xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "free-space-cache.h"
15 #include "transaction.h"
16 #include "disk-io.h"
17 #include "extent_io.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 
21 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
22 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
23 
24 struct btrfs_trim_range {
25 	u64 start;
26 	u64 bytes;
27 	struct list_head list;
28 };
29 
30 static int link_free_space(struct btrfs_free_space_ctl *ctl,
31 			   struct btrfs_free_space *info);
32 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
33 			      struct btrfs_free_space *info);
34 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
35 			     struct btrfs_trans_handle *trans,
36 			     struct btrfs_io_ctl *io_ctl,
37 			     struct btrfs_path *path);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_fs_info *fs_info = root->fs_info;
44 	struct btrfs_key key;
45 	struct btrfs_key location;
46 	struct btrfs_disk_key disk_key;
47 	struct btrfs_free_space_header *header;
48 	struct extent_buffer *leaf;
49 	struct inode *inode = NULL;
50 	int ret;
51 
52 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
53 	key.offset = offset;
54 	key.type = 0;
55 
56 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
57 	if (ret < 0)
58 		return ERR_PTR(ret);
59 	if (ret > 0) {
60 		btrfs_release_path(path);
61 		return ERR_PTR(-ENOENT);
62 	}
63 
64 	leaf = path->nodes[0];
65 	header = btrfs_item_ptr(leaf, path->slots[0],
66 				struct btrfs_free_space_header);
67 	btrfs_free_space_key(leaf, header, &disk_key);
68 	btrfs_disk_key_to_cpu(&location, &disk_key);
69 	btrfs_release_path(path);
70 
71 	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
72 	if (IS_ERR(inode))
73 		return inode;
74 	if (is_bad_inode(inode)) {
75 		iput(inode);
76 		return ERR_PTR(-ENOENT);
77 	}
78 
79 	mapping_set_gfp_mask(inode->i_mapping,
80 			mapping_gfp_constraint(inode->i_mapping,
81 			~(__GFP_FS | __GFP_HIGHMEM)));
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		btrfs_info(fs_info, "Old style space inode found, converting.");
108 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 			BTRFS_INODE_NODATACOW;
110 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
111 	}
112 
113 	if (!block_group->iref) {
114 		block_group->inode = igrab(inode);
115 		block_group->iref = 1;
116 	}
117 	spin_unlock(&block_group->lock);
118 
119 	return inode;
120 }
121 
122 static int __create_free_space_inode(struct btrfs_root *root,
123 				     struct btrfs_trans_handle *trans,
124 				     struct btrfs_path *path,
125 				     u64 ino, u64 offset)
126 {
127 	struct btrfs_key key;
128 	struct btrfs_disk_key disk_key;
129 	struct btrfs_free_space_header *header;
130 	struct btrfs_inode_item *inode_item;
131 	struct extent_buffer *leaf;
132 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
133 	int ret;
134 
135 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
136 	if (ret)
137 		return ret;
138 
139 	/* We inline crc's for the free disk space cache */
140 	if (ino != BTRFS_FREE_INO_OBJECTID)
141 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
142 
143 	leaf = path->nodes[0];
144 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
145 				    struct btrfs_inode_item);
146 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
147 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
148 			     sizeof(*inode_item));
149 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
150 	btrfs_set_inode_size(leaf, inode_item, 0);
151 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
152 	btrfs_set_inode_uid(leaf, inode_item, 0);
153 	btrfs_set_inode_gid(leaf, inode_item, 0);
154 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
155 	btrfs_set_inode_flags(leaf, inode_item, flags);
156 	btrfs_set_inode_nlink(leaf, inode_item, 1);
157 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
158 	btrfs_set_inode_block_group(leaf, inode_item, offset);
159 	btrfs_mark_buffer_dirty(leaf);
160 	btrfs_release_path(path);
161 
162 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
163 	key.offset = offset;
164 	key.type = 0;
165 	ret = btrfs_insert_empty_item(trans, root, path, &key,
166 				      sizeof(struct btrfs_free_space_header));
167 	if (ret < 0) {
168 		btrfs_release_path(path);
169 		return ret;
170 	}
171 
172 	leaf = path->nodes[0];
173 	header = btrfs_item_ptr(leaf, path->slots[0],
174 				struct btrfs_free_space_header);
175 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
176 	btrfs_set_free_space_key(leaf, header, &disk_key);
177 	btrfs_mark_buffer_dirty(leaf);
178 	btrfs_release_path(path);
179 
180 	return 0;
181 }
182 
183 int create_free_space_inode(struct btrfs_fs_info *fs_info,
184 			    struct btrfs_trans_handle *trans,
185 			    struct btrfs_block_group_cache *block_group,
186 			    struct btrfs_path *path)
187 {
188 	int ret;
189 	u64 ino;
190 
191 	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
192 	if (ret < 0)
193 		return ret;
194 
195 	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
196 					 block_group->key.objectid);
197 }
198 
199 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
200 				       struct btrfs_block_rsv *rsv)
201 {
202 	u64 needed_bytes;
203 	int ret;
204 
205 	/* 1 for slack space, 1 for updating the inode */
206 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
207 		btrfs_calc_trans_metadata_size(fs_info, 1);
208 
209 	spin_lock(&rsv->lock);
210 	if (rsv->reserved < needed_bytes)
211 		ret = -ENOSPC;
212 	else
213 		ret = 0;
214 	spin_unlock(&rsv->lock);
215 	return ret;
216 }
217 
218 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
219 				    struct btrfs_block_group_cache *block_group,
220 				    struct inode *inode)
221 {
222 	struct btrfs_root *root = BTRFS_I(inode)->root;
223 	int ret = 0;
224 	bool locked = false;
225 
226 	if (block_group) {
227 		struct btrfs_path *path = btrfs_alloc_path();
228 
229 		if (!path) {
230 			ret = -ENOMEM;
231 			goto fail;
232 		}
233 		locked = true;
234 		mutex_lock(&trans->transaction->cache_write_mutex);
235 		if (!list_empty(&block_group->io_list)) {
236 			list_del_init(&block_group->io_list);
237 
238 			btrfs_wait_cache_io(trans, block_group, path);
239 			btrfs_put_block_group(block_group);
240 		}
241 
242 		/*
243 		 * now that we've truncated the cache away, its no longer
244 		 * setup or written
245 		 */
246 		spin_lock(&block_group->lock);
247 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
248 		spin_unlock(&block_group->lock);
249 		btrfs_free_path(path);
250 	}
251 
252 	btrfs_i_size_write(BTRFS_I(inode), 0);
253 	truncate_pagecache(inode, 0);
254 
255 	/*
256 	 * We skip the throttling logic for free space cache inodes, so we don't
257 	 * need to check for -EAGAIN.
258 	 */
259 	ret = btrfs_truncate_inode_items(trans, root, inode,
260 					 0, BTRFS_EXTENT_DATA_KEY);
261 	if (ret)
262 		goto fail;
263 
264 	ret = btrfs_update_inode(trans, root, inode);
265 
266 fail:
267 	if (locked)
268 		mutex_unlock(&trans->transaction->cache_write_mutex);
269 	if (ret)
270 		btrfs_abort_transaction(trans, ret);
271 
272 	return ret;
273 }
274 
275 static void readahead_cache(struct inode *inode)
276 {
277 	struct file_ra_state *ra;
278 	unsigned long last_index;
279 
280 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
281 	if (!ra)
282 		return;
283 
284 	file_ra_state_init(ra, inode->i_mapping);
285 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
286 
287 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
288 
289 	kfree(ra);
290 }
291 
292 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
293 		       int write)
294 {
295 	int num_pages;
296 	int check_crcs = 0;
297 
298 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
299 
300 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
301 		check_crcs = 1;
302 
303 	/* Make sure we can fit our crcs into the first page */
304 	if (write && check_crcs &&
305 	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
306 		return -ENOSPC;
307 
308 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
309 
310 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
311 	if (!io_ctl->pages)
312 		return -ENOMEM;
313 
314 	io_ctl->num_pages = num_pages;
315 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
316 	io_ctl->check_crcs = check_crcs;
317 	io_ctl->inode = inode;
318 
319 	return 0;
320 }
321 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
322 
323 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
324 {
325 	kfree(io_ctl->pages);
326 	io_ctl->pages = NULL;
327 }
328 
329 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
330 {
331 	if (io_ctl->cur) {
332 		io_ctl->cur = NULL;
333 		io_ctl->orig = NULL;
334 	}
335 }
336 
337 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
338 {
339 	ASSERT(io_ctl->index < io_ctl->num_pages);
340 	io_ctl->page = io_ctl->pages[io_ctl->index++];
341 	io_ctl->cur = page_address(io_ctl->page);
342 	io_ctl->orig = io_ctl->cur;
343 	io_ctl->size = PAGE_SIZE;
344 	if (clear)
345 		clear_page(io_ctl->cur);
346 }
347 
348 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
349 {
350 	int i;
351 
352 	io_ctl_unmap_page(io_ctl);
353 
354 	for (i = 0; i < io_ctl->num_pages; i++) {
355 		if (io_ctl->pages[i]) {
356 			ClearPageChecked(io_ctl->pages[i]);
357 			unlock_page(io_ctl->pages[i]);
358 			put_page(io_ctl->pages[i]);
359 		}
360 	}
361 }
362 
363 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
364 				int uptodate)
365 {
366 	struct page *page;
367 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
368 	int i;
369 
370 	for (i = 0; i < io_ctl->num_pages; i++) {
371 		page = find_or_create_page(inode->i_mapping, i, mask);
372 		if (!page) {
373 			io_ctl_drop_pages(io_ctl);
374 			return -ENOMEM;
375 		}
376 		io_ctl->pages[i] = page;
377 		if (uptodate && !PageUptodate(page)) {
378 			btrfs_readpage(NULL, page);
379 			lock_page(page);
380 			if (!PageUptodate(page)) {
381 				btrfs_err(BTRFS_I(inode)->root->fs_info,
382 					   "error reading free space cache");
383 				io_ctl_drop_pages(io_ctl);
384 				return -EIO;
385 			}
386 		}
387 	}
388 
389 	for (i = 0; i < io_ctl->num_pages; i++) {
390 		clear_page_dirty_for_io(io_ctl->pages[i]);
391 		set_page_extent_mapped(io_ctl->pages[i]);
392 	}
393 
394 	return 0;
395 }
396 
397 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
398 {
399 	__le64 *val;
400 
401 	io_ctl_map_page(io_ctl, 1);
402 
403 	/*
404 	 * Skip the csum areas.  If we don't check crcs then we just have a
405 	 * 64bit chunk at the front of the first page.
406 	 */
407 	if (io_ctl->check_crcs) {
408 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
409 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
410 	} else {
411 		io_ctl->cur += sizeof(u64);
412 		io_ctl->size -= sizeof(u64) * 2;
413 	}
414 
415 	val = io_ctl->cur;
416 	*val = cpu_to_le64(generation);
417 	io_ctl->cur += sizeof(u64);
418 }
419 
420 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
421 {
422 	__le64 *gen;
423 
424 	/*
425 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
426 	 * chunk at the front of the first page.
427 	 */
428 	if (io_ctl->check_crcs) {
429 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
430 		io_ctl->size -= sizeof(u64) +
431 			(sizeof(u32) * io_ctl->num_pages);
432 	} else {
433 		io_ctl->cur += sizeof(u64);
434 		io_ctl->size -= sizeof(u64) * 2;
435 	}
436 
437 	gen = io_ctl->cur;
438 	if (le64_to_cpu(*gen) != generation) {
439 		btrfs_err_rl(io_ctl->fs_info,
440 			"space cache generation (%llu) does not match inode (%llu)",
441 				*gen, generation);
442 		io_ctl_unmap_page(io_ctl);
443 		return -EIO;
444 	}
445 	io_ctl->cur += sizeof(u64);
446 	return 0;
447 }
448 
449 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
450 {
451 	u32 *tmp;
452 	u32 crc = ~(u32)0;
453 	unsigned offset = 0;
454 
455 	if (!io_ctl->check_crcs) {
456 		io_ctl_unmap_page(io_ctl);
457 		return;
458 	}
459 
460 	if (index == 0)
461 		offset = sizeof(u32) * io_ctl->num_pages;
462 
463 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
464 			      PAGE_SIZE - offset);
465 	btrfs_csum_final(crc, (u8 *)&crc);
466 	io_ctl_unmap_page(io_ctl);
467 	tmp = page_address(io_ctl->pages[0]);
468 	tmp += index;
469 	*tmp = crc;
470 }
471 
472 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
473 {
474 	u32 *tmp, val;
475 	u32 crc = ~(u32)0;
476 	unsigned offset = 0;
477 
478 	if (!io_ctl->check_crcs) {
479 		io_ctl_map_page(io_ctl, 0);
480 		return 0;
481 	}
482 
483 	if (index == 0)
484 		offset = sizeof(u32) * io_ctl->num_pages;
485 
486 	tmp = page_address(io_ctl->pages[0]);
487 	tmp += index;
488 	val = *tmp;
489 
490 	io_ctl_map_page(io_ctl, 0);
491 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
492 			      PAGE_SIZE - offset);
493 	btrfs_csum_final(crc, (u8 *)&crc);
494 	if (val != crc) {
495 		btrfs_err_rl(io_ctl->fs_info,
496 			"csum mismatch on free space cache");
497 		io_ctl_unmap_page(io_ctl);
498 		return -EIO;
499 	}
500 
501 	return 0;
502 }
503 
504 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
505 			    void *bitmap)
506 {
507 	struct btrfs_free_space_entry *entry;
508 
509 	if (!io_ctl->cur)
510 		return -ENOSPC;
511 
512 	entry = io_ctl->cur;
513 	entry->offset = cpu_to_le64(offset);
514 	entry->bytes = cpu_to_le64(bytes);
515 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
516 		BTRFS_FREE_SPACE_EXTENT;
517 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
518 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
519 
520 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
521 		return 0;
522 
523 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
524 
525 	/* No more pages to map */
526 	if (io_ctl->index >= io_ctl->num_pages)
527 		return 0;
528 
529 	/* map the next page */
530 	io_ctl_map_page(io_ctl, 1);
531 	return 0;
532 }
533 
534 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
535 {
536 	if (!io_ctl->cur)
537 		return -ENOSPC;
538 
539 	/*
540 	 * If we aren't at the start of the current page, unmap this one and
541 	 * map the next one if there is any left.
