the pinned extents
636  * back to the free space cache.  So run through the space cache that we just
637  * loaded and merge contiguous entries.  This will make the log replay stuff not
638  * blow up and it will make for nicer allocator behavior.
639  */
640 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
641 {
642 	struct btrfs_free_space *e, *prev = NULL;
643 	struct rb_node *n;
644 
645 again:
646 	spin_lock(&ctl->tree_lock);
647 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
648 		e = rb_entry(n, struct btrfs_free_space, offset_index);
649 		if (!prev)
650 			goto next;
651 		if (e->bitmap || prev->bitmap)
652 			goto next;
653 		if (prev->offset + prev->bytes == e->offset) {
654 			unlink_free_space(ctl, prev);
655 			unlink_free_space(ctl, e);
656 			prev->bytes += e->bytes;
657 			kmem_cache_free(btrfs_free_space_cachep, e);
658 			link_free_space(ctl, prev);
659 			prev = NULL;
660 			spin_unlock(&ctl->tree_lock);
661 			goto again;
662 		}
663 next:
664 		prev = e;
665 	}
666 	spin_unlock(&ctl->tree_lock);
667 }
668 
669 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
670 				   struct btrfs_free_space_ctl *ctl,
671 				   struct btrfs_path *path, u64 offset)
672 {
673 	struct btrfs_fs_info *fs_info = root->fs_info;
674 	struct btrfs_free_space_header *header;
675 	struct extent_buffer *leaf;
676 	struct btrfs_io_ctl io_ctl;
677 	struct btrfs_key key;
678 	struct btrfs_free_space *e, *n;
679 	LIST_HEAD(bitmaps);
680 	u64 num_entries;
681 	u64 num_bitmaps;
682 	u64 generation;
683 	u8 type;
684 	int ret = 0;
685 
686 	/* Nothing in the space cache, goodbye */
687 	if (!i_size_read(inode))
688 		return 0;
689 
690 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691 	key.offset = offset;
692 	key.type = 0;
693 
694 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695 	if (ret < 0)
696 		return 0;
697 	else if (ret > 0) {
698 		btrfs_release_path(path);
699 		return 0;
700 	}
701 
702 	ret = -1;
703 
704 	leaf = path->nodes[0];
705 	header = btrfs_item_ptr(leaf, path->slots[0],
706 				struct btrfs_free_space_header);
707 	num_entries = btrfs_free_space_entries(leaf, header);
708 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
709 	generation = btrfs_free_space_generation(leaf, header);
710 	btrfs_release_path(path);
711 
712 	if (!BTRFS_I(inode)->generation) {
713 		btrfs_info(fs_info,
714 			   "the free space cache file (%llu) is invalid, skip it",
715 			   offset);
716 		return 0;
717 	}
718 
719 	if (BTRFS_I(inode)->generation != generation) {
720 		btrfs_err(fs_info,
721 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
722 			  BTRFS_I(inode)->generation, generation);
723 		return 0;
724 	}
725 
726 	if (!num_entries)
727 		return 0;
728 
729 	ret = io_ctl_init(&io_ctl, inode, 0);
730 	if (ret)
731 		return ret;
732 
733 	readahead_cache(inode);
734 
735 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
736 	if (ret)
737 		goto out;
738 
739 	ret = io_ctl_check_crc(&io_ctl, 0);
740 	if (ret)
741 		goto free_cache;
742 
743 	ret = io_ctl_check_generation(&io_ctl, generation);
744 	if (ret)
745 		goto free_cache;
746 
747 	while (num_entries) {
748 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
749 				      GFP_NOFS);
750 		if (!e)
751 			goto free_cache;
752 
753 		ret = io_ctl_read_entry(&io_ctl, e, &type);
754 		if (ret) {
755 			kmem_cache_free(btrfs_free_space_cachep, e);
756 			goto free_cache;
757 		}
758 
759 		/*
760 		 * Sync discard ensures that the free space cache is always
761 		 * trimmed.  So when reading this in, the state should reflect
762 		 * that.  We also do this for async as a stop gap for lack of
763 		 * persistence.
764 		 */
765 		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
766 		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
767 			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;
768 
769 		if (!e->bytes) {
770 			kmem_cache_free(btrfs_free_space_cachep, e);
771 			goto free_cache;
772 		}
773 
774 		if (type == BTRFS_FREE_SPACE_EXTENT) {
775 			spin_lock(&ctl->tree_lock);
776 			ret = link_free_space(ctl, e);
777 			spin_unlock(&ctl->tree_lock);
778 			if (ret) {
779 				btrfs_err(fs_info,
780 					"Duplicate entries in free space cache, dumping");
781 				kmem_cache_free(btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 		} else {
785 			ASSERT(num_bitmaps);
786 			num_bitmaps--;
787 			e->bitmap = kmem_cache_zalloc(
788 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
789 			if (!e->bitmap) {
790 				kmem_cache_free(
791 					btrfs_free_space_cachep, e);
792 				goto free_cache;
793 			}
794 			spin_lock(&ctl->tree_lock);
795 			ret = link_free_space(ctl, e);
796 			ctl->total_bitmaps++;
797 			ctl->op->recalc_thresholds(ctl);
798 			spin_unlock(&ctl->tree_lock);
799 			if (ret) {
800 				btrfs_err(fs_info,
801 					"Duplicate entries in free space cache, dumping");
802 				kmem_cache_free(btrfs_free_space_cachep, e);
803 				goto free_cache;
804 			}
805 			list_add_tail(&e->list, &bitmaps);
806 		}
807 
808 		num_entries--;
809 	}
810 
811 	io_ctl_unmap_page(&io_ctl);
812 
813 	/*
814 	 * We add the bitmaps at the end of the entries in order that
815 	 * the bitmap entries are added to the cache.
816 	 */
817 	list_for_each_entry_safe(e, n, &bitmaps, list) {
818 		list_del_init(&e->list);
819 		ret = io_ctl_read_bitmap(&io_ctl, e);
820 		if (ret)
821 			goto free_cache;
822 		e->bitmap_extents = count_bitmap_extents(ctl, e);
823 		if (!btrfs_free_space_trimmed(e)) {
824 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
825 				e->bitmap_extents;
826 			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
827 		}
828 	}
829 
830 	io_ctl_drop_pages(&io_ctl);
831 	merge_space_tree(ctl);
832 	ret = 1;
833 out:
834 	btrfs_discard_update_discardable(ctl->private, ctl);
835 	io_ctl_free(&io_ctl);
836 	return ret;
837 free_cache:
838 	io_ctl_drop_pages(&io_ctl);
839 	__btrfs_remove_free_space_cache(ctl);
840 	goto out;
841 }
842 
843 int load_free_space_cache(struct btrfs_block_group *block_group)
844 {
845 	struct btrfs_fs_info *fs_info = block_group->fs_info;
846 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
847 	struct inode *inode;
848 	struct btrfs_path *path;
849 	int ret = 0;
850 	bool matched;
851 	u64 used = block_group->used;
852 
853 	/*
854 	 * If this block group has been marked to be cleared for one reason or
855 	 * another then we can't trust the on disk cache, so just return.
856 	 */
857 	spin_lock(&block_group->lock);
858 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
859 		spin_unlock(&block_group->lock);
860 		return 0;
861 	}
862 	spin_unlock(&block_group->lock);
863 
864 	path = btrfs_alloc_path();
865 	if (!path)
866 		return 0;
867 	path->search_commit_root = 1;
868 	path->skip_locking = 1;
869 
870 	/*
871 	 * We must pass a path with search_commit_root set to btrfs_iget in
872 	 * order to avoid a deadlock when allocating extents for the tree root.
873 	 *
874 	 * When we are COWing an extent buffer from the tree root, when looking
875 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
876 	 * block group without its free space cache loaded. When we find one
877 	 * we must load its space cache which requires reading its free space
878 	 * cache's inode item from the root tree. If this inode item is located
879 	 * in the same leaf that we started COWing before, then we end up in
880 	 * deadlock on the extent buffer (trying to read lock it when we
881 	 * previously write locked it).
882 	 *
883 	 * It's safe to read the inode item using the commit root because
884 	 * block groups, once loaded, stay in memory forever (until they are
885 	 * removed) as well as their space caches once loaded. New block groups
886 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
887 	 * we will never try to read their inode item while the fs is mounted.
888 	 */
889 	inode = lookup_free_space_inode(block_group, path);
890 	if (IS_ERR(inode)) {
891 		btrfs_free_path(path);
892 		return 0;
893 	}
894 
895 	/* We may have converted the inode and made the cache invalid. */
896 	spin_lock(&block_group->lock);
897 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
898 		spin_unlock(&block_group->lock);
899 		btrfs_free_path(path);
900 		goto out;
901 	}
902 	spin_unlock(&block_group->lock);
903 
904 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
905 				      path, block_group->start);
906 	btrfs_free_path(path);
907 	if (ret <= 0)
908 		goto out;
909 
910 	spin_lock(&ctl->tree_lock);
911 	matched = (ctl->free_space == (block_group->length - used -
912 				       block_group->bytes_super));
913 	spin_unlock(&ctl->tree_lock);
914 
915 	if (!matched) {
916 		__btrfs_remove_free_space_cache(ctl);
917 		btrfs_warn(fs_info,
918 			   "block group %llu has wrong amount of free space",
919 			   block_group->start);
920 		ret = -1;
921 	}
922 out:
923 	if (ret < 0) {
924 		/* This cache is bogus, make sure it gets cleared */
925 		spin_lock(&block_group->lock);
926 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
927 		spin_unlock(&block_group->lock);
928 		ret = 0;
929 
930 		btrfs_warn(fs_info,
931 			   "failed to load free space cache for block group %llu, rebuilding it now",
932 			   block_group->start);
933 	}
934 
935 	iput(inode);
936 	return ret;
937 }
938 
939 static noinline_for_stack
940 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
941 			      struct btrfs_free_space_ctl *ctl,
942 			      struct btrfs_block_group *block_group,
943 			      int *entries, int *bitmaps,
944 			      struct list_head *bitmap_list)
945 {
946 	int ret;
947 	struct btrfs_free_cluster *cluster = NULL;
948 	struct btrfs_free_cluster *cluster_locked = NULL;
949 	struct rb_node *node = rb_first(&ctl->free_space_offset);
950 	struct btrfs_trim_range *trim_entry;
951 
952 	/* Get the cluster for this block_group if it exists */
953 	if (block_group && !list_empty(&block_group->cluster_list)) {
954 		cluster = list_entry(block_group->cluster_list.next,
955 				     struct btrfs_free_cluster,
956 				     block_group_list);
957 	}
958 
959 	if (!node && cluster) {
960 		cluster_locked = cluster;
961 		spin_lock(&cluster_locked->lock);
962 		node = rb_first(&cluster->root);
963 		cluster = NULL;
964 	}
965 
966 	/* Write out the extent entries */
967 	while (node) {
968 		struct btrfs_free_space *e;
969 
970 		e = rb_entry(node, struct btrfs_free_space, offset_index);
971 		*entries += 1;
972 
973 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
974 				       e->bitmap);
975 		if (ret)
976 			goto fail;
977 
978 		if (e->bitmap) {
979 			list_add_tail(&e->list, bitmap_list);
980 			*bitmaps += 1;
981 		}
982 		node = rb_next(node);
983 		if (!node && cluster) {
984 			node = rb_first(&cluster->root);
985 			cluster_locked = cluster;
986 			spin_lock(&cluster_locked->lock);
987 			cluster = NULL;
988 		}
989 	}
990 	if (cluster_locked) {
991 		spin_unlock(&cluster_locked->lock);
992 		cluster_locked = NULL;
993 	}
994 
995 	/*
996 	 * Make sure we don't miss any range that was removed from our rbtree
997 	 * because trimming is running. Otherwise after a umount+mount (or crash
998 	 * after committing the transaction) we would leak free space and get
999 	 * an inconsistent free space cache report from fsck.
