1 /* 2 * Copyright (C) 2008 Red Hat. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/math64.h> 23 #include <linux/ratelimit.h> 24 #include "ctree.h" 25 #include "free-space-cache.h" 26 #include "transaction.h" 27 #include "disk-io.h" 28 #include "extent_io.h" 29 #include "inode-map.h" 30 31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8) 32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024) 33 34 static int link_free_space(struct btrfs_free_space_ctl *ctl, 35 struct btrfs_free_space *info); 36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *info); 38 39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 40 struct btrfs_path *path, 41 u64 offset) 42 { 43 struct btrfs_key key; 44 struct btrfs_key location; 45 struct btrfs_disk_key disk_key; 46 struct btrfs_free_space_header *header; 47 struct extent_buffer *leaf; 48 struct inode *inode = NULL; 49 int ret; 50 51 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 52 key.offset = offset; 53 key.type = 0; 54 55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 56 if (ret < 0) 57 return ERR_PTR(ret); 58 if (ret > 0) { 59 btrfs_release_path(path); 60 return ERR_PTR(-ENOENT); 61 } 62 63 leaf = path->nodes[0]; 64 header = btrfs_item_ptr(leaf, path->slots[0], 65 struct btrfs_free_space_header); 66 btrfs_free_space_key(leaf, header, &disk_key); 67 btrfs_disk_key_to_cpu(&location, &disk_key); 68 btrfs_release_path(path); 69 70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); 71 if (!inode) 72 return ERR_PTR(-ENOENT); 73 if (IS_ERR(inode)) 74 return inode; 75 if (is_bad_inode(inode)) { 76 iput(inode); 77 return ERR_PTR(-ENOENT); 78 } 79 80 mapping_set_gfp_mask(inode->i_mapping, 81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS); 82 83 return inode; 84 } 85 86 struct inode *lookup_free_space_inode(struct btrfs_root *root, 87 struct btrfs_block_group_cache 88 *block_group, struct btrfs_path *path) 89 { 90 struct inode *inode = NULL; 91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 92 93 spin_lock(&block_group->lock); 94 if (block_group->inode) 95 inode = igrab(block_group->inode); 96 spin_unlock(&block_group->lock); 97 if (inode) 98 return inode; 99 100 inode = __lookup_free_space_inode(root, path, 101 block_group->key.objectid); 102 if (IS_ERR(inode)) 103 return inode; 104 105 spin_lock(&block_group->lock); 106 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 107 btrfs_info(root->fs_info, 108 "Old style space inode found, converting."); 109 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 110 BTRFS_INODE_NODATACOW; 111 block_group->disk_cache_state = BTRFS_DC_CLEAR; 112 } 113 114 if (!block_group->iref) { 115 block_group->inode = igrab(inode); 116 block_group->iref = 1; 117 } 118 spin_unlock(&block_group->lock); 119 120 return inode; 121 } 122 123 static int __create_free_space_inode(struct btrfs_root *root, 124 struct btrfs_trans_handle *trans, 125 struct btrfs_path *path, 126 u64 ino, u64 offset) 127 { 128 struct btrfs_key key; 129 struct btrfs_disk_key disk_key; 130 struct btrfs_free_space_header *header; 131 struct btrfs_inode_item *inode_item; 132 struct extent_buffer *leaf; 133 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 134 int ret; 135 136 ret = btrfs_insert_empty_inode(trans, root, path, ino); 137 if (ret) 138 return ret; 139 140 /* We inline crc's for the free disk space cache */ 141 if (ino != BTRFS_FREE_INO_OBJECTID) 142 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 143 144 leaf = path->nodes[0]; 145 inode_item = btrfs_item_ptr(leaf, path->slots[0], 146 struct btrfs_inode_item); 147 btrfs_item_key(leaf, &disk_key, path->slots[0]); 148 memset_extent_buffer(leaf, 0, (unsigned long)inode_item, 149 sizeof(*inode_item)); 150 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 151 btrfs_set_inode_size(leaf, inode_item, 0); 152 btrfs_set_inode_nbytes(leaf, inode_item, 0); 153 btrfs_set_inode_uid(leaf, inode_item, 0); 154 btrfs_set_inode_gid(leaf, inode_item, 0); 155 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 156 btrfs_set_inode_flags(leaf, inode_item, flags); 157 btrfs_set_inode_nlink(leaf, inode_item, 1); 158 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 159 btrfs_set_inode_block_group(leaf, inode_item, offset); 160 btrfs_mark_buffer_dirty(leaf); 161 btrfs_release_path(path); 162 163 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 164 key.offset = offset; 165 key.type = 0; 166 167 ret = btrfs_insert_empty_item(trans, root, path, &key, 168 sizeof(struct btrfs_free_space_header)); 169 if (ret < 0) { 170 btrfs_release_path(path); 171 return ret; 172 } 173 leaf = path->nodes[0]; 174 header = btrfs_item_ptr(leaf, path->slots[0], 175 struct btrfs_free_space_header); 176 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); 177 btrfs_set_free_space_key(leaf, header, &disk_key); 178 btrfs_mark_buffer_dirty(leaf); 179 btrfs_release_path(path); 180 181 return 0; 182 } 183 184 int create_free_space_inode(struct btrfs_root *root, 185 struct btrfs_trans_handle *trans, 186 struct btrfs_block_group_cache *block_group, 187 struct btrfs_path *path) 188 { 189 int ret; 190 u64 ino; 191 192 ret = btrfs_find_free_objectid(root, &ino); 193 if (ret < 0) 194 return ret; 195 196 return __create_free_space_inode(root, trans, path, ino, 197 block_group->key.objectid); 198 } 199 200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root, 201 struct btrfs_block_rsv *rsv) 202 { 203 u64 needed_bytes; 204 int ret; 205 206 /* 1 for slack space, 1 for updating the inode */ 207 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + 208 btrfs_calc_trans_metadata_size(root, 1); 209 210 spin_lock(&rsv->lock); 211 if (rsv->reserved < needed_bytes) 212 ret = -ENOSPC; 213 else 214 ret = 0; 215 spin_unlock(&rsv->lock); 216 return ret; 217 } 218 219 int btrfs_truncate_free_space_cache(struct btrfs_root *root, 220 struct btrfs_trans_handle *trans, 221 struct inode *inode) 222 { 223 int ret = 0; 224 225 btrfs_i_size_write(inode, 0); 226 truncate_pagecache(inode, 0); 227 228 /* 229 * We don't need an orphan item because truncating the free space cache 230 * will never be split across transactions. 231 */ 232 ret = btrfs_truncate_inode_items(trans, root, inode, 233 0, BTRFS_EXTENT_DATA_KEY); 234 if (ret) { 235 btrfs_abort_transaction(trans, root, ret); 236 return ret; 237 } 238 239 ret = btrfs_update_inode(trans, root, inode); 240 if (ret) 241 btrfs_abort_transaction(trans, root, ret); 242 243 return ret; 244 } 245 246 static int readahead_cache(struct inode *inode) 247 { 248 struct file_ra_state *ra; 249 unsigned long last_index; 250 251 ra = kzalloc(sizeof(*ra), GFP_NOFS); 252 if (!ra) 253 return -ENOMEM; 254 255 file_ra_state_init(ra, inode->i_mapping); 256 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 257 258 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 259 260 kfree(ra); 261 262 return 0; 263 } 264 265 struct io_ctl { 266 void *cur, *orig; 267 struct page *page; 268 struct page **pages; 269 struct btrfs_root *root; 270 unsigned long size; 271 int index; 272 int num_pages; 273 unsigned check_crcs:1; 274 }; 275 276 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode, 277 struct btrfs_root *root, int write) 278 { 279 int num_pages; 280 int check_crcs = 0; 281 282 num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 283 PAGE_CACHE_SHIFT; 284 285 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) 286 check_crcs = 1; 287 288 /* Make sure we can fit our crcs into the first page */ 289 if (write && check_crcs && 290 (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) 291 return -ENOSPC; 292 293 memset(io_ctl, 0, sizeof(struct io_ctl)); 294 295 io_ctl->pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS); 296 if (!io_ctl->pages) 297 return -ENOMEM; 298 299 io_ctl->num_pages = num_pages; 300 io_ctl->root = root; 301 io_ctl->check_crcs = check_crcs; 302 303 return 0; 304 } 305 306 static void io_ctl_free(struct io_ctl *io_ctl) 307 { 308 kfree(io_ctl->pages); 309 } 310 311 static void io_ctl_unmap_page(struct io_ctl *io_ctl) 312 { 313 if (io_ctl->cur) { 314 kunmap(io_ctl->page); 315 io_ctl->cur = NULL; 316 io_ctl->orig = NULL; 317 } 318 } 319 320 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear) 321 { 322 ASSERT(io_ctl->index < io_ctl->num_pages); 323 io_ctl->page = io_ctl->pages[io_ctl->index++]; 324 io_ctl->cur = kmap(io_ctl->page); 325 io_ctl->orig = io_ctl->cur; 326 io_ctl->size = PAGE_CACHE_SIZE; 327 if (clear) 328 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE); 329 } 330 331 static void io_ctl_drop_pages(struct io_ctl *io_ctl) 332 { 333 int i; 334 335 io_ctl_unmap_page(io_ctl); 336 337 for (i = 0; i < io_ctl->num_pages; i++) { 338 if (io_ctl->pages[i]) { 339 ClearPageChecked(io_ctl->pages[i]); 340 unlock_page(io_ctl->pages[i]); 341 page_cache_release(io_ctl->pages[i]); 342 } 343 } 344 } 345 346 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode, 347 int uptodate) 348 { 349 struct page *page; 350 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 351 int i; 352 353 for (i = 0; i < io_ctl->num_pages; i++) { 354 page = find_or_create_page(inode->i_mapping, i, mask); 355 if (!page) { 356 io_ctl_drop_pages(io_ctl); 357 return -ENOMEM; 358 } 359 io_ctl->pages[i] = page; 360 if (uptodate && !PageUptodate(page)) { 361 btrfs_readpage(NULL, page); 362 lock_page(page); 363 if (!PageUptodate(page)) { 364 btrfs_err(BTRFS_I(inode)->root->fs_info, 365 "error reading free space cache"); 366 io_ctl_drop_pages(io_ctl); 367 return -EIO; 368 } 369 } 370 } 371 372 for (i = 0; i < io_ctl->num_pages; i++) { 373 clear_page_dirty_for_io(io_ctl->pages[i]); 374 set_page_extent_mapped(io_ctl->pages[i]); 375 } 376 377 return 0; 378 } 379 380 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation) 381 { 382 __le64 *val; 383 384 io_ctl_map_page(io_ctl, 1); 385 386 /* 387 * Skip the csum areas. If we don't check crcs then we just have a 388 * 64bit chunk at the front of the first page. 389 */ 390 if (io_ctl->check_crcs) { 391 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 392 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 393 } else { 394 io_ctl->cur += sizeof(u64); 395 io_ctl->size -= sizeof(u64) * 2; 396 } 397 398 val = io_ctl->cur; 399 *val = cpu_to_le64(generation); 400 io_ctl->cur += sizeof(u64); 401 } 402 403 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation) 404 { 405 __le64 *gen; 406 407 /* 408 * Skip the crc area. If we don't check crcs then we just have a 64bit 409 * chunk at the front of the first page. 410 */ 411 if (io_ctl->check_crcs) { 412 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 413 io_ctl->size -= sizeof(u64) + 414 (sizeof(u32) * io_ctl->num_pages); 415 } else { 416 io_ctl->cur += sizeof(u64); 417 io_ctl->size -= sizeof(u64) * 2; 418 } 419 420 gen = io_ctl->cur; 421 if (le64_to_cpu(*gen) != generation) { 422 printk_ratelimited(KERN_ERR "BTRFS: space cache generation " 423 "(%Lu) does not match inode (%Lu)\n", *gen, 424 generation); 425 io_ctl_unmap_page(io_ctl); 426 return -EIO; 427 } 428 io_ctl->cur += sizeof(u64); 429 return 0; 430 } 431 432 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index) 433 { 434 u32 *tmp; 435 u32 