xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision c819e2cf)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31 
32 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
33 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
34 
35 struct btrfs_trim_range {
36 	u64 start;
37 	u64 bytes;
38 	struct list_head list;
39 };
40 
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 			   struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 			      struct btrfs_free_space *info);
45 
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 					       struct btrfs_path *path,
48 					       u64 offset)
49 {
50 	struct btrfs_key key;
51 	struct btrfs_key location;
52 	struct btrfs_disk_key disk_key;
53 	struct btrfs_free_space_header *header;
54 	struct extent_buffer *leaf;
55 	struct inode *inode = NULL;
56 	int ret;
57 
58 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 	key.offset = offset;
60 	key.type = 0;
61 
62 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 	if (ret < 0)
64 		return ERR_PTR(ret);
65 	if (ret > 0) {
66 		btrfs_release_path(path);
67 		return ERR_PTR(-ENOENT);
68 	}
69 
70 	leaf = path->nodes[0];
71 	header = btrfs_item_ptr(leaf, path->slots[0],
72 				struct btrfs_free_space_header);
73 	btrfs_free_space_key(leaf, header, &disk_key);
74 	btrfs_disk_key_to_cpu(&location, &disk_key);
75 	btrfs_release_path(path);
76 
77 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 	if (!inode)
79 		return ERR_PTR(-ENOENT);
80 	if (IS_ERR(inode))
81 		return inode;
82 	if (is_bad_inode(inode)) {
83 		iput(inode);
84 		return ERR_PTR(-ENOENT);
85 	}
86 
87 	mapping_set_gfp_mask(inode->i_mapping,
88 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
89 
90 	return inode;
91 }
92 
93 struct inode *lookup_free_space_inode(struct btrfs_root *root,
94 				      struct btrfs_block_group_cache
95 				      *block_group, struct btrfs_path *path)
96 {
97 	struct inode *inode = NULL;
98 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
99 
100 	spin_lock(&block_group->lock);
101 	if (block_group->inode)
102 		inode = igrab(block_group->inode);
103 	spin_unlock(&block_group->lock);
104 	if (inode)
105 		return inode;
106 
107 	inode = __lookup_free_space_inode(root, path,
108 					  block_group->key.objectid);
109 	if (IS_ERR(inode))
110 		return inode;
111 
112 	spin_lock(&block_group->lock);
113 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
114 		btrfs_info(root->fs_info,
115 			"Old style space inode found, converting.");
116 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
117 			BTRFS_INODE_NODATACOW;
118 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
119 	}
120 
121 	if (!block_group->iref) {
122 		block_group->inode = igrab(inode);
123 		block_group->iref = 1;
124 	}
125 	spin_unlock(&block_group->lock);
126 
127 	return inode;
128 }
129 
130 static int __create_free_space_inode(struct btrfs_root *root,
131 				     struct btrfs_trans_handle *trans,
132 				     struct btrfs_path *path,
133 				     u64 ino, u64 offset)
134 {
135 	struct btrfs_key key;
136 	struct btrfs_disk_key disk_key;
137 	struct btrfs_free_space_header *header;
138 	struct btrfs_inode_item *inode_item;
139 	struct extent_buffer *leaf;
140 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
141 	int ret;
142 
143 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
144 	if (ret)
145 		return ret;
146 
147 	/* We inline crc's for the free disk space cache */
148 	if (ino != BTRFS_FREE_INO_OBJECTID)
149 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
150 
151 	leaf = path->nodes[0];
152 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
153 				    struct btrfs_inode_item);
154 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
155 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
156 			     sizeof(*inode_item));
157 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
158 	btrfs_set_inode_size(leaf, inode_item, 0);
159 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
160 	btrfs_set_inode_uid(leaf, inode_item, 0);
161 	btrfs_set_inode_gid(leaf, inode_item, 0);
162 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
163 	btrfs_set_inode_flags(leaf, inode_item, flags);
164 	btrfs_set_inode_nlink(leaf, inode_item, 1);
165 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
166 	btrfs_set_inode_block_group(leaf, inode_item, offset);
167 	btrfs_mark_buffer_dirty(leaf);
168 	btrfs_release_path(path);
169 
170 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
171 	key.offset = offset;
172 	key.type = 0;
173 
174 	ret = btrfs_insert_empty_item(trans, root, path, &key,
175 				      sizeof(struct btrfs_free_space_header));
176 	if (ret < 0) {
177 		btrfs_release_path(path);
178 		return ret;
179 	}
180 	leaf = path->nodes[0];
181 	header = btrfs_item_ptr(leaf, path->slots[0],
182 				struct btrfs_free_space_header);
183 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
184 	btrfs_set_free_space_key(leaf, header, &disk_key);
185 	btrfs_mark_buffer_dirty(leaf);
186 	btrfs_release_path(path);
187 
188 	return 0;
189 }
190 
191 int create_free_space_inode(struct btrfs_root *root,
192 			    struct btrfs_trans_handle *trans,
193 			    struct btrfs_block_group_cache *block_group,
194 			    struct btrfs_path *path)
195 {
196 	int ret;
197 	u64 ino;
198 
199 	ret = btrfs_find_free_objectid(root, &ino);
200 	if (ret < 0)
201 		return ret;
202 
203 	return __create_free_space_inode(root, trans, path, ino,
204 					 block_group->key.objectid);
205 }
206 
207 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
208 				       struct btrfs_block_rsv *rsv)
209 {
210 	u64 needed_bytes;
211 	int ret;
212 
213 	/* 1 for slack space, 1 for updating the inode */
214 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
215 		btrfs_calc_trans_metadata_size(root, 1);
216 
217 	spin_lock(&rsv->lock);
218 	if (rsv->reserved < needed_bytes)
219 		ret = -ENOSPC;
220 	else
221 		ret = 0;
222 	spin_unlock(&rsv->lock);
223 	return ret;
224 }
225 
226 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
227 				    struct btrfs_trans_handle *trans,
228 				    struct inode *inode)
229 {
230 	int ret = 0;
231 
232 	btrfs_i_size_write(inode, 0);
233 	truncate_pagecache(inode, 0);
234 
235 	/*
236 	 * We don't need an orphan item because truncating the free space cache
237 	 * will never be split across transactions.
238 	 */
239 	ret = btrfs_truncate_inode_items(trans, root, inode,
240 					 0, BTRFS_EXTENT_DATA_KEY);
241 	if (ret) {
242 		btrfs_abort_transaction(trans, root, ret);
243 		return ret;
244 	}
245 
246 	ret = btrfs_update_inode(trans, root, inode);
247 	if (ret)
248 		btrfs_abort_transaction(trans, root, ret);
249 
250 	return ret;
251 }
252 
253 static int readahead_cache(struct inode *inode)
254 {
255 	struct file_ra_state *ra;
256 	unsigned long last_index;
257 
258 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
259 	if (!ra)
260 		return -ENOMEM;
261 
262 	file_ra_state_init(ra, inode->i_mapping);
263 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
264 
265 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
266 
267 	kfree(ra);
268 
269 	return 0;
270 }
271 
272 struct io_ctl {
273 	void *cur, *orig;
274 	struct page *page;
275 	struct page **pages;
276 	struct btrfs_root *root;
277 	unsigned long size;
278 	int index;
279 	int num_pages;
280 	unsigned check_crcs:1;
281 };
282 
283 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
284 		       struct btrfs_root *root, int write)
285 {
286 	int num_pages;
287 	int check_crcs = 0;
288 
289 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
290 
291 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
292 		check_crcs = 1;
293 
294 	/* Make sure we can fit our crcs into the first page */
295 	if (write && check_crcs &&
296 	    (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
297 		return -ENOSPC;
298 
299 	memset(io_ctl, 0, sizeof(struct io_ctl));
300 
301 	io_ctl->pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
302 	if (!io_ctl->pages)
303 		return -ENOMEM;
304 
305 	io_ctl->num_pages = num_pages;
306 	io_ctl->root = root;
307 	io_ctl->check_crcs = check_crcs;
308 
309 	return 0;
310 }
311 
312 static void io_ctl_free(struct io_ctl *io_ctl)
313 {
314 	kfree(io_ctl->pages);
315 }
316 
317 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
318 {
319 	if (io_ctl->cur) {
320 		kunmap(io_ctl->page);
321 		io_ctl->cur = NULL;
322 		io_ctl->orig = NULL;
323 	}
324 }
325 
326 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
327 {
328 	ASSERT(io_ctl->index < io_ctl->num_pages);
329 	io_ctl->page = io_ctl->pages[io_ctl->index++];
330 	io_ctl->cur = kmap(io_ctl->page);
331 	io_ctl->orig = io_ctl->cur;
332 	io_ctl->size = PAGE_CACHE_SIZE;
333 	if (clear)
334 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
335 }
336 
337 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
338 {
339 	int i;
340 
341 	io_ctl_unmap_page(io_ctl);
342 
343 	for (i = 0; i < io_ctl->num_pages; i++) {
344 		if (io_ctl->pages[i]) {
345 			ClearPageChecked(io_ctl->pages[i]);
346 			unlock_page(io_ctl->pages[i]);
347 			page_cache_release(io_ctl->pages[i]);
348 		}
349 	}
350 }
351 
352 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
353 				int uptodate)
354 {
355 	struct page *page;
356 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
357 	int i;
358 
359 	for (i = 0; i < io_ctl->num_pages; i++) {
360 		page = find_or_create_page(inode->i_mapping, i, mask);
361 		if (!page) {
362 			io_ctl_drop_pages(io_ctl);
363 			return -ENOMEM;
364 		}
365 		io_ctl->pages[i] = page;
366 		if (uptodate && !PageUptodate(page)) {
367 			btrfs_readpage(NULL, page);
368 			lock_page(page);
369 			if (!PageUptodate(page)) {
370 				btrfs_err(BTRFS_I(inode)->root->fs_info,
371 					   "error reading free space cache");
372 				io_ctl_drop_pages(io_ctl);
373 				return -EIO;
374 			}
375 		}
376 	}
377 
378 	for (i = 0; i < io_ctl->num_pages; i++) {
379 		clear_page_dirty_for_io(io_ctl->pages[i]);
380 		set_page_extent_mapped(io_ctl->pages[i]);
381 	}
382 
383 	return 0;
384 }
385 
386 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
387 {
388 	__le64 *val;
389 
390 	io_ctl_map_page(io_ctl, 1);
391 
392 	/*
393 	 * Skip the csum areas.  If we don't check crcs then we just have a
394 	 * 64bit chunk at the front of the first page.
395 	 */
396 	if (io_ctl->check_crcs) {
397 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
398 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
399 	} else {
400 		io_ctl->cur += sizeof(u64);
401 		io_ctl->size -= sizeof(u64) * 2;
402 	}
403 
404 	val = io_ctl->cur;
405 	*val = cpu_to_le64(generation);
406 	io_ctl->cur += sizeof(u64);
407 }
408 
409 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
410 {
411 	__le64 *gen;
412 
413 	/*
414 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
415 	 * chunk at the front of the first page.
416 	 */
417 	if (io_ctl->check_crcs) {
418 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
419 		io_ctl->size -= sizeof(u64) +
420 			(sizeof(u32) * io_ctl->num_pages);
421 	} else {
422 		io_ctl->cur += sizeof(u64);
423 		io_ctl->size -= sizeof(u64) * 2;
424 	}
425 
426 	gen = io_ctl->cur;
427 	if (le64_to_cpu(*gen) != generation) {
428 		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
429 				   "(%Lu) does not match inode (%Lu)\n", *gen,
430 				   generation);
431 		io_ctl_unmap_page(io_ctl);
432 		return -EIO;
433 	}
434 	io_ctl->cur += sizeof(u64);
435 	return 0;
436 }
437 
438 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
439 {
440 	u32 *tmp;
441 	u32 crc = ~(u32)0;
442 	unsigned offset = 0;
443 
444 	if (!io_ctl->check_crcs) {
445 		io_ctl_unmap_page(io_ctl);
446 		return;
447 	}
448 
449 	if (index == 0)
450 		offset = sizeof(u32) * io_ctl->num_pages;
451 
452 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
453 			      PAGE_CACHE_SIZE - offset);
454 	btrfs_csum_final(crc, (char *)&crc);
455 	io_ctl_unmap_page(io_ctl);
456 	tmp = kmap(io_ctl->pages[0]);
457 	tmp += index;
458 	*tmp = crc;
459 	kunmap(io_ctl->pages[0]);
460 }
461 
462 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
463 {
464 	u32 *tmp, val;
465 	u32 crc = ~(u32)0;
466 	unsigned offset = 0;
467 
468 	if (!io_ctl->check_crcs) {
469 		io_ctl_map_page(io_ctl, 0);
470 		return 0;
471 	}
472 
473 	if (index == 0)
474 		offset = sizeof(u32) * io_ctl->num_pages;
475 
476 	tmp = kmap(io_ctl->pages[0]);
477 	tmp += index;
478 	val = *tmp;
479 	kunmap(io_ctl->pages[0]);
480 
481 	io_ctl_map_page(io_ctl, 0);
482 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
483 			      PAGE_CACHE_SIZE - offset);
484 	btrfs_csum_final(crc, (char *)&crc);
485 	if (val != crc) {
486 		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
487 				   "space cache\n");
488 		io_ctl_unmap_page(io_ctl);
489 		return -EIO;
490 	}
491 
492 	return 0;
493 }
494 
495 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
496 			    void *bitmap)
497 {
498 	struct btrfs_free_space_entry *entry;
499 
500 	if (!io_ctl->cur)
501 		return -ENOSPC;
502 
503 	entry = io_ctl->cur;
504 	entry->offset = cpu_to_le64(offset);
505 	entry->bytes = cpu_to_le64(bytes);
506 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
507 		BTRFS_FREE_SPACE_EXTENT;
508 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
509 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
510 
511 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
512 		return 0;
513 
514 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
515 
516 	/* No more pages to map */
517 	if (io_ctl->index >= io_ctl->num_pages)
518 		return 0;
519 
520 	/* map the next page */
521 	io_ctl_map_page(io_ctl, 1);
522 	return 0;
523 }
524 
525 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
526 {
527 	if (!io_ctl->cur)
528 		return -ENOSPC;
529 
530 	/*
531 	 * If we aren't at the start of the current page, unmap this one and
532 	 * map the next one if there is any left.
