xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision cdfce539)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_key key;
44 	struct btrfs_key location;
45 	struct btrfs_disk_key disk_key;
46 	struct btrfs_free_space_header *header;
47 	struct extent_buffer *leaf;
48 	struct inode *inode = NULL;
49 	int ret;
50 
51 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 	key.offset = offset;
53 	key.type = 0;
54 
55 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 	if (ret < 0)
57 		return ERR_PTR(ret);
58 	if (ret > 0) {
59 		btrfs_release_path(path);
60 		return ERR_PTR(-ENOENT);
61 	}
62 
63 	leaf = path->nodes[0];
64 	header = btrfs_item_ptr(leaf, path->slots[0],
65 				struct btrfs_free_space_header);
66 	btrfs_free_space_key(leaf, header, &disk_key);
67 	btrfs_disk_key_to_cpu(&location, &disk_key);
68 	btrfs_release_path(path);
69 
70 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 	if (!inode)
72 		return ERR_PTR(-ENOENT);
73 	if (IS_ERR(inode))
74 		return inode;
75 	if (is_bad_inode(inode)) {
76 		iput(inode);
77 		return ERR_PTR(-ENOENT);
78 	}
79 
80 	mapping_set_gfp_mask(inode->i_mapping,
81 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		btrfs_info(root->fs_info,
108 			"Old style space inode found, converting.");
109 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
110 			BTRFS_INODE_NODATACOW;
111 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
112 	}
113 
114 	if (!block_group->iref) {
115 		block_group->inode = igrab(inode);
116 		block_group->iref = 1;
117 	}
118 	spin_unlock(&block_group->lock);
119 
120 	return inode;
121 }
122 
123 static int __create_free_space_inode(struct btrfs_root *root,
124 				     struct btrfs_trans_handle *trans,
125 				     struct btrfs_path *path,
126 				     u64 ino, u64 offset)
127 {
128 	struct btrfs_key key;
129 	struct btrfs_disk_key disk_key;
130 	struct btrfs_free_space_header *header;
131 	struct btrfs_inode_item *inode_item;
132 	struct extent_buffer *leaf;
133 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
134 	int ret;
135 
136 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
137 	if (ret)
138 		return ret;
139 
140 	/* We inline crc's for the free disk space cache */
141 	if (ino != BTRFS_FREE_INO_OBJECTID)
142 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
143 
144 	leaf = path->nodes[0];
145 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
146 				    struct btrfs_inode_item);
147 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
148 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
149 			     sizeof(*inode_item));
150 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
151 	btrfs_set_inode_size(leaf, inode_item, 0);
152 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
153 	btrfs_set_inode_uid(leaf, inode_item, 0);
154 	btrfs_set_inode_gid(leaf, inode_item, 0);
155 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
156 	btrfs_set_inode_flags(leaf, inode_item, flags);
157 	btrfs_set_inode_nlink(leaf, inode_item, 1);
158 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_block_group(leaf, inode_item, offset);
160 	btrfs_mark_buffer_dirty(leaf);
161 	btrfs_release_path(path);
162 
163 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
164 	key.offset = offset;
165 	key.type = 0;
166 
167 	ret = btrfs_insert_empty_item(trans, root, path, &key,
168 				      sizeof(struct btrfs_free_space_header));
169 	if (ret < 0) {
170 		btrfs_release_path(path);
171 		return ret;
172 	}
173 	leaf = path->nodes[0];
174 	header = btrfs_item_ptr(leaf, path->slots[0],
175 				struct btrfs_free_space_header);
176 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
177 	btrfs_set_free_space_key(leaf, header, &disk_key);
178 	btrfs_mark_buffer_dirty(leaf);
179 	btrfs_release_path(path);
180 
181 	return 0;
182 }
183 
184 int create_free_space_inode(struct btrfs_root *root,
185 			    struct btrfs_trans_handle *trans,
186 			    struct btrfs_block_group_cache *block_group,
187 			    struct btrfs_path *path)
188 {
189 	int ret;
190 	u64 ino;
191 
192 	ret = btrfs_find_free_objectid(root, &ino);
193 	if (ret < 0)
194 		return ret;
195 
196 	return __create_free_space_inode(root, trans, path, ino,
197 					 block_group->key.objectid);
198 }
199 
200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
201 				       struct btrfs_block_rsv *rsv)
202 {
203 	u64 needed_bytes;
204 	int ret;
205 
206 	/* 1 for slack space, 1 for updating the inode */
207 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
208 		btrfs_calc_trans_metadata_size(root, 1);
209 
210 	spin_lock(&rsv->lock);
211 	if (rsv->reserved < needed_bytes)
212 		ret = -ENOSPC;
213 	else
214 		ret = 0;
215 	spin_unlock(&rsv->lock);
216 	return 0;
217 }
218 
219 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
220 				    struct btrfs_trans_handle *trans,
221 				    struct btrfs_path *path,
222 				    struct inode *inode)
223 {
224 	loff_t oldsize;
225 	int ret = 0;
226 
227 	oldsize = i_size_read(inode);
228 	btrfs_i_size_write(inode, 0);
229 	truncate_pagecache(inode, oldsize, 0);
230 
231 	/*
232 	 * We don't need an orphan item because truncating the free space cache
233 	 * will never be split across transactions.
234 	 */
235 	ret = btrfs_truncate_inode_items(trans, root, inode,
236 					 0, BTRFS_EXTENT_DATA_KEY);
237 	if (ret) {
238 		btrfs_abort_transaction(trans, root, ret);
239 		return ret;
240 	}
241 
242 	ret = btrfs_update_inode(trans, root, inode);
243 	if (ret)
244 		btrfs_abort_transaction(trans, root, ret);
245 
246 	return ret;
247 }
248 
249 static int readahead_cache(struct inode *inode)
250 {
251 	struct file_ra_state *ra;
252 	unsigned long last_index;
253 
254 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
255 	if (!ra)
256 		return -ENOMEM;
257 
258 	file_ra_state_init(ra, inode->i_mapping);
259 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
260 
261 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
262 
263 	kfree(ra);
264 
265 	return 0;
266 }
267 
268 struct io_ctl {
269 	void *cur, *orig;
270 	struct page *page;
271 	struct page **pages;
272 	struct btrfs_root *root;
273 	unsigned long size;
274 	int index;
275 	int num_pages;
276 	unsigned check_crcs:1;
277 };
278 
279 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
280 		       struct btrfs_root *root)
281 {
282 	memset(io_ctl, 0, sizeof(struct io_ctl));
283 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
284 		PAGE_CACHE_SHIFT;
285 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
286 				GFP_NOFS);
287 	if (!io_ctl->pages)
288 		return -ENOMEM;
289 	io_ctl->root = root;
290 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
291 		io_ctl->check_crcs = 1;
292 	return 0;
293 }
294 
295 static void io_ctl_free(struct io_ctl *io_ctl)
296 {
297 	kfree(io_ctl->pages);
298 }
299 
300 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
301 {
302 	if (io_ctl->cur) {
303 		kunmap(io_ctl->page);
304 		io_ctl->cur = NULL;
305 		io_ctl->orig = NULL;
306 	}
307 }
308 
309 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
310 {
311 	BUG_ON(io_ctl->index >= io_ctl->num_pages);
312 	io_ctl->page = io_ctl->pages[io_ctl->index++];
313 	io_ctl->cur = kmap(io_ctl->page);
314 	io_ctl->orig = io_ctl->cur;
315 	io_ctl->size = PAGE_CACHE_SIZE;
316 	if (clear)
317 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
318 }
319 
320 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
321 {
322 	int i;
323 
324 	io_ctl_unmap_page(io_ctl);
325 
326 	for (i = 0; i < io_ctl->num_pages; i++) {
327 		if (io_ctl->pages[i]) {
328 			ClearPageChecked(io_ctl->pages[i]);
329 			unlock_page(io_ctl->pages[i]);
330 			page_cache_release(io_ctl->pages[i]);
331 		}
332 	}
333 }
334 
335 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
336 				int uptodate)
337 {
338 	struct page *page;
339 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
340 	int i;
341 
342 	for (i = 0; i < io_ctl->num_pages; i++) {
343 		page = find_or_create_page(inode->i_mapping, i, mask);
344 		if (!page) {
345 			io_ctl_drop_pages(io_ctl);
346 			return -ENOMEM;
347 		}
348 		io_ctl->pages[i] = page;
349 		if (uptodate && !PageUptodate(page)) {
350 			btrfs_readpage(NULL, page);
351 			lock_page(page);
352 			if (!PageUptodate(page)) {
353 				printk(KERN_ERR "btrfs: error reading free "
354 				       "space cache\n");
355 				io_ctl_drop_pages(io_ctl);
356 				return -EIO;
357 			}
358 		}
359 	}
360 
361 	for (i = 0; i < io_ctl->num_pages; i++) {
362 		clear_page_dirty_for_io(io_ctl->pages[i]);
363 		set_page_extent_mapped(io_ctl->pages[i]);
364 	}
365 
366 	return 0;
367 }
368 
369 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
370 {
371 	__le64 *val;
372 
373 	io_ctl_map_page(io_ctl, 1);
374 
375 	/*
376 	 * Skip the csum areas.  If we don't check crcs then we just have a
377 	 * 64bit chunk at the front of the first page.
378 	 */
379 	if (io_ctl->check_crcs) {
380 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
381 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
382 	} else {
383 		io_ctl->cur += sizeof(u64);
384 		io_ctl->size -= sizeof(u64) * 2;
385 	}
386 
387 	val = io_ctl->cur;
388 	*val = cpu_to_le64(generation);
389 	io_ctl->cur += sizeof(u64);
390 }
391 
392 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
393 {
394 	__le64 *gen;
395 
396 	/*
397 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
398 	 * chunk at the front of the first page.
399 	 */
400 	if (io_ctl->check_crcs) {
401 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
402 		io_ctl->size -= sizeof(u64) +
403 			(sizeof(u32) * io_ctl->num_pages);
404 	} else {
405 		io_ctl->cur += sizeof(u64);
406 		io_ctl->size -= sizeof(u64) * 2;
407 	}
408 
409 	gen = io_ctl->cur;
410 	if (le64_to_cpu(*gen) != generation) {
411 		printk_ratelimited(KERN_ERR "btrfs: space cache generation "
412 				   "(%Lu) does not match inode (%Lu)\n", *gen,
413 				   generation);
414 		io_ctl_unmap_page(io_ctl);
415 		return -EIO;
416 	}
417 	io_ctl->cur += sizeof(u64);
418 	return 0;
419 }
420 
421 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
422 {
423 	u32 *tmp;
424 	u32 crc = ~(u32)0;
425 	unsigned offset = 0;
426 
427 	if (!io_ctl->check_crcs) {
428 		io_ctl_unmap_page(io_ctl);
429 		return;
430 	}
431 
432 	if (index == 0)
433 		offset = sizeof(u32) * io_ctl->num_pages;
434 
435 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
436 			      PAGE_CACHE_SIZE - offset);
437 	btrfs_csum_final(crc, (char *)&crc);
438 	io_ctl_unmap_page(io_ctl);
439 	tmp = kmap(io_ctl->pages[0]);
440 	tmp += index;
441 	*tmp = crc;
442 	kunmap(io_ctl->pages[0]);
443 }
444 
445 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
446 {
447 	u32 *tmp, val;
448 	u32 crc = ~(u32)0;
449 	unsigned offset = 0;
450 
451 	if (!io_ctl->check_crcs) {
452 		io_ctl_map_page(io_ctl, 0);
453 		return 0;
454 	}
455 
456 	if (index == 0)
457 		offset = sizeof(u32) * io_ctl->num_pages;
458 
459 	tmp = kmap(io_ctl->pages[0]);
460 	tmp += index;
461 	val = *tmp;
462 	kunmap(io_ctl->pages[0]);
463 
464 	io_ctl_map_page(io_ctl, 0);
465 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
466 			      PAGE_CACHE_SIZE - offset);
467 	btrfs_csum_final(crc, (char *)&crc);
468 	if (val != crc) {
469 		printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
470 				   "space cache\n");
471 		io_ctl_unmap_page(io_ctl);
472 		return -EIO;
473 	}
474 
475 	return 0;
476 }
477 
478 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
479 			    void *bitmap)
480 {
481 	struct btrfs_free_space_entry *entry;
482 
483 	if (!io_ctl->cur)
484 		return -ENOSPC;
485 
486 	entry = io_ctl->cur;
487 	entry->offset = cpu_to_le64(offset);
488 	entry->bytes = cpu_to_le64(bytes);
489 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
490 		BTRFS_FREE_SPACE_EXTENT;
491 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
492 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
493 
494 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
495 		return 0;
496 
497 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
498 
499 	/* No more pages to map */
500 	if (io_ctl->index >= io_ctl->num_pages)
501 		return 0;
502 
503 	/* map the next page */
504 	io_ctl_map_page(io_ctl, 1);
505 	return 0;
506 }
507 
508 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
509 {
510 	if (!io_ctl->cur)
511 		return -ENOSPC;
512 
513 	/*
514 	 * If we aren't at the start of the current page, unmap this one and
515 	 * map the next one if there is any left.
516 	 */
517 	if (io_ctl->cur != io_ctl->orig) {
518 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
519 		if (io_ctl->index >= io_ctl->num_pages)
520 			return -ENOSPC;
521 		io_ctl_map_page(io_ctl, 0);
522 	}
523 
524 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
525 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
526 	if (io_ctl->index < io_ctl->num_pages)
527 		io_ctl_map_page(io_ctl, 0);
528 	return 0;
529 }
530 
531 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
532 {
533 	/*
534 	 * If we're not on the boundary we know we've modified the page and we
535 	 * need to crc the page.