crc = ~(u32)0; 436 unsigned offset = 0; 437 438 if (!io_ctl->check_crcs) { 439 io_ctl_unmap_page(io_ctl); 440 return; 441 } 442 443 if (index == 0) 444 offset = sizeof(u32) * io_ctl->num_pages; 445 446 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 447 PAGE_CACHE_SIZE - offset); 448 btrfs_csum_final(crc, (char *)&crc); 449 io_ctl_unmap_page(io_ctl); 450 tmp = kmap(io_ctl->pages[0]); 451 tmp += index; 452 *tmp = crc; 453 kunmap(io_ctl->pages[0]); 454 } 455 456 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index) 457 { 458 u32 *tmp, val; 459 u32 crc = ~(u32)0; 460 unsigned offset = 0; 461 462 if (!io_ctl->check_crcs) { 463 io_ctl_map_page(io_ctl, 0); 464 return 0; 465 } 466 467 if (index == 0) 468 offset = sizeof(u32) * io_ctl->num_pages; 469 470 tmp = kmap(io_ctl->pages[0]); 471 tmp += index; 472 val = *tmp; 473 kunmap(io_ctl->pages[0]); 474 475 io_ctl_map_page(io_ctl, 0); 476 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 477 PAGE_CACHE_SIZE - offset); 478 btrfs_csum_final(crc, (char *)&crc); 479 if (val != crc) { 480 printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free " 481 "space cache\n"); 482 io_ctl_unmap_page(io_ctl); 483 return -EIO; 484 } 485 486 return 0; 487 } 488 489 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes, 490 void *bitmap) 491 { 492 struct btrfs_free_space_entry *entry; 493 494 if (!io_ctl->cur) 495 return -ENOSPC; 496 497 entry = io_ctl->cur; 498 entry->offset = cpu_to_le64(offset); 499 entry->bytes = cpu_to_le64(bytes); 500 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 501 BTRFS_FREE_SPACE_EXTENT; 502 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 503 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 504 505 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 506 return 0; 507 508 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 509 510 /* No more pages to map */ 511 if (io_ctl->index >= io_ctl->num_pages) 512 return 0; 513 514 /* map the next page */ 515 io_ctl_map_page(io_ctl, 1); 516 return 0; 517 } 518 519 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap) 520 { 521 if (!io_ctl->cur) 522 return -ENOSPC; 523 524 /* 525 * If we aren't at the start of the current page, unmap this one and 526 * map the next one if there is any left. 527 */ 528 if (io_ctl->cur != io_ctl->orig) { 529 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 530 if (io_ctl->index >= io_ctl->num_pages) 531 return -ENOSPC; 532 io_ctl_map_page(io_ctl, 0); 533 } 534 535 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE); 536 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 537 if (io_ctl->index < io_ctl->num_pages) 538 io_ctl_map_page(io_ctl, 0); 539 return 0; 540 } 541 542 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl) 543 { 544 /* 545 * If we're not on the boundary we know we've modified the page and we 546 * need to crc the page. 547 */ 548 if (io_ctl->cur != io_ctl->orig) 549 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 550 else 551 io_ctl_unmap_page(io_ctl); 552 553 while (io_ctl->index < io_ctl->num_pages) { 554 io_ctl_map_page(io_ctl, 1); 555 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 556 } 557 } 558 559 static int io_ctl_read_entry(struct io_ctl *io_ctl, 560 struct btrfs_free_space *entry, u8 *type) 561 { 562 struct btrfs_free_space_entry *e; 563 int ret; 564 565 if (!io_ctl->cur) { 566 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 567 if (ret) 568 return ret; 569 } 570 571 e = io_ctl->cur; 572 entry->offset = le64_to_cpu(e->offset); 573 entry->bytes = le64_to_cpu(e->bytes); 574 *type = e->type; 575 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 576 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 577 578 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 579 return 0; 580 581 io_ctl_unmap_page(io_ctl); 582 583 return 0; 584 } 585 586 static int io_ctl_read_bitmap(struct io_ctl *io_ctl, 587 struct btrfs_free_space *entry) 588 { 589 int ret; 590 591 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 592 if (ret) 593 return ret; 594 595 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE); 596 io_ctl_unmap_page(io_ctl); 597 598 return 0; 599 } 600 601 /* 602 * Since we attach pinned extents after the fact we can have contiguous sections 603 * of free space that are split up in entries. This poses a problem with the 604 * tree logging stuff since it could have allocated across what appears to be 2 605 * entries since we would have merged the entries when adding the pinned extents 606 * back to the free space cache. So run through the space cache that we just 607 * loaded and merge contiguous entries. This will make the log replay stuff not 608 * blow up and it will make for nicer allocator behavior. 609 */ 610 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 611 { 612 struct btrfs_free_space *e, *prev = NULL; 613 struct rb_node *n; 614 615 again: 616 spin_lock(&ctl->tree_lock); 617 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 618 e = rb_entry(n, struct btrfs_free_space, offset_index); 619 if (!prev) 620 goto next; 621 if (e->bitmap || prev->bitmap) 622 goto next; 623 if (prev->offset + prev->bytes == e->offset) { 624 unlink_free_space(ctl, prev); 625 unlink_free_space(ctl, e); 626 prev->bytes += e->bytes; 627 kmem_cache_free(btrfs_free_space_cachep, e); 628 link_free_space(ctl, prev); 629 prev = NULL; 630 spin_unlock(&ctl->tree_lock); 631 goto again; 632 } 633 next: 634 prev = e; 635 } 636 spin_unlock(&ctl->tree_lock); 637 } 638 639 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 640 struct btrfs_free_space_ctl *ctl, 641 struct btrfs_path *path, u64 offset) 642 { 643 struct btrfs_free_space_header *header; 644 struct extent_buffer *leaf; 645 struct io_ctl io_ctl; 646 struct btrfs_key key; 647 struct btrfs_free_space *e, *n; 648 struct list_head bitmaps; 649 u64 num_entries; 650 u64 num_bitmaps; 651 u64 generation; 652 u8 type; 653 int ret = 0; 654 655 INIT_LIST_HEAD(&bitmaps); 656 657 /* Nothing in the space cache, goodbye */ 658 if (!i_size_read(inode)) 659 return 0; 660 661 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 662 key.offset = offset; 663 key.type = 0; 664 665 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 666 if (ret < 0) 667 return 0; 668 else if (ret > 0) { 669 btrfs_release_path(path); 670 return 0; 671 } 672 673 ret = -1; 674 675 leaf = path->nodes[0]; 676 header = btrfs_item_ptr(leaf, path->slots[0], 677 struct btrfs_free_space_header); 678 num_entries = btrfs_free_space_entries(leaf, header); 679 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 680 generation = btrfs_free_space_generation(leaf, header); 681 btrfs_release_path(path); 682 683 if (!BTRFS_I(inode)->generation) { 684 btrfs_info(root->fs_info, 685 "The free space cache file (%llu) is invalid. skip it\n", 686 offset); 687 return 0; 688 } 689 690 if (BTRFS_I(inode)->generation != generation) { 691 btrfs_err(root->fs_info, 692 "free space inode generation (%llu) " 693 "did not match free space cache generation (%llu)", 694 BTRFS_I(inode)->generation, generation); 695 return 0; 696 } 697 698 if (!num_entries) 699 return 0; 700 701 ret = io_ctl_init(&io_ctl, inode, root, 0); 702 if (ret) 703 return ret; 704 705 ret = readahead_cache(inode); 706 if (ret) 707 goto out; 708 709 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 710 if (ret) 711 goto out; 712 713 ret = io_ctl_check_crc(&io_ctl, 0); 714 if (ret) 715 goto free_cache; 716 717 ret = io_ctl_check_generation(&io_ctl, generation); 718 if (ret) 719 goto free_cache; 720 721 while (num_entries) { 722 e = kmem_cache_zalloc(btrfs_free_space_cachep, 723 GFP_NOFS); 724 if (!e) 725 goto free_cache; 726 727 ret = io_ctl_read_entry(&io_ctl, e, &type); 728 if (ret) { 729 kmem_cache_free(btrfs_free_space_cachep, e); 730 goto free_cache; 731 } 732 733 if (!e->bytes) { 734 kmem_cache_free(btrfs_free_space_cachep, e); 735 goto free_cache; 736 } 737 738 if (type == BTRFS_FREE_SPACE_EXTENT) { 739 spin_lock(&ctl->tree_lock); 740 ret = link_free_space(ctl, e); 741 spin_unlock(&ctl->tree_lock); 742 if (ret) { 743 btrfs_err(root->fs_info, 744 "Duplicate entries in free space cache, dumping"); 745 kmem_cache_free(btrfs_free_space_cachep, e); 746 goto free_cache; 747 } 748 } else { 749 ASSERT(num_bitmaps); 750 num_bitmaps--; 751 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 752 if (!e->bitmap) { 753 kmem_cache_free( 754 btrfs_free_space_cachep, e); 755 goto free_cache; 756 } 757 spin_lock(&ctl->tree_lock); 758 ret = link_free_space(ctl, e); 759 ctl->total_bitmaps++; 760 ctl->op->recalc_thresholds(ctl); 761 spin_unlock(&ctl->tree_lock); 762 if (ret) { 763 btrfs_err(root->fs_info, 764 "Duplicate entries in free space cache, dumping"); 765 kmem_cache_free(btrfs_free_space_cachep, e); 766 goto free_cache; 767 } 768 list_add_tail(&e->list, &bitmaps); 769 } 770 771 num_entries--; 772 } 773 774 io_ctl_unmap_page(&io_ctl); 775 776 /* 777 * We add the bitmaps at the end of the entries in order that 778 * the bitmap entries are added to the cache. 779 */ 780 list_for_each_entry_safe(e, n, &bitmaps, list) { 781 list_del_init(&e->list); 782 ret = io_ctl_read_bitmap(&io_ctl, e); 783 if (ret) 784 goto free_cache; 785 } 786 787 io_ctl_drop_pages(&io_ctl); 788 merge_space_tree(ctl); 789 ret = 1; 790 out: 791 io_ctl_free(&io_ctl); 792 return ret; 793 free_cache: 794 io_ctl_drop_pages(&io_ctl); 795 __btrfs_remove_free_space_cache(ctl); 796 goto out; 797 } 798 799 int load_free_space_cache(struct btrfs_fs_info *fs_info, 800 struct btrfs_block_group_cache *block_group) 801 { 802 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 803 struct btrfs_root *root = fs_info->tree_root; 804 struct inode *inode; 805 struct btrfs_path *path; 806 int ret = 0; 807 bool matched; 808 u64 used = btrfs_block_group_used(&block_group->item); 809 810 /* 811 * If this block group has been marked to be cleared for one reason or 812 * another then we can't trust the on disk cache, so just return. 