xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision b755c25f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "fs.h"
16 #include "messages.h"
17 #include "misc.h"
18 #include "free-space-cache.h"
19 #include "transaction.h"
20 #include "disk-io.h"
21 #include "extent_io.h"
22 #include "volumes.h"
23 #include "space-info.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "discard.h"
27 #include "subpage.h"
28 #include "inode-item.h"
29 #include "accessors.h"
30 #include "file-item.h"
31 #include "file.h"
32 #include "super.h"
33 
34 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
35 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
36 #define FORCE_EXTENT_THRESHOLD	SZ_1M
37 
38 static struct kmem_cache *btrfs_free_space_cachep;
39 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
40 
41 struct btrfs_trim_range {
42 	u64 start;
43 	u64 bytes;
44 	struct list_head list;
45 };
46 
47 static int link_free_space(struct btrfs_free_space_ctl *ctl,
48 			   struct btrfs_free_space *info);
49 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
50 			      struct btrfs_free_space *info, bool update_stat);
51 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 			 struct btrfs_free_space *bitmap_info, u64 *offset,
53 			 u64 *bytes, bool for_alloc);
54 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 			struct btrfs_free_space *bitmap_info);
56 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 			      struct btrfs_free_space *info, u64 offset,
58 			      u64 bytes, bool update_stats);
59 
60 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
61 {
62 	struct btrfs_free_space *info;
63 	struct rb_node *node;
64 
65 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
66 		info = rb_entry(node, struct btrfs_free_space, offset_index);
67 		if (!info->bitmap) {
68 			unlink_free_space(ctl, info, true);
69 			kmem_cache_free(btrfs_free_space_cachep, info);
70 		} else {
71 			free_bitmap(ctl, info);
72 		}
73 
74 		cond_resched_lock(&ctl->tree_lock);
75 	}
76 }
77 
78 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
79 					       struct btrfs_path *path,
80 					       u64 offset)
81 {
82 	struct btrfs_fs_info *fs_info = root->fs_info;
83 	struct btrfs_key key;
84 	struct btrfs_key location;
85 	struct btrfs_disk_key disk_key;
86 	struct btrfs_free_space_header *header;
87 	struct extent_buffer *leaf;
88 	struct inode *inode = NULL;
89 	unsigned nofs_flag;
90 	int ret;
91 
92 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
93 	key.offset = offset;
94 	key.type = 0;
95 
96 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
97 	if (ret < 0)
98 		return ERR_PTR(ret);
99 	if (ret > 0) {
100 		btrfs_release_path(path);
101 		return ERR_PTR(-ENOENT);
102 	}
103 
104 	leaf = path->nodes[0];
105 	header = btrfs_item_ptr(leaf, path->slots[0],
106 				struct btrfs_free_space_header);
107 	btrfs_free_space_key(leaf, header, &disk_key);
108 	btrfs_disk_key_to_cpu(&location, &disk_key);
109 	btrfs_release_path(path);
110 
111 	/*
112 	 * We are often under a trans handle at this point, so we need to make
113 	 * sure NOFS is set to keep us from deadlocking.
114 	 */
115 	nofs_flag = memalloc_nofs_save();
116 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
117 	btrfs_release_path(path);
118 	memalloc_nofs_restore(nofs_flag);
119 	if (IS_ERR(inode))
120 		return inode;
121 
122 	mapping_set_gfp_mask(inode->i_mapping,
123 			mapping_gfp_constraint(inode->i_mapping,
124 			~(__GFP_FS | __GFP_HIGHMEM)));
125 
126 	return inode;
127 }
128 
129 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
130 		struct btrfs_path *path)
131 {
132 	struct btrfs_fs_info *fs_info = block_group->fs_info;
133 	struct inode *inode = NULL;
134 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
135 
136 	spin_lock(&block_group->lock);
137 	if (block_group->inode)
138 		inode = igrab(block_group->inode);
139 	spin_unlock(&block_group->lock);
140 	if (inode)
141 		return inode;
142 
143 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
144 					  block_group->start);
145 	if (IS_ERR(inode))
146 		return inode;
147 
148 	spin_lock(&block_group->lock);
149 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
150 		btrfs_info(fs_info, "Old style space inode found, converting.");
151 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
152 			BTRFS_INODE_NODATACOW;
153 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
154 	}
155 
156 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
157 		block_group->inode = igrab(inode);
158 	spin_unlock(&block_group->lock);
159 
160 	return inode;
161 }
162 
163 static int __create_free_space_inode(struct btrfs_root *root,
164 				     struct btrfs_trans_handle *trans,
165 				     struct btrfs_path *path,
166 				     u64 ino, u64 offset)
167 {
168 	struct btrfs_key key;
169 	struct btrfs_disk_key disk_key;
170 	struct btrfs_free_space_header *header;
171 	struct btrfs_inode_item *inode_item;
172 	struct extent_buffer *leaf;
173 	/* We inline CRCs for the free disk space cache */
174 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
175 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
176 	int ret;
177 
178 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
179 	if (ret)
180 		return ret;
181 
182 	leaf = path->nodes[0];
183 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
184 				    struct btrfs_inode_item);
185 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
186 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
187 			     sizeof(*inode_item));
188 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
189 	btrfs_set_inode_size(leaf, inode_item, 0);
190 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
191 	btrfs_set_inode_uid(leaf, inode_item, 0);
192 	btrfs_set_inode_gid(leaf, inode_item, 0);
193 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
194 	btrfs_set_inode_flags(leaf, inode_item, flags);
195 	btrfs_set_inode_nlink(leaf, inode_item, 1);
196 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
197 	btrfs_set_inode_block_group(leaf, inode_item, offset);
198 	btrfs_mark_buffer_dirty(leaf);
199 	btrfs_release_path(path);
200 
201 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
202 	key.offset = offset;
203 	key.type = 0;
204 	ret = btrfs_insert_empty_item(trans, root, path, &key,
205 				      sizeof(struct btrfs_free_space_header));
206 	if (ret < 0) {
207 		btrfs_release_path(path);
208 		return ret;
209 	}
210 
211 	leaf = path->nodes[0];
212 	header = btrfs_item_ptr(leaf, path->slots[0],
213 				struct btrfs_free_space_header);
214 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
215 	btrfs_set_free_space_key(leaf, header, &disk_key);
216 	btrfs_mark_buffer_dirty(leaf);
217 	btrfs_release_path(path);
218 
219 	return 0;
220 }
221 
222 int create_free_space_inode(struct btrfs_trans_handle *trans,
223 			    struct btrfs_block_group *block_group,
224 			    struct btrfs_path *path)
225 {
226 	int ret;
227 	u64 ino;
228 
229 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
230 	if (ret < 0)
231 		return ret;
232 
233 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
234 					 ino, block_group->start);
235 }
236 
237 /*
238  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
239  * handles lookup, otherwise it takes ownership and iputs the inode.
240  * Don't reuse an inode pointer after passing it into this function.
241  */
242 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
243 				  struct inode *inode,
244 				  struct btrfs_block_group *block_group)
245 {
246 	struct btrfs_path *path;
247 	struct btrfs_key key;
248 	int ret = 0;
249 
250 	path = btrfs_alloc_path();
251 	if (!path)
252 		return -ENOMEM;
253 
254 	if (!inode)
255 		inode = lookup_free_space_inode(block_group, path);
256 	if (IS_ERR(inode)) {
257 		if (PTR_ERR(inode) != -ENOENT)
258 			ret = PTR_ERR(inode);
259 		goto out;
260 	}
261 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
262 	if (ret) {
263 		btrfs_add_delayed_iput(BTRFS_I(inode));
264 		goto out;
265 	}
266 	clear_nlink(inode);
267 	/* One for the block groups ref */
268 	spin_lock(&block_group->lock);
269 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
270 		block_group->inode = NULL;
271 		spin_unlock(&block_group->lock);
272 		iput(inode);
273 	} else {
274 		spin_unlock(&block_group->lock);
275 	}
276 	/* One for the lookup ref */
277 	btrfs_add_delayed_iput(BTRFS_I(inode));
278 
279 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
280 	key.type = 0;
281 	key.offset = block_group->start;
282 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
283 				-1, 1);
284 	if (ret) {
285 		if (ret > 0)
286 			ret = 0;
287 		goto out;
288 	}
289 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
290 out:
291 	btrfs_free_path(path);
292 	return ret;
293 }
294 
295 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
296 				    struct btrfs_block_group *block_group,
297 				    struct inode *vfs_inode)
298 {
299 	struct btrfs_truncate_control control = {
300 		.inode = BTRFS_I(vfs_inode),
301 		.new_size = 0,
302 		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
303 		.min_type = BTRFS_EXTENT_DATA_KEY,
304 		.clear_extent_range = true,
305 	};
306 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
307 	struct btrfs_root *root = inode->root;
308 	struct extent_state *cached_state = NULL;
309 	int ret = 0;
310 	bool locked = false;
311 
312 	if (block_group) {
313 		struct btrfs_path *path = btrfs_alloc_path();
314 
315 		if (!path) {
316 			ret = -ENOMEM;
317 			goto fail;
318 		}
319 		locked = true;
320 		mutex_lock(&trans->transaction->cache_write_mutex);
321 		if (!list_empty(&block_group->io_list)) {
322 			list_del_init(&block_group->io_list);
323 
324 			btrfs_wait_cache_io(trans, block_group, path);
325 			btrfs_put_block_group(block_group);
326 		}
327 
328 		/*
329 		 * now that we've truncated the cache away, its no longer
330 		 * setup or written
331 		 */
332 		spin_lock(&block_group->lock);
333 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
334 		spin_unlock(&block_group->lock);
335 		btrfs_free_path(path);
336 	}
337 
338 	btrfs_i_size_write(inode, 0);
339 	truncate_pagecache(vfs_inode, 0);
340 
341 	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
342 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
343 
344 	/*
345 	 * We skip the throttling logic for free space cache inodes, so we don't
346 	 * need to check for -EAGAIN.
347 	 */
348 	ret = btrfs_truncate_inode_items(trans, root, &control);
349 
350 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
351 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
352 
353 	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
354 	if (ret)
355 		goto fail;
356 
357 	ret = btrfs_update_inode(trans, root, inode);
358 
359 fail:
360 	if (locked)
361 		mutex_unlock(&trans->transaction->cache_write_mutex);
362 	if (ret)
363 		btrfs_abort_transaction(trans, ret);
364 
365 	return ret;
366 }
367 
368 static void readahead_cache(struct inode *inode)
369 {
370 	struct file_ra_state ra;
371 	unsigned long last_index;
372 
373 	file_ra_state_init(&ra, inode->i_mapping);
374 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
375 
376 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
377 }
378 
379 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
380 		       int write)
381 {
382 	int num_pages;
383 
384 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
385 
386 	/* Make sure we can fit our crcs and generation into the first page */
387 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
388 		return -ENOSPC;
389 
390 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
391 
392 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
393 	if (!io_ctl->pages)
394 		return -ENOMEM;
395 
396 	io_ctl->num_pages = num_pages;
397 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
398 	io_ctl->inode = inode;
399 
400 	return 0;
401 }
402 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
403 
404 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
405 {
406 	kfree(io_ctl->pages);
407 	io_ctl->pages = NULL;
408 }
409 
410 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
411 {
412 	if (io_ctl->cur) {
413 		io_ctl->cur = NULL;
414 		io_ctl->orig = NULL;
415 	}
416 }
417 
418 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
419 {
420 	ASSERT(io_ctl->index < io_ctl->num_pages);
421 	io_ctl->page = io_ctl->pages[io_ctl->index++];
422 	io_ctl->cur = page_address(io_ctl->page);
423 	io_ctl->orig = io_ctl->cur;
424 	io_ctl->size = PAGE_SIZE;
425 	if (clear)
426 		clear_page(io_ctl->cur);
427 }
428 
429 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
430 {
431 	int i;
432 
433 	io_ctl_unmap_page(io_ctl);
434 
435 	for (i = 0; i < io_ctl->num_pages; i++) {
436 		if (io_ctl->pages[i]) {
437 			btrfs_page_clear_checked(io_ctl->fs_info,
438 					io_ctl->pages[i],
439 					page_offset(io_ctl->pages[i]),
440 					PAGE_SIZE);
441 			unlock_page(io_ctl->pages[i]);
442 			put_page(io_ctl->pages[i]);
443 		}
444 	}
445 }
446 
447 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
448 {
449 	struct page *page;
450 	struct inode *inode = io_ctl->inode;
451 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
452 	int i;
453 
454 	for (i = 0; i < io_ctl->num_pages; i++) {
455 		int ret;
456 
457 		page = find_or_create_page(inode->i_mapping, i, mask);
458 		if (!page) {
459 			io_ctl_drop_pages(io_ctl);
460 			return -ENOMEM;
461 		}
462 
463 		ret = set_page_extent_mapped(page);
464 		if (ret < 0) {
465 			unlock_page(page);
466 			put_page(page);
467 			io_ctl_drop_pages(io_ctl);
468 			return ret;
469 		}
470 
471 		io_ctl->pages[i] = page;
472 		if (uptodate && !PageUptodate(page)) {
473 			btrfs_read_folio(NULL, page_folio(page));
474 			lock_page(page);
475 			if (page->mapping != inode->i_mapping) {
476 				btrfs_err(BTRFS_I(inode)->root->fs_info,
477 					  "free space cache page truncated");
478 				io_ctl_drop_pages(io_ctl);
479 				return -EIO;
480 			}
481 			if (!PageUptodate(page)) {
482 				btrfs_err(BTRFS_I(inode)->root->fs_info,
483 					   "error reading free space cache");
484 				io_ctl_drop_pages(io_ctl);
485 				return -EIO;
486 			}
487 		}
488 	}
489 
490 	for (i = 0; i < io_ctl->num_pages; i++)
491 		clear_page_dirty_for_io(io_ctl->pages[i]);
492 
493 	return 0;
494 }
495 
496 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
497 {
498 	io_ctl_map_page(io_ctl, 1);
499 
500 	/*
501 	 * Skip the csum areas.  If we don't check crcs then we just have a
502 	 * 64bit chunk at the front of the first page.