536 	 */
537 	if (io_ctl->cur != io_ctl->orig)
538 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 	else
540 		io_ctl_unmap_page(io_ctl);
541 
542 	while (io_ctl->index < io_ctl->num_pages) {
543 		io_ctl_map_page(io_ctl, 1);
544 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
545 	}
546 }
547 
548 static int io_ctl_read_entry(struct io_ctl *io_ctl,
549 			    struct btrfs_free_space *entry, u8 *type)
550 {
551 	struct btrfs_free_space_entry *e;
552 	int ret;
553 
554 	if (!io_ctl->cur) {
555 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
556 		if (ret)
557 			return ret;
558 	}
559 
560 	e = io_ctl->cur;
561 	entry->offset = le64_to_cpu(e->offset);
562 	entry->bytes = le64_to_cpu(e->bytes);
563 	*type = e->type;
564 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
565 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
566 
567 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
568 		return 0;
569 
570 	io_ctl_unmap_page(io_ctl);
571 
572 	return 0;
573 }
574 
575 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
576 			      struct btrfs_free_space *entry)
577 {
578 	int ret;
579 
580 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
581 	if (ret)
582 		return ret;
583 
584 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
585 	io_ctl_unmap_page(io_ctl);
586 
587 	return 0;
588 }
589 
590 /*
591  * Since we attach pinned extents after the fact we can have contiguous sections
592  * of free space that are split up in entries.  This poses a problem with the
593  * tree logging stuff since it could have allocated across what appears to be 2
594  * entries since we would have merged the entries when adding the pinned extents
595  * back to the free space cache.  So run through the space cache that we just
596  * loaded and merge contiguous entries.  This will make the log replay stuff not
597  * blow up and it will make for nicer allocator behavior.
598  */
599 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
600 {
601 	struct btrfs_free_space *e, *prev = NULL;
602 	struct rb_node *n;
603 
604 again:
605 	spin_lock(&ctl->tree_lock);
606 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
607 		e = rb_entry(n, struct btrfs_free_space, offset_index);
608 		if (!prev)
609 			goto next;
610 		if (e->bitmap || prev->bitmap)
611 			goto next;
612 		if (prev->offset + prev->bytes == e->offset) {
613 			unlink_free_space(ctl, prev);
614 			unlink_free_space(ctl, e);
615 			prev->bytes += e->bytes;
616 			kmem_cache_free(btrfs_free_space_cachep, e);
617 			link_free_space(ctl, prev);
618 			prev = NULL;
619 			spin_unlock(&ctl->tree_lock);
620 			goto again;
621 		}
622 next:
623 		prev = e;
624 	}
625 	spin_unlock(&ctl->tree_lock);
626 }
627 
628 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
629 				   struct btrfs_free_space_ctl *ctl,
630 				   struct btrfs_path *path, u64 offset)
631 {
632 	struct btrfs_free_space_header *header;
633 	struct extent_buffer *leaf;
634 	struct io_ctl io_ctl;
635 	struct btrfs_key key;
636 	struct btrfs_free_space *e, *n;
637 	struct list_head bitmaps;
638 	u64 num_entries;
639 	u64 num_bitmaps;
640 	u64 generation;
641 	u8 type;
642 	int ret = 0;
643 
644 	INIT_LIST_HEAD(&bitmaps);
645 
646 	/* Nothing in the space cache, goodbye */
647 	if (!i_size_read(inode))
648 		return 0;
649 
650 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
651 	key.offset = offset;
652 	key.type = 0;
653 
654 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
655 	if (ret < 0)
656 		return 0;
657 	else if (ret > 0) {
658 		btrfs_release_path(path);
659 		return 0;
660 	}
661 
662 	ret = -1;
663 
664 	leaf = path->nodes[0];
665 	header = btrfs_item_ptr(leaf, path->slots[0],
666 				struct btrfs_free_space_header);
667 	num_entries = btrfs_free_space_entries(leaf, header);
668 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
669 	generation = btrfs_free_space_generation(leaf, header);
670 	btrfs_release_path(path);
671 
672 	if (BTRFS_I(inode)->generation != generation) {
673 		btrfs_err(root->fs_info,
674 			"free space inode generation (%llu) "
675 			"did not match free space cache generation (%llu)",
676 			(unsigned long long)BTRFS_I(inode)->generation,
677 			(unsigned long long)generation);
678 		return 0;
679 	}
680 
681 	if (!num_entries)
682 		return 0;
683 
684 	ret = io_ctl_init(&io_ctl, inode, root);
685 	if (ret)
686 		return ret;
687 
688 	ret = readahead_cache(inode);
689 	if (ret)
690 		goto out;
691 
692 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
693 	if (ret)
694 		goto out;
695 
696 	ret = io_ctl_check_crc(&io_ctl, 0);
697 	if (ret)
698 		goto free_cache;
699 
700 	ret = io_ctl_check_generation(&io_ctl, generation);
701 	if (ret)
702 		goto free_cache;
703 
704 	while (num_entries) {
705 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
706 				      GFP_NOFS);
707 		if (!e)
708 			goto free_cache;
709 
710 		ret = io_ctl_read_entry(&io_ctl, e, &type);
711 		if (ret) {
712 			kmem_cache_free(btrfs_free_space_cachep, e);
713 			goto free_cache;
714 		}
715 
716 		if (!e->bytes) {
717 			kmem_cache_free(btrfs_free_space_cachep, e);
718 			goto free_cache;
719 		}
720 
721 		if (type == BTRFS_FREE_SPACE_EXTENT) {
722 			spin_lock(&ctl->tree_lock);
723 			ret = link_free_space(ctl, e);
724 			spin_unlock(&ctl->tree_lock);
725 			if (ret) {
726 				btrfs_err(root->fs_info,
727 					"Duplicate entries in free space cache, dumping");
728 				kmem_cache_free(btrfs_free_space_cachep, e);
729 				goto free_cache;
730 			}
731 		} else {
732 			BUG_ON(!num_bitmaps);
733 			num_bitmaps--;
734 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
735 			if (!e->bitmap) {
736 				kmem_cache_free(
737 					btrfs_free_space_cachep, e);
738 				goto free_cache;
739 			}
740 			spin_lock(&ctl->tree_lock);
741 			ret = link_free_space(ctl, e);
742 			ctl->total_bitmaps++;
743 			ctl->op->recalc_thresholds(ctl);
744 			spin_unlock(&ctl->tree_lock);
745 			if (ret) {
746 				btrfs_err(root->fs_info,
747 					"Duplicate entries in free space cache, dumping");
748 				kmem_cache_free(btrfs_free_space_cachep, e);
749 				goto free_cache;
750 			}
751 			list_add_tail(&e->list, &bitmaps);
752 		}
753 
754 		num_entries--;
755 	}
756 
757 	io_ctl_unmap_page(&io_ctl);
758 
759 	/*
760 	 * We add the bitmaps at the end of the entries in order that
761 	 * the bitmap entries are added to the cache.
762 	 */
763 	list_for_each_entry_safe(e, n, &bitmaps, list) {
764 		list_del_init(&e->list);
765 		ret = io_ctl_read_bitmap(&io_ctl, e);
766 		if (ret)
767 			goto free_cache;
768 	}
769 
770 	io_ctl_drop_pages(&io_ctl);
771 	merge_space_tree(ctl);
772 	ret = 1;
773 out:
774 	io_ctl_free(&io_ctl);
775 	return ret;
776 free_cache:
777 	io_ctl_drop_pages(&io_ctl);
778 	__btrfs_remove_free_space_cache(ctl);
779 	goto out;
780 }
781 
782 int load_free_space_cache(struct btrfs_fs_info *fs_info,
783 			  struct btrfs_block_group_cache *block_group)
784 {
785 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
786 	struct btrfs_root *root = fs_info->tree_root;
787 	struct inode *inode;
788 	struct btrfs_path *path;
789 	int ret = 0;
790 	bool matched;
791 	u64 used = btrfs_block_group_used(&block_group->item);
792 
793 	/*
794 	 * If this block group has been marked to be cleared for one reason or
795 	 * another then we can't trust the on disk cache, so just return.
796 	 */
797 	spin_lock(&block_group->lock);
798 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
799 		spin_unlock(&block_group->lock);
800 		return 0;
801 	}
802 	spin_unlock(&block_group->lock);
803 
804 	path = btrfs_alloc_path();
805 	if (!path)
806 		return 0;
807 	path->search_commit_root = 1;
808 	path->skip_locking = 1;
809 
810 	inode = lookup_free_space_inode(root, block_group, path);
811 	if (IS_ERR(inode)) {
812 		btrfs_free_path(path);
813 		return 0;
814 	}
815 
816 	/* We may have converted the inode and made the cache invalid. */
817 	spin_lock(&block_group->lock);
818 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
819 		spin_unlock(&block_group->lock);
820 		btrfs_free_path(path);
821 		goto out;
822 	}
823 	spin_unlock(&block_group->lock);
824 
825 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
826 				      path, block_group->key.objectid);
827 	btrfs_free_path(path);
828 	if (ret <= 0)
829 		goto out;
830 
831 	spin_lock(&ctl->tree_lock);
832 	matched = (ctl->free_space == (block_group->key.offset - used -
833 				       block_group->bytes_super));
834 	spin_unlock(&ctl->tree_lock);
835 
836 	if (!matched) {
837 		__btrfs_remove_free_space_cache(ctl);
838 		btrfs_err(fs_info, "block group %llu has wrong amount of free space",
839 			block_group->key.objectid);
840 		ret = -1;
841 	}
842 out:
843 	if (ret < 0) {
844 		/* This cache is bogus, make sure it gets cleared */
845 		spin_lock(&block_group->lock);
846 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
847 		spin_unlock(&block_group->lock);
848 		ret = 0;
849 
850 		btrfs_err(fs_info, "failed to load free space cache for block group %llu",
851 			block_group->key.objectid);
852 	}
853 
854 	iput(inode);
855 	return ret;
856 }
857 
858 /**
859  * __btrfs_write_out_cache - write out cached info to an inode
860  * @root - the root the inode belongs to
861  * @ctl - the free space cache we are going to write out
862  * @block_group - the block_group for this cache if it belongs to a block_group
863  * @trans - the trans handle
864  * @path - the path to use
865  * @offset - the offset for the key we'll insert
866  *
867  * This function writes out a free space cache struct to disk for quick recovery
868  * on mount.  This will return 0 if it was successfull in writing the cache out,
869  * and -1 if it was not.
