xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision bf5bbed1)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_key key;
44 	struct btrfs_key location;
45 	struct btrfs_disk_key disk_key;
46 	struct btrfs_free_space_header *header;
47 	struct extent_buffer *leaf;
48 	struct inode *inode = NULL;
49 	int ret;
50 
51 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 	key.offset = offset;
53 	key.type = 0;
54 
55 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 	if (ret < 0)
57 		return ERR_PTR(ret);
58 	if (ret > 0) {
59 		btrfs_release_path(path);
60 		return ERR_PTR(-ENOENT);
61 	}
62 
63 	leaf = path->nodes[0];
64 	header = btrfs_item_ptr(leaf, path->slots[0],
65 				struct btrfs_free_space_header);
66 	btrfs_free_space_key(leaf, header, &disk_key);
67 	btrfs_disk_key_to_cpu(&location, &disk_key);
68 	btrfs_release_path(path);
69 
70 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 	if (!inode)
72 		return ERR_PTR(-ENOENT);
73 	if (IS_ERR(inode))
74 		return inode;
75 	if (is_bad_inode(inode)) {
76 		iput(inode);
77 		return ERR_PTR(-ENOENT);
78 	}
79 
80 	mapping_set_gfp_mask(inode->i_mapping,
81 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		printk(KERN_INFO "Old style space inode found, converting.\n");
108 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 			BTRFS_INODE_NODATACOW;
110 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
111 	}
112 
113 	if (!block_group->iref) {
114 		block_group->inode = igrab(inode);
115 		block_group->iref = 1;
116 	}
117 	spin_unlock(&block_group->lock);
118 
119 	return inode;
120 }
121 
122 int __create_free_space_inode(struct btrfs_root *root,
123 			      struct btrfs_trans_handle *trans,
124 			      struct btrfs_path *path, u64 ino, u64 offset)
125 {
126 	struct btrfs_key key;
127 	struct btrfs_disk_key disk_key;
128 	struct btrfs_free_space_header *header;
129 	struct btrfs_inode_item *inode_item;
130 	struct extent_buffer *leaf;
131 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
132 	int ret;
133 
134 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
135 	if (ret)
136 		return ret;
137 
138 	/* We inline crc's for the free disk space cache */
139 	if (ino != BTRFS_FREE_INO_OBJECTID)
140 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
141 
142 	leaf = path->nodes[0];
143 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
144 				    struct btrfs_inode_item);
145 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
146 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
147 			     sizeof(*inode_item));
148 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
149 	btrfs_set_inode_size(leaf, inode_item, 0);
150 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
151 	btrfs_set_inode_uid(leaf, inode_item, 0);
152 	btrfs_set_inode_gid(leaf, inode_item, 0);
153 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
154 	btrfs_set_inode_flags(leaf, inode_item, flags);
155 	btrfs_set_inode_nlink(leaf, inode_item, 1);
156 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
157 	btrfs_set_inode_block_group(leaf, inode_item, offset);
158 	btrfs_mark_buffer_dirty(leaf);
159 	btrfs_release_path(path);
160 
161 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
162 	key.offset = offset;
163 	key.type = 0;
164 
165 	ret = btrfs_insert_empty_item(trans, root, path, &key,
166 				      sizeof(struct btrfs_free_space_header));
167 	if (ret < 0) {
168 		btrfs_release_path(path);
169 		return ret;
170 	}
171 	leaf = path->nodes[0];
172 	header = btrfs_item_ptr(leaf, path->slots[0],
173 				struct btrfs_free_space_header);
174 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
175 	btrfs_set_free_space_key(leaf, header, &disk_key);
176 	btrfs_mark_buffer_dirty(leaf);
177 	btrfs_release_path(path);
178 
179 	return 0;
180 }
181 
182 int create_free_space_inode(struct btrfs_root *root,
183 			    struct btrfs_trans_handle *trans,
184 			    struct btrfs_block_group_cache *block_group,
185 			    struct btrfs_path *path)
186 {
187 	int ret;
188 	u64 ino;
189 
190 	ret = btrfs_find_free_objectid(root, &ino);
191 	if (ret < 0)
192 		return ret;
193 
194 	return __create_free_space_inode(root, trans, path, ino,
195 					 block_group->key.objectid);
196 }
197 
198 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
199 				    struct btrfs_trans_handle *trans,
200 				    struct btrfs_path *path,
201 				    struct inode *inode)
202 {
203 	struct btrfs_block_rsv *rsv;
204 	u64 needed_bytes;
205 	loff_t oldsize;
206 	int ret = 0;
207 
208 	rsv = trans->block_rsv;
209 	trans->block_rsv = &root->fs_info->global_block_rsv;
210 
211 	/* 1 for slack space, 1 for updating the inode */
212 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
213 		btrfs_calc_trans_metadata_size(root, 1);
214 
215 	spin_lock(&trans->block_rsv->lock);
216 	if (trans->block_rsv->reserved < needed_bytes) {
217 		spin_unlock(&trans->block_rsv->lock);
218 		trans->block_rsv = rsv;
219 		return -ENOSPC;
220 	}
221 	spin_unlock(&trans->block_rsv->lock);
222 
223 	oldsize = i_size_read(inode);
224 	btrfs_i_size_write(inode, 0);
225 	truncate_pagecache(inode, oldsize, 0);
226 
227 	/*
228 	 * We don't need an orphan item because truncating the free space cache
229 	 * will never be split across transactions.
230 	 */
231 	ret = btrfs_truncate_inode_items(trans, root, inode,
232 					 0, BTRFS_EXTENT_DATA_KEY);
233 
234 	if (ret) {
235 		trans->block_rsv = rsv;
236 		btrfs_abort_transaction(trans, root, ret);
237 		return ret;
238 	}
239 
240 	ret = btrfs_update_inode(trans, root, inode);
241 	if (ret)
242 		btrfs_abort_transaction(trans, root, ret);
243 	trans->block_rsv = rsv;
244 
245 	return ret;
246 }
247 
248 static int readahead_cache(struct inode *inode)
249 {
250 	struct file_ra_state *ra;
251 	unsigned long last_index;
252 
253 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
254 	if (!ra)
255 		return -ENOMEM;
256 
257 	file_ra_state_init(ra, inode->i_mapping);
258 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
259 
260 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
261 
262 	kfree(ra);
263 
264 	return 0;
265 }
266 
267 struct io_ctl {
268 	void *cur, *orig;
269 	struct page *page;
270 	struct page **pages;
271 	struct btrfs_root *root;
272 	unsigned long size;
273 	int index;
274 	int num_pages;
275 	unsigned check_crcs:1;
276 };
277 
278 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
279 		       struct btrfs_root *root)
280 {
281 	memset(io_ctl, 0, sizeof(struct io_ctl));
282 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
283 		PAGE_CACHE_SHIFT;
284 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
285 				GFP_NOFS);
286 	if (!io_ctl->pages)
287 		return -ENOMEM;
288 	io_ctl->root = root;
289 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
290 		io_ctl->check_crcs = 1;
291 	return 0;
292 }
293 
294 static void io_ctl_free(struct io_ctl *io_ctl)
295 {
296 	kfree(io_ctl->pages);
297 }
298 
299 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
300 {
301 	if (io_ctl->cur) {
302 		kunmap(io_ctl->page);
303 		io_ctl->cur = NULL;
304 		io_ctl->orig = NULL;
305 	}
306 }
307 
308 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
309 {
310 	BUG_ON(io_ctl->index >= io_ctl->num_pages);
311 	io_ctl->page = io_ctl->pages[io_ctl->index++];
312 	io_ctl->cur = kmap(io_ctl->page);
313 	io_ctl->orig = io_ctl->cur;
314 	io_ctl->size = PAGE_CACHE_SIZE;
315 	if (clear)
316 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
317 }
318 
319 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
320 {
321 	int i;
322 
323 	io_ctl_unmap_page(io_ctl);
324 
325 	for (i = 0; i < io_ctl->num_pages; i++) {
326 		if (io_ctl->pages[i]) {
327 			ClearPageChecked(io_ctl->pages[i]);
328 			unlock_page(io_ctl->pages[i]);
329 			page_cache_release(io_ctl->pages[i]);
330 		}
331 	}
332 }
333 
334 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
335 				int uptodate)
336 {
337 	struct page *page;
338 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
339 	int i;
340 
341 	for (i = 0; i < io_ctl->num_pages; i++) {
342 		page = find_or_create_page(inode->i_mapping, i, mask);
343 		if (!page) {
344 			io_ctl_drop_pages(io_ctl);
345 			return -ENOMEM;
346 		}
347 		io_ctl->pages[i] = page;
348 		if (uptodate && !PageUptodate(page)) {
349 			btrfs_readpage(NULL, page);
350 			lock_page(page);
351 			if (!PageUptodate(page)) {
352 				printk(KERN_ERR "btrfs: error reading free "
353 				       "space cache\n");
354 				io_ctl_drop_pages(io_ctl);
355 				return -EIO;
356 			}
357 		}
358 	}
359 
360 	for (i = 0; i < io_ctl->num_pages; i++) {
361 		clear_page_dirty_for_io(io_ctl->pages[i]);
362 		set_page_extent_mapped(io_ctl->pages[i]);
363 	}
364 
365 	return 0;
366 }
367 
368 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
369 {
370 	__le64 *val;
371 
372 	io_ctl_map_page(io_ctl, 1);
373 
374 	/*
375 	 * Skip the csum areas.  If we don't check crcs then we just have a
376 	 * 64bit chunk at the front of the first page.
377 	 */
378 	if (io_ctl->check_crcs) {
379 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
380 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
381 	} else {
382 		io_ctl->cur += sizeof(u64);
383 		io_ctl->size -= sizeof(u64) * 2;
384 	}
385 
386 	val = io_ctl->cur;
387 	*val = cpu_to_le64(generation);
388 	io_ctl->cur += sizeof(u64);
389 }
390 
391 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
392 {
393 	__le64 *gen;
394 
395 	/*
396 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
397 	 * chunk at the front of the first page.