1000 	 */
1001 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1002 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1003 				       trim_entry->bytes, NULL);
1004 		if (ret)
1005 			goto fail;
1006 		*entries += 1;
1007 	}
1008 
1009 	return 0;
1010 fail:
1011 	if (cluster_locked)
1012 		spin_unlock(&cluster_locked->lock);
1013 	return -ENOSPC;
1014 }
1015 
1016 static noinline_for_stack int
1017 update_cache_item(struct btrfs_trans_handle *trans,
1018 		  struct btrfs_root *root,
1019 		  struct inode *inode,
1020 		  struct btrfs_path *path, u64 offset,
1021 		  int entries, int bitmaps)
1022 {
1023 	struct btrfs_key key;
1024 	struct btrfs_free_space_header *header;
1025 	struct extent_buffer *leaf;
1026 	int ret;
1027 
1028 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1029 	key.offset = offset;
1030 	key.type = 0;
1031 
1032 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1033 	if (ret < 0) {
1034 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035 				 EXTENT_DELALLOC, 0, 0, NULL);
1036 		goto fail;
1037 	}
1038 	leaf = path->nodes[0];
1039 	if (ret > 0) {
1040 		struct btrfs_key found_key;
1041 		ASSERT(path->slots[0]);
1042 		path->slots[0]--;
1043 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1044 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1045 		    found_key.offset != offset) {
1046 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1048 					 0, NULL);
1049 			btrfs_release_path(path);
1050 			goto fail;
1051 		}
1052 	}
1053 
1054 	BTRFS_I(inode)->generation = trans->transid;
1055 	header = btrfs_item_ptr(leaf, path->slots[0],
1056 				struct btrfs_free_space_header);
1057 	btrfs_set_free_space_entries(leaf, header, entries);
1058 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1059 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1060 	btrfs_mark_buffer_dirty(leaf);
1061 	btrfs_release_path(path);
1062 
1063 	return 0;
1064 
1065 fail:
1066 	return -1;
1067 }
1068 
1069 static noinline_for_stack int write_pinned_extent_entries(
1070 			    struct btrfs_block_group *block_group,
1071 			    struct btrfs_io_ctl *io_ctl,
1072 			    int *entries)
1073 {
1074 	u64 start, extent_start, extent_end, len;
1075 	struct extent_io_tree *unpin = NULL;
1076 	int ret;
1077 
1078 	if (!block_group)
1079 		return 0;
1080 
1081 	/*
1082 	 * We want to add any pinned extents to our free space cache
1083 	 * so we don't leak the space
1084 	 *
1085 	 * We shouldn't have switched the pinned extents yet so this is the
1086 	 * right one
1087 	 */
1088 	unpin = block_group->fs_info->pinned_extents;
1089 
1090 	start = block_group->start;
1091 
1092 	while (start < block_group->start + block_group->length) {
1093 		ret = find_first_extent_bit(unpin, start,
1094 					    &extent_start, &extent_end,
1095 					    EXTENT_DIRTY, NULL);
1096 		if (ret)
1097 			return 0;
1098 
1099 		/* This pinned extent is out of our range */
1100 		if (extent_start >= block_group->start + block_group->length)
1101 			return 0;
1102 
1103 		extent_start = max(extent_start, start);
1104 		extent_end = min(block_group->start + block_group->length,
1105 				 extent_end + 1);
1106 		len = extent_end - extent_start;
1107 
1108 		*entries += 1;
1109 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1110 		if (ret)
1111 			return -ENOSPC;
1112 
1113 		start = extent_end;
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 static noinline_for_stack int
1120 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1121 {
1122 	struct btrfs_free_space *entry, *next;
1123 	int ret;
1124 
1125 	/* Write out the bitmaps */
1126 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1127 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1128 		if (ret)
1129 			return -ENOSPC;
1130 		list_del_init(&entry->list);
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 static int flush_dirty_cache(struct inode *inode)
1137 {
1138 	int ret;
1139 
1140 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1141 	if (ret)
1142 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1143 				 EXTENT_DELALLOC, 0, 0, NULL);
1144 
1145 	return ret;
1146 }
1147 
1148 static void noinline_for_stack
1149 cleanup_bitmap_list(struct list_head *bitmap_list)
1150 {
1151 	struct btrfs_free_space *entry, *next;
1152 
1153 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1154 		list_del_init(&entry->list);
1155 }
1156 
1157 static void noinline_for_stack
1158 cleanup_write_cache_enospc(struct inode *inode,
1159 			   struct btrfs_io_ctl *io_ctl,
1160 			   struct extent_state **cached_state)
1161 {
1162 	io_ctl_drop_pages(io_ctl);
1163 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1164 			     i_size_read(inode) - 1, cached_state);
1165 }
1166 
1167 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1168 				 struct btrfs_trans_handle *trans,
1169 				 struct btrfs_block_group *block_group,
1170 				 struct btrfs_io_ctl *io_ctl,
1171 				 struct btrfs_path *path, u64 offset)
1172 {
1173 	int ret;
1174 	struct inode *inode = io_ctl->inode;
1175 
1176 	if (!inode)
1177 		return 0;
1178 
1179 	/* Flush the dirty pages in the cache file. */
1180 	ret = flush_dirty_cache(inode);
1181 	if (ret)
1182 		goto out;
1183 
1184 	/* Update the cache item to tell everyone this cache file is valid. */
1185 	ret = update_cache_item(trans, root, inode, path, offset,
1186 				io_ctl->entries, io_ctl->bitmaps);
1187 out:
1188 	io_ctl_free(io_ctl);
1189 	if (ret) {
1190 		invalidate_inode_pages2(inode->i_mapping);
1191 		BTRFS_I(inode)->generation = 0;
1192 		if (block_group) {
1193 #ifdef DEBUG
1194 			btrfs_err(root->fs_info,
1195 				  "failed to write free space cache for block group %llu",
1196 				  block_group->start);
1197 #endif
1198 		}
1199 	}
1200 	btrfs_update_inode(trans, root, inode);
1201 
1202 	if (block_group) {
1203 		/* the dirty list is protected by the dirty_bgs_lock */
1204 		spin_lock(&trans->transaction->dirty_bgs_lock);
1205 
1206 		/* the disk_cache_state is protected by the block group lock */
1207 		spin_lock(&block_group->lock);
1208 
1209 		/*
1210 		 * only mark this as written if we didn't get put back on
1211 		 * the dirty list while waiting for IO.   Otherwise our
1212 		 * cache state won't be right, and we won't get written again
1213 		 */
1214 		if (!ret && list_empty(&block_group->dirty_list))
1215 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1216 		else if (ret)
1217 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1218 
1219 		spin_unlock(&block_group->lock);
1220 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1221 		io_ctl->inode = NULL;
1222 		iput(inode);
1223 	}
1224 
1225 	return ret;
1226 
1227 }
1228 
1229 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1230 				    struct btrfs_trans_handle *trans,
1231 				    struct btrfs_io_ctl *io_ctl,
1232 				    struct btrfs_path *path)
1233 {
1234 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1235 }
1236 
1237 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1238 			struct btrfs_block_group *block_group,
1239 			struct btrfs_path *path)
1240 {
1241 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1242 				     block_group, &block_group->io_ctl,
1243 				     path, block_group->start);
1244 }
1245 
1246 /**
1247  * __btrfs_write_out_cache - write out cached info to an inode
1248  * @root - the root the inode belongs to
1249  * @ctl - the free space cache we are going to write out
1250  * @block_group - the block_group for this cache if it belongs to a block_group
1251  * @trans - the trans handle
1252  *
1253  * This function writes out a free space cache struct to disk for quick recovery
1254  * on mount.  This will return 0 if it was successful in writing the cache out,
1255  * or an errno if it was not.
1256  */
1257 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1258 				   struct btrfs_free_space_ctl *ctl,
1259 				   struct btrfs_block_group *block_group,
1260 				   struct btrfs_io_ctl *io_ctl,
1261 				   struct btrfs_trans_handle *trans)
1262 {
1263 	struct extent_state *cached_state = NULL;
1264 	LIST_HEAD(bitmap_list);
1265 	int entries = 0;
1266 	int bitmaps = 0;
1267 	int ret;
1268 	int must_iput = 0;
1269 
1270 	if (!i_size_read(inode))
1271 		return -EIO;
1272 
1273 	WARN_ON(io_ctl->pages);
1274 	ret = io_ctl_init(io_ctl, inode, 1);
1275 	if (ret)
1276 		return ret;
1277 
1278 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1279 		down_write(&block_group->data_rwsem);
1280 		spin_lock(&block_group->lock);
1281 		if (block_group->delalloc_bytes) {
1282 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1283 			spin_unlock(&block_group->lock);
1284 			up_write(&block_group->data_rwsem);
1285 			BTRFS_I(inode)->generation = 0;
1286 			ret = 0;
1287 			must_iput = 1;
1288 			goto out;
1289 		}
1290 		spin_unlock(&block_group->lock);
1291 	}
1292 
1293 	/* Lock all pages first so we can lock the extent safely. */
1294 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1295 	if (ret)
1296 		goto out_unlock;
1297 
1298 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1299 			 &cached_state);
1300 
1301 	io_ctl_set_generation(io_ctl, trans->transid);
1302 
1303 	mutex_lock(&ctl->cache_writeout_mutex);
1304 	/* Write out the extent entries in the free space cache */
1305 	spin_lock(&ctl->tree_lock);
1306 	ret = write_cache_extent_entries(io_ctl, ctl,
1307 					 block_group, &entries, &bitmaps,
1308 					 &bitmap_list);
1309 	if (ret)
1310 		goto out_nospc_locked;
1311 
1312 	/*
1313 	 * Some spaces that are freed in the current transaction are pinned,
1314 	 * they will be added into free space cache after the transaction is
1315 	 * committed, we shouldn't lose them.
1316 	 *
1317 	 * If this changes while we are working we'll get added back to
1318 	 * the dirty list and redo it.  No locking needed
1319 	 */
1320 	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1321 	if (ret)
1322 		goto out_nospc_locked;
1323 
1324 	/*
1325 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1326 	 * locked while doing it because a concurrent trim can be manipulating
1327 	 * or freeing the bitmap.
1328 	 */
1329 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1330 	spin_unlock(&ctl->tree_lock);
1331 	mutex_unlock(&ctl->cache_writeout_mutex);
1332 	if (ret)
1333 		goto out_nospc;
1334 
1335 	/* Zero out the rest of the pages just to make sure */
1336 	io_ctl_zero_remaining_pages(io_ctl);
1337 
1338 	/* Everything is written out, now we dirty the pages in the file. */
1339 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1340 				i_size_read(inode), &cached_state);
1341 	if (ret)
1342 		goto out_nospc;
1343 
1344 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1345 		up_write(&block_group->data_rwsem);
1346 	/*
1347 	 * Release the pages and unlock the extent, we will flush
1348 	 * them out later
1349 	 */
1350 	io_ctl_drop_pages(io_ctl);
1351 
1352 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1353 			     i_size_read(inode) - 1, &cached_state);
1354 
1355 	/*
1356 	 * at this point the pages are under IO and we're happy,
1357 	 * The caller is responsible for waiting on them and updating the
1358 	 * the cache and the inode
1359 	 */
1360 	io_ctl->entries = entries;
1361 	io_ctl->bitmaps = bitmaps;
1362 
1363 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1364 	if (ret)
1365 		goto out;
1366 
1367 	return 0;
1368 
1369 out:
1370 	io_ctl->inode = NULL;
1371 	io_ctl_free(io_ctl);
1372 	if (ret) {
1373 		invalidate_inode_pages2(inode->i_mapping);
1374 		BTRFS_I(inode)->generation = 0;
1375 	}
1376 	btrfs_update_inode(trans, root, inode);
1377 	if (must_iput)
1378 		iput(inode);
1379 	return ret;
1380 
1381 out_nospc_locked:
1382 	cleanup_bitmap_list(&bitmap_list);
1383 	spin_unlock(&ctl->tree_lock);
1384 	mutex_unlock(&ctl->cache_writeout_mutex);
1385 
1386 out_nospc:
1387 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1388 
1389 out_unlock:
1390 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1391 		up_write(&block_group->data_rwsem);
1392 
1393 	goto out;
1394 }
1395 
1396 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1397 			  struct btrfs_block_group *block_group,
1398 			  struct btrfs_path *path)
1399 {
1400 	struct btrfs_fs_info *fs_info = trans->fs_info;
1401 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1402 	struct inode *inode;
1403 	int ret = 0;
1404 
1405 	spin_lock(&block_group->lock);
1406 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1407 		spin_unlock(&block_group->lock);
1408 		return 0;
1409 	}
1410 	spin_unlock(&block_group->lock);
1411 
1412 	inode = lookup_free_space_inode(block_group, path);
1413 	if (IS_ERR(inode))
1414 		return 0;
1415 
1416 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1417 				block_group, &block_group->io_ctl, trans);
1418 	if (ret) {
1419 #ifdef DEBUG
1420 		btrfs_err(fs_info,
1421 			  "failed to write free space cache for block group %llu",
1422 			  block_group->start);
1423 #endif
1424 		spin_lock(&block_group->lock);
1425 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1426 		spin_unlock(&block_group->lock);
1427 
1428 		block_group->io_ctl.inode = NULL;
1429 		iput(inode);
1430 	}
1431 
1432 	/*
1433 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1434 	 * to wait for IO and put the inode
1435 	 */
1436 
1437 	return ret;
1438 }
1439 
1440 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1441 					  u64 offset)
1442 {
1443 	ASSERT(offset >= bitmap_start);
1444 	offset -= bitmap_start;
1445 	return (unsigned long)(div_u64(offset, unit));
1446 }
1447 
1448 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1449 {
1450 	return (unsigned long)(div_u64(bytes, unit));
1451 }
1452 
1453 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1454 				   u64 offset)
1455 {
1456 	u64 bitmap_start;
1457 	u64 bytes_per_bitmap;
1458 
1459 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1460 	bitmap_start = offset - ctl->start;
1461 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1462 	bitmap_start *= bytes_per_bitmap;
1463 	bitmap_start += ctl->start;
1464 
1465 	return bitmap_start;
1466 }
1467 
1468 static int tree_insert_offset(struct rb_root *root, u64 offset,
1469 			      struct rb_node *node, int bitmap)
1470 {
1471 	struct rb_node **p = &root->rb_node;
1472 	struct rb_node *parent = NULL;
1473 	struct btrfs_free_space *info;
1474 
1475 	while (*p) {
1476 		parent = *p;
1477 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1478 
1479 		if (offset < info->offset) {
1480 			p = &(*p)->rb_left;
1481 		} else if (offset > info->offset) {
1482 			p = &(*p)->rb_right;
1483 		} else {
1484 			/*
1485 			 * we could have a bitmap entry and an extent entry
1486 			 * share the same offset.  If this is the case, we want
1487 			 * the extent entry to always be found first if we do a
1488 			 * linear search through the tree, since we want to have
1489 			 * the quickest allocation time, and allocating from an
1490 			 * extent is faster than allocating from a bitmap.  So
1491 			 * if we're inserting a bitmap and we find an entry at
1492 			 * this offset, we want to go right, or after this entry
1493 			 * logically.  If we are inserting an extent and we've
1494 			 * found a bitmap, we want to go left, or before
1495 			 * logically.