870  */
871 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
872 				   struct btrfs_free_space_ctl *ctl,
873 				   struct btrfs_block_group_cache *block_group,
874 				   struct btrfs_trans_handle *trans,
875 				   struct btrfs_path *path, u64 offset)
876 {
877 	struct btrfs_free_space_header *header;
878 	struct extent_buffer *leaf;
879 	struct rb_node *node;
880 	struct list_head *pos, *n;
881 	struct extent_state *cached_state = NULL;
882 	struct btrfs_free_cluster *cluster = NULL;
883 	struct extent_io_tree *unpin = NULL;
884 	struct io_ctl io_ctl;
885 	struct list_head bitmap_list;
886 	struct btrfs_key key;
887 	u64 start, extent_start, extent_end, len;
888 	int entries = 0;
889 	int bitmaps = 0;
890 	int ret;
891 	int err = -1;
892 
893 	INIT_LIST_HEAD(&bitmap_list);
894 
895 	if (!i_size_read(inode))
896 		return -1;
897 
898 	ret = io_ctl_init(&io_ctl, inode, root);
899 	if (ret)
900 		return -1;
901 
902 	/* Get the cluster for this block_group if it exists */
903 	if (block_group && !list_empty(&block_group->cluster_list))
904 		cluster = list_entry(block_group->cluster_list.next,
905 				     struct btrfs_free_cluster,
906 				     block_group_list);
907 
908 	/* Lock all pages first so we can lock the extent safely. */
909 	io_ctl_prepare_pages(&io_ctl, inode, 0);
910 
911 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
912 			 0, &cached_state);
913 
914 	node = rb_first(&ctl->free_space_offset);
915 	if (!node && cluster) {
916 		node = rb_first(&cluster->root);
917 		cluster = NULL;
918 	}
919 
920 	/* Make sure we can fit our crcs into the first page */
921 	if (io_ctl.check_crcs &&
922 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
923 		goto out_nospc;
924 
925 	io_ctl_set_generation(&io_ctl, trans->transid);
926 
927 	/* Write out the extent entries */
928 	while (node) {
929 		struct btrfs_free_space *e;
930 
931 		e = rb_entry(node, struct btrfs_free_space, offset_index);
932 		entries++;
933 
934 		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
935 				       e->bitmap);
936 		if (ret)
937 			goto out_nospc;
938 
939 		if (e->bitmap) {
940 			list_add_tail(&e->list, &bitmap_list);
941 			bitmaps++;
942 		}
943 		node = rb_next(node);
944 		if (!node && cluster) {
945 			node = rb_first(&cluster->root);
946 			cluster = NULL;
947 		}
948 	}
949 
950 	/*
951 	 * We want to add any pinned extents to our free space cache
952 	 * so we don't leak the space
953 	 */
954 
955 	/*
956 	 * We shouldn't have switched the pinned extents yet so this is the
957 	 * right one
958 	 */
959 	unpin = root->fs_info->pinned_extents;
960 
961 	if (block_group)
962 		start = block_group->key.objectid;
963 
964 	while (block_group && (start < block_group->key.objectid +
965 			       block_group->key.offset)) {
966 		ret = find_first_extent_bit(unpin, start,
967 					    &extent_start, &extent_end,
968 					    EXTENT_DIRTY, NULL);
969 		if (ret) {
970 			ret = 0;
971 			break;
972 		}
973 
974 		/* This pinned extent is out of our range */
975 		if (extent_start >= block_group->key.objectid +
976 		    block_group->key.offset)
977 			break;
978 
979 		extent_start = max(extent_start, start);
980 		extent_end = min(block_group->key.objectid +
981 				 block_group->key.offset, extent_end + 1);
982 		len = extent_end - extent_start;
983 
984 		entries++;
985 		ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
986 		if (ret)
987 			goto out_nospc;
988 
989 		start = extent_end;
990 	}
991 
992 	/* Write out the bitmaps */
993 	list_for_each_safe(pos, n, &bitmap_list) {
994 		struct btrfs_free_space *entry =
995 			list_entry(pos, struct btrfs_free_space, list);
996 
997 		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
998 		if (ret)
999 			goto out_nospc;
1000 		list_del_init(&entry->list);
1001 	}
1002 
1003 	/* Zero out the rest of the pages just to make sure */
1004 	io_ctl_zero_remaining_pages(&io_ctl);
1005 
1006 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1007 				0, i_size_read(inode), &cached_state);
1008 	io_ctl_drop_pages(&io_ctl);
1009 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1010 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1011 
1012 	if (ret)
1013 		goto out;
1014 
1015 
1016 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1017 
1018 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1019 	key.offset = offset;
1020 	key.type = 0;
1021 
1022 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1023 	if (ret < 0) {
1024 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1025 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1026 				 GFP_NOFS);
1027 		goto out;
1028 	}
1029 	leaf = path->nodes[0];
1030 	if (ret > 0) {
1031 		struct btrfs_key found_key;
1032 		BUG_ON(!path->slots[0]);
1033 		path->slots[0]--;
1034 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1035 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1036 		    found_key.offset != offset) {
1037 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1038 					 inode->i_size - 1,
1039 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1040 					 NULL, GFP_NOFS);
1041 			btrfs_release_path(path);
1042 			goto out;
1043 		}
1044 	}
1045 
1046 	BTRFS_I(inode)->generation = trans->transid;
1047 	header = btrfs_item_ptr(leaf, path->slots[0],
1048 				struct btrfs_free_space_header);
1049 	btrfs_set_free_space_entries(leaf, header, entries);
1050 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1051 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1052 	btrfs_mark_buffer_dirty(leaf);
1053 	btrfs_release_path(path);
1054 
1055 	err = 0;
1056 out:
1057 	io_ctl_free(&io_ctl);
1058 	if (err) {
1059 		invalidate_inode_pages2(inode->i_mapping);
1060 		BTRFS_I(inode)->generation = 0;
1061 	}
1062 	btrfs_update_inode(trans, root, inode);
1063 	return err;
1064 
1065 out_nospc:
1066 	list_for_each_safe(pos, n, &bitmap_list) {
1067 		struct btrfs_free_space *entry =
1068 			list_entry(pos, struct btrfs_free_space, list);
1069 		list_del_init(&entry->list);
1070 	}
1071 	io_ctl_drop_pages(&io_ctl);
1072 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1073 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1074 	goto out;
1075 }
1076 
1077 int btrfs_write_out_cache(struct btrfs_root *root,
1078 			  struct btrfs_trans_handle *trans,
1079 			  struct btrfs_block_group_cache *block_group,
1080 			  struct btrfs_path *path)
1081 {
1082 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1083 	struct inode *inode;
1084 	int ret = 0;
1085 
1086 	root = root->fs_info->tree_root;
1087 
1088 	spin_lock(&block_group->lock);
1089 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1090 		spin_unlock(&block_group->lock);
1091 		return 0;
1092 	}
1093 	spin_unlock(&block_group->lock);
1094 
1095 	inode = lookup_free_space_inode(root, block_group, path);
1096 	if (IS_ERR(inode))
1097 		return 0;
1098 
1099 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1100 				      path, block_group->key.objectid);
1101 	if (ret) {
1102 		spin_lock(&block_group->lock);
1103 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1104 		spin_unlock(&block_group->lock);
1105 		ret = 0;
1106 #ifdef DEBUG
1107 		btrfs_err(root->fs_info,
1108 			"failed to write free space cache for block group %llu",
1109 			block_group->key.objectid);
1110 #endif
1111 	}
1112 
1113 	iput(inode);
1114 	return ret;
1115 }
1116 
1117 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1118 					  u64 offset)
1119 {
1120 	BUG_ON(offset < bitmap_start);
1121 	offset -= bitmap_start;
1122 	return (unsigned long)(div_u64(offset, unit));
1123 }
1124 
1125 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1126 {
1127 	return (unsigned long)(div_u64(bytes, unit));
1128 }
1129 
1130 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1131 				   u64 offset)
1132 {
1133 	u64 bitmap_start;
1134 	u64 bytes_per_bitmap;
1135 
1136 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1137 	bitmap_start = offset - ctl->start;
1138 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1139 	bitmap_start *= bytes_per_bitmap;
1140 	bitmap_start += ctl->start;
1141 
1142 	return bitmap_start;
1143 }
1144 
1145 static int tree_insert_offset(struct rb_root *root, u64 offset,
1146 			      struct rb_node *node, int bitmap)
1147 {
1148 	struct rb_node **p = &root->rb_node;
1149 	struct rb_node *parent = NULL;
1150 	struct btrfs_free_space *info;
1151 
1152 	while (*p) {
1153 		parent = *p;
1154 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1155 
1156 		if (offset < info->offset) {
1157 			p = &(*p)->rb_left;
1158 		} else if (offset > info->offset) {
1159 			p = &(*p)->rb_right;
1160 		} else {
1161 			/*
1162 			 * we could have a bitmap entry and an extent entry
1163 			 * share the same offset.  If this is the case, we want
1164 			 * the extent entry to always be found first if we do a
1165 			 * linear search through the tree, since we want to have
1166 			 * the quickest allocation time, and allocating from an
1167 			 * extent is faster than allocating from a bitmap.  So
1168 			 * if we're inserting a bitmap and we find an entry at
1169 			 * this offset, we want to go right, or after this entry
1170 			 * logically.  If we are inserting an extent and we've
1171 			 * found a bitmap, we want to go left, or before
1172 			 * logically.
1173 			 */
1174 			if (bitmap) {
1175 				if (info->bitmap) {
1176 					WARN_ON_ONCE(1);
1177 					return -EEXIST;
1178 				}
1179 				p = &(*p)->rb_right;
1180 			} else {
1181 				if (!info->bitmap) {
1182 					WARN_ON_ONCE(1);
1183 					return -EEXIST;
1184 				}
1185 				p = &(*p)->rb_left;
1186 			}
1187 		}
1188 	}
1189 
1190 	rb_link_node(node, parent, p);
1191 	rb_insert_color(node, root);
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  * searches the tree for the given offset.
1198  *
1199  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1200  * want a section that has at least bytes size and comes at or after the given
1201  * offset.
1202  */
1203 static struct btrfs_free_space *
1204 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1205 		   u64 offset, int bitmap_only, int fuzzy)
1206 {
1207 	struct rb_node *n = ctl->free_space_offset.rb_node;
1208 	struct btrfs_free_space *entry, *prev = NULL;
1209 
1210 	/* find entry that is closest to the 'offset' */
1211 	while (1) {
1212 		if (!n) {
1213 			entry = NULL;
1214 			break;
1215 		}
1216 
1217 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1218 		prev = entry;
1219 
1220 		if (offset < entry->offset)
1221 			n = n->rb_left;
1222 		else if (offset > entry->offset)
1223 			n = n->rb_right;
1224 		else
1225 			break;
1226 	}
1227 
1228 	if (bitmap_only) {
1229 		if (!entry)
1230 			return NULL;
1231 		if (entry->bitmap)
1232 			return entry;
1233 
1234 		/*
1235 		 * bitmap entry and extent entry may share same offset,
1236 		 * in that case, bitmap entry comes after extent entry.
1237 		 */
1238 		n = rb_next(n);
1239 		if (!n)
1240 			return NULL;
1241 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1242 		if (entry->offset != offset)
1243 			return NULL;
1244 
1245 		WARN_ON(!entry->bitmap);
1246 		return entry;
1247 	} else if (entry) {
1248 		if (entry->bitmap) {
1249 			/*
1250 			 * if previous extent entry covers the offset,
1251 			 * we should return it instead of the bitmap entry
1252 			 */
1253 			n = rb_prev(&entry->offset_index);
1254 			if (n) {
1255 				prev = rb_entry(n, struct btrfs_free_space,
1256 						offset_index);
1257 				if (!prev->bitmap &&
1258 				    prev->offset + prev->bytes > offset)
1259 					entry = prev;
1260 			}
1261 		}
1262 		return entry;
1263 	}
1264 
1265 	if (!prev)
1266 		return NULL;
1267 
1268 	/* find last entry before the 'offset' */
1269 	entry = prev;
1270 	if (entry->offset > offset) {
1271 		n = rb_prev(&entry->offset_index);
1272 		if (n) {
1273 			entry = rb_entry(n, struct btrfs_free_space,
1274 					offset_index);
1275 			BUG_ON(entry->offset > offset);
1276 		} else {
1277 			if (fuzzy)
1278 				return entry;
1279 			else
1280 				return NULL;
1281 		}
1282 	}
1283 
1284 	if (entry->bitmap) {
1285 		n = rb_prev(&entry->offset_index);
1286 		if (n) {
1287 			prev = rb_entry(n, struct btrfs_free_space,
1288 					offset_index);
1289 			if (!prev->bitmap &&
1290 			    prev->offset + prev->bytes > offset)
1291 				return prev;
1292 		}
1293 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1294 			return entry;
1295 	} else if (entry->offset + entry->bytes > offset)
1296 		return entry;
1297 
1298 	if (!fuzzy)
1299 		return NULL;
1300 
1301 	while (1) {
1302 		if (entry->bitmap) {
1303 			if (entry->offset + BITS_PER_BITMAP *
1304 			    ctl->unit > offset)
1305 				break;
1306 		} else {
1307 			if (entry->offset + entry->bytes > offset)
1308 				break;
1309 		}
1310 
1311 		n = rb_next(&entry->offset_index);
1312 		if (!n)
1313 			return NULL;
1314 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1315 	}
1316 	return entry;
1317 }
1318 
1319 static inline void
1320 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1321 		    struct btrfs_free_space *info)
1322 {
1323 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1324 	ctl->free_extents--;
1325 }
1326 
1327 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1328 			      struct btrfs_free_space *info)
1329 {
1330 	__unlink_free_space(ctl, info);
1331 	ctl->free_space -= info->bytes;
1332 }
1333 
1334 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1335 			   struct btrfs_free_space *info)
1336 {
1337 	int ret = 0;
1338 
1339 	BUG_ON(!info->bitmap && !info->bytes);
1340 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1341 				 &info->offset_index, (info->bitmap != NULL));
1342 	if (ret)
1343 		return ret;
1344 
1345 	ctl->free_space += info->bytes;
1346 	ctl->free_extents++;
1347 	return ret;
1348 }
1349 
1350 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1351 {
1352 	struct btrfs_block_group_cache *block_group = ctl->private;
1353 	u64 max_bytes;
1354 	u64 bitmap_bytes;
1355 	u64 extent_bytes;
1356 	u64 size = block_group->key.offset;
1357 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1358 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1359 
1360 	max_bitmaps = max(max_bitmaps, 1);
1361 
1362 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1363 
1364 	/*
1365 	 * The goal is to keep the total amount of memory used per 1gb of space
1366 	 * at or below 32k, so we need to adjust how much memory we allow to be
1367 	 * used by extent based free space tracking
1368 	 */
1369 	if (size < 1024 * 1024 * 1024)
1370 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1371 	else
1372 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1373 			div64_u64(size, 1024 * 1024 * 1024);
1374 
1375 	/*
1376 	 * we want to account for 1 more bitmap than what we have so we can make
1377 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1378 	 * we add more bitmaps.
1379 	 */
1380 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1381 
1382 	if (bitmap_bytes >= max_bytes) {
1383 		ctl->extents_thresh = 0;
1384 		return;
1385 	}
1386 
1387 	/*
1388 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1389 	 * bytes we can have, or whatever is less than that.