398 	 */
399 	if (io_ctl->check_crcs) {
400 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
401 		io_ctl->size -= sizeof(u64) +
402 			(sizeof(u32) * io_ctl->num_pages);
403 	} else {
404 		io_ctl->cur += sizeof(u64);
405 		io_ctl->size -= sizeof(u64) * 2;
406 	}
407 
408 	gen = io_ctl->cur;
409 	if (le64_to_cpu(*gen) != generation) {
410 		printk_ratelimited(KERN_ERR "btrfs: space cache generation "
411 				   "(%Lu) does not match inode (%Lu)\n", *gen,
412 				   generation);
413 		io_ctl_unmap_page(io_ctl);
414 		return -EIO;
415 	}
416 	io_ctl->cur += sizeof(u64);
417 	return 0;
418 }
419 
420 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
421 {
422 	u32 *tmp;
423 	u32 crc = ~(u32)0;
424 	unsigned offset = 0;
425 
426 	if (!io_ctl->check_crcs) {
427 		io_ctl_unmap_page(io_ctl);
428 		return;
429 	}
430 
431 	if (index == 0)
432 		offset = sizeof(u32) * io_ctl->num_pages;
433 
434 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
435 			      PAGE_CACHE_SIZE - offset);
436 	btrfs_csum_final(crc, (char *)&crc);
437 	io_ctl_unmap_page(io_ctl);
438 	tmp = kmap(io_ctl->pages[0]);
439 	tmp += index;
440 	*tmp = crc;
441 	kunmap(io_ctl->pages[0]);
442 }
443 
444 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
445 {
446 	u32 *tmp, val;
447 	u32 crc = ~(u32)0;
448 	unsigned offset = 0;
449 
450 	if (!io_ctl->check_crcs) {
451 		io_ctl_map_page(io_ctl, 0);
452 		return 0;
453 	}
454 
455 	if (index == 0)
456 		offset = sizeof(u32) * io_ctl->num_pages;
457 
458 	tmp = kmap(io_ctl->pages[0]);
459 	tmp += index;
460 	val = *tmp;
461 	kunmap(io_ctl->pages[0]);
462 
463 	io_ctl_map_page(io_ctl, 0);
464 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
465 			      PAGE_CACHE_SIZE - offset);
466 	btrfs_csum_final(crc, (char *)&crc);
467 	if (val != crc) {
468 		printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
469 				   "space cache\n");
470 		io_ctl_unmap_page(io_ctl);
471 		return -EIO;
472 	}
473 
474 	return 0;
475 }
476 
477 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
478 			    void *bitmap)
479 {
480 	struct btrfs_free_space_entry *entry;
481 
482 	if (!io_ctl->cur)
483 		return -ENOSPC;
484 
485 	entry = io_ctl->cur;
486 	entry->offset = cpu_to_le64(offset);
487 	entry->bytes = cpu_to_le64(bytes);
488 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
489 		BTRFS_FREE_SPACE_EXTENT;
490 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
491 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
492 
493 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
494 		return 0;
495 
496 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
497 
498 	/* No more pages to map */
499 	if (io_ctl->index >= io_ctl->num_pages)
500 		return 0;
501 
502 	/* map the next page */
503 	io_ctl_map_page(io_ctl, 1);
504 	return 0;
505 }
506 
507 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
508 {
509 	if (!io_ctl->cur)
510 		return -ENOSPC;
511 
512 	/*
513 	 * If we aren't at the start of the current page, unmap this one and
514 	 * map the next one if there is any left.
515 	 */
516 	if (io_ctl->cur != io_ctl->orig) {
517 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
518 		if (io_ctl->index >= io_ctl->num_pages)
519 			return -ENOSPC;
520 		io_ctl_map_page(io_ctl, 0);
521 	}
522 
523 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
524 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
525 	if (io_ctl->index < io_ctl->num_pages)
526 		io_ctl_map_page(io_ctl, 0);
527 	return 0;
528 }
529 
530 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
531 {
532 	/*
533 	 * If we're not on the boundary we know we've modified the page and we
534 	 * need to crc the page.
535 	 */
536 	if (io_ctl->cur != io_ctl->orig)
537 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 	else
539 		io_ctl_unmap_page(io_ctl);
540 
541 	while (io_ctl->index < io_ctl->num_pages) {
542 		io_ctl_map_page(io_ctl, 1);
543 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
544 	}
545 }
546 
547 static int io_ctl_read_entry(struct io_ctl *io_ctl,
548 			    struct btrfs_free_space *entry, u8 *type)
549 {
550 	struct btrfs_free_space_entry *e;
551 	int ret;
552 
553 	if (!io_ctl->cur) {
554 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
555 		if (ret)
556 			return ret;
557 	}
558 
559 	e = io_ctl->cur;
560 	entry->offset = le64_to_cpu(e->offset);
561 	entry->bytes = le64_to_cpu(e->bytes);
562 	*type = e->type;
563 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
564 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
565 
566 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
567 		return 0;
568 
569 	io_ctl_unmap_page(io_ctl);
570 
571 	return 0;
572 }
573 
574 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
575 			      struct btrfs_free_space *entry)
576 {
577 	int ret;
578 
579 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
580 	if (ret)
581 		return ret;
582 
583 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
584 	io_ctl_unmap_page(io_ctl);
585 
586 	return 0;
587 }
588 
589 /*
590  * Since we attach pinned extents after the fact we can have contiguous sections
591  * of free space that are split up in entries.  This poses a problem with the
592  * tree logging stuff since it could have allocated across what appears to be 2
593  * entries since we would have merged the entries when adding the pinned extents
594  * back to the free space cache.  So run through the space cache that we just
595  * loaded and merge contiguous entries.  This will make the log replay stuff not
596  * blow up and it will make for nicer allocator behavior.
597  */
598 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
599 {
600 	struct btrfs_free_space *e, *prev = NULL;
601 	struct rb_node *n;
602 
603 again:
604 	spin_lock(&ctl->tree_lock);
605 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
606 		e = rb_entry(n, struct btrfs_free_space, offset_index);
607 		if (!prev)
608 			goto next;
609 		if (e->bitmap || prev->bitmap)
610 			goto next;
611 		if (prev->offset + prev->bytes == e->offset) {
612 			unlink_free_space(ctl, prev);
613 			unlink_free_space(ctl, e);
614 			prev->bytes += e->bytes;
615 			kmem_cache_free(btrfs_free_space_cachep, e);
616 			link_free_space(ctl, prev);
617 			prev = NULL;
618 			spin_unlock(&ctl->tree_lock);
619 			goto again;
620 		}
621 next:
622 		prev = e;
623 	}
624 	spin_unlock(&ctl->tree_lock);
625 }
626 
627 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
628 			    struct btrfs_free_space_ctl *ctl,
629 			    struct btrfs_path *path, u64 offset)
630 {
631 	struct btrfs_free_space_header *header;
632 	struct extent_buffer *leaf;
633 	struct io_ctl io_ctl;
634 	struct btrfs_key key;
635 	struct btrfs_free_space *e, *n;
636 	struct list_head bitmaps;
637 	u64 num_entries;
638 	u64 num_bitmaps;
639 	u64 generation;
640 	u8 type;
641 	int ret = 0;
642 
643 	INIT_LIST_HEAD(&bitmaps);
644 
645 	/* Nothing in the space cache, goodbye */
646 	if (!i_size_read(inode))
647 		return 0;
648 
649 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
650 	key.offset = offset;
651 	key.type = 0;
652 
653 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
654 	if (ret < 0)
655 		return 0;
656 	else if (ret > 0) {
657 		btrfs_release_path(path);
658 		return 0;
659 	}
660 
661 	ret = -1;
662 
663 	leaf = path->nodes[0];
664 	header = btrfs_item_ptr(leaf, path->slots[0],
665 				struct btrfs_free_space_header);
666 	num_entries = btrfs_free_space_entries(leaf, header);
667 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
668 	generation = btrfs_free_space_generation(leaf, header);
669 	btrfs_release_path(path);
670 
671 	if (BTRFS_I(inode)->generation != generation) {
672 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
673 		       " not match free space cache generation (%llu)\n",
674 		       (unsigned long long)BTRFS_I(inode)->generation,
675 		       (unsigned long long)generation);
676 		return 0;
677 	}
678 
679 	if (!num_entries)
680 		return 0;
681 
682 	ret = io_ctl_init(&io_ctl, inode, root);
683 	if (ret)
684 		return ret;
685 
686 	ret = readahead_cache(inode);
687 	if (ret)
688 		goto out;
689 
690 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
691 	if (ret)
692 		goto out;
693 
694 	ret = io_ctl_check_crc(&io_ctl, 0);
695 	if (ret)
696 		goto free_cache;
697 
698 	ret = io_ctl_check_generation(&io_ctl, generation);
699 	if (ret)
700 		goto free_cache;
701 
702 	while (num_entries) {
703 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
704 				      GFP_NOFS);
705 		if (!e)
706 			goto free_cache;
707 
708 		ret = io_ctl_read_entry(&io_ctl, e, &type);
709 		if (ret) {
710 			kmem_cache_free(btrfs_free_space_cachep, e);
711 			goto free_cache;
712 		}
713 
714 		if (!e->bytes) {
715 			kmem_cache_free(btrfs_free_space_cachep, e);
716 			goto free_cache;
717 		}
718 
719 		if (type == BTRFS_FREE_SPACE_EXTENT) {
720 			spin_lock(&ctl->tree_lock);
721 			ret = link_free_space(ctl, e);
722 			spin_unlock(&ctl->tree_lock);
723 			if (ret) {
724 				printk(KERN_ERR "Duplicate entries in "
725 				       "free space cache, dumping\n");
726 				kmem_cache_free(btrfs_free_space_cachep, e);
727 				goto free_cache;
728 			}
729 		} else {
730 			BUG_ON(!num_bitmaps);
731 			num_bitmaps--;
732 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
733 			if (!e->bitmap) {
734 				kmem_cache_free(
735 					btrfs_free_space_cachep, e);
736 				goto free_cache;
737 			}
738 			spin_lock(&ctl->tree_lock);
739 			ret = link_free_space(ctl, e);
740 			ctl->total_bitmaps++;
741 			ctl->op->recalc_thresholds(ctl);
742 			spin_unlock(&ctl->tree_lock);
743 			if (ret) {
744 				printk(KERN_ERR "Duplicate entries in "
745 				       "free space cache, dumping\n");
746 				kmem_cache_free(btrfs_free_space_cachep, e);
747 				goto free_cache;
748 			}
749 			list_add_tail(&e->list, &bitmaps);
750 		}
751 
752 		num_entries--;
753 	}
754 
755 	io_ctl_unmap_page(&io_ctl);
756 
757 	/*
758 	 * We add the bitmaps at the end of the entries in order that
759 	 * the bitmap entries are added to the cache.
760 	 */
761 	list_for_each_entry_safe(e, n, &bitmaps, list) {
762 		list_del_init(&e->list);
763 		ret = io_ctl_read_bitmap(&io_ctl, e);
764 		if (ret)
765 			goto free_cache;
766 	}
767 
768 	io_ctl_drop_pages(&io_ctl);
769 	merge_space_tree(ctl);
770 	ret = 1;
771 out:
772 	io_ctl_free(&io_ctl);
773 	return ret;
774 free_cache:
775 	io_ctl_drop_pages(&io_ctl);
776 	__btrfs_remove_free_space_cache(ctl);
777 	goto out;
778 }
779 
780 int load_free_space_cache(struct btrfs_fs_info *fs_info,
781 			  struct btrfs_block_group_cache *block_group)
782 {
783 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
784 	struct btrfs_root *root = fs_info->tree_root;
785 	struct inode *inode;
786 	struct btrfs_path *path;
787 	int ret = 0;
788 	bool matched;
789 	u64 used = btrfs_block_group_used(&block_group->item);
790 
791 	/*
792 	 * If this block group has been marked to be cleared for one reason or
793 	 * another then we can't trust the on disk cache, so just return.