533 	 */
534 	if (io_ctl->cur != io_ctl->orig) {
535 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 		if (io_ctl->index >= io_ctl->num_pages)
537 			return -ENOSPC;
538 		io_ctl_map_page(io_ctl, 0);
539 	}
540 
541 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
542 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
543 	if (io_ctl->index < io_ctl->num_pages)
544 		io_ctl_map_page(io_ctl, 0);
545 	return 0;
546 }
547 
548 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
549 {
550 	/*
551 	 * If we're not on the boundary we know we've modified the page and we
552 	 * need to crc the page.
553 	 */
554 	if (io_ctl->cur != io_ctl->orig)
555 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 	else
557 		io_ctl_unmap_page(io_ctl);
558 
559 	while (io_ctl->index < io_ctl->num_pages) {
560 		io_ctl_map_page(io_ctl, 1);
561 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
562 	}
563 }
564 
565 static int io_ctl_read_entry(struct io_ctl *io_ctl,
566 			    struct btrfs_free_space *entry, u8 *type)
567 {
568 	struct btrfs_free_space_entry *e;
569 	int ret;
570 
571 	if (!io_ctl->cur) {
572 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
573 		if (ret)
574 			return ret;
575 	}
576 
577 	e = io_ctl->cur;
578 	entry->offset = le64_to_cpu(e->offset);
579 	entry->bytes = le64_to_cpu(e->bytes);
580 	*type = e->type;
581 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
582 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
583 
584 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
585 		return 0;
586 
587 	io_ctl_unmap_page(io_ctl);
588 
589 	return 0;
590 }
591 
592 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
593 			      struct btrfs_free_space *entry)
594 {
595 	int ret;
596 
597 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
598 	if (ret)
599 		return ret;
600 
601 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
602 	io_ctl_unmap_page(io_ctl);
603 
604 	return 0;
605 }
606 
607 /*
608  * Since we attach pinned extents after the fact we can have contiguous sections
609  * of free space that are split up in entries.  This poses a problem with the
610  * tree logging stuff since it could have allocated across what appears to be 2
611  * entries since we would have merged the entries when adding the pinned extents
612  * back to the free space cache.  So run through the space cache that we just
613  * loaded and merge contiguous entries.  This will make the log replay stuff not
614  * blow up and it will make for nicer allocator behavior.
615  */
616 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
617 {
618 	struct btrfs_free_space *e, *prev = NULL;
619 	struct rb_node *n;
620 
621 again:
622 	spin_lock(&ctl->tree_lock);
623 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
624 		e = rb_entry(n, struct btrfs_free_space, offset_index);
625 		if (!prev)
626 			goto next;
627 		if (e->bitmap || prev->bitmap)
628 			goto next;
629 		if (prev->offset + prev->bytes == e->offset) {
630 			unlink_free_space(ctl, prev);
631 			unlink_free_space(ctl, e);
632 			prev->bytes += e->bytes;
633 			kmem_cache_free(btrfs_free_space_cachep, e);
634 			link_free_space(ctl, prev);
635 			prev = NULL;
636 			spin_unlock(&ctl->tree_lock);
637 			goto again;
638 		}
639 next:
640 		prev = e;
641 	}
642 	spin_unlock(&ctl->tree_lock);
643 }
644 
645 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
646 				   struct btrfs_free_space_ctl *ctl,
647 				   struct btrfs_path *path, u64 offset)
648 {
649 	struct btrfs_free_space_header *header;
650 	struct extent_buffer *leaf;
651 	struct io_ctl io_ctl;
652 	struct btrfs_key key;
653 	struct btrfs_free_space *e, *n;
654 	struct list_head bitmaps;
655 	u64 num_entries;
656 	u64 num_bitmaps;
657 	u64 generation;
658 	u8 type;
659 	int ret = 0;
660 
661 	INIT_LIST_HEAD(&bitmaps);
662 
663 	/* Nothing in the space cache, goodbye */
664 	if (!i_size_read(inode))
665 		return 0;
666 
667 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
668 	key.offset = offset;
669 	key.type = 0;
670 
671 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
672 	if (ret < 0)
673 		return 0;
674 	else if (ret > 0) {
675 		btrfs_release_path(path);
676 		return 0;
677 	}
678 
679 	ret = -1;
680 
681 	leaf = path->nodes[0];
682 	header = btrfs_item_ptr(leaf, path->slots[0],
683 				struct btrfs_free_space_header);
684 	num_entries = btrfs_free_space_entries(leaf, header);
685 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
686 	generation = btrfs_free_space_generation(leaf, header);
687 	btrfs_release_path(path);
688 
689 	if (!BTRFS_I(inode)->generation) {
690 		btrfs_info(root->fs_info,
691 			   "The free space cache file (%llu) is invalid. skip it\n",
692 			   offset);
693 		return 0;
694 	}
695 
696 	if (BTRFS_I(inode)->generation != generation) {
697 		btrfs_err(root->fs_info,
698 			"free space inode generation (%llu) "
699 			"did not match free space cache generation (%llu)",
700 			BTRFS_I(inode)->generation, generation);
701 		return 0;
702 	}
703 
704 	if (!num_entries)
705 		return 0;
706 
707 	ret = io_ctl_init(&io_ctl, inode, root, 0);
708 	if (ret)
709 		return ret;
710 
711 	ret = readahead_cache(inode);
712 	if (ret)
713 		goto out;
714 
715 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
716 	if (ret)
717 		goto out;
718 
719 	ret = io_ctl_check_crc(&io_ctl, 0);
720 	if (ret)
721 		goto free_cache;
722 
723 	ret = io_ctl_check_generation(&io_ctl, generation);
724 	if (ret)
725 		goto free_cache;
726 
727 	while (num_entries) {
728 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
729 				      GFP_NOFS);
730 		if (!e)
731 			goto free_cache;
732 
733 		ret = io_ctl_read_entry(&io_ctl, e, &type);
734 		if (ret) {
735 			kmem_cache_free(btrfs_free_space_cachep, e);
736 			goto free_cache;
737 		}
738 
739 		if (!e->bytes) {
740 			kmem_cache_free(btrfs_free_space_cachep, e);
741 			goto free_cache;
742 		}
743 
744 		if (type == BTRFS_FREE_SPACE_EXTENT) {
745 			spin_lock(&ctl->tree_lock);
746 			ret = link_free_space(ctl, e);
747 			spin_unlock(&ctl->tree_lock);
748 			if (ret) {
749 				btrfs_err(root->fs_info,
750 					"Duplicate entries in free space cache, dumping");
751 				kmem_cache_free(btrfs_free_space_cachep, e);
752 				goto free_cache;
753 			}
754 		} else {
755 			ASSERT(num_bitmaps);
756 			num_bitmaps--;
757 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
758 			if (!e->bitmap) {
759 				kmem_cache_free(
760 					btrfs_free_space_cachep, e);
761 				goto free_cache;
762 			}
763 			spin_lock(&ctl->tree_lock);
764 			ret = link_free_space(ctl, e);
765 			ctl->total_bitmaps++;
766 			ctl->op->recalc_thresholds(ctl);
767 			spin_unlock(&ctl->tree_lock);
768 			if (ret) {
769 				btrfs_err(root->fs_info,
770 					"Duplicate entries in free space cache, dumping");
771 				kmem_cache_free(btrfs_free_space_cachep, e);
772 				goto free_cache;
773 			}
774 			list_add_tail(&e->list, &bitmaps);
775 		}
776 
777 		num_entries--;
778 	}
779 
780 	io_ctl_unmap_page(&io_ctl);
781 
782 	/*
783 	 * We add the bitmaps at the end of the entries in order that
784 	 * the bitmap entries are added to the cache.
785 	 */
786 	list_for_each_entry_safe(e, n, &bitmaps, list) {
787 		list_del_init(&e->list);
788 		ret = io_ctl_read_bitmap(&io_ctl, e);
789 		if (ret)
790 			goto free_cache;
791 	}
792 
793 	io_ctl_drop_pages(&io_ctl);
794 	merge_space_tree(ctl);
795 	ret = 1;
796 out:
797 	io_ctl_free(&io_ctl);
798 	return ret;
799 free_cache:
800 	io_ctl_drop_pages(&io_ctl);
801 	__btrfs_remove_free_space_cache(ctl);
802 	goto out;
803 }
804 
805 int load_free_space_cache(struct btrfs_fs_info *fs_info,
806 			  struct btrfs_block_group_cache *block_group)
807 {
808 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
809 	struct btrfs_root *root = fs_info->tree_root;
810 	struct inode *inode;
811 	struct btrfs_path *path;
812 	int ret = 0;
813 	bool matched;
814 	u64 used = btrfs_block_group_used(&block_group->item);
815 
816 	/*
817 	 * If this block group has been marked to be cleared for one reason or
818 	 * another then we can't trust the on disk cache, so just return.
819 	 */
820 	spin_lock(&block_group->lock);
821 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
822 		spin_unlock(&block_group->lock);
823 		return 0;
824 	}
825 	spin_unlock(&block_group->lock);
826 
827 	path = btrfs_alloc_path();
828 	if (!path)
829 		return 0;
830 	path->search_commit_root = 1;
831 	path->skip_locking = 1;
832 
833 	inode = lookup_free_space_inode(root, block_group, path);
834 	if (IS_ERR(inode)) {
835 		btrfs_free_path(path);
836 		return 0;
837 	}
838 
839 	/* We may have converted the inode and made the cache invalid. */
840 	spin_lock(&block_group->lock);
841 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
842 		spin_unlock(&block_group->lock);
843 		btrfs_free_path(path);
844 		goto out;
845 	}
846 	spin_unlock(&block_group->lock);
847 
848 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
849 				      path, block_group->key.objectid);
850 	btrfs_free_path(path);
851 	if (ret <= 0)
852 		goto out;
853 
854 	spin_lock(&ctl->tree_lock);
855 	matched = (ctl->free_space == (block_group->key.offset - used -
856 				       block_group->bytes_super));
857 	spin_unlock(&ctl->tree_lock);
858 
859 	if (!matched) {
860 		__btrfs_remove_free_space_cache(ctl);
861 		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
862 			block_group->key.objectid);
863 		ret = -1;
864 	}
865 out:
866 	if (ret < 0) {
867 		/* This cache is bogus, make sure it gets cleared */
868 		spin_lock(&block_group->lock);
869 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
870 		spin_unlock(&block_group->lock);
871 		ret = 0;
872 
873 		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
874 			block_group->key.objectid);
875 	}
876 
877 	iput(inode);
878 	return ret;
879 }
880 
881 static noinline_for_stack
882 int write_cache_extent_entries(struct io_ctl *io_ctl,
883 			      struct btrfs_free_space_ctl *ctl,
884 			      struct btrfs_block_group_cache *block_group,
885 			      int *entries, int *bitmaps,
886 			      struct list_head *bitmap_list)
887 {
888 	int ret;
889 	struct btrfs_free_cluster *cluster = NULL;
890 	struct rb_node *node = rb_first(&ctl->free_space_offset);
891 	struct btrfs_trim_range *trim_entry;
892 
893 	/* Get the cluster for this block_group if it exists */
894 	if (block_group && !list_empty(&block_group->cluster_list)) {
895 		cluster = list_entry(block_group->cluster_list.next,
896 				     struct btrfs_free_cluster,
897 				     block_group_list);
898 	}
899 
900 	if (!node && cluster) {
901 		node = rb_first(&cluster->root);
902 		cluster = NULL;
903 	}
904 
905 	/* Write out the extent entries */
906 	while (node) {
907 		struct btrfs_free_space *e;
908 
909 		e = rb_entry(node, struct btrfs_free_space, offset_index);
910 		*entries += 1;
911 
912 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
913 				       e->bitmap);
914 		if (ret)
915 			goto fail;
916 
917 		if (e->bitmap) {
918 			list_add_tail(&e->list, bitmap_list);
919 			*bitmaps += 1;
920 		}
921 		node = rb_next(node);
922 		if (!node && cluster) {
923 			node = rb_first(&cluster->root);
924 			cluster = NULL;
925 		}
926 	}
927 
928 	/*
929 	 * Make sure we don't miss any range that was removed from our rbtree
930 	 * because trimming is running. Otherwise after a umount+mount (or crash
931 	 * after committing the transaction) we would leak free space and get
932 	 * an inconsistent free space cache report from fsck.