1390 	 */
1391 	extent_bytes = max_bytes - bitmap_bytes;
1392 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1393 
1394 	ctl->extents_thresh =
1395 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1396 }
1397 
1398 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1399 				       struct btrfs_free_space *info,
1400 				       u64 offset, u64 bytes)
1401 {
1402 	unsigned long start, count;
1403 
1404 	start = offset_to_bit(info->offset, ctl->unit, offset);
1405 	count = bytes_to_bits(bytes, ctl->unit);
1406 	BUG_ON(start + count > BITS_PER_BITMAP);
1407 
1408 	bitmap_clear(info->bitmap, start, count);
1409 
1410 	info->bytes -= bytes;
1411 }
1412 
1413 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1414 			      struct btrfs_free_space *info, u64 offset,
1415 			      u64 bytes)
1416 {
1417 	__bitmap_clear_bits(ctl, info, offset, bytes);
1418 	ctl->free_space -= bytes;
1419 }
1420 
1421 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1422 			    struct btrfs_free_space *info, u64 offset,
1423 			    u64 bytes)
1424 {
1425 	unsigned long start, count;
1426 
1427 	start = offset_to_bit(info->offset, ctl->unit, offset);
1428 	count = bytes_to_bits(bytes, ctl->unit);
1429 	BUG_ON(start + count > BITS_PER_BITMAP);
1430 
1431 	bitmap_set(info->bitmap, start, count);
1432 
1433 	info->bytes += bytes;
1434 	ctl->free_space += bytes;
1435 }
1436 
1437 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1438 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1439 			 u64 *bytes)
1440 {
1441 	unsigned long found_bits = 0;
1442 	unsigned long bits, i;
1443 	unsigned long next_zero;
1444 
1445 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1446 			  max_t(u64, *offset, bitmap_info->offset));
1447 	bits = bytes_to_bits(*bytes, ctl->unit);
1448 
1449 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1450 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1451 					       BITS_PER_BITMAP, i);
1452 		if ((next_zero - i) >= bits) {
1453 			found_bits = next_zero - i;
1454 			break;
1455 		}
1456 		i = next_zero;
1457 	}
1458 
1459 	if (found_bits) {
1460 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1461 		*bytes = (u64)(found_bits) * ctl->unit;
1462 		return 0;
1463 	}
1464 
1465 	return -1;
1466 }
1467 
1468 static struct btrfs_free_space *
1469 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1470 		unsigned long align)
1471 {
1472 	struct btrfs_free_space *entry;
1473 	struct rb_node *node;
1474 	u64 ctl_off;
1475 	u64 tmp;
1476 	u64 align_off;
1477 	int ret;
1478 
1479 	if (!ctl->free_space_offset.rb_node)
1480 		return NULL;
1481 
1482 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1483 	if (!entry)
1484 		return NULL;
1485 
1486 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1487 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1488 		if (entry->bytes < *bytes)
1489 			continue;
1490 
1491 		/* make sure the space returned is big enough
1492 		 * to match our requested alignment
1493 		 */
1494 		if (*bytes >= align) {
1495 			ctl_off = entry->offset - ctl->start;
1496 			tmp = ctl_off + align - 1;;
1497 			do_div(tmp, align);
1498 			tmp = tmp * align + ctl->start;
1499 			align_off = tmp - entry->offset;
1500 		} else {
1501 			align_off = 0;
1502 			tmp = entry->offset;
1503 		}
1504 
1505 		if (entry->bytes < *bytes + align_off)
1506 			continue;
1507 
1508 		if (entry->bitmap) {
1509 			ret = search_bitmap(ctl, entry, &tmp, bytes);
1510 			if (!ret) {
1511 				*offset = tmp;
1512 				return entry;
1513 			}
1514 			continue;
1515 		}
1516 
1517 		*offset = tmp;
1518 		*bytes = entry->bytes - align_off;
1519 		return entry;
1520 	}
1521 
1522 	return NULL;
1523 }
1524 
1525 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1526 			   struct btrfs_free_space *info, u64 offset)
1527 {
1528 	info->offset = offset_to_bitmap(ctl, offset);
1529 	info->bytes = 0;
1530 	INIT_LIST_HEAD(&info->list);
1531 	link_free_space(ctl, info);
1532 	ctl->total_bitmaps++;
1533 
1534 	ctl->op->recalc_thresholds(ctl);
1535 }
1536 
1537 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1538 			struct btrfs_free_space *bitmap_info)
1539 {
1540 	unlink_free_space(ctl, bitmap_info);
1541 	kfree(bitmap_info->bitmap);
1542 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1543 	ctl->total_bitmaps--;
1544 	ctl->op->recalc_thresholds(ctl);
1545 }
1546 
1547 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1548 			      struct btrfs_free_space *bitmap_info,
1549 			      u64 *offset, u64 *bytes)
1550 {
1551 	u64 end;
1552 	u64 search_start, search_bytes;
1553 	int ret;
1554 
1555 again:
1556 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1557 
1558 	/*
1559 	 * We need to search for bits in this bitmap.  We could only cover some
1560 	 * of the extent in this bitmap thanks to how we add space, so we need
1561 	 * to search for as much as it as we can and clear that amount, and then
1562 	 * go searching for the next bit.
1563 	 */
1564 	search_start = *offset;
1565 	search_bytes = ctl->unit;
1566 	search_bytes = min(search_bytes, end - search_start + 1);
1567 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1568 	if (ret < 0 || search_start != *offset)
1569 		return -EINVAL;
1570 
1571 	/* We may have found more bits than what we need */
1572 	search_bytes = min(search_bytes, *bytes);
1573 
1574 	/* Cannot clear past the end of the bitmap */
1575 	search_bytes = min(search_bytes, end - search_start + 1);
1576 
1577 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1578 	*offset += search_bytes;
1579 	*bytes -= search_bytes;
1580 
1581 	if (*bytes) {
1582 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1583 		if (!bitmap_info->bytes)
1584 			free_bitmap(ctl, bitmap_info);
1585 
1586 		/*
1587 		 * no entry after this bitmap, but we still have bytes to
1588 		 * remove, so something has gone wrong.
1589 		 */
1590 		if (!next)
1591 			return -EINVAL;
1592 
1593 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1594 				       offset_index);
1595 
1596 		/*
1597 		 * if the next entry isn't a bitmap we need to return to let the
1598 		 * extent stuff do its work.
1599 		 */
1600 		if (!bitmap_info->bitmap)
1601 			return -EAGAIN;
1602 
1603 		/*
1604 		 * Ok the next item is a bitmap, but it may not actually hold
1605 		 * the information for the rest of this free space stuff, so
1606 		 * look for it, and if we don't find it return so we can try
1607 		 * everything over again.
1608 		 */
1609 		search_start = *offset;
1610 		search_bytes = ctl->unit;
1611 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1612 				    &search_bytes);
1613 		if (ret < 0 || search_start != *offset)
1614 			return -EAGAIN;
1615 
1616 		goto again;
1617 	} else if (!bitmap_info->bytes)
1618 		free_bitmap(ctl, bitmap_info);
1619 
1620 	return 0;
1621 }
1622 
1623 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1624 			       struct btrfs_free_space *info, u64 offset,
1625 			       u64 bytes)
1626 {
1627 	u64 bytes_to_set = 0;
1628 	u64 end;
1629 
1630 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1631 
1632 	bytes_to_set = min(end - offset, bytes);
1633 
1634 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1635 
1636 	return bytes_to_set;
1637 
1638 }
1639 
1640 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1641 		      struct btrfs_free_space *info)
1642 {
1643 	struct btrfs_block_group_cache *block_group = ctl->private;
1644 
1645 	/*
1646 	 * If we are below the extents threshold then we can add this as an
1647 	 * extent, and don't have to deal with the bitmap
1648 	 */
1649 	if (ctl->free_extents < ctl->extents_thresh) {
1650 		/*
1651 		 * If this block group has some small extents we don't want to
1652 		 * use up all of our free slots in the cache with them, we want
1653 		 * to reserve them to larger extents, however if we have plent
1654 		 * of cache left then go ahead an dadd them, no sense in adding
1655 		 * the overhead of a bitmap if we don't have to.
1656 		 */
1657 		if (info->bytes <= block_group->sectorsize * 4) {
1658 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1659 				return false;
1660 		} else {
1661 			return false;
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * The original block groups from mkfs can be really small, like 8
1667 	 * megabytes, so don't bother with a bitmap for those entries.  However
1668 	 * some block groups can be smaller than what a bitmap would cover but
1669 	 * are still large enough that they could overflow the 32k memory limit,
1670 	 * so allow those block groups to still be allowed to have a bitmap
1671 	 * entry.
1672 	 */
1673 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1674 		return false;
1675 
1676 	return true;
1677 }
1678 
1679 static struct btrfs_free_space_op free_space_op = {
1680 	.recalc_thresholds	= recalculate_thresholds,
1681 	.use_bitmap		= use_bitmap,
1682 };
1683 
1684 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1685 			      struct btrfs_free_space *info)
1686 {
1687 	struct btrfs_free_space *bitmap_info;
1688 	struct btrfs_block_group_cache *block_group = NULL;
1689 	int added = 0;
1690 	u64 bytes, offset, bytes_added;
1691 	int ret;
1692 
1693 	bytes = info->bytes;
1694 	offset = info->offset;
1695 
1696 	if (!ctl->op->use_bitmap(ctl, info))
1697 		return 0;
1698 
1699 	if (ctl->op == &free_space_op)
1700 		block_group = ctl->private;
1701 again:
1702 	/*
1703 	 * Since we link bitmaps right into the cluster we need to see if we
1704 	 * have a cluster here, and if so and it has our bitmap we need to add
1705 	 * the free space to that bitmap.
1706 	 */
1707 	if (block_group && !list_empty(&block_group->cluster_list)) {
1708 		struct btrfs_free_cluster *cluster;
1709 		struct rb_node *node;
1710 		struct btrfs_free_space *entry;
1711 
1712 		cluster = list_entry(block_group->cluster_list.next,
1713 				     struct btrfs_free_cluster,
1714 				     block_group_list);
1715 		spin_lock(&cluster->lock);
1716 		node = rb_first(&cluster->root);
1717 		if (!node) {
1718 			spin_unlock(&cluster->lock);
1719 			goto no_cluster_bitmap;
1720 		}
1721 
1722 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1723 		if (!entry->bitmap) {
1724 			spin_unlock(&cluster->lock);
1725 			goto no_cluster_bitmap;
1726 		}
1727 
1728 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1729 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1730 							  offset, bytes);
1731 			bytes -= bytes_added;
1732 			offset += bytes_added;
1733 		}
1734 		spin_unlock(&cluster->lock);
1735 		if (!bytes) {
1736 			ret = 1;
1737 			goto out;
1738 		}
1739 	}
1740 
1741 no_cluster_bitmap:
1742 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1743 					 1, 0);
1744 	if (!bitmap_info) {
1745 		BUG_ON(added);
1746 		goto new_bitmap;
1747 	}
1748 
1749 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1750 	bytes -= bytes_added;
1751 	offset += bytes_added;
1752 	added = 0;
1753 
1754 	if (!bytes) {
1755 		ret = 1;
1756 		goto out;
1757 	} else
1758 		goto again;
1759 
1760 new_bitmap:
1761 	if (info && info->bitmap) {
1762 		add_new_bitmap(ctl, info, offset);
1763 		added = 1;
1764 		info = NULL;
1765 		goto again;
1766 	} else {
1767 		spin_unlock(&ctl->tree_lock);
1768 
1769 		/* no pre-allocated info, allocate a new one */
1770 		if (!info) {
1771 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1772 						 GFP_NOFS);
1773 			if (!info) {
1774 				spin_lock(&ctl->tree_lock);
1775 				ret = -ENOMEM;
1776 				goto out;
1777 			}
1778 		}
1779 
1780 		/* allocate the bitmap */
1781 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1782 		spin_lock(&ctl->tree_lock);
1783 		if (!info->bitmap) {
1784 			ret = -ENOMEM;
1785 			goto out;
1786 		}
1787 		goto again;
1788 	}
1789 
1790 out:
1791 	if (info) {
1792 		if (info->bitmap)
1793 			kfree(info->bitmap);
1794 		kmem_cache_free(btrfs_free_space_cachep, info);
1795 	}
1796 
1797 	return ret;
1798 }
1799 
1800 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1801 			  struct btrfs_free_space *info, bool update_stat)
1802 {
1803 	struct btrfs_free_space *left_info;
1804 	struct btrfs_free_space *right_info;
1805 	bool merged = false;
1806 	u64 offset = info->offset;
1807 	u64 bytes = info->bytes;
1808 
1809 	/*
1810 	 * first we want to see if there is free space adjacent to the range we
1811 	 * are adding, if there is remove that struct and add a new one to
1812 	 * cover the entire range
1813 	 */
1814 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1815 	if (right_info && rb_prev(&right_info->offset_index))
1816 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1817 				     struct btrfs_free_space, offset_index);
1818 	else
1819 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1820 
1821 	if (right_info && !right_info->bitmap) {
1822 		if (update_stat)
1823 			unlink_free_space(ctl, right_info);
1824 		else
1825 			__unlink_free_space(ctl, right_info);
1826 		info->bytes += right_info->bytes;
1827 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1828 		merged = true;
1829 	}
1830 
1831 	if (left_info && !left_info->bitmap &&
1832 	    left_info->offset + left_info->bytes == offset) {
1833 		if (update_stat)
1834 			unlink_free_space(ctl, left_info);
1835 		else
1836 			__unlink_free_space(ctl, left_info);
1837 		info->offset = left_info->offset;
1838 		info->bytes += left_info->bytes;
1839 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1840 		merged = true;
1841 	}
1842 
1843 	return merged;
1844 }
1845 
1846 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1847 			   u64 offset, u64 bytes)
1848 {
1849 	struct btrfs_free_space *info;
1850 	int ret = 0;
1851 
1852 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1853 	if (!info)
1854 		return -ENOMEM;
1855 
1856 	info->offset = offset;
1857 	info->bytes = bytes;
1858 
1859 	spin_lock(&ctl->tree_lock);
1860 
1861 	if (try_merge_free_space(ctl, info, true))
1862 		goto link;
1863 
1864 	/*
1865 	 * There was no extent directly to the left or right of this new
1866 	 * extent then we know we're going to have to allocate a new extent, so
1867 	 * before we do that see if we need to drop this into a bitmap
1868 	 */
1869 	ret = insert_into_bitmap(ctl, info);
1870 	if (ret < 0) {
1871 		goto out;
1872 	} else if (ret) {
1873 		ret = 0;
1874 		goto out;
1875 	}
1876 link:
1877 	ret = link_free_space(ctl, info);
1878 	if (ret)
1879 		kmem_cache_free(btrfs_free_space_cachep, info);
1880 out:
1881 	spin_unlock(&ctl->tree_lock);
1882 
1883 	if (ret) {
1884 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1885 		BUG_ON(ret == -EEXIST);
1886 	}
1887 
1888 	return ret;
1889 }
1890 
1891 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1892 			    u64 offset, u64 bytes)
1893 {
1894 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1895 	struct btrfs_free_space *info;
1896 	int ret;
1897 	bool re_search = false;
1898 
1899 	spin_lock(&ctl->tree_lock);
1900 
1901 again:
1902 	ret = 0;
1903 	if (!bytes)
1904 		goto out_lock;
1905 
1906 	info = tree_search_offset(ctl, offset, 0, 0);
1907 	if (!info) {
1908 		/*
1909 		 * oops didn't find an extent that matched the space we wanted
1910 		 * to remove, look for a bitmap instead
1911 		 */
1912 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1913 					  1, 0);
1914 		if (!info) {
1915 			/*
1916 			 * If we found a partial bit of our free space in a
1917 			 * bitmap but then couldn't find the other part this may
1918 			 * be a problem, so WARN about it.