794 	 */
795 	spin_lock(&block_group->lock);
796 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
797 		spin_unlock(&block_group->lock);
798 		return 0;
799 	}
800 	spin_unlock(&block_group->lock);
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return 0;
805 	path->search_commit_root = 1;
806 	path->skip_locking = 1;
807 
808 	inode = lookup_free_space_inode(root, block_group, path);
809 	if (IS_ERR(inode)) {
810 		btrfs_free_path(path);
811 		return 0;
812 	}
813 
814 	/* We may have converted the inode and made the cache invalid. */
815 	spin_lock(&block_group->lock);
816 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
817 		spin_unlock(&block_group->lock);
818 		btrfs_free_path(path);
819 		goto out;
820 	}
821 	spin_unlock(&block_group->lock);
822 
823 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
824 				      path, block_group->key.objectid);
825 	btrfs_free_path(path);
826 	if (ret <= 0)
827 		goto out;
828 
829 	spin_lock(&ctl->tree_lock);
830 	matched = (ctl->free_space == (block_group->key.offset - used -
831 				       block_group->bytes_super));
832 	spin_unlock(&ctl->tree_lock);
833 
834 	if (!matched) {
835 		__btrfs_remove_free_space_cache(ctl);
836 		printk(KERN_ERR "block group %llu has an wrong amount of free "
837 		       "space\n", block_group->key.objectid);
838 		ret = -1;
839 	}
840 out:
841 	if (ret < 0) {
842 		/* This cache is bogus, make sure it gets cleared */
843 		spin_lock(&block_group->lock);
844 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
845 		spin_unlock(&block_group->lock);
846 		ret = 0;
847 
848 		printk(KERN_ERR "btrfs: failed to load free space cache "
849 		       "for block group %llu\n", block_group->key.objectid);
850 	}
851 
852 	iput(inode);
853 	return ret;
854 }
855 
856 /**
857  * __btrfs_write_out_cache - write out cached info to an inode
858  * @root - the root the inode belongs to
859  * @ctl - the free space cache we are going to write out
860  * @block_group - the block_group for this cache if it belongs to a block_group
861  * @trans - the trans handle
862  * @path - the path to use
863  * @offset - the offset for the key we'll insert
864  *
865  * This function writes out a free space cache struct to disk for quick recovery
866  * on mount.  This will return 0 if it was successfull in writing the cache out,
867  * and -1 if it was not.
868  */
869 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
870 			    struct btrfs_free_space_ctl *ctl,
871 			    struct btrfs_block_group_cache *block_group,
872 			    struct btrfs_trans_handle *trans,
873 			    struct btrfs_path *path, u64 offset)
874 {
875 	struct btrfs_free_space_header *header;
876 	struct extent_buffer *leaf;
877 	struct rb_node *node;
878 	struct list_head *pos, *n;
879 	struct extent_state *cached_state = NULL;
880 	struct btrfs_free_cluster *cluster = NULL;
881 	struct extent_io_tree *unpin = NULL;
882 	struct io_ctl io_ctl;
883 	struct list_head bitmap_list;
884 	struct btrfs_key key;
885 	u64 start, extent_start, extent_end, len;
886 	int entries = 0;
887 	int bitmaps = 0;
888 	int ret;
889 	int err = -1;
890 
891 	INIT_LIST_HEAD(&bitmap_list);
892 
893 	if (!i_size_read(inode))
894 		return -1;
895 
896 	ret = io_ctl_init(&io_ctl, inode, root);
897 	if (ret)
898 		return -1;
899 
900 	/* Get the cluster for this block_group if it exists */
901 	if (block_group && !list_empty(&block_group->cluster_list))
902 		cluster = list_entry(block_group->cluster_list.next,
903 				     struct btrfs_free_cluster,
904 				     block_group_list);
905 
906 	/* Lock all pages first so we can lock the extent safely. */
907 	io_ctl_prepare_pages(&io_ctl, inode, 0);
908 
909 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
910 			 0, &cached_state);
911 
912 	node = rb_first(&ctl->free_space_offset);
913 	if (!node && cluster) {
914 		node = rb_first(&cluster->root);
915 		cluster = NULL;
916 	}
917 
918 	/* Make sure we can fit our crcs into the first page */
919 	if (io_ctl.check_crcs &&
920 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
921 		WARN_ON(1);
922 		goto out_nospc;
923 	}
924 
925 	io_ctl_set_generation(&io_ctl, trans->transid);
926 
927 	/* Write out the extent entries */
928 	while (node) {
929 		struct btrfs_free_space *e;
930 
931 		e = rb_entry(node, struct btrfs_free_space, offset_index);
932 		entries++;
933 
934 		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
935 				       e->bitmap);
936 		if (ret)
937 			goto out_nospc;
938 
939 		if (e->bitmap) {
940 			list_add_tail(&e->list, &bitmap_list);
941 			bitmaps++;
942 		}
943 		node = rb_next(node);
944 		if (!node && cluster) {
945 			node = rb_first(&cluster->root);
946 			cluster = NULL;
947 		}
948 	}
949 
950 	/*
951 	 * We want to add any pinned extents to our free space cache
952 	 * so we don't leak the space
953 	 */
954 
955 	/*
956 	 * We shouldn't have switched the pinned extents yet so this is the
957 	 * right one
958 	 */
959 	unpin = root->fs_info->pinned_extents;
960 
961 	if (block_group)
962 		start = block_group->key.objectid;
963 
964 	while (block_group && (start < block_group->key.objectid +
965 			       block_group->key.offset)) {
966 		ret = find_first_extent_bit(unpin, start,
967 					    &extent_start, &extent_end,
968 					    EXTENT_DIRTY, NULL);
969 		if (ret) {
970 			ret = 0;
971 			break;
972 		}
973 
974 		/* This pinned extent is out of our range */
975 		if (extent_start >= block_group->key.objectid +
976 		    block_group->key.offset)
977 			break;
978 
979 		extent_start = max(extent_start, start);
980 		extent_end = min(block_group->key.objectid +
981 				 block_group->key.offset, extent_end + 1);
982 		len = extent_end - extent_start;
983 
984 		entries++;
985 		ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
986 		if (ret)
987 			goto out_nospc;
988 
989 		start = extent_end;
990 	}
991 
992 	/* Write out the bitmaps */
993 	list_for_each_safe(pos, n, &bitmap_list) {
994 		struct btrfs_free_space *entry =
995 			list_entry(pos, struct btrfs_free_space, list);
996 
997 		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
998 		if (ret)
999 			goto out_nospc;
1000 		list_del_init(&entry->list);
1001 	}
1002 
1003 	/* Zero out the rest of the pages just to make sure */
1004 	io_ctl_zero_remaining_pages(&io_ctl);
1005 
1006 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1007 				0, i_size_read(inode), &cached_state);
1008 	io_ctl_drop_pages(&io_ctl);
1009 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1010 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1011 
1012 	if (ret)
1013 		goto out;
1014 
1015 
1016 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1017 
1018 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1019 	key.offset = offset;
1020 	key.type = 0;
1021 
1022 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1023 	if (ret < 0) {
1024 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1025 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1026 				 GFP_NOFS);
1027 		goto out;
1028 	}
1029 	leaf = path->nodes[0];
1030 	if (ret > 0) {
1031 		struct btrfs_key found_key;
1032 		BUG_ON(!path->slots[0]);
1033 		path->slots[0]--;
1034 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1035 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1036 		    found_key.offset != offset) {
1037 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1038 					 inode->i_size - 1,
1039 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1040 					 NULL, GFP_NOFS);
1041 			btrfs_release_path(path);
1042 			goto out;
1043 		}
1044 	}
1045 
1046 	BTRFS_I(inode)->generation = trans->transid;
1047 	header = btrfs_item_ptr(leaf, path->slots[0],
1048 				struct btrfs_free_space_header);
1049 	btrfs_set_free_space_entries(leaf, header, entries);
1050 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1051 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1052 	btrfs_mark_buffer_dirty(leaf);
1053 	btrfs_release_path(path);
1054 
1055 	err = 0;
1056 out:
1057 	io_ctl_free(&io_ctl);
1058 	if (err) {
1059 		invalidate_inode_pages2(inode->i_mapping);
1060 		BTRFS_I(inode)->generation = 0;
1061 	}
1062 	btrfs_update_inode(trans, root, inode);
1063 	return err;
1064 
1065 out_nospc:
1066 	list_for_each_safe(pos, n, &bitmap_list) {
1067 		struct btrfs_free_space *entry =
1068 			list_entry(pos, struct btrfs_free_space, list);
1069 		list_del_init(&entry->list);
1070 	}
1071 	io_ctl_drop_pages(&io_ctl);
1072 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1073 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1074 	goto out;
1075 }
1076 
1077 int btrfs_write_out_cache(struct btrfs_root *root,
1078 			  struct btrfs_trans_handle *trans,
1079 			  struct btrfs_block_group_cache *block_group,
1080 			  struct btrfs_path *path)
1081 {
1082 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1083 	struct inode *inode;
1084 	int ret = 0;
1085 
1086 	root = root->fs_info->tree_root;
1087 
1088 	spin_lock(&block_group->lock);
1089 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1090 		spin_unlock(&block_group->lock);
1091 		return 0;
1092 	}
1093 	spin_unlock(&block_group->lock);
1094 
1095 	inode = lookup_free_space_inode(root, block_group, path);
1096 	if (IS_ERR(inode))
1097 		return 0;
1098 
1099 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1100 				      path, block_group->key.objectid);
1101 	if (ret) {
1102 		spin_lock(&block_group->lock);
1103 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1104 		spin_unlock(&block_group->lock);
1105 		ret = 0;
1106 #ifdef DEBUG
1107 		printk(KERN_ERR "btrfs: failed to write free space cache "
1108 		       "for block group %llu\n", block_group->key.objectid);
1109 #endif
1110 	}
1111 
1112 	iput(inode);
1113 	return ret;
1114 }
1115 
1116 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1117 					  u64 offset)
1118 {
1119 	BUG_ON(offset < bitmap_start);
1120 	offset -= bitmap_start;
1121 	return (unsigned long)(div_u64(offset, unit));
1122 }
1123 
1124 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1125 {
1126 	return (unsigned long)(div_u64(bytes, unit));
1127 }
1128 
1129 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1130 				   u64 offset)
1131 {
1132 	u64 bitmap_start;
1133 	u64 bytes_per_bitmap;
1134 
1135 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1136 	bitmap_start = offset - ctl->start;
1137 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1138 	bitmap_start *= bytes_per_bitmap;
1139 	bitmap_start += ctl->start;
1140 
1141 	return bitmap_start;
1142 }
1143 
1144 static int tree_insert_offset(struct rb_root *root, u64 offset,
1145 			      struct rb_node *node, int bitmap)
1146 {
1147 	struct rb_node **p = &root->rb_node;
1148 	struct rb_node *parent = NULL;
1149 	struct btrfs_free_space *info;
1150 
1151 	while (*p) {
1152 		parent = *p;
1153 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1154 
1155 		if (offset < info->offset) {
1156 			p = &(*p)->rb_left;
1157 		} else if (offset > info->offset) {
1158 			p = &(*p)->rb_right;
1159 		} else {
1160 			/*
1161 			 * we could have a bitmap entry and an extent entry
1162 			 * share the same offset.  If this is the case, we want
1163 			 * the extent entry to always be found first if we do a
1164 			 * linear search through the tree, since we want to have
1165 			 * the quickest allocation time, and allocating from an
1166 			 * extent is faster than allocating from a bitmap.  So
1167 			 * if we're inserting a bitmap and we find an entry at
1168 			 * this offset, we want to go right, or after this entry
1169 			 * logically.  If we are inserting an extent and we've
1170 			 * found a bitmap, we want to go left, or before
1171 			 * logically.