933 	 */
934 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
935 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
936 				       trim_entry->bytes, NULL);
937 		if (ret)
938 			goto fail;
939 		*entries += 1;
940 	}
941 
942 	return 0;
943 fail:
944 	return -ENOSPC;
945 }
946 
947 static noinline_for_stack int
948 update_cache_item(struct btrfs_trans_handle *trans,
949 		  struct btrfs_root *root,
950 		  struct inode *inode,
951 		  struct btrfs_path *path, u64 offset,
952 		  int entries, int bitmaps)
953 {
954 	struct btrfs_key key;
955 	struct btrfs_free_space_header *header;
956 	struct extent_buffer *leaf;
957 	int ret;
958 
959 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
960 	key.offset = offset;
961 	key.type = 0;
962 
963 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
964 	if (ret < 0) {
965 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
966 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
967 				 GFP_NOFS);
968 		goto fail;
969 	}
970 	leaf = path->nodes[0];
971 	if (ret > 0) {
972 		struct btrfs_key found_key;
973 		ASSERT(path->slots[0]);
974 		path->slots[0]--;
975 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
976 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
977 		    found_key.offset != offset) {
978 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
979 					 inode->i_size - 1,
980 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
981 					 NULL, GFP_NOFS);
982 			btrfs_release_path(path);
983 			goto fail;
984 		}
985 	}
986 
987 	BTRFS_I(inode)->generation = trans->transid;
988 	header = btrfs_item_ptr(leaf, path->slots[0],
989 				struct btrfs_free_space_header);
990 	btrfs_set_free_space_entries(leaf, header, entries);
991 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
992 	btrfs_set_free_space_generation(leaf, header, trans->transid);
993 	btrfs_mark_buffer_dirty(leaf);
994 	btrfs_release_path(path);
995 
996 	return 0;
997 
998 fail:
999 	return -1;
1000 }
1001 
1002 static noinline_for_stack int
1003 write_pinned_extent_entries(struct btrfs_root *root,
1004 			    struct btrfs_block_group_cache *block_group,
1005 			    struct io_ctl *io_ctl,
1006 			    int *entries)
1007 {
1008 	u64 start, extent_start, extent_end, len;
1009 	struct extent_io_tree *unpin = NULL;
1010 	int ret;
1011 
1012 	if (!block_group)
1013 		return 0;
1014 
1015 	/*
1016 	 * We want to add any pinned extents to our free space cache
1017 	 * so we don't leak the space
1018 	 *
1019 	 * We shouldn't have switched the pinned extents yet so this is the
1020 	 * right one
1021 	 */
1022 	unpin = root->fs_info->pinned_extents;
1023 
1024 	start = block_group->key.objectid;
1025 
1026 	while (start < block_group->key.objectid + block_group->key.offset) {
1027 		ret = find_first_extent_bit(unpin, start,
1028 					    &extent_start, &extent_end,
1029 					    EXTENT_DIRTY, NULL);
1030 		if (ret)
1031 			return 0;
1032 
1033 		/* This pinned extent is out of our range */
1034 		if (extent_start >= block_group->key.objectid +
1035 		    block_group->key.offset)
1036 			return 0;
1037 
1038 		extent_start = max(extent_start, start);
1039 		extent_end = min(block_group->key.objectid +
1040 				 block_group->key.offset, extent_end + 1);
1041 		len = extent_end - extent_start;
1042 
1043 		*entries += 1;
1044 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1045 		if (ret)
1046 			return -ENOSPC;
1047 
1048 		start = extent_end;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 static noinline_for_stack int
1055 write_bitmap_entries(struct io_ctl *io_ctl, struct list_head *bitmap_list)
1056 {
1057 	struct list_head *pos, *n;
1058 	int ret;
1059 
1060 	/* Write out the bitmaps */
1061 	list_for_each_safe(pos, n, bitmap_list) {
1062 		struct btrfs_free_space *entry =
1063 			list_entry(pos, struct btrfs_free_space, list);
1064 
1065 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1066 		if (ret)
1067 			return -ENOSPC;
1068 		list_del_init(&entry->list);
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static int flush_dirty_cache(struct inode *inode)
1075 {
1076 	int ret;
1077 
1078 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1079 	if (ret)
1080 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1081 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1082 				 GFP_NOFS);
1083 
1084 	return ret;
1085 }
1086 
1087 static void noinline_for_stack
1088 cleanup_write_cache_enospc(struct inode *inode,
1089 			   struct io_ctl *io_ctl,
1090 			   struct extent_state **cached_state,
1091 			   struct list_head *bitmap_list)
1092 {
1093 	struct list_head *pos, *n;
1094 
1095 	list_for_each_safe(pos, n, bitmap_list) {
1096 		struct btrfs_free_space *entry =
1097 			list_entry(pos, struct btrfs_free_space, list);
1098 		list_del_init(&entry->list);
1099 	}
1100 	io_ctl_drop_pages(io_ctl);
1101 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1102 			     i_size_read(inode) - 1, cached_state,
1103 			     GFP_NOFS);
1104 }
1105 
1106 /**
1107  * __btrfs_write_out_cache - write out cached info to an inode
1108  * @root - the root the inode belongs to
1109  * @ctl - the free space cache we are going to write out
1110  * @block_group - the block_group for this cache if it belongs to a block_group
1111  * @trans - the trans handle
1112  * @path - the path to use
1113  * @offset - the offset for the key we'll insert
1114  *
1115  * This function writes out a free space cache struct to disk for quick recovery
1116  * on mount.  This will return 0 if it was successfull in writing the cache out,
1117  * and -1 if it was not.
1118  */
1119 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1120 				   struct btrfs_free_space_ctl *ctl,
1121 				   struct btrfs_block_group_cache *block_group,
1122 				   struct btrfs_trans_handle *trans,
1123 				   struct btrfs_path *path, u64 offset)
1124 {
1125 	struct extent_state *cached_state = NULL;
1126 	struct io_ctl io_ctl;
1127 	LIST_HEAD(bitmap_list);
1128 	int entries = 0;
1129 	int bitmaps = 0;
1130 	int ret;
1131 
1132 	if (!i_size_read(inode))
1133 		return -1;
1134 
1135 	ret = io_ctl_init(&io_ctl, inode, root, 1);
1136 	if (ret)
1137 		return -1;
1138 
1139 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1140 		down_write(&block_group->data_rwsem);
1141 		spin_lock(&block_group->lock);
1142 		if (block_group->delalloc_bytes) {
1143 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1144 			spin_unlock(&block_group->lock);
1145 			up_write(&block_group->data_rwsem);
1146 			BTRFS_I(inode)->generation = 0;
1147 			ret = 0;
1148 			goto out;
1149 		}
1150 		spin_unlock(&block_group->lock);
1151 	}
1152 
1153 	/* Lock all pages first so we can lock the extent safely. */
1154 	io_ctl_prepare_pages(&io_ctl, inode, 0);
1155 
1156 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1157 			 0, &cached_state);
1158 
1159 	io_ctl_set_generation(&io_ctl, trans->transid);
1160 
1161 	mutex_lock(&ctl->cache_writeout_mutex);
1162 	/* Write out the extent entries in the free space cache */
1163 	ret = write_cache_extent_entries(&io_ctl, ctl,
1164 					 block_group, &entries, &bitmaps,
1165 					 &bitmap_list);
1166 	if (ret) {
1167 		mutex_unlock(&ctl->cache_writeout_mutex);
1168 		goto out_nospc;
1169 	}
1170 
1171 	/*
1172 	 * Some spaces that are freed in the current transaction are pinned,
1173 	 * they will be added into free space cache after the transaction is
1174 	 * committed, we shouldn't lose them.
1175 	 */
1176 	ret = write_pinned_extent_entries(root, block_group, &io_ctl, &entries);
1177 	if (ret) {
1178 		mutex_unlock(&ctl->cache_writeout_mutex);
1179 		goto out_nospc;
1180 	}
1181 
1182 	/*
1183 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1184 	 * locked while doing it because a concurrent trim can be manipulating
1185 	 * or freeing the bitmap.
1186 	 */
1187 	ret = write_bitmap_entries(&io_ctl, &bitmap_list);
1188 	mutex_unlock(&ctl->cache_writeout_mutex);
1189 	if (ret)
1190 		goto out_nospc;
1191 
1192 	/* Zero out the rest of the pages just to make sure */
1193 	io_ctl_zero_remaining_pages(&io_ctl);
1194 
1195 	/* Everything is written out, now we dirty the pages in the file. */
1196 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1197 				0, i_size_read(inode), &cached_state);
1198 	if (ret)
1199 		goto out_nospc;
1200 
1201 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1202 		up_write(&block_group->data_rwsem);
1203 	/*
1204 	 * Release the pages and unlock the extent, we will flush
1205 	 * them out later
1206 	 */
1207 	io_ctl_drop_pages(&io_ctl);
1208 
1209 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1210 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1211 
1212 	/* Flush the dirty pages in the cache file. */
1213 	ret = flush_dirty_cache(inode);
1214 	if (ret)
1215 		goto out;
1216 
1217 	/* Update the cache item to tell everyone this cache file is valid. */
1218 	ret = update_cache_item(trans, root, inode, path, offset,
1219 				entries, bitmaps);
1220 out:
1221 	io_ctl_free(&io_ctl);
1222 	if (ret) {
1223 		invalidate_inode_pages2(inode->i_mapping);
1224 		BTRFS_I(inode)->generation = 0;
1225 	}
1226 	btrfs_update_inode(trans, root, inode);
1227 	return ret;
1228 
1229 out_nospc:
1230 	cleanup_write_cache_enospc(inode, &io_ctl, &cached_state, &bitmap_list);
1231 
1232 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1233 		up_write(&block_group->data_rwsem);
1234 
1235 	goto out;
1236 }
1237 
1238 int btrfs_write_out_cache(struct btrfs_root *root,
1239 			  struct btrfs_trans_handle *trans,
1240 			  struct btrfs_block_group_cache *block_group,
1241 			  struct btrfs_path *path)
1242 {
1243 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1244 	struct inode *inode;
1245 	int ret = 0;
1246 
1247 	root = root->fs_info->tree_root;
1248 
1249 	spin_lock(&block_group->lock);
1250 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1251 		spin_unlock(&block_group->lock);
1252 		return 0;
1253 	}
1254 
1255 	if (block_group->delalloc_bytes) {
1256 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1257 		spin_unlock(&block_group->lock);
1258 		return 0;
1259 	}
1260 	spin_unlock(&block_group->lock);
1261 
1262 	inode = lookup_free_space_inode(root, block_group, path);
1263 	if (IS_ERR(inode))
1264 		return 0;
1265 
1266 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1267 				      path, block_group->key.objectid);
1268 	if (ret) {
1269 		spin_lock(&block_group->lock);
1270 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1271 		spin_unlock(&block_group->lock);
1272 		ret = 0;
1273 #ifdef DEBUG
1274 		btrfs_err(root->fs_info,
1275 			"failed to write free space cache for block group %llu",
1276 			block_group->key.objectid);
1277 #endif
1278 	}
1279 
1280 	iput(inode);
1281 	return ret;
1282 }
1283 
1284 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1285 					  u64 offset)
1286 {
1287 	ASSERT(offset >= bitmap_start);
1288 	offset -= bitmap_start;
1289 	return (unsigned long)(div_u64(offset, unit));
1290 }
1291 
1292 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1293 {
1294 	return (unsigned long)(div_u64(bytes, unit));
1295 }
1296 
1297 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1298 				   u64 offset)
1299 {
1300 	u64 bitmap_start;
1301 	u64 bytes_per_bitmap;
1302 
1303 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1304 	bitmap_start = offset - ctl->start;
1305 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1306 	bitmap_start *= bytes_per_bitmap;
1307 	bitmap_start += ctl->start;
1308 
1309 	return bitmap_start;
1310 }
1311 
1312 static int tree_insert_offset(struct rb_root *root, u64 offset,
1313 			      struct rb_node *node, int bitmap)
1314 {
1315 	struct rb_node **p = &root->rb_node;
1316 	struct rb_node *parent = NULL;
1317 	struct btrfs_free_space *info;
1318 
1319 	while (*p) {
1320 		parent = *p;
1321 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1322 
1323 		if (offset < info->offset) {
1324 			p = &(*p)->rb_left;
1325 		} else if (offset > info->offset) {
1326 			p = &(*p)->rb_right;
1327 		} else {
1328 			/*
1329 			 * we could have a bitmap entry and an extent entry
1330 			 * share the same offset.  If this is the case, we want
1331 			 * the extent entry to always be found first if we do a
1332 			 * linear search through the tree, since we want to have
1333 			 * the quickest allocation time, and allocating from an
1334 			 * extent is faster than allocating from a bitmap.  So
1335 			 * if we're inserting a bitmap and we find an entry at
1336 			 * this offset, we want to go right, or after this entry
1337 			 * logically.  If we are inserting an extent and we've
1338 			 * found a bitmap, we want to go left, or before
1339 			 * logically.
1340 			 */
1341 			if (bitmap) {
1342 				if (info->bitmap) {
1343 					WARN_ON_ONCE(1);
1344 					return -EEXIST;
1345 				}
1346 				p = &(*p)->rb_right;
1347 			} else {
1348 				if (!info->bitmap) {
1349 					WARN_ON_ONCE(1);
1350 					return -EEXIST;
1351 				}
1352 				p = &(*p)->rb_left;
1353 			}
1354 		}
1355 	}
1356 
1357 	rb_link_node(node, parent, p);
1358 	rb_insert_color(node, root);
1359 
1360 	return 0;
1361 }
1362 
1363 /*
1364  * searches the tree for the given offset.