542 	 */
543 	if (io_ctl->cur != io_ctl->orig) {
544 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
545 		if (io_ctl->index >= io_ctl->num_pages)
546 			return -ENOSPC;
547 		io_ctl_map_page(io_ctl, 0);
548 	}
549 
550 	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
551 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
552 	if (io_ctl->index < io_ctl->num_pages)
553 		io_ctl_map_page(io_ctl, 0);
554 	return 0;
555 }
556 
557 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
558 {
559 	/*
560 	 * If we're not on the boundary we know we've modified the page and we
561 	 * need to crc the page.
562 	 */
563 	if (io_ctl->cur != io_ctl->orig)
564 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
565 	else
566 		io_ctl_unmap_page(io_ctl);
567 
568 	while (io_ctl->index < io_ctl->num_pages) {
569 		io_ctl_map_page(io_ctl, 1);
570 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
571 	}
572 }
573 
574 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
575 			    struct btrfs_free_space *entry, u8 *type)
576 {
577 	struct btrfs_free_space_entry *e;
578 	int ret;
579 
580 	if (!io_ctl->cur) {
581 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
582 		if (ret)
583 			return ret;
584 	}
585 
586 	e = io_ctl->cur;
587 	entry->offset = le64_to_cpu(e->offset);
588 	entry->bytes = le64_to_cpu(e->bytes);
589 	*type = e->type;
590 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
591 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
592 
593 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
594 		return 0;
595 
596 	io_ctl_unmap_page(io_ctl);
597 
598 	return 0;
599 }
600 
601 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
602 			      struct btrfs_free_space *entry)
603 {
604 	int ret;
605 
606 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
607 	if (ret)
608 		return ret;
609 
610 	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
611 	io_ctl_unmap_page(io_ctl);
612 
613 	return 0;
614 }
615 
616 /*
617  * Since we attach pinned extents after the fact we can have contiguous sections
618  * of free space that are split up in entries.  This poses a problem with the
619  * tree logging stuff since it could have allocated across what appears to be 2
620  * entries since we would have merged the entries when adding the pinned extents
621  * back to the free space cache.  So run through the space cache that we just
622  * loaded and merge contiguous entries.  This will make the log replay stuff not
623  * blow up and it will make for nicer allocator behavior.
624  */
625 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
626 {
627 	struct btrfs_free_space *e, *prev = NULL;
628 	struct rb_node *n;
629 
630 again:
631 	spin_lock(&ctl->tree_lock);
632 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
633 		e = rb_entry(n, struct btrfs_free_space, offset_index);
634 		if (!prev)
635 			goto next;
636 		if (e->bitmap || prev->bitmap)
637 			goto next;
638 		if (prev->offset + prev->bytes == e->offset) {
639 			unlink_free_space(ctl, prev);
640 			unlink_free_space(ctl, e);
641 			prev->bytes += e->bytes;
642 			kmem_cache_free(btrfs_free_space_cachep, e);
643 			link_free_space(ctl, prev);
644 			prev = NULL;
645 			spin_unlock(&ctl->tree_lock);
646 			goto again;
647 		}
648 next:
649 		prev = e;
650 	}
651 	spin_unlock(&ctl->tree_lock);
652 }
653 
654 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
655 				   struct btrfs_free_space_ctl *ctl,
656 				   struct btrfs_path *path, u64 offset)
657 {
658 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
659 	struct btrfs_free_space_header *header;
660 	struct extent_buffer *leaf;
661 	struct btrfs_io_ctl io_ctl;
662 	struct btrfs_key key;
663 	struct btrfs_free_space *e, *n;
664 	LIST_HEAD(bitmaps);
665 	u64 num_entries;
666 	u64 num_bitmaps;
667 	u64 generation;
668 	u8 type;
669 	int ret = 0;
670 
671 	/* Nothing in the space cache, goodbye */
672 	if (!i_size_read(inode))
673 		return 0;
674 
675 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
676 	key.offset = offset;
677 	key.type = 0;
678 
679 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
680 	if (ret < 0)
681 		return 0;
682 	else if (ret > 0) {
683 		btrfs_release_path(path);
684 		return 0;
685 	}
686 
687 	ret = -1;
688 
689 	leaf = path->nodes[0];
690 	header = btrfs_item_ptr(leaf, path->slots[0],
691 				struct btrfs_free_space_header);
692 	num_entries = btrfs_free_space_entries(leaf, header);
693 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
694 	generation = btrfs_free_space_generation(leaf, header);
695 	btrfs_release_path(path);
696 
697 	if (!BTRFS_I(inode)->generation) {
698 		btrfs_info(fs_info,
699 			   "the free space cache file (%llu) is invalid, skip it",
700 			   offset);
701 		return 0;
702 	}
703 
704 	if (BTRFS_I(inode)->generation != generation) {
705 		btrfs_err(fs_info,
706 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
707 			  BTRFS_I(inode)->generation, generation);
708 		return 0;
709 	}
710 
711 	if (!num_entries)
712 		return 0;
713 
714 	ret = io_ctl_init(&io_ctl, inode, 0);
715 	if (ret)
716 		return ret;
717 
718 	readahead_cache(inode);
719 
720 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
721 	if (ret)
722 		goto out;
723 
724 	ret = io_ctl_check_crc(&io_ctl, 0);
725 	if (ret)
726 		goto free_cache;
727 
728 	ret = io_ctl_check_generation(&io_ctl, generation);
729 	if (ret)
730 		goto free_cache;
731 
732 	while (num_entries) {
733 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
734 				      GFP_NOFS);
735 		if (!e)
736 			goto free_cache;
737 
738 		ret = io_ctl_read_entry(&io_ctl, e, &type);
739 		if (ret) {
740 			kmem_cache_free(btrfs_free_space_cachep, e);
741 			goto free_cache;
742 		}
743 
744 		if (!e->bytes) {
745 			kmem_cache_free(btrfs_free_space_cachep, e);
746 			goto free_cache;
747 		}
748 
749 		if (type == BTRFS_FREE_SPACE_EXTENT) {
750 			spin_lock(&ctl->tree_lock);
751 			ret = link_free_space(ctl, e);
752 			spin_unlock(&ctl->tree_lock);
753 			if (ret) {
754 				btrfs_err(fs_info,
755 					"Duplicate entries in free space cache, dumping");
756 				kmem_cache_free(btrfs_free_space_cachep, e);
757 				goto free_cache;
758 			}
759 		} else {
760 			ASSERT(num_bitmaps);
761 			num_bitmaps--;
762 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
763 			if (!e->bitmap) {
764 				kmem_cache_free(
765 					btrfs_free_space_cachep, e);
766 				goto free_cache;
767 			}
768 			spin_lock(&ctl->tree_lock);
769 			ret = link_free_space(ctl, e);
770 			ctl->total_bitmaps++;
771 			ctl->op->recalc_thresholds(ctl);
772 			spin_unlock(&ctl->tree_lock);
773 			if (ret) {
774 				btrfs_err(fs_info,
775 					"Duplicate entries in free space cache, dumping");
776 				kmem_cache_free(btrfs_free_space_cachep, e);
777 				goto free_cache;
778 			}
779 			list_add_tail(&e->list, &bitmaps);
780 		}
781 
782 		num_entries--;
783 	}
784 
785 	io_ctl_unmap_page(&io_ctl);
786 
787 	/*
788 	 * We add the bitmaps at the end of the entries in order that
789 	 * the bitmap entries are added to the cache.
790 	 */
791 	list_for_each_entry_safe(e, n, &bitmaps, list) {
792 		list_del_init(&e->list);
793 		ret = io_ctl_read_bitmap(&io_ctl, e);
794 		if (ret)
795 			goto free_cache;
796 	}
797 
798 	io_ctl_drop_pages(&io_ctl);
799 	merge_space_tree(ctl);
800 	ret = 1;
801 out:
802 	io_ctl_free(&io_ctl);
803 	return ret;
804 free_cache:
805 	io_ctl_drop_pages(&io_ctl);
806 	__btrfs_remove_free_space_cache(ctl);
807 	goto out;
808 }
809 
810 int load_free_space_cache(struct btrfs_fs_info *fs_info,
811 			  struct btrfs_block_group_cache *block_group)
812 {
813 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
814 	struct inode *inode;
815 	struct btrfs_path *path;
816 	int ret = 0;
817 	bool matched;
818 	u64 used = btrfs_block_group_used(&block_group->item);
819 
820 	/*
821 	 * If this block group has been marked to be cleared for one reason or
822 	 * another then we can't trust the on disk cache, so just return.
823 	 */
824 	spin_lock(&block_group->lock);
825 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
826 		spin_unlock(&block_group->lock);
827 		return 0;
828 	}
829 	spin_unlock(&block_group->lock);
830 
831 	path = btrfs_alloc_path();
832 	if (!path)
833 		return 0;
834 	path->search_commit_root = 1;
835 	path->skip_locking = 1;
836 
837 	inode = lookup_free_space_inode(fs_info, block_group, path);
838 	if (IS_ERR(inode)) {
839 		btrfs_free_path(path);
840 		return 0;
841 	}
842 
843 	/* We may have converted the inode and made the cache invalid. */
844 	spin_lock(&block_group->lock);
845 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
846 		spin_unlock(&block_group->lock);
847 		btrfs_free_path(path);
848 		goto out;
849 	}
850 	spin_unlock(&block_group->lock);
851 
852 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
853 				      path, block_group->key.objectid);
854 	btrfs_free_path(path);
855 	if (ret <= 0)
856 		goto out;
857 
858 	spin_lock(&ctl->tree_lock);
859 	matched = (ctl->free_space == (block_group->key.offset - used -
860 				       block_group->bytes_super));
861 	spin_unlock(&ctl->tree_lock);
862 
863 	if (!matched) {
864 		__btrfs_remove_free_space_cache(ctl);
865 		btrfs_warn(fs_info,
866 			   "block group %llu has wrong amount of free space",
867 			   block_group->key.objectid);
868 		ret = -1;
869 	}
870 out:
871 	if (ret < 0) {
872 		/* This cache is bogus, make sure it gets cleared */
873 		spin_lock(&block_group->lock);
874 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
875 		spin_unlock(&block_group->lock);
876 		ret = 0;
877 
878 		btrfs_warn(fs_info,
879 			   "failed to load free space cache for block group %llu, rebuilding it now",
880 			   block_group->key.objectid);
881 	}
882 
883 	iput(inode);
884 	return ret;
885 }
886 
887 static noinline_for_stack
888 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
889 			      struct btrfs_free_space_ctl *ctl,
890 			      struct btrfs_block_group_cache *block_group,
891 			      int *entries, int *bitmaps,
892 			      struct list_head *bitmap_list)
893 {
894 	int ret;
895 	struct btrfs_free_cluster *cluster = NULL;
896 	struct btrfs_free_cluster *cluster_locked = NULL;
897 	struct rb_node *node = rb_first(&ctl->free_space_offset);
898 	struct btrfs_trim_range *trim_entry;
899 
900 	/* Get the cluster for this block_group if it exists */
901 	if (block_group && !list_empty(&block_group->cluster_list)) {
902 		cluster = list_entry(block_group->cluster_list.next,
903 				     struct btrfs_free_cluster,
904 				     block_group_list);
905 	}
906 
907 	if (!node && cluster) {
908 		cluster_locked = cluster;
909 		spin_lock(&cluster_locked->lock);
910 		node = rb_first(&cluster->root);
911 		cluster = NULL;
912 	}
913 
914 	/* Write out the extent entries */
915 	while (node) {
916 		struct btrfs_free_space *e;
917 
918 		e = rb_entry(node, struct btrfs_free_space, offset_index);
919 		*entries += 1;
920 
921 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
922 				       e->bitmap);
923 		if (ret)
924 			goto fail;
925 
926 		if (e->bitmap) {
927 			list_add_tail(&e->list, bitmap_list);
928 			*bitmaps += 1;
929 		}
930 		node = rb_next(node);
931 		if (!node && cluster) {
932 			node = rb_first(&cluster->root);
933 			cluster_locked = cluster;
934 			spin_lock(&cluster_locked->lock);
935 			cluster = NULL;
936 		}
937 	}
938 	if (cluster_locked) {
939 		spin_unlock(&cluster_locked->lock);
940 		cluster_locked = NULL;
941 	}
942 
943 	/*
944 	 * Make sure we don't miss any range that was removed from our rbtree
945 	 * because trimming is running. Otherwise after a umount+mount (or crash
946 	 * after committing the transaction) we would leak free space and get
947 	 * an inconsistent free space cache report from fsck.