1172 			 */
1173 			if (bitmap) {
1174 				if (info->bitmap) {
1175 					WARN_ON_ONCE(1);
1176 					return -EEXIST;
1177 				}
1178 				p = &(*p)->rb_right;
1179 			} else {
1180 				if (!info->bitmap) {
1181 					WARN_ON_ONCE(1);
1182 					return -EEXIST;
1183 				}
1184 				p = &(*p)->rb_left;
1185 			}
1186 		}
1187 	}
1188 
1189 	rb_link_node(node, parent, p);
1190 	rb_insert_color(node, root);
1191 
1192 	return 0;
1193 }
1194 
1195 /*
1196  * searches the tree for the given offset.
1197  *
1198  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1199  * want a section that has at least bytes size and comes at or after the given
1200  * offset.
1201  */
1202 static struct btrfs_free_space *
1203 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1204 		   u64 offset, int bitmap_only, int fuzzy)
1205 {
1206 	struct rb_node *n = ctl->free_space_offset.rb_node;
1207 	struct btrfs_free_space *entry, *prev = NULL;
1208 
1209 	/* find entry that is closest to the 'offset' */
1210 	while (1) {
1211 		if (!n) {
1212 			entry = NULL;
1213 			break;
1214 		}
1215 
1216 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1217 		prev = entry;
1218 
1219 		if (offset < entry->offset)
1220 			n = n->rb_left;
1221 		else if (offset > entry->offset)
1222 			n = n->rb_right;
1223 		else
1224 			break;
1225 	}
1226 
1227 	if (bitmap_only) {
1228 		if (!entry)
1229 			return NULL;
1230 		if (entry->bitmap)
1231 			return entry;
1232 
1233 		/*
1234 		 * bitmap entry and extent entry may share same offset,
1235 		 * in that case, bitmap entry comes after extent entry.
1236 		 */
1237 		n = rb_next(n);
1238 		if (!n)
1239 			return NULL;
1240 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1241 		if (entry->offset != offset)
1242 			return NULL;
1243 
1244 		WARN_ON(!entry->bitmap);
1245 		return entry;
1246 	} else if (entry) {
1247 		if (entry->bitmap) {
1248 			/*
1249 			 * if previous extent entry covers the offset,
1250 			 * we should return it instead of the bitmap entry
1251 			 */
1252 			n = rb_prev(&entry->offset_index);
1253 			if (n) {
1254 				prev = rb_entry(n, struct btrfs_free_space,
1255 						offset_index);
1256 				if (!prev->bitmap &&
1257 				    prev->offset + prev->bytes > offset)
1258 					entry = prev;
1259 			}
1260 		}
1261 		return entry;
1262 	}
1263 
1264 	if (!prev)
1265 		return NULL;
1266 
1267 	/* find last entry before the 'offset' */
1268 	entry = prev;
1269 	if (entry->offset > offset) {
1270 		n = rb_prev(&entry->offset_index);
1271 		if (n) {
1272 			entry = rb_entry(n, struct btrfs_free_space,
1273 					offset_index);
1274 			BUG_ON(entry->offset > offset);
1275 		} else {
1276 			if (fuzzy)
1277 				return entry;
1278 			else
1279 				return NULL;
1280 		}
1281 	}
1282 
1283 	if (entry->bitmap) {
1284 		n = rb_prev(&entry->offset_index);
1285 		if (n) {
1286 			prev = rb_entry(n, struct btrfs_free_space,
1287 					offset_index);
1288 			if (!prev->bitmap &&
1289 			    prev->offset + prev->bytes > offset)
1290 				return prev;
1291 		}
1292 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1293 			return entry;
1294 	} else if (entry->offset + entry->bytes > offset)
1295 		return entry;
1296 
1297 	if (!fuzzy)
1298 		return NULL;
1299 
1300 	while (1) {
1301 		if (entry->bitmap) {
1302 			if (entry->offset + BITS_PER_BITMAP *
1303 			    ctl->unit > offset)
1304 				break;
1305 		} else {
1306 			if (entry->offset + entry->bytes > offset)
1307 				break;
1308 		}
1309 
1310 		n = rb_next(&entry->offset_index);
1311 		if (!n)
1312 			return NULL;
1313 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1314 	}
1315 	return entry;
1316 }
1317 
1318 static inline void
1319 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1320 		    struct btrfs_free_space *info)
1321 {
1322 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1323 	ctl->free_extents--;
1324 }
1325 
1326 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1327 			      struct btrfs_free_space *info)
1328 {
1329 	__unlink_free_space(ctl, info);
1330 	ctl->free_space -= info->bytes;
1331 }
1332 
1333 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1334 			   struct btrfs_free_space *info)
1335 {
1336 	int ret = 0;
1337 
1338 	BUG_ON(!info->bitmap && !info->bytes);
1339 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1340 				 &info->offset_index, (info->bitmap != NULL));
1341 	if (ret)
1342 		return ret;
1343 
1344 	ctl->free_space += info->bytes;
1345 	ctl->free_extents++;
1346 	return ret;
1347 }
1348 
1349 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1350 {
1351 	struct btrfs_block_group_cache *block_group = ctl->private;
1352 	u64 max_bytes;
1353 	u64 bitmap_bytes;
1354 	u64 extent_bytes;
1355 	u64 size = block_group->key.offset;
1356 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1357 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1358 
1359 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1360 
1361 	/*
1362 	 * The goal is to keep the total amount of memory used per 1gb of space
1363 	 * at or below 32k, so we need to adjust how much memory we allow to be
1364 	 * used by extent based free space tracking
1365 	 */
1366 	if (size < 1024 * 1024 * 1024)
1367 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1368 	else
1369 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1370 			div64_u64(size, 1024 * 1024 * 1024);
1371 
1372 	/*
1373 	 * we want to account for 1 more bitmap than what we have so we can make
1374 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1375 	 * we add more bitmaps.
1376 	 */
1377 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1378 
1379 	if (bitmap_bytes >= max_bytes) {
1380 		ctl->extents_thresh = 0;
1381 		return;
1382 	}
1383 
1384 	/*
1385 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1386 	 * bytes we can have, or whatever is less than that.
1387 	 */
1388 	extent_bytes = max_bytes - bitmap_bytes;
1389 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1390 
1391 	ctl->extents_thresh =
1392 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1393 }
1394 
1395 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1396 				       struct btrfs_free_space *info,
1397 				       u64 offset, u64 bytes)
1398 {
1399 	unsigned long start, count;
1400 
1401 	start = offset_to_bit(info->offset, ctl->unit, offset);
1402 	count = bytes_to_bits(bytes, ctl->unit);
1403 	BUG_ON(start + count > BITS_PER_BITMAP);
1404 
1405 	bitmap_clear(info->bitmap, start, count);
1406 
1407 	info->bytes -= bytes;
1408 }
1409 
1410 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1411 			      struct btrfs_free_space *info, u64 offset,
1412 			      u64 bytes)
1413 {
1414 	__bitmap_clear_bits(ctl, info, offset, bytes);
1415 	ctl->free_space -= bytes;
1416 }
1417 
1418 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1419 			    struct btrfs_free_space *info, u64 offset,
1420 			    u64 bytes)
1421 {
1422 	unsigned long start, count;
1423 
1424 	start = offset_to_bit(info->offset, ctl->unit, offset);
1425 	count = bytes_to_bits(bytes, ctl->unit);
1426 	BUG_ON(start + count > BITS_PER_BITMAP);
1427 
1428 	bitmap_set(info->bitmap, start, count);
1429 
1430 	info->bytes += bytes;
1431 	ctl->free_space += bytes;
1432 }
1433 
1434 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1435 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1436 			 u64 *bytes)
1437 {
1438 	unsigned long found_bits = 0;
1439 	unsigned long bits, i;
1440 	unsigned long next_zero;
1441 
1442 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1443 			  max_t(u64, *offset, bitmap_info->offset));
1444 	bits = bytes_to_bits(*bytes, ctl->unit);
1445 
1446 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1447 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1448 					       BITS_PER_BITMAP, i);
1449 		if ((next_zero - i) >= bits) {
1450 			found_bits = next_zero - i;
1451 			break;
1452 		}
1453 		i = next_zero;
1454 	}
1455 
1456 	if (found_bits) {
1457 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1458 		*bytes = (u64)(found_bits) * ctl->unit;
1459 		return 0;
1460 	}
1461 
1462 	return -1;
1463 }
1464 
1465 static struct btrfs_free_space *
1466 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1467 {
1468 	struct btrfs_free_space *entry;
1469 	struct rb_node *node;
1470 	int ret;
1471 
1472 	if (!ctl->free_space_offset.rb_node)
1473 		return NULL;
1474 
1475 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1476 	if (!entry)
1477 		return NULL;
1478 
1479 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1480 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1481 		if (entry->bytes < *bytes)
1482 			continue;
1483 
1484 		if (entry->bitmap) {
1485 			ret = search_bitmap(ctl, entry, offset, bytes);
1486 			if (!ret)
1487 				return entry;
1488 			continue;
1489 		}
1490 
1491 		*offset = entry->offset;
1492 		*bytes = entry->bytes;
1493 		return entry;
1494 	}
1495 
1496 	return NULL;
1497 }
1498 
1499 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1500 			   struct btrfs_free_space *info, u64 offset)
1501 {
1502 	info->offset = offset_to_bitmap(ctl, offset);
1503 	info->bytes = 0;
1504 	INIT_LIST_HEAD(&info->list);
1505 	link_free_space(ctl, info);
1506 	ctl->total_bitmaps++;
1507 
1508 	ctl->op->recalc_thresholds(ctl);
1509 }
1510 
1511 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1512 			struct btrfs_free_space *bitmap_info)
1513 {
1514 	unlink_free_space(ctl, bitmap_info);
1515 	kfree(bitmap_info->bitmap);
1516 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1517 	ctl->total_bitmaps--;
1518 	ctl->op->recalc_thresholds(ctl);
1519 }
1520 
1521 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1522 			      struct btrfs_free_space *bitmap_info,
1523 			      u64 *offset, u64 *bytes)
1524 {
1525 	u64 end;
1526 	u64 search_start, search_bytes;
1527 	int ret;
1528 
1529 again:
1530 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1531 
1532 	/*
1533 	 * We need to search for bits in this bitmap.  We could only cover some
1534 	 * of the extent in this bitmap thanks to how we add space, so we need
1535 	 * to search for as much as it as we can and clear that amount, and then
1536 	 * go searching for the next bit.