503 	 */
504 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
505 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
506 
507 	put_unaligned_le64(generation, io_ctl->cur);
508 	io_ctl->cur += sizeof(u64);
509 }
510 
511 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
512 {
513 	u64 cache_gen;
514 
515 	/*
516 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
517 	 * chunk at the front of the first page.
518 	 */
519 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
520 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
521 
522 	cache_gen = get_unaligned_le64(io_ctl->cur);
523 	if (cache_gen != generation) {
524 		btrfs_err_rl(io_ctl->fs_info,
525 			"space cache generation (%llu) does not match inode (%llu)",
526 				cache_gen, generation);
527 		io_ctl_unmap_page(io_ctl);
528 		return -EIO;
529 	}
530 	io_ctl->cur += sizeof(u64);
531 	return 0;
532 }
533 
534 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
535 {
536 	u32 *tmp;
537 	u32 crc = ~(u32)0;
538 	unsigned offset = 0;
539 
540 	if (index == 0)
541 		offset = sizeof(u32) * io_ctl->num_pages;
542 
543 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
544 	btrfs_crc32c_final(crc, (u8 *)&crc);
545 	io_ctl_unmap_page(io_ctl);
546 	tmp = page_address(io_ctl->pages[0]);
547 	tmp += index;
548 	*tmp = crc;
549 }
550 
551 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
552 {
553 	u32 *tmp, val;
554 	u32 crc = ~(u32)0;
555 	unsigned offset = 0;
556 
557 	if (index == 0)
558 		offset = sizeof(u32) * io_ctl->num_pages;
559 
560 	tmp = page_address(io_ctl->pages[0]);
561 	tmp += index;
562 	val = *tmp;
563 
564 	io_ctl_map_page(io_ctl, 0);
565 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
566 	btrfs_crc32c_final(crc, (u8 *)&crc);
567 	if (val != crc) {
568 		btrfs_err_rl(io_ctl->fs_info,
569 			"csum mismatch on free space cache");
570 		io_ctl_unmap_page(io_ctl);
571 		return -EIO;
572 	}
573 
574 	return 0;
575 }
576 
577 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
578 			    void *bitmap)
579 {
580 	struct btrfs_free_space_entry *entry;
581 
582 	if (!io_ctl->cur)
583 		return -ENOSPC;
584 
585 	entry = io_ctl->cur;
586 	put_unaligned_le64(offset, &entry->offset);
587 	put_unaligned_le64(bytes, &entry->bytes);
588 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
589 		BTRFS_FREE_SPACE_EXTENT;
590 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
591 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
592 
593 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
594 		return 0;
595 
596 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
597 
598 	/* No more pages to map */
599 	if (io_ctl->index >= io_ctl->num_pages)
600 		return 0;
601 
602 	/* map the next page */
603 	io_ctl_map_page(io_ctl, 1);
604 	return 0;
605 }
606 
607 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
608 {
609 	if (!io_ctl->cur)
610 		return -ENOSPC;
611 
612 	/*
613 	 * If we aren't at the start of the current page, unmap this one and
614 	 * map the next one if there is any left.
615 	 */
616 	if (io_ctl->cur != io_ctl->orig) {
617 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
618 		if (io_ctl->index >= io_ctl->num_pages)
619 			return -ENOSPC;
620 		io_ctl_map_page(io_ctl, 0);
621 	}
622 
623 	copy_page(io_ctl->cur, bitmap);
624 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
625 	if (io_ctl->index < io_ctl->num_pages)
626 		io_ctl_map_page(io_ctl, 0);
627 	return 0;
628 }
629 
630 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
631 {
632 	/*
633 	 * If we're not on the boundary we know we've modified the page and we
634 	 * need to crc the page.
635 	 */
636 	if (io_ctl->cur != io_ctl->orig)
637 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
638 	else
639 		io_ctl_unmap_page(io_ctl);
640 
641 	while (io_ctl->index < io_ctl->num_pages) {
642 		io_ctl_map_page(io_ctl, 1);
643 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 	}
645 }
646 
647 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
648 			    struct btrfs_free_space *entry, u8 *type)
649 {
650 	struct btrfs_free_space_entry *e;
651 	int ret;
652 
653 	if (!io_ctl->cur) {
654 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
655 		if (ret)
656 			return ret;
657 	}
658 
659 	e = io_ctl->cur;
660 	entry->offset = get_unaligned_le64(&e->offset);
661 	entry->bytes = get_unaligned_le64(&e->bytes);
662 	*type = e->type;
663 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
664 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
665 
666 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
667 		return 0;
668 
669 	io_ctl_unmap_page(io_ctl);
670 
671 	return 0;
672 }
673 
674 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
675 			      struct btrfs_free_space *entry)
676 {
677 	int ret;
678 
679 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
680 	if (ret)
681 		return ret;
682 
683 	copy_page(entry->bitmap, io_ctl->cur);
684 	io_ctl_unmap_page(io_ctl);
685 
686 	return 0;
687 }
688 
689 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
690 {
691 	struct btrfs_block_group *block_group = ctl->block_group;
692 	u64 max_bytes;
693 	u64 bitmap_bytes;
694 	u64 extent_bytes;
695 	u64 size = block_group->length;
696 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
697 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
698 
699 	max_bitmaps = max_t(u64, max_bitmaps, 1);
700 
701 	if (ctl->total_bitmaps > max_bitmaps)
702 		btrfs_err(block_group->fs_info,
703 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
704 			  block_group->start, block_group->length,
705 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
706 			  bytes_per_bg);
707 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
708 
709 	/*
710 	 * We are trying to keep the total amount of memory used per 1GiB of
711 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
712 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
713 	 * bitmaps, we may end up using more memory than this.
714 	 */
715 	if (size < SZ_1G)
716 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
717 	else
718 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
719 
720 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
721 
722 	/*
723 	 * we want the extent entry threshold to always be at most 1/2 the max
724 	 * bytes we can have, or whatever is less than that.
725 	 */
726 	extent_bytes = max_bytes - bitmap_bytes;
727 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
728 
729 	ctl->extents_thresh =
730 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
731 }
732 
733 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
734 				   struct btrfs_free_space_ctl *ctl,
735 				   struct btrfs_path *path, u64 offset)
736 {
737 	struct btrfs_fs_info *fs_info = root->fs_info;
738 	struct btrfs_free_space_header *header;
739 	struct extent_buffer *leaf;
740 	struct btrfs_io_ctl io_ctl;
741 	struct btrfs_key key;
742 	struct btrfs_free_space *e, *n;
743 	LIST_HEAD(bitmaps);
744 	u64 num_entries;
745 	u64 num_bitmaps;
746 	u64 generation;
747 	u8 type;
748 	int ret = 0;
749 
750 	/* Nothing in the space cache, goodbye */
751 	if (!i_size_read(inode))
752 		return 0;
753 
754 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
755 	key.offset = offset;
756 	key.type = 0;
757 
758 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
759 	if (ret < 0)
760 		return 0;
761 	else if (ret > 0) {
762 		btrfs_release_path(path);
763 		return 0;
764 	}
765 
766 	ret = -1;
767 
768 	leaf = path->nodes[0];
769 	header = btrfs_item_ptr(leaf, path->slots[0],
770 				struct btrfs_free_space_header);
771 	num_entries = btrfs_free_space_entries(leaf, header);
772 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
773 	generation = btrfs_free_space_generation(leaf, header);
774 	btrfs_release_path(path);
775 
776 	if (!BTRFS_I(inode)->generation) {
777 		btrfs_info(fs_info,
778 			   "the free space cache file (%llu) is invalid, skip it",
779 			   offset);
780 		return 0;
781 	}
782 
783 	if (BTRFS_I(inode)->generation != generation) {
784 		btrfs_err(fs_info,
785 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
786 			  BTRFS_I(inode)->generation, generation);
787 		return 0;
788 	}
789 
790 	if (!num_entries)
791 		return 0;
792 
793 	ret = io_ctl_init(&io_ctl, inode, 0);
794 	if (ret)
795 		return ret;
796 
797 	readahead_cache(inode);
798 
799 	ret = io_ctl_prepare_pages(&io_ctl, true);
800 	if (ret)
801 		goto out;
802 
803 	ret = io_ctl_check_crc(&io_ctl, 0);
804 	if (ret)
805 		goto free_cache;
806 
807 	ret = io_ctl_check_generation(&io_ctl, generation);
808 	if (ret)
809 		goto free_cache;
810 
811 	while (num_entries) {
812 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
813 				      GFP_NOFS);
814 		if (!e) {
815 			ret = -ENOMEM;
816 			goto free_cache;
817 		}
818 
819 		ret = io_ctl_read_entry(&io_ctl, e, &type);
820 		if (ret) {
821 			kmem_cache_free(btrfs_free_space_cachep, e);
822 			goto free_cache;
823 		}
824 
825 		if (!e->bytes) {
826 			ret = -1;
827 			kmem_cache_free(btrfs_free_space_cachep, e);
828 			goto free_cache;
829 		}
830 
831 		if (type == BTRFS_FREE_SPACE_EXTENT) {
832 			spin_lock(&ctl->tree_lock);
833 			ret = link_free_space(ctl, e);
834 			spin_unlock(&ctl->tree_lock);
835 			if (ret) {
836 				btrfs_err(fs_info,
837 					"Duplicate entries in free space cache, dumping");
838 				kmem_cache_free(btrfs_free_space_cachep, e);
839 				goto free_cache;
840 			}
841 		} else {
842 			ASSERT(num_bitmaps);
843 			num_bitmaps--;
844 			e->bitmap = kmem_cache_zalloc(
845 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
846 			if (!e->bitmap) {
847 				ret = -ENOMEM;
848 				kmem_cache_free(
849 					btrfs_free_space_cachep, e);
850 				goto free_cache;
851 			}
852 			spin_lock(&ctl->tree_lock);
853 			ret = link_free_space(ctl, e);
854 			if (ret) {
855 				spin_unlock(&ctl->tree_lock);
856 				btrfs_err(fs_info,
857 					"Duplicate entries in free space cache, dumping");
858 				kmem_cache_free(btrfs_free_space_cachep, e);
859 				goto free_cache;
860 			}
861 			ctl->total_bitmaps++;
862 			recalculate_thresholds(ctl);
863 			spin_unlock(&ctl->tree_lock);
864 			list_add_tail(&e->list, &bitmaps);
865 		}
866 
867 		num_entries--;
868 	}
869 
870 	io_ctl_unmap_page(&io_ctl);
871 
872 	/*
873 	 * We add the bitmaps at the end of the entries in order that
874 	 * the bitmap entries are added to the cache.
875 	 */
876 	list_for_each_entry_safe(e, n, &bitmaps, list) {
877 		list_del_init(&e->list);
878 		ret = io_ctl_read_bitmap(&io_ctl, e);
879 		if (ret)
880 			goto free_cache;
881 	}
882 
883 	io_ctl_drop_pages(&io_ctl);
884 	ret = 1;
885 out:
886 	io_ctl_free(&io_ctl);
887 	return ret;
888 free_cache:
889 	io_ctl_drop_pages(&io_ctl);
890 
891 	spin_lock(&ctl->tree_lock);
892 	__btrfs_remove_free_space_cache(ctl);
893 	spin_unlock(&ctl->tree_lock);
894 	goto out;
895 }
896 
897 static int copy_free_space_cache(struct btrfs_block_group *block_group,
898 				 struct btrfs_free_space_ctl *ctl)
899 {
900 	struct btrfs_free_space *info;
901 	struct rb_node *n;
902 	int ret = 0;
903 
904 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
905 		info = rb_entry(n, struct btrfs_free_space, offset_index);
906 		if (!info->bitmap) {
907 			const u64 offset = info->offset;
908 			const u64 bytes = info->bytes;
909 
910 			unlink_free_space(ctl, info, true);
911 			spin_unlock(&ctl->tree_lock);
912 			kmem_cache_free(btrfs_free_space_cachep, info);
913 			ret = btrfs_add_free_space(block_group, offset, bytes);
914 			spin_lock(&ctl->tree_lock);
915 		} else {
916 			u64 offset = info->offset;
917 			u64 bytes = ctl->unit;
918 
919 			ret = search_bitmap(ctl, info, &offset, &bytes, false);
920 			if (ret == 0) {
921 				bitmap_clear_bits(ctl, info, offset, bytes, true);
922 				spin_unlock(&ctl->tree_lock);
923 				ret = btrfs_add_free_space(block_group, offset,
924 							   bytes);
925 				spin_lock(&ctl->tree_lock);
926 			} else {
927 				free_bitmap(ctl, info);
928 				ret = 0;
929 			}
930 		}
931 		cond_resched_lock(&ctl->tree_lock);
932 	}
933 	return ret;
934 }
935 
936 static struct lock_class_key btrfs_free_space_inode_key;
937 
938 int load_free_space_cache(struct btrfs_block_group *block_group)
939 {
940 	struct btrfs_fs_info *fs_info = block_group->fs_info;
941 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
942 	struct btrfs_free_space_ctl tmp_ctl = {};
943 	struct inode *inode;
944 	struct btrfs_path *path;
945 	int ret = 0;
946 	bool matched;
947 	u64 used = block_group->used;
948 
949 	/*
950 	 * Because we could potentially discard our loaded free space, we want
951 	 * to load everything into a temporary structure first, and then if it's
952 	 * valid copy it all into the actual free space ctl.
953 	 */
954 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
955 
956 	/*
957 	 * If this block group has been marked to be cleared for one reason or
958 	 * another then we can't trust the on disk cache, so just return.
959 	 */
960 	spin_lock(&block_group->lock);
961 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
962 		spin_unlock(&block_group->lock);
963 		return 0;
964 	}
965 	spin_unlock(&block_group->lock);
966 
967 	path = btrfs_alloc_path();
968 	if (!path)
969 		return 0;
970 	path->search_commit_root = 1;
971 	path->skip_locking = 1;
972 
973 	/*
974 	 * We must pass a path with search_commit_root set to btrfs_iget in
975 	 * order to avoid a deadlock when allocating extents for the tree root.