1496 			 */
1497 			if (bitmap) {
1498 				if (info->bitmap) {
1499 					WARN_ON_ONCE(1);
1500 					return -EEXIST;
1501 				}
1502 				p = &(*p)->rb_right;
1503 			} else {
1504 				if (!info->bitmap) {
1505 					WARN_ON_ONCE(1);
1506 					return -EEXIST;
1507 				}
1508 				p = &(*p)->rb_left;
1509 			}
1510 		}
1511 	}
1512 
1513 	rb_link_node(node, parent, p);
1514 	rb_insert_color(node, root);
1515 
1516 	return 0;
1517 }
1518 
1519 /*
1520  * searches the tree for the given offset.
1521  *
1522  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1523  * want a section that has at least bytes size and comes at or after the given
1524  * offset.
1525  */
1526 static struct btrfs_free_space *
1527 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1528 		   u64 offset, int bitmap_only, int fuzzy)
1529 {
1530 	struct rb_node *n = ctl->free_space_offset.rb_node;
1531 	struct btrfs_free_space *entry, *prev = NULL;
1532 
1533 	/* find entry that is closest to the 'offset' */
1534 	while (1) {
1535 		if (!n) {
1536 			entry = NULL;
1537 			break;
1538 		}
1539 
1540 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1541 		prev = entry;
1542 
1543 		if (offset < entry->offset)
1544 			n = n->rb_left;
1545 		else if (offset > entry->offset)
1546 			n = n->rb_right;
1547 		else
1548 			break;
1549 	}
1550 
1551 	if (bitmap_only) {
1552 		if (!entry)
1553 			return NULL;
1554 		if (entry->bitmap)
1555 			return entry;
1556 
1557 		/*
1558 		 * bitmap entry and extent entry may share same offset,
1559 		 * in that case, bitmap entry comes after extent entry.
1560 		 */
1561 		n = rb_next(n);
1562 		if (!n)
1563 			return NULL;
1564 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1565 		if (entry->offset != offset)
1566 			return NULL;
1567 
1568 		WARN_ON(!entry->bitmap);
1569 		return entry;
1570 	} else if (entry) {
1571 		if (entry->bitmap) {
1572 			/*
1573 			 * if previous extent entry covers the offset,
1574 			 * we should return it instead of the bitmap entry
1575 			 */
1576 			n = rb_prev(&entry->offset_index);
1577 			if (n) {
1578 				prev = rb_entry(n, struct btrfs_free_space,
1579 						offset_index);
1580 				if (!prev->bitmap &&
1581 				    prev->offset + prev->bytes > offset)
1582 					entry = prev;
1583 			}
1584 		}
1585 		return entry;
1586 	}
1587 
1588 	if (!prev)
1589 		return NULL;
1590 
1591 	/* find last entry before the 'offset' */
1592 	entry = prev;
1593 	if (entry->offset > offset) {
1594 		n = rb_prev(&entry->offset_index);
1595 		if (n) {
1596 			entry = rb_entry(n, struct btrfs_free_space,
1597 					offset_index);
1598 			ASSERT(entry->offset <= offset);
1599 		} else {
1600 			if (fuzzy)
1601 				return entry;
1602 			else
1603 				return NULL;
1604 		}
1605 	}
1606 
1607 	if (entry->bitmap) {
1608 		n = rb_prev(&entry->offset_index);
1609 		if (n) {
1610 			prev = rb_entry(n, struct btrfs_free_space,
1611 					offset_index);
1612 			if (!prev->bitmap &&
1613 			    prev->offset + prev->bytes > offset)
1614 				return prev;
1615 		}
1616 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1617 			return entry;
1618 	} else if (entry->offset + entry->bytes > offset)
1619 		return entry;
1620 
1621 	if (!fuzzy)
1622 		return NULL;
1623 
1624 	while (1) {
1625 		if (entry->bitmap) {
1626 			if (entry->offset + BITS_PER_BITMAP *
1627 			    ctl->unit > offset)
1628 				break;
1629 		} else {
1630 			if (entry->offset + entry->bytes > offset)
1631 				break;
1632 		}
1633 
1634 		n = rb_next(&entry->offset_index);
1635 		if (!n)
1636 			return NULL;
1637 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1638 	}
1639 	return entry;
1640 }
1641 
1642 static inline void
1643 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1644 		    struct btrfs_free_space *info)
1645 {
1646 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1647 	ctl->free_extents--;
1648 
1649 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1650 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1651 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1652 	}
1653 }
1654 
1655 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1656 			      struct btrfs_free_space *info)
1657 {
1658 	__unlink_free_space(ctl, info);
1659 	ctl->free_space -= info->bytes;
1660 }
1661 
1662 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1663 			   struct btrfs_free_space *info)
1664 {
1665 	int ret = 0;
1666 
1667 	ASSERT(info->bytes || info->bitmap);
1668 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1669 				 &info->offset_index, (info->bitmap != NULL));
1670 	if (ret)
1671 		return ret;
1672 
1673 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1674 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1675 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1676 	}
1677 
1678 	ctl->free_space += info->bytes;
1679 	ctl->free_extents++;
1680 	return ret;
1681 }
1682 
1683 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1684 {
1685 	struct btrfs_block_group *block_group = ctl->private;
1686 	u64 max_bytes;
1687 	u64 bitmap_bytes;
1688 	u64 extent_bytes;
1689 	u64 size = block_group->length;
1690 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1691 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1692 
1693 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1694 
1695 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1696 
1697 	/*
1698 	 * We are trying to keep the total amount of memory used per 1GiB of
1699 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
1700 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1701 	 * bitmaps, we may end up using more memory than this.
1702 	 */
1703 	if (size < SZ_1G)
1704 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1705 	else
1706 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1707 
1708 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1709 
1710 	/*
1711 	 * we want the extent entry threshold to always be at most 1/2 the max
1712 	 * bytes we can have, or whatever is less than that.
1713 	 */
1714 	extent_bytes = max_bytes - bitmap_bytes;
1715 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1716 
1717 	ctl->extents_thresh =
1718 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1719 }
1720 
1721 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1722 				       struct btrfs_free_space *info,
1723 				       u64 offset, u64 bytes)
1724 {
1725 	unsigned long start, count, end;
1726 	int extent_delta = -1;
1727 
1728 	start = offset_to_bit(info->offset, ctl->unit, offset);
1729 	count = bytes_to_bits(bytes, ctl->unit);
1730 	end = start + count;
1731 	ASSERT(end <= BITS_PER_BITMAP);
1732 
1733 	bitmap_clear(info->bitmap, start, count);
1734 
1735 	info->bytes -= bytes;
1736 	if (info->max_extent_size > ctl->unit)
1737 		info->max_extent_size = 0;
1738 
1739 	if (start && test_bit(start - 1, info->bitmap))
1740 		extent_delta++;
1741 
1742 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1743 		extent_delta++;
1744 
1745 	info->bitmap_extents += extent_delta;
1746 	if (!btrfs_free_space_trimmed(info)) {
1747 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1748 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1749 	}
1750 }
1751 
1752 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1753 			      struct btrfs_free_space *info, u64 offset,
1754 			      u64 bytes)
1755 {
1756 	__bitmap_clear_bits(ctl, info, offset, bytes);
1757 	ctl->free_space -= bytes;
1758 }
1759 
1760 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1761 			    struct btrfs_free_space *info, u64 offset,
1762 			    u64 bytes)
1763 {
1764 	unsigned long start, count, end;
1765 	int extent_delta = 1;
1766 
1767 	start = offset_to_bit(info->offset, ctl->unit, offset);
1768 	count = bytes_to_bits(bytes, ctl->unit);
1769 	end = start + count;
1770 	ASSERT(end <= BITS_PER_BITMAP);
1771 
1772 	bitmap_set(info->bitmap, start, count);
1773 
1774 	info->bytes += bytes;
1775 	ctl->free_space += bytes;
1776 
1777 	if (start && test_bit(start - 1, info->bitmap))
1778 		extent_delta--;
1779 
1780 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1781 		extent_delta--;
1782 
1783 	info->bitmap_extents += extent_delta;
1784 	if (!btrfs_free_space_trimmed(info)) {
1785 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1786 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1787 	}
1788 }
1789 
1790 /*
1791  * If we can not find suitable extent, we will use bytes to record
1792  * the size of the max extent.
1793  */
1794 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1795 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1796 			 u64 *bytes, bool for_alloc)
1797 {
1798 	unsigned long found_bits = 0;
1799 	unsigned long max_bits = 0;
1800 	unsigned long bits, i;
1801 	unsigned long next_zero;
1802 	unsigned long extent_bits;
1803 
1804 	/*
1805 	 * Skip searching the bitmap if we don't have a contiguous section that
1806 	 * is large enough for this allocation.
1807 	 */
1808 	if (for_alloc &&
1809 	    bitmap_info->max_extent_size &&
1810 	    bitmap_info->max_extent_size < *bytes) {
1811 		*bytes = bitmap_info->max_extent_size;
1812 		return -1;
1813 	}
1814 
1815 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1816 			  max_t(u64, *offset, bitmap_info->offset));
1817 	bits = bytes_to_bits(*bytes, ctl->unit);
1818 
1819 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1820 		if (for_alloc && bits == 1) {
1821 			found_bits = 1;
1822 			break;
1823 		}
1824 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1825 					       BITS_PER_BITMAP, i);
1826 		extent_bits = next_zero - i;
1827 		if (extent_bits >= bits) {
1828 			found_bits = extent_bits;
1829 			break;
1830 		} else if (extent_bits > max_bits) {
1831 			max_bits = extent_bits;
1832 		}
1833 		i = next_zero;
1834 	}
1835 
1836 	if (found_bits) {
1837 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1838 		*bytes = (u64)(found_bits) * ctl->unit;
1839 		return 0;
1840 	}
1841 
1842 	*bytes = (u64)(max_bits) * ctl->unit;
1843 	bitmap_info->max_extent_size = *bytes;
1844 	return -1;
1845 }
1846 
1847 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1848 {
1849 	if (entry->bitmap)
1850 		return entry->max_extent_size;
1851 	return entry->bytes;
1852 }
1853 
1854 /* Cache the size of the max extent in bytes */
1855 static struct btrfs_free_space *
1856 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1857 		unsigned long align, u64 *max_extent_size)
1858 {
1859 	struct btrfs_free_space *entry;
1860 	struct rb_node *node;
1861 	u64 tmp;
1862 	u64 align_off;
1863 	int ret;
1864 
1865 	if (!ctl->free_space_offset.rb_node)
1866 		goto out;
1867 
1868 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1869 	if (!entry)
1870 		goto out;
1871 
1872 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1873 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1874 		if (entry->bytes < *bytes) {
1875 			*max_extent_size = max(get_max_extent_size(entry),
1876 					       *max_extent_size);
1877 			continue;
1878 		}
1879 
1880 		/* make sure the space returned is big enough
1881 		 * to match our requested alignment
1882 		 */
1883 		if (*bytes >= align) {
1884 			tmp = entry->offset - ctl->start + align - 1;
1885 			tmp = div64_u64(tmp, align);
1886 			tmp = tmp * align + ctl->start;
1887 			align_off = tmp - entry->offset;
1888 		} else {
1889 			align_off = 0;
1890 			tmp = entry->offset;
1891 		}
1892 
1893 		if (entry->bytes < *bytes + align_off) {
1894 			*max_extent_size = max(get_max_extent_size(entry),
1895 					       *max_extent_size);
1896 			continue;
1897 		}
1898 
1899 		if (entry->bitmap) {
1900 			u64 size = *bytes;
1901 
1902 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1903 			if (!ret) {
1904 				*offset = tmp;
1905 				*bytes = size;
1906 				return entry;
1907 			} else {
1908 				*max_extent_size =
1909 					max(get_max_extent_size(entry),
1910 					    *max_extent_size);
1911 			}
1912 			continue;
1913 		}
1914 
1915 		*offset = tmp;
1916 		*bytes = entry->bytes - align_off;
1917 		return entry;
1918 	}
1919 out:
1920 	return NULL;
1921 }
1922 
1923 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
1924 				struct btrfs_free_space *bitmap_info)
1925 {
1926 	struct btrfs_block_group *block_group = ctl->private;
1927 	u64 bytes = bitmap_info->bytes;
1928 	unsigned int rs, re;
1929 	int count = 0;
1930 
1931 	if (!block_group || !bytes)
1932 		return count;
1933 
1934 	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
1935 				   BITS_PER_BITMAP) {
1936 		bytes -= (rs - re) * ctl->unit;
1937 		count++;
1938 
1939 		if (!bytes)
1940 			break;
1941 	}
1942 
1943 	return count;
1944 }
1945 
1946 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1947 			   struct btrfs_free_space *info, u64 offset)
1948 {
1949 	info->offset = offset_to_bitmap(ctl, offset);
1950 	info->bytes = 0;
1951 	info->bitmap_extents = 0;
1952 	INIT_LIST_HEAD(&info->list);
1953 	link_free_space(ctl, info);
1954 	ctl->total_bitmaps++;
1955 
1956 	ctl->op->recalc_thresholds(ctl);
1957 }
1958 
1959 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1960 			struct btrfs_free_space *bitmap_info)
1961 {
1962 	/*
1963 	 * Normally when this is called, the bitmap is completely empty. However,
1964 	 * if we are blowing up the free space cache for one reason or another
1965 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1966 	 * we may leave stats on the table.
1967 	 */
1968 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1969 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1970 			bitmap_info->bitmap_extents;
1971 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1972 
1973 	}
1974 	unlink_free_space(ctl, bitmap_info);
1975 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1976 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1977 	ctl->total_bitmaps--;
1978 	ctl->op->recalc_thresholds(ctl);
1979 }
1980 
1981 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1982 			      struct btrfs_free_space *bitmap_info,
1983 			      u64 *offset, u64 *bytes)
1984 {
1985 	u64 end;
1986 	u64 search_start, search_bytes;
1987 	int ret;
1988 
1989 again:
1990 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1991 
1992 	/*
1993 	 * We need to search for bits in this bitmap.  We could only cover some
1994 	 * of the extent in this bitmap thanks to how we add space, so we need
1995 	 * to search for as much as it as we can and clear that amount, and then
1996 	 * go searching for the next bit.