948 	 */
949 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
950 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
951 				       trim_entry->bytes, NULL);
952 		if (ret)
953 			goto fail;
954 		*entries += 1;
955 	}
956 
957 	return 0;
958 fail:
959 	if (cluster_locked)
960 		spin_unlock(&cluster_locked->lock);
961 	return -ENOSPC;
962 }
963 
964 static noinline_for_stack int
965 update_cache_item(struct btrfs_trans_handle *trans,
966 		  struct btrfs_root *root,
967 		  struct inode *inode,
968 		  struct btrfs_path *path, u64 offset,
969 		  int entries, int bitmaps)
970 {
971 	struct btrfs_key key;
972 	struct btrfs_free_space_header *header;
973 	struct extent_buffer *leaf;
974 	int ret;
975 
976 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
977 	key.offset = offset;
978 	key.type = 0;
979 
980 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
981 	if (ret < 0) {
982 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
983 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
984 		goto fail;
985 	}
986 	leaf = path->nodes[0];
987 	if (ret > 0) {
988 		struct btrfs_key found_key;
989 		ASSERT(path->slots[0]);
990 		path->slots[0]--;
991 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
992 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
993 		    found_key.offset != offset) {
994 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
995 					 inode->i_size - 1,
996 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
997 					 NULL);
998 			btrfs_release_path(path);
999 			goto fail;
1000 		}
1001 	}
1002 
1003 	BTRFS_I(inode)->generation = trans->transid;
1004 	header = btrfs_item_ptr(leaf, path->slots[0],
1005 				struct btrfs_free_space_header);
1006 	btrfs_set_free_space_entries(leaf, header, entries);
1007 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1008 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1009 	btrfs_mark_buffer_dirty(leaf);
1010 	btrfs_release_path(path);
1011 
1012 	return 0;
1013 
1014 fail:
1015 	return -1;
1016 }
1017 
1018 static noinline_for_stack int
1019 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1020 			    struct btrfs_block_group_cache *block_group,
1021 			    struct btrfs_io_ctl *io_ctl,
1022 			    int *entries)
1023 {
1024 	u64 start, extent_start, extent_end, len;
1025 	struct extent_io_tree *unpin = NULL;
1026 	int ret;
1027 
1028 	if (!block_group)
1029 		return 0;
1030 
1031 	/*
1032 	 * We want to add any pinned extents to our free space cache
1033 	 * so we don't leak the space
1034 	 *
1035 	 * We shouldn't have switched the pinned extents yet so this is the
1036 	 * right one
1037 	 */
1038 	unpin = fs_info->pinned_extents;
1039 
1040 	start = block_group->key.objectid;
1041 
1042 	while (start < block_group->key.objectid + block_group->key.offset) {
1043 		ret = find_first_extent_bit(unpin, start,
1044 					    &extent_start, &extent_end,
1045 					    EXTENT_DIRTY, NULL);
1046 		if (ret)
1047 			return 0;
1048 
1049 		/* This pinned extent is out of our range */
1050 		if (extent_start >= block_group->key.objectid +
1051 		    block_group->key.offset)
1052 			return 0;
1053 
1054 		extent_start = max(extent_start, start);
1055 		extent_end = min(block_group->key.objectid +
1056 				 block_group->key.offset, extent_end + 1);
1057 		len = extent_end - extent_start;
1058 
1059 		*entries += 1;
1060 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1061 		if (ret)
1062 			return -ENOSPC;
1063 
1064 		start = extent_end;
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 static noinline_for_stack int
1071 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1072 {
1073 	struct btrfs_free_space *entry, *next;
1074 	int ret;
1075 
1076 	/* Write out the bitmaps */
1077 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1078 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1079 		if (ret)
1080 			return -ENOSPC;
1081 		list_del_init(&entry->list);
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static int flush_dirty_cache(struct inode *inode)
1088 {
1089 	int ret;
1090 
1091 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1092 	if (ret)
1093 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1094 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1095 
1096 	return ret;
1097 }
1098 
1099 static void noinline_for_stack
1100 cleanup_bitmap_list(struct list_head *bitmap_list)
1101 {
1102 	struct btrfs_free_space *entry, *next;
1103 
1104 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1105 		list_del_init(&entry->list);
1106 }
1107 
1108 static void noinline_for_stack
1109 cleanup_write_cache_enospc(struct inode *inode,
1110 			   struct btrfs_io_ctl *io_ctl,
1111 			   struct extent_state **cached_state)
1112 {
1113 	io_ctl_drop_pages(io_ctl);
1114 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1115 			     i_size_read(inode) - 1, cached_state);
1116 }
1117 
1118 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1119 				 struct btrfs_trans_handle *trans,
1120 				 struct btrfs_block_group_cache *block_group,
1121 				 struct btrfs_io_ctl *io_ctl,
1122 				 struct btrfs_path *path, u64 offset)
1123 {
1124 	int ret;
1125 	struct inode *inode = io_ctl->inode;
1126 	struct btrfs_fs_info *fs_info;
1127 
1128 	if (!inode)
1129 		return 0;
1130 
1131 	fs_info = btrfs_sb(inode->i_sb);
1132 
1133 	/* Flush the dirty pages in the cache file. */
1134 	ret = flush_dirty_cache(inode);
1135 	if (ret)
1136 		goto out;
1137 
1138 	/* Update the cache item to tell everyone this cache file is valid. */
1139 	ret = update_cache_item(trans, root, inode, path, offset,
1140 				io_ctl->entries, io_ctl->bitmaps);
1141 out:
1142 	io_ctl_free(io_ctl);
1143 	if (ret) {
1144 		invalidate_inode_pages2(inode->i_mapping);
1145 		BTRFS_I(inode)->generation = 0;
1146 		if (block_group) {
1147 #ifdef DEBUG
1148 			btrfs_err(fs_info,
1149 				  "failed to write free space cache for block group %llu",
1150 				  block_group->key.objectid);
1151 #endif
1152 		}
1153 	}
1154 	btrfs_update_inode(trans, root, inode);
1155 
1156 	if (block_group) {
1157 		/* the dirty list is protected by the dirty_bgs_lock */
1158 		spin_lock(&trans->transaction->dirty_bgs_lock);
1159 
1160 		/* the disk_cache_state is protected by the block group lock */
1161 		spin_lock(&block_group->lock);
1162 
1163 		/*
1164 		 * only mark this as written if we didn't get put back on
1165 		 * the dirty list while waiting for IO.   Otherwise our
1166 		 * cache state won't be right, and we won't get written again
1167 		 */
1168 		if (!ret && list_empty(&block_group->dirty_list))
1169 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1170 		else if (ret)
1171 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1172 
1173 		spin_unlock(&block_group->lock);
1174 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1175 		io_ctl->inode = NULL;
1176 		iput(inode);
1177 	}
1178 
1179 	return ret;
1180 
1181 }
1182 
1183 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1184 				    struct btrfs_trans_handle *trans,
1185 				    struct btrfs_io_ctl *io_ctl,
1186 				    struct btrfs_path *path)
1187 {
1188 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1189 }
1190 
1191 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1192 			struct btrfs_block_group_cache *block_group,
1193 			struct btrfs_path *path)
1194 {
1195 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1196 				     block_group, &block_group->io_ctl,
1197 				     path, block_group->key.objectid);
1198 }
1199 
1200 /**
1201  * __btrfs_write_out_cache - write out cached info to an inode
1202  * @root - the root the inode belongs to
1203  * @ctl - the free space cache we are going to write out
1204  * @block_group - the block_group for this cache if it belongs to a block_group
1205  * @trans - the trans handle
1206  *
1207  * This function writes out a free space cache struct to disk for quick recovery
1208  * on mount.  This will return 0 if it was successful in writing the cache out,
1209  * or an errno if it was not.
1210  */
1211 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1212 				   struct btrfs_free_space_ctl *ctl,
1213 				   struct btrfs_block_group_cache *block_group,
1214 				   struct btrfs_io_ctl *io_ctl,
1215 				   struct btrfs_trans_handle *trans)
1216 {
1217 	struct btrfs_fs_info *fs_info = root->fs_info;
1218 	struct extent_state *cached_state = NULL;
1219 	LIST_HEAD(bitmap_list);
1220 	int entries = 0;
1221 	int bitmaps = 0;
1222 	int ret;
1223 	int must_iput = 0;
1224 
1225 	if (!i_size_read(inode))
1226 		return -EIO;
1227 
1228 	WARN_ON(io_ctl->pages);
1229 	ret = io_ctl_init(io_ctl, inode, 1);
1230 	if (ret)
1231 		return ret;
1232 
1233 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1234 		down_write(&block_group->data_rwsem);
1235 		spin_lock(&block_group->lock);
1236 		if (block_group->delalloc_bytes) {
1237 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1238 			spin_unlock(&block_group->lock);
1239 			up_write(&block_group->data_rwsem);
1240 			BTRFS_I(inode)->generation = 0;
1241 			ret = 0;
1242 			must_iput = 1;
1243 			goto out;
1244 		}
1245 		spin_unlock(&block_group->lock);
1246 	}
1247 
1248 	/* Lock all pages first so we can lock the extent safely. */
1249 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1250 	if (ret)
1251 		goto out_unlock;
1252 
1253 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1254 			 &cached_state);
1255 
1256 	io_ctl_set_generation(io_ctl, trans->transid);
1257 
1258 	mutex_lock(&ctl->cache_writeout_mutex);
1259 	/* Write out the extent entries in the free space cache */
1260 	spin_lock(&ctl->tree_lock);
1261 	ret = write_cache_extent_entries(io_ctl, ctl,
1262 					 block_group, &entries, &bitmaps,
1263 					 &bitmap_list);
1264 	if (ret)
1265 		goto out_nospc_locked;
1266 
1267 	/*
1268 	 * Some spaces that are freed in the current transaction are pinned,
1269 	 * they will be added into free space cache after the transaction is
1270 	 * committed, we shouldn't lose them.
1271 	 *
1272 	 * If this changes while we are working we'll get added back to
1273 	 * the dirty list and redo it.  No locking needed
1274 	 */
1275 	ret = write_pinned_extent_entries(fs_info, block_group,
1276 					  io_ctl, &entries);
1277 	if (ret)
1278 		goto out_nospc_locked;
1279 
1280 	/*
1281 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1282 	 * locked while doing it because a concurrent trim can be manipulating
1283 	 * or freeing the bitmap.
1284 	 */
1285 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1286 	spin_unlock(&ctl->tree_lock);
1287 	mutex_unlock(&ctl->cache_writeout_mutex);
1288 	if (ret)
1289 		goto out_nospc;
1290 
1291 	/* Zero out the rest of the pages just to make sure */
1292 	io_ctl_zero_remaining_pages(io_ctl);
1293 
1294 	/* Everything is written out, now we dirty the pages in the file. */
1295 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1296 				i_size_read(inode), &cached_state);
1297 	if (ret)
1298 		goto out_nospc;
1299 
1300 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1301 		up_write(&block_group->data_rwsem);
1302 	/*
1303 	 * Release the pages and unlock the extent, we will flush
1304 	 * them out later
1305 	 */
1306 	io_ctl_drop_pages(io_ctl);
1307 
1308 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1309 			     i_size_read(inode) - 1, &cached_state);
1310 
1311 	/*
1312 	 * at this point the pages are under IO and we're happy,
1313 	 * The caller is responsible for waiting on them and updating the
1314 	 * the cache and the inode
1315 	 */
1316 	io_ctl->entries = entries;
1317 	io_ctl->bitmaps = bitmaps;
1318 
1319 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1320 	if (ret)
1321 		goto out;
1322 
1323 	return 0;
1324 
1325 out:
1326 	io_ctl->inode = NULL;
1327 	io_ctl_free(io_ctl);
1328 	if (ret) {
1329 		invalidate_inode_pages2(inode->i_mapping);
1330 		BTRFS_I(inode)->generation = 0;
1331 	}
1332 	btrfs_update_inode(trans, root, inode);
1333 	if (must_iput)
1334 		iput(inode);
1335 	return ret;
1336 
1337 out_nospc_locked:
1338 	cleanup_bitmap_list(&bitmap_list);
1339 	spin_unlock(&ctl->tree_lock);
1340 	mutex_unlock(&ctl->cache_writeout_mutex);
1341 
1342 out_nospc:
1343 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1344 
1345 out_unlock:
1346 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1347 		up_write(&block_group->data_rwsem);
1348 
1349 	goto out;
1350 }
1351 
1352 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1353 			  struct btrfs_trans_handle *trans,
1354 			  struct btrfs_block_group_cache *block_group,
1355 			  struct btrfs_path *path)
1356 {
1357 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1358 	struct inode *inode;
1359 	int ret = 0;
1360 
1361 	spin_lock(&block_group->lock);
1362 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1363 		spin_unlock(&block_group->lock);
1364 		return 0;
1365 	}
1366 	spin_unlock(&block_group->lock);
1367 
1368 	inode = lookup_free_space_inode(fs_info, block_group, path);
1369 	if (IS_ERR(inode))
1370 		return 0;
1371 
1372 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1373 				block_group, &block_group->io_ctl, trans);
1374 	if (ret) {
1375 #ifdef DEBUG
1376 		btrfs_err(fs_info,
1377 			  "failed to write free space cache for block group %llu",
1378 			  block_group->key.objectid);
1379 #endif
1380 		spin_lock(&block_group->lock);
1381 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1382 		spin_unlock(&block_group->lock);
1383 
1384 		block_group->io_ctl.inode = NULL;
1385 		iput(inode);
1386 	}
1387 
1388 	/*
1389 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1390 	 * to wait for IO and put the inode
1391 	 */
1392 
1393 	return ret;
1394 }
1395 
1396 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1397 					  u64 offset)
1398 {
1399 	ASSERT(offset >= bitmap_start);
1400 	offset -= bitmap_start;
1401 	return (unsigned long)(div_u64(offset, unit));
1402 }
1403 
1404 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1405 {
1406 	return (unsigned long)(div_u64(bytes, unit));
1407 }
1408 
1409 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1410 				   u64 offset)
1411 {
1412 	u64 bitmap_start;
1413 	u64 bytes_per_bitmap;
1414 
1415 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1416 	bitmap_start = offset - ctl->start;
1417 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1418 	bitmap_start *= bytes_per_bitmap;
1419 	bitmap_start += ctl->start;
1420 
1421 	return bitmap_start;
1422 }
1423 
1424 static int tree_insert_offset(struct rb_root *root, u64 offset,
1425 			      struct rb_node *node, int bitmap)
1426 {
1427 	struct rb_node **p = &root->rb_node;
1428 	struct rb_node *parent = NULL;
1429 	struct btrfs_free_space *info;
1430 
1431 	while (*p) {
1432 		parent = *p;
1433 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1434 
1435 		if (offset < info->offset) {
1436 			p = &(*p)->rb_left;
1437 		} else if (offset > info->offset) {
1438 			p = &(*p)->rb_right;
1439 		} else {
1440 			/*
1441 			 * we could have a bitmap entry and an extent entry
1442 			 * share the same offset.  If this is the case, we want
1443 			 * the extent entry to always be found first if we do a
1444 			 * linear search through the tree, since we want to have
1445 			 * the quickest allocation time, and allocating from an
1446 			 * extent is faster than allocating from a bitmap.  So
1447 			 * if we're inserting a bitmap and we find an entry at
1448 			 * this offset, we want to go right, or after this entry
1449 			 * logically.  If we are inserting an extent and we've
1450 			 * found a bitmap, we want to go left, or before
1451 			 * logically.
