xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision d0bd7f2a)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31 
32 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
33 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
34 
35 struct btrfs_trim_range {
36 	u64 start;
37 	u64 bytes;
38 	struct list_head list;
39 };
40 
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 			   struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 			      struct btrfs_free_space *info);
45 
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 					       struct btrfs_path *path,
48 					       u64 offset)
49 {
50 	struct btrfs_key key;
51 	struct btrfs_key location;
52 	struct btrfs_disk_key disk_key;
53 	struct btrfs_free_space_header *header;
54 	struct extent_buffer *leaf;
55 	struct inode *inode = NULL;
56 	int ret;
57 
58 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 	key.offset = offset;
60 	key.type = 0;
61 
62 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 	if (ret < 0)
64 		return ERR_PTR(ret);
65 	if (ret > 0) {
66 		btrfs_release_path(path);
67 		return ERR_PTR(-ENOENT);
68 	}
69 
70 	leaf = path->nodes[0];
71 	header = btrfs_item_ptr(leaf, path->slots[0],
72 				struct btrfs_free_space_header);
73 	btrfs_free_space_key(leaf, header, &disk_key);
74 	btrfs_disk_key_to_cpu(&location, &disk_key);
75 	btrfs_release_path(path);
76 
77 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 	if (!inode)
79 		return ERR_PTR(-ENOENT);
80 	if (IS_ERR(inode))
81 		return inode;
82 	if (is_bad_inode(inode)) {
83 		iput(inode);
84 		return ERR_PTR(-ENOENT);
85 	}
86 
87 	mapping_set_gfp_mask(inode->i_mapping,
88 			mapping_gfp_mask(inode->i_mapping) &
89 			~(__GFP_FS | __GFP_HIGHMEM));
90 
91 	return inode;
92 }
93 
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 				      struct btrfs_block_group_cache
96 				      *block_group, struct btrfs_path *path)
97 {
98 	struct inode *inode = NULL;
99 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 
101 	spin_lock(&block_group->lock);
102 	if (block_group->inode)
103 		inode = igrab(block_group->inode);
104 	spin_unlock(&block_group->lock);
105 	if (inode)
106 		return inode;
107 
108 	inode = __lookup_free_space_inode(root, path,
109 					  block_group->key.objectid);
110 	if (IS_ERR(inode))
111 		return inode;
112 
113 	spin_lock(&block_group->lock);
114 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 		btrfs_info(root->fs_info,
116 			"Old style space inode found, converting.");
117 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 			BTRFS_INODE_NODATACOW;
119 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 	}
121 
122 	if (!block_group->iref) {
123 		block_group->inode = igrab(inode);
124 		block_group->iref = 1;
125 	}
126 	spin_unlock(&block_group->lock);
127 
128 	return inode;
129 }
130 
131 static int __create_free_space_inode(struct btrfs_root *root,
132 				     struct btrfs_trans_handle *trans,
133 				     struct btrfs_path *path,
134 				     u64 ino, u64 offset)
135 {
136 	struct btrfs_key key;
137 	struct btrfs_disk_key disk_key;
138 	struct btrfs_free_space_header *header;
139 	struct btrfs_inode_item *inode_item;
140 	struct extent_buffer *leaf;
141 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 	int ret;
143 
144 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 	if (ret)
146 		return ret;
147 
148 	/* We inline crc's for the free disk space cache */
149 	if (ino != BTRFS_FREE_INO_OBJECTID)
150 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151 
152 	leaf = path->nodes[0];
153 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 				    struct btrfs_inode_item);
155 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 			     sizeof(*inode_item));
158 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_size(leaf, inode_item, 0);
160 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 	btrfs_set_inode_uid(leaf, inode_item, 0);
162 	btrfs_set_inode_gid(leaf, inode_item, 0);
163 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 	btrfs_set_inode_flags(leaf, inode_item, flags);
165 	btrfs_set_inode_nlink(leaf, inode_item, 1);
166 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 	btrfs_set_inode_block_group(leaf, inode_item, offset);
168 	btrfs_mark_buffer_dirty(leaf);
169 	btrfs_release_path(path);
170 
171 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 	key.offset = offset;
173 	key.type = 0;
174 	ret = btrfs_insert_empty_item(trans, root, path, &key,
175 				      sizeof(struct btrfs_free_space_header));
176 	if (ret < 0) {
177 		btrfs_release_path(path);
178 		return ret;
179 	}
180 
181 	leaf = path->nodes[0];
182 	header = btrfs_item_ptr(leaf, path->slots[0],
183 				struct btrfs_free_space_header);
184 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 	btrfs_set_free_space_key(leaf, header, &disk_key);
186 	btrfs_mark_buffer_dirty(leaf);
187 	btrfs_release_path(path);
188 
189 	return 0;
190 }
191 
192 int create_free_space_inode(struct btrfs_root *root,
193 			    struct btrfs_trans_handle *trans,
194 			    struct btrfs_block_group_cache *block_group,
195 			    struct btrfs_path *path)
196 {
197 	int ret;
198 	u64 ino;
199 
200 	ret = btrfs_find_free_objectid(root, &ino);
201 	if (ret < 0)
202 		return ret;
203 
204 	return __create_free_space_inode(root, trans, path, ino,
205 					 block_group->key.objectid);
206 }
207 
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 				       struct btrfs_block_rsv *rsv)
210 {
211 	u64 needed_bytes;
212 	int ret;
213 
214 	/* 1 for slack space, 1 for updating the inode */
215 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 		btrfs_calc_trans_metadata_size(root, 1);
217 
218 	spin_lock(&rsv->lock);
219 	if (rsv->reserved < needed_bytes)
220 		ret = -ENOSPC;
221 	else
222 		ret = 0;
223 	spin_unlock(&rsv->lock);
224 	return ret;
225 }
226 
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 				    struct btrfs_trans_handle *trans,
229 				    struct btrfs_block_group_cache *block_group,
230 				    struct inode *inode)
231 {
232 	int ret = 0;
233 	struct btrfs_path *path = btrfs_alloc_path();
234 
235 	if (!path) {
236 		ret = -ENOMEM;
237 		goto fail;
238 	}
239 
240 	if (block_group) {
241 		mutex_lock(&trans->transaction->cache_write_mutex);
242 		if (!list_empty(&block_group->io_list)) {
243 			list_del_init(&block_group->io_list);
244 
245 			btrfs_wait_cache_io(root, trans, block_group,
246 					    &block_group->io_ctl, path,
247 					    block_group->key.objectid);
248 			btrfs_put_block_group(block_group);
249 		}
250 
251 		/*
252 		 * now that we've truncated the cache away, its no longer
253 		 * setup or written
254 		 */
255 		spin_lock(&block_group->lock);
256 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
257 		spin_unlock(&block_group->lock);
258 	}
259 	btrfs_free_path(path);
260 
261 	btrfs_i_size_write(inode, 0);
262 	truncate_pagecache(inode, 0);
263 
264 	/*
265 	 * We don't need an orphan item because truncating the free space cache
266 	 * will never be split across transactions.
267 	 * We don't need to check for -EAGAIN because we're a free space
268 	 * cache inode
269 	 */
270 	ret = btrfs_truncate_inode_items(trans, root, inode,
271 					 0, BTRFS_EXTENT_DATA_KEY);
272 	if (ret) {
273 		mutex_unlock(&trans->transaction->cache_write_mutex);
274 		btrfs_abort_transaction(trans, root, ret);
275 		return ret;
276 	}
277 
278 	ret = btrfs_update_inode(trans, root, inode);
279 
280 	if (block_group)
281 		mutex_unlock(&trans->transaction->cache_write_mutex);
282 
283 fail:
284 	if (ret)
285 		btrfs_abort_transaction(trans, root, ret);
286 
287 	return ret;
288 }
289 
290 static int readahead_cache(struct inode *inode)
291 {
292 	struct file_ra_state *ra;
293 	unsigned long last_index;
294 
295 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
296 	if (!ra)
297 		return -ENOMEM;
298 
299 	file_ra_state_init(ra, inode->i_mapping);
300 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
301 
302 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
303 
304 	kfree(ra);
305 
306 	return 0;
307 }
308 
309 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
310 		       struct btrfs_root *root, int write)
311 {
312 	int num_pages;
313 	int check_crcs = 0;
314 
315 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
316 
317 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
318 		check_crcs = 1;
319 
320 	/* Make sure we can fit our crcs into the first page */
321 	if (write && check_crcs &&
322 	    (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
323 		return -ENOSPC;
324 
325 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
326 
327 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
328 	if (!io_ctl->pages)
329 		return -ENOMEM;
330 
331 	io_ctl->num_pages = num_pages;
332 	io_ctl->root = root;
333 	io_ctl->check_crcs = check_crcs;
334 	io_ctl->inode = inode;
335 
336 	return 0;
337 }
338 
339 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
340 {
341 	kfree(io_ctl->pages);
342 	io_ctl->pages = NULL;
343 }
344 
345 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
346 {
347 	if (io_ctl->cur) {
348 		io_ctl->cur = NULL;
349 		io_ctl->orig = NULL;
350 	}
351 }
352 
353 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
354 {
355 	ASSERT(io_ctl->index < io_ctl->num_pages);
356 	io_ctl->page = io_ctl->pages[io_ctl->index++];
357 	io_ctl->cur = page_address(io_ctl->page);
358 	io_ctl->orig = io_ctl->cur;
359 	io_ctl->size = PAGE_CACHE_SIZE;
360 	if (clear)
361 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
362 }
363 
364 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
365 {
366 	int i;
367 
368 	io_ctl_unmap_page(io_ctl);
369 
370 	for (i = 0; i < io_ctl->num_pages; i++) {
371 		if (io_ctl->pages[i]) {
372 			ClearPageChecked(io_ctl->pages[i]);
373 			unlock_page(io_ctl->pages[i]);
374 			page_cache_release(io_ctl->pages[i]);
375 		}
376 	}
377 }
378 
379 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
380 				int uptodate)
381 {
382 	struct page *page;
383 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
384 	int i;
385 
386 	for (i = 0; i < io_ctl->num_pages; i++) {
387 		page = find_or_create_page(inode->i_mapping, i, mask);
388 		if (!page) {
389 			io_ctl_drop_pages(io_ctl);
390 			return -ENOMEM;
391 		}
392 		io_ctl->pages[i] = page;
393 		if (uptodate && !PageUptodate(page)) {
394 			btrfs_readpage(NULL, page);
395 			lock_page(page);
396 			if (!PageUptodate(page)) {
397 				btrfs_err(BTRFS_I(inode)->root->fs_info,
398 					   "error reading free space cache");
399 				io_ctl_drop_pages(io_ctl);
400 				return -EIO;
401 			}
402 		}
403 	}
404 
405 	for (i = 0; i < io_ctl->num_pages; i++) {
406 		clear_page_dirty_for_io(io_ctl->pages[i]);
407 		set_page_extent_mapped(io_ctl->pages[i]);
408 	}
409 
410 	return 0;
411 }
412 
413 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
414 {
415 	__le64 *val;
416 
417 	io_ctl_map_page(io_ctl, 1);
418 
419 	/*
420 	 * Skip the csum areas.  If we don't check crcs then we just have a
421 	 * 64bit chunk at the front of the first page.
422 	 */
423 	if (io_ctl->check_crcs) {
424 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
425 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
426 	} else {
427 		io_ctl->cur += sizeof(u64);
428 		io_ctl->size -= sizeof(u64) * 2;
429 	}
430 
431 	val = io_ctl->cur;
432 	*val = cpu_to_le64(generation);
433 	io_ctl->cur += sizeof(u64);
434 }
435 
436 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
437 {
438 	__le64 *gen;
439 
440 	/*
441 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
442 	 * chunk at the front of the first page.
443 	 */
444 	if (io_ctl->check_crcs) {
445 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
446 		io_ctl->size -= sizeof(u64) +
447 			(sizeof(u32) * io_ctl->num_pages);
448 	} else {
449 		io_ctl->cur += sizeof(u64);
450 		io_ctl->size -= sizeof(u64) * 2;
451 	}
452 
453 	gen = io_ctl->cur;
454 	if (le64_to_cpu(*gen) != generation) {
455 		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
456 				   "(%Lu) does not match inode (%Lu)\n", *gen,
457 				   generation);
458 		io_ctl_unmap_page(io_ctl);
459 		return -EIO;
460 	}
461 	io_ctl->cur += sizeof(u64);
462 	return 0;
463 }
464 
465 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
466 {
467 	u32 *tmp;
468 	u32 crc = ~(u32)0;
469 	unsigned offset = 0;
470 
471 	if (!io_ctl->check_crcs) {
472 		io_ctl_unmap_page(io_ctl);
473 		return;
474 	}
475 
476 	if (index == 0)
477 		offset = sizeof(u32) * io_ctl->num_pages;
478 
479 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
480 			      PAGE_CACHE_SIZE - offset);
481 	btrfs_csum_final(crc, (char *)&crc);
482 	io_ctl_unmap_page(io_ctl);
483 	tmp = page_address(io_ctl->pages[0]);
484 	tmp += index;
485 	*tmp = crc;
486 }
487 
488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 {
490 	u32 *tmp, val;
491 	u32 crc = ~(u32)0;
492 	unsigned offset = 0;
493 
494 	if (!io_ctl->check_crcs) {
495 		io_ctl_map_page(io_ctl, 0);
496 		return 0;
497 	}
498 
499 	if (index == 0)
500 		offset = sizeof(u32) * io_ctl->num_pages;
501 
502 	tmp = page_address(io_ctl->pages[0]);
503 	tmp += index;
504 	val = *tmp;
505 
506 	io_ctl_map_page(io_ctl, 0);
507 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
508 			      PAGE_CACHE_SIZE - offset);
509 	btrfs_csum_final(crc, (char *)&crc);
510 	if (val != crc) {
511 		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
512 				   "space cache\n");
513 		io_ctl_unmap_page(io_ctl);
514 		return -EIO;
515 	}
516 
517 	return 0;
518 }
519 
520 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
521 			    void *bitmap)
522 {
523 	struct btrfs_free_space_entry *entry;
524 
525 	if (!io_ctl->cur)
526 		return -ENOSPC;
527 
528 	entry = io_ctl->cur;
529 	entry->offset = cpu_to_le64(offset);
530 	entry->bytes = cpu_to_le64(bytes);
531 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
532 		BTRFS_FREE_SPACE_EXTENT;
533 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
534 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
535 
536 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
537 		return 0;
538 
539 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
540 
541 	/* No more pages to map */
542 	if (io_ctl->index >= io_ctl->num_pages)
543 		return 0;
544 
545 	/* map the next page */
546 	io_ctl_map_page(io_ctl, 1);
547 	return 0;
548 }
549 
550 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
551 {
552 	if (!io_ctl->cur)
553 		return -ENOSPC;
554 
555 	/*
556 	 * If we aren't at the start of the current page, unmap this one and
557 	 * map the next one if there is any left.