1997 	 */
1998 	search_start = *offset;
1999 	search_bytes = ctl->unit;
2000 	search_bytes = min(search_bytes, end - search_start + 1);
2001 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2002 			    false);
2003 	if (ret < 0 || search_start != *offset)
2004 		return -EINVAL;
2005 
2006 	/* We may have found more bits than what we need */
2007 	search_bytes = min(search_bytes, *bytes);
2008 
2009 	/* Cannot clear past the end of the bitmap */
2010 	search_bytes = min(search_bytes, end - search_start + 1);
2011 
2012 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2013 	*offset += search_bytes;
2014 	*bytes -= search_bytes;
2015 
2016 	if (*bytes) {
2017 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2018 		if (!bitmap_info->bytes)
2019 			free_bitmap(ctl, bitmap_info);
2020 
2021 		/*
2022 		 * no entry after this bitmap, but we still have bytes to
2023 		 * remove, so something has gone wrong.
2024 		 */
2025 		if (!next)
2026 			return -EINVAL;
2027 
2028 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2029 				       offset_index);
2030 
2031 		/*
2032 		 * if the next entry isn't a bitmap we need to return to let the
2033 		 * extent stuff do its work.
2034 		 */
2035 		if (!bitmap_info->bitmap)
2036 			return -EAGAIN;
2037 
2038 		/*
2039 		 * Ok the next item is a bitmap, but it may not actually hold
2040 		 * the information for the rest of this free space stuff, so
2041 		 * look for it, and if we don't find it return so we can try
2042 		 * everything over again.
2043 		 */
2044 		search_start = *offset;
2045 		search_bytes = ctl->unit;
2046 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2047 				    &search_bytes, false);
2048 		if (ret < 0 || search_start != *offset)
2049 			return -EAGAIN;
2050 
2051 		goto again;
2052 	} else if (!bitmap_info->bytes)
2053 		free_bitmap(ctl, bitmap_info);
2054 
2055 	return 0;
2056 }
2057 
2058 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2059 			       struct btrfs_free_space *info, u64 offset,
2060 			       u64 bytes, enum btrfs_trim_state trim_state)
2061 {
2062 	u64 bytes_to_set = 0;
2063 	u64 end;
2064 
2065 	/*
2066 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2067 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2068 	 */
2069 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2070 		if (btrfs_free_space_trimmed(info)) {
2071 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2072 				info->bitmap_extents;
2073 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2074 		}
2075 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2076 	}
2077 
2078 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2079 
2080 	bytes_to_set = min(end - offset, bytes);
2081 
2082 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2083 
2084 	/*
2085 	 * We set some bytes, we have no idea what the max extent size is
2086 	 * anymore.
2087 	 */
2088 	info->max_extent_size = 0;
2089 
2090 	return bytes_to_set;
2091 
2092 }
2093 
2094 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2095 		      struct btrfs_free_space *info)
2096 {
2097 	struct btrfs_block_group *block_group = ctl->private;
2098 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2099 	bool forced = false;
2100 
2101 #ifdef CONFIG_BTRFS_DEBUG
2102 	if (btrfs_should_fragment_free_space(block_group))
2103 		forced = true;
2104 #endif
2105 
2106 	/* This is a way to reclaim large regions from the bitmaps. */
2107 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2108 		return false;
2109 
2110 	/*
2111 	 * If we are below the extents threshold then we can add this as an
2112 	 * extent, and don't have to deal with the bitmap
2113 	 */
2114 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2115 		/*
2116 		 * If this block group has some small extents we don't want to
2117 		 * use up all of our free slots in the cache with them, we want
2118 		 * to reserve them to larger extents, however if we have plenty
2119 		 * of cache left then go ahead an dadd them, no sense in adding
2120 		 * the overhead of a bitmap if we don't have to.
2121 		 */
2122 		if (info->bytes <= fs_info->sectorsize * 8) {
2123 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2124 				return false;
2125 		} else {
2126 			return false;
2127 		}
2128 	}
2129 
2130 	/*
2131 	 * The original block groups from mkfs can be really small, like 8
2132 	 * megabytes, so don't bother with a bitmap for those entries.  However
2133 	 * some block groups can be smaller than what a bitmap would cover but
2134 	 * are still large enough that they could overflow the 32k memory limit,
2135 	 * so allow those block groups to still be allowed to have a bitmap
2136 	 * entry.
2137 	 */
2138 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2139 		return false;
2140 
2141 	return true;
2142 }
2143 
2144 static const struct btrfs_free_space_op free_space_op = {
2145 	.recalc_thresholds	= recalculate_thresholds,
2146 	.use_bitmap		= use_bitmap,
2147 };
2148 
2149 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2150 			      struct btrfs_free_space *info)
2151 {
2152 	struct btrfs_free_space *bitmap_info;
2153 	struct btrfs_block_group *block_group = NULL;
2154 	int added = 0;
2155 	u64 bytes, offset, bytes_added;
2156 	enum btrfs_trim_state trim_state;
2157 	int ret;
2158 
2159 	bytes = info->bytes;
2160 	offset = info->offset;
2161 	trim_state = info->trim_state;
2162 
2163 	if (!ctl->op->use_bitmap(ctl, info))
2164 		return 0;
2165 
2166 	if (ctl->op == &free_space_op)
2167 		block_group = ctl->private;
2168 again:
2169 	/*
2170 	 * Since we link bitmaps right into the cluster we need to see if we
2171 	 * have a cluster here, and if so and it has our bitmap we need to add
2172 	 * the free space to that bitmap.
2173 	 */
2174 	if (block_group && !list_empty(&block_group->cluster_list)) {
2175 		struct btrfs_free_cluster *cluster;
2176 		struct rb_node *node;
2177 		struct btrfs_free_space *entry;
2178 
2179 		cluster = list_entry(block_group->cluster_list.next,
2180 				     struct btrfs_free_cluster,
2181 				     block_group_list);
2182 		spin_lock(&cluster->lock);
2183 		node = rb_first(&cluster->root);
2184 		if (!node) {
2185 			spin_unlock(&cluster->lock);
2186 			goto no_cluster_bitmap;
2187 		}
2188 
2189 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2190 		if (!entry->bitmap) {
2191 			spin_unlock(&cluster->lock);
2192 			goto no_cluster_bitmap;
2193 		}
2194 
2195 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2196 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2197 							  bytes, trim_state);
2198 			bytes -= bytes_added;
2199 			offset += bytes_added;
2200 		}
2201 		spin_unlock(&cluster->lock);
2202 		if (!bytes) {
2203 			ret = 1;
2204 			goto out;
2205 		}
2206 	}
2207 
2208 no_cluster_bitmap:
2209 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2210 					 1, 0);
2211 	if (!bitmap_info) {
2212 		ASSERT(added == 0);
2213 		goto new_bitmap;
2214 	}
2215 
2216 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2217 					  trim_state);
2218 	bytes -= bytes_added;
2219 	offset += bytes_added;
2220 	added = 0;
2221 
2222 	if (!bytes) {
2223 		ret = 1;
2224 		goto out;
2225 	} else
2226 		goto again;
2227 
2228 new_bitmap:
2229 	if (info && info->bitmap) {
2230 		add_new_bitmap(ctl, info, offset);
2231 		added = 1;
2232 		info = NULL;
2233 		goto again;
2234 	} else {
2235 		spin_unlock(&ctl->tree_lock);
2236 
2237 		/* no pre-allocated info, allocate a new one */
2238 		if (!info) {
2239 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2240 						 GFP_NOFS);
2241 			if (!info) {
2242 				spin_lock(&ctl->tree_lock);
2243 				ret = -ENOMEM;
2244 				goto out;
2245 			}
2246 		}
2247 
2248 		/* allocate the bitmap */
2249 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2250 						 GFP_NOFS);
2251 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2252 		spin_lock(&ctl->tree_lock);
2253 		if (!info->bitmap) {
2254 			ret = -ENOMEM;
2255 			goto out;
2256 		}
2257 		goto again;
2258 	}
2259 
2260 out:
2261 	if (info) {
2262 		if (info->bitmap)
2263 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2264 					info->bitmap);
2265 		kmem_cache_free(btrfs_free_space_cachep, info);
2266 	}
2267 
2268 	return ret;
2269 }
2270 
2271 /*
2272  * Free space merging rules:
2273  *  1) Merge trimmed areas together
2274  *  2) Let untrimmed areas coalesce with trimmed areas
2275  *  3) Always pull neighboring regions from bitmaps
2276  *
2277  * The above rules are for when we merge free space based on btrfs_trim_state.
2278  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2279  * same reason: to promote larger extent regions which makes life easier for
2280  * find_free_extent().  Rule 2 enables coalescing based on the common path
2281  * being returning free space from btrfs_finish_extent_commit().  So when free
2282  * space is trimmed, it will prevent aggregating trimmed new region and
2283  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2284  * and provide find_free_extent() with the largest extents possible hoping for
2285  * the reuse path.
2286  */
2287 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2288 			  struct btrfs_free_space *info, bool update_stat)
2289 {
2290 	struct btrfs_free_space *left_info;
2291 	struct btrfs_free_space *right_info;
2292 	bool merged = false;
2293 	u64 offset = info->offset;
2294 	u64 bytes = info->bytes;
2295 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2296 
2297 	/*
2298 	 * first we want to see if there is free space adjacent to the range we
2299 	 * are adding, if there is remove that struct and add a new one to
2300 	 * cover the entire range
2301 	 */
2302 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2303 	if (right_info && rb_prev(&right_info->offset_index))
2304 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2305 				     struct btrfs_free_space, offset_index);
2306 	else
2307 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2308 
2309 	/* See try_merge_free_space() comment. */
2310 	if (right_info && !right_info->bitmap &&
2311 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2312 		if (update_stat)
2313 			unlink_free_space(ctl, right_info);
2314 		else
2315 			__unlink_free_space(ctl, right_info);
2316 		info->bytes += right_info->bytes;
2317 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2318 		merged = true;
2319 	}
2320 
2321 	/* See try_merge_free_space() comment. */
2322 	if (left_info && !left_info->bitmap &&
2323 	    left_info->offset + left_info->bytes == offset &&
2324 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2325 		if (update_stat)
2326 			unlink_free_space(ctl, left_info);
2327 		else
2328 			__unlink_free_space(ctl, left_info);
2329 		info->offset = left_info->offset;
2330 		info->bytes += left_info->bytes;
2331 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2332 		merged = true;
2333 	}
2334 
2335 	return merged;
2336 }
2337 
2338 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2339 				     struct btrfs_free_space *info,
2340 				     bool update_stat)
2341 {
2342 	struct btrfs_free_space *bitmap;
2343 	unsigned long i;
2344 	unsigned long j;
2345 	const u64 end = info->offset + info->bytes;
2346 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2347 	u64 bytes;
2348 
2349 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2350 	if (!bitmap)
2351 		return false;
2352 
2353 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2354 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2355 	if (j == i)
2356 		return false;
2357 	bytes = (j - i) * ctl->unit;
2358 	info->bytes += bytes;
2359 
2360 	/* See try_merge_free_space() comment. */
2361 	if (!btrfs_free_space_trimmed(bitmap))
2362 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2363 
2364 	if (update_stat)
2365 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2366 	else
2367 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2368 
2369 	if (!bitmap->bytes)
2370 		free_bitmap(ctl, bitmap);
2371 
2372 	return true;
2373 }
2374 
2375 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2376 				       struct btrfs_free_space *info,
2377 				       bool update_stat)
2378 {
2379 	struct btrfs_free_space *bitmap;
2380 	u64 bitmap_offset;
2381 	unsigned long i;
2382 	unsigned long j;
2383 	unsigned long prev_j;
2384 	u64 bytes;
2385 
2386 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2387 	/* If we're on a boundary, try the previous logical bitmap. */
2388 	if (bitmap_offset == info->offset) {
2389 		if (info->offset == 0)
2390 			return false;
2391 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2392 	}
2393 
2394 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2395 	if (!bitmap)
2396 		return false;
2397 
2398 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2399 	j = 0;
2400 	prev_j = (unsigned long)-1;
2401 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2402 		if (j > i)
2403 			break;
2404 		prev_j = j;
2405 	}
2406 	if (prev_j == i)
2407 		return false;
2408 
2409 	if (prev_j == (unsigned long)-1)
2410 		bytes = (i + 1) * ctl->unit;
2411 	else
2412 		bytes = (i - prev_j) * ctl->unit;
2413 
2414 	info->offset -= bytes;
2415 	info->bytes += bytes;
2416 
2417 	/* See try_merge_free_space() comment. */
2418 	if (!btrfs_free_space_trimmed(bitmap))
2419 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2420 
2421 	if (update_stat)
2422 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2423 	else
2424 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2425 
2426 	if (!bitmap->bytes)
2427 		free_bitmap(ctl, bitmap);
2428 
2429 	return true;
2430 }
2431 
2432 /*
2433  * We prefer always to allocate from extent entries, both for clustered and
2434  * non-clustered allocation requests. So when attempting to add a new extent
2435  * entry, try to see if there's adjacent free space in bitmap entries, and if
2436  * there is, migrate that space from the bitmaps to the extent.
2437  * Like this we get better chances of satisfying space allocation requests
2438  * because we attempt to satisfy them based on a single cache entry, and never
2439  * on 2 or more entries - even if the entries represent a contiguous free space
2440  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2441  * ends).
2442  */
2443 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2444 			      struct btrfs_free_space *info,
2445 			      bool update_stat)
2446 {
2447 	/*
2448 	 * Only work with disconnected entries, as we can change their offset,
2449 	 * and must be extent entries.