1365  *
1366  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1367  * want a section that has at least bytes size and comes at or after the given
1368  * offset.
1369  */
1370 static struct btrfs_free_space *
1371 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1372 		   u64 offset, int bitmap_only, int fuzzy)
1373 {
1374 	struct rb_node *n = ctl->free_space_offset.rb_node;
1375 	struct btrfs_free_space *entry, *prev = NULL;
1376 
1377 	/* find entry that is closest to the 'offset' */
1378 	while (1) {
1379 		if (!n) {
1380 			entry = NULL;
1381 			break;
1382 		}
1383 
1384 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1385 		prev = entry;
1386 
1387 		if (offset < entry->offset)
1388 			n = n->rb_left;
1389 		else if (offset > entry->offset)
1390 			n = n->rb_right;
1391 		else
1392 			break;
1393 	}
1394 
1395 	if (bitmap_only) {
1396 		if (!entry)
1397 			return NULL;
1398 		if (entry->bitmap)
1399 			return entry;
1400 
1401 		/*
1402 		 * bitmap entry and extent entry may share same offset,
1403 		 * in that case, bitmap entry comes after extent entry.
1404 		 */
1405 		n = rb_next(n);
1406 		if (!n)
1407 			return NULL;
1408 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1409 		if (entry->offset != offset)
1410 			return NULL;
1411 
1412 		WARN_ON(!entry->bitmap);
1413 		return entry;
1414 	} else if (entry) {
1415 		if (entry->bitmap) {
1416 			/*
1417 			 * if previous extent entry covers the offset,
1418 			 * we should return it instead of the bitmap entry
1419 			 */
1420 			n = rb_prev(&entry->offset_index);
1421 			if (n) {
1422 				prev = rb_entry(n, struct btrfs_free_space,
1423 						offset_index);
1424 				if (!prev->bitmap &&
1425 				    prev->offset + prev->bytes > offset)
1426 					entry = prev;
1427 			}
1428 		}
1429 		return entry;
1430 	}
1431 
1432 	if (!prev)
1433 		return NULL;
1434 
1435 	/* find last entry before the 'offset' */
1436 	entry = prev;
1437 	if (entry->offset > offset) {
1438 		n = rb_prev(&entry->offset_index);
1439 		if (n) {
1440 			entry = rb_entry(n, struct btrfs_free_space,
1441 					offset_index);
1442 			ASSERT(entry->offset <= offset);
1443 		} else {
1444 			if (fuzzy)
1445 				return entry;
1446 			else
1447 				return NULL;
1448 		}
1449 	}
1450 
1451 	if (entry->bitmap) {
1452 		n = rb_prev(&entry->offset_index);
1453 		if (n) {
1454 			prev = rb_entry(n, struct btrfs_free_space,
1455 					offset_index);
1456 			if (!prev->bitmap &&
1457 			    prev->offset + prev->bytes > offset)
1458 				return prev;
1459 		}
1460 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1461 			return entry;
1462 	} else if (entry->offset + entry->bytes > offset)
1463 		return entry;
1464 
1465 	if (!fuzzy)
1466 		return NULL;
1467 
1468 	while (1) {
1469 		if (entry->bitmap) {
1470 			if (entry->offset + BITS_PER_BITMAP *
1471 			    ctl->unit > offset)
1472 				break;
1473 		} else {
1474 			if (entry->offset + entry->bytes > offset)
1475 				break;
1476 		}
1477 
1478 		n = rb_next(&entry->offset_index);
1479 		if (!n)
1480 			return NULL;
1481 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1482 	}
1483 	return entry;
1484 }
1485 
1486 static inline void
1487 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1488 		    struct btrfs_free_space *info)
1489 {
1490 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1491 	ctl->free_extents--;
1492 }
1493 
1494 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1495 			      struct btrfs_free_space *info)
1496 {
1497 	__unlink_free_space(ctl, info);
1498 	ctl->free_space -= info->bytes;
1499 }
1500 
1501 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1502 			   struct btrfs_free_space *info)
1503 {
1504 	int ret = 0;
1505 
1506 	ASSERT(info->bytes || info->bitmap);
1507 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1508 				 &info->offset_index, (info->bitmap != NULL));
1509 	if (ret)
1510 		return ret;
1511 
1512 	ctl->free_space += info->bytes;
1513 	ctl->free_extents++;
1514 	return ret;
1515 }
1516 
1517 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1518 {
1519 	struct btrfs_block_group_cache *block_group = ctl->private;
1520 	u64 max_bytes;
1521 	u64 bitmap_bytes;
1522 	u64 extent_bytes;
1523 	u64 size = block_group->key.offset;
1524 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1525 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1526 
1527 	max_bitmaps = max(max_bitmaps, 1);
1528 
1529 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1530 
1531 	/*
1532 	 * The goal is to keep the total amount of memory used per 1gb of space
1533 	 * at or below 32k, so we need to adjust how much memory we allow to be
1534 	 * used by extent based free space tracking
1535 	 */
1536 	if (size < 1024 * 1024 * 1024)
1537 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1538 	else
1539 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1540 			div64_u64(size, 1024 * 1024 * 1024);
1541 
1542 	/*
1543 	 * we want to account for 1 more bitmap than what we have so we can make
1544 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1545 	 * we add more bitmaps.
1546 	 */
1547 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1548 
1549 	if (bitmap_bytes >= max_bytes) {
1550 		ctl->extents_thresh = 0;
1551 		return;
1552 	}
1553 
1554 	/*
1555 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1556 	 * bytes we can have, or whatever is less than that.
1557 	 */
1558 	extent_bytes = max_bytes - bitmap_bytes;
1559 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1560 
1561 	ctl->extents_thresh =
1562 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1563 }
1564 
1565 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1566 				       struct btrfs_free_space *info,
1567 				       u64 offset, u64 bytes)
1568 {
1569 	unsigned long start, count;
1570 
1571 	start = offset_to_bit(info->offset, ctl->unit, offset);
1572 	count = bytes_to_bits(bytes, ctl->unit);
1573 	ASSERT(start + count <= BITS_PER_BITMAP);
1574 
1575 	bitmap_clear(info->bitmap, start, count);
1576 
1577 	info->bytes -= bytes;
1578 }
1579 
1580 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1581 			      struct btrfs_free_space *info, u64 offset,
1582 			      u64 bytes)
1583 {
1584 	__bitmap_clear_bits(ctl, info, offset, bytes);
1585 	ctl->free_space -= bytes;
1586 }
1587 
1588 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1589 			    struct btrfs_free_space *info, u64 offset,
1590 			    u64 bytes)
1591 {
1592 	unsigned long start, count;
1593 
1594 	start = offset_to_bit(info->offset, ctl->unit, offset);
1595 	count = bytes_to_bits(bytes, ctl->unit);
1596 	ASSERT(start + count <= BITS_PER_BITMAP);
1597 
1598 	bitmap_set(info->bitmap, start, count);
1599 
1600 	info->bytes += bytes;
1601 	ctl->free_space += bytes;
1602 }
1603 
1604 /*
1605  * If we can not find suitable extent, we will use bytes to record
1606  * the size of the max extent.
1607  */
1608 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1609 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1610 			 u64 *bytes)
1611 {
1612 	unsigned long found_bits = 0;
1613 	unsigned long max_bits = 0;
1614 	unsigned long bits, i;
1615 	unsigned long next_zero;
1616 	unsigned long extent_bits;
1617 
1618 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1619 			  max_t(u64, *offset, bitmap_info->offset));
1620 	bits = bytes_to_bits(*bytes, ctl->unit);
1621 
1622 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1623 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1624 					       BITS_PER_BITMAP, i);
1625 		extent_bits = next_zero - i;
1626 		if (extent_bits >= bits) {
1627 			found_bits = extent_bits;
1628 			break;
1629 		} else if (extent_bits > max_bits) {
1630 			max_bits = extent_bits;
1631 		}
1632 		i = next_zero;
1633 	}
1634 
1635 	if (found_bits) {
1636 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1637 		*bytes = (u64)(found_bits) * ctl->unit;
1638 		return 0;
1639 	}
1640 
1641 	*bytes = (u64)(max_bits) * ctl->unit;
1642 	return -1;
1643 }
1644 
1645 /* Cache the size of the max extent in bytes */
1646 static struct btrfs_free_space *
1647 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1648 		unsigned long align, u64 *max_extent_size)
1649 {
1650 	struct btrfs_free_space *entry;
1651 	struct rb_node *node;
1652 	u64 tmp;
1653 	u64 align_off;
1654 	int ret;
1655 
1656 	if (!ctl->free_space_offset.rb_node)
1657 		goto out;
1658 
1659 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1660 	if (!entry)
1661 		goto out;
1662 
1663 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1664 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1665 		if (entry->bytes < *bytes) {
1666 			if (entry->bytes > *max_extent_size)
1667 				*max_extent_size = entry->bytes;
1668 			continue;
1669 		}
1670 
1671 		/* make sure the space returned is big enough
1672 		 * to match our requested alignment
1673 		 */
1674 		if (*bytes >= align) {
1675 			tmp = entry->offset - ctl->start + align - 1;
1676 			do_div(tmp, align);
1677 			tmp = tmp * align + ctl->start;
1678 			align_off = tmp - entry->offset;
1679 		} else {
1680 			align_off = 0;
1681 			tmp = entry->offset;
1682 		}
1683 
1684 		if (entry->bytes < *bytes + align_off) {
1685 			if (entry->bytes > *max_extent_size)
1686 				*max_extent_size = entry->bytes;
1687 			continue;
1688 		}
1689 
1690 		if (entry->bitmap) {
1691 			u64 size = *bytes;
1692 
1693 			ret = search_bitmap(ctl, entry, &tmp, &size);
1694 			if (!ret) {
1695 				*offset = tmp;
1696 				*bytes = size;
1697 				return entry;
1698 			} else if (size > *max_extent_size) {
1699 				*max_extent_size = size;
1700 			}
1701 			continue;
1702 		}
1703 
1704 		*offset = tmp;
1705 		*bytes = entry->bytes - align_off;
1706 		return entry;
1707 	}
1708 out:
1709 	return NULL;
1710 }
1711 
1712 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1713 			   struct btrfs_free_space *info, u64 offset)
1714 {
1715 	info->offset = offset_to_bitmap(ctl, offset);
1716 	info->bytes = 0;
1717 	INIT_LIST_HEAD(&info->list);
1718 	link_free_space(ctl, info);
1719 	ctl->total_bitmaps++;
1720 
1721 	ctl->op->recalc_thresholds(ctl);
1722 }
1723 
1724 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1725 			struct btrfs_free_space *bitmap_info)
1726 {
1727 	unlink_free_space(ctl, bitmap_info);
1728 	kfree(bitmap_info->bitmap);
1729 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1730 	ctl->total_bitmaps--;
1731 	ctl->op->recalc_thresholds(ctl);
1732 }
1733 
1734 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1735 			      struct btrfs_free_space *bitmap_info,
1736 			      u64 *offset, u64 *bytes)
1737 {
1738 	u64 end;
1739 	u64 search_start, search_bytes;
1740 	int ret;
1741 
1742 again:
1743 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1744 
1745 	/*
1746 	 * We need to search for bits in this bitmap.  We could only cover some
1747 	 * of the extent in this bitmap thanks to how we add space, so we need
1748 	 * to search for as much as it as we can and clear that amount, and then
1749 	 * go searching for the next bit.
1750 	 */
1751 	search_start = *offset;
1752 	search_bytes = ctl->unit;
1753 	search_bytes = min(search_bytes, end - search_start + 1);
1754 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1755 	if (ret < 0 || search_start != *offset)
1756 		return -EINVAL;
1757 
1758 	/* We may have found more bits than what we need */
1759 	search_bytes = min(search_bytes, *bytes);
1760 
1761 	/* Cannot clear past the end of the bitmap */
1762 	search_bytes = min(search_bytes, end - search_start + 1);
1763 
1764 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1765 	*offset += search_bytes;
1766 	*bytes -= search_bytes;
1767 
1768 	if (*bytes) {
1769 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1770 		if (!bitmap_info->bytes)
1771 			free_bitmap(ctl, bitmap_info);
1772 
1773 		/*
1774 		 * no entry after this bitmap, but we still have bytes to
1775 		 * remove, so something has gone wrong.
1776 		 */
1777 		if (!next)
1778 			return -EINVAL;
1779 
1780 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1781 				       offset_index);
1782 
1783 		/*
1784 		 * if the next entry isn't a bitmap we need to return to let the
1785 		 * extent stuff do its work.
1786 		 */
1787 		if (!bitmap_info->bitmap)
1788 			return -EAGAIN;
1789 
1790 		/*
1791 		 * Ok the next item is a bitmap, but it may not actually hold
1792 		 * the information for the rest of this free space stuff, so
1793 		 * look for it, and if we don't find it return so we can try
1794 		 * everything over again.