558 	 */
559 	if (io_ctl->cur != io_ctl->orig) {
560 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
561 		if (io_ctl->index >= io_ctl->num_pages)
562 			return -ENOSPC;
563 		io_ctl_map_page(io_ctl, 0);
564 	}
565 
566 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
567 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
568 	if (io_ctl->index < io_ctl->num_pages)
569 		io_ctl_map_page(io_ctl, 0);
570 	return 0;
571 }
572 
573 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
574 {
575 	/*
576 	 * If we're not on the boundary we know we've modified the page and we
577 	 * need to crc the page.
578 	 */
579 	if (io_ctl->cur != io_ctl->orig)
580 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
581 	else
582 		io_ctl_unmap_page(io_ctl);
583 
584 	while (io_ctl->index < io_ctl->num_pages) {
585 		io_ctl_map_page(io_ctl, 1);
586 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
587 	}
588 }
589 
590 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
591 			    struct btrfs_free_space *entry, u8 *type)
592 {
593 	struct btrfs_free_space_entry *e;
594 	int ret;
595 
596 	if (!io_ctl->cur) {
597 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
598 		if (ret)
599 			return ret;
600 	}
601 
602 	e = io_ctl->cur;
603 	entry->offset = le64_to_cpu(e->offset);
604 	entry->bytes = le64_to_cpu(e->bytes);
605 	*type = e->type;
606 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
607 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
608 
609 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
610 		return 0;
611 
612 	io_ctl_unmap_page(io_ctl);
613 
614 	return 0;
615 }
616 
617 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
618 			      struct btrfs_free_space *entry)
619 {
620 	int ret;
621 
622 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
623 	if (ret)
624 		return ret;
625 
626 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
627 	io_ctl_unmap_page(io_ctl);
628 
629 	return 0;
630 }
631 
632 /*
633  * Since we attach pinned extents after the fact we can have contiguous sections
634  * of free space that are split up in entries.  This poses a problem with the
635  * tree logging stuff since it could have allocated across what appears to be 2
636  * entries since we would have merged the entries when adding the pinned extents
637  * back to the free space cache.  So run through the space cache that we just
638  * loaded and merge contiguous entries.  This will make the log replay stuff not
639  * blow up and it will make for nicer allocator behavior.
640  */
641 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
642 {
643 	struct btrfs_free_space *e, *prev = NULL;
644 	struct rb_node *n;
645 
646 again:
647 	spin_lock(&ctl->tree_lock);
648 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
649 		e = rb_entry(n, struct btrfs_free_space, offset_index);
650 		if (!prev)
651 			goto next;
652 		if (e->bitmap || prev->bitmap)
653 			goto next;
654 		if (prev->offset + prev->bytes == e->offset) {
655 			unlink_free_space(ctl, prev);
656 			unlink_free_space(ctl, e);
657 			prev->bytes += e->bytes;
658 			kmem_cache_free(btrfs_free_space_cachep, e);
659 			link_free_space(ctl, prev);
660 			prev = NULL;
661 			spin_unlock(&ctl->tree_lock);
662 			goto again;
663 		}
664 next:
665 		prev = e;
666 	}
667 	spin_unlock(&ctl->tree_lock);
668 }
669 
670 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
671 				   struct btrfs_free_space_ctl *ctl,
672 				   struct btrfs_path *path, u64 offset)
673 {
674 	struct btrfs_free_space_header *header;
675 	struct extent_buffer *leaf;
676 	struct btrfs_io_ctl io_ctl;
677 	struct btrfs_key key;
678 	struct btrfs_free_space *e, *n;
679 	LIST_HEAD(bitmaps);
680 	u64 num_entries;
681 	u64 num_bitmaps;
682 	u64 generation;
683 	u8 type;
684 	int ret = 0;
685 
686 	/* Nothing in the space cache, goodbye */
687 	if (!i_size_read(inode))
688 		return 0;
689 
690 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691 	key.offset = offset;
692 	key.type = 0;
693 
694 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695 	if (ret < 0)
696 		return 0;
697 	else if (ret > 0) {
698 		btrfs_release_path(path);
699 		return 0;
700 	}
701 
702 	ret = -1;
703 
704 	leaf = path->nodes[0];
705 	header = btrfs_item_ptr(leaf, path->slots[0],
706 				struct btrfs_free_space_header);
707 	num_entries = btrfs_free_space_entries(leaf, header);
708 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
709 	generation = btrfs_free_space_generation(leaf, header);
710 	btrfs_release_path(path);
711 
712 	if (!BTRFS_I(inode)->generation) {
713 		btrfs_info(root->fs_info,
714 			   "The free space cache file (%llu) is invalid. skip it\n",
715 			   offset);
716 		return 0;
717 	}
718 
719 	if (BTRFS_I(inode)->generation != generation) {
720 		btrfs_err(root->fs_info,
721 			"free space inode generation (%llu) "
722 			"did not match free space cache generation (%llu)",
723 			BTRFS_I(inode)->generation, generation);
724 		return 0;
725 	}
726 
727 	if (!num_entries)
728 		return 0;
729 
730 	ret = io_ctl_init(&io_ctl, inode, root, 0);
731 	if (ret)
732 		return ret;
733 
734 	ret = readahead_cache(inode);
735 	if (ret)
736 		goto out;
737 
738 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
739 	if (ret)
740 		goto out;
741 
742 	ret = io_ctl_check_crc(&io_ctl, 0);
743 	if (ret)
744 		goto free_cache;
745 
746 	ret = io_ctl_check_generation(&io_ctl, generation);
747 	if (ret)
748 		goto free_cache;
749 
750 	while (num_entries) {
751 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
752 				      GFP_NOFS);
753 		if (!e)
754 			goto free_cache;
755 
756 		ret = io_ctl_read_entry(&io_ctl, e, &type);
757 		if (ret) {
758 			kmem_cache_free(btrfs_free_space_cachep, e);
759 			goto free_cache;
760 		}
761 
762 		if (!e->bytes) {
763 			kmem_cache_free(btrfs_free_space_cachep, e);
764 			goto free_cache;
765 		}
766 
767 		if (type == BTRFS_FREE_SPACE_EXTENT) {
768 			spin_lock(&ctl->tree_lock);
769 			ret = link_free_space(ctl, e);
770 			spin_unlock(&ctl->tree_lock);
771 			if (ret) {
772 				btrfs_err(root->fs_info,
773 					"Duplicate entries in free space cache, dumping");
774 				kmem_cache_free(btrfs_free_space_cachep, e);
775 				goto free_cache;
776 			}
777 		} else {
778 			ASSERT(num_bitmaps);
779 			num_bitmaps--;
780 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
781 			if (!e->bitmap) {
782 				kmem_cache_free(
783 					btrfs_free_space_cachep, e);
784 				goto free_cache;
785 			}
786 			spin_lock(&ctl->tree_lock);
787 			ret = link_free_space(ctl, e);
788 			ctl->total_bitmaps++;
789 			ctl->op->recalc_thresholds(ctl);
790 			spin_unlock(&ctl->tree_lock);
791 			if (ret) {
792 				btrfs_err(root->fs_info,
793 					"Duplicate entries in free space cache, dumping");
794 				kmem_cache_free(btrfs_free_space_cachep, e);
795 				goto free_cache;
796 			}
797 			list_add_tail(&e->list, &bitmaps);
798 		}
799 
800 		num_entries--;
801 	}
802 
803 	io_ctl_unmap_page(&io_ctl);
804 
805 	/*
806 	 * We add the bitmaps at the end of the entries in order that
807 	 * the bitmap entries are added to the cache.
808 	 */
809 	list_for_each_entry_safe(e, n, &bitmaps, list) {
810 		list_del_init(&e->list);
811 		ret = io_ctl_read_bitmap(&io_ctl, e);
812 		if (ret)
813 			goto free_cache;
814 	}
815 
816 	io_ctl_drop_pages(&io_ctl);
817 	merge_space_tree(ctl);
818 	ret = 1;
819 out:
820 	io_ctl_free(&io_ctl);
821 	return ret;
822 free_cache:
823 	io_ctl_drop_pages(&io_ctl);
824 	__btrfs_remove_free_space_cache(ctl);
825 	goto out;
826 }
827 
828 int load_free_space_cache(struct btrfs_fs_info *fs_info,
829 			  struct btrfs_block_group_cache *block_group)
830 {
831 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
832 	struct btrfs_root *root = fs_info->tree_root;
833 	struct inode *inode;
834 	struct btrfs_path *path;
835 	int ret = 0;
836 	bool matched;
837 	u64 used = btrfs_block_group_used(&block_group->item);
838 
839 	/*
840 	 * If this block group has been marked to be cleared for one reason or
841 	 * another then we can't trust the on disk cache, so just return.
842 	 */
843 	spin_lock(&block_group->lock);
844 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
845 		spin_unlock(&block_group->lock);
846 		return 0;
847 	}
848 	spin_unlock(&block_group->lock);
849 
850 	path = btrfs_alloc_path();
851 	if (!path)
852 		return 0;
853 	path->search_commit_root = 1;
854 	path->skip_locking = 1;
855 
856 	inode = lookup_free_space_inode(root, block_group, path);
857 	if (IS_ERR(inode)) {
858 		btrfs_free_path(path);
859 		return 0;
860 	}
861 
862 	/* We may have converted the inode and made the cache invalid. */
863 	spin_lock(&block_group->lock);
864 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
865 		spin_unlock(&block_group->lock);
866 		btrfs_free_path(path);
867 		goto out;
868 	}
869 	spin_unlock(&block_group->lock);
870 
871 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
872 				      path, block_group->key.objectid);
873 	btrfs_free_path(path);
874 	if (ret <= 0)
875 		goto out;
876 
877 	spin_lock(&ctl->tree_lock);
878 	matched = (ctl->free_space == (block_group->key.offset - used -
879 				       block_group->bytes_super));
880 	spin_unlock(&ctl->tree_lock);
881 
882 	if (!matched) {
883 		__btrfs_remove_free_space_cache(ctl);
884 		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
885 			block_group->key.objectid);
886 		ret = -1;
887 	}
888 out:
889 	if (ret < 0) {
890 		/* This cache is bogus, make sure it gets cleared */
891 		spin_lock(&block_group->lock);
892 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
893 		spin_unlock(&block_group->lock);
894 		ret = 0;
895 
896 		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
897 			block_group->key.objectid);
898 	}
899 
900 	iput(inode);
901 	return ret;
902 }
903 
904 static noinline_for_stack
905 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
906 			      struct btrfs_free_space_ctl *ctl,
907 			      struct btrfs_block_group_cache *block_group,
908 			      int *entries, int *bitmaps,
909 			      struct list_head *bitmap_list)
910 {
911 	int ret;
912 	struct btrfs_free_cluster *cluster = NULL;
913 	struct btrfs_free_cluster *cluster_locked = NULL;
914 	struct rb_node *node = rb_first(&ctl->free_space_offset);
915 	struct btrfs_trim_range *trim_entry;
916 
917 	/* Get the cluster for this block_group if it exists */
918 	if (block_group && !list_empty(&block_group->cluster_list)) {
919 		cluster = list_entry(block_group->cluster_list.next,
920 				     struct btrfs_free_cluster,
921 				     block_group_list);
922 	}
923 
924 	if (!node && cluster) {
925 		cluster_locked = cluster;
926 		spin_lock(&cluster_locked->lock);
927 		node = rb_first(&cluster->root);
928 		cluster = NULL;
929 	}
930 
931 	/* Write out the extent entries */
932 	while (node) {
933 		struct btrfs_free_space *e;
934 
935 		e = rb_entry(node, struct btrfs_free_space, offset_index);
936 		*entries += 1;
937 
938 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
939 				       e->bitmap);
940 		if (ret)
941 			goto fail;
942 
943 		if (e->bitmap) {
944 			list_add_tail(&e->list, bitmap_list);
945 			*bitmaps += 1;
946 		}
947 		node = rb_next(node);
948 		if (!node && cluster) {
949 			node = rb_first(&cluster->root);
950 			cluster_locked = cluster;
951 			spin_lock(&cluster_locked->lock);
952 			cluster = NULL;
953 		}
954 	}
955 	if (cluster_locked) {
956 		spin_unlock(&cluster_locked->lock);
957 		cluster_locked = NULL;
958 	}
959 
960 	/*
961 	 * Make sure we don't miss any range that was removed from our rbtree
962 	 * because trimming is running. Otherwise after a umount+mount (or crash
963 	 * after committing the transaction) we would leak free space and get
964 	 * an inconsistent free space cache report from fsck.