2450 	 */
2451 	ASSERT(!info->bitmap);
2452 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2453 
2454 	if (ctl->total_bitmaps > 0) {
2455 		bool stole_end;
2456 		bool stole_front = false;
2457 
2458 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2459 		if (ctl->total_bitmaps > 0)
2460 			stole_front = steal_from_bitmap_to_front(ctl, info,
2461 								 update_stat);
2462 
2463 		if (stole_end || stole_front)
2464 			try_merge_free_space(ctl, info, update_stat);
2465 	}
2466 }
2467 
2468 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2469 			   struct btrfs_free_space_ctl *ctl,
2470 			   u64 offset, u64 bytes,
2471 			   enum btrfs_trim_state trim_state)
2472 {
2473 	struct btrfs_block_group *block_group = ctl->private;
2474 	struct btrfs_free_space *info;
2475 	int ret = 0;
2476 	u64 filter_bytes = bytes;
2477 
2478 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2479 	if (!info)
2480 		return -ENOMEM;
2481 
2482 	info->offset = offset;
2483 	info->bytes = bytes;
2484 	info->trim_state = trim_state;
2485 	RB_CLEAR_NODE(&info->offset_index);
2486 
2487 	spin_lock(&ctl->tree_lock);
2488 
2489 	if (try_merge_free_space(ctl, info, true))
2490 		goto link;
2491 
2492 	/*
2493 	 * There was no extent directly to the left or right of this new
2494 	 * extent then we know we're going to have to allocate a new extent, so
2495 	 * before we do that see if we need to drop this into a bitmap
2496 	 */
2497 	ret = insert_into_bitmap(ctl, info);
2498 	if (ret < 0) {
2499 		goto out;
2500 	} else if (ret) {
2501 		ret = 0;
2502 		goto out;
2503 	}
2504 link:
2505 	/*
2506 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2507 	 * going to add the new free space to existing bitmap entries - because
2508 	 * that would mean unnecessary work that would be reverted. Therefore
2509 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2510 	 */
2511 	steal_from_bitmap(ctl, info, true);
2512 
2513 	filter_bytes = max(filter_bytes, info->bytes);
2514 
2515 	ret = link_free_space(ctl, info);
2516 	if (ret)
2517 		kmem_cache_free(btrfs_free_space_cachep, info);
2518 out:
2519 	btrfs_discard_update_discardable(block_group, ctl);
2520 	spin_unlock(&ctl->tree_lock);
2521 
2522 	if (ret) {
2523 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2524 		ASSERT(ret != -EEXIST);
2525 	}
2526 
2527 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2528 		btrfs_discard_check_filter(block_group, filter_bytes);
2529 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2530 	}
2531 
2532 	return ret;
2533 }
2534 
2535 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2536 			 u64 bytenr, u64 size)
2537 {
2538 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2539 
2540 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2541 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2542 
2543 	return __btrfs_add_free_space(block_group->fs_info,
2544 				      block_group->free_space_ctl,
2545 				      bytenr, size, trim_state);
2546 }
2547 
2548 /*
2549  * This is a subtle distinction because when adding free space back in general,
2550  * we want it to be added as untrimmed for async. But in the case where we add
2551  * it on loading of a block group, we want to consider it trimmed.
2552  */
2553 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2554 				       u64 bytenr, u64 size)
2555 {
2556 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2557 
2558 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2559 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2560 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2561 
2562 	return __btrfs_add_free_space(block_group->fs_info,
2563 				      block_group->free_space_ctl,
2564 				      bytenr, size, trim_state);
2565 }
2566 
2567 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2568 			    u64 offset, u64 bytes)
2569 {
2570 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2571 	struct btrfs_free_space *info;
2572 	int ret;
2573 	bool re_search = false;
2574 
2575 	spin_lock(&ctl->tree_lock);
2576 
2577 again:
2578 	ret = 0;
2579 	if (!bytes)
2580 		goto out_lock;
2581 
2582 	info = tree_search_offset(ctl, offset, 0, 0);
2583 	if (!info) {
2584 		/*
2585 		 * oops didn't find an extent that matched the space we wanted
2586 		 * to remove, look for a bitmap instead
2587 		 */
2588 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2589 					  1, 0);
2590 		if (!info) {
2591 			/*
2592 			 * If we found a partial bit of our free space in a
2593 			 * bitmap but then couldn't find the other part this may
2594 			 * be a problem, so WARN about it.
2595 			 */
2596 			WARN_ON(re_search);
2597 			goto out_lock;
2598 		}
2599 	}
2600 
2601 	re_search = false;
2602 	if (!info->bitmap) {
2603 		unlink_free_space(ctl, info);
2604 		if (offset == info->offset) {
2605 			u64 to_free = min(bytes, info->bytes);
2606 
2607 			info->bytes -= to_free;
2608 			info->offset += to_free;
2609 			if (info->bytes) {
2610 				ret = link_free_space(ctl, info);
2611 				WARN_ON(ret);
2612 			} else {
2613 				kmem_cache_free(btrfs_free_space_cachep, info);
2614 			}
2615 
2616 			offset += to_free;
2617 			bytes -= to_free;
2618 			goto again;
2619 		} else {
2620 			u64 old_end = info->bytes + info->offset;
2621 
2622 			info->bytes = offset - info->offset;
2623 			ret = link_free_space(ctl, info);
2624 			WARN_ON(ret);
2625 			if (ret)
2626 				goto out_lock;
2627 
2628 			/* Not enough bytes in this entry to satisfy us */
2629 			if (old_end < offset + bytes) {
2630 				bytes -= old_end - offset;
2631 				offset = old_end;
2632 				goto again;
2633 			} else if (old_end == offset + bytes) {
2634 				/* all done */
2635 				goto out_lock;
2636 			}
2637 			spin_unlock(&ctl->tree_lock);
2638 
2639 			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2640 						     offset + bytes,
2641 						     old_end - (offset + bytes),
2642 						     info->trim_state);
2643 			WARN_ON(ret);
2644 			goto out;
2645 		}
2646 	}
2647 
2648 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2649 	if (ret == -EAGAIN) {
2650 		re_search = true;
2651 		goto again;
2652 	}
2653 out_lock:
2654 	btrfs_discard_update_discardable(block_group, ctl);
2655 	spin_unlock(&ctl->tree_lock);
2656 out:
2657 	return ret;
2658 }
2659 
2660 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2661 			   u64 bytes)
2662 {
2663 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2664 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2665 	struct btrfs_free_space *info;
2666 	struct rb_node *n;
2667 	int count = 0;
2668 
2669 	spin_lock(&ctl->tree_lock);
2670 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2671 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2672 		if (info->bytes >= bytes && !block_group->ro)
2673 			count++;
2674 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2675 			   info->offset, info->bytes,
2676 		       (info->bitmap) ? "yes" : "no");
2677 	}
2678 	spin_unlock(&ctl->tree_lock);
2679 	btrfs_info(fs_info, "block group has cluster?: %s",
2680 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2681 	btrfs_info(fs_info,
2682 		   "%d blocks of free space at or bigger than bytes is", count);
2683 }
2684 
2685 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2686 {
2687 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2688 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2689 
2690 	spin_lock_init(&ctl->tree_lock);
2691 	ctl->unit = fs_info->sectorsize;
2692 	ctl->start = block_group->start;
2693 	ctl->private = block_group;
2694 	ctl->op = &free_space_op;
2695 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2696 	mutex_init(&ctl->cache_writeout_mutex);
2697 
2698 	/*
2699 	 * we only want to have 32k of ram per block group for keeping
2700 	 * track of free space, and if we pass 1/2 of that we want to
2701 	 * start converting things over to using bitmaps
2702 	 */
2703 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2704 }
2705 
2706 /*
2707  * for a given cluster, put all of its extents back into the free
2708  * space cache.  If the block group passed doesn't match the block group
2709  * pointed to by the cluster, someone else raced in and freed the
2710  * cluster already.  In that case, we just return without changing anything
2711  */
2712 static int
2713 __btrfs_return_cluster_to_free_space(
2714 			     struct btrfs_block_group *block_group,
2715 			     struct btrfs_free_cluster *cluster)
2716 {
2717 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2718 	struct btrfs_free_space *entry;
2719 	struct rb_node *node;
2720 
2721 	spin_lock(&cluster->lock);
2722 	if (cluster->block_group != block_group)
2723 		goto out;
2724 
2725 	cluster->block_group = NULL;
2726 	cluster->window_start = 0;
2727 	list_del_init(&cluster->block_group_list);
2728 
2729 	node = rb_first(&cluster->root);
2730 	while (node) {
2731 		bool bitmap;
2732 
2733 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2734 		node = rb_next(&entry->offset_index);
2735 		rb_erase(&entry->offset_index, &cluster->root);
2736 		RB_CLEAR_NODE(&entry->offset_index);
2737 
2738 		bitmap = (entry->bitmap != NULL);
2739 		if (!bitmap) {
2740 			/* Merging treats extents as if they were new */
2741 			if (!btrfs_free_space_trimmed(entry)) {
2742 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2743 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2744 					entry->bytes;
2745 			}
2746 
2747 			try_merge_free_space(ctl, entry, false);
2748 			steal_from_bitmap(ctl, entry, false);
2749 
2750 			/* As we insert directly, update these statistics */
2751 			if (!btrfs_free_space_trimmed(entry)) {
2752 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2753 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2754 					entry->bytes;
2755 			}
2756 		}
2757 		tree_insert_offset(&ctl->free_space_offset,
2758 				   entry->offset, &entry->offset_index, bitmap);
2759 	}
2760 	cluster->root = RB_ROOT;
2761 
2762 out:
2763 	spin_unlock(&cluster->lock);
2764 	btrfs_put_block_group(block_group);
2765 	return 0;
2766 }
2767 
2768 static void __btrfs_remove_free_space_cache_locked(
2769 				struct btrfs_free_space_ctl *ctl)
2770 {
2771 	struct btrfs_free_space *info;
2772 	struct rb_node *node;
2773 
2774 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2775 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2776 		if (!info->bitmap) {
2777 			unlink_free_space(ctl, info);
2778 			kmem_cache_free(btrfs_free_space_cachep, info);
2779 		} else {
2780 			free_bitmap(ctl, info);
2781 		}
2782 
2783 		cond_resched_lock(&ctl->tree_lock);
2784 	}
2785 }
2786 
2787 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2788 {
2789 	spin_lock(&ctl->tree_lock);
2790 	__btrfs_remove_free_space_cache_locked(ctl);
2791 	if (ctl->private)
2792 		btrfs_discard_update_discardable(ctl->private, ctl);
2793 	spin_unlock(&ctl->tree_lock);
2794 }
2795 
2796 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2797 {
2798 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2799 	struct btrfs_free_cluster *cluster;
2800 	struct list_head *head;
2801 
2802 	spin_lock(&ctl->tree_lock);
2803 	while ((head = block_group->cluster_list.next) !=
2804 	       &block_group->cluster_list) {
2805 		cluster = list_entry(head, struct btrfs_free_cluster,
2806 				     block_group_list);
2807 
2808 		WARN_ON(cluster->block_group != block_group);
2809 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2810 
2811 		cond_resched_lock(&ctl->tree_lock);
2812 	}
2813 	__btrfs_remove_free_space_cache_locked(ctl);
2814 	btrfs_discard_update_discardable(block_group, ctl);
2815 	spin_unlock(&ctl->tree_lock);
2816 
2817 }
2818 
2819 /**
2820  * btrfs_is_free_space_trimmed - see if everything is trimmed
2821  * @block_group: block_group of interest
2822  *
2823  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2824  */
2825 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2826 {
2827 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2828 	struct btrfs_free_space *info;
2829 	struct rb_node *node;
2830 	bool ret = true;
2831 
2832 	spin_lock(&ctl->tree_lock);
2833 	node = rb_first(&ctl->free_space_offset);
2834 
2835 	while (node) {
2836 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2837 
2838 		if (!btrfs_free_space_trimmed(info)) {
2839 			ret = false;
2840 			break;
2841 		}
2842 
2843 		node = rb_next(node);
2844 	}
2845 
2846 	spin_unlock(&ctl->tree_lock);
2847 	return ret;
2848 }
2849 
2850 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2851 			       u64 offset, u64 bytes, u64 empty_size,
2852 			       u64 *max_extent_size)
2853 {
2854 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2855 	struct btrfs_discard_ctl *discard_ctl =
2856 					&block_group->fs_info->discard_ctl;
2857 	struct btrfs_free_space *entry = NULL;
2858 	u64 bytes_search = bytes + empty_size;
2859 	u64 ret = 0;
2860 	u64 align_gap = 0;
2861 	u64 align_gap_len = 0;
2862 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2863 
2864 	spin_lock(&ctl->tree_lock);
2865 	entry = find_free_space(ctl, &offset, &bytes_search,
2866 				block_group->full_stripe_len, max_extent_size);
2867 	if (!entry)
2868 		goto out;
2869 
2870 	ret = offset;
2871 	if (entry->bitmap) {
2872 		bitmap_clear_bits(ctl, entry, offset, bytes);
2873 
2874 		if (!btrfs_free_space_trimmed(entry))
2875 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2876 
2877 		if (!entry->bytes)
2878 			free_bitmap(ctl, entry);
2879 	} else {
2880 		unlink_free_space(ctl, entry);
2881 		align_gap_len = offset - entry->offset;
2882 		align_gap = entry->offset;
2883 		align_gap_trim_state = entry->trim_state;
2884 
2885 		if (!btrfs_free_space_trimmed(entry))
2886 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2887 
2888 		entry->offset = offset + bytes;
2889 		WARN_ON(entry->bytes < bytes + align_gap_len);
2890 
2891 		entry->bytes -= bytes + align_gap_len;
2892 		if (!entry->bytes)
2893 			kmem_cache_free(btrfs_free_space_cachep, entry);
2894 		else
2895 			link_free_space(ctl, entry);
2896 	}
2897 out:
2898 	btrfs_discard_update_discardable(block_group, ctl);
2899 	spin_unlock(&ctl->tree_lock);
2900 
2901 	if (align_gap_len)
2902 		__btrfs_add_free_space(block_group->fs_info, ctl,
2903 				       align_gap, align_gap_len,
2904 				       align_gap_trim_state);
2905 	return ret;
2906 }
2907 
2908 /*
2909  * given a cluster, put all of its extents back into the free space
2910  * cache.  If a block group is passed, this function will only free
2911  * a cluster that belongs to the passed block group.