813 */ 814 spin_lock(&block_group->lock); 815 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 816 spin_unlock(&block_group->lock); 817 return 0; 818 } 819 spin_unlock(&block_group->lock); 820 821 path = btrfs_alloc_path(); 822 if (!path) 823 return 0; 824 path->search_commit_root = 1; 825 path->skip_locking = 1; 826 827 inode = lookup_free_space_inode(root, block_group, path); 828 if (IS_ERR(inode)) { 829 btrfs_free_path(path); 830 return 0; 831 } 832 833 /* We may have converted the inode and made the cache invalid. */ 834 spin_lock(&block_group->lock); 835 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 836 spin_unlock(&block_group->lock); 837 btrfs_free_path(path); 838 goto out; 839 } 840 spin_unlock(&block_group->lock); 841 842 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 843 path, block_group->key.objectid); 844 btrfs_free_path(path); 845 if (ret <= 0) 846 goto out; 847 848 spin_lock(&ctl->tree_lock); 849 matched = (ctl->free_space == (block_group->key.offset - used - 850 block_group->bytes_super)); 851 spin_unlock(&ctl->tree_lock); 852 853 if (!matched) { 854 __btrfs_remove_free_space_cache(ctl); 855 btrfs_warn(fs_info, "block group %llu has wrong amount of free space", 856 block_group->key.objectid); 857 ret = -1; 858 } 859 out: 860 if (ret < 0) { 861 /* This cache is bogus, make sure it gets cleared */ 862 spin_lock(&block_group->lock); 863 block_group->disk_cache_state = BTRFS_DC_CLEAR; 864 spin_unlock(&block_group->lock); 865 ret = 0; 866 867 btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now", 868 block_group->key.objectid); 869 } 870 871 iput(inode); 872 return ret; 873 } 874 875 static noinline_for_stack 876 int write_cache_extent_entries(struct io_ctl *io_ctl, 877 struct btrfs_free_space_ctl *ctl, 878 struct btrfs_block_group_cache *block_group, 879 int *entries, int *bitmaps, 880 struct list_head *bitmap_list) 881 { 882 int ret; 883 struct btrfs_free_cluster *cluster = NULL; 884 struct rb_node *node = rb_first(&ctl->free_space_offset); 885 886 /* Get the cluster for this block_group if it exists */ 887 if (block_group && !list_empty(&block_group->cluster_list)) { 888 cluster = list_entry(block_group->cluster_list.next, 889 struct btrfs_free_cluster, 890 block_group_list); 891 } 892 893 if (!node && cluster) { 894 node = rb_first(&cluster->root); 895 cluster = NULL; 896 } 897 898 /* Write out the extent entries */ 899 while (node) { 900 struct btrfs_free_space *e; 901 902 e = rb_entry(node, struct btrfs_free_space, offset_index); 903 *entries += 1; 904 905 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 906 e->bitmap); 907 if (ret) 908 goto fail; 909 910 if (e->bitmap) { 911 list_add_tail(&e->list, bitmap_list); 912 *bitmaps += 1; 913 } 914 node = rb_next(node); 915 if (!node && cluster) { 916 node = rb_first(&cluster->root); 917 cluster = NULL; 918 } 919 } 920 return 0; 921 fail: 922 return -ENOSPC; 923 } 924 925 static noinline_for_stack int 926 update_cache_item(struct btrfs_trans_handle *trans, 927 struct btrfs_root *root, 928 struct inode *inode, 929 struct btrfs_path *path, u64 offset, 930 int entries, int bitmaps) 931 { 932 struct btrfs_key key; 933 struct btrfs_free_space_header *header; 934 struct extent_buffer *leaf; 935 int ret; 936 937 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 938 key.offset = offset; 939 key.type = 0; 940 941 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 942 if (ret < 0) { 943 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 944 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 945 GFP_NOFS); 946 goto fail; 947 } 948 leaf = path->nodes[0]; 949 if (ret > 0) { 950 struct btrfs_key found_key; 951 ASSERT(path->slots[0]); 952 path->slots[0]--; 953 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 954 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 955 found_key.offset != offset) { 956 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 957 inode->i_size - 1, 958 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 959 NULL, GFP_NOFS); 960 btrfs_release_path(path); 961 goto fail; 962 } 963 } 964 965 BTRFS_I(inode)->generation = trans->transid; 966 header = btrfs_item_ptr(leaf, path->slots[0], 967 struct btrfs_free_space_header); 968 btrfs_set_free_space_entries(leaf, header, entries); 969 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 970 btrfs_set_free_space_generation(leaf, header, trans->transid); 971 btrfs_mark_buffer_dirty(leaf); 972 btrfs_release_path(path); 973 974 return 0; 975 976 fail: 977 return -1; 978 } 979 980 static noinline_for_stack int 981 write_pinned_extent_entries(struct btrfs_root *root, 982 struct btrfs_block_group_cache *block_group, 983 struct io_ctl *io_ctl, 984 int *entries) 985 { 986 u64 start, extent_start, extent_end, len; 987 struct extent_io_tree *unpin = NULL; 988 int ret; 989 990 if (!block_group) 991 return 0; 992 993 /* 994 * We want to add any pinned extents to our free space cache 995 * so we don't leak the space 996 * 997 * We shouldn't have switched the pinned extents yet so this is the 998 * right one 999 */ 1000 unpin = root->fs_info->pinned_extents; 1001 1002 start = block_group->key.objectid; 1003 1004 while (start < block_group->key.objectid + block_group->key.offset) { 1005 ret = find_first_extent_bit(unpin, start, 1006 &extent_start, &extent_end, 1007 EXTENT_DIRTY, NULL); 1008 if (ret) 1009 return 0; 1010 1011 /* This pinned extent is out of our range */ 1012 if (extent_start >= block_group->key.objectid + 1013 block_group->key.offset) 1014 return 0; 1015 1016 extent_start = max(extent_start, start); 1017 extent_end = min(block_group->key.objectid + 1018 block_group->key.offset, extent_end + 1); 1019 len = extent_end - extent_start; 1020 1021 *entries += 1; 1022 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1023 if (ret) 1024 return -ENOSPC; 1025 1026 start = extent_end; 1027 } 1028 1029 return 0; 1030 } 1031 1032 static noinline_for_stack int 1033 write_bitmap_entries(struct io_ctl *io_ctl, struct list_head *bitmap_list) 1034 { 1035 struct list_head *pos, *n; 1036 int ret; 1037 1038 /* Write out the bitmaps */ 1039 list_for_each_safe(pos, n, bitmap_list) { 1040 struct btrfs_free_space *entry = 1041 list_entry(pos, struct btrfs_free_space, list); 1042 1043 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1044 if (ret) 1045 return -ENOSPC; 1046 list_del_init(&entry->list); 1047 } 1048 1049 return 0; 1050 } 1051 1052 static int flush_dirty_cache(struct inode *inode) 1053 { 1054 int ret; 1055 1056 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1057 if (ret) 1058 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1059 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 1060 GFP_NOFS); 1061 1062 return ret; 1063 } 1064 1065 static void noinline_for_stack 1066 cleanup_write_cache_enospc(struct inode *inode, 1067 struct io_ctl *io_ctl, 1068 struct extent_state **cached_state, 1069 struct list_head *bitmap_list) 1070 { 1071 struct list_head *pos, *n; 1072 1073 list_for_each_safe(pos, n, bitmap_list) { 1074 struct btrfs_free_space *entry = 1075 list_entry(pos, struct btrfs_free_space, list); 1076 list_del_init(&entry->list); 1077 } 1078 io_ctl_drop_pages(io_ctl); 1079 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1080 i_size_read(inode) - 1, cached_state, 1081 GFP_NOFS); 1082 } 1083 1084 /** 1085 * __btrfs_write_out_cache - write out cached info to an inode 1086 * @root - the root the inode belongs to 1087 * @ctl - the free space cache we are going to write out 1088 * @block_group - the block_group for this cache if it belongs to a block_group 1089 * @trans - the trans handle 1090 * @path - the path to use 1091 * @offset - the offset for the key we'll insert 1092 * 1093 * This function writes out a free space cache struct to disk for quick recovery 1094 * on mount. This will return 0 if it was successfull in writing the cache out, 1095 * and -1 if it was not. 1096 */ 1097 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1098 struct btrfs_free_space_ctl *ctl, 1099 struct btrfs_block_group_cache *block_group, 1100 struct btrfs_trans_handle *trans, 1101 struct btrfs_path *path, u64 offset) 1102 { 1103 struct extent_state *cached_state = NULL; 1104 struct io_ctl io_ctl; 1105 LIST_HEAD(bitmap_list); 1106 int entries = 0; 1107 int bitmaps = 0; 1108 int ret; 1109 1110 if (!i_size_read(inode)) 1111 return -1; 1112 1113 ret = io_ctl_init(&io_ctl, inode, root, 1); 1114 if (ret) 1115 return -1; 1116 1117 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1118 down_write(&block_group->data_rwsem); 1119 spin_lock(&block_group->lock); 1120 if (block_group->delalloc_bytes) { 1121 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1122 spin_unlock(&block_group->lock); 1123 up_write(&block_group->data_rwsem); 1124 BTRFS_I(inode)->generation = 0; 1125 ret = 0; 1126 goto out; 1127 } 1128 spin_unlock(&block_group->lock); 1129 } 1130 1131 /* Lock all pages first so we can lock the extent safely. */ 1132 io_ctl_prepare_pages(&io_ctl, inode, 0); 1133 1134 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1135 0, &cached_state); 1136 1137 io_ctl_set_generation(&io_ctl, trans->transid); 1138 1139 /* Write out the extent entries in the free space cache */ 1140 ret = write_cache_extent_entries(&io_ctl, ctl, 1141 block_group, &entries, &bitmaps, 1142 &bitmap_list); 1143 if (ret) 1144 goto out_nospc; 1145 1146 /* 1147 * Some spaces that are freed in the current transaction are pinned, 1148 * they will be added into free space cache after the transaction is 1149 * committed, we shouldn't lose them. 1150 */ 1151 ret = write_pinned_extent_entries(root, block_group, &io_ctl, &entries); 1152 if (ret) 1153 goto out_nospc; 1154 1155 /* At last, we write out all the bitmaps. */ 1156 ret = write_bitmap_entries(&io_ctl, &bitmap_list); 1157 if (ret) 1158 goto out_nospc; 1159 1160 /* Zero out the rest of the pages just to make sure */ 1161 io_ctl_zero_remaining_pages(&io_ctl); 1162 1163 /* Everything is written out, now we dirty the pages in the file. */ 1164 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages, 1165 0, i_size_read(inode), &cached_state); 1166 if (ret) 1167 goto out_nospc; 1168 1169 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1170 up_write(&block_group->data_rwsem); 1171 /* 1172 * Release the pages and unlock the extent, we will flush 1173 * them out later 1174 */ 1175 io_ctl_drop_pages(&io_ctl); 1176 1177 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1178 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1179 1180 /* Flush the dirty pages in the cache file. */ 1181 ret = flush_dirty_cache(inode); 1182 if (ret) 1183 goto out; 1184 1185 /* Update the cache item to tell everyone this cache file is valid. */ 1186 ret = update_cache_item(trans, root, inode, path, offset, 1187 entries, bitmaps); 1188 out: 1189 io_ctl_free(&io_ctl); 1190 if (ret) { 1191 invalidate_inode_pages2(inode->i_mapping); 1192 BTRFS_I(inode)->generation = 0; 1193 } 1194 btrfs_update_inode(trans, root, inode); 1195 return ret; 1196 1197 out_nospc: 1198 cleanup_write_cache_enospc(inode, &io_ctl, &cached_state, &bitmap_list); 1199 1200 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1201 up_write(&block_group->data_rwsem); 1202 1203 goto out; 1204 } 1205 1206 int btrfs_write_out_cache(struct btrfs_root *root, 1207 struct btrfs_trans_handle *trans, 1208 struct btrfs_block_group_cache *block_group, 1209 struct btrfs_path *path) 1210 { 1211 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1212 struct inode *inode; 1213 int ret = 0; 1214 1215 root = root->fs_info->tree_root; 1216 1217 spin_lock(&block_group->lock); 1218 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1219 spin_unlock(&block_group->lock); 1220 return 0; 1221 } 1222 1223 if (block_group->delalloc_bytes) { 1224 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1225 spin_unlock(&block_group->lock); 1226 return 0; 1227 } 1228 spin_unlock(&block_group->lock); 1229 1230 inode = lookup_free_space_inode(root, block_group, path); 1231 if (IS_ERR(inode)) 1232 return 0; 1233 1234 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans, 1235 path, block_group->key.objectid); 1236 if (ret) { 1237 spin_lock(&block_group->lock); 1238 block_group->disk_cache_state = BTRFS_DC_ERROR; 1239 spin_unlock(&block_group->lock); 1240 ret = 0; 1241 #ifdef DEBUG 1242 