1795 		 */
1796 		search_start = *offset;
1797 		search_bytes = ctl->unit;
1798 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1799 				    &search_bytes);
1800 		if (ret < 0 || search_start != *offset)
1801 			return -EAGAIN;
1802 
1803 		goto again;
1804 	} else if (!bitmap_info->bytes)
1805 		free_bitmap(ctl, bitmap_info);
1806 
1807 	return 0;
1808 }
1809 
1810 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1811 			       struct btrfs_free_space *info, u64 offset,
1812 			       u64 bytes)
1813 {
1814 	u64 bytes_to_set = 0;
1815 	u64 end;
1816 
1817 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1818 
1819 	bytes_to_set = min(end - offset, bytes);
1820 
1821 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1822 
1823 	return bytes_to_set;
1824 
1825 }
1826 
1827 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1828 		      struct btrfs_free_space *info)
1829 {
1830 	struct btrfs_block_group_cache *block_group = ctl->private;
1831 
1832 	/*
1833 	 * If we are below the extents threshold then we can add this as an
1834 	 * extent, and don't have to deal with the bitmap
1835 	 */
1836 	if (ctl->free_extents < ctl->extents_thresh) {
1837 		/*
1838 		 * If this block group has some small extents we don't want to
1839 		 * use up all of our free slots in the cache with them, we want
1840 		 * to reserve them to larger extents, however if we have plent
1841 		 * of cache left then go ahead an dadd them, no sense in adding
1842 		 * the overhead of a bitmap if we don't have to.
1843 		 */
1844 		if (info->bytes <= block_group->sectorsize * 4) {
1845 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1846 				return false;
1847 		} else {
1848 			return false;
1849 		}
1850 	}
1851 
1852 	/*
1853 	 * The original block groups from mkfs can be really small, like 8
1854 	 * megabytes, so don't bother with a bitmap for those entries.  However
1855 	 * some block groups can be smaller than what a bitmap would cover but
1856 	 * are still large enough that they could overflow the 32k memory limit,
1857 	 * so allow those block groups to still be allowed to have a bitmap
1858 	 * entry.
1859 	 */
1860 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1861 		return false;
1862 
1863 	return true;
1864 }
1865 
1866 static struct btrfs_free_space_op free_space_op = {
1867 	.recalc_thresholds	= recalculate_thresholds,
1868 	.use_bitmap		= use_bitmap,
1869 };
1870 
1871 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1872 			      struct btrfs_free_space *info)
1873 {
1874 	struct btrfs_free_space *bitmap_info;
1875 	struct btrfs_block_group_cache *block_group = NULL;
1876 	int added = 0;
1877 	u64 bytes, offset, bytes_added;
1878 	int ret;
1879 
1880 	bytes = info->bytes;
1881 	offset = info->offset;
1882 
1883 	if (!ctl->op->use_bitmap(ctl, info))
1884 		return 0;
1885 
1886 	if (ctl->op == &free_space_op)
1887 		block_group = ctl->private;
1888 again:
1889 	/*
1890 	 * Since we link bitmaps right into the cluster we need to see if we
1891 	 * have a cluster here, and if so and it has our bitmap we need to add
1892 	 * the free space to that bitmap.
1893 	 */
1894 	if (block_group && !list_empty(&block_group->cluster_list)) {
1895 		struct btrfs_free_cluster *cluster;
1896 		struct rb_node *node;
1897 		struct btrfs_free_space *entry;
1898 
1899 		cluster = list_entry(block_group->cluster_list.next,
1900 				     struct btrfs_free_cluster,
1901 				     block_group_list);
1902 		spin_lock(&cluster->lock);
1903 		node = rb_first(&cluster->root);
1904 		if (!node) {
1905 			spin_unlock(&cluster->lock);
1906 			goto no_cluster_bitmap;
1907 		}
1908 
1909 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1910 		if (!entry->bitmap) {
1911 			spin_unlock(&cluster->lock);
1912 			goto no_cluster_bitmap;
1913 		}
1914 
1915 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1916 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1917 							  offset, bytes);
1918 			bytes -= bytes_added;
1919 			offset += bytes_added;
1920 		}
1921 		spin_unlock(&cluster->lock);
1922 		if (!bytes) {
1923 			ret = 1;
1924 			goto out;
1925 		}
1926 	}
1927 
1928 no_cluster_bitmap:
1929 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1930 					 1, 0);
1931 	if (!bitmap_info) {
1932 		ASSERT(added == 0);
1933 		goto new_bitmap;
1934 	}
1935 
1936 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1937 	bytes -= bytes_added;
1938 	offset += bytes_added;
1939 	added = 0;
1940 
1941 	if (!bytes) {
1942 		ret = 1;
1943 		goto out;
1944 	} else
1945 		goto again;
1946 
1947 new_bitmap:
1948 	if (info && info->bitmap) {
1949 		add_new_bitmap(ctl, info, offset);
1950 		added = 1;
1951 		info = NULL;
1952 		goto again;
1953 	} else {
1954 		spin_unlock(&ctl->tree_lock);
1955 
1956 		/* no pre-allocated info, allocate a new one */
1957 		if (!info) {
1958 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1959 						 GFP_NOFS);
1960 			if (!info) {
1961 				spin_lock(&ctl->tree_lock);
1962 				ret = -ENOMEM;
1963 				goto out;
1964 			}
1965 		}
1966 
1967 		/* allocate the bitmap */
1968 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1969 		spin_lock(&ctl->tree_lock);
1970 		if (!info->bitmap) {
1971 			ret = -ENOMEM;
1972 			goto out;
1973 		}
1974 		goto again;
1975 	}
1976 
1977 out:
1978 	if (info) {
1979 		if (info->bitmap)
1980 			kfree(info->bitmap);
1981 		kmem_cache_free(btrfs_free_space_cachep, info);
1982 	}
1983 
1984 	return ret;
1985 }
1986 
1987 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1988 			  struct btrfs_free_space *info, bool update_stat)
1989 {
1990 	struct btrfs_free_space *left_info;
1991 	struct btrfs_free_space *right_info;
1992 	bool merged = false;
1993 	u64 offset = info->offset;
1994 	u64 bytes = info->bytes;
1995 
1996 	/*
1997 	 * first we want to see if there is free space adjacent to the range we
1998 	 * are adding, if there is remove that struct and add a new one to
1999 	 * cover the entire range
2000 	 */
2001 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2002 	if (right_info && rb_prev(&right_info->offset_index))
2003 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2004 				     struct btrfs_free_space, offset_index);
2005 	else
2006 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2007 
2008 	if (right_info && !right_info->bitmap) {
2009 		if (update_stat)
2010 			unlink_free_space(ctl, right_info);
2011 		else
2012 			__unlink_free_space(ctl, right_info);
2013 		info->bytes += right_info->bytes;
2014 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2015 		merged = true;
2016 	}
2017 
2018 	if (left_info && !left_info->bitmap &&
2019 	    left_info->offset + left_info->bytes == offset) {
2020 		if (update_stat)
2021 			unlink_free_space(ctl, left_info);
2022 		else
2023 			__unlink_free_space(ctl, left_info);
2024 		info->offset = left_info->offset;
2025 		info->bytes += left_info->bytes;
2026 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2027 		merged = true;
2028 	}
2029 
2030 	return merged;
2031 }
2032 
2033 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2034 				     struct btrfs_free_space *info,
2035 				     bool update_stat)
2036 {
2037 	struct btrfs_free_space *bitmap;
2038 	unsigned long i;
2039 	unsigned long j;
2040 	const u64 end = info->offset + info->bytes;
2041 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2042 	u64 bytes;
2043 
2044 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2045 	if (!bitmap)
2046 		return false;
2047 
2048 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2049 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2050 	if (j == i)
2051 		return false;
2052 	bytes = (j - i) * ctl->unit;
2053 	info->bytes += bytes;
2054 
2055 	if (update_stat)
2056 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2057 	else
2058 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2059 
2060 	if (!bitmap->bytes)
2061 		free_bitmap(ctl, bitmap);
2062 
2063 	return true;
2064 }
2065 
2066 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2067 				       struct btrfs_free_space *info,
2068 				       bool update_stat)
2069 {
2070 	struct btrfs_free_space *bitmap;
2071 	u64 bitmap_offset;
2072 	unsigned long i;
2073 	unsigned long j;
2074 	unsigned long prev_j;
2075 	u64 bytes;
2076 
2077 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2078 	/* If we're on a boundary, try the previous logical bitmap. */
2079 	if (bitmap_offset == info->offset) {
2080 		if (info->offset == 0)
2081 			return false;
2082 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2083 	}
2084 
2085 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2086 	if (!bitmap)
2087 		return false;
2088 
2089 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2090 	j = 0;
2091 	prev_j = (unsigned long)-1;
2092 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2093 		if (j > i)
2094 			break;
2095 		prev_j = j;
2096 	}
2097 	if (prev_j == i)
2098 		return false;
2099 
2100 	if (prev_j == (unsigned long)-1)
2101 		bytes = (i + 1) * ctl->unit;
2102 	else
2103 		bytes = (i - prev_j) * ctl->unit;
2104 
2105 	info->offset -= bytes;
2106 	info->bytes += bytes;
2107 
2108 	if (update_stat)
2109 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2110 	else
2111 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2112 
2113 	if (!bitmap->bytes)
2114 		free_bitmap(ctl, bitmap);
2115 
2116 	return true;
2117 }
2118 
2119 /*
2120  * We prefer always to allocate from extent entries, both for clustered and
2121  * non-clustered allocation requests. So when attempting to add a new extent
2122  * entry, try to see if there's adjacent free space in bitmap entries, and if
2123  * there is, migrate that space from the bitmaps to the extent.
2124  * Like this we get better chances of satisfying space allocation requests
2125  * because we attempt to satisfy them based on a single cache entry, and never
2126  * on 2 or more entries - even if the entries represent a contiguous free space
2127  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2128  * ends).
2129  */
2130 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2131 			      struct btrfs_free_space *info,
2132 			      bool update_stat)
2133 {
2134 	/*
2135 	 * Only work with disconnected entries, as we can change their offset,
2136 	 * and must be extent entries.
2137 	 */
2138 	ASSERT(!info->bitmap);
2139 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2140 
2141 	if (ctl->total_bitmaps > 0) {
2142 		bool stole_end;
2143 		bool stole_front = false;
2144 
2145 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2146 		if (ctl->total_bitmaps > 0)
2147 			stole_front = steal_from_bitmap_to_front(ctl, info,
2148 								 update_stat);
2149 
2150 		if (stole_end || stole_front)
2151 			try_merge_free_space(ctl, info, update_stat);
2152 	}
2153 }
2154 
2155 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2156 			   u64 offset, u64 bytes)
2157 {
2158 	struct btrfs_free_space *info;
2159 	int ret = 0;
2160 
2161 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2162 	if (!info)
2163 		return -ENOMEM;
2164 
2165 	info->offset = offset;
2166 	info->bytes = bytes;
2167 	RB_CLEAR_NODE(&info->offset_index);
2168 
2169 	spin_lock(&ctl->tree_lock);
2170 
2171 	if (try_merge_free_space(ctl, info, true))
2172 		goto link;
2173 
2174 	/*
2175 	 * There was no extent directly to the left or right of this new
2176 	 * extent then we know we're going to have to allocate a new extent, so
2177 	 * before we do that see if we need to drop this into a bitmap
2178 	 */
2179 	ret = insert_into_bitmap(ctl, info);
2180 	if (ret < 0) {
2181 		goto out;
2182 	} else if (ret) {
2183 		ret = 0;
2184 		goto out;
2185 	}
2186 link:
2187 	/*
2188 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2189 	 * going to add the new free space to existing bitmap entries - because
2190 	 * that would mean unnecessary work that would be reverted. Therefore
2191 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2192 	 */
2193 	steal_from_bitmap(ctl, info, true);
2194 
2195 	ret = link_free_space(ctl, info);
2196 	if (ret)
2197 		kmem_cache_free(btrfs_free_space_cachep, info);
2198 out:
2199 	spin_unlock(&ctl->tree_lock);
2200 
2201 	if (ret) {
2202 		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2203 		ASSERT(ret != -EEXIST);
2204 	}
2205 
2206 	return ret;
2207 }
2208 
2209 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2210 			    u64 offset, u64 bytes)
2211 {
2212 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2213 	struct btrfs_free_space *info;
2214 	int ret;
2215 	bool re_search = false;
2216 
2217 	spin_lock(&ctl->tree_lock);
2218 
2219 again:
2220 	ret = 0;
2221 	if (!bytes)
2222 		goto out_lock;
2223 
2224 	info = tree_search_offset(ctl, offset, 0, 0);
2225 	if (!info) {
2226 		/*
2227 		 * oops didn't find an extent that matched the space we wanted
2228 		 * to remove, look for a bitmap instead
2229 		 */
2230 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2231 					  1, 0);
2232 		if (!info) {
2233 			/*
2234 			 * If we found a partial bit of our free space in a
2235 			 * bitmap but then couldn't find the other part this may
2236 			 * be a problem, so WARN about it.