2912  *
2913  * Otherwise, it'll get a reference on the block group pointed to by the
2914  * cluster and remove the cluster from it.
2915  */
2916 int btrfs_return_cluster_to_free_space(
2917 			       struct btrfs_block_group *block_group,
2918 			       struct btrfs_free_cluster *cluster)
2919 {
2920 	struct btrfs_free_space_ctl *ctl;
2921 	int ret;
2922 
2923 	/* first, get a safe pointer to the block group */
2924 	spin_lock(&cluster->lock);
2925 	if (!block_group) {
2926 		block_group = cluster->block_group;
2927 		if (!block_group) {
2928 			spin_unlock(&cluster->lock);
2929 			return 0;
2930 		}
2931 	} else if (cluster->block_group != block_group) {
2932 		/* someone else has already freed it don't redo their work */
2933 		spin_unlock(&cluster->lock);
2934 		return 0;
2935 	}
2936 	atomic_inc(&block_group->count);
2937 	spin_unlock(&cluster->lock);
2938 
2939 	ctl = block_group->free_space_ctl;
2940 
2941 	/* now return any extents the cluster had on it */
2942 	spin_lock(&ctl->tree_lock);
2943 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2944 	spin_unlock(&ctl->tree_lock);
2945 
2946 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
2947 
2948 	/* finally drop our ref */
2949 	btrfs_put_block_group(block_group);
2950 	return ret;
2951 }
2952 
2953 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2954 				   struct btrfs_free_cluster *cluster,
2955 				   struct btrfs_free_space *entry,
2956 				   u64 bytes, u64 min_start,
2957 				   u64 *max_extent_size)
2958 {
2959 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2960 	int err;
2961 	u64 search_start = cluster->window_start;
2962 	u64 search_bytes = bytes;
2963 	u64 ret = 0;
2964 
2965 	search_start = min_start;
2966 	search_bytes = bytes;
2967 
2968 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2969 	if (err) {
2970 		*max_extent_size = max(get_max_extent_size(entry),
2971 				       *max_extent_size);
2972 		return 0;
2973 	}
2974 
2975 	ret = search_start;
2976 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2977 
2978 	return ret;
2979 }
2980 
2981 /*
2982  * given a cluster, try to allocate 'bytes' from it, returns 0
2983  * if it couldn't find anything suitably large, or a logical disk offset
2984  * if things worked out
2985  */
2986 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2987 			     struct btrfs_free_cluster *cluster, u64 bytes,
2988 			     u64 min_start, u64 *max_extent_size)
2989 {
2990 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2991 	struct btrfs_discard_ctl *discard_ctl =
2992 					&block_group->fs_info->discard_ctl;
2993 	struct btrfs_free_space *entry = NULL;
2994 	struct rb_node *node;
2995 	u64 ret = 0;
2996 
2997 	spin_lock(&cluster->lock);
2998 	if (bytes > cluster->max_size)
2999 		goto out;
3000 
3001 	if (cluster->block_group != block_group)
3002 		goto out;
3003 
3004 	node = rb_first(&cluster->root);
3005 	if (!node)
3006 		goto out;
3007 
3008 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3009 	while (1) {
3010 		if (entry->bytes < bytes)
3011 			*max_extent_size = max(get_max_extent_size(entry),
3012 					       *max_extent_size);
3013 
3014 		if (entry->bytes < bytes ||
3015 		    (!entry->bitmap && entry->offset < min_start)) {
3016 			node = rb_next(&entry->offset_index);
3017 			if (!node)
3018 				break;
3019 			entry = rb_entry(node, struct btrfs_free_space,
3020 					 offset_index);
3021 			continue;
3022 		}
3023 
3024 		if (entry->bitmap) {
3025 			ret = btrfs_alloc_from_bitmap(block_group,
3026 						      cluster, entry, bytes,
3027 						      cluster->window_start,
3028 						      max_extent_size);
3029 			if (ret == 0) {
3030 				node = rb_next(&entry->offset_index);
3031 				if (!node)
3032 					break;
3033 				entry = rb_entry(node, struct btrfs_free_space,
3034 						 offset_index);
3035 				continue;
3036 			}
3037 			cluster->window_start += bytes;
3038 		} else {
3039 			ret = entry->offset;
3040 
3041 			entry->offset += bytes;
3042 			entry->bytes -= bytes;
3043 		}
3044 
3045 		if (entry->bytes == 0)
3046 			rb_erase(&entry->offset_index, &cluster->root);
3047 		break;
3048 	}
3049 out:
3050 	spin_unlock(&cluster->lock);
3051 
3052 	if (!ret)
3053 		return 0;
3054 
3055 	spin_lock(&ctl->tree_lock);
3056 
3057 	if (!btrfs_free_space_trimmed(entry))
3058 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3059 
3060 	ctl->free_space -= bytes;
3061 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3062 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3063 	if (entry->bytes == 0) {
3064 		ctl->free_extents--;
3065 		if (entry->bitmap) {
3066 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3067 					entry->bitmap);
3068 			ctl->total_bitmaps--;
3069 			ctl->op->recalc_thresholds(ctl);
3070 		} else if (!btrfs_free_space_trimmed(entry)) {
3071 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3072 		}
3073 		kmem_cache_free(btrfs_free_space_cachep, entry);
3074 	}
3075 
3076 	spin_unlock(&ctl->tree_lock);
3077 
3078 	return ret;
3079 }
3080 
3081 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3082 				struct btrfs_free_space *entry,
3083 				struct btrfs_free_cluster *cluster,
3084 				u64 offset, u64 bytes,
3085 				u64 cont1_bytes, u64 min_bytes)
3086 {
3087 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3088 	unsigned long next_zero;
3089 	unsigned long i;
3090 	unsigned long want_bits;
3091 	unsigned long min_bits;
3092 	unsigned long found_bits;
3093 	unsigned long max_bits = 0;
3094 	unsigned long start = 0;
3095 	unsigned long total_found = 0;
3096 	int ret;
3097 
3098 	i = offset_to_bit(entry->offset, ctl->unit,
3099 			  max_t(u64, offset, entry->offset));
3100 	want_bits = bytes_to_bits(bytes, ctl->unit);
3101 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3102 
3103 	/*
3104 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3105 	 * fragmented.
3106 	 */
3107 	if (entry->max_extent_size &&
3108 	    entry->max_extent_size < cont1_bytes)
3109 		return -ENOSPC;
3110 again:
3111 	found_bits = 0;
3112 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3113 		next_zero = find_next_zero_bit(entry->bitmap,
3114 					       BITS_PER_BITMAP, i);
3115 		if (next_zero - i >= min_bits) {
3116 			found_bits = next_zero - i;
3117 			if (found_bits > max_bits)
3118 				max_bits = found_bits;
3119 			break;
3120 		}
3121 		if (next_zero - i > max_bits)
3122 			max_bits = next_zero - i;
3123 		i = next_zero;
3124 	}
3125 
3126 	if (!found_bits) {
3127 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3128 		return -ENOSPC;
3129 	}
3130 
3131 	if (!total_found) {
3132 		start = i;
3133 		cluster->max_size = 0;
3134 	}
3135 
3136 	total_found += found_bits;
3137 
3138 	if (cluster->max_size < found_bits * ctl->unit)
3139 		cluster->max_size = found_bits * ctl->unit;
3140 
3141 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3142 		i = next_zero + 1;
3143 		goto again;
3144 	}
3145 
3146 	cluster->window_start = start * ctl->unit + entry->offset;
3147 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3148 	ret = tree_insert_offset(&cluster->root, entry->offset,
3149 				 &entry->offset_index, 1);
3150 	ASSERT(!ret); /* -EEXIST; Logic error */
3151 
3152 	trace_btrfs_setup_cluster(block_group, cluster,
3153 				  total_found * ctl->unit, 1);
3154 	return 0;
3155 }
3156 
3157 /*
3158  * This searches the block group for just extents to fill the cluster with.
3159  * Try to find a cluster with at least bytes total bytes, at least one
3160  * extent of cont1_bytes, and other clusters of at least min_bytes.
3161  */
3162 static noinline int
3163 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3164 			struct btrfs_free_cluster *cluster,
3165 			struct list_head *bitmaps, u64 offset, u64 bytes,
3166 			u64 cont1_bytes, u64 min_bytes)
3167 {
3168 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3169 	struct btrfs_free_space *first = NULL;
3170 	struct btrfs_free_space *entry = NULL;
3171 	struct btrfs_free_space *last;
3172 	struct rb_node *node;
3173 	u64 window_free;
3174 	u64 max_extent;
3175 	u64 total_size = 0;
3176 
3177 	entry = tree_search_offset(ctl, offset, 0, 1);
3178 	if (!entry)
3179 		return -ENOSPC;
3180 
3181 	/*
3182 	 * We don't want bitmaps, so just move along until we find a normal
3183 	 * extent entry.
3184 	 */
3185 	while (entry->bitmap || entry->bytes < min_bytes) {
3186 		if (entry->bitmap && list_empty(&entry->list))
3187 			list_add_tail(&entry->list, bitmaps);
3188 		node = rb_next(&entry->offset_index);
3189 		if (!node)
3190 			return -ENOSPC;
3191 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3192 	}
3193 
3194 	window_free = entry->bytes;
3195 	max_extent = entry->bytes;
3196 	first = entry;
3197 	last = entry;
3198 
3199 	for (node = rb_next(&entry->offset_index); node;
3200 	     node = rb_next(&entry->offset_index)) {
3201 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3202 
3203 		if (entry->bitmap) {
3204 			if (list_empty(&entry->list))
3205 				list_add_tail(&entry->list, bitmaps);
3206 			continue;
3207 		}
3208 
3209 		if (entry->bytes < min_bytes)
3210 			continue;
3211 
3212 		last = entry;
3213 		window_free += entry->bytes;
3214 		if (entry->bytes > max_extent)
3215 			max_extent = entry->bytes;
3216 	}
3217 
3218 	if (window_free < bytes || max_extent < cont1_bytes)
3219 		return -ENOSPC;
3220 
3221 	cluster->window_start = first->offset;
3222 
3223 	node = &first->offset_index;
3224 
3225 	/*
3226 	 * now we've found our entries, pull them out of the free space
3227 	 * cache and put them into the cluster rbtree
3228 	 */
3229 	do {
3230 		int ret;
3231 
3232 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3233 		node = rb_next(&entry->offset_index);
3234 		if (entry->bitmap || entry->bytes < min_bytes)
3235 			continue;
3236 
3237 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3238 		ret = tree_insert_offset(&cluster->root, entry->offset,
3239 					 &entry->offset_index, 0);
3240 		total_size += entry->bytes;
3241 		ASSERT(!ret); /* -EEXIST; Logic error */
3242 	} while (node && entry != last);
3243 
3244 	cluster->max_size = max_extent;
3245 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3246 	return 0;
3247 }
3248 
3249 /*
3250  * This specifically looks for bitmaps that may work in the cluster, we assume
3251  * that we have already failed to find extents that will work.
3252  */
3253 static noinline int
3254 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3255 		     struct btrfs_free_cluster *cluster,
3256 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3257 		     u64 cont1_bytes, u64 min_bytes)
3258 {
3259 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3260 	struct btrfs_free_space *entry = NULL;
3261 	int ret = -ENOSPC;
3262 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3263 
3264 	if (ctl->total_bitmaps == 0)
3265 		return -ENOSPC;
3266 
3267 	/*
3268 	 * The bitmap that covers offset won't be in the list unless offset
3269 	 * is just its start offset.
3270 	 */
3271 	if (!list_empty(bitmaps))
3272 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3273 
3274 	if (!entry || entry->offset != bitmap_offset) {
3275 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3276 		if (entry && list_empty(&entry->list))
3277 			list_add(&entry->list, bitmaps);
3278 	}
3279 
3280 	list_for_each_entry(entry, bitmaps, list) {
3281 		if (entry->bytes < bytes)
3282 			continue;
3283 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3284 					   bytes, cont1_bytes, min_bytes);
3285 		if (!ret)
3286 			return 0;
3287 	}
3288 
3289 	/*
3290 	 * The bitmaps list has all the bitmaps that record free space
3291 	 * starting after offset, so no more search is required.
3292 	 */
3293 	return -ENOSPC;
3294 }
3295 
3296 /*
3297  * here we try to find a cluster of blocks in a block group.  The goal
3298  * is to find at least bytes+empty_size.
3299  * We might not find them all in one contiguous area.
3300  *
3301  * returns zero and sets up cluster if things worked out, otherwise
3302  * it returns -enospc
3303  */
3304 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3305 			     struct btrfs_free_cluster *cluster,
3306 			     u64 offset, u64 bytes, u64 empty_size)
3307 {
3308 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3309 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3310 	struct btrfs_free_space *entry, *tmp;
3311 	LIST_HEAD(bitmaps);
3312 	u64 min_bytes;
3313 	u64 cont1_bytes;
3314 	int ret;
3315 
3316 	/*
3317 	 * Choose the minimum extent size we'll require for this
3318 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3319 	 * For metadata, allow allocates with smaller extents.  For
3320 	 * data, keep it dense.