btrfs_err(root->fs_info, 1243 "failed to write free space cache for block group %llu", 1244 block_group->key.objectid); 1245 #endif 1246 } 1247 1248 iput(inode); 1249 return ret; 1250 } 1251 1252 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1253 u64 offset) 1254 { 1255 ASSERT(offset >= bitmap_start); 1256 offset -= bitmap_start; 1257 return (unsigned long)(div_u64(offset, unit)); 1258 } 1259 1260 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1261 { 1262 return (unsigned long)(div_u64(bytes, unit)); 1263 } 1264 1265 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1266 u64 offset) 1267 { 1268 u64 bitmap_start; 1269 u64 bytes_per_bitmap; 1270 1271 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1272 bitmap_start = offset - ctl->start; 1273 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1274 bitmap_start *= bytes_per_bitmap; 1275 bitmap_start += ctl->start; 1276 1277 return bitmap_start; 1278 } 1279 1280 static int tree_insert_offset(struct rb_root *root, u64 offset, 1281 struct rb_node *node, int bitmap) 1282 { 1283 struct rb_node **p = &root->rb_node; 1284 struct rb_node *parent = NULL; 1285 struct btrfs_free_space *info; 1286 1287 while (*p) { 1288 parent = *p; 1289 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1290 1291 if (offset < info->offset) { 1292 p = &(*p)->rb_left; 1293 } else if (offset > info->offset) { 1294 p = &(*p)->rb_right; 1295 } else { 1296 /* 1297 * we could have a bitmap entry and an extent entry 1298 * share the same offset. If this is the case, we want 1299 * the extent entry to always be found first if we do a 1300 * linear search through the tree, since we want to have 1301 * the quickest allocation time, and allocating from an 1302 * extent is faster than allocating from a bitmap. So 1303 * if we're inserting a bitmap and we find an entry at 1304 * this offset, we want to go right, or after this entry 1305 * logically. If we are inserting an extent and we've 1306 * found a bitmap, we want to go left, or before 1307 * logically. 1308 */ 1309 if (bitmap) { 1310 if (info->bitmap) { 1311 WARN_ON_ONCE(1); 1312 return -EEXIST; 1313 } 1314 p = &(*p)->rb_right; 1315 } else { 1316 if (!info->bitmap) { 1317 WARN_ON_ONCE(1); 1318 return -EEXIST; 1319 } 1320 p = &(*p)->rb_left; 1321 } 1322 } 1323 } 1324 1325 rb_link_node(node, parent, p); 1326 rb_insert_color(node, root); 1327 1328 return 0; 1329 } 1330 1331 /* 1332 * searches the tree for the given offset. 1333 * 1334 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1335 * want a section that has at least bytes size and comes at or after the given 1336 * offset. 1337 */ 1338 static struct btrfs_free_space * 1339 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1340 u64 offset, int bitmap_only, int fuzzy) 1341 { 1342 struct rb_node *n = ctl->free_space_offset.rb_node; 1343 struct btrfs_free_space *entry, *prev = NULL; 1344 1345 /* find entry that is closest to the 'offset' */ 1346 while (1) { 1347 if (!n) { 1348 entry = NULL; 1349 break; 1350 } 1351 1352 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1353 prev = entry; 1354 1355 if (offset < entry->offset) 1356 n = n->rb_left; 1357 else if (offset > entry->offset) 1358 n = n->rb_right; 1359 else 1360 break; 1361 } 1362 1363 if (bitmap_only) { 1364 if (!entry) 1365 return NULL; 1366 if (entry->bitmap) 1367 return entry; 1368 1369 /* 1370 * bitmap entry and extent entry may share same offset, 1371 * in that case, bitmap entry comes after extent entry. 1372 */ 1373 n = rb_next(n); 1374 if (!n) 1375 return NULL; 1376 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1377 if (entry->offset != offset) 1378 return NULL; 1379 1380 WARN_ON(!entry->bitmap); 1381 return entry; 1382 } else if (entry) { 1383 if (entry->bitmap) { 1384 /* 1385 * if previous extent entry covers the offset, 1386 * we should return it instead of the bitmap entry 1387 */ 1388 n = rb_prev(&entry->offset_index); 1389 if (n) { 1390 prev = rb_entry(n, struct btrfs_free_space, 1391 offset_index); 1392 if (!prev->bitmap && 1393 prev->offset + prev->bytes > offset) 1394 entry = prev; 1395 } 1396 } 1397 return entry; 1398 } 1399 1400 if (!prev) 1401 return NULL; 1402 1403 /* find last entry before the 'offset' */ 1404 entry = prev; 1405 if (entry->offset > offset) { 1406 n = rb_prev(&entry->offset_index); 1407 if (n) { 1408 entry = rb_entry(n, struct btrfs_free_space, 1409 offset_index); 1410 ASSERT(entry->offset <= offset); 1411 } else { 1412 if (fuzzy) 1413 return entry; 1414 else 1415 return NULL; 1416 } 1417 } 1418 1419 if (entry->bitmap) { 1420 n = rb_prev(&entry->offset_index); 1421 if (n) { 1422 prev = rb_entry(n, struct btrfs_free_space, 1423 offset_index); 1424 if (!prev->bitmap && 1425 prev->offset + prev->bytes > offset) 1426 return prev; 1427 } 1428 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1429 return entry; 1430 } else if (entry->offset + entry->bytes > offset) 1431 return entry; 1432 1433 if (!fuzzy) 1434 return NULL; 1435 1436 while (1) { 1437 if (entry->bitmap) { 1438 if (entry->offset + BITS_PER_BITMAP * 1439 ctl->unit > offset) 1440 break; 1441 } else { 1442 if (entry->offset + entry->bytes > offset) 1443 break; 1444 } 1445 1446 n = rb_next(&entry->offset_index); 1447 if (!n) 1448 return NULL; 1449 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1450 } 1451 return entry; 1452 } 1453 1454 static inline void 1455 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1456 struct btrfs_free_space *info) 1457 { 1458 rb_erase(&info->offset_index, &ctl->free_space_offset); 1459 ctl->free_extents--; 1460 } 1461 1462 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1463 struct btrfs_free_space *info) 1464 { 1465 __unlink_free_space(ctl, info); 1466 ctl->free_space -= info->bytes; 1467 } 1468 1469 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1470 struct btrfs_free_space *info) 1471 { 1472 int ret = 0; 1473 1474 ASSERT(info->bytes || info->bitmap); 1475 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1476 &info->offset_index, (info->bitmap != NULL)); 1477 if (ret) 1478 return ret; 1479 1480 ctl->free_space += info->bytes; 1481 ctl->free_extents++; 1482 return ret; 1483 } 1484 1485 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1486 { 1487 struct btrfs_block_group_cache *block_group = ctl->private; 1488 u64 max_bytes; 1489 u64 bitmap_bytes; 1490 u64 extent_bytes; 1491 u64 size = block_group->key.offset; 1492 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1493 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1494 1495 max_bitmaps = max(max_bitmaps, 1); 1496 1497 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1498 1499 /* 1500 * The goal is to keep the total amount of memory used per 1gb of space 1501 * at or below 32k, so we need to adjust how much memory we allow to be 1502 * used by extent based free space tracking 1503 */ 1504 if (size < 1024 * 1024 * 1024) 1505 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1506 else 1507 max_bytes = MAX_CACHE_BYTES_PER_GIG * 1508 div64_u64(size, 1024 * 1024 * 1024); 1509 1510 /* 1511 * we want to account for 1 more bitmap than what we have so we can make 1512 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1513 * we add more bitmaps. 1514 */ 1515 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE; 1516 1517 if (bitmap_bytes >= max_bytes) { 1518 ctl->extents_thresh = 0; 1519 return; 1520 } 1521 1522 /* 1523 * we want the extent entry threshold to always be at most 1/2 the maxw 1524 * bytes we can have, or whatever is less than that. 1525 */ 1526 extent_bytes = max_bytes - bitmap_bytes; 1527 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2)); 1528 1529 ctl->extents_thresh = 1530 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space))); 1531 } 1532 1533 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1534 struct btrfs_free_space *info, 1535 u64 offset, u64 bytes) 1536 { 1537 unsigned long start, count; 1538 1539 start = offset_to_bit(info->offset, ctl->unit, offset); 1540 count = bytes_to_bits(bytes, ctl->unit); 1541 ASSERT(start + count <= BITS_PER_BITMAP); 1542 1543 bitmap_clear(info->bitmap, start, count); 1544 1545 info->bytes -= bytes; 1546 } 1547 1548 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1549 struct btrfs_free_space *info, u64 offset, 1550 u64 bytes) 1551 { 1552 __bitmap_clear_bits(ctl, info, offset, bytes); 1553 ctl->free_space -= bytes; 1554 } 1555 1556 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1557 struct btrfs_free_space *info, u64 offset, 1558 u64 bytes) 1559 { 1560 unsigned long start, count; 1561 1562 start = offset_to_bit(info->offset, ctl->unit, offset); 1563 count = bytes_to_bits(bytes, ctl->unit); 1564 ASSERT(start + count <= BITS_PER_BITMAP); 1565 1566 bitmap_set(info->bitmap, start, count); 1567 1568 info->bytes += bytes; 1569 ctl->free_space += bytes; 1570 } 1571 1572 /* 1573 * If we can not find suitable extent, we will use bytes to record 1574 * the size of the max extent. 1575 */ 1576 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1577 struct btrfs_free_space *bitmap_info, u64 *offset, 1578 u64 *bytes) 1579 { 1580 unsigned long found_bits = 0; 1581 unsigned long max_bits = 0; 1582 unsigned long bits, i; 1583 unsigned long next_zero; 1584 unsigned long extent_bits; 1585 1586 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1587 max_t(u64, *offset, bitmap_info->offset)); 1588 bits = bytes_to_bits(*bytes, ctl->unit); 1589 1590 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1591 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1592 BITS_PER_BITMAP, i); 1593 extent_bits = next_zero - i; 1594 if (extent_bits >= bits) { 1595 found_bits = extent_bits; 1596 break; 1597 } else if (extent_bits > max_bits) { 1598 max_bits = extent_bits; 1599 } 1600 i = next_zero; 1601 } 1602 1603 if (found_bits) { 1604 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1605 *bytes = (u64)(found_bits) * ctl->unit; 1606 return 0; 1607 } 1608 1609 *bytes = (u64)(max_bits) * ctl->unit; 1610 return -1; 1611 } 1612 1613 /* Cache the size of the max extent in bytes */ 1614 static struct btrfs_free_space * 1615 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1616 unsigned long align, u64 *max_extent_size) 1617 { 1618 struct btrfs_free_space *entry; 1619 struct rb_node *node; 1620 u64 tmp; 1621 u64 align_off; 1622 int ret; 1623 1624 if (!ctl->free_space_offset.rb_node) 1625 goto out; 1626 1627 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1628 if (!entry) 1629 goto out; 1630 1631 for (node = &entry->offset_index; node; node = rb_next(node)) { 1632 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1633 if (entry->bytes < *bytes) { 1634 if (entry->bytes > *max_extent_size) 1635 *max_extent_size = entry->bytes; 1636 continue; 1637 } 1638 1639 /* make sure the space returned is big enough 1640 * to match our requested alignment 1641 */ 1642 if (*bytes >= align) { 1643 tmp = entry->offset - ctl->start + align - 1; 1644 do_div(tmp, align); 1645 tmp = tmp * align + ctl->start; 1646 align_off = tmp - entry->offset; 1647 } else { 1648 align_off = 0; 1649 tmp = entry->offset; 1650 } 1651 1652 if (entry->bytes < *bytes + align_off) { 1653 