976 	 *
977 	 * When we are COWing an extent buffer from the tree root, when looking
978 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
979 	 * block group without its free space cache loaded. When we find one
980 	 * we must load its space cache which requires reading its free space
981 	 * cache's inode item from the root tree. If this inode item is located
982 	 * in the same leaf that we started COWing before, then we end up in
983 	 * deadlock on the extent buffer (trying to read lock it when we
984 	 * previously write locked it).
985 	 *
986 	 * It's safe to read the inode item using the commit root because
987 	 * block groups, once loaded, stay in memory forever (until they are
988 	 * removed) as well as their space caches once loaded. New block groups
989 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
990 	 * we will never try to read their inode item while the fs is mounted.
991 	 */
992 	inode = lookup_free_space_inode(block_group, path);
993 	if (IS_ERR(inode)) {
994 		btrfs_free_path(path);
995 		return 0;
996 	}
997 
998 	/* We may have converted the inode and made the cache invalid. */
999 	spin_lock(&block_group->lock);
1000 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1001 		spin_unlock(&block_group->lock);
1002 		btrfs_free_path(path);
1003 		goto out;
1004 	}
1005 	spin_unlock(&block_group->lock);
1006 
1007 	/*
1008 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1009 	 * free space inodes to prevent false positives related to locks for normal
1010 	 * inodes.
1011 	 */
1012 	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1013 			  &btrfs_free_space_inode_key);
1014 
1015 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1016 				      path, block_group->start);
1017 	btrfs_free_path(path);
1018 	if (ret <= 0)
1019 		goto out;
1020 
1021 	matched = (tmp_ctl.free_space == (block_group->length - used -
1022 					  block_group->bytes_super));
1023 
1024 	if (matched) {
1025 		spin_lock(&tmp_ctl.tree_lock);
1026 		ret = copy_free_space_cache(block_group, &tmp_ctl);
1027 		spin_unlock(&tmp_ctl.tree_lock);
1028 		/*
1029 		 * ret == 1 means we successfully loaded the free space cache,
1030 		 * so we need to re-set it here.
1031 		 */
1032 		if (ret == 0)
1033 			ret = 1;
1034 	} else {
1035 		/*
1036 		 * We need to call the _locked variant so we don't try to update
1037 		 * the discard counters.
1038 		 */
1039 		spin_lock(&tmp_ctl.tree_lock);
1040 		__btrfs_remove_free_space_cache(&tmp_ctl);
1041 		spin_unlock(&tmp_ctl.tree_lock);
1042 		btrfs_warn(fs_info,
1043 			   "block group %llu has wrong amount of free space",
1044 			   block_group->start);
1045 		ret = -1;
1046 	}
1047 out:
1048 	if (ret < 0) {
1049 		/* This cache is bogus, make sure it gets cleared */
1050 		spin_lock(&block_group->lock);
1051 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1052 		spin_unlock(&block_group->lock);
1053 		ret = 0;
1054 
1055 		btrfs_warn(fs_info,
1056 			   "failed to load free space cache for block group %llu, rebuilding it now",
1057 			   block_group->start);
1058 	}
1059 
1060 	spin_lock(&ctl->tree_lock);
1061 	btrfs_discard_update_discardable(block_group);
1062 	spin_unlock(&ctl->tree_lock);
1063 	iput(inode);
1064 	return ret;
1065 }
1066 
1067 static noinline_for_stack
1068 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1069 			      struct btrfs_free_space_ctl *ctl,
1070 			      struct btrfs_block_group *block_group,
1071 			      int *entries, int *bitmaps,
1072 			      struct list_head *bitmap_list)
1073 {
1074 	int ret;
1075 	struct btrfs_free_cluster *cluster = NULL;
1076 	struct btrfs_free_cluster *cluster_locked = NULL;
1077 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1078 	struct btrfs_trim_range *trim_entry;
1079 
1080 	/* Get the cluster for this block_group if it exists */
1081 	if (block_group && !list_empty(&block_group->cluster_list)) {
1082 		cluster = list_entry(block_group->cluster_list.next,
1083 				     struct btrfs_free_cluster,
1084 				     block_group_list);
1085 	}
1086 
1087 	if (!node && cluster) {
1088 		cluster_locked = cluster;
1089 		spin_lock(&cluster_locked->lock);
1090 		node = rb_first(&cluster->root);
1091 		cluster = NULL;
1092 	}
1093 
1094 	/* Write out the extent entries */
1095 	while (node) {
1096 		struct btrfs_free_space *e;
1097 
1098 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1099 		*entries += 1;
1100 
1101 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1102 				       e->bitmap);
1103 		if (ret)
1104 			goto fail;
1105 
1106 		if (e->bitmap) {
1107 			list_add_tail(&e->list, bitmap_list);
1108 			*bitmaps += 1;
1109 		}
1110 		node = rb_next(node);
1111 		if (!node && cluster) {
1112 			node = rb_first(&cluster->root);
1113 			cluster_locked = cluster;
1114 			spin_lock(&cluster_locked->lock);
1115 			cluster = NULL;
1116 		}
1117 	}
1118 	if (cluster_locked) {
1119 		spin_unlock(&cluster_locked->lock);
1120 		cluster_locked = NULL;
1121 	}
1122 
1123 	/*
1124 	 * Make sure we don't miss any range that was removed from our rbtree
1125 	 * because trimming is running. Otherwise after a umount+mount (or crash
1126 	 * after committing the transaction) we would leak free space and get
1127 	 * an inconsistent free space cache report from fsck.
1128 	 */
1129 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1130 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1131 				       trim_entry->bytes, NULL);
1132 		if (ret)
1133 			goto fail;
1134 		*entries += 1;
1135 	}
1136 
1137 	return 0;
1138 fail:
1139 	if (cluster_locked)
1140 		spin_unlock(&cluster_locked->lock);
1141 	return -ENOSPC;
1142 }
1143 
1144 static noinline_for_stack int
1145 update_cache_item(struct btrfs_trans_handle *trans,
1146 		  struct btrfs_root *root,
1147 		  struct inode *inode,
1148 		  struct btrfs_path *path, u64 offset,
1149 		  int entries, int bitmaps)
1150 {
1151 	struct btrfs_key key;
1152 	struct btrfs_free_space_header *header;
1153 	struct extent_buffer *leaf;
1154 	int ret;
1155 
1156 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1157 	key.offset = offset;
1158 	key.type = 0;
1159 
1160 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1161 	if (ret < 0) {
1162 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1163 				 EXTENT_DELALLOC, NULL);
1164 		goto fail;
1165 	}
1166 	leaf = path->nodes[0];
1167 	if (ret > 0) {
1168 		struct btrfs_key found_key;
1169 		ASSERT(path->slots[0]);
1170 		path->slots[0]--;
1171 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1172 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1173 		    found_key.offset != offset) {
1174 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1175 					 inode->i_size - 1, EXTENT_DELALLOC,
1176 					 NULL);
1177 			btrfs_release_path(path);
1178 			goto fail;
1179 		}
1180 	}
1181 
1182 	BTRFS_I(inode)->generation = trans->transid;
1183 	header = btrfs_item_ptr(leaf, path->slots[0],
1184 				struct btrfs_free_space_header);
1185 	btrfs_set_free_space_entries(leaf, header, entries);
1186 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1187 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1188 	btrfs_mark_buffer_dirty(leaf);
1189 	btrfs_release_path(path);
1190 
1191 	return 0;
1192 
1193 fail:
1194 	return -1;
1195 }
1196 
1197 static noinline_for_stack int write_pinned_extent_entries(
1198 			    struct btrfs_trans_handle *trans,
1199 			    struct btrfs_block_group *block_group,
1200 			    struct btrfs_io_ctl *io_ctl,
1201 			    int *entries)
1202 {
1203 	u64 start, extent_start, extent_end, len;
1204 	struct extent_io_tree *unpin = NULL;
1205 	int ret;
1206 
1207 	if (!block_group)
1208 		return 0;
1209 
1210 	/*
1211 	 * We want to add any pinned extents to our free space cache
1212 	 * so we don't leak the space
1213 	 *
1214 	 * We shouldn't have switched the pinned extents yet so this is the
1215 	 * right one
1216 	 */
1217 	unpin = &trans->transaction->pinned_extents;
1218 
1219 	start = block_group->start;
1220 
1221 	while (start < block_group->start + block_group->length) {
1222 		ret = find_first_extent_bit(unpin, start,
1223 					    &extent_start, &extent_end,
1224 					    EXTENT_DIRTY, NULL);
1225 		if (ret)
1226 			return 0;
1227 
1228 		/* This pinned extent is out of our range */
1229 		if (extent_start >= block_group->start + block_group->length)
1230 			return 0;
1231 
1232 		extent_start = max(extent_start, start);
1233 		extent_end = min(block_group->start + block_group->length,
1234 				 extent_end + 1);
1235 		len = extent_end - extent_start;
1236 
1237 		*entries += 1;
1238 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1239 		if (ret)
1240 			return -ENOSPC;
1241 
1242 		start = extent_end;
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 static noinline_for_stack int
1249 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1250 {
1251 	struct btrfs_free_space *entry, *next;
1252 	int ret;
1253 
1254 	/* Write out the bitmaps */
1255 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1256 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1257 		if (ret)
1258 			return -ENOSPC;
1259 		list_del_init(&entry->list);
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 static int flush_dirty_cache(struct inode *inode)
1266 {
1267 	int ret;
1268 
1269 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1270 	if (ret)
1271 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1272 				 EXTENT_DELALLOC, NULL);
1273 
1274 	return ret;
1275 }
1276 
1277 static void noinline_for_stack
1278 cleanup_bitmap_list(struct list_head *bitmap_list)
1279 {
1280 	struct btrfs_free_space *entry, *next;
1281 
1282 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1283 		list_del_init(&entry->list);
1284 }
1285 
1286 static void noinline_for_stack
1287 cleanup_write_cache_enospc(struct inode *inode,
1288 			   struct btrfs_io_ctl *io_ctl,
1289 			   struct extent_state **cached_state)
1290 {
1291 	io_ctl_drop_pages(io_ctl);
1292 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1293 		      cached_state);
1294 }
1295 
1296 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1297 				 struct btrfs_trans_handle *trans,
1298 				 struct btrfs_block_group *block_group,
1299 				 struct btrfs_io_ctl *io_ctl,
1300 				 struct btrfs_path *path, u64 offset)
1301 {
1302 	int ret;
1303 	struct inode *inode = io_ctl->inode;
1304 
1305 	if (!inode)
1306 		return 0;
1307 
1308 	/* Flush the dirty pages in the cache file. */
1309 	ret = flush_dirty_cache(inode);
1310 	if (ret)
1311 		goto out;
1312 
1313 	/* Update the cache item to tell everyone this cache file is valid. */
1314 	ret = update_cache_item(trans, root, inode, path, offset,
1315 				io_ctl->entries, io_ctl->bitmaps);
1316 out:
1317 	if (ret) {
1318 		invalidate_inode_pages2(inode->i_mapping);
1319 		BTRFS_I(inode)->generation = 0;
1320 		if (block_group)
1321 			btrfs_debug(root->fs_info,
1322 	  "failed to write free space cache for block group %llu error %d",
1323 				  block_group->start, ret);
1324 	}
1325 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1326 
1327 	if (block_group) {
1328 		/* the dirty list is protected by the dirty_bgs_lock */
1329 		spin_lock(&trans->transaction->dirty_bgs_lock);
1330 
1331 		/* the disk_cache_state is protected by the block group lock */
1332 		spin_lock(&block_group->lock);
1333 
1334 		/*
1335 		 * only mark this as written if we didn't get put back on
1336 		 * the dirty list while waiting for IO.   Otherwise our
1337 		 * cache state won't be right, and we won't get written again
1338 		 */
1339 		if (!ret && list_empty(&block_group->dirty_list))
1340 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1341 		else if (ret)
1342 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1343 
1344 		spin_unlock(&block_group->lock);
1345 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1346 		io_ctl->inode = NULL;
1347 		iput(inode);
1348 	}
1349 
1350 	return ret;
1351 
1352 }
1353 
1354 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1355 			struct btrfs_block_group *block_group,
1356 			struct btrfs_path *path)
1357 {
1358 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1359 				     block_group, &block_group->io_ctl,
1360 				     path, block_group->start);
1361 }
1362 
1363 /*
1364  * Write out cached info to an inode.
1365  *
1366  * @root:        root the inode belongs to
1367  * @inode:       freespace inode we are writing out
1368  * @ctl:         free space cache we are going to write out
1369  * @block_group: block_group for this cache if it belongs to a block_group
1370  * @io_ctl:      holds context for the io
1371  * @trans:       the trans handle
1372  *
1373  * This function writes out a free space cache struct to disk for quick recovery
1374  * on mount.  This will return 0 if it was successful in writing the cache out,
1375  * or an errno if it was not.
1376  */
1377 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1378 				   struct btrfs_free_space_ctl *ctl,
1379 				   struct btrfs_block_group *block_group,
1380 				   struct btrfs_io_ctl *io_ctl,
1381 				   struct btrfs_trans_handle *trans)
1382 {
1383 	struct extent_state *cached_state = NULL;
1384 	LIST_HEAD(bitmap_list);
1385 	int entries = 0;
1386 	int bitmaps = 0;
1387 	int ret;
1388 	int must_iput = 0;
1389 
1390 	if (!i_size_read(inode))
1391 		return -EIO;
1392 
1393 	WARN_ON(io_ctl->pages);
1394 	ret = io_ctl_init(io_ctl, inode, 1);
1395 	if (ret)
1396 		return ret;
1397 
1398 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1399 		down_write(&block_group->data_rwsem);
1400 		spin_lock(&block_group->lock);
1401 		if (block_group->delalloc_bytes) {
1402 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1403 			spin_unlock(&block_group->lock);
1404 			up_write(&block_group->data_rwsem);
1405 			BTRFS_I(inode)->generation = 0;
1406 			ret = 0;
1407 			must_iput = 1;
1408 			goto out;
1409 		}
1410 		spin_unlock(&block_group->lock);
1411 	}
1412 
1413 	/* Lock all pages first so we can lock the extent safely. */
1414 	ret = io_ctl_prepare_pages(io_ctl, false);
1415 	if (ret)
1416 		goto out_unlock;
1417 
1418 	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1419 		    &cached_state);
1420 
1421 	io_ctl_set_generation(io_ctl, trans->transid);
1422 
1423 	mutex_lock(&ctl->cache_writeout_mutex);
1424 	/* Write out the extent entries in the free space cache */
1425 	spin_lock(&ctl->tree_lock);
1426 	ret = write_cache_extent_entries(io_ctl, ctl,
1427 					 block_group, &entries, &bitmaps,
1428 					 &bitmap_list);
1429 	if (ret)
1430 		goto out_nospc_locked;
1431 
1432 	/*
1433 	 * Some spaces that are freed in the current transaction are pinned,
1434 	 * they will be added into free space cache after the transaction is
1435 	 * committed, we shouldn't lose them.