1537 	 */
1538 	search_start = *offset;
1539 	search_bytes = ctl->unit;
1540 	search_bytes = min(search_bytes, end - search_start + 1);
1541 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1542 	BUG_ON(ret < 0 || search_start != *offset);
1543 
1544 	/* We may have found more bits than what we need */
1545 	search_bytes = min(search_bytes, *bytes);
1546 
1547 	/* Cannot clear past the end of the bitmap */
1548 	search_bytes = min(search_bytes, end - search_start + 1);
1549 
1550 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1551 	*offset += search_bytes;
1552 	*bytes -= search_bytes;
1553 
1554 	if (*bytes) {
1555 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1556 		if (!bitmap_info->bytes)
1557 			free_bitmap(ctl, bitmap_info);
1558 
1559 		/*
1560 		 * no entry after this bitmap, but we still have bytes to
1561 		 * remove, so something has gone wrong.
1562 		 */
1563 		if (!next)
1564 			return -EINVAL;
1565 
1566 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1567 				       offset_index);
1568 
1569 		/*
1570 		 * if the next entry isn't a bitmap we need to return to let the
1571 		 * extent stuff do its work.
1572 		 */
1573 		if (!bitmap_info->bitmap)
1574 			return -EAGAIN;
1575 
1576 		/*
1577 		 * Ok the next item is a bitmap, but it may not actually hold
1578 		 * the information for the rest of this free space stuff, so
1579 		 * look for it, and if we don't find it return so we can try
1580 		 * everything over again.
1581 		 */
1582 		search_start = *offset;
1583 		search_bytes = ctl->unit;
1584 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1585 				    &search_bytes);
1586 		if (ret < 0 || search_start != *offset)
1587 			return -EAGAIN;
1588 
1589 		goto again;
1590 	} else if (!bitmap_info->bytes)
1591 		free_bitmap(ctl, bitmap_info);
1592 
1593 	return 0;
1594 }
1595 
1596 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1597 			       struct btrfs_free_space *info, u64 offset,
1598 			       u64 bytes)
1599 {
1600 	u64 bytes_to_set = 0;
1601 	u64 end;
1602 
1603 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1604 
1605 	bytes_to_set = min(end - offset, bytes);
1606 
1607 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1608 
1609 	return bytes_to_set;
1610 
1611 }
1612 
1613 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1614 		      struct btrfs_free_space *info)
1615 {
1616 	struct btrfs_block_group_cache *block_group = ctl->private;
1617 
1618 	/*
1619 	 * If we are below the extents threshold then we can add this as an
1620 	 * extent, and don't have to deal with the bitmap
1621 	 */
1622 	if (ctl->free_extents < ctl->extents_thresh) {
1623 		/*
1624 		 * If this block group has some small extents we don't want to
1625 		 * use up all of our free slots in the cache with them, we want
1626 		 * to reserve them to larger extents, however if we have plent
1627 		 * of cache left then go ahead an dadd them, no sense in adding
1628 		 * the overhead of a bitmap if we don't have to.
1629 		 */
1630 		if (info->bytes <= block_group->sectorsize * 4) {
1631 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1632 				return false;
1633 		} else {
1634 			return false;
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1640 	 * don't even bother to create a bitmap for this
1641 	 */
1642 	if (BITS_PER_BITMAP * ctl->unit > block_group->key.offset)
1643 		return false;
1644 
1645 	return true;
1646 }
1647 
1648 static struct btrfs_free_space_op free_space_op = {
1649 	.recalc_thresholds	= recalculate_thresholds,
1650 	.use_bitmap		= use_bitmap,
1651 };
1652 
1653 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1654 			      struct btrfs_free_space *info)
1655 {
1656 	struct btrfs_free_space *bitmap_info;
1657 	struct btrfs_block_group_cache *block_group = NULL;
1658 	int added = 0;
1659 	u64 bytes, offset, bytes_added;
1660 	int ret;
1661 
1662 	bytes = info->bytes;
1663 	offset = info->offset;
1664 
1665 	if (!ctl->op->use_bitmap(ctl, info))
1666 		return 0;
1667 
1668 	if (ctl->op == &free_space_op)
1669 		block_group = ctl->private;
1670 again:
1671 	/*
1672 	 * Since we link bitmaps right into the cluster we need to see if we
1673 	 * have a cluster here, and if so and it has our bitmap we need to add
1674 	 * the free space to that bitmap.
1675 	 */
1676 	if (block_group && !list_empty(&block_group->cluster_list)) {
1677 		struct btrfs_free_cluster *cluster;
1678 		struct rb_node *node;
1679 		struct btrfs_free_space *entry;
1680 
1681 		cluster = list_entry(block_group->cluster_list.next,
1682 				     struct btrfs_free_cluster,
1683 				     block_group_list);
1684 		spin_lock(&cluster->lock);
1685 		node = rb_first(&cluster->root);
1686 		if (!node) {
1687 			spin_unlock(&cluster->lock);
1688 			goto no_cluster_bitmap;
1689 		}
1690 
1691 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1692 		if (!entry->bitmap) {
1693 			spin_unlock(&cluster->lock);
1694 			goto no_cluster_bitmap;
1695 		}
1696 
1697 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1698 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1699 							  offset, bytes);
1700 			bytes -= bytes_added;
1701 			offset += bytes_added;
1702 		}
1703 		spin_unlock(&cluster->lock);
1704 		if (!bytes) {
1705 			ret = 1;
1706 			goto out;
1707 		}
1708 	}
1709 
1710 no_cluster_bitmap:
1711 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1712 					 1, 0);
1713 	if (!bitmap_info) {
1714 		BUG_ON(added);
1715 		goto new_bitmap;
1716 	}
1717 
1718 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1719 	bytes -= bytes_added;
1720 	offset += bytes_added;
1721 	added = 0;
1722 
1723 	if (!bytes) {
1724 		ret = 1;
1725 		goto out;
1726 	} else
1727 		goto again;
1728 
1729 new_bitmap:
1730 	if (info && info->bitmap) {
1731 		add_new_bitmap(ctl, info, offset);
1732 		added = 1;
1733 		info = NULL;
1734 		goto again;
1735 	} else {
1736 		spin_unlock(&ctl->tree_lock);
1737 
1738 		/* no pre-allocated info, allocate a new one */
1739 		if (!info) {
1740 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1741 						 GFP_NOFS);
1742 			if (!info) {
1743 				spin_lock(&ctl->tree_lock);
1744 				ret = -ENOMEM;
1745 				goto out;
1746 			}
1747 		}
1748 
1749 		/* allocate the bitmap */
1750 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1751 		spin_lock(&ctl->tree_lock);
1752 		if (!info->bitmap) {
1753 			ret = -ENOMEM;
1754 			goto out;
1755 		}
1756 		goto again;
1757 	}
1758 
1759 out:
1760 	if (info) {
1761 		if (info->bitmap)
1762 			kfree(info->bitmap);
1763 		kmem_cache_free(btrfs_free_space_cachep, info);
1764 	}
1765 
1766 	return ret;
1767 }
1768 
1769 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1770 			  struct btrfs_free_space *info, bool update_stat)
1771 {
1772 	struct btrfs_free_space *left_info;
1773 	struct btrfs_free_space *right_info;
1774 	bool merged = false;
1775 	u64 offset = info->offset;
1776 	u64 bytes = info->bytes;
1777 
1778 	/*
1779 	 * first we want to see if there is free space adjacent to the range we
1780 	 * are adding, if there is remove that struct and add a new one to
1781 	 * cover the entire range
1782 	 */
1783 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1784 	if (right_info && rb_prev(&right_info->offset_index))
1785 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1786 				     struct btrfs_free_space, offset_index);
1787 	else
1788 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1789 
1790 	if (right_info && !right_info->bitmap) {
1791 		if (update_stat)
1792 			unlink_free_space(ctl, right_info);
1793 		else
1794 			__unlink_free_space(ctl, right_info);
1795 		info->bytes += right_info->bytes;
1796 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1797 		merged = true;
1798 	}
1799 
1800 	if (left_info && !left_info->bitmap &&
1801 	    left_info->offset + left_info->bytes == offset) {
1802 		if (update_stat)
1803 			unlink_free_space(ctl, left_info);
1804 		else
1805 			__unlink_free_space(ctl, left_info);
1806 		info->offset = left_info->offset;
1807 		info->bytes += left_info->bytes;
1808 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1809 		merged = true;
1810 	}
1811 
1812 	return merged;
1813 }
1814 
1815 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1816 			   u64 offset, u64 bytes)
1817 {
1818 	struct btrfs_free_space *info;
1819 	int ret = 0;
1820 
1821 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1822 	if (!info)
1823 		return -ENOMEM;
1824 
1825 	info->offset = offset;
1826 	info->bytes = bytes;
1827 
1828 	spin_lock(&ctl->tree_lock);
1829 
1830 	if (try_merge_free_space(ctl, info, true))
1831 		goto link;
1832 
1833 	/*
1834 	 * There was no extent directly to the left or right of this new
1835 	 * extent then we know we're going to have to allocate a new extent, so
1836 	 * before we do that see if we need to drop this into a bitmap
1837 	 */
1838 	ret = insert_into_bitmap(ctl, info);
1839 	if (ret < 0) {
1840 		goto out;
1841 	} else if (ret) {
1842 		ret = 0;
1843 		goto out;
1844 	}
1845 link:
1846 	ret = link_free_space(ctl, info);
1847 	if (ret)
1848 		kmem_cache_free(btrfs_free_space_cachep, info);
1849 out:
1850 	spin_unlock(&ctl->tree_lock);
1851 
1852 	if (ret) {
1853 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1854 		BUG_ON(ret == -EEXIST);
1855 	}
1856 
1857 	return ret;
1858 }
1859 
1860 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1861 			    u64 offset, u64 bytes)
1862 {
1863 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1864 	struct btrfs_free_space *info;
1865 	int ret = 0;
1866 
1867 	spin_lock(&ctl->tree_lock);
1868 
1869 again:
1870 	if (!bytes)
1871 		goto out_lock;
1872 
1873 	info = tree_search_offset(ctl, offset, 0, 0);
1874 	if (!info) {
1875 		/*
1876 		 * oops didn't find an extent that matched the space we wanted
1877 		 * to remove, look for a bitmap instead
1878 		 */
1879 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1880 					  1, 0);
1881 		if (!info) {
1882 			/* the tree logging code might be calling us before we
1883 			 * have fully loaded the free space rbtree for this
1884 			 * block group.  So it is possible the entry won't
1885 			 * be in the rbtree yet at all.  The caching code
1886 			 * will make sure not to put it in the rbtree if
1887 			 * the logging code has pinned it.