if (entry->bytes > *max_extent_size) 1654 *max_extent_size = entry->bytes; 1655 continue; 1656 } 1657 1658 if (entry->bitmap) { 1659 u64 size = *bytes; 1660 1661 ret = search_bitmap(ctl, entry, &tmp, &size); 1662 if (!ret) { 1663 *offset = tmp; 1664 *bytes = size; 1665 return entry; 1666 } else if (size > *max_extent_size) { 1667 *max_extent_size = size; 1668 } 1669 continue; 1670 } 1671 1672 *offset = tmp; 1673 *bytes = entry->bytes - align_off; 1674 return entry; 1675 } 1676 out: 1677 return NULL; 1678 } 1679 1680 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1681 struct btrfs_free_space *info, u64 offset) 1682 { 1683 info->offset = offset_to_bitmap(ctl, offset); 1684 info->bytes = 0; 1685 INIT_LIST_HEAD(&info->list); 1686 link_free_space(ctl, info); 1687 ctl->total_bitmaps++; 1688 1689 ctl->op->recalc_thresholds(ctl); 1690 } 1691 1692 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1693 struct btrfs_free_space *bitmap_info) 1694 { 1695 unlink_free_space(ctl, bitmap_info); 1696 kfree(bitmap_info->bitmap); 1697 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1698 ctl->total_bitmaps--; 1699 ctl->op->recalc_thresholds(ctl); 1700 } 1701 1702 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1703 struct btrfs_free_space *bitmap_info, 1704 u64 *offset, u64 *bytes) 1705 { 1706 u64 end; 1707 u64 search_start, search_bytes; 1708 int ret; 1709 1710 again: 1711 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1712 1713 /* 1714 * We need to search for bits in this bitmap. We could only cover some 1715 * of the extent in this bitmap thanks to how we add space, so we need 1716 * to search for as much as it as we can and clear that amount, and then 1717 * go searching for the next bit. 1718 */ 1719 search_start = *offset; 1720 search_bytes = ctl->unit; 1721 search_bytes = min(search_bytes, end - search_start + 1); 1722 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); 1723 if (ret < 0 || search_start != *offset) 1724 return -EINVAL; 1725 1726 /* We may have found more bits than what we need */ 1727 search_bytes = min(search_bytes, *bytes); 1728 1729 /* Cannot clear past the end of the bitmap */ 1730 search_bytes = min(search_bytes, end - search_start + 1); 1731 1732 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1733 *offset += search_bytes; 1734 *bytes -= search_bytes; 1735 1736 if (*bytes) { 1737 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1738 if (!bitmap_info->bytes) 1739 free_bitmap(ctl, bitmap_info); 1740 1741 /* 1742 * no entry after this bitmap, but we still have bytes to 1743 * remove, so something has gone wrong. 1744 */ 1745 if (!next) 1746 return -EINVAL; 1747 1748 bitmap_info = rb_entry(next, struct btrfs_free_space, 1749 offset_index); 1750 1751 /* 1752 * if the next entry isn't a bitmap we need to return to let the 1753 * extent stuff do its work. 1754 */ 1755 if (!bitmap_info->bitmap) 1756 return -EAGAIN; 1757 1758 /* 1759 * Ok the next item is a bitmap, but it may not actually hold 1760 * the information for the rest of this free space stuff, so 1761 * look for it, and if we don't find it return so we can try 1762 * everything over again. 1763 */ 1764 search_start = *offset; 1765 search_bytes = ctl->unit; 1766 ret = search_bitmap(ctl, bitmap_info, &search_start, 1767 &search_bytes); 1768 if (ret < 0 || search_start != *offset) 1769 return -EAGAIN; 1770 1771 goto again; 1772 } else if (!bitmap_info->bytes) 1773 free_bitmap(ctl, bitmap_info); 1774 1775 return 0; 1776 } 1777 1778 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1779 struct btrfs_free_space *info, u64 offset, 1780 u64 bytes) 1781 { 1782 u64 bytes_to_set = 0; 1783 u64 end; 1784 1785 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1786 1787 bytes_to_set = min(end - offset, bytes); 1788 1789 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1790 1791 return bytes_to_set; 1792 1793 } 1794 1795 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1796 struct btrfs_free_space *info) 1797 { 1798 struct btrfs_block_group_cache *block_group = ctl->private; 1799 1800 /* 1801 * If we are below the extents threshold then we can add this as an 1802 * extent, and don't have to deal with the bitmap 1803 */ 1804 if (ctl->free_extents < ctl->extents_thresh) { 1805 /* 1806 * If this block group has some small extents we don't want to 1807 * use up all of our free slots in the cache with them, we want 1808 * to reserve them to larger extents, however if we have plent 1809 * of cache left then go ahead an dadd them, no sense in adding 1810 * the overhead of a bitmap if we don't have to. 1811 */ 1812 if (info->bytes <= block_group->sectorsize * 4) { 1813 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1814 return false; 1815 } else { 1816 return false; 1817 } 1818 } 1819 1820 /* 1821 * The original block groups from mkfs can be really small, like 8 1822 * megabytes, so don't bother with a bitmap for those entries. However 1823 * some block groups can be smaller than what a bitmap would cover but 1824 * are still large enough that they could overflow the 32k memory limit, 1825 * so allow those block groups to still be allowed to have a bitmap 1826 * entry. 1827 */ 1828 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) 1829 return false; 1830 1831 return true; 1832 } 1833 1834 static struct btrfs_free_space_op free_space_op = { 1835 .recalc_thresholds = recalculate_thresholds, 1836 .use_bitmap = use_bitmap, 1837 }; 1838 1839 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 1840 struct btrfs_free_space *info) 1841 { 1842 struct btrfs_free_space *bitmap_info; 1843 struct btrfs_block_group_cache *block_group = NULL; 1844 int added = 0; 1845 u64 bytes, offset, bytes_added; 1846 int ret; 1847 1848 bytes = info->bytes; 1849 offset = info->offset; 1850 1851 if (!ctl->op->use_bitmap(ctl, info)) 1852 return 0; 1853 1854 if (ctl->op == &free_space_op) 1855 block_group = ctl->private; 1856 again: 1857 /* 1858 * Since we link bitmaps right into the cluster we need to see if we 1859 * have a cluster here, and if so and it has our bitmap we need to add 1860 * the free space to that bitmap. 1861 */ 1862 if (block_group && !list_empty(&block_group->cluster_list)) { 1863 struct btrfs_free_cluster *cluster; 1864 struct rb_node *node; 1865 struct btrfs_free_space *entry; 1866 1867 cluster = list_entry(block_group->cluster_list.next, 1868 struct btrfs_free_cluster, 1869 block_group_list); 1870 spin_lock(&cluster->lock); 1871 node = rb_first(&cluster->root); 1872 if (!node) { 1873 spin_unlock(&cluster->lock); 1874 goto no_cluster_bitmap; 1875 } 1876 1877 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1878 if (!entry->bitmap) { 1879 spin_unlock(&cluster->lock); 1880 goto no_cluster_bitmap; 1881 } 1882 1883 if (entry->offset == offset_to_bitmap(ctl, offset)) { 1884 bytes_added = add_bytes_to_bitmap(ctl, entry, 1885 offset, bytes); 1886 bytes -= bytes_added; 1887 offset += bytes_added; 1888 } 1889 spin_unlock(&cluster->lock); 1890 if (!bytes) { 1891 ret = 1; 1892 goto out; 1893 } 1894 } 1895 1896 no_cluster_bitmap: 1897 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1898 1, 0); 1899 if (!bitmap_info) { 1900 ASSERT(added == 0); 1901 goto new_bitmap; 1902 } 1903 1904 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 1905 bytes -= bytes_added; 1906 offset += bytes_added; 1907 added = 0; 1908 1909 if (!bytes) { 1910 ret = 1; 1911 goto out; 1912 } else 1913 goto again; 1914 1915 new_bitmap: 1916 if (info && info->bitmap) { 1917 add_new_bitmap(ctl, info, offset); 1918 added = 1; 1919 info = NULL; 1920 goto again; 1921 } else { 1922 spin_unlock(&ctl->tree_lock); 1923 1924 /* no pre-allocated info, allocate a new one */ 1925 if (!info) { 1926 info = kmem_cache_zalloc(btrfs_free_space_cachep, 1927 GFP_NOFS); 1928 if (!info) { 1929 spin_lock(&ctl->tree_lock); 1930 ret = -ENOMEM; 1931 goto out; 1932 } 1933 } 1934 1935 /* allocate the bitmap */ 1936 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 1937 spin_lock(&ctl->tree_lock); 1938 if (!info->bitmap) { 1939 ret = -ENOMEM; 1940 goto out; 1941 } 1942 goto again; 1943 } 1944 1945 out: 1946 if (info) { 1947 if (info->bitmap) 1948 kfree(info->bitmap); 1949 kmem_cache_free(btrfs_free_space_cachep, info); 1950 } 1951 1952 return ret; 1953 } 1954 1955 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 1956 struct btrfs_free_space *info, bool update_stat) 1957 { 1958 struct btrfs_free_space *left_info; 1959 struct btrfs_free_space *right_info; 1960 bool merged = false; 1961 u64 offset = info->offset; 1962 u64 bytes = info->bytes; 1963 1964 /* 1965 * first we want to see if there is free space adjacent to the range we 1966 * are adding, if there is remove that struct and add a new one to 1967 * cover the entire range 1968 */ 1969 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 1970 if (right_info && rb_prev(&right_info->offset_index)) 1971 left_info = rb_entry(rb_prev(&right_info->offset_index), 1972 struct btrfs_free_space, offset_index); 1973 else 1974 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 1975 1976 if (right_info && !right_info->bitmap) { 1977 if (update_stat) 1978 unlink_free_space(ctl, right_info); 1979 else 1980 __unlink_free_space(ctl, right_info); 1981 info->bytes += right_info->bytes; 1982 kmem_cache_free(btrfs_free_space_cachep, right_info); 1983 merged = true; 1984 } 1985 1986 if (left_info && !left_info->bitmap && 1987 left_info->offset + left_info->bytes == offset) { 1988 if (update_stat) 1989 unlink_free_space(ctl, left_info); 1990 else 1991 __unlink_free_space(ctl, left_info); 1992 info->offset = left_info->offset; 1993 info->bytes += left_info->bytes; 1994 kmem_cache_free(btrfs_free_space_cachep, left_info); 1995 merged = true; 1996 } 1997 1998 return merged; 1999 } 2000 2001 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, 2002 u64 offset, u64 bytes) 2003 { 2004 struct btrfs_free_space *info; 2005 int ret = 0; 2006 2007 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2008 if (!info) 2009 return -ENOMEM; 2010 2011 info->offset = offset; 2012 info->bytes = bytes; 2013 2014 spin_lock(&ctl->tree_lock); 2015 2016 if (try_merge_free_space(ctl, info, true)) 2017 goto link; 2018 2019 /* 2020 * There was no extent directly to the left or right of this new 2021 * extent then we know we're going to have to allocate a new extent, so 2022 * before we do that see if we need to drop this into a bitmap 2023 */ 2024 ret = insert_into_bitmap(ctl, info); 2025 if (ret < 0) { 2026 goto out; 2027 } else if (ret) { 2028 ret = 0; 2029 goto out; 2030 } 2031 link: 2032 ret = link_free_space(ctl, info); 2033 if (ret) 2034 kmem_cache_free(btrfs_free_space_cachep, info); 2035 out: 2036 spin_unlock(&ctl->tree_lock); 2037 2038 if (ret) { 2039 printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret); 2040 ASSERT(ret != -EEXIST); 2041 } 2042 2043 return ret; 2044 } 2045 2046 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 2047 u64 offset, u64 bytes) 2048 { 2049 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2050 struct btrfs_free_space *info; 2051 int ret; 2052 bool re_search = false; 2053 2054 spin_lock(&ctl->tree_lock); 2055 2056 again: 