1436 	 *
1437 	 * If this changes while we are working we'll get added back to
1438 	 * the dirty list and redo it.  No locking needed
1439 	 */
1440 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1441 	if (ret)
1442 		goto out_nospc_locked;
1443 
1444 	/*
1445 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1446 	 * locked while doing it because a concurrent trim can be manipulating
1447 	 * or freeing the bitmap.
1448 	 */
1449 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1450 	spin_unlock(&ctl->tree_lock);
1451 	mutex_unlock(&ctl->cache_writeout_mutex);
1452 	if (ret)
1453 		goto out_nospc;
1454 
1455 	/* Zero out the rest of the pages just to make sure */
1456 	io_ctl_zero_remaining_pages(io_ctl);
1457 
1458 	/* Everything is written out, now we dirty the pages in the file. */
1459 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1460 				io_ctl->num_pages, 0, i_size_read(inode),
1461 				&cached_state, false);
1462 	if (ret)
1463 		goto out_nospc;
1464 
1465 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1466 		up_write(&block_group->data_rwsem);
1467 	/*
1468 	 * Release the pages and unlock the extent, we will flush
1469 	 * them out later
1470 	 */
1471 	io_ctl_drop_pages(io_ctl);
1472 	io_ctl_free(io_ctl);
1473 
1474 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1475 		      &cached_state);
1476 
1477 	/*
1478 	 * at this point the pages are under IO and we're happy,
1479 	 * The caller is responsible for waiting on them and updating
1480 	 * the cache and the inode
1481 	 */
1482 	io_ctl->entries = entries;
1483 	io_ctl->bitmaps = bitmaps;
1484 
1485 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1486 	if (ret)
1487 		goto out;
1488 
1489 	return 0;
1490 
1491 out_nospc_locked:
1492 	cleanup_bitmap_list(&bitmap_list);
1493 	spin_unlock(&ctl->tree_lock);
1494 	mutex_unlock(&ctl->cache_writeout_mutex);
1495 
1496 out_nospc:
1497 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1498 
1499 out_unlock:
1500 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1501 		up_write(&block_group->data_rwsem);
1502 
1503 out:
1504 	io_ctl->inode = NULL;
1505 	io_ctl_free(io_ctl);
1506 	if (ret) {
1507 		invalidate_inode_pages2(inode->i_mapping);
1508 		BTRFS_I(inode)->generation = 0;
1509 	}
1510 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1511 	if (must_iput)
1512 		iput(inode);
1513 	return ret;
1514 }
1515 
1516 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1517 			  struct btrfs_block_group *block_group,
1518 			  struct btrfs_path *path)
1519 {
1520 	struct btrfs_fs_info *fs_info = trans->fs_info;
1521 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1522 	struct inode *inode;
1523 	int ret = 0;
1524 
1525 	spin_lock(&block_group->lock);
1526 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1527 		spin_unlock(&block_group->lock);
1528 		return 0;
1529 	}
1530 	spin_unlock(&block_group->lock);
1531 
1532 	inode = lookup_free_space_inode(block_group, path);
1533 	if (IS_ERR(inode))
1534 		return 0;
1535 
1536 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1537 				block_group, &block_group->io_ctl, trans);
1538 	if (ret) {
1539 		btrfs_debug(fs_info,
1540 	  "failed to write free space cache for block group %llu error %d",
1541 			  block_group->start, ret);
1542 		spin_lock(&block_group->lock);
1543 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1544 		spin_unlock(&block_group->lock);
1545 
1546 		block_group->io_ctl.inode = NULL;
1547 		iput(inode);
1548 	}
1549 
1550 	/*
1551 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1552 	 * to wait for IO and put the inode
1553 	 */
1554 
1555 	return ret;
1556 }
1557 
1558 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1559 					  u64 offset)
1560 {
1561 	ASSERT(offset >= bitmap_start);
1562 	offset -= bitmap_start;
1563 	return (unsigned long)(div_u64(offset, unit));
1564 }
1565 
1566 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1567 {
1568 	return (unsigned long)(div_u64(bytes, unit));
1569 }
1570 
1571 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1572 				   u64 offset)
1573 {
1574 	u64 bitmap_start;
1575 	u64 bytes_per_bitmap;
1576 
1577 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1578 	bitmap_start = offset - ctl->start;
1579 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1580 	bitmap_start *= bytes_per_bitmap;
1581 	bitmap_start += ctl->start;
1582 
1583 	return bitmap_start;
1584 }
1585 
1586 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1587 			      struct btrfs_free_cluster *cluster,
1588 			      struct btrfs_free_space *new_entry)
1589 {
1590 	struct rb_root *root;
1591 	struct rb_node **p;
1592 	struct rb_node *parent = NULL;
1593 
1594 	lockdep_assert_held(&ctl->tree_lock);
1595 
1596 	if (cluster) {
1597 		lockdep_assert_held(&cluster->lock);
1598 		root = &cluster->root;
1599 	} else {
1600 		root = &ctl->free_space_offset;
1601 	}
1602 
1603 	p = &root->rb_node;
1604 
1605 	while (*p) {
1606 		struct btrfs_free_space *info;
1607 
1608 		parent = *p;
1609 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1610 
1611 		if (new_entry->offset < info->offset) {
1612 			p = &(*p)->rb_left;
1613 		} else if (new_entry->offset > info->offset) {
1614 			p = &(*p)->rb_right;
1615 		} else {
1616 			/*
1617 			 * we could have a bitmap entry and an extent entry
1618 			 * share the same offset.  If this is the case, we want
1619 			 * the extent entry to always be found first if we do a
1620 			 * linear search through the tree, since we want to have
1621 			 * the quickest allocation time, and allocating from an
1622 			 * extent is faster than allocating from a bitmap.  So
1623 			 * if we're inserting a bitmap and we find an entry at
1624 			 * this offset, we want to go right, or after this entry
1625 			 * logically.  If we are inserting an extent and we've
1626 			 * found a bitmap, we want to go left, or before
1627 			 * logically.
1628 			 */
1629 			if (new_entry->bitmap) {
1630 				if (info->bitmap) {
1631 					WARN_ON_ONCE(1);
1632 					return -EEXIST;
1633 				}
1634 				p = &(*p)->rb_right;
1635 			} else {
1636 				if (!info->bitmap) {
1637 					WARN_ON_ONCE(1);
1638 					return -EEXIST;
1639 				}
1640 				p = &(*p)->rb_left;
1641 			}
1642 		}
1643 	}
1644 
1645 	rb_link_node(&new_entry->offset_index, parent, p);
1646 	rb_insert_color(&new_entry->offset_index, root);
1647 
1648 	return 0;
1649 }
1650 
1651 /*
1652  * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1653  * searched through the bitmap and figured out the largest ->max_extent_size,
1654  * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1655  * allocator the wrong thing, we want to use the actual real max_extent_size
1656  * we've found already if it's larger, or we want to use ->bytes.
1657  *
1658  * This matters because find_free_space() will skip entries who's ->bytes is
1659  * less than the required bytes.  So if we didn't search down this bitmap, we
1660  * may pick some previous entry that has a smaller ->max_extent_size than we
1661  * have.  For example, assume we have two entries, one that has
1662  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1663  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1664  *  call into find_free_space(), and return with max_extent_size == 4K, because
1665  *  that first bitmap entry had ->max_extent_size set, but the second one did
1666  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1667  *  8K contiguous range.
1668  *
1669  *  Consider the other case, we have 2 8K chunks in that second entry and still
1670  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1671  *  allocator comes in it'll fully search our second bitmap, and this time it'll
1672  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1673  *  right allocation the next loop through.
1674  */
1675 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1676 {
1677 	if (entry->bitmap && entry->max_extent_size)
1678 		return entry->max_extent_size;
1679 	return entry->bytes;
1680 }
1681 
1682 /*
1683  * We want the largest entry to be leftmost, so this is inverted from what you'd
1684  * normally expect.
1685  */
1686 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1687 {
1688 	const struct btrfs_free_space *entry, *exist;
1689 
1690 	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1691 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1692 	return get_max_extent_size(exist) < get_max_extent_size(entry);
1693 }
1694 
1695 /*
1696  * searches the tree for the given offset.
1697  *
1698  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1699  * want a section that has at least bytes size and comes at or after the given
1700  * offset.
1701  */
1702 static struct btrfs_free_space *
1703 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1704 		   u64 offset, int bitmap_only, int fuzzy)
1705 {
1706 	struct rb_node *n = ctl->free_space_offset.rb_node;
1707 	struct btrfs_free_space *entry = NULL, *prev = NULL;
1708 
1709 	lockdep_assert_held(&ctl->tree_lock);
1710 
1711 	/* find entry that is closest to the 'offset' */
1712 	while (n) {
1713 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1714 		prev = entry;
1715 
1716 		if (offset < entry->offset)
1717 			n = n->rb_left;
1718 		else if (offset > entry->offset)
1719 			n = n->rb_right;
1720 		else
1721 			break;
1722 
1723 		entry = NULL;
1724 	}
1725 
1726 	if (bitmap_only) {
1727 		if (!entry)
1728 			return NULL;
1729 		if (entry->bitmap)
1730 			return entry;
1731 
1732 		/*
1733 		 * bitmap entry and extent entry may share same offset,
1734 		 * in that case, bitmap entry comes after extent entry.
1735 		 */
1736 		n = rb_next(n);
1737 		if (!n)
1738 			return NULL;
1739 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1740 		if (entry->offset != offset)
1741 			return NULL;
1742 
1743 		WARN_ON(!entry->bitmap);
1744 		return entry;
1745 	} else if (entry) {
1746 		if (entry->bitmap) {
1747 			/*
1748 			 * if previous extent entry covers the offset,
1749 			 * we should return it instead of the bitmap entry
1750 			 */
1751 			n = rb_prev(&entry->offset_index);
1752 			if (n) {
1753 				prev = rb_entry(n, struct btrfs_free_space,
1754 						offset_index);
1755 				if (!prev->bitmap &&
1756 				    prev->offset + prev->bytes > offset)
1757 					entry = prev;
1758 			}
1759 		}
1760 		return entry;
1761 	}
1762 
1763 	if (!prev)
1764 		return NULL;
1765 
1766 	/* find last entry before the 'offset' */
1767 	entry = prev;
1768 	if (entry->offset > offset) {
1769 		n = rb_prev(&entry->offset_index);
1770 		if (n) {
1771 			entry = rb_entry(n, struct btrfs_free_space,
1772 					offset_index);
1773 			ASSERT(entry->offset <= offset);
1774 		} else {
1775 			if (fuzzy)
1776 				return entry;
1777 			else
1778 				return NULL;
1779 		}
1780 	}
1781 
1782 	if (entry->bitmap) {
1783 		n = rb_prev(&entry->offset_index);
1784 		if (n) {
1785 			prev = rb_entry(n, struct btrfs_free_space,
1786 					offset_index);
1787 			if (!prev->bitmap &&
1788 			    prev->offset + prev->bytes > offset)
1789 				return prev;
1790 		}
1791 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1792 			return entry;
1793 	} else if (entry->offset + entry->bytes > offset)
1794 		return entry;
1795 
1796 	if (!fuzzy)
1797 		return NULL;
1798 
1799 	while (1) {
1800 		n = rb_next(&entry->offset_index);
1801 		if (!n)
1802 			return NULL;
1803 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1804 		if (entry->bitmap) {
1805 			if (entry->offset + BITS_PER_BITMAP *
1806 			    ctl->unit > offset)
1807 				break;
1808 		} else {
1809 			if (entry->offset + entry->bytes > offset)
1810 				break;
1811 		}
1812 	}
1813 	return entry;
1814 }
1815 
1816 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1817 				     struct btrfs_free_space *info,
1818 				     bool update_stat)
1819 {
1820 	lockdep_assert_held(&ctl->tree_lock);
1821 
1822 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1823 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1824 	ctl->free_extents--;
1825 
1826 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1827 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1828 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1829 	}
1830 
1831 	if (update_stat)
1832 		ctl->free_space -= info->bytes;
1833 }
1834 
1835 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1836 			   struct btrfs_free_space *info)
1837 {
1838 	int ret = 0;
1839 
1840 	lockdep_assert_held(&ctl->tree_lock);
1841 
1842 	ASSERT(info->bytes || info->bitmap);
1843 	ret = tree_insert_offset(ctl, NULL, info);
1844 	if (ret)
1845 		return ret;
1846 
1847 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1848 
1849 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1850 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1851 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1852 	}
1853 
1854 	ctl->free_space += info->bytes;
1855 	ctl->free_extents++;
1856 	return ret;
1857 }
1858 
1859 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1860 				struct btrfs_free_space *info)
1861 {
1862 	ASSERT(info->bitmap);
1863 
1864 	/*
1865 	 * If our entry is empty it's because we're on a cluster and we don't
1866 	 * want to re-link it into our ctl bytes index.