3321 	 */
3322 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3323 		cont1_bytes = min_bytes = bytes + empty_size;
3324 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3325 		cont1_bytes = bytes;
3326 		min_bytes = fs_info->sectorsize;
3327 	} else {
3328 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3329 		min_bytes = fs_info->sectorsize;
3330 	}
3331 
3332 	spin_lock(&ctl->tree_lock);
3333 
3334 	/*
3335 	 * If we know we don't have enough space to make a cluster don't even
3336 	 * bother doing all the work to try and find one.
3337 	 */
3338 	if (ctl->free_space < bytes) {
3339 		spin_unlock(&ctl->tree_lock);
3340 		return -ENOSPC;
3341 	}
3342 
3343 	spin_lock(&cluster->lock);
3344 
3345 	/* someone already found a cluster, hooray */
3346 	if (cluster->block_group) {
3347 		ret = 0;
3348 		goto out;
3349 	}
3350 
3351 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3352 				 min_bytes);
3353 
3354 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3355 				      bytes + empty_size,
3356 				      cont1_bytes, min_bytes);
3357 	if (ret)
3358 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3359 					   offset, bytes + empty_size,
3360 					   cont1_bytes, min_bytes);
3361 
3362 	/* Clear our temporary list */
3363 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3364 		list_del_init(&entry->list);
3365 
3366 	if (!ret) {
3367 		atomic_inc(&block_group->count);
3368 		list_add_tail(&cluster->block_group_list,
3369 			      &block_group->cluster_list);
3370 		cluster->block_group = block_group;
3371 	} else {
3372 		trace_btrfs_failed_cluster_setup(block_group);
3373 	}
3374 out:
3375 	spin_unlock(&cluster->lock);
3376 	spin_unlock(&ctl->tree_lock);
3377 
3378 	return ret;
3379 }
3380 
3381 /*
3382  * simple code to zero out a cluster
3383  */
3384 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3385 {
3386 	spin_lock_init(&cluster->lock);
3387 	spin_lock_init(&cluster->refill_lock);
3388 	cluster->root = RB_ROOT;
3389 	cluster->max_size = 0;
3390 	cluster->fragmented = false;
3391 	INIT_LIST_HEAD(&cluster->block_group_list);
3392 	cluster->block_group = NULL;
3393 }
3394 
3395 static int do_trimming(struct btrfs_block_group *block_group,
3396 		       u64 *total_trimmed, u64 start, u64 bytes,
3397 		       u64 reserved_start, u64 reserved_bytes,
3398 		       enum btrfs_trim_state reserved_trim_state,
3399 		       struct btrfs_trim_range *trim_entry)
3400 {
3401 	struct btrfs_space_info *space_info = block_group->space_info;
3402 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3403 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3404 	int ret;
3405 	int update = 0;
3406 	const u64 end = start + bytes;
3407 	const u64 reserved_end = reserved_start + reserved_bytes;
3408 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3409 	u64 trimmed = 0;
3410 
3411 	spin_lock(&space_info->lock);
3412 	spin_lock(&block_group->lock);
3413 	if (!block_group->ro) {
3414 		block_group->reserved += reserved_bytes;
3415 		space_info->bytes_reserved += reserved_bytes;
3416 		update = 1;
3417 	}
3418 	spin_unlock(&block_group->lock);
3419 	spin_unlock(&space_info->lock);
3420 
3421 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3422 	if (!ret) {
3423 		*total_trimmed += trimmed;
3424 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3425 	}
3426 
3427 	mutex_lock(&ctl->cache_writeout_mutex);
3428 	if (reserved_start < start)
3429 		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3430 				       start - reserved_start,
3431 				       reserved_trim_state);
3432 	if (start + bytes < reserved_start + reserved_bytes)
3433 		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3434 				       reserved_trim_state);
3435 	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3436 	list_del(&trim_entry->list);
3437 	mutex_unlock(&ctl->cache_writeout_mutex);
3438 
3439 	if (update) {
3440 		spin_lock(&space_info->lock);
3441 		spin_lock(&block_group->lock);
3442 		if (block_group->ro)
3443 			space_info->bytes_readonly += reserved_bytes;
3444 		block_group->reserved -= reserved_bytes;
3445 		space_info->bytes_reserved -= reserved_bytes;
3446 		spin_unlock(&block_group->lock);
3447 		spin_unlock(&space_info->lock);
3448 	}
3449 
3450 	return ret;
3451 }
3452 
3453 /*
3454  * If @async is set, then we will trim 1 region and return.
3455  */
3456 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3457 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3458 			  bool async)
3459 {
3460 	struct btrfs_discard_ctl *discard_ctl =
3461 					&block_group->fs_info->discard_ctl;
3462 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3463 	struct btrfs_free_space *entry;
3464 	struct rb_node *node;
3465 	int ret = 0;
3466 	u64 extent_start;
3467 	u64 extent_bytes;
3468 	enum btrfs_trim_state extent_trim_state;
3469 	u64 bytes;
3470 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3471 
3472 	while (start < end) {
3473 		struct btrfs_trim_range trim_entry;
3474 
3475 		mutex_lock(&ctl->cache_writeout_mutex);
3476 		spin_lock(&ctl->tree_lock);
3477 
3478 		if (ctl->free_space < minlen)
3479 			goto out_unlock;
3480 
3481 		entry = tree_search_offset(ctl, start, 0, 1);
3482 		if (!entry)
3483 			goto out_unlock;
3484 
3485 		/* Skip bitmaps and if async, already trimmed entries */
3486 		while (entry->bitmap ||
3487 		       (async && btrfs_free_space_trimmed(entry))) {
3488 			node = rb_next(&entry->offset_index);
3489 			if (!node)
3490 				goto out_unlock;
3491 			entry = rb_entry(node, struct btrfs_free_space,
3492 					 offset_index);
3493 		}
3494 
3495 		if (entry->offset >= end)
3496 			goto out_unlock;
3497 
3498 		extent_start = entry->offset;
3499 		extent_bytes = entry->bytes;
3500 		extent_trim_state = entry->trim_state;
3501 		if (async) {
3502 			start = entry->offset;
3503 			bytes = entry->bytes;
3504 			if (bytes < minlen) {
3505 				spin_unlock(&ctl->tree_lock);
3506 				mutex_unlock(&ctl->cache_writeout_mutex);
3507 				goto next;
3508 			}
3509 			unlink_free_space(ctl, entry);
3510 			/*
3511 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3512 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3513 			 * X when we come back around.  So trim it now.
3514 			 */
3515 			if (max_discard_size &&
3516 			    bytes >= (max_discard_size +
3517 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3518 				bytes = max_discard_size;
3519 				extent_bytes = max_discard_size;
3520 				entry->offset += max_discard_size;
3521 				entry->bytes -= max_discard_size;
3522 				link_free_space(ctl, entry);
3523 			} else {
3524 				kmem_cache_free(btrfs_free_space_cachep, entry);
3525 			}
3526 		} else {
3527 			start = max(start, extent_start);
3528 			bytes = min(extent_start + extent_bytes, end) - start;
3529 			if (bytes < minlen) {
3530 				spin_unlock(&ctl->tree_lock);
3531 				mutex_unlock(&ctl->cache_writeout_mutex);
3532 				goto next;
3533 			}
3534 
3535 			unlink_free_space(ctl, entry);
3536 			kmem_cache_free(btrfs_free_space_cachep, entry);
3537 		}
3538 
3539 		spin_unlock(&ctl->tree_lock);
3540 		trim_entry.start = extent_start;
3541 		trim_entry.bytes = extent_bytes;
3542 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3543 		mutex_unlock(&ctl->cache_writeout_mutex);
3544 
3545 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3546 				  extent_start, extent_bytes, extent_trim_state,
3547 				  &trim_entry);
3548 		if (ret) {
3549 			block_group->discard_cursor = start + bytes;
3550 			break;
3551 		}
3552 next:
3553 		start += bytes;
3554 		block_group->discard_cursor = start;
3555 		if (async && *total_trimmed)
3556 			break;
3557 
3558 		if (fatal_signal_pending(current)) {
3559 			ret = -ERESTARTSYS;
3560 			break;
3561 		}
3562 
3563 		cond_resched();
3564 	}
3565 
3566 	return ret;
3567 
3568 out_unlock:
3569 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3570 	spin_unlock(&ctl->tree_lock);
3571 	mutex_unlock(&ctl->cache_writeout_mutex);
3572 
3573 	return ret;
3574 }
3575 
3576 /*
3577  * If we break out of trimming a bitmap prematurely, we should reset the
3578  * trimming bit.  In a rather contrieved case, it's possible to race here so
3579  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3580  *
3581  * start = start of bitmap
3582  * end = near end of bitmap
3583  *
3584  * Thread 1:			Thread 2:
3585  * trim_bitmaps(start)
3586  *				trim_bitmaps(end)
3587  *				end_trimming_bitmap()
3588  * reset_trimming_bitmap()
3589  */
3590 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3591 {
3592 	struct btrfs_free_space *entry;
3593 
3594 	spin_lock(&ctl->tree_lock);
3595 	entry = tree_search_offset(ctl, offset, 1, 0);
3596 	if (entry) {
3597 		if (btrfs_free_space_trimmed(entry)) {
3598 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3599 				entry->bitmap_extents;
3600 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3601 		}
3602 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3603 	}
3604 
3605 	spin_unlock(&ctl->tree_lock);
3606 }
3607 
3608 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3609 				struct btrfs_free_space *entry)
3610 {
3611 	if (btrfs_free_space_trimming_bitmap(entry)) {
3612 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3613 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3614 			entry->bitmap_extents;
3615 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3616 	}
3617 }
3618 
3619 /*
3620  * If @async is set, then we will trim 1 region and return.
3621  */
3622 static int trim_bitmaps(struct btrfs_block_group *block_group,
3623 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3624 			u64 maxlen, bool async)
3625 {
3626 	struct btrfs_discard_ctl *discard_ctl =
3627 					&block_group->fs_info->discard_ctl;
3628 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3629 	struct btrfs_free_space *entry;
3630 	int ret = 0;
3631 	int ret2;
3632 	u64 bytes;
3633 	u64 offset = offset_to_bitmap(ctl, start);
3634 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3635 
3636 	while (offset < end) {
3637 		bool next_bitmap = false;
3638 		struct btrfs_trim_range trim_entry;
3639 
3640 		mutex_lock(&ctl->cache_writeout_mutex);
3641 		spin_lock(&ctl->tree_lock);
3642 
3643 		if (ctl->free_space < minlen) {
3644 			block_group->discard_cursor =
3645 				btrfs_block_group_end(block_group);
3646 			spin_unlock(&ctl->tree_lock);
3647 			mutex_unlock(&ctl->cache_writeout_mutex);
3648 			break;
3649 		}
3650 
3651 		entry = tree_search_offset(ctl, offset, 1, 0);
3652 		/*
3653 		 * Bitmaps are marked trimmed lossily now to prevent constant
3654 		 * discarding of the same bitmap (the reason why we are bound
3655 		 * by the filters).  So, retrim the block group bitmaps when we
3656 		 * are preparing to punt to the unused_bgs list.  This uses
3657 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3658 		 * which is the only discard index which sets minlen to 0.
3659 		 */
3660 		if (!entry || (async && minlen && start == offset &&
3661 			       btrfs_free_space_trimmed(entry))) {
3662 			spin_unlock(&ctl->tree_lock);
3663 			mutex_unlock(&ctl->cache_writeout_mutex);
3664 			next_bitmap = true;
3665 			goto next;
3666 		}
3667 
3668 		/*
3669 		 * Async discard bitmap trimming begins at by setting the start
3670 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3671 		 * start of the bitmap.  This lets us know we are fully
3672 		 * scanning the bitmap rather than only some portion of it.
3673 		 */
3674 		if (start == offset)
3675 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3676 
3677 		bytes = minlen;
3678 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3679 		if (ret2 || start >= end) {
3680 			/*
3681 			 * We lossily consider a bitmap trimmed if we only skip
3682 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3683 			 */
3684 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3685 				end_trimming_bitmap(ctl, entry);
3686 			else
3687 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3688 			spin_unlock(&ctl->tree_lock);
3689 			mutex_unlock(&ctl->cache_writeout_mutex);
3690 			next_bitmap = true;
3691 			goto next;
3692 		}
3693 
3694 		/*
3695 		 * We already trimmed a region, but are using the locking above
3696 		 * to reset the trim_state.
3697 		 */
3698 		if (async && *total_trimmed) {
3699 			spin_unlock(&ctl->tree_lock);
3700 			mutex_unlock(&ctl->cache_writeout_mutex);
3701 			goto out;
3702 		}
3703 
3704 		bytes = min(bytes, end - start);
3705 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3706 			spin_unlock(&ctl->tree_lock);
3707 			mutex_unlock(&ctl->cache_writeout_mutex);
3708 			goto next;
3709 		}
3710 
3711 		/*
3712 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3713 		 * If X < @minlen, we won't trim X when we come back around.
3714 		 * So trim it now.  We differ here from trimming extents as we
3715 		 * don't keep individual state per bit.