965 	 */
966 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
967 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
968 				       trim_entry->bytes, NULL);
969 		if (ret)
970 			goto fail;
971 		*entries += 1;
972 	}
973 
974 	return 0;
975 fail:
976 	if (cluster_locked)
977 		spin_unlock(&cluster_locked->lock);
978 	return -ENOSPC;
979 }
980 
981 static noinline_for_stack int
982 update_cache_item(struct btrfs_trans_handle *trans,
983 		  struct btrfs_root *root,
984 		  struct inode *inode,
985 		  struct btrfs_path *path, u64 offset,
986 		  int entries, int bitmaps)
987 {
988 	struct btrfs_key key;
989 	struct btrfs_free_space_header *header;
990 	struct extent_buffer *leaf;
991 	int ret;
992 
993 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
994 	key.offset = offset;
995 	key.type = 0;
996 
997 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
998 	if (ret < 0) {
999 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1000 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1001 				 GFP_NOFS);
1002 		goto fail;
1003 	}
1004 	leaf = path->nodes[0];
1005 	if (ret > 0) {
1006 		struct btrfs_key found_key;
1007 		ASSERT(path->slots[0]);
1008 		path->slots[0]--;
1009 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1010 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1011 		    found_key.offset != offset) {
1012 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1013 					 inode->i_size - 1,
1014 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1015 					 NULL, GFP_NOFS);
1016 			btrfs_release_path(path);
1017 			goto fail;
1018 		}
1019 	}
1020 
1021 	BTRFS_I(inode)->generation = trans->transid;
1022 	header = btrfs_item_ptr(leaf, path->slots[0],
1023 				struct btrfs_free_space_header);
1024 	btrfs_set_free_space_entries(leaf, header, entries);
1025 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1026 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1027 	btrfs_mark_buffer_dirty(leaf);
1028 	btrfs_release_path(path);
1029 
1030 	return 0;
1031 
1032 fail:
1033 	return -1;
1034 }
1035 
1036 static noinline_for_stack int
1037 write_pinned_extent_entries(struct btrfs_root *root,
1038 			    struct btrfs_block_group_cache *block_group,
1039 			    struct btrfs_io_ctl *io_ctl,
1040 			    int *entries)
1041 {
1042 	u64 start, extent_start, extent_end, len;
1043 	struct extent_io_tree *unpin = NULL;
1044 	int ret;
1045 
1046 	if (!block_group)
1047 		return 0;
1048 
1049 	/*
1050 	 * We want to add any pinned extents to our free space cache
1051 	 * so we don't leak the space
1052 	 *
1053 	 * We shouldn't have switched the pinned extents yet so this is the
1054 	 * right one
1055 	 */
1056 	unpin = root->fs_info->pinned_extents;
1057 
1058 	start = block_group->key.objectid;
1059 
1060 	while (start < block_group->key.objectid + block_group->key.offset) {
1061 		ret = find_first_extent_bit(unpin, start,
1062 					    &extent_start, &extent_end,
1063 					    EXTENT_DIRTY, NULL);
1064 		if (ret)
1065 			return 0;
1066 
1067 		/* This pinned extent is out of our range */
1068 		if (extent_start >= block_group->key.objectid +
1069 		    block_group->key.offset)
1070 			return 0;
1071 
1072 		extent_start = max(extent_start, start);
1073 		extent_end = min(block_group->key.objectid +
1074 				 block_group->key.offset, extent_end + 1);
1075 		len = extent_end - extent_start;
1076 
1077 		*entries += 1;
1078 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1079 		if (ret)
1080 			return -ENOSPC;
1081 
1082 		start = extent_end;
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 static noinline_for_stack int
1089 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1090 {
1091 	struct list_head *pos, *n;
1092 	int ret;
1093 
1094 	/* Write out the bitmaps */
1095 	list_for_each_safe(pos, n, bitmap_list) {
1096 		struct btrfs_free_space *entry =
1097 			list_entry(pos, struct btrfs_free_space, list);
1098 
1099 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1100 		if (ret)
1101 			return -ENOSPC;
1102 		list_del_init(&entry->list);
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 static int flush_dirty_cache(struct inode *inode)
1109 {
1110 	int ret;
1111 
1112 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1113 	if (ret)
1114 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1115 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1116 				 GFP_NOFS);
1117 
1118 	return ret;
1119 }
1120 
1121 static void noinline_for_stack
1122 cleanup_bitmap_list(struct list_head *bitmap_list)
1123 {
1124 	struct list_head *pos, *n;
1125 
1126 	list_for_each_safe(pos, n, bitmap_list) {
1127 		struct btrfs_free_space *entry =
1128 			list_entry(pos, struct btrfs_free_space, list);
1129 		list_del_init(&entry->list);
1130 	}
1131 }
1132 
1133 static void noinline_for_stack
1134 cleanup_write_cache_enospc(struct inode *inode,
1135 			   struct btrfs_io_ctl *io_ctl,
1136 			   struct extent_state **cached_state,
1137 			   struct list_head *bitmap_list)
1138 {
1139 	io_ctl_drop_pages(io_ctl);
1140 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1141 			     i_size_read(inode) - 1, cached_state,
1142 			     GFP_NOFS);
1143 }
1144 
1145 int btrfs_wait_cache_io(struct btrfs_root *root,
1146 			struct btrfs_trans_handle *trans,
1147 			struct btrfs_block_group_cache *block_group,
1148 			struct btrfs_io_ctl *io_ctl,
1149 			struct btrfs_path *path, u64 offset)
1150 {
1151 	int ret;
1152 	struct inode *inode = io_ctl->inode;
1153 
1154 	if (!inode)
1155 		return 0;
1156 
1157 	if (block_group)
1158 		root = root->fs_info->tree_root;
1159 
1160 	/* Flush the dirty pages in the cache file. */
1161 	ret = flush_dirty_cache(inode);
1162 	if (ret)
1163 		goto out;
1164 
1165 	/* Update the cache item to tell everyone this cache file is valid. */
1166 	ret = update_cache_item(trans, root, inode, path, offset,
1167 				io_ctl->entries, io_ctl->bitmaps);
1168 out:
1169 	io_ctl_free(io_ctl);
1170 	if (ret) {
1171 		invalidate_inode_pages2(inode->i_mapping);
1172 		BTRFS_I(inode)->generation = 0;
1173 		if (block_group) {
1174 #ifdef DEBUG
1175 			btrfs_err(root->fs_info,
1176 				"failed to write free space cache for block group %llu",
1177 				block_group->key.objectid);
1178 #endif
1179 		}
1180 	}
1181 	btrfs_update_inode(trans, root, inode);
1182 
1183 	if (block_group) {
1184 		/* the dirty list is protected by the dirty_bgs_lock */
1185 		spin_lock(&trans->transaction->dirty_bgs_lock);
1186 
1187 		/* the disk_cache_state is protected by the block group lock */
1188 		spin_lock(&block_group->lock);
1189 
1190 		/*
1191 		 * only mark this as written if we didn't get put back on
1192 		 * the dirty list while waiting for IO.   Otherwise our
1193 		 * cache state won't be right, and we won't get written again
1194 		 */
1195 		if (!ret && list_empty(&block_group->dirty_list))
1196 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1197 		else if (ret)
1198 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1199 
1200 		spin_unlock(&block_group->lock);
1201 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1202 		io_ctl->inode = NULL;
1203 		iput(inode);
1204 	}
1205 
1206 	return ret;
1207 
1208 }
1209 
1210 /**
1211  * __btrfs_write_out_cache - write out cached info to an inode
1212  * @root - the root the inode belongs to
1213  * @ctl - the free space cache we are going to write out
1214  * @block_group - the block_group for this cache if it belongs to a block_group
1215  * @trans - the trans handle
1216  * @path - the path to use
1217  * @offset - the offset for the key we'll insert
1218  *
1219  * This function writes out a free space cache struct to disk for quick recovery
1220  * on mount.  This will return 0 if it was successfull in writing the cache out,
1221  * or an errno if it was not.
1222  */
1223 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1224 				   struct btrfs_free_space_ctl *ctl,
1225 				   struct btrfs_block_group_cache *block_group,
1226 				   struct btrfs_io_ctl *io_ctl,
1227 				   struct btrfs_trans_handle *trans,
1228 				   struct btrfs_path *path, u64 offset)
1229 {
1230 	struct extent_state *cached_state = NULL;
1231 	LIST_HEAD(bitmap_list);
1232 	int entries = 0;
1233 	int bitmaps = 0;
1234 	int ret;
1235 	int must_iput = 0;
1236 
1237 	if (!i_size_read(inode))
1238 		return -EIO;
1239 
1240 	WARN_ON(io_ctl->pages);
1241 	ret = io_ctl_init(io_ctl, inode, root, 1);
1242 	if (ret)
1243 		return ret;
1244 
1245 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1246 		down_write(&block_group->data_rwsem);
1247 		spin_lock(&block_group->lock);
1248 		if (block_group->delalloc_bytes) {
1249 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1250 			spin_unlock(&block_group->lock);
1251 			up_write(&block_group->data_rwsem);
1252 			BTRFS_I(inode)->generation = 0;
1253 			ret = 0;
1254 			must_iput = 1;
1255 			goto out;
1256 		}
1257 		spin_unlock(&block_group->lock);
1258 	}
1259 
1260 	/* Lock all pages first so we can lock the extent safely. */
1261 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1262 	if (ret)
1263 		goto out;
1264 
1265 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1266 			 0, &cached_state);
1267 
1268 	io_ctl_set_generation(io_ctl, trans->transid);
1269 
1270 	mutex_lock(&ctl->cache_writeout_mutex);
1271 	/* Write out the extent entries in the free space cache */
1272 	spin_lock(&ctl->tree_lock);
1273 	ret = write_cache_extent_entries(io_ctl, ctl,
1274 					 block_group, &entries, &bitmaps,
1275 					 &bitmap_list);
1276 	if (ret)
1277 		goto out_nospc_locked;
1278 
1279 	/*
1280 	 * Some spaces that are freed in the current transaction are pinned,
1281 	 * they will be added into free space cache after the transaction is
1282 	 * committed, we shouldn't lose them.
1283 	 *
1284 	 * If this changes while we are working we'll get added back to
1285 	 * the dirty list and redo it.  No locking needed
1286 	 */
1287 	ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1288 	if (ret)
1289 		goto out_nospc_locked;
1290 
1291 	/*
1292 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1293 	 * locked while doing it because a concurrent trim can be manipulating
1294 	 * or freeing the bitmap.
1295 	 */
1296 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1297 	spin_unlock(&ctl->tree_lock);
1298 	mutex_unlock(&ctl->cache_writeout_mutex);
1299 	if (ret)
1300 		goto out_nospc;
1301 
1302 	/* Zero out the rest of the pages just to make sure */
1303 	io_ctl_zero_remaining_pages(io_ctl);
1304 
1305 	/* Everything is written out, now we dirty the pages in the file. */
1306 	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1307 				0, i_size_read(inode), &cached_state);
1308 	if (ret)
1309 		goto out_nospc;
1310 
1311 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1312 		up_write(&block_group->data_rwsem);
1313 	/*
1314 	 * Release the pages and unlock the extent, we will flush
1315 	 * them out later
1316 	 */
1317 	io_ctl_drop_pages(io_ctl);
1318 
1319 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1320 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1321 
1322 	/*
1323 	 * at this point the pages are under IO and we're happy,
1324 	 * The caller is responsible for waiting on them and updating the
1325 	 * the cache and the inode
1326 	 */
1327 	io_ctl->entries = entries;
1328 	io_ctl->bitmaps = bitmaps;
1329 
1330 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1331 	if (ret)
1332 		goto out;
1333 
1334 	return 0;
1335 
1336 out:
1337 	io_ctl->inode = NULL;
1338 	io_ctl_free(io_ctl);
1339 	if (ret) {
1340 		invalidate_inode_pages2(inode->i_mapping);
1341 		BTRFS_I(inode)->generation = 0;
1342 	}
1343 	btrfs_update_inode(trans, root, inode);
1344 	if (must_iput)
1345 		iput(inode);
1346 	return ret;
1347 
1348 out_nospc_locked:
1349 	cleanup_bitmap_list(&bitmap_list);
1350 	spin_unlock(&ctl->tree_lock);
1351 	mutex_unlock(&ctl->cache_writeout_mutex);
1352 
1353 out_nospc:
1354 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1355 
1356 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1357 		up_write(&block_group->data_rwsem);
1358 
1359 	goto out;
1360 }
1361 
1362 int btrfs_write_out_cache(struct btrfs_root *root,
1363 			  struct btrfs_trans_handle *trans,
1364 			  struct btrfs_block_group_cache *block_group,
1365 			  struct btrfs_path *path)
1366 {
1367 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1368 	struct inode *inode;
1369 	int ret = 0;
1370 
1371 	root = root->fs_info->tree_root;
1372 
1373 	spin_lock(&block_group->lock);
1374 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1375 		spin_unlock(&block_group->lock);
1376 		return 0;
1377 	}
1378 	spin_unlock(&block_group->lock);
1379 
1380 	inode = lookup_free_space_inode(root, block_group, path);
1381 	if (IS_ERR(inode))
1382 		return 0;
1383 
1384 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1385 				      &block_group->io_ctl, trans,
1386 				      path, block_group->key.objectid);
1387 	if (ret) {
1388 #ifdef DEBUG
1389 		btrfs_err(root->fs_info,
1390 			"failed to write free space cache for block group %llu",
1391 			block_group->key.objectid);
1392 #endif
1393 		spin_lock(&block_group->lock);
1394 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1395 		spin_unlock(&block_group->lock);
1396 
1397 		block_group->io_ctl.inode = NULL;
1398 		iput(inode);
1399 	}
1400 
1401 	/*
1402 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1403 	 * to wait for IO and put the inode
1404 	 */
1405 
1406 	return ret;
1407 }
1408 
1409 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1410 					  u64 offset)
1411 {
1412 	ASSERT(offset >= bitmap_start);
1413 	offset -= bitmap_start;
1414 	return (unsigned long)(div_u64(offset, unit));
1415 }
1416 
1417 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1418 {
1419 	return (unsigned long)(div_u64(bytes, unit));
1420 }
1421 
1422 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1423 				   u64 offset)
1424 {
1425 	u64 bitmap_start;
1426 	u32 bytes_per_bitmap;
1427 
1428 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1429 	bitmap_start = offset - ctl->start;
1430 	bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
1431 	bitmap_start *= bytes_per_bitmap;
1432 	bitmap_start += ctl->start;
1433 
1434 	return bitmap_start;
1435 }
1436 
1437 static int tree_insert_offset(struct rb_root *root, u64 offset,
1438 			      struct rb_node *node, int bitmap)
1439 {
1440 	struct rb_node **p = &root->rb_node;
1441 	struct rb_node *parent = NULL;
1442 	struct btrfs_free_space *info;
1443 
1444 	while (*p) {
1445 		parent = *p;
1446 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1447 
1448 		if (offset < info->offset) {
1449 			p = &(*p)->rb_left;
1450 		} else if (offset > info->offset) {
1451 			p = &(*p)->rb_right;
1452 		} else {
1453 			/*
1454 			 * we could have a bitmap entry and an extent entry
1455 			 * share the same offset.  If this is the case, we want
1456 			 * the extent entry to always be found first if we do a
1457 			 * linear search through the tree, since we want to have
1458 			 * the quickest allocation time, and allocating from an
1459 			 * extent is faster than allocating from a bitmap.  So
1460 			 * if we're inserting a bitmap and we find an entry at
1461 			 * this offset, we want to go right, or after this entry
1462 			 * logically.  If we are inserting an extent and we've
1463 			 * found a bitmap, we want to go left, or before
1464 			 * logically.