2057 ret = 0; 2058 if (!bytes) 2059 goto out_lock; 2060 2061 info = tree_search_offset(ctl, offset, 0, 0); 2062 if (!info) { 2063 /* 2064 * oops didn't find an extent that matched the space we wanted 2065 * to remove, look for a bitmap instead 2066 */ 2067 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2068 1, 0); 2069 if (!info) { 2070 /* 2071 * If we found a partial bit of our free space in a 2072 * bitmap but then couldn't find the other part this may 2073 * be a problem, so WARN about it. 2074 */ 2075 WARN_ON(re_search); 2076 goto out_lock; 2077 } 2078 } 2079 2080 re_search = false; 2081 if (!info->bitmap) { 2082 unlink_free_space(ctl, info); 2083 if (offset == info->offset) { 2084 u64 to_free = min(bytes, info->bytes); 2085 2086 info->bytes -= to_free; 2087 info->offset += to_free; 2088 if (info->bytes) { 2089 ret = link_free_space(ctl, info); 2090 WARN_ON(ret); 2091 } else { 2092 kmem_cache_free(btrfs_free_space_cachep, info); 2093 } 2094 2095 offset += to_free; 2096 bytes -= to_free; 2097 goto again; 2098 } else { 2099 u64 old_end = info->bytes + info->offset; 2100 2101 info->bytes = offset - info->offset; 2102 ret = link_free_space(ctl, info); 2103 WARN_ON(ret); 2104 if (ret) 2105 goto out_lock; 2106 2107 /* Not enough bytes in this entry to satisfy us */ 2108 if (old_end < offset + bytes) { 2109 bytes -= old_end - offset; 2110 offset = old_end; 2111 goto again; 2112 } else if (old_end == offset + bytes) { 2113 /* all done */ 2114 goto out_lock; 2115 } 2116 spin_unlock(&ctl->tree_lock); 2117 2118 ret = btrfs_add_free_space(block_group, offset + bytes, 2119 old_end - (offset + bytes)); 2120 WARN_ON(ret); 2121 goto out; 2122 } 2123 } 2124 2125 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2126 if (ret == -EAGAIN) { 2127 re_search = true; 2128 goto again; 2129 } 2130 out_lock: 2131 spin_unlock(&ctl->tree_lock); 2132 out: 2133 return ret; 2134 } 2135 2136 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 2137 u64 bytes) 2138 { 2139 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2140 struct btrfs_free_space *info; 2141 struct rb_node *n; 2142 int count = 0; 2143 2144 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2145 info = rb_entry(n, struct btrfs_free_space, offset_index); 2146 if (info->bytes >= bytes && !block_group->ro) 2147 count++; 2148 btrfs_crit(block_group->fs_info, 2149 "entry offset %llu, bytes %llu, bitmap %s", 2150 info->offset, info->bytes, 2151 (info->bitmap) ? "yes" : "no"); 2152 } 2153 btrfs_info(block_group->fs_info, "block group has cluster?: %s", 2154 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2155 btrfs_info(block_group->fs_info, 2156 "%d blocks of free space at or bigger than bytes is", count); 2157 } 2158 2159 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 2160 { 2161 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2162 2163 spin_lock_init(&ctl->tree_lock); 2164 ctl->unit = block_group->sectorsize; 2165 ctl->start = block_group->key.objectid; 2166 ctl->private = block_group; 2167 ctl->op = &free_space_op; 2168 2169 /* 2170 * we only want to have 32k of ram per block group for keeping 2171 * track of free space, and if we pass 1/2 of that we want to 2172 * start converting things over to using bitmaps 2173 */ 2174 ctl->extents_thresh = ((1024 * 32) / 2) / 2175 sizeof(struct btrfs_free_space); 2176 } 2177 2178 /* 2179 * for a given cluster, put all of its extents back into the free 2180 * space cache. If the block group passed doesn't match the block group 2181 * pointed to by the cluster, someone else raced in and freed the 2182 * cluster already. In that case, we just return without changing anything 2183 */ 2184 static int 2185 __btrfs_return_cluster_to_free_space( 2186 struct btrfs_block_group_cache *block_group, 2187 struct btrfs_free_cluster *cluster) 2188 { 2189 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2190 struct btrfs_free_space *entry; 2191 struct rb_node *node; 2192 2193 spin_lock(&cluster->lock); 2194 if (cluster->block_group != block_group) 2195 goto out; 2196 2197 cluster->block_group = NULL; 2198 cluster->window_start = 0; 2199 list_del_init(&cluster->block_group_list); 2200 2201 node = rb_first(&cluster->root); 2202 while (node) { 2203 bool bitmap; 2204 2205 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2206 node = rb_next(&entry->offset_index); 2207 rb_erase(&entry->offset_index, &cluster->root); 2208 2209 bitmap = (entry->bitmap != NULL); 2210 if (!bitmap) 2211 try_merge_free_space(ctl, entry, false); 2212 tree_insert_offset(&ctl->free_space_offset, 2213 entry->offset, &entry->offset_index, bitmap); 2214 } 2215 cluster->root = RB_ROOT; 2216 2217 out: 2218 spin_unlock(&cluster->lock); 2219 btrfs_put_block_group(block_group); 2220 return 0; 2221 } 2222 2223 static void __btrfs_remove_free_space_cache_locked( 2224 struct btrfs_free_space_ctl *ctl) 2225 { 2226 struct btrfs_free_space *info; 2227 struct rb_node *node; 2228 2229 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2230 info = rb_entry(node, struct btrfs_free_space, offset_index); 2231 if (!info->bitmap) { 2232 unlink_free_space(ctl, info); 2233 kmem_cache_free(btrfs_free_space_cachep, info); 2234 } else { 2235 free_bitmap(ctl, info); 2236 } 2237 if (need_resched()) { 2238 spin_unlock(&ctl->tree_lock); 2239 cond_resched(); 2240 spin_lock(&ctl->tree_lock); 2241 } 2242 } 2243 } 2244 2245 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2246 { 2247 spin_lock(&ctl->tree_lock); 2248 __btrfs_remove_free_space_cache_locked(ctl); 2249 spin_unlock(&ctl->tree_lock); 2250 } 2251 2252 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2253 { 2254 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2255 struct btrfs_free_cluster *cluster; 2256 struct list_head *head; 2257 2258 spin_lock(&ctl->tree_lock); 2259 while ((head = block_group->cluster_list.next) != 2260 &block_group->cluster_list) { 2261 cluster = list_entry(head, struct btrfs_free_cluster, 2262 block_group_list); 2263 2264 WARN_ON(cluster->block_group != block_group); 2265 __btrfs_return_cluster_to_free_space(block_group, cluster); 2266 if (need_resched()) { 2267 spin_unlock(&ctl->tree_lock); 2268 cond_resched(); 2269 spin_lock(&ctl->tree_lock); 2270 } 2271 } 2272 __btrfs_remove_free_space_cache_locked(ctl); 2273 spin_unlock(&ctl->tree_lock); 2274 2275 } 2276 2277 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2278 u64 offset, u64 bytes, u64 empty_size, 2279 u64 *max_extent_size) 2280 { 2281 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2282 struct btrfs_free_space *entry = NULL; 2283 u64 bytes_search = bytes + empty_size; 2284 u64 ret = 0; 2285 u64 align_gap = 0; 2286 u64 align_gap_len = 0; 2287 2288 spin_lock(&ctl->tree_lock); 2289 entry = find_free_space(ctl, &offset, &bytes_search, 2290 block_group->full_stripe_len, max_extent_size); 2291 if (!entry) 2292 goto out; 2293 2294 ret = offset; 2295 if (entry->bitmap) { 2296 bitmap_clear_bits(ctl, entry, offset, bytes); 2297 if (!entry->bytes) 2298 free_bitmap(ctl, entry); 2299 } else { 2300 unlink_free_space(ctl, entry); 2301 align_gap_len = offset - entry->offset; 2302 align_gap = entry->offset; 2303 2304 entry->offset = offset + bytes; 2305 WARN_ON(entry->bytes < bytes + align_gap_len); 2306 2307 entry->bytes -= bytes + align_gap_len; 2308 if (!entry->bytes) 2309 kmem_cache_free(btrfs_free_space_cachep, entry); 2310 else 2311 link_free_space(ctl, entry); 2312 } 2313 out: 2314 spin_unlock(&ctl->tree_lock); 2315 2316 if (align_gap_len) 2317 __btrfs_add_free_space(ctl, align_gap, align_gap_len); 2318 return ret; 2319 } 2320 2321 /* 2322 * given a cluster, put all of its extents back into the free space 2323 * cache. If a block group is passed, this function will only free 2324 * a cluster that belongs to the passed block group. 2325 * 2326 * Otherwise, it'll get a reference on the block group pointed to by the 2327 * cluster and remove the cluster from it. 2328 */ 2329 int btrfs_return_cluster_to_free_space( 2330 struct btrfs_block_group_cache *block_group, 2331 struct btrfs_free_cluster *cluster) 2332 { 2333 struct btrfs_free_space_ctl *ctl; 2334 int ret; 2335 2336 /* first, get a safe pointer to the block group */ 2337 spin_lock(&cluster->lock); 2338 if (!block_group) { 2339 block_group = cluster->block_group; 2340 if (!block_group) { 2341 spin_unlock(&cluster->lock); 2342 return 0; 2343 } 2344 } else if (cluster->block_group != block_group) { 2345 /* someone else has already freed it don't redo their work */ 2346 spin_unlock(&cluster->lock); 2347 return 0; 2348 } 2349 atomic_inc(&block_group->count); 2350 spin_unlock(&cluster->lock); 2351 2352 ctl = block_group->free_space_ctl; 2353 2354 /* now return any extents the cluster had on it */ 2355 spin_lock(&ctl->tree_lock); 2356 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2357 spin_unlock(&ctl->tree_lock); 2358 2359 /* finally drop our ref */ 2360 btrfs_put_block_group(block_group); 2361 return ret; 2362 } 2363 2364 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2365 struct btrfs_free_cluster *cluster, 2366 struct btrfs_free_space *entry, 2367 u64 bytes, u64 min_start, 2368 u64 *max_extent_size) 2369 { 2370 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2371 int err; 2372 u64 search_start = cluster->window_start; 2373 u64 search_bytes = bytes; 2374 u64 ret = 0; 2375 2376 search_start = min_start; 2377 search_bytes = bytes; 2378 2379 err = search_bitmap(ctl, entry, &search_start, &search_bytes); 2380 if (err) { 2381 if (search_bytes > *max_extent_size) 2382 *max_extent_size = search_bytes; 2383 return 0; 2384 } 2385 2386 ret = search_start; 2387 __bitmap_clear_bits(ctl, entry, ret, bytes); 2388 2389 return ret; 2390 } 2391 2392 /* 2393 * given a cluster, try to allocate 'bytes' from it, returns 0 2394 * if it couldn't find anything suitably large, or a logical disk offset 2395 * if things worked out 2396 */ 2397 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2398 struct btrfs_free_cluster *cluster, u64 bytes, 2399 u64 min_start, u64 *max_extent_size) 2400 { 2401 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2402 struct btrfs_free_space *entry = NULL; 2403 struct rb_node *node; 2404 u64 ret = 0; 2405 2406 spin_lock(&cluster->lock); 2407 if (bytes > cluster->max_size) 2408 goto out; 2409 2410 if (cluster->block_group != block_group) 2411 goto out; 2412 2413 node = rb_first(&cluster->root); 2414 if (!node) 2415 goto out; 2416 2417 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2418 while (1) { 2419 if (entry->bytes < bytes && entry->bytes > *max_extent_size) 2420 *max_extent_size = entry->bytes; 2421 2422 if (entry->bytes < bytes || 2423 (!entry->bitmap && entry->offset < min_start)) { 2424 node = rb_next(&entry->offset_index); 2425 if (!node) 2426 break; 2427 entry = rb_entry(node, struct btrfs_free_space, 2428 offset_index); 2429 continue; 2430 } 2431 2432 if (entry->bitmap) { 2433 ret = btrfs_alloc_from_bitmap(block_group, 2434 cluster, entry, bytes, 2435 cluster->window_start, 2436 max_extent_size); 2437 if (ret == 0) { 2438 node = rb_next(&entry->offset_index); 2439 if (!node) 2440 break; 2441 entry = rb_entry(node, struct btrfs_free_space, 