1919 			 */
1920 			WARN_ON(re_search);
1921 			goto out_lock;
1922 		}
1923 	}
1924 
1925 	re_search = false;
1926 	if (!info->bitmap) {
1927 		unlink_free_space(ctl, info);
1928 		if (offset == info->offset) {
1929 			u64 to_free = min(bytes, info->bytes);
1930 
1931 			info->bytes -= to_free;
1932 			info->offset += to_free;
1933 			if (info->bytes) {
1934 				ret = link_free_space(ctl, info);
1935 				WARN_ON(ret);
1936 			} else {
1937 				kmem_cache_free(btrfs_free_space_cachep, info);
1938 			}
1939 
1940 			offset += to_free;
1941 			bytes -= to_free;
1942 			goto again;
1943 		} else {
1944 			u64 old_end = info->bytes + info->offset;
1945 
1946 			info->bytes = offset - info->offset;
1947 			ret = link_free_space(ctl, info);
1948 			WARN_ON(ret);
1949 			if (ret)
1950 				goto out_lock;
1951 
1952 			/* Not enough bytes in this entry to satisfy us */
1953 			if (old_end < offset + bytes) {
1954 				bytes -= old_end - offset;
1955 				offset = old_end;
1956 				goto again;
1957 			} else if (old_end == offset + bytes) {
1958 				/* all done */
1959 				goto out_lock;
1960 			}
1961 			spin_unlock(&ctl->tree_lock);
1962 
1963 			ret = btrfs_add_free_space(block_group, offset + bytes,
1964 						   old_end - (offset + bytes));
1965 			WARN_ON(ret);
1966 			goto out;
1967 		}
1968 	}
1969 
1970 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1971 	if (ret == -EAGAIN) {
1972 		re_search = true;
1973 		goto again;
1974 	}
1975 out_lock:
1976 	spin_unlock(&ctl->tree_lock);
1977 out:
1978 	return ret;
1979 }
1980 
1981 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1982 			   u64 bytes)
1983 {
1984 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1985 	struct btrfs_free_space *info;
1986 	struct rb_node *n;
1987 	int count = 0;
1988 
1989 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1990 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1991 		if (info->bytes >= bytes && !block_group->ro)
1992 			count++;
1993 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1994 		       (unsigned long long)info->offset,
1995 		       (unsigned long long)info->bytes,
1996 		       (info->bitmap) ? "yes" : "no");
1997 	}
1998 	printk(KERN_INFO "block group has cluster?: %s\n",
1999 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2000 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
2001 	       "\n", count);
2002 }
2003 
2004 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2005 {
2006 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2007 
2008 	spin_lock_init(&ctl->tree_lock);
2009 	ctl->unit = block_group->sectorsize;
2010 	ctl->start = block_group->key.objectid;
2011 	ctl->private = block_group;
2012 	ctl->op = &free_space_op;
2013 
2014 	/*
2015 	 * we only want to have 32k of ram per block group for keeping
2016 	 * track of free space, and if we pass 1/2 of that we want to
2017 	 * start converting things over to using bitmaps
2018 	 */
2019 	ctl->extents_thresh = ((1024 * 32) / 2) /
2020 				sizeof(struct btrfs_free_space);
2021 }
2022 
2023 /*
2024  * for a given cluster, put all of its extents back into the free
2025  * space cache.  If the block group passed doesn't match the block group
2026  * pointed to by the cluster, someone else raced in and freed the
2027  * cluster already.  In that case, we just return without changing anything
2028  */
2029 static int
2030 __btrfs_return_cluster_to_free_space(
2031 			     struct btrfs_block_group_cache *block_group,
2032 			     struct btrfs_free_cluster *cluster)
2033 {
2034 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2035 	struct btrfs_free_space *entry;
2036 	struct rb_node *node;
2037 
2038 	spin_lock(&cluster->lock);
2039 	if (cluster->block_group != block_group)
2040 		goto out;
2041 
2042 	cluster->block_group = NULL;
2043 	cluster->window_start = 0;
2044 	list_del_init(&cluster->block_group_list);
2045 
2046 	node = rb_first(&cluster->root);
2047 	while (node) {
2048 		bool bitmap;
2049 
2050 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2051 		node = rb_next(&entry->offset_index);
2052 		rb_erase(&entry->offset_index, &cluster->root);
2053 
2054 		bitmap = (entry->bitmap != NULL);
2055 		if (!bitmap)
2056 			try_merge_free_space(ctl, entry, false);
2057 		tree_insert_offset(&ctl->free_space_offset,
2058 				   entry->offset, &entry->offset_index, bitmap);
2059 	}
2060 	cluster->root = RB_ROOT;
2061 
2062 out:
2063 	spin_unlock(&cluster->lock);
2064 	btrfs_put_block_group(block_group);
2065 	return 0;
2066 }
2067 
2068 static void __btrfs_remove_free_space_cache_locked(
2069 				struct btrfs_free_space_ctl *ctl)
2070 {
2071 	struct btrfs_free_space *info;
2072 	struct rb_node *node;
2073 
2074 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2075 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2076 		if (!info->bitmap) {
2077 			unlink_free_space(ctl, info);
2078 			kmem_cache_free(btrfs_free_space_cachep, info);
2079 		} else {
2080 			free_bitmap(ctl, info);
2081 		}
2082 		if (need_resched()) {
2083 			spin_unlock(&ctl->tree_lock);
2084 			cond_resched();
2085 			spin_lock(&ctl->tree_lock);
2086 		}
2087 	}
2088 }
2089 
2090 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2091 {
2092 	spin_lock(&ctl->tree_lock);
2093 	__btrfs_remove_free_space_cache_locked(ctl);
2094 	spin_unlock(&ctl->tree_lock);
2095 }
2096 
2097 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2098 {
2099 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2100 	struct btrfs_free_cluster *cluster;
2101 	struct list_head *head;
2102 
2103 	spin_lock(&ctl->tree_lock);
2104 	while ((head = block_group->cluster_list.next) !=
2105 	       &block_group->cluster_list) {
2106 		cluster = list_entry(head, struct btrfs_free_cluster,
2107 				     block_group_list);
2108 
2109 		WARN_ON(cluster->block_group != block_group);
2110 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2111 		if (need_resched()) {
2112 			spin_unlock(&ctl->tree_lock);
2113 			cond_resched();
2114 			spin_lock(&ctl->tree_lock);
2115 		}
2116 	}
2117 	__btrfs_remove_free_space_cache_locked(ctl);
2118 	spin_unlock(&ctl->tree_lock);
2119 
2120 }
2121 
2122 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2123 			       u64 offset, u64 bytes, u64 empty_size)
2124 {
2125 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2126 	struct btrfs_free_space *entry = NULL;
2127 	u64 bytes_search = bytes + empty_size;
2128 	u64 ret = 0;
2129 	u64 align_gap = 0;
2130 	u64 align_gap_len = 0;
2131 
2132 	spin_lock(&ctl->tree_lock);
2133 	entry = find_free_space(ctl, &offset, &bytes_search,
2134 				block_group->full_stripe_len);
2135 	if (!entry)
2136 		goto out;
2137 
2138 	ret = offset;
2139 	if (entry->bitmap) {
2140 		bitmap_clear_bits(ctl, entry, offset, bytes);
2141 		if (!entry->bytes)
2142 			free_bitmap(ctl, entry);
2143 	} else {
2144 
2145 		unlink_free_space(ctl, entry);
2146 		align_gap_len = offset - entry->offset;
2147 		align_gap = entry->offset;
2148 
2149 		entry->offset = offset + bytes;
2150 		WARN_ON(entry->bytes < bytes + align_gap_len);
2151 
2152 		entry->bytes -= bytes + align_gap_len;
2153 		if (!entry->bytes)
2154 			kmem_cache_free(btrfs_free_space_cachep, entry);
2155 		else
2156 			link_free_space(ctl, entry);
2157 	}
2158 
2159 out:
2160 	spin_unlock(&ctl->tree_lock);
2161 
2162 	if (align_gap_len)
2163 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2164 	return ret;
2165 }
2166 
2167 /*
2168  * given a cluster, put all of its extents back into the free space
2169  * cache.  If a block group is passed, this function will only free
2170  * a cluster that belongs to the passed block group.
2171  *
2172  * Otherwise, it'll get a reference on the block group pointed to by the
2173  * cluster and remove the cluster from it.
2174  */
2175 int btrfs_return_cluster_to_free_space(
2176 			       struct btrfs_block_group_cache *block_group,
2177 			       struct btrfs_free_cluster *cluster)
2178 {
2179 	struct btrfs_free_space_ctl *ctl;
2180 	int ret;
2181 
2182 	/* first, get a safe pointer to the block group */
2183 	spin_lock(&cluster->lock);
2184 	if (!block_group) {
2185 		block_group = cluster->block_group;
2186 		if (!block_group) {
2187 			spin_unlock(&cluster->lock);
2188 			return 0;
2189 		}
2190 	} else if (cluster->block_group != block_group) {
2191 		/* someone else has already freed it don't redo their work */
2192 		spin_unlock(&cluster->lock);
2193 		return 0;
2194 	}
2195 	atomic_inc(&block_group->count);
2196 	spin_unlock(&cluster->lock);
2197 
2198 	ctl = block_group->free_space_ctl;
2199 
2200 	/* now return any extents the cluster had on it */
2201 	spin_lock(&ctl->tree_lock);
2202 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2203 	spin_unlock(&ctl->tree_lock);
2204 
2205 	/* finally drop our ref */
2206 	btrfs_put_block_group(block_group);
2207 	return ret;
2208 }
2209 
2210 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2211 				   struct btrfs_free_cluster *cluster,
2212 				   struct btrfs_free_space *entry,
2213 				   u64 bytes, u64 min_start)
2214 {
2215 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2216 	int err;
2217 	u64 search_start = cluster->window_start;
2218 	u64 search_bytes = bytes;
2219 	u64 ret = 0;
2220 
2221 	search_start = min_start;
2222 	search_bytes = bytes;
2223 
2224 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2225 	if (err)
2226 		return 0;
2227 
2228 	ret = search_start;
2229 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2230 
2231 	return ret;
2232 }
2233 
2234 /*
2235  * given a cluster, try to allocate 'bytes' from it, returns 0
2236  * if it couldn't find anything suitably large, or a logical disk offset
2237  * if things worked out
2238  */
2239 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2240 			     struct btrfs_free_cluster *cluster, u64 bytes,
2241 			     u64 min_start)
2242 {
2243 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2244 	struct btrfs_free_space *entry = NULL;
2245 	struct rb_node *node;
2246 	u64 ret = 0;
2247 
2248 	spin_lock(&cluster->lock);
2249 	if (bytes > cluster->max_size)
2250 		goto out;
2251 
2252 	if (cluster->block_group != block_group)
2253 		goto out;
2254 
2255 	node = rb_first(&cluster->root);
2256 	if (!node)
2257 		goto out;
2258 
2259 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2260 	while(1) {
2261 		if (entry->bytes < bytes ||
2262 		    (!entry->bitmap && entry->offset < min_start)) {
2263 			node = rb_next(&entry->offset_index);
2264 			if (!node)
2265 				break;
2266 			entry = rb_entry(node, struct btrfs_free_space,
2267 					 offset_index);
2268 			continue;
2269 		}
2270 
2271 		if (entry->bitmap) {
2272 			ret = btrfs_alloc_from_bitmap(block_group,
2273 						      cluster, entry, bytes,
2274 						      cluster->window_start);
2275 			if (ret == 0) {
2276 				node = rb_next(&entry->offset_index);
2277 				if (!node)
2278 					break;
2279 				entry = rb_entry(node, struct btrfs_free_space,
2280 						 offset_index);
2281 				continue;
2282 			}
2283 			cluster->window_start += bytes;
2284 		} else {
2285 			ret = entry->offset;
2286 
2287 			entry->offset += bytes;
2288 			entry->bytes -= bytes;
2289 		}
2290 
2291 		if (entry->bytes == 0)
2292 			rb_erase(&entry->offset_index, &cluster->root);
2293 		break;
2294 	}
2295 out:
2296 	spin_unlock(&cluster->lock);
2297 
2298 	if (!ret)
2299 		return 0;
2300 
2301 	spin_lock(&ctl->tree_lock);
2302 
2303 	ctl->free_space -= bytes;
2304 	if (entry->bytes == 0) {
2305 		ctl->free_extents--;
2306 		if (entry->bitmap) {
2307 			kfree(entry->bitmap);
2308 			ctl->total_bitmaps--;
2309 			ctl->op->recalc_thresholds(ctl);
2310 		}
2311 		kmem_cache_free(btrfs_free_space_cachep, entry);
2312 	}
2313 
2314 	spin_unlock(&ctl->tree_lock);
2315 
2316 	return ret;
2317 }
2318 
2319 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2320 				struct btrfs_free_space *entry,
2321 				struct btrfs_free_cluster *cluster,
2322 				u64 offset, u64 bytes,
2323 				u64 cont1_bytes, u64 min_bytes)
2324 {
2325 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2326 	unsigned long next_zero;
2327 	unsigned long i;
2328 	unsigned long want_bits;
2329 	unsigned long min_bits;
2330 	unsigned long found_bits;
2331 	unsigned long start = 0;
2332 	unsigned long total_found = 0;
2333 	int ret;
2334 
2335 	i = offset_to_bit(entry->offset, ctl->unit,
2336 			  max_t(u64, offset, entry->offset));
2337 	want_bits = bytes_to_bits(bytes, ctl->unit);
2338 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2339 
2340 again:
2341 	found_bits = 0;
2342 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2343 		next_zero = find_next_zero_bit(entry->bitmap,
2344 					       BITS_PER_BITMAP, i);
2345 		if (next_zero - i >= min_bits) {
2346 			found_bits = next_zero - i;
2347 			break;
2348 		}
2349 		i = next_zero;
2350 	}
2351 
2352 	if (!found_bits)
2353 		return -ENOSPC;
2354 
2355 	if (!total_found) {
2356 		start = i;
2357 		cluster->max_size = 0;
2358 	}
2359 
2360 	total_found += found_bits;
2361 
2362 	if (cluster->max_size < found_bits * ctl->unit)
2363 		cluster->max_size = found_bits * ctl->unit;
2364 
2365 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2366 		i = next_zero + 1;
2367 		goto again;
2368 	}
2369 
2370 	cluster->window_start = start * ctl->unit + entry->offset;
2371 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2372 	ret = tree_insert_offset(&cluster->root, entry->offset,
2373 				 &entry->offset_index, 1);
2374 	BUG_ON(ret); /* -EEXIST; Logic error */
2375 
2376 	trace_btrfs_setup_cluster(block_group, cluster,
2377 				  total_found * ctl->unit, 1);
2378 	return 0;
2379 }
2380 
2381 /*
2382  * This searches the block group for just extents to fill the cluster with.