3716 		 */
3717 		if (async &&
3718 		    max_discard_size &&
3719 		    bytes > (max_discard_size + minlen))
3720 			bytes = max_discard_size;
3721 
3722 		bitmap_clear_bits(ctl, entry, start, bytes);
3723 		if (entry->bytes == 0)
3724 			free_bitmap(ctl, entry);
3725 
3726 		spin_unlock(&ctl->tree_lock);
3727 		trim_entry.start = start;
3728 		trim_entry.bytes = bytes;
3729 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3730 		mutex_unlock(&ctl->cache_writeout_mutex);
3731 
3732 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3733 				  start, bytes, 0, &trim_entry);
3734 		if (ret) {
3735 			reset_trimming_bitmap(ctl, offset);
3736 			block_group->discard_cursor =
3737 				btrfs_block_group_end(block_group);
3738 			break;
3739 		}
3740 next:
3741 		if (next_bitmap) {
3742 			offset += BITS_PER_BITMAP * ctl->unit;
3743 			start = offset;
3744 		} else {
3745 			start += bytes;
3746 		}
3747 		block_group->discard_cursor = start;
3748 
3749 		if (fatal_signal_pending(current)) {
3750 			if (start != offset)
3751 				reset_trimming_bitmap(ctl, offset);
3752 			ret = -ERESTARTSYS;
3753 			break;
3754 		}
3755 
3756 		cond_resched();
3757 	}
3758 
3759 	if (offset >= end)
3760 		block_group->discard_cursor = end;
3761 
3762 out:
3763 	return ret;
3764 }
3765 
3766 void btrfs_get_block_group_trimming(struct btrfs_block_group *cache)
3767 {
3768 	atomic_inc(&cache->trimming);
3769 }
3770 
3771 void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group)
3772 {
3773 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3774 	struct extent_map_tree *em_tree;
3775 	struct extent_map *em;
3776 	bool cleanup;
3777 
3778 	spin_lock(&block_group->lock);
3779 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3780 		   block_group->removed);
3781 	spin_unlock(&block_group->lock);
3782 
3783 	if (cleanup) {
3784 		mutex_lock(&fs_info->chunk_mutex);
3785 		em_tree = &fs_info->mapping_tree;
3786 		write_lock(&em_tree->lock);
3787 		em = lookup_extent_mapping(em_tree, block_group->start,
3788 					   1);
3789 		BUG_ON(!em); /* logic error, can't happen */
3790 		remove_extent_mapping(em_tree, em);
3791 		write_unlock(&em_tree->lock);
3792 		mutex_unlock(&fs_info->chunk_mutex);
3793 
3794 		/* once for us and once for the tree */
3795 		free_extent_map(em);
3796 		free_extent_map(em);
3797 
3798 		/*
3799 		 * We've left one free space entry and other tasks trimming
3800 		 * this block group have left 1 entry each one. Free them.
3801 		 */
3802 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3803 	}
3804 }
3805 
3806 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3807 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3808 {
3809 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3810 	int ret;
3811 	u64 rem = 0;
3812 
3813 	*trimmed = 0;
3814 
3815 	spin_lock(&block_group->lock);
3816 	if (block_group->removed) {
3817 		spin_unlock(&block_group->lock);
3818 		return 0;
3819 	}
3820 	btrfs_get_block_group_trimming(block_group);
3821 	spin_unlock(&block_group->lock);
3822 
3823 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3824 	if (ret)
3825 		goto out;
3826 
3827 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3828 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3829 	/* If we ended in the middle of a bitmap, reset the trimming flag */
3830 	if (rem)
3831 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3832 out:
3833 	btrfs_put_block_group_trimming(block_group);
3834 	return ret;
3835 }
3836 
3837 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3838 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3839 				   bool async)
3840 {
3841 	int ret;
3842 
3843 	*trimmed = 0;
3844 
3845 	spin_lock(&block_group->lock);
3846 	if (block_group->removed) {
3847 		spin_unlock(&block_group->lock);
3848 		return 0;
3849 	}
3850 	btrfs_get_block_group_trimming(block_group);
3851 	spin_unlock(&block_group->lock);
3852 
3853 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3854 	btrfs_put_block_group_trimming(block_group);
3855 
3856 	return ret;
3857 }
3858 
3859 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3860 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3861 				   u64 maxlen, bool async)
3862 {
3863 	int ret;
3864 
3865 	*trimmed = 0;
3866 
3867 	spin_lock(&block_group->lock);
3868 	if (block_group->removed) {
3869 		spin_unlock(&block_group->lock);
3870 		return 0;
3871 	}
3872 	btrfs_get_block_group_trimming(block_group);
3873 	spin_unlock(&block_group->lock);
3874 
3875 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3876 			   async);
3877 
3878 	btrfs_put_block_group_trimming(block_group);
3879 
3880 	return ret;
3881 }
3882 
3883 /*
3884  * Find the left-most item in the cache tree, and then return the
3885  * smallest inode number in the item.
3886  *
3887  * Note: the returned inode number may not be the smallest one in
3888  * the tree, if the left-most item is a bitmap.
3889  */
3890 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3891 {
3892 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3893 	struct btrfs_free_space *entry = NULL;
3894 	u64 ino = 0;
3895 
3896 	spin_lock(&ctl->tree_lock);
3897 
3898 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3899 		goto out;
3900 
3901 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3902 			 struct btrfs_free_space, offset_index);
3903 
3904 	if (!entry->bitmap) {
3905 		ino = entry->offset;
3906 
3907 		unlink_free_space(ctl, entry);
3908 		entry->offset++;
3909 		entry->bytes--;
3910 		if (!entry->bytes)
3911 			kmem_cache_free(btrfs_free_space_cachep, entry);
3912 		else
3913 			link_free_space(ctl, entry);
3914 	} else {
3915 		u64 offset = 0;
3916 		u64 count = 1;
3917 		int ret;
3918 
3919 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3920 		/* Logic error; Should be empty if it can't find anything */
3921 		ASSERT(!ret);
3922 
3923 		ino = offset;
3924 		bitmap_clear_bits(ctl, entry, offset, 1);
3925 		if (entry->bytes == 0)
3926 			free_bitmap(ctl, entry);
3927 	}
3928 out:
3929 	spin_unlock(&ctl->tree_lock);
3930 
3931 	return ino;
3932 }
3933 
3934 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3935 				    struct btrfs_path *path)
3936 {
3937 	struct inode *inode = NULL;
3938 
3939 	spin_lock(&root->ino_cache_lock);
3940 	if (root->ino_cache_inode)
3941 		inode = igrab(root->ino_cache_inode);
3942 	spin_unlock(&root->ino_cache_lock);
3943 	if (inode)
3944 		return inode;
3945 
3946 	inode = __lookup_free_space_inode(root, path, 0);
3947 	if (IS_ERR(inode))
3948 		return inode;
3949 
3950 	spin_lock(&root->ino_cache_lock);
3951 	if (!btrfs_fs_closing(root->fs_info))
3952 		root->ino_cache_inode = igrab(inode);
3953 	spin_unlock(&root->ino_cache_lock);
3954 
3955 	return inode;
3956 }
3957 
3958 int create_free_ino_inode(struct btrfs_root *root,
3959 			  struct btrfs_trans_handle *trans,
3960 			  struct btrfs_path *path)
3961 {
3962 	return __create_free_space_inode(root, trans, path,
3963 					 BTRFS_FREE_INO_OBJECTID, 0);
3964 }
3965 
3966 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3967 {
3968 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3969 	struct btrfs_path *path;
3970 	struct inode *inode;
3971 	int ret = 0;
3972 	u64 root_gen = btrfs_root_generation(&root->root_item);
3973 
3974 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3975 		return 0;
3976 
3977 	/*
3978 	 * If we're unmounting then just return, since this does a search on the
3979 	 * normal root and not the commit root and we could deadlock.
3980 	 */
3981 	if (btrfs_fs_closing(fs_info))
3982 		return 0;
3983 
3984 	path = btrfs_alloc_path();
3985 	if (!path)
3986 		return 0;
3987 
3988 	inode = lookup_free_ino_inode(root, path);
3989 	if (IS_ERR(inode))
3990 		goto out;
3991 
3992 	if (root_gen != BTRFS_I(inode)->generation)
3993 		goto out_put;
3994 
3995 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3996 
3997 	if (ret < 0)
3998 		btrfs_err(fs_info,
3999 			"failed to load free ino cache for root %llu",
4000 			root->root_key.objectid);
4001 out_put:
4002 	iput(inode);
4003 out:
4004 	btrfs_free_path(path);
4005 	return ret;
4006 }
4007 
4008 int btrfs_write_out_ino_cache(struct btrfs_root *root,
4009 			      struct btrfs_trans_handle *trans,
4010 			      struct btrfs_path *path,
4011 			      struct inode *inode)
4012 {
4013 	struct btrfs_fs_info *fs_info = root->fs_info;
4014 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
4015 	int ret;
4016 	struct btrfs_io_ctl io_ctl;
4017 	bool release_metadata = true;
4018 
4019 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4020 		return 0;
4021 
4022 	memset(&io_ctl, 0, sizeof(io_ctl));
4023 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
4024 	if (!ret) {
4025 		/*
4026 		 * At this point writepages() didn't error out, so our metadata
4027 		 * reservation is released when the writeback finishes, at
4028 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
4029 		 * with or without an error.
4030 		 */
4031 		release_metadata = false;
4032 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
4033 	}
4034 
4035 	if (ret) {
4036 		if (release_metadata)
4037 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
4038 					inode->i_size, true);
4039 #ifdef DEBUG
4040 		btrfs_err(fs_info,
4041 			  "failed to write free ino cache for root %llu",
4042 			  root->root_key.objectid);
4043 #endif
4044 	}
4045 
4046 	return ret;
4047 }
4048 
4049 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4050 /*
4051  * Use this if you need to make a bitmap or extent entry specifically, it
4052  * doesn't do any of the merging that add_free_space does, this acts a lot like
4053  * how the free space cache loading stuff works, so you can get really weird
4054  * configurations.
4055  */
4056 int test_add_free_space_entry(struct btrfs_block_group *cache,
4057 			      u64 offset, u64 bytes, bool bitmap)
4058 {
4059 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4060 	struct btrfs_free_space *info = NULL, *bitmap_info;
4061 	void *map = NULL;
4062 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4063 	u64 bytes_added;
4064 	int ret;
4065 
4066 again:
4067 	if (!info) {
4068 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4069 		if (!info)
4070 			return -ENOMEM;
4071 	}
4072 
4073 	if (!bitmap) {
4074 		spin_lock(&ctl->tree_lock);
4075 		info->offset = offset;
4076 		info->bytes = bytes;
4077 		info->max_extent_size = 0;
4078 		ret = link_free_space(ctl, info);
4079 		spin_unlock(&ctl->tree_lock);
4080 		if (ret)
4081 			kmem_cache_free(btrfs_free_space_cachep, info);
4082 		return ret;
4083 	}
4084 
4085 	if (!map) {
4086 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4087 		if (!map) {
4088 			kmem_cache_free(btrfs_free_space_cachep, info);
4089 			return -ENOMEM;
4090 		}
4091 	}
4092 
4093 	spin_lock(&ctl->tree_lock);
4094 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4095 					 1, 0);
4096 	if (!bitmap_info) {
4097 		info->bitmap = map;
4098 		map = NULL;
4099 		add_new_bitmap(ctl, info, offset);
4100 		bitmap_info = info;
4101 		info = NULL;
4102 	}
4103 
4104 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4105 					  trim_state);
4106 
4107 	bytes -= bytes_added;
4108 	offset += bytes_added;
4109 	spin_unlock(&ctl->tree_lock);
4110 
4111 	if (bytes)
4112 		goto again;
4113 
4114 	if (info)
4115 		kmem_cache_free(btrfs_free_space_cachep, info);
4116 	if (map)
4117 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4118 	return 0;
4119 }
4120 
4121 /*
4122  * Checks to see if the given range is in the free space cache.  This is really
4123  * just used to check the absence of space, so if there is free space in the
4124  * range at all we will return 1.
4125  */
4126 int test_check_exists(struct btrfs_block_group *cache,
4127 		      u64 offset, u64 bytes)
4128 {
4129 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4130 	struct btrfs_free_space *info;
4131 	int ret = 0;
4132 
4133 	spin_lock(&ctl->tree_lock);
4134 	info = tree_search_offset(ctl, offset, 0, 0);
4135 	if (!info) {
4136 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4137 					  1, 0);
4138 		if (!info)
4139 			goto out;
4140 	}
4141 
4142 have_info:
4143 	if (info->bitmap) {
4144 		u64 bit_off, bit_bytes;
4145 		struct rb_node *n;
4146 		struct btrfs_free_space *tmp;
4147 
4148 		bit_off = offset;
4149 		bit_bytes = ctl->unit;
4150 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4151 		if (!ret) {
4152 			if (bit_off == offset) {
4153 				ret = 1;
4154 				goto out;
4155 			} else if (bit_off > offset &&
4156 				   offset + bytes > bit_off) {
4157 				ret = 1;
4158 				goto out;
4159 			}
4160 		}
4161 
4162 		n = rb_prev(&info->offset_index);
4163 		while (n) {
4164 			tmp = rb_entry(n, struct btrfs_free_space,
4165 				       offset_index);
4166 			if (tmp->offset + tmp->bytes < offset)
4167 				break;
4168 			if (offset + bytes < tmp->offset) {
4169 				n = rb_prev(&tmp->offset_index);
4170 				continue;
4171 			}
4172 			info = tmp;
4173 			goto have_info;
4174 		}
4175 
4176 		n = rb_next(&info->offset_index);
4177 		while (n) {
4178 			tmp = rb_entry(n, struct btrfs_free_space,
4179 				       offset_index);
4180 			if (offset + bytes < tmp->offset)
4181 				break;
4182 			if (tmp->offset + tmp->bytes < offset) {
4183 				n = rb_next(&tmp->offset_index);
4184 				continue;
4185 			}
4186 			info = tmp;
4187 			goto have_info;
4188 		}
4189 
4190 		ret = 0;
4191 		goto out;
4192 	}
4193 
4194 	if (info->offset == offset) {
4195 		ret = 1;
4196 		goto out;
4197 	}
4198 
4199 	if (offset > info->offset && offset < info->offset + info->bytes)
4200 		ret = 1;
4201 out:
4202 	spin_unlock(&ctl->tree_lock);
4203 	return ret;
4204 }
4205 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4206