1452 			 */
1453 			if (bitmap) {
1454 				if (info->bitmap) {
1455 					WARN_ON_ONCE(1);
1456 					return -EEXIST;
1457 				}
1458 				p = &(*p)->rb_right;
1459 			} else {
1460 				if (!info->bitmap) {
1461 					WARN_ON_ONCE(1);
1462 					return -EEXIST;
1463 				}
1464 				p = &(*p)->rb_left;
1465 			}
1466 		}
1467 	}
1468 
1469 	rb_link_node(node, parent, p);
1470 	rb_insert_color(node, root);
1471 
1472 	return 0;
1473 }
1474 
1475 /*
1476  * searches the tree for the given offset.
1477  *
1478  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1479  * want a section that has at least bytes size and comes at or after the given
1480  * offset.
1481  */
1482 static struct btrfs_free_space *
1483 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1484 		   u64 offset, int bitmap_only, int fuzzy)
1485 {
1486 	struct rb_node *n = ctl->free_space_offset.rb_node;
1487 	struct btrfs_free_space *entry, *prev = NULL;
1488 
1489 	/* find entry that is closest to the 'offset' */
1490 	while (1) {
1491 		if (!n) {
1492 			entry = NULL;
1493 			break;
1494 		}
1495 
1496 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1497 		prev = entry;
1498 
1499 		if (offset < entry->offset)
1500 			n = n->rb_left;
1501 		else if (offset > entry->offset)
1502 			n = n->rb_right;
1503 		else
1504 			break;
1505 	}
1506 
1507 	if (bitmap_only) {
1508 		if (!entry)
1509 			return NULL;
1510 		if (entry->bitmap)
1511 			return entry;
1512 
1513 		/*
1514 		 * bitmap entry and extent entry may share same offset,
1515 		 * in that case, bitmap entry comes after extent entry.
1516 		 */
1517 		n = rb_next(n);
1518 		if (!n)
1519 			return NULL;
1520 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1521 		if (entry->offset != offset)
1522 			return NULL;
1523 
1524 		WARN_ON(!entry->bitmap);
1525 		return entry;
1526 	} else if (entry) {
1527 		if (entry->bitmap) {
1528 			/*
1529 			 * if previous extent entry covers the offset,
1530 			 * we should return it instead of the bitmap entry
1531 			 */
1532 			n = rb_prev(&entry->offset_index);
1533 			if (n) {
1534 				prev = rb_entry(n, struct btrfs_free_space,
1535 						offset_index);
1536 				if (!prev->bitmap &&
1537 				    prev->offset + prev->bytes > offset)
1538 					entry = prev;
1539 			}
1540 		}
1541 		return entry;
1542 	}
1543 
1544 	if (!prev)
1545 		return NULL;
1546 
1547 	/* find last entry before the 'offset' */
1548 	entry = prev;
1549 	if (entry->offset > offset) {
1550 		n = rb_prev(&entry->offset_index);
1551 		if (n) {
1552 			entry = rb_entry(n, struct btrfs_free_space,
1553 					offset_index);
1554 			ASSERT(entry->offset <= offset);
1555 		} else {
1556 			if (fuzzy)
1557 				return entry;
1558 			else
1559 				return NULL;
1560 		}
1561 	}
1562 
1563 	if (entry->bitmap) {
1564 		n = rb_prev(&entry->offset_index);
1565 		if (n) {
1566 			prev = rb_entry(n, struct btrfs_free_space,
1567 					offset_index);
1568 			if (!prev->bitmap &&
1569 			    prev->offset + prev->bytes > offset)
1570 				return prev;
1571 		}
1572 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1573 			return entry;
1574 	} else if (entry->offset + entry->bytes > offset)
1575 		return entry;
1576 
1577 	if (!fuzzy)
1578 		return NULL;
1579 
1580 	while (1) {
1581 		if (entry->bitmap) {
1582 			if (entry->offset + BITS_PER_BITMAP *
1583 			    ctl->unit > offset)
1584 				break;
1585 		} else {
1586 			if (entry->offset + entry->bytes > offset)
1587 				break;
1588 		}
1589 
1590 		n = rb_next(&entry->offset_index);
1591 		if (!n)
1592 			return NULL;
1593 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1594 	}
1595 	return entry;
1596 }
1597 
1598 static inline void
1599 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1600 		    struct btrfs_free_space *info)
1601 {
1602 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1603 	ctl->free_extents--;
1604 }
1605 
1606 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1607 			      struct btrfs_free_space *info)
1608 {
1609 	__unlink_free_space(ctl, info);
1610 	ctl->free_space -= info->bytes;
1611 }
1612 
1613 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1614 			   struct btrfs_free_space *info)
1615 {
1616 	int ret = 0;
1617 
1618 	ASSERT(info->bytes || info->bitmap);
1619 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1620 				 &info->offset_index, (info->bitmap != NULL));
1621 	if (ret)
1622 		return ret;
1623 
1624 	ctl->free_space += info->bytes;
1625 	ctl->free_extents++;
1626 	return ret;
1627 }
1628 
1629 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1630 {
1631 	struct btrfs_block_group_cache *block_group = ctl->private;
1632 	u64 max_bytes;
1633 	u64 bitmap_bytes;
1634 	u64 extent_bytes;
1635 	u64 size = block_group->key.offset;
1636 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1637 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1638 
1639 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1640 
1641 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1642 
1643 	/*
1644 	 * The goal is to keep the total amount of memory used per 1gb of space
1645 	 * at or below 32k, so we need to adjust how much memory we allow to be
1646 	 * used by extent based free space tracking
1647 	 */
1648 	if (size < SZ_1G)
1649 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1650 	else
1651 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1652 
1653 	/*
1654 	 * we want to account for 1 more bitmap than what we have so we can make
1655 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1656 	 * we add more bitmaps.
1657 	 */
1658 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1659 
1660 	if (bitmap_bytes >= max_bytes) {
1661 		ctl->extents_thresh = 0;
1662 		return;
1663 	}
1664 
1665 	/*
1666 	 * we want the extent entry threshold to always be at most 1/2 the max
1667 	 * bytes we can have, or whatever is less than that.
1668 	 */
1669 	extent_bytes = max_bytes - bitmap_bytes;
1670 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1671 
1672 	ctl->extents_thresh =
1673 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1674 }
1675 
1676 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1677 				       struct btrfs_free_space *info,
1678 				       u64 offset, u64 bytes)
1679 {
1680 	unsigned long start, count;
1681 
1682 	start = offset_to_bit(info->offset, ctl->unit, offset);
1683 	count = bytes_to_bits(bytes, ctl->unit);
1684 	ASSERT(start + count <= BITS_PER_BITMAP);
1685 
1686 	bitmap_clear(info->bitmap, start, count);
1687 
1688 	info->bytes -= bytes;
1689 }
1690 
1691 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1692 			      struct btrfs_free_space *info, u64 offset,
1693 			      u64 bytes)
1694 {
1695 	__bitmap_clear_bits(ctl, info, offset, bytes);
1696 	ctl->free_space -= bytes;
1697 }
1698 
1699 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1700 			    struct btrfs_free_space *info, u64 offset,
1701 			    u64 bytes)
1702 {
1703 	unsigned long start, count;
1704 
1705 	start = offset_to_bit(info->offset, ctl->unit, offset);
1706 	count = bytes_to_bits(bytes, ctl->unit);
1707 	ASSERT(start + count <= BITS_PER_BITMAP);
1708 
1709 	bitmap_set(info->bitmap, start, count);
1710 
1711 	info->bytes += bytes;
1712 	ctl->free_space += bytes;
1713 }
1714 
1715 /*
1716  * If we can not find suitable extent, we will use bytes to record
1717  * the size of the max extent.
1718  */
1719 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1720 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1721 			 u64 *bytes, bool for_alloc)
1722 {
1723 	unsigned long found_bits = 0;
1724 	unsigned long max_bits = 0;
1725 	unsigned long bits, i;
1726 	unsigned long next_zero;
1727 	unsigned long extent_bits;
1728 
1729 	/*
1730 	 * Skip searching the bitmap if we don't have a contiguous section that
1731 	 * is large enough for this allocation.
1732 	 */
1733 	if (for_alloc &&
1734 	    bitmap_info->max_extent_size &&
1735 	    bitmap_info->max_extent_size < *bytes) {
1736 		*bytes = bitmap_info->max_extent_size;
1737 		return -1;
1738 	}
1739 
1740 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1741 			  max_t(u64, *offset, bitmap_info->offset));
1742 	bits = bytes_to_bits(*bytes, ctl->unit);
1743 
1744 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1745 		if (for_alloc && bits == 1) {
1746 			found_bits = 1;
1747 			break;
1748 		}
1749 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1750 					       BITS_PER_BITMAP, i);
1751 		extent_bits = next_zero - i;
1752 		if (extent_bits >= bits) {
1753 			found_bits = extent_bits;
1754 			break;
1755 		} else if (extent_bits > max_bits) {
1756 			max_bits = extent_bits;
1757 		}
1758 		i = next_zero;
1759 	}
1760 
1761 	if (found_bits) {
1762 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1763 		*bytes = (u64)(found_bits) * ctl->unit;
1764 		return 0;
1765 	}
1766 
1767 	*bytes = (u64)(max_bits) * ctl->unit;
1768 	bitmap_info->max_extent_size = *bytes;
1769 	return -1;
1770 }
1771 
1772 /* Cache the size of the max extent in bytes */
1773 static struct btrfs_free_space *
1774 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1775 		unsigned long align, u64 *max_extent_size)
1776 {
1777 	struct btrfs_free_space *entry;
1778 	struct rb_node *node;
1779 	u64 tmp;
1780 	u64 align_off;
1781 	int ret;
1782 
1783 	if (!ctl->free_space_offset.rb_node)
1784 		goto out;
1785 
1786 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1787 	if (!entry)
1788 		goto out;
1789 
1790 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1791 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1792 		if (entry->bytes < *bytes) {
1793 			if (entry->bytes > *max_extent_size)
1794 				*max_extent_size = entry->bytes;
1795 			continue;
1796 		}
1797 
1798 		/* make sure the space returned is big enough
1799 		 * to match our requested alignment
1800 		 */
1801 		if (*bytes >= align) {
1802 			tmp = entry->offset - ctl->start + align - 1;
1803 			tmp = div64_u64(tmp, align);
1804 			tmp = tmp * align + ctl->start;
1805 			align_off = tmp - entry->offset;
1806 		} else {
1807 			align_off = 0;
1808 			tmp = entry->offset;
1809 		}
1810 
1811 		if (entry->bytes < *bytes + align_off) {
1812 			if (entry->bytes > *max_extent_size)
1813 				*max_extent_size = entry->bytes;
1814 			continue;
1815 		}
1816 
1817 		if (entry->bitmap) {
1818 			u64 size = *bytes;
1819 
1820 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1821 			if (!ret) {
1822 				*offset = tmp;
1823 				*bytes = size;
1824 				return entry;
1825 			} else if (size > *max_extent_size) {
1826 				*max_extent_size = size;
1827 			}
1828 			continue;
1829 		}
1830 
1831 		*offset = tmp;
1832 		*bytes = entry->bytes - align_off;
1833 		return entry;
1834 	}
1835 out:
1836 	return NULL;
1837 }
1838 
1839 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1840 			   struct btrfs_free_space *info, u64 offset)
1841 {
1842 	info->offset = offset_to_bitmap(ctl, offset);
1843 	info->bytes = 0;
1844 	INIT_LIST_HEAD(&info->list);
1845 	link_free_space(ctl, info);
1846 	ctl->total_bitmaps++;
1847 
1848 	ctl->op->recalc_thresholds(ctl);
1849 }
1850 
1851 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1852 			struct btrfs_free_space *bitmap_info)
1853 {
1854 	unlink_free_space(ctl, bitmap_info);
1855 	kfree(bitmap_info->bitmap);
1856 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1857 	ctl->total_bitmaps--;
1858 	ctl->op->recalc_thresholds(ctl);
1859 }
1860 
1861 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1862 			      struct btrfs_free_space *bitmap_info,
1863 			      u64 *offset, u64 *bytes)
1864 {
1865 	u64 end;
1866 	u64 search_start, search_bytes;
1867 	int ret;
1868 
1869 again:
1870 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1871 
1872 	/*
1873 	 * We need to search for bits in this bitmap.  We could only cover some
1874 	 * of the extent in this bitmap thanks to how we add space, so we need
1875 	 * to search for as much as it as we can and clear that amount, and then
1876 	 * go searching for the next bit.
1877 	 */
1878 	search_start = *offset;
1879 	search_bytes = ctl->unit;
1880 	search_bytes = min(search_bytes, end - search_start + 1);
1881 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1882 			    false);
1883 	if (ret < 0 || search_start != *offset)
1884 		return -EINVAL;
1885 
1886 	/* We may have found more bits than what we need */
1887 	search_bytes = min(search_bytes, *bytes);
1888 
1889 	/* Cannot clear past the end of the bitmap */
1890 	search_bytes = min(search_bytes, end - search_start + 1);
1891 
1892 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1893 	*offset += search_bytes;
1894 	*bytes -= search_bytes;
1895 
1896 	if (*bytes) {
1897 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1898 		if (!bitmap_info->bytes)
1899 			free_bitmap(ctl, bitmap_info);
1900 
1901 		/*
1902 		 * no entry after this bitmap, but we still have bytes to
1903 		 * remove, so something has gone wrong.