1867 	 */
1868 	if (RB_EMPTY_NODE(&info->bytes_index))
1869 		return;
1870 
1871 	lockdep_assert_held(&ctl->tree_lock);
1872 
1873 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1874 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1875 }
1876 
1877 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1878 				     struct btrfs_free_space *info,
1879 				     u64 offset, u64 bytes, bool update_stat)
1880 {
1881 	unsigned long start, count, end;
1882 	int extent_delta = -1;
1883 
1884 	start = offset_to_bit(info->offset, ctl->unit, offset);
1885 	count = bytes_to_bits(bytes, ctl->unit);
1886 	end = start + count;
1887 	ASSERT(end <= BITS_PER_BITMAP);
1888 
1889 	bitmap_clear(info->bitmap, start, count);
1890 
1891 	info->bytes -= bytes;
1892 	if (info->max_extent_size > ctl->unit)
1893 		info->max_extent_size = 0;
1894 
1895 	relink_bitmap_entry(ctl, info);
1896 
1897 	if (start && test_bit(start - 1, info->bitmap))
1898 		extent_delta++;
1899 
1900 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1901 		extent_delta++;
1902 
1903 	info->bitmap_extents += extent_delta;
1904 	if (!btrfs_free_space_trimmed(info)) {
1905 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1906 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1907 	}
1908 
1909 	if (update_stat)
1910 		ctl->free_space -= bytes;
1911 }
1912 
1913 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1914 			    struct btrfs_free_space *info, u64 offset,
1915 			    u64 bytes)
1916 {
1917 	unsigned long start, count, end;
1918 	int extent_delta = 1;
1919 
1920 	start = offset_to_bit(info->offset, ctl->unit, offset);
1921 	count = bytes_to_bits(bytes, ctl->unit);
1922 	end = start + count;
1923 	ASSERT(end <= BITS_PER_BITMAP);
1924 
1925 	bitmap_set(info->bitmap, start, count);
1926 
1927 	/*
1928 	 * We set some bytes, we have no idea what the max extent size is
1929 	 * anymore.
1930 	 */
1931 	info->max_extent_size = 0;
1932 	info->bytes += bytes;
1933 	ctl->free_space += bytes;
1934 
1935 	relink_bitmap_entry(ctl, info);
1936 
1937 	if (start && test_bit(start - 1, info->bitmap))
1938 		extent_delta--;
1939 
1940 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1941 		extent_delta--;
1942 
1943 	info->bitmap_extents += extent_delta;
1944 	if (!btrfs_free_space_trimmed(info)) {
1945 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1946 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1947 	}
1948 }
1949 
1950 /*
1951  * If we can not find suitable extent, we will use bytes to record
1952  * the size of the max extent.
1953  */
1954 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1955 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1956 			 u64 *bytes, bool for_alloc)
1957 {
1958 	unsigned long found_bits = 0;
1959 	unsigned long max_bits = 0;
1960 	unsigned long bits, i;
1961 	unsigned long next_zero;
1962 	unsigned long extent_bits;
1963 
1964 	/*
1965 	 * Skip searching the bitmap if we don't have a contiguous section that
1966 	 * is large enough for this allocation.
1967 	 */
1968 	if (for_alloc &&
1969 	    bitmap_info->max_extent_size &&
1970 	    bitmap_info->max_extent_size < *bytes) {
1971 		*bytes = bitmap_info->max_extent_size;
1972 		return -1;
1973 	}
1974 
1975 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1976 			  max_t(u64, *offset, bitmap_info->offset));
1977 	bits = bytes_to_bits(*bytes, ctl->unit);
1978 
1979 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1980 		if (for_alloc && bits == 1) {
1981 			found_bits = 1;
1982 			break;
1983 		}
1984 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1985 					       BITS_PER_BITMAP, i);
1986 		extent_bits = next_zero - i;
1987 		if (extent_bits >= bits) {
1988 			found_bits = extent_bits;
1989 			break;
1990 		} else if (extent_bits > max_bits) {
1991 			max_bits = extent_bits;
1992 		}
1993 		i = next_zero;
1994 	}
1995 
1996 	if (found_bits) {
1997 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1998 		*bytes = (u64)(found_bits) * ctl->unit;
1999 		return 0;
2000 	}
2001 
2002 	*bytes = (u64)(max_bits) * ctl->unit;
2003 	bitmap_info->max_extent_size = *bytes;
2004 	relink_bitmap_entry(ctl, bitmap_info);
2005 	return -1;
2006 }
2007 
2008 /* Cache the size of the max extent in bytes */
2009 static struct btrfs_free_space *
2010 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2011 		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2012 {
2013 	struct btrfs_free_space *entry;
2014 	struct rb_node *node;
2015 	u64 tmp;
2016 	u64 align_off;
2017 	int ret;
2018 
2019 	if (!ctl->free_space_offset.rb_node)
2020 		goto out;
2021 again:
2022 	if (use_bytes_index) {
2023 		node = rb_first_cached(&ctl->free_space_bytes);
2024 	} else {
2025 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2026 					   0, 1);
2027 		if (!entry)
2028 			goto out;
2029 		node = &entry->offset_index;
2030 	}
2031 
2032 	for (; node; node = rb_next(node)) {
2033 		if (use_bytes_index)
2034 			entry = rb_entry(node, struct btrfs_free_space,
2035 					 bytes_index);
2036 		else
2037 			entry = rb_entry(node, struct btrfs_free_space,
2038 					 offset_index);
2039 
2040 		/*
2041 		 * If we are using the bytes index then all subsequent entries
2042 		 * in this tree are going to be < bytes, so simply set the max
2043 		 * extent size and exit the loop.
2044 		 *
2045 		 * If we're using the offset index then we need to keep going
2046 		 * through the rest of the tree.
2047 		 */
2048 		if (entry->bytes < *bytes) {
2049 			*max_extent_size = max(get_max_extent_size(entry),
2050 					       *max_extent_size);
2051 			if (use_bytes_index)
2052 				break;
2053 			continue;
2054 		}
2055 
2056 		/* make sure the space returned is big enough
2057 		 * to match our requested alignment
2058 		 */
2059 		if (*bytes >= align) {
2060 			tmp = entry->offset - ctl->start + align - 1;
2061 			tmp = div64_u64(tmp, align);
2062 			tmp = tmp * align + ctl->start;
2063 			align_off = tmp - entry->offset;
2064 		} else {
2065 			align_off = 0;
2066 			tmp = entry->offset;
2067 		}
2068 
2069 		/*
2070 		 * We don't break here if we're using the bytes index because we
2071 		 * may have another entry that has the correct alignment that is
2072 		 * the right size, so we don't want to miss that possibility.
2073 		 * At worst this adds another loop through the logic, but if we
2074 		 * broke here we could prematurely ENOSPC.
2075 		 */
2076 		if (entry->bytes < *bytes + align_off) {
2077 			*max_extent_size = max(get_max_extent_size(entry),
2078 					       *max_extent_size);
2079 			continue;
2080 		}
2081 
2082 		if (entry->bitmap) {
2083 			struct rb_node *old_next = rb_next(node);
2084 			u64 size = *bytes;
2085 
2086 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2087 			if (!ret) {
2088 				*offset = tmp;
2089 				*bytes = size;
2090 				return entry;
2091 			} else {
2092 				*max_extent_size =
2093 					max(get_max_extent_size(entry),
2094 					    *max_extent_size);
2095 			}
2096 
2097 			/*
2098 			 * The bitmap may have gotten re-arranged in the space
2099 			 * index here because the max_extent_size may have been
2100 			 * updated.  Start from the beginning again if this
2101 			 * happened.
2102 			 */
2103 			if (use_bytes_index && old_next != rb_next(node))
2104 				goto again;
2105 			continue;
2106 		}
2107 
2108 		*offset = tmp;
2109 		*bytes = entry->bytes - align_off;
2110 		return entry;
2111 	}
2112 out:
2113 	return NULL;
2114 }
2115 
2116 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2117 			   struct btrfs_free_space *info, u64 offset)
2118 {
2119 	info->offset = offset_to_bitmap(ctl, offset);
2120 	info->bytes = 0;
2121 	info->bitmap_extents = 0;
2122 	INIT_LIST_HEAD(&info->list);
2123 	link_free_space(ctl, info);
2124 	ctl->total_bitmaps++;
2125 	recalculate_thresholds(ctl);
2126 }
2127 
2128 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2129 			struct btrfs_free_space *bitmap_info)
2130 {
2131 	/*
2132 	 * Normally when this is called, the bitmap is completely empty. However,
2133 	 * if we are blowing up the free space cache for one reason or another
2134 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2135 	 * we may leave stats on the table.
2136 	 */
2137 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2138 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2139 			bitmap_info->bitmap_extents;
2140 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2141 
2142 	}
2143 	unlink_free_space(ctl, bitmap_info, true);
2144 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2145 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2146 	ctl->total_bitmaps--;
2147 	recalculate_thresholds(ctl);
2148 }
2149 
2150 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2151 			      struct btrfs_free_space *bitmap_info,
2152 			      u64 *offset, u64 *bytes)
2153 {
2154 	u64 end;
2155 	u64 search_start, search_bytes;
2156 	int ret;
2157 
2158 again:
2159 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2160 
2161 	/*
2162 	 * We need to search for bits in this bitmap.  We could only cover some
2163 	 * of the extent in this bitmap thanks to how we add space, so we need
2164 	 * to search for as much as it as we can and clear that amount, and then
2165 	 * go searching for the next bit.
2166 	 */
2167 	search_start = *offset;
2168 	search_bytes = ctl->unit;
2169 	search_bytes = min(search_bytes, end - search_start + 1);
2170 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2171 			    false);
2172 	if (ret < 0 || search_start != *offset)
2173 		return -EINVAL;
2174 
2175 	/* We may have found more bits than what we need */
2176 	search_bytes = min(search_bytes, *bytes);
2177 
2178 	/* Cannot clear past the end of the bitmap */
2179 	search_bytes = min(search_bytes, end - search_start + 1);
2180 
2181 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2182 	*offset += search_bytes;
2183 	*bytes -= search_bytes;
2184 
2185 	if (*bytes) {
2186 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2187 		if (!bitmap_info->bytes)
2188 			free_bitmap(ctl, bitmap_info);
2189 
2190 		/*
2191 		 * no entry after this bitmap, but we still have bytes to
2192 		 * remove, so something has gone wrong.
2193 		 */
2194 		if (!next)
2195 			return -EINVAL;
2196 
2197 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2198 				       offset_index);
2199 
2200 		/*
2201 		 * if the next entry isn't a bitmap we need to return to let the
2202 		 * extent stuff do its work.
2203 		 */
2204 		if (!bitmap_info->bitmap)
2205 			return -EAGAIN;
2206 
2207 		/*
2208 		 * Ok the next item is a bitmap, but it may not actually hold
2209 		 * the information for the rest of this free space stuff, so
2210 		 * look for it, and if we don't find it return so we can try
2211 		 * everything over again.
2212 		 */
2213 		search_start = *offset;
2214 		search_bytes = ctl->unit;
2215 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2216 				    &search_bytes, false);
2217 		if (ret < 0 || search_start != *offset)
2218 			return -EAGAIN;
2219 
2220 		goto again;
2221 	} else if (!bitmap_info->bytes)
2222 		free_bitmap(ctl, bitmap_info);
2223 
2224 	return 0;
2225 }
2226 
2227 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2228 			       struct btrfs_free_space *info, u64 offset,
2229 			       u64 bytes, enum btrfs_trim_state trim_state)
2230 {
2231 	u64 bytes_to_set = 0;
2232 	u64 end;
2233 
2234 	/*
2235 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2236 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2237 	 */
2238 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2239 		if (btrfs_free_space_trimmed(info)) {
2240 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2241 				info->bitmap_extents;
2242 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2243 		}
2244 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2245 	}
2246 
2247 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2248 
2249 	bytes_to_set = min(end - offset, bytes);
2250 
2251 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2252 
2253 	return bytes_to_set;
2254 
2255 }
2256 
2257 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2258 		      struct btrfs_free_space *info)
2259 {
2260 	struct btrfs_block_group *block_group = ctl->block_group;
2261 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2262 	bool forced = false;
2263 
2264 #ifdef CONFIG_BTRFS_DEBUG
2265 	if (btrfs_should_fragment_free_space(block_group))
2266 		forced = true;
2267 #endif
2268 
2269 	/* This is a way to reclaim large regions from the bitmaps. */
2270 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2271 		return false;
2272 
2273 	/*
2274 	 * If we are below the extents threshold then we can add this as an
2275 	 * extent, and don't have to deal with the bitmap
2276 	 */
2277 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2278 		/*
2279 		 * If this block group has some small extents we don't want to
2280 		 * use up all of our free slots in the cache with them, we want
2281 		 * to reserve them to larger extents, however if we have plenty
2282 		 * of cache left then go ahead an dadd them, no sense in adding
2283 		 * the overhead of a bitmap if we don't have to.
2284 		 */
2285 		if (info->bytes <= fs_info->sectorsize * 8) {
2286 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2287 				return false;
2288 		} else {
2289 			return false;
2290 		}
2291 	}
2292 
2293 	/*
2294 	 * The original block groups from mkfs can be really small, like 8
2295 	 * megabytes, so don't bother with a bitmap for those entries.  However
2296 	 * some block groups can be smaller than what a bitmap would cover but
2297 	 * are still large enough that they could overflow the 32k memory limit,
2298 	 * so allow those block groups to still be allowed to have a bitmap
2299 	 * entry.
2300 	 */
2301 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2302 		return false;
2303 
2304 	return true;
2305 }
2306 
2307 static const struct btrfs_free_space_op free_space_op = {
2308 	.use_bitmap		= use_bitmap,
2309 };
2310 
2311 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2312 			      struct btrfs_free_space *info)
2313 {
2314 	struct btrfs_free_space *bitmap_info;
2315 	struct btrfs_block_group *block_group = NULL;
2316 	int added = 0;
2317 	u64 bytes, offset, bytes_added;
2318 	enum btrfs_trim_state trim_state;
2319 	int ret;
2320 
2321 	bytes = info->bytes;
2322 	offset = info->offset;
2323 	trim_state = info->trim_state;
2324 
2325 	if (!ctl->op->use_bitmap(ctl, info))
2326 		return 0;
2327 
2328 	if (ctl->op == &free_space_op)
2329 		block_group = ctl->block_group;
2330 again:
2331 	/*
2332 	 * Since we link bitmaps right into the cluster we need to see if we
2333 	 * have a cluster here, and if so and it has our bitmap we need to add
2334 	 * the free space to that bitmap.