2442 offset_index); 2443 continue; 2444 } 2445 cluster->window_start += bytes; 2446 } else { 2447 ret = entry->offset; 2448 2449 entry->offset += bytes; 2450 entry->bytes -= bytes; 2451 } 2452 2453 if (entry->bytes == 0) 2454 rb_erase(&entry->offset_index, &cluster->root); 2455 break; 2456 } 2457 out: 2458 spin_unlock(&cluster->lock); 2459 2460 if (!ret) 2461 return 0; 2462 2463 spin_lock(&ctl->tree_lock); 2464 2465 ctl->free_space -= bytes; 2466 if (entry->bytes == 0) { 2467 ctl->free_extents--; 2468 if (entry->bitmap) { 2469 kfree(entry->bitmap); 2470 ctl->total_bitmaps--; 2471 ctl->op->recalc_thresholds(ctl); 2472 } 2473 kmem_cache_free(btrfs_free_space_cachep, entry); 2474 } 2475 2476 spin_unlock(&ctl->tree_lock); 2477 2478 return ret; 2479 } 2480 2481 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2482 struct btrfs_free_space *entry, 2483 struct btrfs_free_cluster *cluster, 2484 u64 offset, u64 bytes, 2485 u64 cont1_bytes, u64 min_bytes) 2486 { 2487 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2488 unsigned long next_zero; 2489 unsigned long i; 2490 unsigned long want_bits; 2491 unsigned long min_bits; 2492 unsigned long found_bits; 2493 unsigned long start = 0; 2494 unsigned long total_found = 0; 2495 int ret; 2496 2497 i = offset_to_bit(entry->offset, ctl->unit, 2498 max_t(u64, offset, entry->offset)); 2499 want_bits = bytes_to_bits(bytes, ctl->unit); 2500 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2501 2502 again: 2503 found_bits = 0; 2504 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2505 next_zero = find_next_zero_bit(entry->bitmap, 2506 BITS_PER_BITMAP, i); 2507 if (next_zero - i >= min_bits) { 2508 found_bits = next_zero - i; 2509 break; 2510 } 2511 i = next_zero; 2512 } 2513 2514 if (!found_bits) 2515 return -ENOSPC; 2516 2517 if (!total_found) { 2518 start = i; 2519 cluster->max_size = 0; 2520 } 2521 2522 total_found += found_bits; 2523 2524 if (cluster->max_size < found_bits * ctl->unit) 2525 cluster->max_size = found_bits * ctl->unit; 2526 2527 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2528 i = next_zero + 1; 2529 goto again; 2530 } 2531 2532 cluster->window_start = start * ctl->unit + entry->offset; 2533 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2534 ret = tree_insert_offset(&cluster->root, entry->offset, 2535 &entry->offset_index, 1); 2536 ASSERT(!ret); /* -EEXIST; Logic error */ 2537 2538 trace_btrfs_setup_cluster(block_group, cluster, 2539 total_found * ctl->unit, 1); 2540 return 0; 2541 } 2542 2543 /* 2544 * This searches the block group for just extents to fill the cluster with. 2545 * Try to find a cluster with at least bytes total bytes, at least one 2546 * extent of cont1_bytes, and other clusters of at least min_bytes. 2547 */ 2548 static noinline int 2549 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2550 struct btrfs_free_cluster *cluster, 2551 struct list_head *bitmaps, u64 offset, u64 bytes, 2552 u64 cont1_bytes, u64 min_bytes) 2553 { 2554 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2555 struct btrfs_free_space *first = NULL; 2556 struct btrfs_free_space *entry = NULL; 2557 struct btrfs_free_space *last; 2558 struct rb_node *node; 2559 u64 window_free; 2560 u64 max_extent; 2561 u64 total_size = 0; 2562 2563 entry = tree_search_offset(ctl, offset, 0, 1); 2564 if (!entry) 2565 return -ENOSPC; 2566 2567 /* 2568 * We don't want bitmaps, so just move along until we find a normal 2569 * extent entry. 2570 */ 2571 while (entry->bitmap || entry->bytes < min_bytes) { 2572 if (entry->bitmap && list_empty(&entry->list)) 2573 list_add_tail(&entry->list, bitmaps); 2574 node = rb_next(&entry->offset_index); 2575 if (!node) 2576 return -ENOSPC; 2577 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2578 } 2579 2580 window_free = entry->bytes; 2581 max_extent = entry->bytes; 2582 first = entry; 2583 last = entry; 2584 2585 for (node = rb_next(&entry->offset_index); node; 2586 node = rb_next(&entry->offset_index)) { 2587 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2588 2589 if (entry->bitmap) { 2590 if (list_empty(&entry->list)) 2591 list_add_tail(&entry->list, bitmaps); 2592 continue; 2593 } 2594 2595 if (entry->bytes < min_bytes) 2596 continue; 2597 2598 last = entry; 2599 window_free += entry->bytes; 2600 if (entry->bytes > max_extent) 2601 max_extent = entry->bytes; 2602 } 2603 2604 if (window_free < bytes || max_extent < cont1_bytes) 2605 return -ENOSPC; 2606 2607 cluster->window_start = first->offset; 2608 2609 node = &first->offset_index; 2610 2611 /* 2612 * now we've found our entries, pull them out of the free space 2613 * cache and put them into the cluster rbtree 2614 */ 2615 do { 2616 int ret; 2617 2618 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2619 node = rb_next(&entry->offset_index); 2620 if (entry->bitmap || entry->bytes < min_bytes) 2621 continue; 2622 2623 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2624 ret = tree_insert_offset(&cluster->root, entry->offset, 2625 &entry->offset_index, 0); 2626 total_size += entry->bytes; 2627 ASSERT(!ret); /* -EEXIST; Logic error */ 2628 } while (node && entry != last); 2629 2630 cluster->max_size = max_extent; 2631 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2632 return 0; 2633 } 2634 2635 /* 2636 * This specifically looks for bitmaps that may work in the cluster, we assume 2637 * that we have already failed to find extents that will work. 2638 */ 2639 static noinline int 2640 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2641 struct btrfs_free_cluster *cluster, 2642 struct list_head *bitmaps, u64 offset, u64 bytes, 2643 u64 cont1_bytes, u64 min_bytes) 2644 { 2645 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2646 struct btrfs_free_space *entry; 2647 int ret = -ENOSPC; 2648 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2649 2650 if (ctl->total_bitmaps == 0) 2651 return -ENOSPC; 2652 2653 /* 2654 * The bitmap that covers offset won't be in the list unless offset 2655 * is just its start offset. 2656 */ 2657 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2658 if (entry->offset != bitmap_offset) { 2659 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2660 if (entry && list_empty(&entry->list)) 2661 list_add(&entry->list, bitmaps); 2662 } 2663 2664 list_for_each_entry(entry, bitmaps, list) { 2665 if (entry->bytes < bytes) 2666 continue; 2667 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2668 bytes, cont1_bytes, min_bytes); 2669 if (!ret) 2670 return 0; 2671 } 2672 2673 /* 2674 * The bitmaps list has all the bitmaps that record free space 2675 * starting after offset, so no more search is required. 2676 */ 2677 return -ENOSPC; 2678 } 2679 2680 /* 2681 * here we try to find a cluster of blocks in a block group. The goal 2682 * is to find at least bytes+empty_size. 2683 * We might not find them all in one contiguous area. 2684 * 2685 * returns zero and sets up cluster if things worked out, otherwise 2686 * it returns -enospc 2687 */ 2688 int btrfs_find_space_cluster(struct btrfs_root *root, 2689 struct btrfs_block_group_cache *block_group, 2690 struct btrfs_free_cluster *cluster, 2691 u64 offset, u64 bytes, u64 empty_size) 2692 { 2693 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2694 struct btrfs_free_space *entry, *tmp; 2695 LIST_HEAD(bitmaps); 2696 u64 min_bytes; 2697 u64 cont1_bytes; 2698 int ret; 2699 2700 /* 2701 * Choose the minimum extent size we'll require for this 2702 * cluster. For SSD_SPREAD, don't allow any fragmentation. 2703 * For metadata, allow allocates with smaller extents. For 2704 * data, keep it dense. 2705 */ 2706 if (btrfs_test_opt(root, SSD_SPREAD)) { 2707 cont1_bytes = min_bytes = bytes + empty_size; 2708 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 2709 cont1_bytes = bytes; 2710 min_bytes = block_group->sectorsize; 2711 } else { 2712 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 2713 min_bytes = block_group->sectorsize; 2714 } 2715 2716 spin_lock(&ctl->tree_lock); 2717 2718 /* 2719 * If we know we don't have enough space to make a cluster don't even 2720 * bother doing all the work to try and find one. 2721 */ 2722 if (ctl->free_space < bytes) { 2723 spin_unlock(&ctl->tree_lock); 2724 return -ENOSPC; 2725 } 2726 2727 spin_lock(&cluster->lock); 2728 2729 /* someone already found a cluster, hooray */ 2730 if (cluster->block_group) { 2731 ret = 0; 2732 goto out; 2733 } 2734 2735 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 2736 min_bytes); 2737 2738 INIT_LIST_HEAD(&bitmaps); 2739 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 2740 bytes + empty_size, 2741 cont1_bytes, min_bytes); 2742 if (ret) 2743 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 2744 offset, bytes + empty_size, 2745 cont1_bytes, min_bytes); 2746 2747 /* Clear our temporary list */ 2748 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 2749 list_del_init(&entry->list); 2750 2751 if (!ret) { 2752 atomic_inc(&block_group->count); 2753 list_add_tail(&cluster->block_group_list, 2754 &block_group->cluster_list); 2755 cluster->block_group = block_group; 2756 } else { 2757 trace_btrfs_failed_cluster_setup(block_group); 2758 } 2759 out: 2760 spin_unlock(&cluster->lock); 2761 spin_unlock(&ctl->tree_lock); 2762 2763 return ret; 2764 } 2765 2766 /* 2767 * simple code to zero out a cluster 2768 */ 2769 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 2770 { 2771 spin_lock_init(&cluster->lock); 2772 spin_lock_init(&cluster->refill_lock); 2773 cluster->root = RB_ROOT; 2774 cluster->max_size = 0; 2775 INIT_LIST_HEAD(&cluster->block_group_list); 2776 cluster->block_group = NULL; 2777 } 2778 2779 static int do_trimming(struct btrfs_block_group_cache *block_group, 2780 u64 *total_trimmed, u64 start, u64 bytes, 2781 u64 reserved_start, u64 reserved_bytes) 2782 { 2783 struct btrfs_space_info *space_info = block_group->space_info; 2784 struct btrfs_fs_info *fs_info = block_group->fs_info; 2785 int ret; 2786 int update = 0; 2787 u64 trimmed = 0; 2788 2789 spin_lock(&space_info->lock); 2790 spin_lock(&block_group->lock); 2791 if (!block_group->ro) { 2792 block_group->reserved += reserved_bytes; 2793 space_info->bytes_reserved += reserved_bytes; 2794 update = 1; 2795 } 2796 spin_unlock(&block_group->lock); 2797 spin_unlock(&space_info->lock); 2798 2799 ret = btrfs_error_discard_extent(fs_info->extent_root, 2800 start, bytes, &trimmed); 2801 if (!ret) 2802 *total_trimmed += trimmed; 2803 2804 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 2805 2806 if (update) { 2807 spin_lock(&space_info->lock); 2808 spin_lock(&block_group->lock); 2809 if (block_group->ro) 2810 space_info->bytes_readonly += reserved_bytes; 2811 block_group->reserved -= reserved_bytes; 2812 space_info->bytes_reserved -= reserved_bytes; 2813 spin_unlock(&space_info->lock); 2814 spin_unlock(&block_group->lock); 2815 } 2816 2817 return ret; 2818 } 2819 2820 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 2821 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2822 { 2823 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2824 struct btrfs_free_space *entry; 2825 struct rb_node *node; 2826 int ret = 0; 2827 u64 