2237 			 */
2238 			WARN_ON(re_search);
2239 			goto out_lock;
2240 		}
2241 	}
2242 
2243 	re_search = false;
2244 	if (!info->bitmap) {
2245 		unlink_free_space(ctl, info);
2246 		if (offset == info->offset) {
2247 			u64 to_free = min(bytes, info->bytes);
2248 
2249 			info->bytes -= to_free;
2250 			info->offset += to_free;
2251 			if (info->bytes) {
2252 				ret = link_free_space(ctl, info);
2253 				WARN_ON(ret);
2254 			} else {
2255 				kmem_cache_free(btrfs_free_space_cachep, info);
2256 			}
2257 
2258 			offset += to_free;
2259 			bytes -= to_free;
2260 			goto again;
2261 		} else {
2262 			u64 old_end = info->bytes + info->offset;
2263 
2264 			info->bytes = offset - info->offset;
2265 			ret = link_free_space(ctl, info);
2266 			WARN_ON(ret);
2267 			if (ret)
2268 				goto out_lock;
2269 
2270 			/* Not enough bytes in this entry to satisfy us */
2271 			if (old_end < offset + bytes) {
2272 				bytes -= old_end - offset;
2273 				offset = old_end;
2274 				goto again;
2275 			} else if (old_end == offset + bytes) {
2276 				/* all done */
2277 				goto out_lock;
2278 			}
2279 			spin_unlock(&ctl->tree_lock);
2280 
2281 			ret = btrfs_add_free_space(block_group, offset + bytes,
2282 						   old_end - (offset + bytes));
2283 			WARN_ON(ret);
2284 			goto out;
2285 		}
2286 	}
2287 
2288 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2289 	if (ret == -EAGAIN) {
2290 		re_search = true;
2291 		goto again;
2292 	}
2293 out_lock:
2294 	spin_unlock(&ctl->tree_lock);
2295 out:
2296 	return ret;
2297 }
2298 
2299 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2300 			   u64 bytes)
2301 {
2302 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2303 	struct btrfs_free_space *info;
2304 	struct rb_node *n;
2305 	int count = 0;
2306 
2307 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2308 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2309 		if (info->bytes >= bytes && !block_group->ro)
2310 			count++;
2311 		btrfs_crit(block_group->fs_info,
2312 			   "entry offset %llu, bytes %llu, bitmap %s",
2313 			   info->offset, info->bytes,
2314 		       (info->bitmap) ? "yes" : "no");
2315 	}
2316 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2317 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2318 	btrfs_info(block_group->fs_info,
2319 		   "%d blocks of free space at or bigger than bytes is", count);
2320 }
2321 
2322 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2323 {
2324 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2325 
2326 	spin_lock_init(&ctl->tree_lock);
2327 	ctl->unit = block_group->sectorsize;
2328 	ctl->start = block_group->key.objectid;
2329 	ctl->private = block_group;
2330 	ctl->op = &free_space_op;
2331 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2332 	mutex_init(&ctl->cache_writeout_mutex);
2333 
2334 	/*
2335 	 * we only want to have 32k of ram per block group for keeping
2336 	 * track of free space, and if we pass 1/2 of that we want to
2337 	 * start converting things over to using bitmaps
2338 	 */
2339 	ctl->extents_thresh = ((1024 * 32) / 2) /
2340 				sizeof(struct btrfs_free_space);
2341 }
2342 
2343 /*
2344  * for a given cluster, put all of its extents back into the free
2345  * space cache.  If the block group passed doesn't match the block group
2346  * pointed to by the cluster, someone else raced in and freed the
2347  * cluster already.  In that case, we just return without changing anything
2348  */
2349 static int
2350 __btrfs_return_cluster_to_free_space(
2351 			     struct btrfs_block_group_cache *block_group,
2352 			     struct btrfs_free_cluster *cluster)
2353 {
2354 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2355 	struct btrfs_free_space *entry;
2356 	struct rb_node *node;
2357 
2358 	spin_lock(&cluster->lock);
2359 	if (cluster->block_group != block_group)
2360 		goto out;
2361 
2362 	cluster->block_group = NULL;
2363 	cluster->window_start = 0;
2364 	list_del_init(&cluster->block_group_list);
2365 
2366 	node = rb_first(&cluster->root);
2367 	while (node) {
2368 		bool bitmap;
2369 
2370 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2371 		node = rb_next(&entry->offset_index);
2372 		rb_erase(&entry->offset_index, &cluster->root);
2373 		RB_CLEAR_NODE(&entry->offset_index);
2374 
2375 		bitmap = (entry->bitmap != NULL);
2376 		if (!bitmap) {
2377 			try_merge_free_space(ctl, entry, false);
2378 			steal_from_bitmap(ctl, entry, false);
2379 		}
2380 		tree_insert_offset(&ctl->free_space_offset,
2381 				   entry->offset, &entry->offset_index, bitmap);
2382 	}
2383 	cluster->root = RB_ROOT;
2384 
2385 out:
2386 	spin_unlock(&cluster->lock);
2387 	btrfs_put_block_group(block_group);
2388 	return 0;
2389 }
2390 
2391 static void __btrfs_remove_free_space_cache_locked(
2392 				struct btrfs_free_space_ctl *ctl)
2393 {
2394 	struct btrfs_free_space *info;
2395 	struct rb_node *node;
2396 
2397 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2398 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2399 		if (!info->bitmap) {
2400 			unlink_free_space(ctl, info);
2401 			kmem_cache_free(btrfs_free_space_cachep, info);
2402 		} else {
2403 			free_bitmap(ctl, info);
2404 		}
2405 		if (need_resched()) {
2406 			spin_unlock(&ctl->tree_lock);
2407 			cond_resched();
2408 			spin_lock(&ctl->tree_lock);
2409 		}
2410 	}
2411 }
2412 
2413 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2414 {
2415 	spin_lock(&ctl->tree_lock);
2416 	__btrfs_remove_free_space_cache_locked(ctl);
2417 	spin_unlock(&ctl->tree_lock);
2418 }
2419 
2420 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2421 {
2422 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2423 	struct btrfs_free_cluster *cluster;
2424 	struct list_head *head;
2425 
2426 	spin_lock(&ctl->tree_lock);
2427 	while ((head = block_group->cluster_list.next) !=
2428 	       &block_group->cluster_list) {
2429 		cluster = list_entry(head, struct btrfs_free_cluster,
2430 				     block_group_list);
2431 
2432 		WARN_ON(cluster->block_group != block_group);
2433 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2434 		if (need_resched()) {
2435 			spin_unlock(&ctl->tree_lock);
2436 			cond_resched();
2437 			spin_lock(&ctl->tree_lock);
2438 		}
2439 	}
2440 	__btrfs_remove_free_space_cache_locked(ctl);
2441 	spin_unlock(&ctl->tree_lock);
2442 
2443 }
2444 
2445 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2446 			       u64 offset, u64 bytes, u64 empty_size,
2447 			       u64 *max_extent_size)
2448 {
2449 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2450 	struct btrfs_free_space *entry = NULL;
2451 	u64 bytes_search = bytes + empty_size;
2452 	u64 ret = 0;
2453 	u64 align_gap = 0;
2454 	u64 align_gap_len = 0;
2455 
2456 	spin_lock(&ctl->tree_lock);
2457 	entry = find_free_space(ctl, &offset, &bytes_search,
2458 				block_group->full_stripe_len, max_extent_size);
2459 	if (!entry)
2460 		goto out;
2461 
2462 	ret = offset;
2463 	if (entry->bitmap) {
2464 		bitmap_clear_bits(ctl, entry, offset, bytes);
2465 		if (!entry->bytes)
2466 			free_bitmap(ctl, entry);
2467 	} else {
2468 		unlink_free_space(ctl, entry);
2469 		align_gap_len = offset - entry->offset;
2470 		align_gap = entry->offset;
2471 
2472 		entry->offset = offset + bytes;
2473 		WARN_ON(entry->bytes < bytes + align_gap_len);
2474 
2475 		entry->bytes -= bytes + align_gap_len;
2476 		if (!entry->bytes)
2477 			kmem_cache_free(btrfs_free_space_cachep, entry);
2478 		else
2479 			link_free_space(ctl, entry);
2480 	}
2481 out:
2482 	spin_unlock(&ctl->tree_lock);
2483 
2484 	if (align_gap_len)
2485 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2486 	return ret;
2487 }
2488 
2489 /*
2490  * given a cluster, put all of its extents back into the free space
2491  * cache.  If a block group is passed, this function will only free
2492  * a cluster that belongs to the passed block group.
2493  *
2494  * Otherwise, it'll get a reference on the block group pointed to by the
2495  * cluster and remove the cluster from it.
2496  */
2497 int btrfs_return_cluster_to_free_space(
2498 			       struct btrfs_block_group_cache *block_group,
2499 			       struct btrfs_free_cluster *cluster)
2500 {
2501 	struct btrfs_free_space_ctl *ctl;
2502 	int ret;
2503 
2504 	/* first, get a safe pointer to the block group */
2505 	spin_lock(&cluster->lock);
2506 	if (!block_group) {
2507 		block_group = cluster->block_group;
2508 		if (!block_group) {
2509 			spin_unlock(&cluster->lock);
2510 			return 0;
2511 		}
2512 	} else if (cluster->block_group != block_group) {
2513 		/* someone else has already freed it don't redo their work */
2514 		spin_unlock(&cluster->lock);
2515 		return 0;
2516 	}
2517 	atomic_inc(&block_group->count);
2518 	spin_unlock(&cluster->lock);
2519 
2520 	ctl = block_group->free_space_ctl;
2521 
2522 	/* now return any extents the cluster had on it */
2523 	spin_lock(&ctl->tree_lock);
2524 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2525 	spin_unlock(&ctl->tree_lock);
2526 
2527 	/* finally drop our ref */
2528 	btrfs_put_block_group(block_group);
2529 	return ret;
2530 }
2531 
2532 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2533 				   struct btrfs_free_cluster *cluster,
2534 				   struct btrfs_free_space *entry,
2535 				   u64 bytes, u64 min_start,
2536 				   u64 *max_extent_size)
2537 {
2538 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539 	int err;
2540 	u64 search_start = cluster->window_start;
2541 	u64 search_bytes = bytes;
2542 	u64 ret = 0;
2543 
2544 	search_start = min_start;
2545 	search_bytes = bytes;
2546 
2547 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2548 	if (err) {
2549 		if (search_bytes > *max_extent_size)
2550 			*max_extent_size = search_bytes;
2551 		return 0;
2552 	}
2553 
2554 	ret = search_start;
2555 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2556 
2557 	return ret;
2558 }
2559 
2560 /*
2561  * given a cluster, try to allocate 'bytes' from it, returns 0
2562  * if it couldn't find anything suitably large, or a logical disk offset
2563  * if things worked out
2564  */
2565 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2566 			     struct btrfs_free_cluster *cluster, u64 bytes,
2567 			     u64 min_start, u64 *max_extent_size)
2568 {
2569 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2570 	struct btrfs_free_space *entry = NULL;
2571 	struct rb_node *node;
2572 	u64 ret = 0;
2573 
2574 	spin_lock(&cluster->lock);
2575 	if (bytes > cluster->max_size)
2576 		goto out;
2577 
2578 	if (cluster->block_group != block_group)
2579 		goto out;
2580 
2581 	node = rb_first(&cluster->root);
2582 	if (!node)
2583 		goto out;
2584 
2585 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2586 	while (1) {
2587 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2588 			*max_extent_size = entry->bytes;
2589 
2590 		if (entry->bytes < bytes ||
2591 		    (!entry->bitmap && entry->offset < min_start)) {
2592 			node = rb_next(&entry->offset_index);
2593 			if (!node)
2594 				break;
2595 			entry = rb_entry(node, struct btrfs_free_space,
2596 					 offset_index);
2597 			continue;
2598 		}
2599 
2600 		if (entry->bitmap) {
2601 			ret = btrfs_alloc_from_bitmap(block_group,
2602 						      cluster, entry, bytes,
2603 						      cluster->window_start,
2604 						      max_extent_size);
2605 			if (ret == 0) {
2606 				node = rb_next(&entry->offset_index);
2607 				if (!node)
2608 					break;
2609 				entry = rb_entry(node, struct btrfs_free_space,
2610 						 offset_index);
2611 				continue;
2612 			}
2613 			cluster->window_start += bytes;
2614 		} else {
2615 			ret = entry->offset;
2616 
2617 			entry->offset += bytes;
2618 			entry->bytes -= bytes;
2619 		}
2620 
2621 		if (entry->bytes == 0)
2622 			rb_erase(&entry->offset_index, &cluster->root);
2623 		break;
2624 	}
2625 out:
2626 	spin_unlock(&cluster->lock);
2627 
2628 	if (!ret)
2629 		return 0;
2630 
2631 	spin_lock(&ctl->tree_lock);
2632 
2633 	ctl->free_space -= bytes;
2634 	if (entry->bytes == 0) {
2635 		ctl->free_extents--;
2636 		if (entry->bitmap) {
2637 			kfree(entry->bitmap);
2638 			ctl->total_bitmaps--;
2639 			ctl->op->recalc_thresholds(ctl);
2640 		}
2641 		kmem_cache_free(btrfs_free_space_cachep, entry);
2642 	}
2643 
2644 	spin_unlock(&ctl->tree_lock);
2645 
2646 	return ret;
2647 }
2648 
2649 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2650 				struct btrfs_free_space *entry,
2651 				struct btrfs_free_cluster *cluster,
2652 				u64 offset, u64 bytes,
2653 				u64 cont1_bytes, u64 min_bytes)
2654 {
2655 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2656 	unsigned long next_zero;
2657 	unsigned long i;
2658 	unsigned long want_bits;
2659 	unsigned long min_bits;
2660 	unsigned long found_bits;
2661 	unsigned long start = 0;
2662 	unsigned long total_found = 0;
2663 	int ret;
2664 
2665 	i = offset_to_bit(entry->offset, ctl->unit,
2666 			  max_t(u64, offset, entry->offset));
2667 	want_bits = bytes_to_bits(bytes, ctl->unit);
2668 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2669 
2670 again:
2671 	found_bits = 0;
2672 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2673 		next_zero = find_next_zero_bit(entry->bitmap,
2674 					       BITS_PER_BITMAP, i);
2675 		if (next_zero - i >= min_bits) {
2676 			found_bits = next_zero - i;
2677 			break;
2678 		}
2679 		i = next_zero;
2680 	}
2681 
2682 	if (!found_bits)
2683 		return -ENOSPC;
2684 
2685 	if (!total_found) {
2686 		start = i;
2687 		cluster->max_size = 0;
2688 	}
2689 
2690 	total_found += found_bits;
2691 
2692 	if (cluster->max_size < found_bits * ctl->unit)
2693 		cluster->max_size = found_bits * ctl->unit;
2694 
2695 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2696 		i = next_zero + 1;
2697 		goto again;
2698 	}
2699 
2700 	cluster->window_start = start * ctl->unit + entry->offset;
2701 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2702 	ret = tree_insert_offset(&cluster->root, entry->offset,
2703 				 &entry->offset_index, 1);
2704 	ASSERT(!ret); /* -EEXIST; Logic error */
2705 
2706 	trace_btrfs_setup_cluster(block_group, cluster,
2707 				  total_found * ctl->unit, 1);
2708 	return 0;
2709 }
2710 
2711 /*
2712  * This searches the block group for just extents to fill the cluster with.