1465 			 */
1466 			if (bitmap) {
1467 				if (info->bitmap) {
1468 					WARN_ON_ONCE(1);
1469 					return -EEXIST;
1470 				}
1471 				p = &(*p)->rb_right;
1472 			} else {
1473 				if (!info->bitmap) {
1474 					WARN_ON_ONCE(1);
1475 					return -EEXIST;
1476 				}
1477 				p = &(*p)->rb_left;
1478 			}
1479 		}
1480 	}
1481 
1482 	rb_link_node(node, parent, p);
1483 	rb_insert_color(node, root);
1484 
1485 	return 0;
1486 }
1487 
1488 /*
1489  * searches the tree for the given offset.
1490  *
1491  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1492  * want a section that has at least bytes size and comes at or after the given
1493  * offset.
1494  */
1495 static struct btrfs_free_space *
1496 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1497 		   u64 offset, int bitmap_only, int fuzzy)
1498 {
1499 	struct rb_node *n = ctl->free_space_offset.rb_node;
1500 	struct btrfs_free_space *entry, *prev = NULL;
1501 
1502 	/* find entry that is closest to the 'offset' */
1503 	while (1) {
1504 		if (!n) {
1505 			entry = NULL;
1506 			break;
1507 		}
1508 
1509 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1510 		prev = entry;
1511 
1512 		if (offset < entry->offset)
1513 			n = n->rb_left;
1514 		else if (offset > entry->offset)
1515 			n = n->rb_right;
1516 		else
1517 			break;
1518 	}
1519 
1520 	if (bitmap_only) {
1521 		if (!entry)
1522 			return NULL;
1523 		if (entry->bitmap)
1524 			return entry;
1525 
1526 		/*
1527 		 * bitmap entry and extent entry may share same offset,
1528 		 * in that case, bitmap entry comes after extent entry.
1529 		 */
1530 		n = rb_next(n);
1531 		if (!n)
1532 			return NULL;
1533 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1534 		if (entry->offset != offset)
1535 			return NULL;
1536 
1537 		WARN_ON(!entry->bitmap);
1538 		return entry;
1539 	} else if (entry) {
1540 		if (entry->bitmap) {
1541 			/*
1542 			 * if previous extent entry covers the offset,
1543 			 * we should return it instead of the bitmap entry
1544 			 */
1545 			n = rb_prev(&entry->offset_index);
1546 			if (n) {
1547 				prev = rb_entry(n, struct btrfs_free_space,
1548 						offset_index);
1549 				if (!prev->bitmap &&
1550 				    prev->offset + prev->bytes > offset)
1551 					entry = prev;
1552 			}
1553 		}
1554 		return entry;
1555 	}
1556 
1557 	if (!prev)
1558 		return NULL;
1559 
1560 	/* find last entry before the 'offset' */
1561 	entry = prev;
1562 	if (entry->offset > offset) {
1563 		n = rb_prev(&entry->offset_index);
1564 		if (n) {
1565 			entry = rb_entry(n, struct btrfs_free_space,
1566 					offset_index);
1567 			ASSERT(entry->offset <= offset);
1568 		} else {
1569 			if (fuzzy)
1570 				return entry;
1571 			else
1572 				return NULL;
1573 		}
1574 	}
1575 
1576 	if (entry->bitmap) {
1577 		n = rb_prev(&entry->offset_index);
1578 		if (n) {
1579 			prev = rb_entry(n, struct btrfs_free_space,
1580 					offset_index);
1581 			if (!prev->bitmap &&
1582 			    prev->offset + prev->bytes > offset)
1583 				return prev;
1584 		}
1585 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1586 			return entry;
1587 	} else if (entry->offset + entry->bytes > offset)
1588 		return entry;
1589 
1590 	if (!fuzzy)
1591 		return NULL;
1592 
1593 	while (1) {
1594 		if (entry->bitmap) {
1595 			if (entry->offset + BITS_PER_BITMAP *
1596 			    ctl->unit > offset)
1597 				break;
1598 		} else {
1599 			if (entry->offset + entry->bytes > offset)
1600 				break;
1601 		}
1602 
1603 		n = rb_next(&entry->offset_index);
1604 		if (!n)
1605 			return NULL;
1606 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1607 	}
1608 	return entry;
1609 }
1610 
1611 static inline void
1612 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1613 		    struct btrfs_free_space *info)
1614 {
1615 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1616 	ctl->free_extents--;
1617 }
1618 
1619 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1620 			      struct btrfs_free_space *info)
1621 {
1622 	__unlink_free_space(ctl, info);
1623 	ctl->free_space -= info->bytes;
1624 }
1625 
1626 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1627 			   struct btrfs_free_space *info)
1628 {
1629 	int ret = 0;
1630 
1631 	ASSERT(info->bytes || info->bitmap);
1632 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1633 				 &info->offset_index, (info->bitmap != NULL));
1634 	if (ret)
1635 		return ret;
1636 
1637 	ctl->free_space += info->bytes;
1638 	ctl->free_extents++;
1639 	return ret;
1640 }
1641 
1642 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1643 {
1644 	struct btrfs_block_group_cache *block_group = ctl->private;
1645 	u64 max_bytes;
1646 	u64 bitmap_bytes;
1647 	u64 extent_bytes;
1648 	u64 size = block_group->key.offset;
1649 	u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1650 	u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
1651 
1652 	max_bitmaps = max_t(u32, max_bitmaps, 1);
1653 
1654 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1655 
1656 	/*
1657 	 * The goal is to keep the total amount of memory used per 1gb of space
1658 	 * at or below 32k, so we need to adjust how much memory we allow to be
1659 	 * used by extent based free space tracking
1660 	 */
1661 	if (size < 1024 * 1024 * 1024)
1662 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1663 	else
1664 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1665 			div_u64(size, 1024 * 1024 * 1024);
1666 
1667 	/*
1668 	 * we want to account for 1 more bitmap than what we have so we can make
1669 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1670 	 * we add more bitmaps.
1671 	 */
1672 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1673 
1674 	if (bitmap_bytes >= max_bytes) {
1675 		ctl->extents_thresh = 0;
1676 		return;
1677 	}
1678 
1679 	/*
1680 	 * we want the extent entry threshold to always be at most 1/2 the max
1681 	 * bytes we can have, or whatever is less than that.
1682 	 */
1683 	extent_bytes = max_bytes - bitmap_bytes;
1684 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1685 
1686 	ctl->extents_thresh =
1687 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1688 }
1689 
1690 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1691 				       struct btrfs_free_space *info,
1692 				       u64 offset, u64 bytes)
1693 {
1694 	unsigned long start, count;
1695 
1696 	start = offset_to_bit(info->offset, ctl->unit, offset);
1697 	count = bytes_to_bits(bytes, ctl->unit);
1698 	ASSERT(start + count <= BITS_PER_BITMAP);
1699 
1700 	bitmap_clear(info->bitmap, start, count);
1701 
1702 	info->bytes -= bytes;
1703 }
1704 
1705 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1706 			      struct btrfs_free_space *info, u64 offset,
1707 			      u64 bytes)
1708 {
1709 	__bitmap_clear_bits(ctl, info, offset, bytes);
1710 	ctl->free_space -= bytes;
1711 }
1712 
1713 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1714 			    struct btrfs_free_space *info, u64 offset,
1715 			    u64 bytes)
1716 {
1717 	unsigned long start, count;
1718 
1719 	start = offset_to_bit(info->offset, ctl->unit, offset);
1720 	count = bytes_to_bits(bytes, ctl->unit);
1721 	ASSERT(start + count <= BITS_PER_BITMAP);
1722 
1723 	bitmap_set(info->bitmap, start, count);
1724 
1725 	info->bytes += bytes;
1726 	ctl->free_space += bytes;
1727 }
1728 
1729 /*
1730  * If we can not find suitable extent, we will use bytes to record
1731  * the size of the max extent.
1732  */
1733 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1734 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1735 			 u64 *bytes)
1736 {
1737 	unsigned long found_bits = 0;
1738 	unsigned long max_bits = 0;
1739 	unsigned long bits, i;
1740 	unsigned long next_zero;
1741 	unsigned long extent_bits;
1742 
1743 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1744 			  max_t(u64, *offset, bitmap_info->offset));
1745 	bits = bytes_to_bits(*bytes, ctl->unit);
1746 
1747 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1748 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1749 					       BITS_PER_BITMAP, i);
1750 		extent_bits = next_zero - i;
1751 		if (extent_bits >= bits) {
1752 			found_bits = extent_bits;
1753 			break;
1754 		} else if (extent_bits > max_bits) {
1755 			max_bits = extent_bits;
1756 		}
1757 		i = next_zero;
1758 	}
1759 
1760 	if (found_bits) {
1761 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1762 		*bytes = (u64)(found_bits) * ctl->unit;
1763 		return 0;
1764 	}
1765 
1766 	*bytes = (u64)(max_bits) * ctl->unit;
1767 	return -1;
1768 }
1769 
1770 /* Cache the size of the max extent in bytes */
1771 static struct btrfs_free_space *
1772 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1773 		unsigned long align, u64 *max_extent_size)
1774 {
1775 	struct btrfs_free_space *entry;
1776 	struct rb_node *node;
1777 	u64 tmp;
1778 	u64 align_off;
1779 	int ret;
1780 
1781 	if (!ctl->free_space_offset.rb_node)
1782 		goto out;
1783 
1784 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1785 	if (!entry)
1786 		goto out;
1787 
1788 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1789 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1790 		if (entry->bytes < *bytes) {
1791 			if (entry->bytes > *max_extent_size)
1792 				*max_extent_size = entry->bytes;
1793 			continue;
1794 		}
1795 
1796 		/* make sure the space returned is big enough
1797 		 * to match our requested alignment
1798 		 */
1799 		if (*bytes >= align) {
1800 			tmp = entry->offset - ctl->start + align - 1;
1801 			tmp = div64_u64(tmp, align);
1802 			tmp = tmp * align + ctl->start;
1803 			align_off = tmp - entry->offset;
1804 		} else {
1805 			align_off = 0;
1806 			tmp = entry->offset;
1807 		}
1808 
1809 		if (entry->bytes < *bytes + align_off) {
1810 			if (entry->bytes > *max_extent_size)
1811 				*max_extent_size = entry->bytes;
1812 			continue;
1813 		}
1814 
1815 		if (entry->bitmap) {
1816 			u64 size = *bytes;
1817 
1818 			ret = search_bitmap(ctl, entry, &tmp, &size);
1819 			if (!ret) {
1820 				*offset = tmp;
1821 				*bytes = size;
1822 				return entry;
1823 			} else if (size > *max_extent_size) {
1824 				*max_extent_size = size;
1825 			}
1826 			continue;
1827 		}
1828 
1829 		*offset = tmp;
1830 		*bytes = entry->bytes - align_off;
1831 		return entry;
1832 	}
1833 out:
1834 	return NULL;
1835 }
1836 
1837 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1838 			   struct btrfs_free_space *info, u64 offset)
1839 {
1840 	info->offset = offset_to_bitmap(ctl, offset);
1841 	info->bytes = 0;
1842 	INIT_LIST_HEAD(&info->list);
1843 	link_free_space(ctl, info);
1844 	ctl->total_bitmaps++;
1845 
1846 	ctl->op->recalc_thresholds(ctl);
1847 }
1848 
1849 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1850 			struct btrfs_free_space *bitmap_info)
1851 {
1852 	unlink_free_space(ctl, bitmap_info);
1853 	kfree(bitmap_info->bitmap);
1854 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1855 	ctl->total_bitmaps--;
1856 	ctl->op->recalc_thresholds(ctl);
1857 }
1858 
1859 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1860 			      struct btrfs_free_space *bitmap_info,
1861 			      u64 *offset, u64 *bytes)
1862 {
1863 	u64 end;
1864 	u64 search_start, search_bytes;
1865 	int ret;
1866 
1867 again:
1868 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1869 
1870 	/*
1871 	 * We need to search for bits in this bitmap.  We could only cover some
1872 	 * of the extent in this bitmap thanks to how we add space, so we need
1873 	 * to search for as much as it as we can and clear that amount, and then
1874 	 * go searching for the next bit.