2383  * Try to find a cluster with at least bytes total bytes, at least one
2384  * extent of cont1_bytes, and other clusters of at least min_bytes.
2385  */
2386 static noinline int
2387 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2388 			struct btrfs_free_cluster *cluster,
2389 			struct list_head *bitmaps, u64 offset, u64 bytes,
2390 			u64 cont1_bytes, u64 min_bytes)
2391 {
2392 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2393 	struct btrfs_free_space *first = NULL;
2394 	struct btrfs_free_space *entry = NULL;
2395 	struct btrfs_free_space *last;
2396 	struct rb_node *node;
2397 	u64 window_start;
2398 	u64 window_free;
2399 	u64 max_extent;
2400 	u64 total_size = 0;
2401 
2402 	entry = tree_search_offset(ctl, offset, 0, 1);
2403 	if (!entry)
2404 		return -ENOSPC;
2405 
2406 	/*
2407 	 * We don't want bitmaps, so just move along until we find a normal
2408 	 * extent entry.
2409 	 */
2410 	while (entry->bitmap || entry->bytes < min_bytes) {
2411 		if (entry->bitmap && list_empty(&entry->list))
2412 			list_add_tail(&entry->list, bitmaps);
2413 		node = rb_next(&entry->offset_index);
2414 		if (!node)
2415 			return -ENOSPC;
2416 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2417 	}
2418 
2419 	window_start = entry->offset;
2420 	window_free = entry->bytes;
2421 	max_extent = entry->bytes;
2422 	first = entry;
2423 	last = entry;
2424 
2425 	for (node = rb_next(&entry->offset_index); node;
2426 	     node = rb_next(&entry->offset_index)) {
2427 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2428 
2429 		if (entry->bitmap) {
2430 			if (list_empty(&entry->list))
2431 				list_add_tail(&entry->list, bitmaps);
2432 			continue;
2433 		}
2434 
2435 		if (entry->bytes < min_bytes)
2436 			continue;
2437 
2438 		last = entry;
2439 		window_free += entry->bytes;
2440 		if (entry->bytes > max_extent)
2441 			max_extent = entry->bytes;
2442 	}
2443 
2444 	if (window_free < bytes || max_extent < cont1_bytes)
2445 		return -ENOSPC;
2446 
2447 	cluster->window_start = first->offset;
2448 
2449 	node = &first->offset_index;
2450 
2451 	/*
2452 	 * now we've found our entries, pull them out of the free space
2453 	 * cache and put them into the cluster rbtree
2454 	 */
2455 	do {
2456 		int ret;
2457 
2458 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2459 		node = rb_next(&entry->offset_index);
2460 		if (entry->bitmap || entry->bytes < min_bytes)
2461 			continue;
2462 
2463 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2464 		ret = tree_insert_offset(&cluster->root, entry->offset,
2465 					 &entry->offset_index, 0);
2466 		total_size += entry->bytes;
2467 		BUG_ON(ret); /* -EEXIST; Logic error */
2468 	} while (node && entry != last);
2469 
2470 	cluster->max_size = max_extent;
2471 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2472 	return 0;
2473 }
2474 
2475 /*
2476  * This specifically looks for bitmaps that may work in the cluster, we assume
2477  * that we have already failed to find extents that will work.
2478  */
2479 static noinline int
2480 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2481 		     struct btrfs_free_cluster *cluster,
2482 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2483 		     u64 cont1_bytes, u64 min_bytes)
2484 {
2485 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2486 	struct btrfs_free_space *entry;
2487 	int ret = -ENOSPC;
2488 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2489 
2490 	if (ctl->total_bitmaps == 0)
2491 		return -ENOSPC;
2492 
2493 	/*
2494 	 * The bitmap that covers offset won't be in the list unless offset
2495 	 * is just its start offset.
2496 	 */
2497 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2498 	if (entry->offset != bitmap_offset) {
2499 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2500 		if (entry && list_empty(&entry->list))
2501 			list_add(&entry->list, bitmaps);
2502 	}
2503 
2504 	list_for_each_entry(entry, bitmaps, list) {
2505 		if (entry->bytes < bytes)
2506 			continue;
2507 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2508 					   bytes, cont1_bytes, min_bytes);
2509 		if (!ret)
2510 			return 0;
2511 	}
2512 
2513 	/*
2514 	 * The bitmaps list has all the bitmaps that record free space
2515 	 * starting after offset, so no more search is required.
2516 	 */
2517 	return -ENOSPC;
2518 }
2519 
2520 /*
2521  * here we try to find a cluster of blocks in a block group.  The goal
2522  * is to find at least bytes+empty_size.
2523  * We might not find them all in one contiguous area.
2524  *
2525  * returns zero and sets up cluster if things worked out, otherwise
2526  * it returns -enospc
2527  */
2528 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2529 			     struct btrfs_root *root,
2530 			     struct btrfs_block_group_cache *block_group,
2531 			     struct btrfs_free_cluster *cluster,
2532 			     u64 offset, u64 bytes, u64 empty_size)
2533 {
2534 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2535 	struct btrfs_free_space *entry, *tmp;
2536 	LIST_HEAD(bitmaps);
2537 	u64 min_bytes;
2538 	u64 cont1_bytes;
2539 	int ret;
2540 
2541 	/*
2542 	 * Choose the minimum extent size we'll require for this
2543 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2544 	 * For metadata, allow allocates with smaller extents.  For
2545 	 * data, keep it dense.
2546 	 */
2547 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2548 		cont1_bytes = min_bytes = bytes + empty_size;
2549 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2550 		cont1_bytes = bytes;
2551 		min_bytes = block_group->sectorsize;
2552 	} else {
2553 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2554 		min_bytes = block_group->sectorsize;
2555 	}
2556 
2557 	spin_lock(&ctl->tree_lock);
2558 
2559 	/*
2560 	 * If we know we don't have enough space to make a cluster don't even
2561 	 * bother doing all the work to try and find one.
2562 	 */
2563 	if (ctl->free_space < bytes) {
2564 		spin_unlock(&ctl->tree_lock);
2565 		return -ENOSPC;
2566 	}
2567 
2568 	spin_lock(&cluster->lock);
2569 
2570 	/* someone already found a cluster, hooray */
2571 	if (cluster->block_group) {
2572 		ret = 0;
2573 		goto out;
2574 	}
2575 
2576 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2577 				 min_bytes);
2578 
2579 	INIT_LIST_HEAD(&bitmaps);
2580 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2581 				      bytes + empty_size,
2582 				      cont1_bytes, min_bytes);
2583 	if (ret)
2584 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2585 					   offset, bytes + empty_size,
2586 					   cont1_bytes, min_bytes);
2587 
2588 	/* Clear our temporary list */
2589 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2590 		list_del_init(&entry->list);
2591 
2592 	if (!ret) {
2593 		atomic_inc(&block_group->count);
2594 		list_add_tail(&cluster->block_group_list,
2595 			      &block_group->cluster_list);
2596 		cluster->block_group = block_group;
2597 	} else {
2598 		trace_btrfs_failed_cluster_setup(block_group);
2599 	}
2600 out:
2601 	spin_unlock(&cluster->lock);
2602 	spin_unlock(&ctl->tree_lock);
2603 
2604 	return ret;
2605 }
2606 
2607 /*
2608  * simple code to zero out a cluster
2609  */
2610 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2611 {
2612 	spin_lock_init(&cluster->lock);
2613 	spin_lock_init(&cluster->refill_lock);
2614 	cluster->root = RB_ROOT;
2615 	cluster->max_size = 0;
2616 	INIT_LIST_HEAD(&cluster->block_group_list);
2617 	cluster->block_group = NULL;
2618 }
2619 
2620 static int do_trimming(struct btrfs_block_group_cache *block_group,
2621 		       u64 *total_trimmed, u64 start, u64 bytes,
2622 		       u64 reserved_start, u64 reserved_bytes)
2623 {
2624 	struct btrfs_space_info *space_info = block_group->space_info;
2625 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2626 	int ret;
2627 	int update = 0;
2628 	u64 trimmed = 0;
2629 
2630 	spin_lock(&space_info->lock);
2631 	spin_lock(&block_group->lock);
2632 	if (!block_group->ro) {
2633 		block_group->reserved += reserved_bytes;
2634 		space_info->bytes_reserved += reserved_bytes;
2635 		update = 1;
2636 	}
2637 	spin_unlock(&block_group->lock);
2638 	spin_unlock(&space_info->lock);
2639 
2640 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2641 					 start, bytes, &trimmed);
2642 	if (!ret)
2643 		*total_trimmed += trimmed;
2644 
2645 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2646 
2647 	if (update) {
2648 		spin_lock(&space_info->lock);
2649 		spin_lock(&block_group->lock);
2650 		if (block_group->ro)
2651 			space_info->bytes_readonly += reserved_bytes;
2652 		block_group->reserved -= reserved_bytes;
2653 		space_info->bytes_reserved -= reserved_bytes;
2654 		spin_unlock(&space_info->lock);
2655 		spin_unlock(&block_group->lock);
2656 	}
2657 
2658 	return ret;
2659 }
2660 
2661 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2662 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2663 {
2664 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2665 	struct btrfs_free_space *entry;
2666 	struct rb_node *node;
2667 	int ret = 0;
2668 	u64 extent_start;
2669 	u64 extent_bytes;
2670 	u64 bytes;
2671 
2672 	while (start < end) {
2673 		spin_lock(&ctl->tree_lock);
2674 
2675 		if (ctl->free_space < minlen) {
2676 			spin_unlock(&ctl->tree_lock);
2677 			break;
2678 		}
2679 
2680 		entry = tree_search_offset(ctl, start, 0, 1);
2681 		if (!entry) {
2682 			spin_unlock(&ctl->tree_lock);
2683 			break;
2684 		}
2685 
2686 		/* skip bitmaps */
2687 		while (entry->bitmap) {
2688 			node = rb_next(&entry->offset_index);
2689 			if (!node) {
2690 				spin_unlock(&ctl->tree_lock);
2691 				goto out;
2692 			}
2693 			entry = rb_entry(node, struct btrfs_free_space,
2694 					 offset_index);
2695 		}
2696 
2697 		if (entry->offset >= end) {
2698 			spin_unlock(&ctl->tree_lock);
2699 			break;
2700 		}
2701 
2702 		extent_start = entry->offset;
2703 		extent_bytes = entry->bytes;
2704 		start = max(start, extent_start);
2705 		bytes = min(extent_start + extent_bytes, end) - start;
2706 		if (bytes < minlen) {
2707 			spin_unlock(&ctl->tree_lock);
2708 			goto next;
2709 		}
2710 
2711 		unlink_free_space(ctl, entry);
2712 		kmem_cache_free(btrfs_free_space_cachep, entry);
2713 
2714 		spin_unlock(&ctl->tree_lock);
2715 
2716 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2717 				  extent_start, extent_bytes);
2718 		if (ret)
2719 			break;
2720 next:
2721 		start += bytes;
2722 
2723 		if (fatal_signal_pending(current)) {
2724 			ret = -ERESTARTSYS;
2725 			break;
2726 		}
2727 
2728 		cond_resched();
2729 	}
2730 out:
2731 	return ret;
2732 }
2733 
2734 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2735 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2736 {
2737 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2738 	struct btrfs_free_space *entry;
2739 	int ret = 0;
2740 	int ret2;
2741 	u64 bytes;
2742 	u64 offset = offset_to_bitmap(ctl, start);
2743 
2744 	while (offset < end) {
2745 		bool next_bitmap = false;
2746 
2747 		spin_lock(&ctl->tree_lock);
2748 
2749 		if (ctl->free_space < minlen) {
2750 			spin_unlock(&ctl->tree_lock);
2751 			break;
2752 		}
2753 
2754 		entry = tree_search_offset(ctl, offset, 1, 0);
2755 		if (!entry) {
2756 			spin_unlock(&ctl->tree_lock);
2757 			next_bitmap = true;
2758 			goto next;
2759 		}
2760 
2761 		bytes = minlen;
2762 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2763 		if (ret2 || start >= end) {
2764 			spin_unlock(&ctl->tree_lock);
2765 			next_bitmap = true;
2766 			goto next;
2767 		}
2768 
2769 		bytes = min(bytes, end - start);
2770 		if (bytes < minlen) {
2771 			spin_unlock(&ctl->tree_lock);
2772 			goto next;
2773 		}
2774 
2775 		bitmap_clear_bits(ctl, entry, start, bytes);
2776 		if (entry->bytes == 0)
2777 			free_bitmap(ctl, entry);
2778 
2779 		spin_unlock(&ctl->tree_lock);
2780 
2781 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2782 				  start, bytes);
2783 		if (ret)
2784 			break;
2785 next:
2786 		if (next_bitmap) {
2787 			offset += BITS_PER_BITMAP * ctl->unit;
2788 		} else {
2789 			start += bytes;
2790 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2791 				offset += BITS_PER_BITMAP * ctl->unit;
2792 		}
2793 
2794 		if (fatal_signal_pending(current)) {
2795 			ret = -ERESTARTSYS;
2796 			break;
2797 		}
2798 
2799 		cond_resched();
2800 	}
2801 
2802 	return ret;
2803 }
2804 
2805 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2806 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2807 {
2808 	int ret;
2809 
2810 	*trimmed = 0;
2811 
2812 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2813 	if (ret)
2814 		return ret;
2815 
2816 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2817 
2818 	return ret;
2819 }
2820 
2821 /*
2822  * Find the left-most item in the cache tree, and then return the
2823  * smallest inode number in the item.