2713  * Try to find a cluster with at least bytes total bytes, at least one
2714  * extent of cont1_bytes, and other clusters of at least min_bytes.
2715  */
2716 static noinline int
2717 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2718 			struct btrfs_free_cluster *cluster,
2719 			struct list_head *bitmaps, u64 offset, u64 bytes,
2720 			u64 cont1_bytes, u64 min_bytes)
2721 {
2722 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2723 	struct btrfs_free_space *first = NULL;
2724 	struct btrfs_free_space *entry = NULL;
2725 	struct btrfs_free_space *last;
2726 	struct rb_node *node;
2727 	u64 window_free;
2728 	u64 max_extent;
2729 	u64 total_size = 0;
2730 
2731 	entry = tree_search_offset(ctl, offset, 0, 1);
2732 	if (!entry)
2733 		return -ENOSPC;
2734 
2735 	/*
2736 	 * We don't want bitmaps, so just move along until we find a normal
2737 	 * extent entry.
2738 	 */
2739 	while (entry->bitmap || entry->bytes < min_bytes) {
2740 		if (entry->bitmap && list_empty(&entry->list))
2741 			list_add_tail(&entry->list, bitmaps);
2742 		node = rb_next(&entry->offset_index);
2743 		if (!node)
2744 			return -ENOSPC;
2745 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2746 	}
2747 
2748 	window_free = entry->bytes;
2749 	max_extent = entry->bytes;
2750 	first = entry;
2751 	last = entry;
2752 
2753 	for (node = rb_next(&entry->offset_index); node;
2754 	     node = rb_next(&entry->offset_index)) {
2755 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2756 
2757 		if (entry->bitmap) {
2758 			if (list_empty(&entry->list))
2759 				list_add_tail(&entry->list, bitmaps);
2760 			continue;
2761 		}
2762 
2763 		if (entry->bytes < min_bytes)
2764 			continue;
2765 
2766 		last = entry;
2767 		window_free += entry->bytes;
2768 		if (entry->bytes > max_extent)
2769 			max_extent = entry->bytes;
2770 	}
2771 
2772 	if (window_free < bytes || max_extent < cont1_bytes)
2773 		return -ENOSPC;
2774 
2775 	cluster->window_start = first->offset;
2776 
2777 	node = &first->offset_index;
2778 
2779 	/*
2780 	 * now we've found our entries, pull them out of the free space
2781 	 * cache and put them into the cluster rbtree
2782 	 */
2783 	do {
2784 		int ret;
2785 
2786 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2787 		node = rb_next(&entry->offset_index);
2788 		if (entry->bitmap || entry->bytes < min_bytes)
2789 			continue;
2790 
2791 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2792 		ret = tree_insert_offset(&cluster->root, entry->offset,
2793 					 &entry->offset_index, 0);
2794 		total_size += entry->bytes;
2795 		ASSERT(!ret); /* -EEXIST; Logic error */
2796 	} while (node && entry != last);
2797 
2798 	cluster->max_size = max_extent;
2799 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2800 	return 0;
2801 }
2802 
2803 /*
2804  * This specifically looks for bitmaps that may work in the cluster, we assume
2805  * that we have already failed to find extents that will work.
2806  */
2807 static noinline int
2808 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2809 		     struct btrfs_free_cluster *cluster,
2810 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2811 		     u64 cont1_bytes, u64 min_bytes)
2812 {
2813 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2814 	struct btrfs_free_space *entry;
2815 	int ret = -ENOSPC;
2816 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2817 
2818 	if (ctl->total_bitmaps == 0)
2819 		return -ENOSPC;
2820 
2821 	/*
2822 	 * The bitmap that covers offset won't be in the list unless offset
2823 	 * is just its start offset.
2824 	 */
2825 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2826 	if (entry->offset != bitmap_offset) {
2827 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2828 		if (entry && list_empty(&entry->list))
2829 			list_add(&entry->list, bitmaps);
2830 	}
2831 
2832 	list_for_each_entry(entry, bitmaps, list) {
2833 		if (entry->bytes < bytes)
2834 			continue;
2835 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2836 					   bytes, cont1_bytes, min_bytes);
2837 		if (!ret)
2838 			return 0;
2839 	}
2840 
2841 	/*
2842 	 * The bitmaps list has all the bitmaps that record free space
2843 	 * starting after offset, so no more search is required.
2844 	 */
2845 	return -ENOSPC;
2846 }
2847 
2848 /*
2849  * here we try to find a cluster of blocks in a block group.  The goal
2850  * is to find at least bytes+empty_size.
2851  * We might not find them all in one contiguous area.
2852  *
2853  * returns zero and sets up cluster if things worked out, otherwise
2854  * it returns -enospc
2855  */
2856 int btrfs_find_space_cluster(struct btrfs_root *root,
2857 			     struct btrfs_block_group_cache *block_group,
2858 			     struct btrfs_free_cluster *cluster,
2859 			     u64 offset, u64 bytes, u64 empty_size)
2860 {
2861 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2862 	struct btrfs_free_space *entry, *tmp;
2863 	LIST_HEAD(bitmaps);
2864 	u64 min_bytes;
2865 	u64 cont1_bytes;
2866 	int ret;
2867 
2868 	/*
2869 	 * Choose the minimum extent size we'll require for this
2870 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2871 	 * For metadata, allow allocates with smaller extents.  For
2872 	 * data, keep it dense.
2873 	 */
2874 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2875 		cont1_bytes = min_bytes = bytes + empty_size;
2876 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2877 		cont1_bytes = bytes;
2878 		min_bytes = block_group->sectorsize;
2879 	} else {
2880 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2881 		min_bytes = block_group->sectorsize;
2882 	}
2883 
2884 	spin_lock(&ctl->tree_lock);
2885 
2886 	/*
2887 	 * If we know we don't have enough space to make a cluster don't even
2888 	 * bother doing all the work to try and find one.
2889 	 */
2890 	if (ctl->free_space < bytes) {
2891 		spin_unlock(&ctl->tree_lock);
2892 		return -ENOSPC;
2893 	}
2894 
2895 	spin_lock(&cluster->lock);
2896 
2897 	/* someone already found a cluster, hooray */
2898 	if (cluster->block_group) {
2899 		ret = 0;
2900 		goto out;
2901 	}
2902 
2903 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2904 				 min_bytes);
2905 
2906 	INIT_LIST_HEAD(&bitmaps);
2907 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2908 				      bytes + empty_size,
2909 				      cont1_bytes, min_bytes);
2910 	if (ret)
2911 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2912 					   offset, bytes + empty_size,
2913 					   cont1_bytes, min_bytes);
2914 
2915 	/* Clear our temporary list */
2916 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2917 		list_del_init(&entry->list);
2918 
2919 	if (!ret) {
2920 		atomic_inc(&block_group->count);
2921 		list_add_tail(&cluster->block_group_list,
2922 			      &block_group->cluster_list);
2923 		cluster->block_group = block_group;
2924 	} else {
2925 		trace_btrfs_failed_cluster_setup(block_group);
2926 	}
2927 out:
2928 	spin_unlock(&cluster->lock);
2929 	spin_unlock(&ctl->tree_lock);
2930 
2931 	return ret;
2932 }
2933 
2934 /*
2935  * simple code to zero out a cluster
2936  */
2937 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2938 {
2939 	spin_lock_init(&cluster->lock);
2940 	spin_lock_init(&cluster->refill_lock);
2941 	cluster->root = RB_ROOT;
2942 	cluster->max_size = 0;
2943 	INIT_LIST_HEAD(&cluster->block_group_list);
2944 	cluster->block_group = NULL;
2945 }
2946 
2947 static int do_trimming(struct btrfs_block_group_cache *block_group,
2948 		       u64 *total_trimmed, u64 start, u64 bytes,
2949 		       u64 reserved_start, u64 reserved_bytes,
2950 		       struct btrfs_trim_range *trim_entry)
2951 {
2952 	struct btrfs_space_info *space_info = block_group->space_info;
2953 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2954 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2955 	int ret;
2956 	int update = 0;
2957 	u64 trimmed = 0;
2958 
2959 	spin_lock(&space_info->lock);
2960 	spin_lock(&block_group->lock);
2961 	if (!block_group->ro) {
2962 		block_group->reserved += reserved_bytes;
2963 		space_info->bytes_reserved += reserved_bytes;
2964 		update = 1;
2965 	}
2966 	spin_unlock(&block_group->lock);
2967 	spin_unlock(&space_info->lock);
2968 
2969 	ret = btrfs_discard_extent(fs_info->extent_root,
2970 				   start, bytes, &trimmed);
2971 	if (!ret)
2972 		*total_trimmed += trimmed;
2973 
2974 	mutex_lock(&ctl->cache_writeout_mutex);
2975 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2976 	list_del(&trim_entry->list);
2977 	mutex_unlock(&ctl->cache_writeout_mutex);
2978 
2979 	if (update) {
2980 		spin_lock(&space_info->lock);
2981 		spin_lock(&block_group->lock);
2982 		if (block_group->ro)
2983 			space_info->bytes_readonly += reserved_bytes;
2984 		block_group->reserved -= reserved_bytes;
2985 		space_info->bytes_reserved -= reserved_bytes;
2986 		spin_unlock(&space_info->lock);
2987 		spin_unlock(&block_group->lock);
2988 	}
2989 
2990 	return ret;
2991 }
2992 
2993 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2994 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2995 {
2996 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2997 	struct btrfs_free_space *entry;
2998 	struct rb_node *node;
2999 	int ret = 0;
3000 	u64 extent_start;
3001 	u64 extent_bytes;
3002 	u64 bytes;
3003 
3004 	while (start < end) {
3005 		struct btrfs_trim_range trim_entry;
3006 
3007 		mutex_lock(&ctl->cache_writeout_mutex);
3008 		spin_lock(&ctl->tree_lock);
3009 
3010 		if (ctl->free_space < minlen) {
3011 			spin_unlock(&ctl->tree_lock);
3012 			mutex_unlock(&ctl->cache_writeout_mutex);
3013 			break;
3014 		}
3015 
3016 		entry = tree_search_offset(ctl, start, 0, 1);
3017 		if (!entry) {
3018 			spin_unlock(&ctl->tree_lock);
3019 			mutex_unlock(&ctl->cache_writeout_mutex);
3020 			break;
3021 		}
3022 
3023 		/* skip bitmaps */
3024 		while (entry->bitmap) {
3025 			node = rb_next(&entry->offset_index);
3026 			if (!node) {
3027 				spin_unlock(&ctl->tree_lock);
3028 				mutex_unlock(&ctl->cache_writeout_mutex);
3029 				goto out;
3030 			}
3031 			entry = rb_entry(node, struct btrfs_free_space,
3032 					 offset_index);
3033 		}
3034 
3035 		if (entry->offset >= end) {
3036 			spin_unlock(&ctl->tree_lock);
3037 			mutex_unlock(&ctl->cache_writeout_mutex);
3038 			break;
3039 		}
3040 
3041 		extent_start = entry->offset;
3042 		extent_bytes = entry->bytes;
3043 		start = max(start, extent_start);
3044 		bytes = min(extent_start + extent_bytes, end) - start;
3045 		if (bytes < minlen) {
3046 			spin_unlock(&ctl->tree_lock);
3047 			mutex_unlock(&ctl->cache_writeout_mutex);
3048 			goto next;
3049 		}
3050 
3051 		unlink_free_space(ctl, entry);
3052 		kmem_cache_free(btrfs_free_space_cachep, entry);
3053 
3054 		spin_unlock(&ctl->tree_lock);
3055 		trim_entry.start = extent_start;
3056 		trim_entry.bytes = extent_bytes;
3057 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3058 		mutex_unlock(&ctl->cache_writeout_mutex);
3059 
3060 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3061 				  extent_start, extent_bytes, &trim_entry);
3062 		if (ret)
3063 			break;
3064 next:
3065 		start += bytes;
3066 
3067 		if (fatal_signal_pending(current)) {
3068 			ret = -ERESTARTSYS;
3069 			break;
3070 		}
3071 
3072 		cond_resched();
3073 	}
3074 out:
3075 	return ret;
3076 }
3077 
3078 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3079 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3080 {
3081 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3082 	struct btrfs_free_space *entry;
3083 	int ret = 0;
3084 	int ret2;
3085 	u64 bytes;
3086 	u64 offset = offset_to_bitmap(ctl, start);
3087 
3088 	while (offset < end) {
3089 		bool next_bitmap = false;
3090 		struct btrfs_trim_range trim_entry;
3091 
3092 		mutex_lock(&ctl->cache_writeout_mutex);
3093 		spin_lock(&ctl->tree_lock);
3094 
3095 		if (ctl->free_space < minlen) {
3096 			spin_unlock(&ctl->tree_lock);
3097 			mutex_unlock(&ctl->cache_writeout_mutex);
3098 			break;
3099 		}
3100 
3101 		entry = tree_search_offset(ctl, offset, 1, 0);
3102 		if (!entry) {
3103 			spin_unlock(&ctl->tree_lock);
3104 			mutex_unlock(&ctl->cache_writeout_mutex);
3105 			next_bitmap = true;
3106 			goto next;
3107 		}
3108 
3109 		bytes = minlen;
3110 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
3111 		if (ret2 || start >= end) {
3112 			spin_unlock(&ctl->tree_lock);
3113 			mutex_unlock(&ctl->cache_writeout_mutex);
3114 			next_bitmap = true;
3115 			goto next;
3116 		}
3117 
3118 		bytes = min(bytes, end - start);
3119 		if (bytes < minlen) {
3120 			spin_unlock(&ctl->tree_lock);
3121 			mutex_unlock(&ctl->cache_writeout_mutex);
3122 			goto next;
3123 		}
3124 
3125 		bitmap_clear_bits(ctl, entry, start, bytes);
3126 		if (entry->bytes == 0)
3127 			free_bitmap(ctl, entry);
3128 
3129 		spin_unlock(&ctl->tree_lock);
3130 		trim_entry.start = start;
3131 		trim_entry.bytes = bytes;
3132 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3133 		mutex_unlock(&ctl->cache_writeout_mutex);
3134 
3135 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3136 				  start, bytes, &trim_entry);
3137 		if (ret)
3138 			break;
3139 next:
3140 		if (next_bitmap) {
3141 			offset += BITS_PER_BITMAP * ctl->unit;
3142 		} else {
3143 			start += bytes;
3144 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3145 				offset += BITS_PER_BITMAP * ctl->unit;
3146 		}
3147 
3148 		if (fatal_signal_pending(current)) {
3149 			ret = -ERESTARTSYS;
3150 			break;
3151 		}
3152 
3153 		cond_resched();
3154 	}
3155 
3156 	return ret;
3157 }
3158 
3159 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3160 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3161 {
3162 	int ret;
3163 
3164 	*trimmed = 0;
3165 
3166 	spin_lock(&block_group->lock);
3167 	if (block_group->removed) {
3168 		spin_unlock(&block_group->lock);
3169 		return 0;
3170 	}
3171 	atomic_inc(&block_group->trimming);
3172 	spin_unlock(&block_group->lock);
3173 
3174 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3175 	if (ret)
3176 		goto out;
3177 
3178 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3179 out:
3180 	spin_lock(&block_group->lock);
3181 	if (atomic_dec_and_test(&block_group->trimming) &&
3182 	    block_group->removed) {
3183 		struct extent_map_tree *em_tree;
3184 		struct extent_map *em;
3185 
3186 		spin_unlock(&block_group->lock);
3187 
3188 		lock_chunks(block_group->fs_info->chunk_root);
3189 		em_tree = &block_group->fs_info->mapping_tree.map_tree;
3190 		write_lock(&em_tree->lock);
3191 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3192 					   1);
3193 		BUG_ON(!em); /* logic error, can't happen */
3194 		/*
3195 		 * remove_extent_mapping() will delete us from the pinned_chunks
3196 		 * list, which is protected by the chunk mutex.