1888 			 */
1889 			goto out_lock;
1890 		}
1891 	}
1892 
1893 	if (!info->bitmap) {
1894 		unlink_free_space(ctl, info);
1895 		if (offset == info->offset) {
1896 			u64 to_free = min(bytes, info->bytes);
1897 
1898 			info->bytes -= to_free;
1899 			info->offset += to_free;
1900 			if (info->bytes) {
1901 				ret = link_free_space(ctl, info);
1902 				WARN_ON(ret);
1903 			} else {
1904 				kmem_cache_free(btrfs_free_space_cachep, info);
1905 			}
1906 
1907 			offset += to_free;
1908 			bytes -= to_free;
1909 			goto again;
1910 		} else {
1911 			u64 old_end = info->bytes + info->offset;
1912 
1913 			info->bytes = offset - info->offset;
1914 			ret = link_free_space(ctl, info);
1915 			WARN_ON(ret);
1916 			if (ret)
1917 				goto out_lock;
1918 
1919 			/* Not enough bytes in this entry to satisfy us */
1920 			if (old_end < offset + bytes) {
1921 				bytes -= old_end - offset;
1922 				offset = old_end;
1923 				goto again;
1924 			} else if (old_end == offset + bytes) {
1925 				/* all done */
1926 				goto out_lock;
1927 			}
1928 			spin_unlock(&ctl->tree_lock);
1929 
1930 			ret = btrfs_add_free_space(block_group, offset + bytes,
1931 						   old_end - (offset + bytes));
1932 			WARN_ON(ret);
1933 			goto out;
1934 		}
1935 	}
1936 
1937 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1938 	if (ret == -EAGAIN)
1939 		goto again;
1940 	BUG_ON(ret); /* logic error */
1941 out_lock:
1942 	spin_unlock(&ctl->tree_lock);
1943 out:
1944 	return ret;
1945 }
1946 
1947 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1948 			   u64 bytes)
1949 {
1950 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1951 	struct btrfs_free_space *info;
1952 	struct rb_node *n;
1953 	int count = 0;
1954 
1955 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1956 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1957 		if (info->bytes >= bytes && !block_group->ro)
1958 			count++;
1959 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1960 		       (unsigned long long)info->offset,
1961 		       (unsigned long long)info->bytes,
1962 		       (info->bitmap) ? "yes" : "no");
1963 	}
1964 	printk(KERN_INFO "block group has cluster?: %s\n",
1965 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1966 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1967 	       "\n", count);
1968 }
1969 
1970 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1971 {
1972 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1973 
1974 	spin_lock_init(&ctl->tree_lock);
1975 	ctl->unit = block_group->sectorsize;
1976 	ctl->start = block_group->key.objectid;
1977 	ctl->private = block_group;
1978 	ctl->op = &free_space_op;
1979 
1980 	/*
1981 	 * we only want to have 32k of ram per block group for keeping
1982 	 * track of free space, and if we pass 1/2 of that we want to
1983 	 * start converting things over to using bitmaps
1984 	 */
1985 	ctl->extents_thresh = ((1024 * 32) / 2) /
1986 				sizeof(struct btrfs_free_space);
1987 }
1988 
1989 /*
1990  * for a given cluster, put all of its extents back into the free
1991  * space cache.  If the block group passed doesn't match the block group
1992  * pointed to by the cluster, someone else raced in and freed the
1993  * cluster already.  In that case, we just return without changing anything
1994  */
1995 static int
1996 __btrfs_return_cluster_to_free_space(
1997 			     struct btrfs_block_group_cache *block_group,
1998 			     struct btrfs_free_cluster *cluster)
1999 {
2000 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2001 	struct btrfs_free_space *entry;
2002 	struct rb_node *node;
2003 
2004 	spin_lock(&cluster->lock);
2005 	if (cluster->block_group != block_group)
2006 		goto out;
2007 
2008 	cluster->block_group = NULL;
2009 	cluster->window_start = 0;
2010 	list_del_init(&cluster->block_group_list);
2011 
2012 	node = rb_first(&cluster->root);
2013 	while (node) {
2014 		bool bitmap;
2015 
2016 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2017 		node = rb_next(&entry->offset_index);
2018 		rb_erase(&entry->offset_index, &cluster->root);
2019 
2020 		bitmap = (entry->bitmap != NULL);
2021 		if (!bitmap)
2022 			try_merge_free_space(ctl, entry, false);
2023 		tree_insert_offset(&ctl->free_space_offset,
2024 				   entry->offset, &entry->offset_index, bitmap);
2025 	}
2026 	cluster->root = RB_ROOT;
2027 
2028 out:
2029 	spin_unlock(&cluster->lock);
2030 	btrfs_put_block_group(block_group);
2031 	return 0;
2032 }
2033 
2034 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2035 {
2036 	struct btrfs_free_space *info;
2037 	struct rb_node *node;
2038 
2039 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2040 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2041 		if (!info->bitmap) {
2042 			unlink_free_space(ctl, info);
2043 			kmem_cache_free(btrfs_free_space_cachep, info);
2044 		} else {
2045 			free_bitmap(ctl, info);
2046 		}
2047 		if (need_resched()) {
2048 			spin_unlock(&ctl->tree_lock);
2049 			cond_resched();
2050 			spin_lock(&ctl->tree_lock);
2051 		}
2052 	}
2053 }
2054 
2055 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2056 {
2057 	spin_lock(&ctl->tree_lock);
2058 	__btrfs_remove_free_space_cache_locked(ctl);
2059 	spin_unlock(&ctl->tree_lock);
2060 }
2061 
2062 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2063 {
2064 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2065 	struct btrfs_free_cluster *cluster;
2066 	struct list_head *head;
2067 
2068 	spin_lock(&ctl->tree_lock);
2069 	while ((head = block_group->cluster_list.next) !=
2070 	       &block_group->cluster_list) {
2071 		cluster = list_entry(head, struct btrfs_free_cluster,
2072 				     block_group_list);
2073 
2074 		WARN_ON(cluster->block_group != block_group);
2075 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2076 		if (need_resched()) {
2077 			spin_unlock(&ctl->tree_lock);
2078 			cond_resched();
2079 			spin_lock(&ctl->tree_lock);
2080 		}
2081 	}
2082 	__btrfs_remove_free_space_cache_locked(ctl);
2083 	spin_unlock(&ctl->tree_lock);
2084 
2085 }
2086 
2087 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2088 			       u64 offset, u64 bytes, u64 empty_size)
2089 {
2090 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2091 	struct btrfs_free_space *entry = NULL;
2092 	u64 bytes_search = bytes + empty_size;
2093 	u64 ret = 0;
2094 
2095 	spin_lock(&ctl->tree_lock);
2096 	entry = find_free_space(ctl, &offset, &bytes_search);
2097 	if (!entry)
2098 		goto out;
2099 
2100 	ret = offset;
2101 	if (entry->bitmap) {
2102 		bitmap_clear_bits(ctl, entry, offset, bytes);
2103 		if (!entry->bytes)
2104 			free_bitmap(ctl, entry);
2105 	} else {
2106 		unlink_free_space(ctl, entry);
2107 		entry->offset += bytes;
2108 		entry->bytes -= bytes;
2109 		if (!entry->bytes)
2110 			kmem_cache_free(btrfs_free_space_cachep, entry);
2111 		else
2112 			link_free_space(ctl, entry);
2113 	}
2114 
2115 out:
2116 	spin_unlock(&ctl->tree_lock);
2117 
2118 	return ret;
2119 }
2120 
2121 /*
2122  * given a cluster, put all of its extents back into the free space
2123  * cache.  If a block group is passed, this function will only free
2124  * a cluster that belongs to the passed block group.
2125  *
2126  * Otherwise, it'll get a reference on the block group pointed to by the
2127  * cluster and remove the cluster from it.