2824  *
2825  * Note: the returned inode number may not be the smallest one in
2826  * the tree, if the left-most item is a bitmap.
2827  */
2828 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2829 {
2830 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2831 	struct btrfs_free_space *entry = NULL;
2832 	u64 ino = 0;
2833 
2834 	spin_lock(&ctl->tree_lock);
2835 
2836 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2837 		goto out;
2838 
2839 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2840 			 struct btrfs_free_space, offset_index);
2841 
2842 	if (!entry->bitmap) {
2843 		ino = entry->offset;
2844 
2845 		unlink_free_space(ctl, entry);
2846 		entry->offset++;
2847 		entry->bytes--;
2848 		if (!entry->bytes)
2849 			kmem_cache_free(btrfs_free_space_cachep, entry);
2850 		else
2851 			link_free_space(ctl, entry);
2852 	} else {
2853 		u64 offset = 0;
2854 		u64 count = 1;
2855 		int ret;
2856 
2857 		ret = search_bitmap(ctl, entry, &offset, &count);
2858 		/* Logic error; Should be empty if it can't find anything */
2859 		BUG_ON(ret);
2860 
2861 		ino = offset;
2862 		bitmap_clear_bits(ctl, entry, offset, 1);
2863 		if (entry->bytes == 0)
2864 			free_bitmap(ctl, entry);
2865 	}
2866 out:
2867 	spin_unlock(&ctl->tree_lock);
2868 
2869 	return ino;
2870 }
2871 
2872 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2873 				    struct btrfs_path *path)
2874 {
2875 	struct inode *inode = NULL;
2876 
2877 	spin_lock(&root->cache_lock);
2878 	if (root->cache_inode)
2879 		inode = igrab(root->cache_inode);
2880 	spin_unlock(&root->cache_lock);
2881 	if (inode)
2882 		return inode;
2883 
2884 	inode = __lookup_free_space_inode(root, path, 0);
2885 	if (IS_ERR(inode))
2886 		return inode;
2887 
2888 	spin_lock(&root->cache_lock);
2889 	if (!btrfs_fs_closing(root->fs_info))
2890 		root->cache_inode = igrab(inode);
2891 	spin_unlock(&root->cache_lock);
2892 
2893 	return inode;
2894 }
2895 
2896 int create_free_ino_inode(struct btrfs_root *root,
2897 			  struct btrfs_trans_handle *trans,
2898 			  struct btrfs_path *path)
2899 {
2900 	return __create_free_space_inode(root, trans, path,
2901 					 BTRFS_FREE_INO_OBJECTID, 0);
2902 }
2903 
2904 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2905 {
2906 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2907 	struct btrfs_path *path;
2908 	struct inode *inode;
2909 	int ret = 0;
2910 	u64 root_gen = btrfs_root_generation(&root->root_item);
2911 
2912 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2913 		return 0;
2914 
2915 	/*
2916 	 * If we're unmounting then just return, since this does a search on the
2917 	 * normal root and not the commit root and we could deadlock.
2918 	 */
2919 	if (btrfs_fs_closing(fs_info))
2920 		return 0;
2921 
2922 	path = btrfs_alloc_path();
2923 	if (!path)
2924 		return 0;
2925 
2926 	inode = lookup_free_ino_inode(root, path);
2927 	if (IS_ERR(inode))
2928 		goto out;
2929 
2930 	if (root_gen != BTRFS_I(inode)->generation)
2931 		goto out_put;
2932 
2933 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2934 
2935 	if (ret < 0)
2936 		btrfs_err(fs_info,
2937 			"failed to load free ino cache for root %llu",
2938 			root->root_key.objectid);
2939 out_put:
2940 	iput(inode);
2941 out:
2942 	btrfs_free_path(path);
2943 	return ret;
2944 }
2945 
2946 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2947 			      struct btrfs_trans_handle *trans,
2948 			      struct btrfs_path *path)
2949 {
2950 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2951 	struct inode *inode;
2952 	int ret;
2953 
2954 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2955 		return 0;
2956 
2957 	inode = lookup_free_ino_inode(root, path);
2958 	if (IS_ERR(inode))
2959 		return 0;
2960 
2961 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2962 	if (ret) {
2963 		btrfs_delalloc_release_metadata(inode, inode->i_size);
2964 #ifdef DEBUG
2965 		btrfs_err(root->fs_info,
2966 			"failed to write free ino cache for root %llu",
2967 			root->root_key.objectid);
2968 #endif
2969 	}
2970 
2971 	iput(inode);
2972 	return ret;
2973 }
2974 
2975 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2976 static struct btrfs_block_group_cache *init_test_block_group(void)
2977 {
2978 	struct btrfs_block_group_cache *cache;
2979 
2980 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2981 	if (!cache)
2982 		return NULL;
2983 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2984 					GFP_NOFS);
2985 	if (!cache->free_space_ctl) {
2986 		kfree(cache);
2987 		return NULL;
2988 	}
2989 
2990 	cache->key.objectid = 0;
2991 	cache->key.offset = 1024 * 1024 * 1024;
2992 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2993 	cache->sectorsize = 4096;
2994 
2995 	spin_lock_init(&cache->lock);
2996 	INIT_LIST_HEAD(&cache->list);
2997 	INIT_LIST_HEAD(&cache->cluster_list);
2998 	INIT_LIST_HEAD(&cache->new_bg_list);
2999 
3000 	btrfs_init_free_space_ctl(cache);
3001 
3002 	return cache;
3003 }
3004 
3005 /*
3006  * Checks to see if the given range is in the free space cache.  This is really
3007  * just used to check the absence of space, so if there is free space in the
3008  * range at all we will return 1.
3009  */
3010 static int check_exists(struct btrfs_block_group_cache *cache, u64 offset,
3011 			u64 bytes)
3012 {
3013 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3014 	struct btrfs_free_space *info;
3015 	int ret = 0;
3016 
3017 	spin_lock(&ctl->tree_lock);
3018 	info = tree_search_offset(ctl, offset, 0, 0);
3019 	if (!info) {
3020 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3021 					  1, 0);
3022 		if (!info)
3023 			goto out;
3024 	}
3025 
3026 have_info:
3027 	if (info->bitmap) {
3028 		u64 bit_off, bit_bytes;
3029 		struct rb_node *n;
3030 		struct btrfs_free_space *tmp;
3031 
3032 		bit_off = offset;
3033 		bit_bytes = ctl->unit;
3034 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3035 		if (!ret) {
3036 			if (bit_off == offset) {
3037 				ret = 1;
3038 				goto out;
3039 			} else if (bit_off > offset &&
3040 				   offset + bytes > bit_off) {
3041 				ret = 1;
3042 				goto out;
3043 			}
3044 		}
3045 
3046 		n = rb_prev(&info->offset_index);
3047 		while (n) {
3048 			tmp = rb_entry(n, struct btrfs_free_space,
3049 				       offset_index);
3050 			if (tmp->offset + tmp->bytes < offset)
3051 				break;
3052 			if (offset + bytes < tmp->offset) {
3053 				n = rb_prev(&info->offset_index);
3054 				continue;
3055 			}
3056 			info = tmp;
3057 			goto have_info;
3058 		}
3059 
3060 		n = rb_next(&info->offset_index);
3061 		while (n) {
3062 			tmp = rb_entry(n, struct btrfs_free_space,
3063 				       offset_index);
3064 			if (offset + bytes < tmp->offset)
3065 				break;
3066 			if (tmp->offset + tmp->bytes < offset) {
3067 				n = rb_next(&info->offset_index);
3068 				continue;
3069 			}
3070 			info = tmp;
3071 			goto have_info;
3072 		}
3073 
3074 		goto out;
3075 	}
3076 
3077 	if (info->offset == offset) {
3078 		ret = 1;
3079 		goto out;
3080 	}
3081 
3082 	if (offset > info->offset && offset < info->offset + info->bytes)
3083 		ret = 1;
3084 out:
3085 	spin_unlock(&ctl->tree_lock);
3086 	return ret;
3087 }
3088 
3089 /*
3090  * Use this if you need to make a bitmap or extent entry specifically, it
3091  * doesn't do any of the merging that add_free_space does, this acts a lot like
3092  * how the free space cache loading stuff works, so you can get really weird
3093  * configurations.
3094  */
3095 static int add_free_space_entry(struct btrfs_block_group_cache *cache,
3096 				u64 offset, u64 bytes, bool bitmap)
3097 {
3098 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3099 	struct btrfs_free_space *info = NULL, *bitmap_info;
3100 	void *map = NULL;
3101 	u64 bytes_added;
3102 	int ret;
3103 
3104 again:
3105 	if (!info) {
3106 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3107 		if (!info)
3108 			return -ENOMEM;
3109 	}
3110 
3111 	if (!bitmap) {
3112 		spin_lock(&ctl->tree_lock);
3113 		info->offset = offset;
3114 		info->bytes = bytes;
3115 		ret = link_free_space(ctl, info);
3116 		spin_unlock(&ctl->tree_lock);
3117 		if (ret)
3118 			kmem_cache_free(btrfs_free_space_cachep, info);
3119 		return ret;
3120 	}
3121 
3122 	if (!map) {
3123 		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3124 		if (!map) {
3125 			kmem_cache_free(btrfs_free_space_cachep, info);
3126 			return -ENOMEM;
3127 		}
3128 	}
3129 
3130 	spin_lock(&ctl->tree_lock);
3131 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3132 					 1, 0);
3133 	if (!bitmap_info) {
3134 		info->bitmap = map;
3135 		map = NULL;
3136 		add_new_bitmap(ctl, info, offset);
3137 		bitmap_info = info;
3138 	}
3139 
3140 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3141 	bytes -= bytes_added;
3142 	offset += bytes_added;
3143 	spin_unlock(&ctl->tree_lock);
3144 
3145 	if (bytes)
3146 		goto again;
3147 
3148 	if (map)
3149 		kfree(map);
3150 	return 0;
3151 }
3152 
3153 /*
3154  * This test just does basic sanity checking, making sure we can add an exten
3155  * entry and remove space from either end and the middle, and make sure we can
3156  * remove space that covers adjacent extent entries.