1875 	 */
1876 	search_start = *offset;
1877 	search_bytes = ctl->unit;
1878 	search_bytes = min(search_bytes, end - search_start + 1);
1879 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1880 	if (ret < 0 || search_start != *offset)
1881 		return -EINVAL;
1882 
1883 	/* We may have found more bits than what we need */
1884 	search_bytes = min(search_bytes, *bytes);
1885 
1886 	/* Cannot clear past the end of the bitmap */
1887 	search_bytes = min(search_bytes, end - search_start + 1);
1888 
1889 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1890 	*offset += search_bytes;
1891 	*bytes -= search_bytes;
1892 
1893 	if (*bytes) {
1894 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1895 		if (!bitmap_info->bytes)
1896 			free_bitmap(ctl, bitmap_info);
1897 
1898 		/*
1899 		 * no entry after this bitmap, but we still have bytes to
1900 		 * remove, so something has gone wrong.
1901 		 */
1902 		if (!next)
1903 			return -EINVAL;
1904 
1905 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1906 				       offset_index);
1907 
1908 		/*
1909 		 * if the next entry isn't a bitmap we need to return to let the
1910 		 * extent stuff do its work.
1911 		 */
1912 		if (!bitmap_info->bitmap)
1913 			return -EAGAIN;
1914 
1915 		/*
1916 		 * Ok the next item is a bitmap, but it may not actually hold
1917 		 * the information for the rest of this free space stuff, so
1918 		 * look for it, and if we don't find it return so we can try
1919 		 * everything over again.
1920 		 */
1921 		search_start = *offset;
1922 		search_bytes = ctl->unit;
1923 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1924 				    &search_bytes);
1925 		if (ret < 0 || search_start != *offset)
1926 			return -EAGAIN;
1927 
1928 		goto again;
1929 	} else if (!bitmap_info->bytes)
1930 		free_bitmap(ctl, bitmap_info);
1931 
1932 	return 0;
1933 }
1934 
1935 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1936 			       struct btrfs_free_space *info, u64 offset,
1937 			       u64 bytes)
1938 {
1939 	u64 bytes_to_set = 0;
1940 	u64 end;
1941 
1942 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1943 
1944 	bytes_to_set = min(end - offset, bytes);
1945 
1946 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1947 
1948 	return bytes_to_set;
1949 
1950 }
1951 
1952 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1953 		      struct btrfs_free_space *info)
1954 {
1955 	struct btrfs_block_group_cache *block_group = ctl->private;
1956 
1957 	/*
1958 	 * If we are below the extents threshold then we can add this as an
1959 	 * extent, and don't have to deal with the bitmap
1960 	 */
1961 	if (ctl->free_extents < ctl->extents_thresh) {
1962 		/*
1963 		 * If this block group has some small extents we don't want to
1964 		 * use up all of our free slots in the cache with them, we want
1965 		 * to reserve them to larger extents, however if we have plent
1966 		 * of cache left then go ahead an dadd them, no sense in adding
1967 		 * the overhead of a bitmap if we don't have to.
1968 		 */
1969 		if (info->bytes <= block_group->sectorsize * 4) {
1970 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1971 				return false;
1972 		} else {
1973 			return false;
1974 		}
1975 	}
1976 
1977 	/*
1978 	 * The original block groups from mkfs can be really small, like 8
1979 	 * megabytes, so don't bother with a bitmap for those entries.  However
1980 	 * some block groups can be smaller than what a bitmap would cover but
1981 	 * are still large enough that they could overflow the 32k memory limit,
1982 	 * so allow those block groups to still be allowed to have a bitmap
1983 	 * entry.
1984 	 */
1985 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1986 		return false;
1987 
1988 	return true;
1989 }
1990 
1991 static struct btrfs_free_space_op free_space_op = {
1992 	.recalc_thresholds	= recalculate_thresholds,
1993 	.use_bitmap		= use_bitmap,
1994 };
1995 
1996 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1997 			      struct btrfs_free_space *info)
1998 {
1999 	struct btrfs_free_space *bitmap_info;
2000 	struct btrfs_block_group_cache *block_group = NULL;
2001 	int added = 0;
2002 	u64 bytes, offset, bytes_added;
2003 	int ret;
2004 
2005 	bytes = info->bytes;
2006 	offset = info->offset;
2007 
2008 	if (!ctl->op->use_bitmap(ctl, info))
2009 		return 0;
2010 
2011 	if (ctl->op == &free_space_op)
2012 		block_group = ctl->private;
2013 again:
2014 	/*
2015 	 * Since we link bitmaps right into the cluster we need to see if we
2016 	 * have a cluster here, and if so and it has our bitmap we need to add
2017 	 * the free space to that bitmap.
2018 	 */
2019 	if (block_group && !list_empty(&block_group->cluster_list)) {
2020 		struct btrfs_free_cluster *cluster;
2021 		struct rb_node *node;
2022 		struct btrfs_free_space *entry;
2023 
2024 		cluster = list_entry(block_group->cluster_list.next,
2025 				     struct btrfs_free_cluster,
2026 				     block_group_list);
2027 		spin_lock(&cluster->lock);
2028 		node = rb_first(&cluster->root);
2029 		if (!node) {
2030 			spin_unlock(&cluster->lock);
2031 			goto no_cluster_bitmap;
2032 		}
2033 
2034 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2035 		if (!entry->bitmap) {
2036 			spin_unlock(&cluster->lock);
2037 			goto no_cluster_bitmap;
2038 		}
2039 
2040 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2041 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2042 							  offset, bytes);
2043 			bytes -= bytes_added;
2044 			offset += bytes_added;
2045 		}
2046 		spin_unlock(&cluster->lock);
2047 		if (!bytes) {
2048 			ret = 1;
2049 			goto out;
2050 		}
2051 	}
2052 
2053 no_cluster_bitmap:
2054 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2055 					 1, 0);
2056 	if (!bitmap_info) {
2057 		ASSERT(added == 0);
2058 		goto new_bitmap;
2059 	}
2060 
2061 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2062 	bytes -= bytes_added;
2063 	offset += bytes_added;
2064 	added = 0;
2065 
2066 	if (!bytes) {
2067 		ret = 1;
2068 		goto out;
2069 	} else
2070 		goto again;
2071 
2072 new_bitmap:
2073 	if (info && info->bitmap) {
2074 		add_new_bitmap(ctl, info, offset);
2075 		added = 1;
2076 		info = NULL;
2077 		goto again;
2078 	} else {
2079 		spin_unlock(&ctl->tree_lock);
2080 
2081 		/* no pre-allocated info, allocate a new one */
2082 		if (!info) {
2083 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2084 						 GFP_NOFS);
2085 			if (!info) {
2086 				spin_lock(&ctl->tree_lock);
2087 				ret = -ENOMEM;
2088 				goto out;
2089 			}
2090 		}
2091 
2092 		/* allocate the bitmap */
2093 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
2094 		spin_lock(&ctl->tree_lock);
2095 		if (!info->bitmap) {
2096 			ret = -ENOMEM;
2097 			goto out;
2098 		}
2099 		goto again;
2100 	}
2101 
2102 out:
2103 	if (info) {
2104 		if (info->bitmap)
2105 			kfree(info->bitmap);
2106 		kmem_cache_free(btrfs_free_space_cachep, info);
2107 	}
2108 
2109 	return ret;
2110 }
2111 
2112 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2113 			  struct btrfs_free_space *info, bool update_stat)
2114 {
2115 	struct btrfs_free_space *left_info;
2116 	struct btrfs_free_space *right_info;
2117 	bool merged = false;
2118 	u64 offset = info->offset;
2119 	u64 bytes = info->bytes;
2120 
2121 	/*
2122 	 * first we want to see if there is free space adjacent to the range we
2123 	 * are adding, if there is remove that struct and add a new one to
2124 	 * cover the entire range
2125 	 */
2126 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2127 	if (right_info && rb_prev(&right_info->offset_index))
2128 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2129 				     struct btrfs_free_space, offset_index);
2130 	else
2131 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2132 
2133 	if (right_info && !right_info->bitmap) {
2134 		if (update_stat)
2135 			unlink_free_space(ctl, right_info);
2136 		else
2137 			__unlink_free_space(ctl, right_info);
2138 		info->bytes += right_info->bytes;
2139 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2140 		merged = true;
2141 	}
2142 
2143 	if (left_info && !left_info->bitmap &&
2144 	    left_info->offset + left_info->bytes == offset) {
2145 		if (update_stat)
2146 			unlink_free_space(ctl, left_info);
2147 		else
2148 			__unlink_free_space(ctl, left_info);
2149 		info->offset = left_info->offset;
2150 		info->bytes += left_info->bytes;
2151 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2152 		merged = true;
2153 	}
2154 
2155 	return merged;
2156 }
2157 
2158 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2159 				     struct btrfs_free_space *info,
2160 				     bool update_stat)
2161 {
2162 	struct btrfs_free_space *bitmap;
2163 	unsigned long i;
2164 	unsigned long j;
2165 	const u64 end = info->offset + info->bytes;
2166 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2167 	u64 bytes;
2168 
2169 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2170 	if (!bitmap)
2171 		return false;
2172 
2173 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2174 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2175 	if (j == i)
2176 		return false;
2177 	bytes = (j - i) * ctl->unit;
2178 	info->bytes += bytes;
2179 
2180 	if (update_stat)
2181 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2182 	else
2183 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2184 
2185 	if (!bitmap->bytes)
2186 		free_bitmap(ctl, bitmap);
2187 
2188 	return true;
2189 }
2190 
2191 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2192 				       struct btrfs_free_space *info,
2193 				       bool update_stat)
2194 {
2195 	struct btrfs_free_space *bitmap;
2196 	u64 bitmap_offset;
2197 	unsigned long i;
2198 	unsigned long j;
2199 	unsigned long prev_j;
2200 	u64 bytes;
2201 
2202 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2203 	/* If we're on a boundary, try the previous logical bitmap. */
2204 	if (bitmap_offset == info->offset) {
2205 		if (info->offset == 0)
2206 			return false;
2207 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2208 	}
2209 
2210 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2211 	if (!bitmap)
2212 		return false;
2213 
2214 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2215 	j = 0;
2216 	prev_j = (unsigned long)-1;
2217 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2218 		if (j > i)
2219 			break;
2220 		prev_j = j;
2221 	}
2222 	if (prev_j == i)
2223 		return false;
2224 
2225 	if (prev_j == (unsigned long)-1)
2226 		bytes = (i + 1) * ctl->unit;
2227 	else
2228 		bytes = (i - prev_j) * ctl->unit;
2229 
2230 	info->offset -= bytes;
2231 	info->bytes += bytes;
2232 
2233 	if (update_stat)
2234 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2235 	else
2236 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2237 
2238 	if (!bitmap->bytes)
2239 		free_bitmap(ctl, bitmap);
2240 
2241 	return true;
2242 }
2243 
2244 /*
2245  * We prefer always to allocate from extent entries, both for clustered and
2246  * non-clustered allocation requests. So when attempting to add a new extent
2247  * entry, try to see if there's adjacent free space in bitmap entries, and if
2248  * there is, migrate that space from the bitmaps to the extent.
2249  * Like this we get better chances of satisfying space allocation requests
2250  * because we attempt to satisfy them based on a single cache entry, and never
2251  * on 2 or more entries - even if the entries represent a contiguous free space
2252  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2253  * ends).
2254  */
2255 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2256 			      struct btrfs_free_space *info,
2257 			      bool update_stat)
2258 {
2259 	/*
2260 	 * Only work with disconnected entries, as we can change their offset,
2261 	 * and must be extent entries.
2262 	 */
2263 	ASSERT(!info->bitmap);
2264 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2265 
2266 	if (ctl->total_bitmaps > 0) {
2267 		bool stole_end;
2268 		bool stole_front = false;
2269 
2270 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2271 		if (ctl->total_bitmaps > 0)
2272 			stole_front = steal_from_bitmap_to_front(ctl, info,
2273 								 update_stat);
2274 
2275 		if (stole_end || stole_front)
2276 			try_merge_free_space(ctl, info, update_stat);
2277 	}
2278 }
2279 
2280 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2281 			   u64 offset, u64 bytes)
2282 {
2283 	struct btrfs_free_space *info;
2284 	int ret = 0;
2285 
2286 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2287 	if (!info)
2288 		return -ENOMEM;
2289 
2290 	info->offset = offset;
2291 	info->bytes = bytes;
2292 	RB_CLEAR_NODE(&info->offset_index);
2293 
2294 	spin_lock(&ctl->tree_lock);
2295 
2296 	if (try_merge_free_space(ctl, info, true))
2297 		goto link;
2298 
2299 	/*
2300 	 * There was no extent directly to the left or right of this new
2301 	 * extent then we know we're going to have to allocate a new extent, so
2302 	 * before we do that see if we need to drop this into a bitmap
2303 	 */
2304 	ret = insert_into_bitmap(ctl, info);
2305 	if (ret < 0) {
2306 		goto out;
2307 	} else if (ret) {
2308 		ret = 0;
2309 		goto out;
2310 	}
2311 link:
2312 	/*
2313 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2314 	 * going to add the new free space to existing bitmap entries - because
2315 	 * that would mean unnecessary work that would be reverted. Therefore
2316 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2317 	 */
2318 	steal_from_bitmap(ctl, info, true);
2319 
2320 	ret = link_free_space(ctl, info);
2321 	if (ret)
2322 		kmem_cache_free(btrfs_free_space_cachep, info);
2323 out:
2324 	spin_unlock(&ctl->tree_lock);
2325 
2326 	if (ret) {
2327 		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2328 		ASSERT(ret != -EEXIST);
2329 	}
2330 
2331 	return ret;
2332 }
2333 
2334 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2335 			    u64 offset, u64 bytes)
2336 {
2337 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2338 	struct btrfs_free_space *info;
2339 	int ret;
2340 	bool re_search = false;
2341 
2342 	spin_lock(&ctl->tree_lock);
2343 
2344 again:
2345 	ret = 0;
2346 	if (!bytes)
2347 		goto out_lock;
2348 
2349 	info = tree_search_offset(ctl, offset, 0, 0);
2350 	if (!info) {
2351 		/*
2352 		 * oops didn't find an extent that matched the space we wanted
2353 		 * to remove, look for a bitmap instead
2354 		 */
2355 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2356 					  1, 0);
2357 		if (!info) {
2358 			/*
2359 			 * If we found a partial bit of our free space in a
2360 			 * bitmap but then couldn't find the other part this may
2361 			 * be a problem, so WARN about it.