1904 		 */
1905 		if (!next)
1906 			return -EINVAL;
1907 
1908 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1909 				       offset_index);
1910 
1911 		/*
1912 		 * if the next entry isn't a bitmap we need to return to let the
1913 		 * extent stuff do its work.
1914 		 */
1915 		if (!bitmap_info->bitmap)
1916 			return -EAGAIN;
1917 
1918 		/*
1919 		 * Ok the next item is a bitmap, but it may not actually hold
1920 		 * the information for the rest of this free space stuff, so
1921 		 * look for it, and if we don't find it return so we can try
1922 		 * everything over again.
1923 		 */
1924 		search_start = *offset;
1925 		search_bytes = ctl->unit;
1926 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1927 				    &search_bytes, false);
1928 		if (ret < 0 || search_start != *offset)
1929 			return -EAGAIN;
1930 
1931 		goto again;
1932 	} else if (!bitmap_info->bytes)
1933 		free_bitmap(ctl, bitmap_info);
1934 
1935 	return 0;
1936 }
1937 
1938 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1939 			       struct btrfs_free_space *info, u64 offset,
1940 			       u64 bytes)
1941 {
1942 	u64 bytes_to_set = 0;
1943 	u64 end;
1944 
1945 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1946 
1947 	bytes_to_set = min(end - offset, bytes);
1948 
1949 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1950 
1951 	/*
1952 	 * We set some bytes, we have no idea what the max extent size is
1953 	 * anymore.
1954 	 */
1955 	info->max_extent_size = 0;
1956 
1957 	return bytes_to_set;
1958 
1959 }
1960 
1961 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1962 		      struct btrfs_free_space *info)
1963 {
1964 	struct btrfs_block_group_cache *block_group = ctl->private;
1965 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1966 	bool forced = false;
1967 
1968 #ifdef CONFIG_BTRFS_DEBUG
1969 	if (btrfs_should_fragment_free_space(block_group))
1970 		forced = true;
1971 #endif
1972 
1973 	/*
1974 	 * If we are below the extents threshold then we can add this as an
1975 	 * extent, and don't have to deal with the bitmap
1976 	 */
1977 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1978 		/*
1979 		 * If this block group has some small extents we don't want to
1980 		 * use up all of our free slots in the cache with them, we want
1981 		 * to reserve them to larger extents, however if we have plenty
1982 		 * of cache left then go ahead an dadd them, no sense in adding
1983 		 * the overhead of a bitmap if we don't have to.
1984 		 */
1985 		if (info->bytes <= fs_info->sectorsize * 4) {
1986 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1987 				return false;
1988 		} else {
1989 			return false;
1990 		}
1991 	}
1992 
1993 	/*
1994 	 * The original block groups from mkfs can be really small, like 8
1995 	 * megabytes, so don't bother with a bitmap for those entries.  However
1996 	 * some block groups can be smaller than what a bitmap would cover but
1997 	 * are still large enough that they could overflow the 32k memory limit,
1998 	 * so allow those block groups to still be allowed to have a bitmap
1999 	 * entry.
2000 	 */
2001 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2002 		return false;
2003 
2004 	return true;
2005 }
2006 
2007 static const struct btrfs_free_space_op free_space_op = {
2008 	.recalc_thresholds	= recalculate_thresholds,
2009 	.use_bitmap		= use_bitmap,
2010 };
2011 
2012 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2013 			      struct btrfs_free_space *info)
2014 {
2015 	struct btrfs_free_space *bitmap_info;
2016 	struct btrfs_block_group_cache *block_group = NULL;
2017 	int added = 0;
2018 	u64 bytes, offset, bytes_added;
2019 	int ret;
2020 
2021 	bytes = info->bytes;
2022 	offset = info->offset;
2023 
2024 	if (!ctl->op->use_bitmap(ctl, info))
2025 		return 0;
2026 
2027 	if (ctl->op == &free_space_op)
2028 		block_group = ctl->private;
2029 again:
2030 	/*
2031 	 * Since we link bitmaps right into the cluster we need to see if we
2032 	 * have a cluster here, and if so and it has our bitmap we need to add
2033 	 * the free space to that bitmap.
2034 	 */
2035 	if (block_group && !list_empty(&block_group->cluster_list)) {
2036 		struct btrfs_free_cluster *cluster;
2037 		struct rb_node *node;
2038 		struct btrfs_free_space *entry;
2039 
2040 		cluster = list_entry(block_group->cluster_list.next,
2041 				     struct btrfs_free_cluster,
2042 				     block_group_list);
2043 		spin_lock(&cluster->lock);
2044 		node = rb_first(&cluster->root);
2045 		if (!node) {
2046 			spin_unlock(&cluster->lock);
2047 			goto no_cluster_bitmap;
2048 		}
2049 
2050 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2051 		if (!entry->bitmap) {
2052 			spin_unlock(&cluster->lock);
2053 			goto no_cluster_bitmap;
2054 		}
2055 
2056 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2057 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2058 							  offset, bytes);
2059 			bytes -= bytes_added;
2060 			offset += bytes_added;
2061 		}
2062 		spin_unlock(&cluster->lock);
2063 		if (!bytes) {
2064 			ret = 1;
2065 			goto out;
2066 		}
2067 	}
2068 
2069 no_cluster_bitmap:
2070 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2071 					 1, 0);
2072 	if (!bitmap_info) {
2073 		ASSERT(added == 0);
2074 		goto new_bitmap;
2075 	}
2076 
2077 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2078 	bytes -= bytes_added;
2079 	offset += bytes_added;
2080 	added = 0;
2081 
2082 	if (!bytes) {
2083 		ret = 1;
2084 		goto out;
2085 	} else
2086 		goto again;
2087 
2088 new_bitmap:
2089 	if (info && info->bitmap) {
2090 		add_new_bitmap(ctl, info, offset);
2091 		added = 1;
2092 		info = NULL;
2093 		goto again;
2094 	} else {
2095 		spin_unlock(&ctl->tree_lock);
2096 
2097 		/* no pre-allocated info, allocate a new one */
2098 		if (!info) {
2099 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2100 						 GFP_NOFS);
2101 			if (!info) {
2102 				spin_lock(&ctl->tree_lock);
2103 				ret = -ENOMEM;
2104 				goto out;
2105 			}
2106 		}
2107 
2108 		/* allocate the bitmap */
2109 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2110 		spin_lock(&ctl->tree_lock);
2111 		if (!info->bitmap) {
2112 			ret = -ENOMEM;
2113 			goto out;
2114 		}
2115 		goto again;
2116 	}
2117 
2118 out:
2119 	if (info) {
2120 		if (info->bitmap)
2121 			kfree(info->bitmap);
2122 		kmem_cache_free(btrfs_free_space_cachep, info);
2123 	}
2124 
2125 	return ret;
2126 }
2127 
2128 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2129 			  struct btrfs_free_space *info, bool update_stat)
2130 {
2131 	struct btrfs_free_space *left_info;
2132 	struct btrfs_free_space *right_info;
2133 	bool merged = false;
2134 	u64 offset = info->offset;
2135 	u64 bytes = info->bytes;
2136 
2137 	/*
2138 	 * first we want to see if there is free space adjacent to the range we
2139 	 * are adding, if there is remove that struct and add a new one to
2140 	 * cover the entire range
2141 	 */
2142 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2143 	if (right_info && rb_prev(&right_info->offset_index))
2144 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2145 				     struct btrfs_free_space, offset_index);
2146 	else
2147 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2148 
2149 	if (right_info && !right_info->bitmap) {
2150 		if (update_stat)
2151 			unlink_free_space(ctl, right_info);
2152 		else
2153 			__unlink_free_space(ctl, right_info);
2154 		info->bytes += right_info->bytes;
2155 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2156 		merged = true;
2157 	}
2158 
2159 	if (left_info && !left_info->bitmap &&
2160 	    left_info->offset + left_info->bytes == offset) {
2161 		if (update_stat)
2162 			unlink_free_space(ctl, left_info);
2163 		else
2164 			__unlink_free_space(ctl, left_info);
2165 		info->offset = left_info->offset;
2166 		info->bytes += left_info->bytes;
2167 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2168 		merged = true;
2169 	}
2170 
2171 	return merged;
2172 }
2173 
2174 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2175 				     struct btrfs_free_space *info,
2176 				     bool update_stat)
2177 {
2178 	struct btrfs_free_space *bitmap;
2179 	unsigned long i;
2180 	unsigned long j;
2181 	const u64 end = info->offset + info->bytes;
2182 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2183 	u64 bytes;
2184 
2185 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2186 	if (!bitmap)
2187 		return false;
2188 
2189 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2190 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2191 	if (j == i)
2192 		return false;
2193 	bytes = (j - i) * ctl->unit;
2194 	info->bytes += bytes;
2195 
2196 	if (update_stat)
2197 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2198 	else
2199 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2200 
2201 	if (!bitmap->bytes)
2202 		free_bitmap(ctl, bitmap);
2203 
2204 	return true;
2205 }
2206 
2207 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2208 				       struct btrfs_free_space *info,
2209 				       bool update_stat)
2210 {
2211 	struct btrfs_free_space *bitmap;
2212 	u64 bitmap_offset;
2213 	unsigned long i;
2214 	unsigned long j;
2215 	unsigned long prev_j;
2216 	u64 bytes;
2217 
2218 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2219 	/* If we're on a boundary, try the previous logical bitmap. */
2220 	if (bitmap_offset == info->offset) {
2221 		if (info->offset == 0)
2222 			return false;
2223 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2224 	}
2225 
2226 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2227 	if (!bitmap)
2228 		return false;
2229 
2230 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2231 	j = 0;
2232 	prev_j = (unsigned long)-1;
2233 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2234 		if (j > i)
2235 			break;
2236 		prev_j = j;
2237 	}
2238 	if (prev_j == i)
2239 		return false;
2240 
2241 	if (prev_j == (unsigned long)-1)
2242 		bytes = (i + 1) * ctl->unit;
2243 	else
2244 		bytes = (i - prev_j) * ctl->unit;
2245 
2246 	info->offset -= bytes;
2247 	info->bytes += bytes;
2248 
2249 	if (update_stat)
2250 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2251 	else
2252 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2253 
2254 	if (!bitmap->bytes)
2255 		free_bitmap(ctl, bitmap);
2256 
2257 	return true;
2258 }
2259 
2260 /*
2261  * We prefer always to allocate from extent entries, both for clustered and
2262  * non-clustered allocation requests. So when attempting to add a new extent
2263  * entry, try to see if there's adjacent free space in bitmap entries, and if
2264  * there is, migrate that space from the bitmaps to the extent.
2265  * Like this we get better chances of satisfying space allocation requests
2266  * because we attempt to satisfy them based on a single cache entry, and never
2267  * on 2 or more entries - even if the entries represent a contiguous free space
2268  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2269  * ends).
2270  */
2271 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2272 			      struct btrfs_free_space *info,
2273 			      bool update_stat)
2274 {
2275 	/*
2276 	 * Only work with disconnected entries, as we can change their offset,
2277 	 * and must be extent entries.
2278 	 */
2279 	ASSERT(!info->bitmap);
2280 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2281 
2282 	if (ctl->total_bitmaps > 0) {
2283 		bool stole_end;
2284 		bool stole_front = false;
2285 
2286 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2287 		if (ctl->total_bitmaps > 0)
2288 			stole_front = steal_from_bitmap_to_front(ctl, info,
2289 								 update_stat);
2290 
2291 		if (stole_end || stole_front)
2292 			try_merge_free_space(ctl, info, update_stat);
2293 	}
2294 }
2295 
2296 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2297 			   struct btrfs_free_space_ctl *ctl,
2298 			   u64 offset, u64 bytes)
2299 {
2300 	struct btrfs_free_space *info;
2301 	int ret = 0;
2302 
2303 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2304 	if (!info)
2305 		return -ENOMEM;
2306 
2307 	info->offset = offset;
2308 	info->bytes = bytes;
2309 	RB_CLEAR_NODE(&info->offset_index);
2310 
2311 	spin_lock(&ctl->tree_lock);
2312 
2313 	if (try_merge_free_space(ctl, info, true))
2314 		goto link;
2315 
2316 	/*
2317 	 * There was no extent directly to the left or right of this new
2318 	 * extent then we know we're going to have to allocate a new extent, so
2319 	 * before we do that see if we need to drop this into a bitmap
2320 	 */
2321 	ret = insert_into_bitmap(ctl, info);
2322 	if (ret < 0) {
2323 		goto out;
2324 	} else if (ret) {
2325 		ret = 0;
2326 		goto out;
2327 	}
2328 link:
2329 	/*
2330 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2331 	 * going to add the new free space to existing bitmap entries - because
2332 	 * that would mean unnecessary work that would be reverted. Therefore
2333 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2334 	 */
2335 	steal_from_bitmap(ctl, info, true);
2336 
2337 	ret = link_free_space(ctl, info);
2338 	if (ret)
2339 		kmem_cache_free(btrfs_free_space_cachep, info);
2340 out:
2341 	spin_unlock(&ctl->tree_lock);
2342 
2343 	if (ret) {
2344 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2345 		ASSERT(ret != -EEXIST);
2346 	}
2347 
2348 	return ret;
2349 }
2350 
2351 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2352 			    u64 offset, u64 bytes)
2353 {
2354 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2355 	struct btrfs_free_space *info;
2356 	int ret;
2357 	bool re_search = false;
2358 
2359 	spin_lock(&ctl->tree_lock);
2360 
2361 again:
2362 	ret = 0;
2363 	if (!bytes)
2364 		goto out_lock;
2365 
2366 	info = tree_search_offset(ctl, offset, 0, 0);
2367 	if (!info) {
2368 		/*
2369 		 * oops didn't find an extent that matched the space we wanted
2370 		 * to remove, look for a bitmap instead
2371 		 */
2372 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2373 					  1, 0);
2374 		if (!info) {
2375 			/*
2376 			 * If we found a partial bit of our free space in a
2377 			 * bitmap but then couldn't find the other part this may
2378 			 * be a problem, so WARN about it.