3157  */
3158 static int test_extents(struct btrfs_block_group_cache *cache)
3159 {
3160 	int ret = 0;
3161 
3162 	printk(KERN_ERR "Running extent only tests\n");
3163 
3164 	/* First just make sure we can remove an entire entry */
3165 	ret = btrfs_add_free_space(cache, 0, 4 * 1024 * 1024);
3166 	if (ret) {
3167 		printk(KERN_ERR "Error adding initial extents %d\n", ret);
3168 		return ret;
3169 	}
3170 
3171 	ret = btrfs_remove_free_space(cache, 0, 4 * 1024 * 1024);
3172 	if (ret) {
3173 		printk(KERN_ERR "Error removing extent %d\n", ret);
3174 		return ret;
3175 	}
3176 
3177 	if (check_exists(cache, 0, 4 * 1024 * 1024)) {
3178 		printk(KERN_ERR "Full remove left some lingering space\n");
3179 		return -1;
3180 	}
3181 
3182 	/* Ok edge and middle cases now */
3183 	ret = btrfs_add_free_space(cache, 0, 4 * 1024 * 1024);
3184 	if (ret) {
3185 		printk(KERN_ERR "Error adding half extent %d\n", ret);
3186 		return ret;
3187 	}
3188 
3189 	ret = btrfs_remove_free_space(cache, 3 * 1024 * 1024, 1 * 1024 * 1024);
3190 	if (ret) {
3191 		printk(KERN_ERR "Error removing tail end %d\n", ret);
3192 		return ret;
3193 	}
3194 
3195 	ret = btrfs_remove_free_space(cache, 0, 1 * 1024 * 1024);
3196 	if (ret) {
3197 		printk(KERN_ERR "Error removing front end %d\n", ret);
3198 		return ret;
3199 	}
3200 
3201 	ret = btrfs_remove_free_space(cache, 2 * 1024 * 1024, 4096);
3202 	if (ret) {
3203 		printk(KERN_ERR "Error removing middle peice %d\n", ret);
3204 		return ret;
3205 	}
3206 
3207 	if (check_exists(cache, 0, 1 * 1024 * 1024)) {
3208 		printk(KERN_ERR "Still have space at the front\n");
3209 		return -1;
3210 	}
3211 
3212 	if (check_exists(cache, 2 * 1024 * 1024, 4096)) {
3213 		printk(KERN_ERR "Still have space in the middle\n");
3214 		return -1;
3215 	}
3216 
3217 	if (check_exists(cache, 3 * 1024 * 1024, 1 * 1024 * 1024)) {
3218 		printk(KERN_ERR "Still have space at the end\n");
3219 		return -1;
3220 	}
3221 
3222 	/* Cleanup */
3223 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
3224 
3225 	return 0;
3226 }
3227 
3228 static int test_bitmaps(struct btrfs_block_group_cache *cache)
3229 {
3230 	u64 next_bitmap_offset;
3231 	int ret;
3232 
3233 	printk(KERN_ERR "Running bitmap only tests\n");
3234 
3235 	ret = add_free_space_entry(cache, 0, 4 * 1024 * 1024, 1);
3236 	if (ret) {
3237 		printk(KERN_ERR "Couldn't create a bitmap entry %d\n", ret);
3238 		return ret;
3239 	}
3240 
3241 	ret = btrfs_remove_free_space(cache, 0, 4 * 1024 * 1024);
3242 	if (ret) {
3243 		printk(KERN_ERR "Error removing bitmap full range %d\n", ret);
3244 		return ret;
3245 	}
3246 
3247 	if (check_exists(cache, 0, 4 * 1024 * 1024)) {
3248 		printk(KERN_ERR "Left some space in bitmap\n");
3249 		return -1;
3250 	}
3251 
3252 	ret = add_free_space_entry(cache, 0, 4 * 1024 * 1024, 1);
3253 	if (ret) {
3254 		printk(KERN_ERR "Couldn't add to our bitmap entry %d\n", ret);
3255 		return ret;
3256 	}
3257 
3258 	ret = btrfs_remove_free_space(cache, 1 * 1024 * 1024, 2 * 1024 * 1024);
3259 	if (ret) {
3260 		printk(KERN_ERR "Couldn't remove middle chunk %d\n", ret);
3261 		return ret;
3262 	}
3263 
3264 	/*
3265 	 * The first bitmap we have starts at offset 0 so the next one is just
3266 	 * at the end of the first bitmap.
3267 	 */
3268 	next_bitmap_offset = (u64)(BITS_PER_BITMAP * 4096);
3269 
3270 	/* Test a bit straddling two bitmaps */
3271 	ret = add_free_space_entry(cache, next_bitmap_offset -
3272 				   (2 * 1024 * 1024), 4 * 1024 * 1024, 1);
3273 	if (ret) {
3274 		printk(KERN_ERR "Couldn't add space that straddles two bitmaps"
3275 		       " %d\n", ret);
3276 		return ret;
3277 	}
3278 
3279 	ret = btrfs_remove_free_space(cache, next_bitmap_offset -
3280 				      (1 * 1024 * 1024), 2 * 1024 * 1024);
3281 	if (ret) {
3282 		printk(KERN_ERR "Couldn't remove overlapping space %d\n", ret);
3283 		return ret;
3284 	}
3285 
3286 	if (check_exists(cache, next_bitmap_offset - (1 * 1024 * 1024),
3287 			 2 * 1024 * 1024)) {
3288 		printk(KERN_ERR "Left some space when removing overlapping\n");
3289 		return -1;
3290 	}
3291 
3292 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
3293 
3294 	return 0;
3295 }
3296 
3297 /* This is the high grade jackassery */
3298 static int test_bitmaps_and_extents(struct btrfs_block_group_cache *cache)
3299 {
3300 	u64 bitmap_offset = (u64)(BITS_PER_BITMAP * 4096);
3301 	int ret;
3302 
3303 	printk(KERN_ERR "Running bitmap and extent tests\n");
3304 
3305 	/*
3306 	 * First let's do something simple, an extent at the same offset as the
3307 	 * bitmap, but the free space completely in the extent and then
3308 	 * completely in the bitmap.
3309 	 */
3310 	ret = add_free_space_entry(cache, 4 * 1024 * 1024, 1 * 1024 * 1024, 1);
3311 	if (ret) {
3312 		printk(KERN_ERR "Couldn't create bitmap entry %d\n", ret);
3313 		return ret;
3314 	}
3315 
3316 	ret = add_free_space_entry(cache, 0, 1 * 1024 * 1024, 0);
3317 	if (ret) {
3318 		printk(KERN_ERR "Couldn't add extent entry %d\n", ret);
3319 		return ret;
3320 	}
3321 
3322 	ret = btrfs_remove_free_space(cache, 0, 1 * 1024 * 1024);
3323 	if (ret) {
3324 		printk(KERN_ERR "Couldn't remove extent entry %d\n", ret);
3325 		return ret;
3326 	}
3327 
3328 	if (check_exists(cache, 0, 1 * 1024 * 1024)) {
3329 		printk(KERN_ERR "Left remnants after our remove\n");
3330 		return -1;
3331 	}
3332 
3333 	/* Now to add back the extent entry and remove from the bitmap */
3334 	ret = add_free_space_entry(cache, 0, 1 * 1024 * 1024, 0);
3335 	if (ret) {
3336 		printk(KERN_ERR "Couldn't re-add extent entry %d\n", ret);
3337 		return ret;
3338 	}
3339 
3340 	ret = btrfs_remove_free_space(cache, 4 * 1024 * 1024, 1 * 1024 * 1024);
3341 	if (ret) {
3342 		printk(KERN_ERR "Couldn't remove from bitmap %d\n", ret);
3343 		return ret;
3344 	}
3345 
3346 	if (check_exists(cache, 4 * 1024 * 1024, 1 * 1024 * 1024)) {
3347 		printk(KERN_ERR "Left remnants in the bitmap\n");
3348 		return -1;
3349 	}
3350 
3351 	/*
3352 	 * Ok so a little more evil, extent entry and bitmap at the same offset,
3353 	 * removing an overlapping chunk.
3354 	 */
3355 	ret = add_free_space_entry(cache, 1 * 1024 * 1024, 4 * 1024 * 1024, 1);
3356 	if (ret) {
3357 		printk(KERN_ERR "Couldn't add to a bitmap %d\n", ret);
3358 		return ret;
3359 	}
3360 
3361 	ret = btrfs_remove_free_space(cache, 512 * 1024, 3 * 1024 * 1024);
3362 	if (ret) {
3363 		printk(KERN_ERR "Couldn't remove overlapping space %d\n", ret);
3364 		return ret;
3365 	}
3366 
3367 	if (check_exists(cache, 512 * 1024, 3 * 1024 * 1024)) {
3368 		printk(KERN_ERR "Left over peices after removing "
3369 		       "overlapping\n");
3370 		return -1;
3371 	}
3372 
3373 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
3374 
3375 	/* Now with the extent entry offset into the bitmap */
3376 	ret = add_free_space_entry(cache, 4 * 1024 * 1024, 4 * 1024 * 1024, 1);
3377 	if (ret) {
3378 		printk(KERN_ERR "Couldn't add space to the bitmap %d\n", ret);
3379 		return ret;
3380 	}
3381 
3382 	ret = add_free_space_entry(cache, 2 * 1024 * 1024, 2 * 1024 * 1024, 0);
3383 	if (ret) {
3384 		printk(KERN_ERR "Couldn't add extent to the cache %d\n", ret);
3385 		return ret;
3386 	}
3387 
3388 	ret = btrfs_remove_free_space(cache, 3 * 1024 * 1024, 4 * 1024 * 1024);
3389 	if (ret) {
3390 		printk(KERN_ERR "Problem removing overlapping space %d\n", ret);
3391 		return ret;
3392 	}
3393 
3394 	if (check_exists(cache, 3 * 1024 * 1024, 4 * 1024 * 1024)) {
3395 		printk(KERN_ERR "Left something behind when removing space");
3396 		return -1;
3397 	}
3398 
3399 	/*
3400 	 * This has blown up in the past, the extent entry starts before the
3401 	 * bitmap entry, but we're trying to remove an offset that falls
3402 	 * completely within the bitmap range and is in both the extent entry
3403 	 * and the bitmap entry, looks like this
3404 	 *
3405 	 *   [ extent ]
3406 	 *      [ bitmap ]
3407 	 *        [ del ]
3408 	 */
3409 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
3410 	ret = add_free_space_entry(cache, bitmap_offset + 4 * 1024 * 1024,
3411 				   4 * 1024 * 1024, 1);
3412 	if (ret) {
3413 		printk(KERN_ERR "Couldn't add bitmap %d\n", ret);
3414 		return ret;
3415 	}
3416 
3417 	ret = add_free_space_entry(cache, bitmap_offset - 1 * 1024 * 1024,
3418 				   5 * 1024 * 1024, 0);
3419 	if (ret) {
3420 		printk(KERN_ERR "Couldn't add extent entry %d\n", ret);
3421 		return ret;
3422 	}
3423 
3424 	ret = btrfs_remove_free_space(cache, bitmap_offset + 1 * 1024 * 1024,
3425 				      5 * 1024 * 1024);
3426 	if (ret) {
3427 		printk(KERN_ERR "Failed to free our space %d\n", ret);
3428 		return ret;
3429 	}
3430 
3431 	if (check_exists(cache, bitmap_offset + 1 * 1024 * 1024,
3432 			 5 * 1024 * 1024)) {
3433 		printk(KERN_ERR "Left stuff over\n");
3434 		return -1;
3435 	}
3436 
3437 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
3438 
3439 	/*
3440 	 * This blew up before, we have part of the free space in a bitmap and
3441 	 * then the entirety of the rest of the space in an extent.  This used
3442 	 * to return -EAGAIN back from btrfs_remove_extent, make sure this
3443 	 * doesn't happen.
3444 	 */
3445 	ret = add_free_space_entry(cache, 1 * 1024 * 1024, 2 * 1024 * 1024, 1);
3446 	if (ret) {
3447 		printk(KERN_ERR "Couldn't add bitmap entry %d\n", ret);
3448 		return ret;
3449 	}
3450 
3451 	ret = add_free_space_entry(cache, 3 * 1024 * 1024, 1 * 1024 * 1024, 0);
3452 	if (ret) {
3453 		printk(KERN_ERR "Couldn't add extent entry %d\n", ret);
3454 		return ret;
3455 	}
3456 
3457 	ret = btrfs_remove_free_space(cache, 1 * 1024 * 1024, 3 * 1024 * 1024);
3458 	if (ret) {
3459 		printk(KERN_ERR "Error removing bitmap and extent "
3460 		       "overlapping %d\n", ret);
3461 		return ret;
3462 	}
3463 
3464 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
3465 	return 0;
3466 }
3467 
3468 void btrfs_test_free_space_cache(void)
3469 {
3470 	struct btrfs_block_group_cache *cache;
3471 
3472 	printk(KERN_ERR "Running btrfs free space cache tests\n");
3473 
3474 	cache = init_test_block_group();
3475 	if (!cache) {
3476 		printk(KERN_ERR "Couldn't run the tests\n");
3477 		return;
3478 	}
3479 
3480 	if (test_extents(cache))
3481 		goto out;
3482 	if (test_bitmaps(cache))
3483 		goto out;
3484 	if (test_bitmaps_and_extents(cache))
3485 		goto out;
3486 out:
3487 	__btrfs_remove_free_space_cache(cache->free_space_ctl);
3488 	kfree(cache->free_space_ctl);
3489 	kfree(cache);
3490 	printk(KERN_ERR "Free space cache tests finished\n");
3491 }
3492 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3493