3197 		 */
3198 		remove_extent_mapping(em_tree, em);
3199 		write_unlock(&em_tree->lock);
3200 		unlock_chunks(block_group->fs_info->chunk_root);
3201 
3202 		/* once for us and once for the tree */
3203 		free_extent_map(em);
3204 		free_extent_map(em);
3205 
3206 		/*
3207 		 * We've left one free space entry and other tasks trimming
3208 		 * this block group have left 1 entry each one. Free them.
3209 		 */
3210 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3211 	} else {
3212 		spin_unlock(&block_group->lock);
3213 	}
3214 
3215 	return ret;
3216 }
3217 
3218 /*
3219  * Find the left-most item in the cache tree, and then return the
3220  * smallest inode number in the item.
3221  *
3222  * Note: the returned inode number may not be the smallest one in
3223  * the tree, if the left-most item is a bitmap.
3224  */
3225 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3226 {
3227 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3228 	struct btrfs_free_space *entry = NULL;
3229 	u64 ino = 0;
3230 
3231 	spin_lock(&ctl->tree_lock);
3232 
3233 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3234 		goto out;
3235 
3236 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3237 			 struct btrfs_free_space, offset_index);
3238 
3239 	if (!entry->bitmap) {
3240 		ino = entry->offset;
3241 
3242 		unlink_free_space(ctl, entry);
3243 		entry->offset++;
3244 		entry->bytes--;
3245 		if (!entry->bytes)
3246 			kmem_cache_free(btrfs_free_space_cachep, entry);
3247 		else
3248 			link_free_space(ctl, entry);
3249 	} else {
3250 		u64 offset = 0;
3251 		u64 count = 1;
3252 		int ret;
3253 
3254 		ret = search_bitmap(ctl, entry, &offset, &count);
3255 		/* Logic error; Should be empty if it can't find anything */
3256 		ASSERT(!ret);
3257 
3258 		ino = offset;
3259 		bitmap_clear_bits(ctl, entry, offset, 1);
3260 		if (entry->bytes == 0)
3261 			free_bitmap(ctl, entry);
3262 	}
3263 out:
3264 	spin_unlock(&ctl->tree_lock);
3265 
3266 	return ino;
3267 }
3268 
3269 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3270 				    struct btrfs_path *path)
3271 {
3272 	struct inode *inode = NULL;
3273 
3274 	spin_lock(&root->ino_cache_lock);
3275 	if (root->ino_cache_inode)
3276 		inode = igrab(root->ino_cache_inode);
3277 	spin_unlock(&root->ino_cache_lock);
3278 	if (inode)
3279 		return inode;
3280 
3281 	inode = __lookup_free_space_inode(root, path, 0);
3282 	if (IS_ERR(inode))
3283 		return inode;
3284 
3285 	spin_lock(&root->ino_cache_lock);
3286 	if (!btrfs_fs_closing(root->fs_info))
3287 		root->ino_cache_inode = igrab(inode);
3288 	spin_unlock(&root->ino_cache_lock);
3289 
3290 	return inode;
3291 }
3292 
3293 int create_free_ino_inode(struct btrfs_root *root,
3294 			  struct btrfs_trans_handle *trans,
3295 			  struct btrfs_path *path)
3296 {
3297 	return __create_free_space_inode(root, trans, path,
3298 					 BTRFS_FREE_INO_OBJECTID, 0);
3299 }
3300 
3301 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3302 {
3303 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3304 	struct btrfs_path *path;
3305 	struct inode *inode;
3306 	int ret = 0;
3307 	u64 root_gen = btrfs_root_generation(&root->root_item);
3308 
3309 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3310 		return 0;
3311 
3312 	/*
3313 	 * If we're unmounting then just return, since this does a search on the
3314 	 * normal root and not the commit root and we could deadlock.
3315 	 */
3316 	if (btrfs_fs_closing(fs_info))
3317 		return 0;
3318 
3319 	path = btrfs_alloc_path();
3320 	if (!path)
3321 		return 0;
3322 
3323 	inode = lookup_free_ino_inode(root, path);
3324 	if (IS_ERR(inode))
3325 		goto out;
3326 
3327 	if (root_gen != BTRFS_I(inode)->generation)
3328 		goto out_put;
3329 
3330 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3331 
3332 	if (ret < 0)
3333 		btrfs_err(fs_info,
3334 			"failed to load free ino cache for root %llu",
3335 			root->root_key.objectid);
3336 out_put:
3337 	iput(inode);
3338 out:
3339 	btrfs_free_path(path);
3340 	return ret;
3341 }
3342 
3343 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3344 			      struct btrfs_trans_handle *trans,
3345 			      struct btrfs_path *path,
3346 			      struct inode *inode)
3347 {
3348 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3349 	int ret;
3350 
3351 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3352 		return 0;
3353 
3354 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
3355 	if (ret) {
3356 		btrfs_delalloc_release_metadata(inode, inode->i_size);
3357 #ifdef DEBUG
3358 		btrfs_err(root->fs_info,
3359 			"failed to write free ino cache for root %llu",
3360 			root->root_key.objectid);
3361 #endif
3362 	}
3363 
3364 	return ret;
3365 }
3366 
3367 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3368 /*
3369  * Use this if you need to make a bitmap or extent entry specifically, it
3370  * doesn't do any of the merging that add_free_space does, this acts a lot like
3371  * how the free space cache loading stuff works, so you can get really weird
3372  * configurations.
3373  */
3374 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3375 			      u64 offset, u64 bytes, bool bitmap)
3376 {
3377 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3378 	struct btrfs_free_space *info = NULL, *bitmap_info;
3379 	void *map = NULL;
3380 	u64 bytes_added;
3381 	int ret;
3382 
3383 again:
3384 	if (!info) {
3385 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3386 		if (!info)
3387 			return -ENOMEM;
3388 	}
3389 
3390 	if (!bitmap) {
3391 		spin_lock(&ctl->tree_lock);
3392 		info->offset = offset;
3393 		info->bytes = bytes;
3394 		ret = link_free_space(ctl, info);
3395 		spin_unlock(&ctl->tree_lock);
3396 		if (ret)
3397 			kmem_cache_free(btrfs_free_space_cachep, info);
3398 		return ret;
3399 	}
3400 
3401 	if (!map) {
3402 		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3403 		if (!map) {
3404 			kmem_cache_free(btrfs_free_space_cachep, info);
3405 			return -ENOMEM;
3406 		}
3407 	}
3408 
3409 	spin_lock(&ctl->tree_lock);
3410 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3411 					 1, 0);
3412 	if (!bitmap_info) {
3413 		info->bitmap = map;
3414 		map = NULL;
3415 		add_new_bitmap(ctl, info, offset);
3416 		bitmap_info = info;
3417 		info = NULL;
3418 	}
3419 
3420 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3421 	bytes -= bytes_added;
3422 	offset += bytes_added;
3423 	spin_unlock(&ctl->tree_lock);
3424 
3425 	if (bytes)
3426 		goto again;
3427 
3428 	if (info)
3429 		kmem_cache_free(btrfs_free_space_cachep, info);
3430 	if (map)
3431 		kfree(map);
3432 	return 0;
3433 }
3434 
3435 /*
3436  * Checks to see if the given range is in the free space cache.  This is really
3437  * just used to check the absence of space, so if there is free space in the
3438  * range at all we will return 1.
3439  */
3440 int test_check_exists(struct btrfs_block_group_cache *cache,
3441 		      u64 offset, u64 bytes)
3442 {
3443 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3444 	struct btrfs_free_space *info;
3445 	int ret = 0;
3446 
3447 	spin_lock(&ctl->tree_lock);
3448 	info = tree_search_offset(ctl, offset, 0, 0);
3449 	if (!info) {
3450 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3451 					  1, 0);
3452 		if (!info)
3453 			goto out;
3454 	}
3455 
3456 have_info:
3457 	if (info->bitmap) {
3458 		u64 bit_off, bit_bytes;
3459 		struct rb_node *n;
3460 		struct btrfs_free_space *tmp;
3461 
3462 		bit_off = offset;
3463 		bit_bytes = ctl->unit;
3464 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3465 		if (!ret) {
3466 			if (bit_off == offset) {
3467 				ret = 1;
3468 				goto out;
3469 			} else if (bit_off > offset &&
3470 				   offset + bytes > bit_off) {
3471 				ret = 1;
3472 				goto out;
3473 			}
3474 		}
3475 
3476 		n = rb_prev(&info->offset_index);
3477 		while (n) {
3478 			tmp = rb_entry(n, struct btrfs_free_space,
3479 				       offset_index);
3480 			if (tmp->offset + tmp->bytes < offset)
3481 				break;
3482 			if (offset + bytes < tmp->offset) {
3483 				n = rb_prev(&info->offset_index);
3484 				continue;
3485 			}
3486 			info = tmp;
3487 			goto have_info;
3488 		}
3489 
3490 		n = rb_next(&info->offset_index);
3491 		while (n) {
3492 			tmp = rb_entry(n, struct btrfs_free_space,
3493 				       offset_index);
3494 			if (offset + bytes < tmp->offset)
3495 				break;
3496 			if (tmp->offset + tmp->bytes < offset) {
3497 				n = rb_next(&info->offset_index);
3498 				continue;
3499 			}
3500 			info = tmp;
3501 			goto have_info;
3502 		}
3503 
3504 		ret = 0;
3505 		goto out;
3506 	}
3507 
3508 	if (info->offset == offset) {
3509 		ret = 1;
3510 		goto out;
3511 	}
3512 
3513 	if (offset > info->offset && offset < info->offset + info->bytes)
3514 		ret = 1;
3515 out:
3516 	spin_unlock(&ctl->tree_lock);
3517 	return ret;
3518 }
3519 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3520