2379 			 */
2380 			WARN_ON(re_search);
2381 			goto out_lock;
2382 		}
2383 	}
2384 
2385 	re_search = false;
2386 	if (!info->bitmap) {
2387 		unlink_free_space(ctl, info);
2388 		if (offset == info->offset) {
2389 			u64 to_free = min(bytes, info->bytes);
2390 
2391 			info->bytes -= to_free;
2392 			info->offset += to_free;
2393 			if (info->bytes) {
2394 				ret = link_free_space(ctl, info);
2395 				WARN_ON(ret);
2396 			} else {
2397 				kmem_cache_free(btrfs_free_space_cachep, info);
2398 			}
2399 
2400 			offset += to_free;
2401 			bytes -= to_free;
2402 			goto again;
2403 		} else {
2404 			u64 old_end = info->bytes + info->offset;
2405 
2406 			info->bytes = offset - info->offset;
2407 			ret = link_free_space(ctl, info);
2408 			WARN_ON(ret);
2409 			if (ret)
2410 				goto out_lock;
2411 
2412 			/* Not enough bytes in this entry to satisfy us */
2413 			if (old_end < offset + bytes) {
2414 				bytes -= old_end - offset;
2415 				offset = old_end;
2416 				goto again;
2417 			} else if (old_end == offset + bytes) {
2418 				/* all done */
2419 				goto out_lock;
2420 			}
2421 			spin_unlock(&ctl->tree_lock);
2422 
2423 			ret = btrfs_add_free_space(block_group, offset + bytes,
2424 						   old_end - (offset + bytes));
2425 			WARN_ON(ret);
2426 			goto out;
2427 		}
2428 	}
2429 
2430 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2431 	if (ret == -EAGAIN) {
2432 		re_search = true;
2433 		goto again;
2434 	}
2435 out_lock:
2436 	spin_unlock(&ctl->tree_lock);
2437 out:
2438 	return ret;
2439 }
2440 
2441 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2442 			   u64 bytes)
2443 {
2444 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2445 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2446 	struct btrfs_free_space *info;
2447 	struct rb_node *n;
2448 	int count = 0;
2449 
2450 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2451 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2452 		if (info->bytes >= bytes && !block_group->ro)
2453 			count++;
2454 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2455 			   info->offset, info->bytes,
2456 		       (info->bitmap) ? "yes" : "no");
2457 	}
2458 	btrfs_info(fs_info, "block group has cluster?: %s",
2459 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2460 	btrfs_info(fs_info,
2461 		   "%d blocks of free space at or bigger than bytes is", count);
2462 }
2463 
2464 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2465 {
2466 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2467 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2468 
2469 	spin_lock_init(&ctl->tree_lock);
2470 	ctl->unit = fs_info->sectorsize;
2471 	ctl->start = block_group->key.objectid;
2472 	ctl->private = block_group;
2473 	ctl->op = &free_space_op;
2474 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2475 	mutex_init(&ctl->cache_writeout_mutex);
2476 
2477 	/*
2478 	 * we only want to have 32k of ram per block group for keeping
2479 	 * track of free space, and if we pass 1/2 of that we want to
2480 	 * start converting things over to using bitmaps
2481 	 */
2482 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2483 }
2484 
2485 /*
2486  * for a given cluster, put all of its extents back into the free
2487  * space cache.  If the block group passed doesn't match the block group
2488  * pointed to by the cluster, someone else raced in and freed the
2489  * cluster already.  In that case, we just return without changing anything
2490  */
2491 static int
2492 __btrfs_return_cluster_to_free_space(
2493 			     struct btrfs_block_group_cache *block_group,
2494 			     struct btrfs_free_cluster *cluster)
2495 {
2496 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2497 	struct btrfs_free_space *entry;
2498 	struct rb_node *node;
2499 
2500 	spin_lock(&cluster->lock);
2501 	if (cluster->block_group != block_group)
2502 		goto out;
2503 
2504 	cluster->block_group = NULL;
2505 	cluster->window_start = 0;
2506 	list_del_init(&cluster->block_group_list);
2507 
2508 	node = rb_first(&cluster->root);
2509 	while (node) {
2510 		bool bitmap;
2511 
2512 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2513 		node = rb_next(&entry->offset_index);
2514 		rb_erase(&entry->offset_index, &cluster->root);
2515 		RB_CLEAR_NODE(&entry->offset_index);
2516 
2517 		bitmap = (entry->bitmap != NULL);
2518 		if (!bitmap) {
2519 			try_merge_free_space(ctl, entry, false);
2520 			steal_from_bitmap(ctl, entry, false);
2521 		}
2522 		tree_insert_offset(&ctl->free_space_offset,
2523 				   entry->offset, &entry->offset_index, bitmap);
2524 	}
2525 	cluster->root = RB_ROOT;
2526 
2527 out:
2528 	spin_unlock(&cluster->lock);
2529 	btrfs_put_block_group(block_group);
2530 	return 0;
2531 }
2532 
2533 static void __btrfs_remove_free_space_cache_locked(
2534 				struct btrfs_free_space_ctl *ctl)
2535 {
2536 	struct btrfs_free_space *info;
2537 	struct rb_node *node;
2538 
2539 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2540 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2541 		if (!info->bitmap) {
2542 			unlink_free_space(ctl, info);
2543 			kmem_cache_free(btrfs_free_space_cachep, info);
2544 		} else {
2545 			free_bitmap(ctl, info);
2546 		}
2547 
2548 		cond_resched_lock(&ctl->tree_lock);
2549 	}
2550 }
2551 
2552 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2553 {
2554 	spin_lock(&ctl->tree_lock);
2555 	__btrfs_remove_free_space_cache_locked(ctl);
2556 	spin_unlock(&ctl->tree_lock);
2557 }
2558 
2559 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2560 {
2561 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2562 	struct btrfs_free_cluster *cluster;
2563 	struct list_head *head;
2564 
2565 	spin_lock(&ctl->tree_lock);
2566 	while ((head = block_group->cluster_list.next) !=
2567 	       &block_group->cluster_list) {
2568 		cluster = list_entry(head, struct btrfs_free_cluster,
2569 				     block_group_list);
2570 
2571 		WARN_ON(cluster->block_group != block_group);
2572 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2573 
2574 		cond_resched_lock(&ctl->tree_lock);
2575 	}
2576 	__btrfs_remove_free_space_cache_locked(ctl);
2577 	spin_unlock(&ctl->tree_lock);
2578 
2579 }
2580 
2581 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2582 			       u64 offset, u64 bytes, u64 empty_size,
2583 			       u64 *max_extent_size)
2584 {
2585 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2586 	struct btrfs_free_space *entry = NULL;
2587 	u64 bytes_search = bytes + empty_size;
2588 	u64 ret = 0;
2589 	u64 align_gap = 0;
2590 	u64 align_gap_len = 0;
2591 
2592 	spin_lock(&ctl->tree_lock);
2593 	entry = find_free_space(ctl, &offset, &bytes_search,
2594 				block_group->full_stripe_len, max_extent_size);
2595 	if (!entry)
2596 		goto out;
2597 
2598 	ret = offset;
2599 	if (entry->bitmap) {
2600 		bitmap_clear_bits(ctl, entry, offset, bytes);
2601 		if (!entry->bytes)
2602 			free_bitmap(ctl, entry);
2603 	} else {
2604 		unlink_free_space(ctl, entry);
2605 		align_gap_len = offset - entry->offset;
2606 		align_gap = entry->offset;
2607 
2608 		entry->offset = offset + bytes;
2609 		WARN_ON(entry->bytes < bytes + align_gap_len);
2610 
2611 		entry->bytes -= bytes + align_gap_len;
2612 		if (!entry->bytes)
2613 			kmem_cache_free(btrfs_free_space_cachep, entry);
2614 		else
2615 			link_free_space(ctl, entry);
2616 	}
2617 out:
2618 	spin_unlock(&ctl->tree_lock);
2619 
2620 	if (align_gap_len)
2621 		__btrfs_add_free_space(block_group->fs_info, ctl,
2622 				       align_gap, align_gap_len);
2623 	return ret;
2624 }
2625 
2626 /*
2627  * given a cluster, put all of its extents back into the free space
2628  * cache.  If a block group is passed, this function will only free
2629  * a cluster that belongs to the passed block group.
2630  *
2631  * Otherwise, it'll get a reference on the block group pointed to by the
2632  * cluster and remove the cluster from it.
2633  */
2634 int btrfs_return_cluster_to_free_space(
2635 			       struct btrfs_block_group_cache *block_group,
2636 			       struct btrfs_free_cluster *cluster)
2637 {
2638 	struct btrfs_free_space_ctl *ctl;
2639 	int ret;
2640 
2641 	/* first, get a safe pointer to the block group */
2642 	spin_lock(&cluster->lock);
2643 	if (!block_group) {
2644 		block_group = cluster->block_group;
2645 		if (!block_group) {
2646 			spin_unlock(&cluster->lock);
2647 			return 0;
2648 		}
2649 	} else if (cluster->block_group != block_group) {
2650 		/* someone else has already freed it don't redo their work */
2651 		spin_unlock(&cluster->lock);
2652 		return 0;
2653 	}
2654 	atomic_inc(&block_group->count);
2655 	spin_unlock(&cluster->lock);
2656 
2657 	ctl = block_group->free_space_ctl;
2658 
2659 	/* now return any extents the cluster had on it */
2660 	spin_lock(&ctl->tree_lock);
2661 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2662 	spin_unlock(&ctl->tree_lock);
2663 
2664 	/* finally drop our ref */
2665 	btrfs_put_block_group(block_group);
2666 	return ret;
2667 }
2668 
2669 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2670 				   struct btrfs_free_cluster *cluster,
2671 				   struct btrfs_free_space *entry,
2672 				   u64 bytes, u64 min_start,
2673 				   u64 *max_extent_size)
2674 {
2675 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2676 	int err;
2677 	u64 search_start = cluster->window_start;
2678 	u64 search_bytes = bytes;
2679 	u64 ret = 0;
2680 
2681 	search_start = min_start;
2682 	search_bytes = bytes;
2683 
2684 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2685 	if (err) {
2686 		if (search_bytes > *max_extent_size)
2687 			*max_extent_size = search_bytes;
2688 		return 0;
2689 	}
2690 
2691 	ret = search_start;
2692 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2693 
2694 	return ret;
2695 }
2696 
2697 /*
2698  * given a cluster, try to allocate 'bytes' from it, returns 0
2699  * if it couldn't find anything suitably large, or a logical disk offset
2700  * if things worked out
2701  */
2702 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2703 			     struct btrfs_free_cluster *cluster, u64 bytes,
2704 			     u64 min_start, u64 *max_extent_size)
2705 {
2706 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2707 	struct btrfs_free_space *entry = NULL;
2708 	struct rb_node *node;
2709 	u64 ret = 0;
2710 
2711 	spin_lock(&cluster->lock);
2712 	if (bytes > cluster->max_size)
2713 		goto out;
2714 
2715 	if (cluster->block_group != block_group)
2716 		goto out;
2717 
2718 	node = rb_first(&cluster->root);
2719 	if (!node)
2720 		goto out;
2721 
2722 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2723 	while (1) {
2724 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2725 			*max_extent_size = entry->bytes;
2726 
2727 		if (entry->bytes < bytes ||
2728 		    (!entry->bitmap && entry->offset < min_start)) {
2729 			node = rb_next(&entry->offset_index);
2730 			if (!node)
2731 				break;
2732 			entry = rb_entry(node, struct btrfs_free_space,
2733 					 offset_index);
2734 			continue;
2735 		}
2736 
2737 		if (entry->bitmap) {
2738 			ret = btrfs_alloc_from_bitmap(block_group,
2739 						      cluster, entry, bytes,
2740 						      cluster->window_start,
2741 						      max_extent_size);
2742 			if (ret == 0) {
2743 				node = rb_next(&entry->offset_index);
2744 				if (!node)
2745 					break;
2746 				entry = rb_entry(node, struct btrfs_free_space,
2747 						 offset_index);
2748 				continue;
2749 			}
2750 			cluster->window_start += bytes;
2751 		} else {
2752 			ret = entry->offset;
2753 
2754 			entry->offset += bytes;
2755 			entry->bytes -= bytes;
2756 		}
2757 
2758 		if (entry->bytes == 0)
2759 			rb_erase(&entry->offset_index, &cluster->root);
2760 		break;
2761 	}
2762 out:
2763 	spin_unlock(&cluster->lock);
2764 
2765 	if (!ret)
2766 		return 0;
2767 
2768 	spin_lock(&ctl->tree_lock);
2769 
2770 	ctl->free_space -= bytes;
2771 	if (entry->bytes == 0) {
2772 		ctl->free_extents--;
2773 		if (entry->bitmap) {
2774 			kfree(entry->bitmap);
2775 			ctl->total_bitmaps--;
2776 			ctl->op->recalc_thresholds(ctl);
2777 		}
2778 		kmem_cache_free(btrfs_free_space_cachep, entry);
2779 	}
2780 
2781 	spin_unlock(&ctl->tree_lock);
2782 
2783 	return ret;
2784 }
2785 
2786 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2787 				struct btrfs_free_space *entry,
2788 				struct btrfs_free_cluster *cluster,
2789 				u64 offset, u64 bytes,
2790 				u64 cont1_bytes, u64 min_bytes)
2791 {
2792 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2793 	unsigned long next_zero;
2794 	unsigned long i;
2795 	unsigned long want_bits;
2796 	unsigned long min_bits;
2797 	unsigned long found_bits;
2798 	unsigned long max_bits = 0;
2799 	unsigned long start = 0;
2800 	unsigned long total_found = 0;
2801 	int ret;
2802 
2803 	i = offset_to_bit(entry->offset, ctl->unit,
2804 			  max_t(u64, offset, entry->offset));
2805 	want_bits = bytes_to_bits(bytes, ctl->unit);
2806 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2807 
2808 	/*
2809 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2810 	 * fragmented.