2128  */
2129 int btrfs_return_cluster_to_free_space(
2130 			       struct btrfs_block_group_cache *block_group,
2131 			       struct btrfs_free_cluster *cluster)
2132 {
2133 	struct btrfs_free_space_ctl *ctl;
2134 	int ret;
2135 
2136 	/* first, get a safe pointer to the block group */
2137 	spin_lock(&cluster->lock);
2138 	if (!block_group) {
2139 		block_group = cluster->block_group;
2140 		if (!block_group) {
2141 			spin_unlock(&cluster->lock);
2142 			return 0;
2143 		}
2144 	} else if (cluster->block_group != block_group) {
2145 		/* someone else has already freed it don't redo their work */
2146 		spin_unlock(&cluster->lock);
2147 		return 0;
2148 	}
2149 	atomic_inc(&block_group->count);
2150 	spin_unlock(&cluster->lock);
2151 
2152 	ctl = block_group->free_space_ctl;
2153 
2154 	/* now return any extents the cluster had on it */
2155 	spin_lock(&ctl->tree_lock);
2156 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2157 	spin_unlock(&ctl->tree_lock);
2158 
2159 	/* finally drop our ref */
2160 	btrfs_put_block_group(block_group);
2161 	return ret;
2162 }
2163 
2164 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2165 				   struct btrfs_free_cluster *cluster,
2166 				   struct btrfs_free_space *entry,
2167 				   u64 bytes, u64 min_start)
2168 {
2169 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2170 	int err;
2171 	u64 search_start = cluster->window_start;
2172 	u64 search_bytes = bytes;
2173 	u64 ret = 0;
2174 
2175 	search_start = min_start;
2176 	search_bytes = bytes;
2177 
2178 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2179 	if (err)
2180 		return 0;
2181 
2182 	ret = search_start;
2183 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2184 
2185 	return ret;
2186 }
2187 
2188 /*
2189  * given a cluster, try to allocate 'bytes' from it, returns 0
2190  * if it couldn't find anything suitably large, or a logical disk offset
2191  * if things worked out
2192  */
2193 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2194 			     struct btrfs_free_cluster *cluster, u64 bytes,
2195 			     u64 min_start)
2196 {
2197 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2198 	struct btrfs_free_space *entry = NULL;
2199 	struct rb_node *node;
2200 	u64 ret = 0;
2201 
2202 	spin_lock(&cluster->lock);
2203 	if (bytes > cluster->max_size)
2204 		goto out;
2205 
2206 	if (cluster->block_group != block_group)
2207 		goto out;
2208 
2209 	node = rb_first(&cluster->root);
2210 	if (!node)
2211 		goto out;
2212 
2213 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2214 	while(1) {
2215 		if (entry->bytes < bytes ||
2216 		    (!entry->bitmap && entry->offset < min_start)) {
2217 			node = rb_next(&entry->offset_index);
2218 			if (!node)
2219 				break;
2220 			entry = rb_entry(node, struct btrfs_free_space,
2221 					 offset_index);
2222 			continue;
2223 		}
2224 
2225 		if (entry->bitmap) {
2226 			ret = btrfs_alloc_from_bitmap(block_group,
2227 						      cluster, entry, bytes,
2228 						      cluster->window_start);
2229 			if (ret == 0) {
2230 				node = rb_next(&entry->offset_index);
2231 				if (!node)
2232 					break;
2233 				entry = rb_entry(node, struct btrfs_free_space,
2234 						 offset_index);
2235 				continue;
2236 			}
2237 			cluster->window_start += bytes;
2238 		} else {
2239 			ret = entry->offset;
2240 
2241 			entry->offset += bytes;
2242 			entry->bytes -= bytes;
2243 		}
2244 
2245 		if (entry->bytes == 0)
2246 			rb_erase(&entry->offset_index, &cluster->root);
2247 		break;
2248 	}
2249 out:
2250 	spin_unlock(&cluster->lock);
2251 
2252 	if (!ret)
2253 		return 0;
2254 
2255 	spin_lock(&ctl->tree_lock);
2256 
2257 	ctl->free_space -= bytes;
2258 	if (entry->bytes == 0) {
2259 		ctl->free_extents--;
2260 		if (entry->bitmap) {
2261 			kfree(entry->bitmap);
2262 			ctl->total_bitmaps--;
2263 			ctl->op->recalc_thresholds(ctl);
2264 		}
2265 		kmem_cache_free(btrfs_free_space_cachep, entry);
2266 	}
2267 
2268 	spin_unlock(&ctl->tree_lock);
2269 
2270 	return ret;
2271 }
2272 
2273 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2274 				struct btrfs_free_space *entry,
2275 				struct btrfs_free_cluster *cluster,
2276 				u64 offset, u64 bytes,
2277 				u64 cont1_bytes, u64 min_bytes)
2278 {
2279 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2280 	unsigned long next_zero;
2281 	unsigned long i;
2282 	unsigned long want_bits;
2283 	unsigned long min_bits;
2284 	unsigned long found_bits;
2285 	unsigned long start = 0;
2286 	unsigned long total_found = 0;
2287 	int ret;
2288 
2289 	i = offset_to_bit(entry->offset, ctl->unit,
2290 			  max_t(u64, offset, entry->offset));
2291 	want_bits = bytes_to_bits(bytes, ctl->unit);
2292 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2293 
2294 again:
2295 	found_bits = 0;
2296 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2297 		next_zero = find_next_zero_bit(entry->bitmap,
2298 					       BITS_PER_BITMAP, i);
2299 		if (next_zero - i >= min_bits) {
2300 			found_bits = next_zero - i;
2301 			break;
2302 		}
2303 		i = next_zero;
2304 	}
2305 
2306 	if (!found_bits)
2307 		return -ENOSPC;
2308 
2309 	if (!total_found) {
2310 		start = i;
2311 		cluster->max_size = 0;
2312 	}
2313 
2314 	total_found += found_bits;
2315 
2316 	if (cluster->max_size < found_bits * ctl->unit)
2317 		cluster->max_size = found_bits * ctl->unit;
2318 
2319 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2320 		i = next_zero + 1;
2321 		goto again;
2322 	}
2323 
2324 	cluster->window_start = start * ctl->unit + entry->offset;
2325 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2326 	ret = tree_insert_offset(&cluster->root, entry->offset,
2327 				 &entry->offset_index, 1);
2328 	BUG_ON(ret); /* -EEXIST; Logic error */
2329 
2330 	trace_btrfs_setup_cluster(block_group, cluster,
2331 				  total_found * ctl->unit, 1);
2332 	return 0;
2333 }
2334 
2335 /*
2336  * This searches the block group for just extents to fill the cluster with.
2337  * Try to find a cluster with at least bytes total bytes, at least one
2338  * extent of cont1_bytes, and other clusters of at least min_bytes.
2339  */
2340 static noinline int
2341 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2342 			struct btrfs_free_cluster *cluster,
2343 			struct list_head *bitmaps, u64 offset, u64 bytes,
2344 			u64 cont1_bytes, u64 min_bytes)
2345 {
2346 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2347 	struct btrfs_free_space *first = NULL;
2348 	struct btrfs_free_space *entry = NULL;
2349 	struct btrfs_free_space *last;
2350 	struct rb_node *node;
2351 	u64 window_start;
2352 	u64 window_free;
2353 	u64 max_extent;
2354 	u64 total_size = 0;
2355 
2356 	entry = tree_search_offset(ctl, offset, 0, 1);
2357 	if (!entry)
2358 		return -ENOSPC;
2359 
2360 	/*
2361 	 * We don't want bitmaps, so just move along until we find a normal
2362 	 * extent entry.
2363 	 */
2364 	while (entry->bitmap || entry->bytes < min_bytes) {
2365 		if (entry->bitmap && list_empty(&entry->list))
2366 			list_add_tail(&entry->list, bitmaps);
2367 		node = rb_next(&entry->offset_index);
2368 		if (!node)
2369 			return -ENOSPC;
2370 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2371 	}
2372 
2373 	window_start = entry->offset;
2374 	window_free = entry->bytes;
2375 	max_extent = entry->bytes;
2376 	first = entry;
2377 	last = entry;
2378 
2379 	for (node = rb_next(&entry->offset_index); node;
2380 	     node = rb_next(&entry->offset_index)) {
2381 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2382 
2383 		if (entry->bitmap) {
2384 			if (list_empty(&entry->list))
2385 				list_add_tail(&entry->list, bitmaps);
2386 			continue;
2387 		}
2388 
2389 		if (entry->bytes < min_bytes)
2390 			continue;
2391 
2392 		last = entry;
2393 		window_free += entry->bytes;
2394 		if (entry->bytes > max_extent)
2395 			max_extent = entry->bytes;
2396 	}
2397 
2398 	if (window_free < bytes || max_extent < cont1_bytes)
2399 		return -ENOSPC;
2400 
2401 	cluster->window_start = first->offset;
2402 
2403 	node = &first->offset_index;
2404 
2405 	/*
2406 	 * now we've found our entries, pull them out of the free space
2407 	 * cache and put them into the cluster rbtree
2408 	 */
2409 	do {
2410 		int ret;
2411 
2412 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2413 		node = rb_next(&entry->offset_index);
2414 		if (entry->bitmap || entry->bytes < min_bytes)
2415 			continue;
2416 
2417 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2418 		ret = tree_insert_offset(&cluster->root, entry->offset,
2419 					 &entry->offset_index, 0);
2420 		total_size += entry->bytes;
2421 		BUG_ON(ret); /* -EEXIST; Logic error */
2422 	} while (node && entry != last);
2423 
2424 	cluster->max_size = max_extent;
2425 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2426 	return 0;
2427 }
2428 
2429 /*
2430  * This specifically looks for bitmaps that may work in the cluster, we assume
2431  * that we have already failed to find extents that will work.
2432  */
2433 static noinline int
2434 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2435 		     struct btrfs_free_cluster *cluster,
2436 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2437 		     u64 cont1_bytes, u64 min_bytes)
2438 {
2439 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2440 	struct btrfs_free_space *entry;
2441 	int ret = -ENOSPC;
2442 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2443 
2444 	if (ctl->total_bitmaps == 0)
2445 		return -ENOSPC;
2446 
2447 	/*
2448 	 * The bitmap that covers offset won't be in the list unless offset
2449 	 * is just its start offset.
2450 	 */
2451 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2452 	if (entry->offset != bitmap_offset) {
2453 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2454 		if (entry && list_empty(&entry->list))
2455 			list_add(&entry->list, bitmaps);
2456 	}
2457 
2458 	list_for_each_entry(entry, bitmaps, list) {
2459 		if (entry->bytes < bytes)
2460 			continue;
2461 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2462 					   bytes, cont1_bytes, min_bytes);
2463 		if (!ret)
2464 			return 0;
2465 	}
2466 
2467 	/*
2468 	 * The bitmaps list has all the bitmaps that record free space
2469 	 * starting after offset, so no more search is required.
2470 	 */
2471 	return -ENOSPC;
2472 }
2473 
2474 /*
2475  * here we try to find a cluster of blocks in a block group.  The goal
2476  * is to find at least bytes+empty_size.
2477  * We might not find them all in one contiguous area.
2478  *
2479  * returns zero and sets up cluster if things worked out, otherwise
2480  * it returns -enospc
2481  */
2482 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2483 			     struct btrfs_root *root,
2484 			     struct btrfs_block_group_cache *block_group,
2485 			     struct btrfs_free_cluster *cluster,
2486 			     u64 offset, u64 bytes, u64 empty_size)
2487 {
2488 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2489 	struct btrfs_free_space *entry, *tmp;
2490 	LIST_HEAD(bitmaps);
2491 	u64 min_bytes;
2492 	u64 cont1_bytes;
2493 	int ret;
2494 
2495 	/*
2496 	 * Choose the minimum extent size we'll require for this
2497 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2498 	 * For metadata, allow allocates with smaller extents.  For
2499 	 * data, keep it dense.
2500 	 */
2501 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2502 		cont1_bytes = min_bytes = bytes + empty_size;
2503 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2504 		cont1_bytes = bytes;
2505 		min_bytes = block_group->sectorsize;
2506 	} else {
2507 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2508 		min_bytes = block_group->sectorsize;
2509 	}
2510 
2511 	spin_lock(&ctl->tree_lock);
2512 
2513 	/*
2514 	 * If we know we don't have enough space to make a cluster don't even
2515 	 * bother doing all the work to try and find one.