2335 	 */
2336 	if (block_group && !list_empty(&block_group->cluster_list)) {
2337 		struct btrfs_free_cluster *cluster;
2338 		struct rb_node *node;
2339 		struct btrfs_free_space *entry;
2340 
2341 		cluster = list_entry(block_group->cluster_list.next,
2342 				     struct btrfs_free_cluster,
2343 				     block_group_list);
2344 		spin_lock(&cluster->lock);
2345 		node = rb_first(&cluster->root);
2346 		if (!node) {
2347 			spin_unlock(&cluster->lock);
2348 			goto no_cluster_bitmap;
2349 		}
2350 
2351 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2352 		if (!entry->bitmap) {
2353 			spin_unlock(&cluster->lock);
2354 			goto no_cluster_bitmap;
2355 		}
2356 
2357 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2358 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2359 							  bytes, trim_state);
2360 			bytes -= bytes_added;
2361 			offset += bytes_added;
2362 		}
2363 		spin_unlock(&cluster->lock);
2364 		if (!bytes) {
2365 			ret = 1;
2366 			goto out;
2367 		}
2368 	}
2369 
2370 no_cluster_bitmap:
2371 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2372 					 1, 0);
2373 	if (!bitmap_info) {
2374 		ASSERT(added == 0);
2375 		goto new_bitmap;
2376 	}
2377 
2378 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2379 					  trim_state);
2380 	bytes -= bytes_added;
2381 	offset += bytes_added;
2382 	added = 0;
2383 
2384 	if (!bytes) {
2385 		ret = 1;
2386 		goto out;
2387 	} else
2388 		goto again;
2389 
2390 new_bitmap:
2391 	if (info && info->bitmap) {
2392 		add_new_bitmap(ctl, info, offset);
2393 		added = 1;
2394 		info = NULL;
2395 		goto again;
2396 	} else {
2397 		spin_unlock(&ctl->tree_lock);
2398 
2399 		/* no pre-allocated info, allocate a new one */
2400 		if (!info) {
2401 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2402 						 GFP_NOFS);
2403 			if (!info) {
2404 				spin_lock(&ctl->tree_lock);
2405 				ret = -ENOMEM;
2406 				goto out;
2407 			}
2408 		}
2409 
2410 		/* allocate the bitmap */
2411 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2412 						 GFP_NOFS);
2413 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2414 		spin_lock(&ctl->tree_lock);
2415 		if (!info->bitmap) {
2416 			ret = -ENOMEM;
2417 			goto out;
2418 		}
2419 		goto again;
2420 	}
2421 
2422 out:
2423 	if (info) {
2424 		if (info->bitmap)
2425 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2426 					info->bitmap);
2427 		kmem_cache_free(btrfs_free_space_cachep, info);
2428 	}
2429 
2430 	return ret;
2431 }
2432 
2433 /*
2434  * Free space merging rules:
2435  *  1) Merge trimmed areas together
2436  *  2) Let untrimmed areas coalesce with trimmed areas
2437  *  3) Always pull neighboring regions from bitmaps
2438  *
2439  * The above rules are for when we merge free space based on btrfs_trim_state.
2440  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2441  * same reason: to promote larger extent regions which makes life easier for
2442  * find_free_extent().  Rule 2 enables coalescing based on the common path
2443  * being returning free space from btrfs_finish_extent_commit().  So when free
2444  * space is trimmed, it will prevent aggregating trimmed new region and
2445  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2446  * and provide find_free_extent() with the largest extents possible hoping for
2447  * the reuse path.
2448  */
2449 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2450 			  struct btrfs_free_space *info, bool update_stat)
2451 {
2452 	struct btrfs_free_space *left_info = NULL;
2453 	struct btrfs_free_space *right_info;
2454 	bool merged = false;
2455 	u64 offset = info->offset;
2456 	u64 bytes = info->bytes;
2457 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2458 	struct rb_node *right_prev = NULL;
2459 
2460 	/*
2461 	 * first we want to see if there is free space adjacent to the range we
2462 	 * are adding, if there is remove that struct and add a new one to
2463 	 * cover the entire range
2464 	 */
2465 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2466 	if (right_info)
2467 		right_prev = rb_prev(&right_info->offset_index);
2468 
2469 	if (right_prev)
2470 		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2471 	else if (!right_info)
2472 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2473 
2474 	/* See try_merge_free_space() comment. */
2475 	if (right_info && !right_info->bitmap &&
2476 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2477 		unlink_free_space(ctl, right_info, update_stat);
2478 		info->bytes += right_info->bytes;
2479 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2480 		merged = true;
2481 	}
2482 
2483 	/* See try_merge_free_space() comment. */
2484 	if (left_info && !left_info->bitmap &&
2485 	    left_info->offset + left_info->bytes == offset &&
2486 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2487 		unlink_free_space(ctl, left_info, update_stat);
2488 		info->offset = left_info->offset;
2489 		info->bytes += left_info->bytes;
2490 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2491 		merged = true;
2492 	}
2493 
2494 	return merged;
2495 }
2496 
2497 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2498 				     struct btrfs_free_space *info,
2499 				     bool update_stat)
2500 {
2501 	struct btrfs_free_space *bitmap;
2502 	unsigned long i;
2503 	unsigned long j;
2504 	const u64 end = info->offset + info->bytes;
2505 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2506 	u64 bytes;
2507 
2508 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2509 	if (!bitmap)
2510 		return false;
2511 
2512 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2513 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2514 	if (j == i)
2515 		return false;
2516 	bytes = (j - i) * ctl->unit;
2517 	info->bytes += bytes;
2518 
2519 	/* See try_merge_free_space() comment. */
2520 	if (!btrfs_free_space_trimmed(bitmap))
2521 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2522 
2523 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2524 
2525 	if (!bitmap->bytes)
2526 		free_bitmap(ctl, bitmap);
2527 
2528 	return true;
2529 }
2530 
2531 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2532 				       struct btrfs_free_space *info,
2533 				       bool update_stat)
2534 {
2535 	struct btrfs_free_space *bitmap;
2536 	u64 bitmap_offset;
2537 	unsigned long i;
2538 	unsigned long j;
2539 	unsigned long prev_j;
2540 	u64 bytes;
2541 
2542 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2543 	/* If we're on a boundary, try the previous logical bitmap. */
2544 	if (bitmap_offset == info->offset) {
2545 		if (info->offset == 0)
2546 			return false;
2547 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2548 	}
2549 
2550 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2551 	if (!bitmap)
2552 		return false;
2553 
2554 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2555 	j = 0;
2556 	prev_j = (unsigned long)-1;
2557 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2558 		if (j > i)
2559 			break;
2560 		prev_j = j;
2561 	}
2562 	if (prev_j == i)
2563 		return false;
2564 
2565 	if (prev_j == (unsigned long)-1)
2566 		bytes = (i + 1) * ctl->unit;
2567 	else
2568 		bytes = (i - prev_j) * ctl->unit;
2569 
2570 	info->offset -= bytes;
2571 	info->bytes += bytes;
2572 
2573 	/* See try_merge_free_space() comment. */
2574 	if (!btrfs_free_space_trimmed(bitmap))
2575 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2576 
2577 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2578 
2579 	if (!bitmap->bytes)
2580 		free_bitmap(ctl, bitmap);
2581 
2582 	return true;
2583 }
2584 
2585 /*
2586  * We prefer always to allocate from extent entries, both for clustered and
2587  * non-clustered allocation requests. So when attempting to add a new extent
2588  * entry, try to see if there's adjacent free space in bitmap entries, and if
2589  * there is, migrate that space from the bitmaps to the extent.
2590  * Like this we get better chances of satisfying space allocation requests
2591  * because we attempt to satisfy them based on a single cache entry, and never
2592  * on 2 or more entries - even if the entries represent a contiguous free space
2593  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2594  * ends).
2595  */
2596 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2597 			      struct btrfs_free_space *info,
2598 			      bool update_stat)
2599 {
2600 	/*
2601 	 * Only work with disconnected entries, as we can change their offset,
2602 	 * and must be extent entries.
2603 	 */
2604 	ASSERT(!info->bitmap);
2605 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2606 
2607 	if (ctl->total_bitmaps > 0) {
2608 		bool stole_end;
2609 		bool stole_front = false;
2610 
2611 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2612 		if (ctl->total_bitmaps > 0)
2613 			stole_front = steal_from_bitmap_to_front(ctl, info,
2614 								 update_stat);
2615 
2616 		if (stole_end || stole_front)
2617 			try_merge_free_space(ctl, info, update_stat);
2618 	}
2619 }
2620 
2621 int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2622 			   u64 offset, u64 bytes,
2623 			   enum btrfs_trim_state trim_state)
2624 {
2625 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2626 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2627 	struct btrfs_free_space *info;
2628 	int ret = 0;
2629 	u64 filter_bytes = bytes;
2630 
2631 	ASSERT(!btrfs_is_zoned(fs_info));
2632 
2633 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2634 	if (!info)
2635 		return -ENOMEM;
2636 
2637 	info->offset = offset;
2638 	info->bytes = bytes;
2639 	info->trim_state = trim_state;
2640 	RB_CLEAR_NODE(&info->offset_index);
2641 	RB_CLEAR_NODE(&info->bytes_index);
2642 
2643 	spin_lock(&ctl->tree_lock);
2644 
2645 	if (try_merge_free_space(ctl, info, true))
2646 		goto link;
2647 
2648 	/*
2649 	 * There was no extent directly to the left or right of this new
2650 	 * extent then we know we're going to have to allocate a new extent, so
2651 	 * before we do that see if we need to drop this into a bitmap
2652 	 */
2653 	ret = insert_into_bitmap(ctl, info);
2654 	if (ret < 0) {
2655 		goto out;
2656 	} else if (ret) {
2657 		ret = 0;
2658 		goto out;
2659 	}
2660 link:
2661 	/*
2662 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2663 	 * going to add the new free space to existing bitmap entries - because
2664 	 * that would mean unnecessary work that would be reverted. Therefore
2665 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2666 	 */
2667 	steal_from_bitmap(ctl, info, true);
2668 
2669 	filter_bytes = max(filter_bytes, info->bytes);
2670 
2671 	ret = link_free_space(ctl, info);
2672 	if (ret)
2673 		kmem_cache_free(btrfs_free_space_cachep, info);
2674 out:
2675 	btrfs_discard_update_discardable(block_group);
2676 	spin_unlock(&ctl->tree_lock);
2677 
2678 	if (ret) {
2679 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2680 		ASSERT(ret != -EEXIST);
2681 	}
2682 
2683 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2684 		btrfs_discard_check_filter(block_group, filter_bytes);
2685 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2686 	}
2687 
2688 	return ret;
2689 }
2690 
2691 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2692 					u64 bytenr, u64 size, bool used)
2693 {
2694 	struct btrfs_space_info *sinfo = block_group->space_info;
2695 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2696 	u64 offset = bytenr - block_group->start;
2697 	u64 to_free, to_unusable;
2698 	int bg_reclaim_threshold = 0;
2699 	bool initial = (size == block_group->length);
2700 	u64 reclaimable_unusable;
2701 
2702 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2703 
2704 	if (!initial)
2705 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2706 
2707 	spin_lock(&ctl->tree_lock);
2708 	/* Count initial region as zone_unusable until it gets activated. */
2709 	if (!used)
2710 		to_free = size;
2711 	else if (initial &&
2712 		 test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &block_group->fs_info->flags) &&
2713 		 (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2714 		to_free = 0;
2715 	else if (initial)
2716 		to_free = block_group->zone_capacity;
2717 	else if (offset >= block_group->alloc_offset)
2718 		to_free = size;
2719 	else if (offset + size <= block_group->alloc_offset)
2720 		to_free = 0;
2721 	else
2722 		to_free = offset + size - block_group->alloc_offset;
2723 	to_unusable = size - to_free;
2724 
2725 	ctl->free_space += to_free;
2726 	/*
2727 	 * If the block group is read-only, we should account freed space into
2728 	 * bytes_readonly.
2729 	 */
2730 	if (!block_group->ro)
2731 		block_group->zone_unusable += to_unusable;
2732 	spin_unlock(&ctl->tree_lock);
2733 	if (!used) {
2734 		spin_lock(&block_group->lock);
2735 		block_group->alloc_offset -= size;
2736 		spin_unlock(&block_group->lock);
2737 	}
2738 
2739 	reclaimable_unusable = block_group->zone_unusable -
2740 			       (block_group->length - block_group->zone_capacity);
2741 	/* All the region is now unusable. Mark it as unused and reclaim */
2742 	if (block_group->zone_unusable == block_group->length &&
2743 	    block_group->alloc_offset) {
2744 		btrfs_mark_bg_unused(block_group);
2745 	} else if (bg_reclaim_threshold &&
2746 		   reclaimable_unusable >=
2747 		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2748 		btrfs_mark_bg_to_reclaim(block_group);
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2755 			 u64 bytenr, u64 size)
2756 {
2757 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2758 
2759 	if (btrfs_is_zoned(block_group->fs_info))
2760 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2761 						    true);
2762 
2763 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2764 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2765 
2766 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2767 }
2768 
2769 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2770 				u64 bytenr, u64 size)
2771 {
2772 	if (btrfs_is_zoned(block_group->fs_info))
2773 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2774 						    false);
2775 
2776 	return btrfs_add_free_space(block_group, bytenr, size);
2777 }
2778 
2779 /*
2780  * This is a subtle distinction because when adding free space back in general,
2781  * we want it to be added as untrimmed for async. But in the case where we add
2782  * it on loading of a block group, we want to consider it trimmed.
2783  */
2784 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2785 				       u64 bytenr, u64 size)
2786 {
2787 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2788 
2789 	if (btrfs_is_zoned(block_group->fs_info))
2790 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2791 						    true);
2792 
2793 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2794 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2795 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2796 
2797 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2798 }
2799 
2800 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2801 			    u64 offset, u64 bytes)
2802 {
2803 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2804 	struct btrfs_free_space *info;
2805 	int ret;
2806 	bool re_search = false;
2807 
2808 	if (btrfs_is_zoned(block_group->fs_info)) {
2809 		/*
2810 		 * This can happen with conventional zones when replaying log.
2811 		 * Since the allocation info of tree-log nodes are not recorded
2812 		 * to the extent-tree, calculate_alloc_pointer() failed to
2813 		 * advance the allocation pointer after last allocated tree log
2814 		 * node blocks.