2811 	 */
2812 	if (entry->max_extent_size &&
2813 	    entry->max_extent_size < cont1_bytes)
2814 		return -ENOSPC;
2815 again:
2816 	found_bits = 0;
2817 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2818 		next_zero = find_next_zero_bit(entry->bitmap,
2819 					       BITS_PER_BITMAP, i);
2820 		if (next_zero - i >= min_bits) {
2821 			found_bits = next_zero - i;
2822 			if (found_bits > max_bits)
2823 				max_bits = found_bits;
2824 			break;
2825 		}
2826 		if (next_zero - i > max_bits)
2827 			max_bits = next_zero - i;
2828 		i = next_zero;
2829 	}
2830 
2831 	if (!found_bits) {
2832 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2833 		return -ENOSPC;
2834 	}
2835 
2836 	if (!total_found) {
2837 		start = i;
2838 		cluster->max_size = 0;
2839 	}
2840 
2841 	total_found += found_bits;
2842 
2843 	if (cluster->max_size < found_bits * ctl->unit)
2844 		cluster->max_size = found_bits * ctl->unit;
2845 
2846 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2847 		i = next_zero + 1;
2848 		goto again;
2849 	}
2850 
2851 	cluster->window_start = start * ctl->unit + entry->offset;
2852 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2853 	ret = tree_insert_offset(&cluster->root, entry->offset,
2854 				 &entry->offset_index, 1);
2855 	ASSERT(!ret); /* -EEXIST; Logic error */
2856 
2857 	trace_btrfs_setup_cluster(block_group, cluster,
2858 				  total_found * ctl->unit, 1);
2859 	return 0;
2860 }
2861 
2862 /*
2863  * This searches the block group for just extents to fill the cluster with.
2864  * Try to find a cluster with at least bytes total bytes, at least one
2865  * extent of cont1_bytes, and other clusters of at least min_bytes.
2866  */
2867 static noinline int
2868 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2869 			struct btrfs_free_cluster *cluster,
2870 			struct list_head *bitmaps, u64 offset, u64 bytes,
2871 			u64 cont1_bytes, u64 min_bytes)
2872 {
2873 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2874 	struct btrfs_free_space *first = NULL;
2875 	struct btrfs_free_space *entry = NULL;
2876 	struct btrfs_free_space *last;
2877 	struct rb_node *node;
2878 	u64 window_free;
2879 	u64 max_extent;
2880 	u64 total_size = 0;
2881 
2882 	entry = tree_search_offset(ctl, offset, 0, 1);
2883 	if (!entry)
2884 		return -ENOSPC;
2885 
2886 	/*
2887 	 * We don't want bitmaps, so just move along until we find a normal
2888 	 * extent entry.
2889 	 */
2890 	while (entry->bitmap || entry->bytes < min_bytes) {
2891 		if (entry->bitmap && list_empty(&entry->list))
2892 			list_add_tail(&entry->list, bitmaps);
2893 		node = rb_next(&entry->offset_index);
2894 		if (!node)
2895 			return -ENOSPC;
2896 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2897 	}
2898 
2899 	window_free = entry->bytes;
2900 	max_extent = entry->bytes;
2901 	first = entry;
2902 	last = entry;
2903 
2904 	for (node = rb_next(&entry->offset_index); node;
2905 	     node = rb_next(&entry->offset_index)) {
2906 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2907 
2908 		if (entry->bitmap) {
2909 			if (list_empty(&entry->list))
2910 				list_add_tail(&entry->list, bitmaps);
2911 			continue;
2912 		}
2913 
2914 		if (entry->bytes < min_bytes)
2915 			continue;
2916 
2917 		last = entry;
2918 		window_free += entry->bytes;
2919 		if (entry->bytes > max_extent)
2920 			max_extent = entry->bytes;
2921 	}
2922 
2923 	if (window_free < bytes || max_extent < cont1_bytes)
2924 		return -ENOSPC;
2925 
2926 	cluster->window_start = first->offset;
2927 
2928 	node = &first->offset_index;
2929 
2930 	/*
2931 	 * now we've found our entries, pull them out of the free space
2932 	 * cache and put them into the cluster rbtree
2933 	 */
2934 	do {
2935 		int ret;
2936 
2937 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2938 		node = rb_next(&entry->offset_index);
2939 		if (entry->bitmap || entry->bytes < min_bytes)
2940 			continue;
2941 
2942 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2943 		ret = tree_insert_offset(&cluster->root, entry->offset,
2944 					 &entry->offset_index, 0);
2945 		total_size += entry->bytes;
2946 		ASSERT(!ret); /* -EEXIST; Logic error */
2947 	} while (node && entry != last);
2948 
2949 	cluster->max_size = max_extent;
2950 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2951 	return 0;
2952 }
2953 
2954 /*
2955  * This specifically looks for bitmaps that may work in the cluster, we assume
2956  * that we have already failed to find extents that will work.
2957  */
2958 static noinline int
2959 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2960 		     struct btrfs_free_cluster *cluster,
2961 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2962 		     u64 cont1_bytes, u64 min_bytes)
2963 {
2964 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2965 	struct btrfs_free_space *entry = NULL;
2966 	int ret = -ENOSPC;
2967 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2968 
2969 	if (ctl->total_bitmaps == 0)
2970 		return -ENOSPC;
2971 
2972 	/*
2973 	 * The bitmap that covers offset won't be in the list unless offset
2974 	 * is just its start offset.
2975 	 */
2976 	if (!list_empty(bitmaps))
2977 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2978 
2979 	if (!entry || entry->offset != bitmap_offset) {
2980 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2981 		if (entry && list_empty(&entry->list))
2982 			list_add(&entry->list, bitmaps);
2983 	}
2984 
2985 	list_for_each_entry(entry, bitmaps, list) {
2986 		if (entry->bytes < bytes)
2987 			continue;
2988 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2989 					   bytes, cont1_bytes, min_bytes);
2990 		if (!ret)
2991 			return 0;
2992 	}
2993 
2994 	/*
2995 	 * The bitmaps list has all the bitmaps that record free space
2996 	 * starting after offset, so no more search is required.
2997 	 */
2998 	return -ENOSPC;
2999 }
3000 
3001 /*
3002  * here we try to find a cluster of blocks in a block group.  The goal
3003  * is to find at least bytes+empty_size.
3004  * We might not find them all in one contiguous area.
3005  *
3006  * returns zero and sets up cluster if things worked out, otherwise
3007  * it returns -enospc
3008  */
3009 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3010 			     struct btrfs_block_group_cache *block_group,
3011 			     struct btrfs_free_cluster *cluster,
3012 			     u64 offset, u64 bytes, u64 empty_size)
3013 {
3014 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3015 	struct btrfs_free_space *entry, *tmp;
3016 	LIST_HEAD(bitmaps);
3017 	u64 min_bytes;
3018 	u64 cont1_bytes;
3019 	int ret;
3020 
3021 	/*
3022 	 * Choose the minimum extent size we'll require for this
3023 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3024 	 * For metadata, allow allocates with smaller extents.  For
3025 	 * data, keep it dense.
3026 	 */
3027 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3028 		cont1_bytes = min_bytes = bytes + empty_size;
3029 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3030 		cont1_bytes = bytes;
3031 		min_bytes = fs_info->sectorsize;
3032 	} else {
3033 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3034 		min_bytes = fs_info->sectorsize;
3035 	}
3036 
3037 	spin_lock(&ctl->tree_lock);
3038 
3039 	/*
3040 	 * If we know we don't have enough space to make a cluster don't even
3041 	 * bother doing all the work to try and find one.
3042 	 */
3043 	if (ctl->free_space < bytes) {
3044 		spin_unlock(&ctl->tree_lock);
3045 		return -ENOSPC;
3046 	}
3047 
3048 	spin_lock(&cluster->lock);
3049 
3050 	/* someone already found a cluster, hooray */
3051 	if (cluster->block_group) {
3052 		ret = 0;
3053 		goto out;
3054 	}
3055 
3056 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3057 				 min_bytes);
3058 
3059 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3060 				      bytes + empty_size,
3061 				      cont1_bytes, min_bytes);
3062 	if (ret)
3063 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3064 					   offset, bytes + empty_size,
3065 					   cont1_bytes, min_bytes);
3066 
3067 	/* Clear our temporary list */
3068 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3069 		list_del_init(&entry->list);
3070 
3071 	if (!ret) {
3072 		atomic_inc(&block_group->count);
3073 		list_add_tail(&cluster->block_group_list,
3074 			      &block_group->cluster_list);
3075 		cluster->block_group = block_group;
3076 	} else {
3077 		trace_btrfs_failed_cluster_setup(block_group);
3078 	}
3079 out:
3080 	spin_unlock(&cluster->lock);
3081 	spin_unlock(&ctl->tree_lock);
3082 
3083 	return ret;
3084 }
3085 
3086 /*
3087  * simple code to zero out a cluster
3088  */
3089 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3090 {
3091 	spin_lock_init(&cluster->lock);
3092 	spin_lock_init(&cluster->refill_lock);
3093 	cluster->root = RB_ROOT;
3094 	cluster->max_size = 0;
3095 	cluster->fragmented = false;
3096 	INIT_LIST_HEAD(&cluster->block_group_list);
3097 	cluster->block_group = NULL;
3098 }
3099 
3100 static int do_trimming(struct btrfs_block_group_cache *block_group,
3101 		       u64 *total_trimmed, u64 start, u64 bytes,
3102 		       u64 reserved_start, u64 reserved_bytes,
3103 		       struct btrfs_trim_range *trim_entry)
3104 {
3105 	struct btrfs_space_info *space_info = block_group->space_info;
3106 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3107 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3108 	int ret;
3109 	int update = 0;
3110 	u64 trimmed = 0;
3111 
3112 	spin_lock(&space_info->lock);
3113 	spin_lock(&block_group->lock);
3114 	if (!block_group->ro) {
3115 		block_group->reserved += reserved_bytes;
3116 		space_info->bytes_reserved += reserved_bytes;
3117 		update = 1;
3118 	}
3119 	spin_unlock(&block_group->lock);
3120 	spin_unlock(&space_info->lock);
3121 
3122 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3123 	if (!ret)
3124 		*total_trimmed += trimmed;
3125 
3126 	mutex_lock(&ctl->cache_writeout_mutex);
3127 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3128 	list_del(&trim_entry->list);
3129 	mutex_unlock(&ctl->cache_writeout_mutex);
3130 
3131 	if (update) {
3132 		spin_lock(&space_info->lock);
3133 		spin_lock(&block_group->lock);
3134 		if (block_group->ro)
3135 			space_info->bytes_readonly += reserved_bytes;
3136 		block_group->reserved -= reserved_bytes;
3137 		space_info->bytes_reserved -= reserved_bytes;
3138 		spin_unlock(&space_info->lock);
3139 		spin_unlock(&block_group->lock);
3140 	}
3141 
3142 	return ret;
3143 }
3144 
3145 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3146 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3147 {
3148 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3149 	struct btrfs_free_space *entry;
3150 	struct rb_node *node;
3151 	int ret = 0;
3152 	u64 extent_start;
3153 	u64 extent_bytes;
3154 	u64 bytes;
3155 
3156 	while (start < end) {
3157 		struct btrfs_trim_range trim_entry;
3158 
3159 		mutex_lock(&ctl->cache_writeout_mutex);
3160 		spin_lock(&ctl->tree_lock);
3161 
3162 		if (ctl->free_space < minlen) {
3163 			spin_unlock(&ctl->tree_lock);
3164 			mutex_unlock(&ctl->cache_writeout_mutex);
3165 			break;
3166 		}
3167 
3168 		entry = tree_search_offset(ctl, start, 0, 1);
3169 		if (!entry) {
3170 			spin_unlock(&ctl->tree_lock);
3171 			mutex_unlock(&ctl->cache_writeout_mutex);
3172 			break;
3173 		}
3174 
3175 		/* skip bitmaps */
3176 		while (entry->bitmap) {
3177 			node = rb_next(&entry->offset_index);
3178 			if (!node) {
3179 				spin_unlock(&ctl->tree_lock);
3180 				mutex_unlock(&ctl->cache_writeout_mutex);
3181 				goto out;
3182 			}
3183 			entry = rb_entry(node, struct btrfs_free_space,
3184 					 offset_index);
3185 		}
3186 
3187 		if (entry->offset >= end) {
3188 			spin_unlock(&ctl->tree_lock);
3189 			mutex_unlock(&ctl->cache_writeout_mutex);
3190 			break;
3191 		}
3192 
3193 		extent_start = entry->offset;
3194 		extent_bytes = entry->bytes;
3195 		start = max(start, extent_start);
3196 		bytes = min(extent_start + extent_bytes, end) - start;
3197 		if (bytes < minlen) {
3198 			spin_unlock(&ctl->tree_lock);
3199 			mutex_unlock(&ctl->cache_writeout_mutex);
3200 			goto next;
3201 		}
3202 
3203 		unlink_free_space(ctl, entry);
3204 		kmem_cache_free(btrfs_free_space_cachep, entry);
3205 
3206 		spin_unlock(&ctl->tree_lock);
3207 		trim_entry.start = extent_start;
3208 		trim_entry.bytes = extent_bytes;
3209 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3210 		mutex_unlock(&ctl->cache_writeout_mutex);
3211 
3212 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3213 				  extent_start, extent_bytes, &trim_entry);
3214 		if (ret)
3215 			break;
3216 next:
3217 		start += bytes;
3218 
3219 		if (fatal_signal_pending(current)) {
3220 			ret = -ERESTARTSYS;
3221 			break;
3222 		}
3223 
3224 		cond_resched();
3225 	}
3226 out:
3227 	return ret;
3228 }
3229 
3230 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3231 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3232 {
3233 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3234 	struct btrfs_free_space *entry;
3235 	int ret = 0;
3236 	int ret2;
3237 	u64 bytes;
3238 	u64 offset = offset_to_bitmap(ctl, start);
3239 
3240 	while (offset < end) {
3241 		bool next_bitmap = false;
3242 		struct btrfs_trim_range trim_entry;
3243 
3244 		mutex_lock(&ctl->cache_writeout_mutex);
3245 		spin_lock(&ctl->tree_lock);
3246 
3247 		if (ctl->free_space < minlen) {
3248 			spin_unlock(&ctl->tree_lock);
3249 			mutex_unlock(&ctl->cache_writeout_mutex);
3250 			break;
3251 		}
3252 
3253 		entry = tree_search_offset(ctl, offset, 1, 0);
3254 		if (!entry) {
3255 			spin_unlock(&ctl->tree_lock);
3256 			mutex_unlock(&ctl->cache_writeout_mutex);
3257 			next_bitmap = true;
3258 			goto next;
3259 		}
3260 
3261 		bytes = minlen;
3262 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3263 		if (ret2 || start >= end) {
3264 			spin_unlock(&ctl->tree_lock);
3265 			mutex_unlock(&ctl->cache_writeout_mutex);
3266 			next_bitmap = true;
3267 			goto next;
3268 		}
3269 
3270 		bytes = min(bytes, end - start);
3271 		if (bytes < minlen) {
3272 			spin_unlock(&ctl->tree_lock);
3273 			mutex_unlock(&ctl->cache_writeout_mutex);
3274 			goto next;
3275 		}
3276 
3277 		bitmap_clear_bits(ctl, entry, start, bytes);
3278 		if (entry->bytes == 0)
3279 			free_bitmap(ctl, entry);
3280 
3281 		spin_unlock(&ctl->tree_lock);
3282 		trim_entry.start = start;
3283 		trim_entry.bytes = bytes;
3284 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3285 		mutex_unlock(&ctl->cache_writeout_mutex);
3286 
3287 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3288 				  start, bytes, &trim_entry);
3289 		if (ret)
3290 			break;
3291 next:
3292 		if (next_bitmap) {
3293 			offset += BITS_PER_BITMAP * ctl->unit;
3294 		} else {
3295 			start += bytes;
3296 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3297 				offset += BITS_PER_BITMAP * ctl->unit;
3298 		}
3299 
3300 		if (fatal_signal_pending(current)) {
3301 			ret = -ERESTARTSYS;
3302 			break;
3303 		}
3304 
3305 		cond_resched();
3306 	}
3307 
3308 	return ret;
3309 }
3310 
3311 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3312 {
3313 	atomic_inc(&cache->trimming);
3314 }
3315 
3316 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3317 {
3318 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3319 	struct extent_map_tree *em_tree;
3320 	struct extent_map *em;
3321 	bool cleanup;
3322 
3323 	spin_lock(&block_group->lock);
3324 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3325 		   block_group->removed);
3326 	spin_unlock(&block_group->lock);
3327 
3328 	if (cleanup) {
3329 		mutex_lock(&fs_info->chunk_mutex);
3330 		em_tree = &fs_info->mapping_tree.map_tree;
3331 		write_lock(&em_tree->lock);
3332 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3333 					   1);
3334 		BUG_ON(!em); /* logic error, can't happen */
3335 		/*
3336 		 * remove_extent_mapping() will delete us from the pinned_chunks
3337 		 * list, which is protected by the chunk mutex.