2516 	 */
2517 	if (ctl->free_space < bytes) {
2518 		spin_unlock(&ctl->tree_lock);
2519 		return -ENOSPC;
2520 	}
2521 
2522 	spin_lock(&cluster->lock);
2523 
2524 	/* someone already found a cluster, hooray */
2525 	if (cluster->block_group) {
2526 		ret = 0;
2527 		goto out;
2528 	}
2529 
2530 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2531 				 min_bytes);
2532 
2533 	INIT_LIST_HEAD(&bitmaps);
2534 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2535 				      bytes + empty_size,
2536 				      cont1_bytes, min_bytes);
2537 	if (ret)
2538 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2539 					   offset, bytes + empty_size,
2540 					   cont1_bytes, min_bytes);
2541 
2542 	/* Clear our temporary list */
2543 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2544 		list_del_init(&entry->list);
2545 
2546 	if (!ret) {
2547 		atomic_inc(&block_group->count);
2548 		list_add_tail(&cluster->block_group_list,
2549 			      &block_group->cluster_list);
2550 		cluster->block_group = block_group;
2551 	} else {
2552 		trace_btrfs_failed_cluster_setup(block_group);
2553 	}
2554 out:
2555 	spin_unlock(&cluster->lock);
2556 	spin_unlock(&ctl->tree_lock);
2557 
2558 	return ret;
2559 }
2560 
2561 /*
2562  * simple code to zero out a cluster
2563  */
2564 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2565 {
2566 	spin_lock_init(&cluster->lock);
2567 	spin_lock_init(&cluster->refill_lock);
2568 	cluster->root = RB_ROOT;
2569 	cluster->max_size = 0;
2570 	INIT_LIST_HEAD(&cluster->block_group_list);
2571 	cluster->block_group = NULL;
2572 }
2573 
2574 static int do_trimming(struct btrfs_block_group_cache *block_group,
2575 		       u64 *total_trimmed, u64 start, u64 bytes,
2576 		       u64 reserved_start, u64 reserved_bytes)
2577 {
2578 	struct btrfs_space_info *space_info = block_group->space_info;
2579 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2580 	int ret;
2581 	int update = 0;
2582 	u64 trimmed = 0;
2583 
2584 	spin_lock(&space_info->lock);
2585 	spin_lock(&block_group->lock);
2586 	if (!block_group->ro) {
2587 		block_group->reserved += reserved_bytes;
2588 		space_info->bytes_reserved += reserved_bytes;
2589 		update = 1;
2590 	}
2591 	spin_unlock(&block_group->lock);
2592 	spin_unlock(&space_info->lock);
2593 
2594 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2595 					 start, bytes, &trimmed);
2596 	if (!ret)
2597 		*total_trimmed += trimmed;
2598 
2599 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2600 
2601 	if (update) {
2602 		spin_lock(&space_info->lock);
2603 		spin_lock(&block_group->lock);
2604 		if (block_group->ro)
2605 			space_info->bytes_readonly += reserved_bytes;
2606 		block_group->reserved -= reserved_bytes;
2607 		space_info->bytes_reserved -= reserved_bytes;
2608 		spin_unlock(&space_info->lock);
2609 		spin_unlock(&block_group->lock);
2610 	}
2611 
2612 	return ret;
2613 }
2614 
2615 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2616 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2617 {
2618 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2619 	struct btrfs_free_space *entry;
2620 	struct rb_node *node;
2621 	int ret = 0;
2622 	u64 extent_start;
2623 	u64 extent_bytes;
2624 	u64 bytes;
2625 
2626 	while (start < end) {
2627 		spin_lock(&ctl->tree_lock);
2628 
2629 		if (ctl->free_space < minlen) {
2630 			spin_unlock(&ctl->tree_lock);
2631 			break;
2632 		}
2633 
2634 		entry = tree_search_offset(ctl, start, 0, 1);
2635 		if (!entry) {
2636 			spin_unlock(&ctl->tree_lock);
2637 			break;
2638 		}
2639 
2640 		/* skip bitmaps */
2641 		while (entry->bitmap) {
2642 			node = rb_next(&entry->offset_index);
2643 			if (!node) {
2644 				spin_unlock(&ctl->tree_lock);
2645 				goto out;
2646 			}
2647 			entry = rb_entry(node, struct btrfs_free_space,
2648 					 offset_index);
2649 		}
2650 
2651 		if (entry->offset >= end) {
2652 			spin_unlock(&ctl->tree_lock);
2653 			break;
2654 		}
2655 
2656 		extent_start = entry->offset;
2657 		extent_bytes = entry->bytes;
2658 		start = max(start, extent_start);
2659 		bytes = min(extent_start + extent_bytes, end) - start;
2660 		if (bytes < minlen) {
2661 			spin_unlock(&ctl->tree_lock);
2662 			goto next;
2663 		}
2664 
2665 		unlink_free_space(ctl, entry);
2666 		kmem_cache_free(btrfs_free_space_cachep, entry);
2667 
2668 		spin_unlock(&ctl->tree_lock);
2669 
2670 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2671 				  extent_start, extent_bytes);
2672 		if (ret)
2673 			break;
2674 next:
2675 		start += bytes;
2676 
2677 		if (fatal_signal_pending(current)) {
2678 			ret = -ERESTARTSYS;
2679 			break;
2680 		}
2681 
2682 		cond_resched();
2683 	}
2684 out:
2685 	return ret;
2686 }
2687 
2688 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2689 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2690 {
2691 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2692 	struct btrfs_free_space *entry;
2693 	int ret = 0;
2694 	int ret2;
2695 	u64 bytes;
2696 	u64 offset = offset_to_bitmap(ctl, start);
2697 
2698 	while (offset < end) {
2699 		bool next_bitmap = false;
2700 
2701 		spin_lock(&ctl->tree_lock);
2702 
2703 		if (ctl->free_space < minlen) {
2704 			spin_unlock(&ctl->tree_lock);
2705 			break;
2706 		}
2707 
2708 		entry = tree_search_offset(ctl, offset, 1, 0);
2709 		if (!entry) {
2710 			spin_unlock(&ctl->tree_lock);
2711 			next_bitmap = true;
2712 			goto next;
2713 		}
2714 
2715 		bytes = minlen;
2716 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2717 		if (ret2 || start >= end) {
2718 			spin_unlock(&ctl->tree_lock);
2719 			next_bitmap = true;
2720 			goto next;
2721 		}
2722 
2723 		bytes = min(bytes, end - start);
2724 		if (bytes < minlen) {
2725 			spin_unlock(&ctl->tree_lock);
2726 			goto next;
2727 		}
2728 
2729 		bitmap_clear_bits(ctl, entry, start, bytes);
2730 		if (entry->bytes == 0)
2731 			free_bitmap(ctl, entry);
2732 
2733 		spin_unlock(&ctl->tree_lock);
2734 
2735 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2736 				  start, bytes);
2737 		if (ret)
2738 			break;
2739 next:
2740 		if (next_bitmap) {
2741 			offset += BITS_PER_BITMAP * ctl->unit;
2742 		} else {
2743 			start += bytes;
2744 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2745 				offset += BITS_PER_BITMAP * ctl->unit;
2746 		}
2747 
2748 		if (fatal_signal_pending(current)) {
2749 			ret = -ERESTARTSYS;
2750 			break;
2751 		}
2752 
2753 		cond_resched();
2754 	}
2755 
2756 	return ret;
2757 }
2758 
2759 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2760 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2761 {
2762 	int ret;
2763 
2764 	*trimmed = 0;
2765 
2766 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2767 	if (ret)
2768 		return ret;
2769 
2770 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2771 
2772 	return ret;
2773 }
2774 
2775 /*
2776  * Find the left-most item in the cache tree, and then return the
2777  * smallest inode number in the item.
2778  *
2779  * Note: the returned inode number may not be the smallest one in
2780  * the tree, if the left-most item is a bitmap.
2781  */
2782 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2783 {
2784 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2785 	struct btrfs_free_space *entry = NULL;
2786 	u64 ino = 0;
2787 
2788 	spin_lock(&ctl->tree_lock);
2789 
2790 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2791 		goto out;
2792 
2793 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2794 			 struct btrfs_free_space, offset_index);
2795 
2796 	if (!entry->bitmap) {
2797 		ino = entry->offset;
2798 
2799 		unlink_free_space(ctl, entry);
2800 		entry->offset++;
2801 		entry->bytes--;
2802 		if (!entry->bytes)
2803 			kmem_cache_free(btrfs_free_space_cachep, entry);
2804 		else
2805 			link_free_space(ctl, entry);
2806 	} else {
2807 		u64 offset = 0;
2808 		u64 count = 1;
2809 		int ret;
2810 
2811 		ret = search_bitmap(ctl, entry, &offset, &count);
2812 		/* Logic error; Should be empty if it can't find anything */
2813 		BUG_ON(ret);
2814 
2815 		ino = offset;
2816 		bitmap_clear_bits(ctl, entry, offset, 1);
2817 		if (entry->bytes == 0)
2818 			free_bitmap(ctl, entry);
2819 	}
2820 out:
2821 	spin_unlock(&ctl->tree_lock);
2822 
2823 	return ino;
2824 }
2825 
2826 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2827 				    struct btrfs_path *path)
2828 {
2829 	struct inode *inode = NULL;
2830 
2831 	spin_lock(&root->cache_lock);
2832 	if (root->cache_inode)
2833 		inode = igrab(root->cache_inode);
2834 	spin_unlock(&root->cache_lock);
2835 	if (inode)
2836 		return inode;
2837 
2838 	inode = __lookup_free_space_inode(root, path, 0);
2839 	if (IS_ERR(inode))
2840 		return inode;
2841 
2842 	spin_lock(&root->cache_lock);
2843 	if (!btrfs_fs_closing(root->fs_info))
2844 		root->cache_inode = igrab(inode);
2845 	spin_unlock(&root->cache_lock);
2846 
2847 	return inode;
2848 }
2849 
2850 int create_free_ino_inode(struct btrfs_root *root,
2851 			  struct btrfs_trans_handle *trans,
2852 			  struct btrfs_path *path)
2853 {
2854 	return __create_free_space_inode(root, trans, path,
2855 					 BTRFS_FREE_INO_OBJECTID, 0);
2856 }
2857 
2858 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2859 {
2860 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2861 	struct btrfs_path *path;
2862 	struct inode *inode;
2863 	int ret = 0;
2864 	u64 root_gen = btrfs_root_generation(&root->root_item);
2865 
2866 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2867 		return 0;
2868 
2869 	/*
2870 	 * If we're unmounting then just return, since this does a search on the
2871 	 * normal root and not the commit root and we could deadlock.
2872 	 */
2873 	if (btrfs_fs_closing(fs_info))
2874 		return 0;
2875 
2876 	path = btrfs_alloc_path();
2877 	if (!path)
2878 		return 0;
2879 
2880 	inode = lookup_free_ino_inode(root, path);
2881 	if (IS_ERR(inode))
2882 		goto out;
2883 
2884 	if (root_gen != BTRFS_I(inode)->generation)
2885 		goto out_put;
2886 
2887 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2888 
2889 	if (ret < 0)
2890 		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2891 		       "root %llu\n", root->root_key.objectid);
2892 out_put:
2893 	iput(inode);
2894 out:
2895 	btrfs_free_path(path);
2896 	return ret;
2897 }
2898 
2899 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2900 			      struct btrfs_trans_handle *trans,
2901 			      struct btrfs_path *path)
2902 {
2903 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2904 	struct inode *inode;
2905 	int ret;
2906 
2907 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2908 		return 0;
2909 
2910 	inode = lookup_free_ino_inode(root, path);
2911 	if (IS_ERR(inode))
2912 		return 0;
2913 
2914 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2915 	if (ret) {
2916 		btrfs_delalloc_release_metadata(inode, inode->i_size);
2917 #ifdef DEBUG
2918 		printk(KERN_ERR "btrfs: failed to write free ino cache "
2919 		       "for root %llu\n", root->root_key.objectid);
2920 #endif
2921 	}
2922 
2923 	iput(inode);
2924 	return ret;
2925 }
2926