2362 			 */
2363 			WARN_ON(re_search);
2364 			goto out_lock;
2365 		}
2366 	}
2367 
2368 	re_search = false;
2369 	if (!info->bitmap) {
2370 		unlink_free_space(ctl, info);
2371 		if (offset == info->offset) {
2372 			u64 to_free = min(bytes, info->bytes);
2373 
2374 			info->bytes -= to_free;
2375 			info->offset += to_free;
2376 			if (info->bytes) {
2377 				ret = link_free_space(ctl, info);
2378 				WARN_ON(ret);
2379 			} else {
2380 				kmem_cache_free(btrfs_free_space_cachep, info);
2381 			}
2382 
2383 			offset += to_free;
2384 			bytes -= to_free;
2385 			goto again;
2386 		} else {
2387 			u64 old_end = info->bytes + info->offset;
2388 
2389 			info->bytes = offset - info->offset;
2390 			ret = link_free_space(ctl, info);
2391 			WARN_ON(ret);
2392 			if (ret)
2393 				goto out_lock;
2394 
2395 			/* Not enough bytes in this entry to satisfy us */
2396 			if (old_end < offset + bytes) {
2397 				bytes -= old_end - offset;
2398 				offset = old_end;
2399 				goto again;
2400 			} else if (old_end == offset + bytes) {
2401 				/* all done */
2402 				goto out_lock;
2403 			}
2404 			spin_unlock(&ctl->tree_lock);
2405 
2406 			ret = btrfs_add_free_space(block_group, offset + bytes,
2407 						   old_end - (offset + bytes));
2408 			WARN_ON(ret);
2409 			goto out;
2410 		}
2411 	}
2412 
2413 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2414 	if (ret == -EAGAIN) {
2415 		re_search = true;
2416 		goto again;
2417 	}
2418 out_lock:
2419 	spin_unlock(&ctl->tree_lock);
2420 out:
2421 	return ret;
2422 }
2423 
2424 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2425 			   u64 bytes)
2426 {
2427 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2428 	struct btrfs_free_space *info;
2429 	struct rb_node *n;
2430 	int count = 0;
2431 
2432 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2433 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2434 		if (info->bytes >= bytes && !block_group->ro)
2435 			count++;
2436 		btrfs_crit(block_group->fs_info,
2437 			   "entry offset %llu, bytes %llu, bitmap %s",
2438 			   info->offset, info->bytes,
2439 		       (info->bitmap) ? "yes" : "no");
2440 	}
2441 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2442 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2443 	btrfs_info(block_group->fs_info,
2444 		   "%d blocks of free space at or bigger than bytes is", count);
2445 }
2446 
2447 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2448 {
2449 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2450 
2451 	spin_lock_init(&ctl->tree_lock);
2452 	ctl->unit = block_group->sectorsize;
2453 	ctl->start = block_group->key.objectid;
2454 	ctl->private = block_group;
2455 	ctl->op = &free_space_op;
2456 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2457 	mutex_init(&ctl->cache_writeout_mutex);
2458 
2459 	/*
2460 	 * we only want to have 32k of ram per block group for keeping
2461 	 * track of free space, and if we pass 1/2 of that we want to
2462 	 * start converting things over to using bitmaps
2463 	 */
2464 	ctl->extents_thresh = ((1024 * 32) / 2) /
2465 				sizeof(struct btrfs_free_space);
2466 }
2467 
2468 /*
2469  * for a given cluster, put all of its extents back into the free
2470  * space cache.  If the block group passed doesn't match the block group
2471  * pointed to by the cluster, someone else raced in and freed the
2472  * cluster already.  In that case, we just return without changing anything
2473  */
2474 static int
2475 __btrfs_return_cluster_to_free_space(
2476 			     struct btrfs_block_group_cache *block_group,
2477 			     struct btrfs_free_cluster *cluster)
2478 {
2479 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2480 	struct btrfs_free_space *entry;
2481 	struct rb_node *node;
2482 
2483 	spin_lock(&cluster->lock);
2484 	if (cluster->block_group != block_group)
2485 		goto out;
2486 
2487 	cluster->block_group = NULL;
2488 	cluster->window_start = 0;
2489 	list_del_init(&cluster->block_group_list);
2490 
2491 	node = rb_first(&cluster->root);
2492 	while (node) {
2493 		bool bitmap;
2494 
2495 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2496 		node = rb_next(&entry->offset_index);
2497 		rb_erase(&entry->offset_index, &cluster->root);
2498 		RB_CLEAR_NODE(&entry->offset_index);
2499 
2500 		bitmap = (entry->bitmap != NULL);
2501 		if (!bitmap) {
2502 			try_merge_free_space(ctl, entry, false);
2503 			steal_from_bitmap(ctl, entry, false);
2504 		}
2505 		tree_insert_offset(&ctl->free_space_offset,
2506 				   entry->offset, &entry->offset_index, bitmap);
2507 	}
2508 	cluster->root = RB_ROOT;
2509 
2510 out:
2511 	spin_unlock(&cluster->lock);
2512 	btrfs_put_block_group(block_group);
2513 	return 0;
2514 }
2515 
2516 static void __btrfs_remove_free_space_cache_locked(
2517 				struct btrfs_free_space_ctl *ctl)
2518 {
2519 	struct btrfs_free_space *info;
2520 	struct rb_node *node;
2521 
2522 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2523 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2524 		if (!info->bitmap) {
2525 			unlink_free_space(ctl, info);
2526 			kmem_cache_free(btrfs_free_space_cachep, info);
2527 		} else {
2528 			free_bitmap(ctl, info);
2529 		}
2530 
2531 		cond_resched_lock(&ctl->tree_lock);
2532 	}
2533 }
2534 
2535 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2536 {
2537 	spin_lock(&ctl->tree_lock);
2538 	__btrfs_remove_free_space_cache_locked(ctl);
2539 	spin_unlock(&ctl->tree_lock);
2540 }
2541 
2542 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2543 {
2544 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545 	struct btrfs_free_cluster *cluster;
2546 	struct list_head *head;
2547 
2548 	spin_lock(&ctl->tree_lock);
2549 	while ((head = block_group->cluster_list.next) !=
2550 	       &block_group->cluster_list) {
2551 		cluster = list_entry(head, struct btrfs_free_cluster,
2552 				     block_group_list);
2553 
2554 		WARN_ON(cluster->block_group != block_group);
2555 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2556 
2557 		cond_resched_lock(&ctl->tree_lock);
2558 	}
2559 	__btrfs_remove_free_space_cache_locked(ctl);
2560 	spin_unlock(&ctl->tree_lock);
2561 
2562 }
2563 
2564 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2565 			       u64 offset, u64 bytes, u64 empty_size,
2566 			       u64 *max_extent_size)
2567 {
2568 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2569 	struct btrfs_free_space *entry = NULL;
2570 	u64 bytes_search = bytes + empty_size;
2571 	u64 ret = 0;
2572 	u64 align_gap = 0;
2573 	u64 align_gap_len = 0;
2574 
2575 	spin_lock(&ctl->tree_lock);
2576 	entry = find_free_space(ctl, &offset, &bytes_search,
2577 				block_group->full_stripe_len, max_extent_size);
2578 	if (!entry)
2579 		goto out;
2580 
2581 	ret = offset;
2582 	if (entry->bitmap) {
2583 		bitmap_clear_bits(ctl, entry, offset, bytes);
2584 		if (!entry->bytes)
2585 			free_bitmap(ctl, entry);
2586 	} else {
2587 		unlink_free_space(ctl, entry);
2588 		align_gap_len = offset - entry->offset;
2589 		align_gap = entry->offset;
2590 
2591 		entry->offset = offset + bytes;
2592 		WARN_ON(entry->bytes < bytes + align_gap_len);
2593 
2594 		entry->bytes -= bytes + align_gap_len;
2595 		if (!entry->bytes)
2596 			kmem_cache_free(btrfs_free_space_cachep, entry);
2597 		else
2598 			link_free_space(ctl, entry);
2599 	}
2600 out:
2601 	spin_unlock(&ctl->tree_lock);
2602 
2603 	if (align_gap_len)
2604 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2605 	return ret;
2606 }
2607 
2608 /*
2609  * given a cluster, put all of its extents back into the free space
2610  * cache.  If a block group is passed, this function will only free
2611  * a cluster that belongs to the passed block group.
2612  *
2613  * Otherwise, it'll get a reference on the block group pointed to by the
2614  * cluster and remove the cluster from it.
2615  */
2616 int btrfs_return_cluster_to_free_space(
2617 			       struct btrfs_block_group_cache *block_group,
2618 			       struct btrfs_free_cluster *cluster)
2619 {
2620 	struct btrfs_free_space_ctl *ctl;
2621 	int ret;
2622 
2623 	/* first, get a safe pointer to the block group */
2624 	spin_lock(&cluster->lock);
2625 	if (!block_group) {
2626 		block_group = cluster->block_group;
2627 		if (!block_group) {
2628 			spin_unlock(&cluster->lock);
2629 			return 0;
2630 		}
2631 	} else if (cluster->block_group != block_group) {
2632 		/* someone else has already freed it don't redo their work */
2633 		spin_unlock(&cluster->lock);
2634 		return 0;
2635 	}
2636 	atomic_inc(&block_group->count);
2637 	spin_unlock(&cluster->lock);
2638 
2639 	ctl = block_group->free_space_ctl;
2640 
2641 	/* now return any extents the cluster had on it */
2642 	spin_lock(&ctl->tree_lock);
2643 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2644 	spin_unlock(&ctl->tree_lock);
2645 
2646 	/* finally drop our ref */
2647 	btrfs_put_block_group(block_group);
2648 	return ret;
2649 }
2650 
2651 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2652 				   struct btrfs_free_cluster *cluster,
2653 				   struct btrfs_free_space *entry,
2654 				   u64 bytes, u64 min_start,
2655 				   u64 *max_extent_size)
2656 {
2657 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2658 	int err;
2659 	u64 search_start = cluster->window_start;
2660 	u64 search_bytes = bytes;
2661 	u64 ret = 0;
2662 
2663 	search_start = min_start;
2664 	search_bytes = bytes;
2665 
2666 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2667 	if (err) {
2668 		if (search_bytes > *max_extent_size)
2669 			*max_extent_size = search_bytes;
2670 		return 0;
2671 	}
2672 
2673 	ret = search_start;
2674 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2675 
2676 	return ret;
2677 }
2678 
2679 /*
2680  * given a cluster, try to allocate 'bytes' from it, returns 0
2681  * if it couldn't find anything suitably large, or a logical disk offset
2682  * if things worked out
2683  */
2684 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2685 			     struct btrfs_free_cluster *cluster, u64 bytes,
2686 			     u64 min_start, u64 *max_extent_size)
2687 {
2688 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2689 	struct btrfs_free_space *entry = NULL;
2690 	struct rb_node *node;
2691 	u64 ret = 0;
2692 
2693 	spin_lock(&cluster->lock);
2694 	if (bytes > cluster->max_size)
2695 		goto out;
2696 
2697 	if (cluster->block_group != block_group)
2698 		goto out;
2699 
2700 	node = rb_first(&cluster->root);
2701 	if (!node)
2702 		goto out;
2703 
2704 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2705 	while (1) {
2706 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2707 			*max_extent_size = entry->bytes;
2708 
2709 		if (entry->bytes < bytes ||
2710 		    (!entry->bitmap && entry->offset < min_start)) {
2711 			node = rb_next(&entry->offset_index);
2712 			if (!node)
2713 				break;
2714 			entry = rb_entry(node, struct btrfs_free_space,
2715 					 offset_index);
2716 			continue;
2717 		}
2718 
2719 		if (entry->bitmap) {
2720 			ret = btrfs_alloc_from_bitmap(block_group,
2721 						      cluster, entry, bytes,
2722 						      cluster->window_start,
2723 						      max_extent_size);
2724 			if (ret == 0) {
2725 				node = rb_next(&entry->offset_index);
2726 				if (!node)
2727 					break;
2728 				entry = rb_entry(node, struct btrfs_free_space,
2729 						 offset_index);
2730 				continue;
2731 			}
2732 			cluster->window_start += bytes;
2733 		} else {
2734 			ret = entry->offset;
2735 
2736 			entry->offset += bytes;
2737 			entry->bytes -= bytes;
2738 		}
2739 
2740 		if (entry->bytes == 0)
2741 			rb_erase(&entry->offset_index, &cluster->root);
2742 		break;
2743 	}
2744 out:
2745 	spin_unlock(&cluster->lock);
2746 
2747 	if (!ret)
2748 		return 0;
2749 
2750 	spin_lock(&ctl->tree_lock);
2751 
2752 	ctl->free_space -= bytes;
2753 	if (entry->bytes == 0) {
2754 		ctl->free_extents--;
2755 		if (entry->bitmap) {
2756 			kfree(entry->bitmap);
2757 			ctl->total_bitmaps--;
2758 			ctl->op->recalc_thresholds(ctl);
2759 		}
2760 		kmem_cache_free(btrfs_free_space_cachep, entry);
2761 	}
2762 
2763 	spin_unlock(&ctl->tree_lock);
2764 
2765 	return ret;
2766 }
2767 
2768 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2769 				struct btrfs_free_space *entry,
2770 				struct btrfs_free_cluster *cluster,
2771 				u64 offset, u64 bytes,
2772 				u64 cont1_bytes, u64 min_bytes)
2773 {
2774 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2775 	unsigned long next_zero;
2776 	unsigned long i;
2777 	unsigned long want_bits;
2778 	unsigned long min_bits;
2779 	unsigned long found_bits;
2780 	unsigned long start = 0;
2781 	unsigned long total_found = 0;
2782 	int ret;
2783 
2784 	i = offset_to_bit(entry->offset, ctl->unit,
2785 			  max_t(u64, offset, entry->offset));
2786 	want_bits = bytes_to_bits(bytes, ctl->unit);
2787 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2788 
2789 again:
2790 	found_bits = 0;
2791 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2792 		next_zero = find_next_zero_bit(entry->bitmap,
2793 					       BITS_PER_BITMAP, i);
2794 		if (next_zero - i >= min_bits) {
2795 			found_bits = next_zero - i;
2796 			break;
2797 		}
2798 		i = next_zero;
2799 	}
2800 
2801 	if (!found_bits)
2802 		return -ENOSPC;
2803 
2804 	if (!total_found) {
2805 		start = i;
2806 		cluster->max_size = 0;
2807 	}
2808 
2809 	total_found += found_bits;
2810 
2811 	if (cluster->max_size < found_bits * ctl->unit)
2812 		cluster->max_size = found_bits * ctl->unit;
2813 
2814 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2815 		i = next_zero + 1;
2816 		goto again;
2817 	}
2818 
2819 	cluster->window_start = start * ctl->unit + entry->offset;
2820 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2821 	ret = tree_insert_offset(&cluster->root, entry->offset,
2822 				 &entry->offset_index, 1);
2823 	ASSERT(!ret); /* -EEXIST; Logic error */
2824 
2825 	trace_btrfs_setup_cluster(block_group, cluster,
2826 				  total_found * ctl->unit, 1);
2827 	return 0;
2828 }
2829 
2830 /*
2831  * This searches the block group for just extents to fill the cluster with.