3338 		 */
3339 		remove_extent_mapping(em_tree, em);
3340 		write_unlock(&em_tree->lock);
3341 		mutex_unlock(&fs_info->chunk_mutex);
3342 
3343 		/* once for us and once for the tree */
3344 		free_extent_map(em);
3345 		free_extent_map(em);
3346 
3347 		/*
3348 		 * We've left one free space entry and other tasks trimming
3349 		 * this block group have left 1 entry each one. Free them.
3350 		 */
3351 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3352 	}
3353 }
3354 
3355 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3356 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3357 {
3358 	int ret;
3359 
3360 	*trimmed = 0;
3361 
3362 	spin_lock(&block_group->lock);
3363 	if (block_group->removed) {
3364 		spin_unlock(&block_group->lock);
3365 		return 0;
3366 	}
3367 	btrfs_get_block_group_trimming(block_group);
3368 	spin_unlock(&block_group->lock);
3369 
3370 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3371 	if (ret)
3372 		goto out;
3373 
3374 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3375 out:
3376 	btrfs_put_block_group_trimming(block_group);
3377 	return ret;
3378 }
3379 
3380 /*
3381  * Find the left-most item in the cache tree, and then return the
3382  * smallest inode number in the item.
3383  *
3384  * Note: the returned inode number may not be the smallest one in
3385  * the tree, if the left-most item is a bitmap.
3386  */
3387 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3388 {
3389 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3390 	struct btrfs_free_space *entry = NULL;
3391 	u64 ino = 0;
3392 
3393 	spin_lock(&ctl->tree_lock);
3394 
3395 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3396 		goto out;
3397 
3398 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3399 			 struct btrfs_free_space, offset_index);
3400 
3401 	if (!entry->bitmap) {
3402 		ino = entry->offset;
3403 
3404 		unlink_free_space(ctl, entry);
3405 		entry->offset++;
3406 		entry->bytes--;
3407 		if (!entry->bytes)
3408 			kmem_cache_free(btrfs_free_space_cachep, entry);
3409 		else
3410 			link_free_space(ctl, entry);
3411 	} else {
3412 		u64 offset = 0;
3413 		u64 count = 1;
3414 		int ret;
3415 
3416 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3417 		/* Logic error; Should be empty if it can't find anything */
3418 		ASSERT(!ret);
3419 
3420 		ino = offset;
3421 		bitmap_clear_bits(ctl, entry, offset, 1);
3422 		if (entry->bytes == 0)
3423 			free_bitmap(ctl, entry);
3424 	}
3425 out:
3426 	spin_unlock(&ctl->tree_lock);
3427 
3428 	return ino;
3429 }
3430 
3431 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3432 				    struct btrfs_path *path)
3433 {
3434 	struct inode *inode = NULL;
3435 
3436 	spin_lock(&root->ino_cache_lock);
3437 	if (root->ino_cache_inode)
3438 		inode = igrab(root->ino_cache_inode);
3439 	spin_unlock(&root->ino_cache_lock);
3440 	if (inode)
3441 		return inode;
3442 
3443 	inode = __lookup_free_space_inode(root, path, 0);
3444 	if (IS_ERR(inode))
3445 		return inode;
3446 
3447 	spin_lock(&root->ino_cache_lock);
3448 	if (!btrfs_fs_closing(root->fs_info))
3449 		root->ino_cache_inode = igrab(inode);
3450 	spin_unlock(&root->ino_cache_lock);
3451 
3452 	return inode;
3453 }
3454 
3455 int create_free_ino_inode(struct btrfs_root *root,
3456 			  struct btrfs_trans_handle *trans,
3457 			  struct btrfs_path *path)
3458 {
3459 	return __create_free_space_inode(root, trans, path,
3460 					 BTRFS_FREE_INO_OBJECTID, 0);
3461 }
3462 
3463 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3464 {
3465 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3466 	struct btrfs_path *path;
3467 	struct inode *inode;
3468 	int ret = 0;
3469 	u64 root_gen = btrfs_root_generation(&root->root_item);
3470 
3471 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3472 		return 0;
3473 
3474 	/*
3475 	 * If we're unmounting then just return, since this does a search on the
3476 	 * normal root and not the commit root and we could deadlock.
3477 	 */
3478 	if (btrfs_fs_closing(fs_info))
3479 		return 0;
3480 
3481 	path = btrfs_alloc_path();
3482 	if (!path)
3483 		return 0;
3484 
3485 	inode = lookup_free_ino_inode(root, path);
3486 	if (IS_ERR(inode))
3487 		goto out;
3488 
3489 	if (root_gen != BTRFS_I(inode)->generation)
3490 		goto out_put;
3491 
3492 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3493 
3494 	if (ret < 0)
3495 		btrfs_err(fs_info,
3496 			"failed to load free ino cache for root %llu",
3497 			root->root_key.objectid);
3498 out_put:
3499 	iput(inode);
3500 out:
3501 	btrfs_free_path(path);
3502 	return ret;
3503 }
3504 
3505 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3506 			      struct btrfs_trans_handle *trans,
3507 			      struct btrfs_path *path,
3508 			      struct inode *inode)
3509 {
3510 	struct btrfs_fs_info *fs_info = root->fs_info;
3511 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3512 	int ret;
3513 	struct btrfs_io_ctl io_ctl;
3514 	bool release_metadata = true;
3515 
3516 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3517 		return 0;
3518 
3519 	memset(&io_ctl, 0, sizeof(io_ctl));
3520 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3521 	if (!ret) {
3522 		/*
3523 		 * At this point writepages() didn't error out, so our metadata
3524 		 * reservation is released when the writeback finishes, at
3525 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3526 		 * with or without an error.
3527 		 */
3528 		release_metadata = false;
3529 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3530 	}
3531 
3532 	if (ret) {
3533 		if (release_metadata)
3534 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3535 					inode->i_size, true);
3536 #ifdef DEBUG
3537 		btrfs_err(fs_info,
3538 			  "failed to write free ino cache for root %llu",
3539 			  root->root_key.objectid);
3540 #endif
3541 	}
3542 
3543 	return ret;
3544 }
3545 
3546 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3547 /*
3548  * Use this if you need to make a bitmap or extent entry specifically, it
3549  * doesn't do any of the merging that add_free_space does, this acts a lot like
3550  * how the free space cache loading stuff works, so you can get really weird
3551  * configurations.
3552  */
3553 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3554 			      u64 offset, u64 bytes, bool bitmap)
3555 {
3556 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3557 	struct btrfs_free_space *info = NULL, *bitmap_info;
3558 	void *map = NULL;
3559 	u64 bytes_added;
3560 	int ret;
3561 
3562 again:
3563 	if (!info) {
3564 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3565 		if (!info)
3566 			return -ENOMEM;
3567 	}
3568 
3569 	if (!bitmap) {
3570 		spin_lock(&ctl->tree_lock);
3571 		info->offset = offset;
3572 		info->bytes = bytes;
3573 		info->max_extent_size = 0;
3574 		ret = link_free_space(ctl, info);
3575 		spin_unlock(&ctl->tree_lock);
3576 		if (ret)
3577 			kmem_cache_free(btrfs_free_space_cachep, info);
3578 		return ret;
3579 	}
3580 
3581 	if (!map) {
3582 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3583 		if (!map) {
3584 			kmem_cache_free(btrfs_free_space_cachep, info);
3585 			return -ENOMEM;
3586 		}
3587 	}
3588 
3589 	spin_lock(&ctl->tree_lock);
3590 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3591 					 1, 0);
3592 	if (!bitmap_info) {
3593 		info->bitmap = map;
3594 		map = NULL;
3595 		add_new_bitmap(ctl, info, offset);
3596 		bitmap_info = info;
3597 		info = NULL;
3598 	}
3599 
3600 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3601 
3602 	bytes -= bytes_added;
3603 	offset += bytes_added;
3604 	spin_unlock(&ctl->tree_lock);
3605 
3606 	if (bytes)
3607 		goto again;
3608 
3609 	if (info)
3610 		kmem_cache_free(btrfs_free_space_cachep, info);
3611 	if (map)
3612 		kfree(map);
3613 	return 0;
3614 }
3615 
3616 /*
3617  * Checks to see if the given range is in the free space cache.  This is really
3618  * just used to check the absence of space, so if there is free space in the
3619  * range at all we will return 1.
3620  */
3621 int test_check_exists(struct btrfs_block_group_cache *cache,
3622 		      u64 offset, u64 bytes)
3623 {
3624 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3625 	struct btrfs_free_space *info;
3626 	int ret = 0;
3627 
3628 	spin_lock(&ctl->tree_lock);
3629 	info = tree_search_offset(ctl, offset, 0, 0);
3630 	if (!info) {
3631 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3632 					  1, 0);
3633 		if (!info)
3634 			goto out;
3635 	}
3636 
3637 have_info:
3638 	if (info->bitmap) {
3639 		u64 bit_off, bit_bytes;
3640 		struct rb_node *n;
3641 		struct btrfs_free_space *tmp;
3642 
3643 		bit_off = offset;
3644 		bit_bytes = ctl->unit;
3645 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3646 		if (!ret) {
3647 			if (bit_off == offset) {
3648 				ret = 1;
3649 				goto out;
3650 			} else if (bit_off > offset &&
3651 				   offset + bytes > bit_off) {
3652 				ret = 1;
3653 				goto out;
3654 			}
3655 		}
3656 
3657 		n = rb_prev(&info->offset_index);
3658 		while (n) {
3659 			tmp = rb_entry(n, struct btrfs_free_space,
3660 				       offset_index);
3661 			if (tmp->offset + tmp->bytes < offset)
3662 				break;
3663 			if (offset + bytes < tmp->offset) {
3664 				n = rb_prev(&tmp->offset_index);
3665 				continue;
3666 			}
3667 			info = tmp;
3668 			goto have_info;
3669 		}
3670 
3671 		n = rb_next(&info->offset_index);
3672 		while (n) {
3673 			tmp = rb_entry(n, struct btrfs_free_space,
3674 				       offset_index);
3675 			if (offset + bytes < tmp->offset)
3676 				break;
3677 			if (tmp->offset + tmp->bytes < offset) {
3678 				n = rb_next(&tmp->offset_index);
3679 				continue;
3680 			}
3681 			info = tmp;
3682 			goto have_info;
3683 		}
3684 
3685 		ret = 0;
3686 		goto out;
3687 	}
3688 
3689 	if (info->offset == offset) {
3690 		ret = 1;
3691 		goto out;
3692 	}
3693 
3694 	if (offset > info->offset && offset < info->offset + info->bytes)
3695 		ret = 1;
3696 out:
3697 	spin_unlock(&ctl->tree_lock);
3698 	return ret;
3699 }
3700 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3701