2815 		 *
2816 		 * This function is called from
2817 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2818 		 * Advance the pointer not to overwrite the tree-log nodes.
2819 		 */
2820 		if (block_group->start + block_group->alloc_offset <
2821 		    offset + bytes) {
2822 			block_group->alloc_offset =
2823 				offset + bytes - block_group->start;
2824 		}
2825 		return 0;
2826 	}
2827 
2828 	spin_lock(&ctl->tree_lock);
2829 
2830 again:
2831 	ret = 0;
2832 	if (!bytes)
2833 		goto out_lock;
2834 
2835 	info = tree_search_offset(ctl, offset, 0, 0);
2836 	if (!info) {
2837 		/*
2838 		 * oops didn't find an extent that matched the space we wanted
2839 		 * to remove, look for a bitmap instead
2840 		 */
2841 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2842 					  1, 0);
2843 		if (!info) {
2844 			/*
2845 			 * If we found a partial bit of our free space in a
2846 			 * bitmap but then couldn't find the other part this may
2847 			 * be a problem, so WARN about it.
2848 			 */
2849 			WARN_ON(re_search);
2850 			goto out_lock;
2851 		}
2852 	}
2853 
2854 	re_search = false;
2855 	if (!info->bitmap) {
2856 		unlink_free_space(ctl, info, true);
2857 		if (offset == info->offset) {
2858 			u64 to_free = min(bytes, info->bytes);
2859 
2860 			info->bytes -= to_free;
2861 			info->offset += to_free;
2862 			if (info->bytes) {
2863 				ret = link_free_space(ctl, info);
2864 				WARN_ON(ret);
2865 			} else {
2866 				kmem_cache_free(btrfs_free_space_cachep, info);
2867 			}
2868 
2869 			offset += to_free;
2870 			bytes -= to_free;
2871 			goto again;
2872 		} else {
2873 			u64 old_end = info->bytes + info->offset;
2874 
2875 			info->bytes = offset - info->offset;
2876 			ret = link_free_space(ctl, info);
2877 			WARN_ON(ret);
2878 			if (ret)
2879 				goto out_lock;
2880 
2881 			/* Not enough bytes in this entry to satisfy us */
2882 			if (old_end < offset + bytes) {
2883 				bytes -= old_end - offset;
2884 				offset = old_end;
2885 				goto again;
2886 			} else if (old_end == offset + bytes) {
2887 				/* all done */
2888 				goto out_lock;
2889 			}
2890 			spin_unlock(&ctl->tree_lock);
2891 
2892 			ret = __btrfs_add_free_space(block_group,
2893 						     offset + bytes,
2894 						     old_end - (offset + bytes),
2895 						     info->trim_state);
2896 			WARN_ON(ret);
2897 			goto out;
2898 		}
2899 	}
2900 
2901 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2902 	if (ret == -EAGAIN) {
2903 		re_search = true;
2904 		goto again;
2905 	}
2906 out_lock:
2907 	btrfs_discard_update_discardable(block_group);
2908 	spin_unlock(&ctl->tree_lock);
2909 out:
2910 	return ret;
2911 }
2912 
2913 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2914 			   u64 bytes)
2915 {
2916 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2917 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918 	struct btrfs_free_space *info;
2919 	struct rb_node *n;
2920 	int count = 0;
2921 
2922 	/*
2923 	 * Zoned btrfs does not use free space tree and cluster. Just print
2924 	 * out the free space after the allocation offset.
2925 	 */
2926 	if (btrfs_is_zoned(fs_info)) {
2927 		btrfs_info(fs_info, "free space %llu active %d",
2928 			   block_group->zone_capacity - block_group->alloc_offset,
2929 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2930 				    &block_group->runtime_flags));
2931 		return;
2932 	}
2933 
2934 	spin_lock(&ctl->tree_lock);
2935 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2936 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2937 		if (info->bytes >= bytes && !block_group->ro)
2938 			count++;
2939 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2940 			   info->offset, info->bytes,
2941 		       (info->bitmap) ? "yes" : "no");
2942 	}
2943 	spin_unlock(&ctl->tree_lock);
2944 	btrfs_info(fs_info, "block group has cluster?: %s",
2945 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2946 	btrfs_info(fs_info,
2947 		   "%d blocks of free space at or bigger than bytes is", count);
2948 }
2949 
2950 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2951 			       struct btrfs_free_space_ctl *ctl)
2952 {
2953 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2954 
2955 	spin_lock_init(&ctl->tree_lock);
2956 	ctl->unit = fs_info->sectorsize;
2957 	ctl->start = block_group->start;
2958 	ctl->block_group = block_group;
2959 	ctl->op = &free_space_op;
2960 	ctl->free_space_bytes = RB_ROOT_CACHED;
2961 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2962 	mutex_init(&ctl->cache_writeout_mutex);
2963 
2964 	/*
2965 	 * we only want to have 32k of ram per block group for keeping
2966 	 * track of free space, and if we pass 1/2 of that we want to
2967 	 * start converting things over to using bitmaps
2968 	 */
2969 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2970 }
2971 
2972 /*
2973  * for a given cluster, put all of its extents back into the free
2974  * space cache.  If the block group passed doesn't match the block group
2975  * pointed to by the cluster, someone else raced in and freed the
2976  * cluster already.  In that case, we just return without changing anything
2977  */
2978 static void __btrfs_return_cluster_to_free_space(
2979 			     struct btrfs_block_group *block_group,
2980 			     struct btrfs_free_cluster *cluster)
2981 {
2982 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2983 	struct rb_node *node;
2984 
2985 	lockdep_assert_held(&ctl->tree_lock);
2986 
2987 	spin_lock(&cluster->lock);
2988 	if (cluster->block_group != block_group) {
2989 		spin_unlock(&cluster->lock);
2990 		return;
2991 	}
2992 
2993 	cluster->block_group = NULL;
2994 	cluster->window_start = 0;
2995 	list_del_init(&cluster->block_group_list);
2996 
2997 	node = rb_first(&cluster->root);
2998 	while (node) {
2999 		struct btrfs_free_space *entry;
3000 
3001 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3002 		node = rb_next(&entry->offset_index);
3003 		rb_erase(&entry->offset_index, &cluster->root);
3004 		RB_CLEAR_NODE(&entry->offset_index);
3005 
3006 		if (!entry->bitmap) {
3007 			/* Merging treats extents as if they were new */
3008 			if (!btrfs_free_space_trimmed(entry)) {
3009 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3010 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3011 					entry->bytes;
3012 			}
3013 
3014 			try_merge_free_space(ctl, entry, false);
3015 			steal_from_bitmap(ctl, entry, false);
3016 
3017 			/* As we insert directly, update these statistics */
3018 			if (!btrfs_free_space_trimmed(entry)) {
3019 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3020 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3021 					entry->bytes;
3022 			}
3023 		}
3024 		tree_insert_offset(ctl, NULL, entry);
3025 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3026 			      entry_less);
3027 	}
3028 	cluster->root = RB_ROOT;
3029 	spin_unlock(&cluster->lock);
3030 	btrfs_put_block_group(block_group);
3031 }
3032 
3033 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3034 {
3035 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3036 	struct btrfs_free_cluster *cluster;
3037 	struct list_head *head;
3038 
3039 	spin_lock(&ctl->tree_lock);
3040 	while ((head = block_group->cluster_list.next) !=
3041 	       &block_group->cluster_list) {
3042 		cluster = list_entry(head, struct btrfs_free_cluster,
3043 				     block_group_list);
3044 
3045 		WARN_ON(cluster->block_group != block_group);
3046 		__btrfs_return_cluster_to_free_space(block_group, cluster);
3047 
3048 		cond_resched_lock(&ctl->tree_lock);
3049 	}
3050 	__btrfs_remove_free_space_cache(ctl);
3051 	btrfs_discard_update_discardable(block_group);
3052 	spin_unlock(&ctl->tree_lock);
3053 
3054 }
3055 
3056 /*
3057  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3058  */
3059 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3060 {
3061 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3062 	struct btrfs_free_space *info;
3063 	struct rb_node *node;
3064 	bool ret = true;
3065 
3066 	spin_lock(&ctl->tree_lock);
3067 	node = rb_first(&ctl->free_space_offset);
3068 
3069 	while (node) {
3070 		info = rb_entry(node, struct btrfs_free_space, offset_index);
3071 
3072 		if (!btrfs_free_space_trimmed(info)) {
3073 			ret = false;
3074 			break;
3075 		}
3076 
3077 		node = rb_next(node);
3078 	}
3079 
3080 	spin_unlock(&ctl->tree_lock);
3081 	return ret;
3082 }
3083 
3084 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3085 			       u64 offset, u64 bytes, u64 empty_size,
3086 			       u64 *max_extent_size)
3087 {
3088 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3089 	struct btrfs_discard_ctl *discard_ctl =
3090 					&block_group->fs_info->discard_ctl;
3091 	struct btrfs_free_space *entry = NULL;
3092 	u64 bytes_search = bytes + empty_size;
3093 	u64 ret = 0;
3094 	u64 align_gap = 0;
3095 	u64 align_gap_len = 0;
3096 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3097 	bool use_bytes_index = (offset == block_group->start);
3098 
3099 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3100 
3101 	spin_lock(&ctl->tree_lock);
3102 	entry = find_free_space(ctl, &offset, &bytes_search,
3103 				block_group->full_stripe_len, max_extent_size,
3104 				use_bytes_index);
3105 	if (!entry)
3106 		goto out;
3107 
3108 	ret = offset;
3109 	if (entry->bitmap) {
3110 		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3111 
3112 		if (!btrfs_free_space_trimmed(entry))
3113 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3114 
3115 		if (!entry->bytes)
3116 			free_bitmap(ctl, entry);
3117 	} else {
3118 		unlink_free_space(ctl, entry, true);
3119 		align_gap_len = offset - entry->offset;
3120 		align_gap = entry->offset;
3121 		align_gap_trim_state = entry->trim_state;
3122 
3123 		if (!btrfs_free_space_trimmed(entry))
3124 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3125 
3126 		entry->offset = offset + bytes;
3127 		WARN_ON(entry->bytes < bytes + align_gap_len);
3128 
3129 		entry->bytes -= bytes + align_gap_len;
3130 		if (!entry->bytes)
3131 			kmem_cache_free(btrfs_free_space_cachep, entry);
3132 		else
3133 			link_free_space(ctl, entry);
3134 	}
3135 out:
3136 	btrfs_discard_update_discardable(block_group);
3137 	spin_unlock(&ctl->tree_lock);
3138 
3139 	if (align_gap_len)
3140 		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3141 				       align_gap_trim_state);
3142 	return ret;
3143 }
3144 
3145 /*
3146  * given a cluster, put all of its extents back into the free space
3147  * cache.  If a block group is passed, this function will only free
3148  * a cluster that belongs to the passed block group.
3149  *
3150  * Otherwise, it'll get a reference on the block group pointed to by the
3151  * cluster and remove the cluster from it.
3152  */
3153 void btrfs_return_cluster_to_free_space(
3154 			       struct btrfs_block_group *block_group,
3155 			       struct btrfs_free_cluster *cluster)
3156 {
3157 	struct btrfs_free_space_ctl *ctl;
3158 
3159 	/* first, get a safe pointer to the block group */
3160 	spin_lock(&cluster->lock);
3161 	if (!block_group) {
3162 		block_group = cluster->block_group;
3163 		if (!block_group) {
3164 			spin_unlock(&cluster->lock);
3165 			return;
3166 		}
3167 	} else if (cluster->block_group != block_group) {
3168 		/* someone else has already freed it don't redo their work */
3169 		spin_unlock(&cluster->lock);
3170 		return;
3171 	}
3172 	btrfs_get_block_group(block_group);
3173 	spin_unlock(&cluster->lock);
3174 
3175 	ctl = block_group->free_space_ctl;
3176 
3177 	/* now return any extents the cluster had on it */
3178 	spin_lock(&ctl->tree_lock);
3179 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3180 	spin_unlock(&ctl->tree_lock);
3181 
3182 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3183 
3184 	/* finally drop our ref */
3185 	btrfs_put_block_group(block_group);
3186 }
3187 
3188 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3189 				   struct btrfs_free_cluster *cluster,
3190 				   struct btrfs_free_space *entry,
3191 				   u64 bytes, u64 min_start,
3192 				   u64 *max_extent_size)
3193 {
3194 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3195 	int err;
3196 	u64 search_start = cluster->window_start;
3197 	u64 search_bytes = bytes;
3198 	u64 ret = 0;
3199 
3200 	search_start = min_start;
3201 	search_bytes = bytes;
3202 
3203 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3204 	if (err) {
3205 		*max_extent_size = max(get_max_extent_size(entry),
3206 				       *max_extent_size);
3207 		return 0;
3208 	}
3209 
3210 	ret = search_start;
3211 	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3212 
3213 	return ret;
3214 }
3215 
3216 /*
3217  * given a cluster, try to allocate 'bytes' from it, returns 0
3218  * if it couldn't find anything suitably large, or a logical disk offset
3219  * if things worked out
3220  */
3221 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3222 			     struct btrfs_free_cluster *cluster, u64 bytes,
3223 			     u64 min_start, u64 *max_extent_size)
3224 {
3225 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3226 	struct btrfs_discard_ctl *discard_ctl =
3227 					&block_group->fs_info->discard_ctl;
3228 	struct btrfs_free_space *entry = NULL;
3229 	struct rb_node *node;
3230 	u64 ret = 0;
3231 
3232 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3233 
3234 	spin_lock(&cluster->lock);
3235 	if (bytes > cluster->max_size)
3236 		goto out;
3237 
3238 	if (cluster->block_group != block_group)
3239 		goto out;
3240 
3241 	node = rb_first(&cluster->root);
3242 	if (!node)
3243 		goto out;
3244 
3245 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3246 	while (1) {
3247 		if (entry->bytes < bytes)
3248 			*max_extent_size = max(get_max_extent_size(entry),
3249 					       *max_extent_size);
3250 
3251 		if (entry->bytes < bytes ||
3252 		    (!entry->bitmap && entry->offset < min_start)) {
3253 			node = rb_next(&entry->offset_index);
3254 			if (!node)
3255 				break;
3256 			entry = rb_entry(node, struct btrfs_free_space,
3257 					 offset_index);
3258 			continue;
3259 		}
3260 
3261 		if (entry->bitmap) {
3262 			ret = btrfs_alloc_from_bitmap(block_group,
3263 						      cluster, entry, bytes,
3264 						      cluster->window_start,
3265 						      max_extent_size);
3266 			if (ret == 0) {
3267 				node = rb_next(&entry->offset_index);
3268 				if (!node)
3269 					break;
3270 				entry = rb_entry(node, struct btrfs_free_space,
3271 						 offset_index);
3272 				continue;
3273 			}
3274 			cluster->window_start += bytes;
3275 		} else {
3276 			ret = entry->offset;
3277 
3278 			entry->offset += bytes;
3279 			entry->bytes -= bytes;
3280 		}
3281 
3282 		break;
3283 	}
3284 out:
3285 	spin_unlock(&cluster->lock);
3286 
3287 	if (!ret)
3288 		return 0;
3289 
3290 	spin_lock(&ctl->tree_lock);
3291 
3292 	if (!btrfs_free_space_trimmed(entry))
3293 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3294 
3295 	ctl->free_space -= bytes;
3296 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3297 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3298 
3299 	spin_lock(&cluster->lock);
3300 	if (entry->bytes == 0) {
3301 		rb_erase(&entry->offset_index, &cluster->root);
3302 		ctl->free_extents--;
3303 		if (entry->bitmap) {
3304 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3305 					entry->bitmap);
3306 			ctl->total_bitmaps--;
3307 			recalculate_thresholds(ctl);
3308 		} else if (!btrfs_free_space_trimmed(entry)) {
3309 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3310 		}
3311 		kmem_cache_free(btrfs_free_space_cachep, entry);
3312 	}
3313 
3314 	spin_unlock(&cluster->lock);
3315 	spin_unlock(&ctl->tree_lock);
3316 
3317 	return ret;
3318 }
3319 
3320 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3321 				struct btrfs_free_space *entry,
3322 				struct btrfs_free_cluster *cluster,
3323 				u64 offset, u64 bytes,
3324 				u64 cont1_bytes, u64 min_bytes)
3325 {
3326 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3327 	unsigned long next_zero;
3328 	unsigned long i;
3329 	unsigned long want_bits;
3330 	unsigned long min_bits;
3331 	unsigned long found_bits;
3332 	unsigned long max_bits = 0;
3333 	unsigned long start = 0;
3334 	unsigned long total_found = 0;
3335 	int ret;
3336 
3337 	lockdep_assert_held(&ctl->tree_lock);
3338 
3339 	i = offset_to_bit(entry->offset, ctl->unit,
3340 			  max_t(u64, offset, entry->offset));
3341 	want_bits = bytes_to_bits(bytes, ctl->unit);
3342 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3343 
3344 	/*
3345 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3346 	 * fragmented.