2832  * Try to find a cluster with at least bytes total bytes, at least one
2833  * extent of cont1_bytes, and other clusters of at least min_bytes.
2834  */
2835 static noinline int
2836 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2837 			struct btrfs_free_cluster *cluster,
2838 			struct list_head *bitmaps, u64 offset, u64 bytes,
2839 			u64 cont1_bytes, u64 min_bytes)
2840 {
2841 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2842 	struct btrfs_free_space *first = NULL;
2843 	struct btrfs_free_space *entry = NULL;
2844 	struct btrfs_free_space *last;
2845 	struct rb_node *node;
2846 	u64 window_free;
2847 	u64 max_extent;
2848 	u64 total_size = 0;
2849 
2850 	entry = tree_search_offset(ctl, offset, 0, 1);
2851 	if (!entry)
2852 		return -ENOSPC;
2853 
2854 	/*
2855 	 * We don't want bitmaps, so just move along until we find a normal
2856 	 * extent entry.
2857 	 */
2858 	while (entry->bitmap || entry->bytes < min_bytes) {
2859 		if (entry->bitmap && list_empty(&entry->list))
2860 			list_add_tail(&entry->list, bitmaps);
2861 		node = rb_next(&entry->offset_index);
2862 		if (!node)
2863 			return -ENOSPC;
2864 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2865 	}
2866 
2867 	window_free = entry->bytes;
2868 	max_extent = entry->bytes;
2869 	first = entry;
2870 	last = entry;
2871 
2872 	for (node = rb_next(&entry->offset_index); node;
2873 	     node = rb_next(&entry->offset_index)) {
2874 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2875 
2876 		if (entry->bitmap) {
2877 			if (list_empty(&entry->list))
2878 				list_add_tail(&entry->list, bitmaps);
2879 			continue;
2880 		}
2881 
2882 		if (entry->bytes < min_bytes)
2883 			continue;
2884 
2885 		last = entry;
2886 		window_free += entry->bytes;
2887 		if (entry->bytes > max_extent)
2888 			max_extent = entry->bytes;
2889 	}
2890 
2891 	if (window_free < bytes || max_extent < cont1_bytes)
2892 		return -ENOSPC;
2893 
2894 	cluster->window_start = first->offset;
2895 
2896 	node = &first->offset_index;
2897 
2898 	/*
2899 	 * now we've found our entries, pull them out of the free space
2900 	 * cache and put them into the cluster rbtree
2901 	 */
2902 	do {
2903 		int ret;
2904 
2905 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2906 		node = rb_next(&entry->offset_index);
2907 		if (entry->bitmap || entry->bytes < min_bytes)
2908 			continue;
2909 
2910 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2911 		ret = tree_insert_offset(&cluster->root, entry->offset,
2912 					 &entry->offset_index, 0);
2913 		total_size += entry->bytes;
2914 		ASSERT(!ret); /* -EEXIST; Logic error */
2915 	} while (node && entry != last);
2916 
2917 	cluster->max_size = max_extent;
2918 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2919 	return 0;
2920 }
2921 
2922 /*
2923  * This specifically looks for bitmaps that may work in the cluster, we assume
2924  * that we have already failed to find extents that will work.
2925  */
2926 static noinline int
2927 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2928 		     struct btrfs_free_cluster *cluster,
2929 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2930 		     u64 cont1_bytes, u64 min_bytes)
2931 {
2932 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2933 	struct btrfs_free_space *entry;
2934 	int ret = -ENOSPC;
2935 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2936 
2937 	if (ctl->total_bitmaps == 0)
2938 		return -ENOSPC;
2939 
2940 	/*
2941 	 * The bitmap that covers offset won't be in the list unless offset
2942 	 * is just its start offset.
2943 	 */
2944 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2945 	if (entry->offset != bitmap_offset) {
2946 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2947 		if (entry && list_empty(&entry->list))
2948 			list_add(&entry->list, bitmaps);
2949 	}
2950 
2951 	list_for_each_entry(entry, bitmaps, list) {
2952 		if (entry->bytes < bytes)
2953 			continue;
2954 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2955 					   bytes, cont1_bytes, min_bytes);
2956 		if (!ret)
2957 			return 0;
2958 	}
2959 
2960 	/*
2961 	 * The bitmaps list has all the bitmaps that record free space
2962 	 * starting after offset, so no more search is required.
2963 	 */
2964 	return -ENOSPC;
2965 }
2966 
2967 /*
2968  * here we try to find a cluster of blocks in a block group.  The goal
2969  * is to find at least bytes+empty_size.
2970  * We might not find them all in one contiguous area.
2971  *
2972  * returns zero and sets up cluster if things worked out, otherwise
2973  * it returns -enospc
2974  */
2975 int btrfs_find_space_cluster(struct btrfs_root *root,
2976 			     struct btrfs_block_group_cache *block_group,
2977 			     struct btrfs_free_cluster *cluster,
2978 			     u64 offset, u64 bytes, u64 empty_size)
2979 {
2980 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2981 	struct btrfs_free_space *entry, *tmp;
2982 	LIST_HEAD(bitmaps);
2983 	u64 min_bytes;
2984 	u64 cont1_bytes;
2985 	int ret;
2986 
2987 	/*
2988 	 * Choose the minimum extent size we'll require for this
2989 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2990 	 * For metadata, allow allocates with smaller extents.  For
2991 	 * data, keep it dense.
2992 	 */
2993 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2994 		cont1_bytes = min_bytes = bytes + empty_size;
2995 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2996 		cont1_bytes = bytes;
2997 		min_bytes = block_group->sectorsize;
2998 	} else {
2999 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3000 		min_bytes = block_group->sectorsize;
3001 	}
3002 
3003 	spin_lock(&ctl->tree_lock);
3004 
3005 	/*
3006 	 * If we know we don't have enough space to make a cluster don't even
3007 	 * bother doing all the work to try and find one.
3008 	 */
3009 	if (ctl->free_space < bytes) {
3010 		spin_unlock(&ctl->tree_lock);
3011 		return -ENOSPC;
3012 	}
3013 
3014 	spin_lock(&cluster->lock);
3015 
3016 	/* someone already found a cluster, hooray */
3017 	if (cluster->block_group) {
3018 		ret = 0;
3019 		goto out;
3020 	}
3021 
3022 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3023 				 min_bytes);
3024 
3025 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3026 				      bytes + empty_size,
3027 				      cont1_bytes, min_bytes);
3028 	if (ret)
3029 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3030 					   offset, bytes + empty_size,
3031 					   cont1_bytes, min_bytes);
3032 
3033 	/* Clear our temporary list */
3034 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3035 		list_del_init(&entry->list);
3036 
3037 	if (!ret) {
3038 		atomic_inc(&block_group->count);
3039 		list_add_tail(&cluster->block_group_list,
3040 			      &block_group->cluster_list);
3041 		cluster->block_group = block_group;
3042 	} else {
3043 		trace_btrfs_failed_cluster_setup(block_group);
3044 	}
3045 out:
3046 	spin_unlock(&cluster->lock);
3047 	spin_unlock(&ctl->tree_lock);
3048 
3049 	return ret;
3050 }
3051 
3052 /*
3053  * simple code to zero out a cluster
3054  */
3055 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3056 {
3057 	spin_lock_init(&cluster->lock);
3058 	spin_lock_init(&cluster->refill_lock);
3059 	cluster->root = RB_ROOT;
3060 	cluster->max_size = 0;
3061 	INIT_LIST_HEAD(&cluster->block_group_list);
3062 	cluster->block_group = NULL;
3063 }
3064 
3065 static int do_trimming(struct btrfs_block_group_cache *block_group,
3066 		       u64 *total_trimmed, u64 start, u64 bytes,
3067 		       u64 reserved_start, u64 reserved_bytes,
3068 		       struct btrfs_trim_range *trim_entry)
3069 {
3070 	struct btrfs_space_info *space_info = block_group->space_info;
3071 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3072 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3073 	int ret;
3074 	int update = 0;
3075 	u64 trimmed = 0;
3076 
3077 	spin_lock(&space_info->lock);
3078 	spin_lock(&block_group->lock);
3079 	if (!block_group->ro) {
3080 		block_group->reserved += reserved_bytes;
3081 		space_info->bytes_reserved += reserved_bytes;
3082 		update = 1;
3083 	}
3084 	spin_unlock(&block_group->lock);
3085 	spin_unlock(&space_info->lock);
3086 
3087 	ret = btrfs_discard_extent(fs_info->extent_root,
3088 				   start, bytes, &trimmed);
3089 	if (!ret)
3090 		*total_trimmed += trimmed;
3091 
3092 	mutex_lock(&ctl->cache_writeout_mutex);
3093 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3094 	list_del(&trim_entry->list);
3095 	mutex_unlock(&ctl->cache_writeout_mutex);
3096 
3097 	if (update) {
3098 		spin_lock(&space_info->lock);
3099 		spin_lock(&block_group->lock);
3100 		if (block_group->ro)
3101 			space_info->bytes_readonly += reserved_bytes;
3102 		block_group->reserved -= reserved_bytes;
3103 		space_info->bytes_reserved -= reserved_bytes;
3104 		spin_unlock(&space_info->lock);
3105 		spin_unlock(&block_group->lock);
3106 	}
3107 
3108 	return ret;
3109 }
3110 
3111 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3112 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3113 {
3114 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3115 	struct btrfs_free_space *entry;
3116 	struct rb_node *node;
3117 	int ret = 0;
3118 	u64 extent_start;
3119 	u64 extent_bytes;
3120 	u64 bytes;
3121 
3122 	while (start < end) {
3123 		struct btrfs_trim_range trim_entry;
3124 
3125 		mutex_lock(&ctl->cache_writeout_mutex);
3126 		spin_lock(&ctl->tree_lock);
3127 
3128 		if (ctl->free_space < minlen) {
3129 			spin_unlock(&ctl->tree_lock);
3130 			mutex_unlock(&ctl->cache_writeout_mutex);
3131 			break;
3132 		}
3133 
3134 		entry = tree_search_offset(ctl, start, 0, 1);
3135 		if (!entry) {
3136 			spin_unlock(&ctl->tree_lock);
3137 			mutex_unlock(&ctl->cache_writeout_mutex);
3138 			break;
3139 		}
3140 
3141 		/* skip bitmaps */
3142 		while (entry->bitmap) {
3143 			node = rb_next(&entry->offset_index);
3144 			if (!node) {
3145 				spin_unlock(&ctl->tree_lock);
3146 				mutex_unlock(&ctl->cache_writeout_mutex);
3147 				goto out;
3148 			}
3149 			entry = rb_entry(node, struct btrfs_free_space,
3150 					 offset_index);
3151 		}
3152 
3153 		if (entry->offset >= end) {
3154 			spin_unlock(&ctl->tree_lock);
3155 			mutex_unlock(&ctl->cache_writeout_mutex);
3156 			break;
3157 		}
3158 
3159 		extent_start = entry->offset;
3160 		extent_bytes = entry->bytes;
3161 		start = max(start, extent_start);
3162 		bytes = min(extent_start + extent_bytes, end) - start;
3163 		if (bytes < minlen) {
3164 			spin_unlock(&ctl->tree_lock);
3165 			mutex_unlock(&ctl->cache_writeout_mutex);
3166 			goto next;
3167 		}
3168 
3169 		unlink_free_space(ctl, entry);
3170 		kmem_cache_free(btrfs_free_space_cachep, entry);
3171 
3172 		spin_unlock(&ctl->tree_lock);
3173 		trim_entry.start = extent_start;
3174 		trim_entry.bytes = extent_bytes;
3175 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3176 		mutex_unlock(&ctl->cache_writeout_mutex);
3177 
3178 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3179 				  extent_start, extent_bytes, &trim_entry);
3180 		if (ret)
3181 			break;
3182 next:
3183 		start += bytes;
3184 
3185 		if (fatal_signal_pending(current)) {
3186 			ret = -ERESTARTSYS;
3187 			break;
3188 		}
3189 
3190 		cond_resched();
3191 	}
3192 out:
3193 	return ret;
3194 }
3195 
3196 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3197 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3198 {
3199 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3200 	struct btrfs_free_space *entry;
3201 	int ret = 0;
3202 	int ret2;
3203 	u64 bytes;
3204 	u64 offset = offset_to_bitmap(ctl, start);
3205 
3206 	while (offset < end) {
3207 		bool next_bitmap = false;
3208 		struct btrfs_trim_range trim_entry;
3209 
3210 		mutex_lock(&ctl->cache_writeout_mutex);
3211 		spin_lock(&ctl->tree_lock);
3212 
3213 		if (ctl->free_space < minlen) {
3214 			spin_unlock(&ctl->tree_lock);
3215 			mutex_unlock(&ctl->cache_writeout_mutex);
3216 			break;
3217 		}
3218 
3219 		entry = tree_search_offset(ctl, offset, 1, 0);
3220 		if (!entry) {
3221 			spin_unlock(&ctl->tree_lock);
3222 			mutex_unlock(&ctl->cache_writeout_mutex);
3223 			next_bitmap = true;
3224 			goto next;
3225 		}
3226 
3227 		bytes = minlen;
3228 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
3229 		if (ret2 || start >= end) {
3230 			spin_unlock(&ctl->tree_lock);
3231 			mutex_unlock(&ctl->cache_writeout_mutex);
3232 			next_bitmap = true;
3233 			goto next;
3234 		}
3235 
3236 		bytes = min(bytes, end - start);
3237 		if (bytes < minlen) {
3238 			spin_unlock(&ctl->tree_lock);
3239 			mutex_unlock(&ctl->cache_writeout_mutex);
3240 			goto next;
3241 		}
3242 
3243 		bitmap_clear_bits(ctl, entry, start, bytes);
3244 		if (entry->bytes == 0)
3245 			free_bitmap(ctl, entry);
3246 
3247 		spin_unlock(&ctl->tree_lock);
3248 		trim_entry.start = start;
3249 		trim_entry.bytes = bytes;
3250 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3251 		mutex_unlock(&ctl->cache_writeout_mutex);
3252 
3253 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3254 				  start, bytes, &trim_entry);
3255 		if (ret)
3256 			break;
3257 next:
3258 		if (next_bitmap) {
3259 			offset += BITS_PER_BITMAP * ctl->unit;
3260 		} else {
3261 			start += bytes;
3262 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3263 				offset += BITS_PER_BITMAP * ctl->unit;
3264 		}
3265 
3266 		if (fatal_signal_pending(current)) {
3267 			ret = -ERESTARTSYS;
3268 			break;
3269 		}
3270 
3271 		cond_resched();
3272 	}
3273 
3274 	return ret;
3275 }
3276 
3277 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3278 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3279 {
3280 	int ret;
3281 
3282 	*trimmed = 0;
3283 
3284 	spin_lock(&block_group->lock);
3285 	if (block_group->removed) {
3286 		spin_unlock(&block_group->lock);
3287 		return 0;
3288 	}
3289 	atomic_inc(&block_group->trimming);
3290 	spin_unlock(&block_group->lock);
3291 
3292 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3293 	if (ret)
3294 		goto out;
3295 
3296 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3297 out:
3298 	spin_lock(&block_group->lock);
3299 	if (atomic_dec_and_test(&block_group->trimming) &&
3300 	    block_group->removed) {
3301 		struct extent_map_tree *em_tree;
3302 		struct extent_map *em;
3303 
3304 		spin_unlock(&block_group->lock);
3305 
3306 		lock_chunks(block_group->fs_info->chunk_root);
3307 		em_tree = &block_group->fs_info->mapping_tree.map_tree;
3308 		write_lock(&em_tree->lock);
3309 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3310 					   1);
3311 		BUG_ON(!em); /* logic error, can't happen */
3312 		/*
3313 		 * remove_extent_mapping() will delete us from the pinned_chunks
3314 		 * list, which is protected by the chunk mutex.