extent_start; 2828 u64 extent_bytes; 2829 u64 bytes; 2830 2831 while (start < end) { 2832 spin_lock(&ctl->tree_lock); 2833 2834 if (ctl->free_space < minlen) { 2835 spin_unlock(&ctl->tree_lock); 2836 break; 2837 } 2838 2839 entry = tree_search_offset(ctl, start, 0, 1); 2840 if (!entry) { 2841 spin_unlock(&ctl->tree_lock); 2842 break; 2843 } 2844 2845 /* skip bitmaps */ 2846 while (entry->bitmap) { 2847 node = rb_next(&entry->offset_index); 2848 if (!node) { 2849 spin_unlock(&ctl->tree_lock); 2850 goto out; 2851 } 2852 entry = rb_entry(node, struct btrfs_free_space, 2853 offset_index); 2854 } 2855 2856 if (entry->offset >= end) { 2857 spin_unlock(&ctl->tree_lock); 2858 break; 2859 } 2860 2861 extent_start = entry->offset; 2862 extent_bytes = entry->bytes; 2863 start = max(start, extent_start); 2864 bytes = min(extent_start + extent_bytes, end) - start; 2865 if (bytes < minlen) { 2866 spin_unlock(&ctl->tree_lock); 2867 goto next; 2868 } 2869 2870 unlink_free_space(ctl, entry); 2871 kmem_cache_free(btrfs_free_space_cachep, entry); 2872 2873 spin_unlock(&ctl->tree_lock); 2874 2875 ret = do_trimming(block_group, total_trimmed, start, bytes, 2876 extent_start, extent_bytes); 2877 if (ret) 2878 break; 2879 next: 2880 start += bytes; 2881 2882 if (fatal_signal_pending(current)) { 2883 ret = -ERESTARTSYS; 2884 break; 2885 } 2886 2887 cond_resched(); 2888 } 2889 out: 2890 return ret; 2891 } 2892 2893 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 2894 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2895 { 2896 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2897 struct btrfs_free_space *entry; 2898 int ret = 0; 2899 int ret2; 2900 u64 bytes; 2901 u64 offset = offset_to_bitmap(ctl, start); 2902 2903 while (offset < end) { 2904 bool next_bitmap = false; 2905 2906 spin_lock(&ctl->tree_lock); 2907 2908 if (ctl->free_space < minlen) { 2909 spin_unlock(&ctl->tree_lock); 2910 break; 2911 } 2912 2913 entry = tree_search_offset(ctl, offset, 1, 0); 2914 if (!entry) { 2915 spin_unlock(&ctl->tree_lock); 2916 next_bitmap = true; 2917 goto next; 2918 } 2919 2920 bytes = minlen; 2921 ret2 = search_bitmap(ctl, entry, &start, &bytes); 2922 if (ret2 || start >= end) { 2923 spin_unlock(&ctl->tree_lock); 2924 next_bitmap = true; 2925 goto next; 2926 } 2927 2928 bytes = min(bytes, end - start); 2929 if (bytes < minlen) { 2930 spin_unlock(&ctl->tree_lock); 2931 goto next; 2932 } 2933 2934 bitmap_clear_bits(ctl, entry, start, bytes); 2935 if (entry->bytes == 0) 2936 free_bitmap(ctl, entry); 2937 2938 spin_unlock(&ctl->tree_lock); 2939 2940 ret = do_trimming(block_group, total_trimmed, start, bytes, 2941 start, bytes); 2942 if (ret) 2943 break; 2944 next: 2945 if (next_bitmap) { 2946 offset += BITS_PER_BITMAP * ctl->unit; 2947 } else { 2948 start += bytes; 2949 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 2950 offset += BITS_PER_BITMAP * ctl->unit; 2951 } 2952 2953 if (fatal_signal_pending(current)) { 2954 ret = -ERESTARTSYS; 2955 break; 2956 } 2957 2958 cond_resched(); 2959 } 2960 2961 return ret; 2962 } 2963 2964 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 2965 u64 *trimmed, u64 start, u64 end, u64 minlen) 2966 { 2967 int ret; 2968 2969 *trimmed = 0; 2970 2971 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 2972 if (ret) 2973 return ret; 2974 2975 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 2976 2977 return ret; 2978 } 2979 2980 /* 2981 * Find the left-most item in the cache tree, and then return the 2982 * smallest inode number in the item. 2983 * 2984 * Note: the returned inode number may not be the smallest one in 2985 * the tree, if the left-most item is a bitmap. 2986 */ 2987 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 2988 { 2989 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 2990 struct btrfs_free_space *entry = NULL; 2991 u64 ino = 0; 2992 2993 spin_lock(&ctl->tree_lock); 2994 2995 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 2996 goto out; 2997 2998 entry = rb_entry(rb_first(&ctl->free_space_offset), 2999 struct btrfs_free_space, offset_index); 3000 3001 if (!entry->bitmap) { 3002 ino = entry->offset; 3003 3004 unlink_free_space(ctl, entry); 3005 entry->offset++; 3006 entry->bytes--; 3007 if (!entry->bytes) 3008 kmem_cache_free(btrfs_free_space_cachep, entry); 3009 else 3010 link_free_space(ctl, entry); 3011 } else { 3012 u64 offset = 0; 3013 u64 count = 1; 3014 int ret; 3015 3016 ret = search_bitmap(ctl, entry, &offset, &count); 3017 /* Logic error; Should be empty if it can't find anything */ 3018 ASSERT(!ret); 3019 3020 ino = offset; 3021 bitmap_clear_bits(ctl, entry, offset, 1); 3022 if (entry->bytes == 0) 3023 free_bitmap(ctl, entry); 3024 } 3025 out: 3026 spin_unlock(&ctl->tree_lock); 3027 3028 return ino; 3029 } 3030 3031 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3032 struct btrfs_path *path) 3033 { 3034 struct inode *inode = NULL; 3035 3036 spin_lock(&root->cache_lock); 3037 if (root->cache_inode) 3038 inode = igrab(root->cache_inode); 3039 spin_unlock(&root->cache_lock); 3040 if (inode) 3041 return inode; 3042 3043 inode = __lookup_free_space_inode(root, path, 0); 3044 if (IS_ERR(inode)) 3045 return inode; 3046 3047 spin_lock(&root->cache_lock); 3048 if (!btrfs_fs_closing(root->fs_info)) 3049 root->cache_inode = igrab(inode); 3050 spin_unlock(&root->cache_lock); 3051 3052 return inode; 3053 } 3054 3055 int create_free_ino_inode(struct btrfs_root *root, 3056 struct btrfs_trans_handle *trans, 3057 struct btrfs_path *path) 3058 { 3059 return __create_free_space_inode(root, trans, path, 3060 BTRFS_FREE_INO_OBJECTID, 0); 3061 } 3062 3063 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3064 { 3065 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3066 struct btrfs_path *path; 3067 struct inode *inode; 3068 int ret = 0; 3069 u64 root_gen = btrfs_root_generation(&root->root_item); 3070 3071 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 3072 return 0; 3073 3074 /* 3075 * If we're unmounting then just return, since this does a search on the 3076 * normal root and not the commit root and we could deadlock. 3077 */ 3078 if (btrfs_fs_closing(fs_info)) 3079 return 0; 3080 3081 path = btrfs_alloc_path(); 3082 if (!path) 3083 return 0; 3084 3085 inode = lookup_free_ino_inode(root, path); 3086 if (IS_ERR(inode)) 3087 goto out; 3088 3089 if (root_gen != BTRFS_I(inode)->generation) 3090 goto out_put; 3091 3092 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3093 3094 if (ret < 0) 3095 btrfs_err(fs_info, 3096 "failed to load free ino cache for root %llu", 3097 root->root_key.objectid); 3098 out_put: 3099 iput(inode); 3100 out: 3101 btrfs_free_path(path); 3102 return ret; 3103 } 3104 3105 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3106 struct btrfs_trans_handle *trans, 3107 struct btrfs_path *path, 3108 struct inode *inode) 3109 { 3110 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3111 int ret; 3112 3113 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 3114 return 0; 3115 3116 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0); 3117 if (ret) { 3118 btrfs_delalloc_release_metadata(inode, inode->i_size); 3119 #ifdef DEBUG 3120 btrfs_err(root->fs_info, 3121 "failed to write free ino cache for root %llu", 3122 root->root_key.objectid); 3123 #endif 3124 } 3125 3126 return ret; 3127 } 3128 3129 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3130 /* 3131 * Use this if you need to make a bitmap or extent entry specifically, it 3132 * doesn't do any of the merging that add_free_space does, this acts a lot like 3133 * how the free space cache loading stuff works, so you can get really weird 3134 * configurations. 3135 */ 3136 int test_add_free_space_entry(struct btrfs_block_group_cache *cache, 3137 u64 offset, u64 bytes, bool bitmap) 3138 { 3139 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3140 struct btrfs_free_space *info = NULL, *bitmap_info; 3141 void *map = NULL; 3142 u64 bytes_added; 3143 int ret; 3144 3145 again: 3146 if (!info) { 3147 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3148 if (!info) 3149 return -ENOMEM; 3150 } 3151 3152 if (!bitmap) { 3153 spin_lock(&ctl->tree_lock); 3154 info->offset = offset; 3155 info->bytes = bytes; 3156 ret = link_free_space(ctl, info); 3157 spin_unlock(&ctl->tree_lock); 3158 if (ret) 3159 kmem_cache_free(btrfs_free_space_cachep, info); 3160 return ret; 3161 } 3162 3163 if (!map) { 3164 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 3165 if (!map) { 3166 kmem_cache_free(btrfs_free_space_cachep, info); 3167 return -ENOMEM; 3168 } 3169 } 3170 3171 spin_lock(&ctl->tree_lock); 3172 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3173 1, 0); 3174 if (!bitmap_info) { 3175 info->bitmap = map; 3176 map = NULL; 3177 add_new_bitmap(ctl, info, offset); 3178 bitmap_info = info; 3179 } 3180 3181 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3182 bytes -= bytes_added; 3183 offset += bytes_added; 3184 spin_unlock(&ctl->tree_lock); 3185 3186 if (bytes) 3187 goto again; 3188 3189 if (map) 3190 kfree(map); 3191 return 0; 3192 } 3193 3194 /* 3195 * Checks to see if the given range is in the free space cache. This is really 3196 * just used to check the absence of space, so if there is free space in the 3197 * range at all we will return 1. 3198 */ 3199 int test_check_exists(struct btrfs_block_group_cache *cache, 3200 u64 offset, u64 bytes) 3201 { 3202 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3203 struct btrfs_free_space *info; 3204 int ret = 0; 3205 3206 spin_lock(&ctl->tree_lock); 3207 info = tree_search_offset(ctl, offset, 0, 0); 3208 if (!info) { 3209 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3210 1, 0); 3211 if (!info) 3212 goto out; 3213 } 3214 3215 have_info: 3216 if (info->bitmap) { 3217 u64 bit_off, bit_bytes; 3218 struct rb_node *n; 3219 struct btrfs_free_space *tmp; 3220 3221 bit_off = offset; 3222 bit_bytes = ctl->unit; 3223 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes); 3224 if (!ret) { 3225 if (bit_off == offset) { 3226 ret = 1; 3227 goto out; 3228 } else if (bit_off > offset && 3229 offset + bytes > bit_off) { 3230 ret = 1; 3231 goto out; 3232 } 3233 } 3234 3235 n = rb_prev(&info->offset_index); 3236 while (n) { 3237 tmp = rb_entry(n, struct btrfs_free_space, 3238 offset_index); 3239 if (tmp->offset + tmp->bytes < offset) 3240 break; 3241 if (offset + bytes < tmp->offset) { 3242 n = rb_prev(&info->offset_index); 3243 continue; 3244 } 3245 info = tmp; 3246 goto have_info; 3247 } 3248 3249 n = rb_next(&info->offset_index); 3250 while (n) { 3251 tmp = rb_entry(n, struct btrfs_free_space, 3252 offset_index); 3253 if (offset + bytes < tmp->offset) 3254 break; 3255 if (tmp->offset + tmp->bytes < offset) { 3256 n = rb_next(&info->offset_index); 3257 continue; 3258 } 3259 info = tmp; 3260 goto have_info; 3261 } 3262 3263 goto out; 3264 } 3265 3266 if (info->offset == offset) { 3267 ret = 1; 3268 goto out; 3269 } 3270 3271 if (offset > info->offset && offset < info->offset + info->bytes) 3272 ret = 1; 3273 out: 3274 spin_unlock(&ctl->tree_lock); 3275 return ret; 3276 } 3277 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3278