3315 		 */
3316 		remove_extent_mapping(em_tree, em);
3317 		write_unlock(&em_tree->lock);
3318 		unlock_chunks(block_group->fs_info->chunk_root);
3319 
3320 		/* once for us and once for the tree */
3321 		free_extent_map(em);
3322 		free_extent_map(em);
3323 
3324 		/*
3325 		 * We've left one free space entry and other tasks trimming
3326 		 * this block group have left 1 entry each one. Free them.
3327 		 */
3328 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3329 	} else {
3330 		spin_unlock(&block_group->lock);
3331 	}
3332 
3333 	return ret;
3334 }
3335 
3336 /*
3337  * Find the left-most item in the cache tree, and then return the
3338  * smallest inode number in the item.
3339  *
3340  * Note: the returned inode number may not be the smallest one in
3341  * the tree, if the left-most item is a bitmap.
3342  */
3343 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3344 {
3345 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3346 	struct btrfs_free_space *entry = NULL;
3347 	u64 ino = 0;
3348 
3349 	spin_lock(&ctl->tree_lock);
3350 
3351 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3352 		goto out;
3353 
3354 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3355 			 struct btrfs_free_space, offset_index);
3356 
3357 	if (!entry->bitmap) {
3358 		ino = entry->offset;
3359 
3360 		unlink_free_space(ctl, entry);
3361 		entry->offset++;
3362 		entry->bytes--;
3363 		if (!entry->bytes)
3364 			kmem_cache_free(btrfs_free_space_cachep, entry);
3365 		else
3366 			link_free_space(ctl, entry);
3367 	} else {
3368 		u64 offset = 0;
3369 		u64 count = 1;
3370 		int ret;
3371 
3372 		ret = search_bitmap(ctl, entry, &offset, &count);
3373 		/* Logic error; Should be empty if it can't find anything */
3374 		ASSERT(!ret);
3375 
3376 		ino = offset;
3377 		bitmap_clear_bits(ctl, entry, offset, 1);
3378 		if (entry->bytes == 0)
3379 			free_bitmap(ctl, entry);
3380 	}
3381 out:
3382 	spin_unlock(&ctl->tree_lock);
3383 
3384 	return ino;
3385 }
3386 
3387 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3388 				    struct btrfs_path *path)
3389 {
3390 	struct inode *inode = NULL;
3391 
3392 	spin_lock(&root->ino_cache_lock);
3393 	if (root->ino_cache_inode)
3394 		inode = igrab(root->ino_cache_inode);
3395 	spin_unlock(&root->ino_cache_lock);
3396 	if (inode)
3397 		return inode;
3398 
3399 	inode = __lookup_free_space_inode(root, path, 0);
3400 	if (IS_ERR(inode))
3401 		return inode;
3402 
3403 	spin_lock(&root->ino_cache_lock);
3404 	if (!btrfs_fs_closing(root->fs_info))
3405 		root->ino_cache_inode = igrab(inode);
3406 	spin_unlock(&root->ino_cache_lock);
3407 
3408 	return inode;
3409 }
3410 
3411 int create_free_ino_inode(struct btrfs_root *root,
3412 			  struct btrfs_trans_handle *trans,
3413 			  struct btrfs_path *path)
3414 {
3415 	return __create_free_space_inode(root, trans, path,
3416 					 BTRFS_FREE_INO_OBJECTID, 0);
3417 }
3418 
3419 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3420 {
3421 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3422 	struct btrfs_path *path;
3423 	struct inode *inode;
3424 	int ret = 0;
3425 	u64 root_gen = btrfs_root_generation(&root->root_item);
3426 
3427 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3428 		return 0;
3429 
3430 	/*
3431 	 * If we're unmounting then just return, since this does a search on the
3432 	 * normal root and not the commit root and we could deadlock.
3433 	 */
3434 	if (btrfs_fs_closing(fs_info))
3435 		return 0;
3436 
3437 	path = btrfs_alloc_path();
3438 	if (!path)
3439 		return 0;
3440 
3441 	inode = lookup_free_ino_inode(root, path);
3442 	if (IS_ERR(inode))
3443 		goto out;
3444 
3445 	if (root_gen != BTRFS_I(inode)->generation)
3446 		goto out_put;
3447 
3448 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3449 
3450 	if (ret < 0)
3451 		btrfs_err(fs_info,
3452 			"failed to load free ino cache for root %llu",
3453 			root->root_key.objectid);
3454 out_put:
3455 	iput(inode);
3456 out:
3457 	btrfs_free_path(path);
3458 	return ret;
3459 }
3460 
3461 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3462 			      struct btrfs_trans_handle *trans,
3463 			      struct btrfs_path *path,
3464 			      struct inode *inode)
3465 {
3466 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3467 	int ret;
3468 	struct btrfs_io_ctl io_ctl;
3469 	bool release_metadata = true;
3470 
3471 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3472 		return 0;
3473 
3474 	memset(&io_ctl, 0, sizeof(io_ctl));
3475 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3476 				      trans, path, 0);
3477 	if (!ret) {
3478 		/*
3479 		 * At this point writepages() didn't error out, so our metadata
3480 		 * reservation is released when the writeback finishes, at
3481 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3482 		 * with or without an error.
3483 		 */
3484 		release_metadata = false;
3485 		ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3486 	}
3487 
3488 	if (ret) {
3489 		if (release_metadata)
3490 			btrfs_delalloc_release_metadata(inode, inode->i_size);
3491 #ifdef DEBUG
3492 		btrfs_err(root->fs_info,
3493 			"failed to write free ino cache for root %llu",
3494 			root->root_key.objectid);
3495 #endif
3496 	}
3497 
3498 	return ret;
3499 }
3500 
3501 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3502 /*
3503  * Use this if you need to make a bitmap or extent entry specifically, it
3504  * doesn't do any of the merging that add_free_space does, this acts a lot like
3505  * how the free space cache loading stuff works, so you can get really weird
3506  * configurations.
3507  */
3508 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3509 			      u64 offset, u64 bytes, bool bitmap)
3510 {
3511 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3512 	struct btrfs_free_space *info = NULL, *bitmap_info;
3513 	void *map = NULL;
3514 	u64 bytes_added;
3515 	int ret;
3516 
3517 again:
3518 	if (!info) {
3519 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3520 		if (!info)
3521 			return -ENOMEM;
3522 	}
3523 
3524 	if (!bitmap) {
3525 		spin_lock(&ctl->tree_lock);
3526 		info->offset = offset;
3527 		info->bytes = bytes;
3528 		ret = link_free_space(ctl, info);
3529 		spin_unlock(&ctl->tree_lock);
3530 		if (ret)
3531 			kmem_cache_free(btrfs_free_space_cachep, info);
3532 		return ret;
3533 	}
3534 
3535 	if (!map) {
3536 		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3537 		if (!map) {
3538 			kmem_cache_free(btrfs_free_space_cachep, info);
3539 			return -ENOMEM;
3540 		}
3541 	}
3542 
3543 	spin_lock(&ctl->tree_lock);
3544 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3545 					 1, 0);
3546 	if (!bitmap_info) {
3547 		info->bitmap = map;
3548 		map = NULL;
3549 		add_new_bitmap(ctl, info, offset);
3550 		bitmap_info = info;
3551 		info = NULL;
3552 	}
3553 
3554 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3555 	bytes -= bytes_added;
3556 	offset += bytes_added;
3557 	spin_unlock(&ctl->tree_lock);
3558 
3559 	if (bytes)
3560 		goto again;
3561 
3562 	if (info)
3563 		kmem_cache_free(btrfs_free_space_cachep, info);
3564 	if (map)
3565 		kfree(map);
3566 	return 0;
3567 }
3568 
3569 /*
3570  * Checks to see if the given range is in the free space cache.  This is really
3571  * just used to check the absence of space, so if there is free space in the
3572  * range at all we will return 1.
3573  */
3574 int test_check_exists(struct btrfs_block_group_cache *cache,
3575 		      u64 offset, u64 bytes)
3576 {
3577 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3578 	struct btrfs_free_space *info;
3579 	int ret = 0;
3580 
3581 	spin_lock(&ctl->tree_lock);
3582 	info = tree_search_offset(ctl, offset, 0, 0);
3583 	if (!info) {
3584 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3585 					  1, 0);
3586 		if (!info)
3587 			goto out;
3588 	}
3589 
3590 have_info:
3591 	if (info->bitmap) {
3592 		u64 bit_off, bit_bytes;
3593 		struct rb_node *n;
3594 		struct btrfs_free_space *tmp;
3595 
3596 		bit_off = offset;
3597 		bit_bytes = ctl->unit;
3598 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3599 		if (!ret) {
3600 			if (bit_off == offset) {
3601 				ret = 1;
3602 				goto out;
3603 			} else if (bit_off > offset &&
3604 				   offset + bytes > bit_off) {
3605 				ret = 1;
3606 				goto out;
3607 			}
3608 		}
3609 
3610 		n = rb_prev(&info->offset_index);
3611 		while (n) {
3612 			tmp = rb_entry(n, struct btrfs_free_space,
3613 				       offset_index);
3614 			if (tmp->offset + tmp->bytes < offset)
3615 				break;
3616 			if (offset + bytes < tmp->offset) {
3617 				n = rb_prev(&info->offset_index);
3618 				continue;
3619 			}
3620 			info = tmp;
3621 			goto have_info;
3622 		}
3623 
3624 		n = rb_next(&info->offset_index);
3625 		while (n) {
3626 			tmp = rb_entry(n, struct btrfs_free_space,
3627 				       offset_index);
3628 			if (offset + bytes < tmp->offset)
3629 				break;
3630 			if (tmp->offset + tmp->bytes < offset) {
3631 				n = rb_next(&info->offset_index);
3632 				continue;
3633 			}
3634 			info = tmp;
3635 			goto have_info;
3636 		}
3637 
3638 		ret = 0;
3639 		goto out;
3640 	}
3641 
3642 	if (info->offset == offset) {
3643 		ret = 1;
3644 		goto out;
3645 	}
3646 
3647 	if (offset > info->offset && offset < info->offset + info->bytes)
3648 		ret = 1;
3649 out:
3650 	spin_unlock(&ctl->tree_lock);
3651 	return ret;
3652 }
3653 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3654