3347 	 */
3348 	if (entry->max_extent_size &&
3349 	    entry->max_extent_size < cont1_bytes)
3350 		return -ENOSPC;
3351 again:
3352 	found_bits = 0;
3353 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3354 		next_zero = find_next_zero_bit(entry->bitmap,
3355 					       BITS_PER_BITMAP, i);
3356 		if (next_zero - i >= min_bits) {
3357 			found_bits = next_zero - i;
3358 			if (found_bits > max_bits)
3359 				max_bits = found_bits;
3360 			break;
3361 		}
3362 		if (next_zero - i > max_bits)
3363 			max_bits = next_zero - i;
3364 		i = next_zero;
3365 	}
3366 
3367 	if (!found_bits) {
3368 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3369 		return -ENOSPC;
3370 	}
3371 
3372 	if (!total_found) {
3373 		start = i;
3374 		cluster->max_size = 0;
3375 	}
3376 
3377 	total_found += found_bits;
3378 
3379 	if (cluster->max_size < found_bits * ctl->unit)
3380 		cluster->max_size = found_bits * ctl->unit;
3381 
3382 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3383 		i = next_zero + 1;
3384 		goto again;
3385 	}
3386 
3387 	cluster->window_start = start * ctl->unit + entry->offset;
3388 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3389 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3390 
3391 	/*
3392 	 * We need to know if we're currently on the normal space index when we
3393 	 * manipulate the bitmap so that we know we need to remove and re-insert
3394 	 * it into the space_index tree.  Clear the bytes_index node here so the
3395 	 * bitmap manipulation helpers know not to mess with the space_index
3396 	 * until this bitmap entry is added back into the normal cache.
3397 	 */
3398 	RB_CLEAR_NODE(&entry->bytes_index);
3399 
3400 	ret = tree_insert_offset(ctl, cluster, entry);
3401 	ASSERT(!ret); /* -EEXIST; Logic error */
3402 
3403 	trace_btrfs_setup_cluster(block_group, cluster,
3404 				  total_found * ctl->unit, 1);
3405 	return 0;
3406 }
3407 
3408 /*
3409  * This searches the block group for just extents to fill the cluster with.
3410  * Try to find a cluster with at least bytes total bytes, at least one
3411  * extent of cont1_bytes, and other clusters of at least min_bytes.
3412  */
3413 static noinline int
3414 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3415 			struct btrfs_free_cluster *cluster,
3416 			struct list_head *bitmaps, u64 offset, u64 bytes,
3417 			u64 cont1_bytes, u64 min_bytes)
3418 {
3419 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3420 	struct btrfs_free_space *first = NULL;
3421 	struct btrfs_free_space *entry = NULL;
3422 	struct btrfs_free_space *last;
3423 	struct rb_node *node;
3424 	u64 window_free;
3425 	u64 max_extent;
3426 	u64 total_size = 0;
3427 
3428 	lockdep_assert_held(&ctl->tree_lock);
3429 
3430 	entry = tree_search_offset(ctl, offset, 0, 1);
3431 	if (!entry)
3432 		return -ENOSPC;
3433 
3434 	/*
3435 	 * We don't want bitmaps, so just move along until we find a normal
3436 	 * extent entry.
3437 	 */
3438 	while (entry->bitmap || entry->bytes < min_bytes) {
3439 		if (entry->bitmap && list_empty(&entry->list))
3440 			list_add_tail(&entry->list, bitmaps);
3441 		node = rb_next(&entry->offset_index);
3442 		if (!node)
3443 			return -ENOSPC;
3444 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3445 	}
3446 
3447 	window_free = entry->bytes;
3448 	max_extent = entry->bytes;
3449 	first = entry;
3450 	last = entry;
3451 
3452 	for (node = rb_next(&entry->offset_index); node;
3453 	     node = rb_next(&entry->offset_index)) {
3454 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3455 
3456 		if (entry->bitmap) {
3457 			if (list_empty(&entry->list))
3458 				list_add_tail(&entry->list, bitmaps);
3459 			continue;
3460 		}
3461 
3462 		if (entry->bytes < min_bytes)
3463 			continue;
3464 
3465 		last = entry;
3466 		window_free += entry->bytes;
3467 		if (entry->bytes > max_extent)
3468 			max_extent = entry->bytes;
3469 	}
3470 
3471 	if (window_free < bytes || max_extent < cont1_bytes)
3472 		return -ENOSPC;
3473 
3474 	cluster->window_start = first->offset;
3475 
3476 	node = &first->offset_index;
3477 
3478 	/*
3479 	 * now we've found our entries, pull them out of the free space
3480 	 * cache and put them into the cluster rbtree
3481 	 */
3482 	do {
3483 		int ret;
3484 
3485 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3486 		node = rb_next(&entry->offset_index);
3487 		if (entry->bitmap || entry->bytes < min_bytes)
3488 			continue;
3489 
3490 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3491 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3492 		ret = tree_insert_offset(ctl, cluster, entry);
3493 		total_size += entry->bytes;
3494 		ASSERT(!ret); /* -EEXIST; Logic error */
3495 	} while (node && entry != last);
3496 
3497 	cluster->max_size = max_extent;
3498 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3499 	return 0;
3500 }
3501 
3502 /*
3503  * This specifically looks for bitmaps that may work in the cluster, we assume
3504  * that we have already failed to find extents that will work.
3505  */
3506 static noinline int
3507 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3508 		     struct btrfs_free_cluster *cluster,
3509 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3510 		     u64 cont1_bytes, u64 min_bytes)
3511 {
3512 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3513 	struct btrfs_free_space *entry = NULL;
3514 	int ret = -ENOSPC;
3515 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3516 
3517 	if (ctl->total_bitmaps == 0)
3518 		return -ENOSPC;
3519 
3520 	/*
3521 	 * The bitmap that covers offset won't be in the list unless offset
3522 	 * is just its start offset.
3523 	 */
3524 	if (!list_empty(bitmaps))
3525 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3526 
3527 	if (!entry || entry->offset != bitmap_offset) {
3528 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3529 		if (entry && list_empty(&entry->list))
3530 			list_add(&entry->list, bitmaps);
3531 	}
3532 
3533 	list_for_each_entry(entry, bitmaps, list) {
3534 		if (entry->bytes < bytes)
3535 			continue;
3536 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3537 					   bytes, cont1_bytes, min_bytes);
3538 		if (!ret)
3539 			return 0;
3540 	}
3541 
3542 	/*
3543 	 * The bitmaps list has all the bitmaps that record free space
3544 	 * starting after offset, so no more search is required.
3545 	 */
3546 	return -ENOSPC;
3547 }
3548 
3549 /*
3550  * here we try to find a cluster of blocks in a block group.  The goal
3551  * is to find at least bytes+empty_size.
3552  * We might not find them all in one contiguous area.
3553  *
3554  * returns zero and sets up cluster if things worked out, otherwise
3555  * it returns -enospc
3556  */
3557 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3558 			     struct btrfs_free_cluster *cluster,
3559 			     u64 offset, u64 bytes, u64 empty_size)
3560 {
3561 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3562 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3563 	struct btrfs_free_space *entry, *tmp;
3564 	LIST_HEAD(bitmaps);
3565 	u64 min_bytes;
3566 	u64 cont1_bytes;
3567 	int ret;
3568 
3569 	/*
3570 	 * Choose the minimum extent size we'll require for this
3571 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3572 	 * For metadata, allow allocates with smaller extents.  For
3573 	 * data, keep it dense.
3574 	 */
3575 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3576 		cont1_bytes = bytes + empty_size;
3577 		min_bytes = cont1_bytes;
3578 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3579 		cont1_bytes = bytes;
3580 		min_bytes = fs_info->sectorsize;
3581 	} else {
3582 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3583 		min_bytes = fs_info->sectorsize;
3584 	}
3585 
3586 	spin_lock(&ctl->tree_lock);
3587 
3588 	/*
3589 	 * If we know we don't have enough space to make a cluster don't even
3590 	 * bother doing all the work to try and find one.
3591 	 */
3592 	if (ctl->free_space < bytes) {
3593 		spin_unlock(&ctl->tree_lock);
3594 		return -ENOSPC;
3595 	}
3596 
3597 	spin_lock(&cluster->lock);
3598 
3599 	/* someone already found a cluster, hooray */
3600 	if (cluster->block_group) {
3601 		ret = 0;
3602 		goto out;
3603 	}
3604 
3605 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3606 				 min_bytes);
3607 
3608 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3609 				      bytes + empty_size,
3610 				      cont1_bytes, min_bytes);
3611 	if (ret)
3612 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3613 					   offset, bytes + empty_size,
3614 					   cont1_bytes, min_bytes);
3615 
3616 	/* Clear our temporary list */
3617 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3618 		list_del_init(&entry->list);
3619 
3620 	if (!ret) {
3621 		btrfs_get_block_group(block_group);
3622 		list_add_tail(&cluster->block_group_list,
3623 			      &block_group->cluster_list);
3624 		cluster->block_group = block_group;
3625 	} else {
3626 		trace_btrfs_failed_cluster_setup(block_group);
3627 	}
3628 out:
3629 	spin_unlock(&cluster->lock);
3630 	spin_unlock(&ctl->tree_lock);
3631 
3632 	return ret;
3633 }
3634 
3635 /*
3636  * simple code to zero out a cluster
3637  */
3638 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3639 {
3640 	spin_lock_init(&cluster->lock);
3641 	spin_lock_init(&cluster->refill_lock);
3642 	cluster->root = RB_ROOT;
3643 	cluster->max_size = 0;
3644 	cluster->fragmented = false;
3645 	INIT_LIST_HEAD(&cluster->block_group_list);
3646 	cluster->block_group = NULL;
3647 }
3648 
3649 static int do_trimming(struct btrfs_block_group *block_group,
3650 		       u64 *total_trimmed, u64 start, u64 bytes,
3651 		       u64 reserved_start, u64 reserved_bytes,
3652 		       enum btrfs_trim_state reserved_trim_state,
3653 		       struct btrfs_trim_range *trim_entry)
3654 {
3655 	struct btrfs_space_info *space_info = block_group->space_info;
3656 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3657 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3658 	int ret;
3659 	int update = 0;
3660 	const u64 end = start + bytes;
3661 	const u64 reserved_end = reserved_start + reserved_bytes;
3662 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3663 	u64 trimmed = 0;
3664 
3665 	spin_lock(&space_info->lock);
3666 	spin_lock(&block_group->lock);
3667 	if (!block_group->ro) {
3668 		block_group->reserved += reserved_bytes;
3669 		space_info->bytes_reserved += reserved_bytes;
3670 		update = 1;
3671 	}
3672 	spin_unlock(&block_group->lock);
3673 	spin_unlock(&space_info->lock);
3674 
3675 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3676 	if (!ret) {
3677 		*total_trimmed += trimmed;
3678 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3679 	}
3680 
3681 	mutex_lock(&ctl->cache_writeout_mutex);
3682 	if (reserved_start < start)
3683 		__btrfs_add_free_space(block_group, reserved_start,
3684 				       start - reserved_start,
3685 				       reserved_trim_state);
3686 	if (end < reserved_end)
3687 		__btrfs_add_free_space(block_group, end, reserved_end - end,
3688 				       reserved_trim_state);
3689 	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3690 	list_del(&trim_entry->list);
3691 	mutex_unlock(&ctl->cache_writeout_mutex);
3692 
3693 	if (update) {
3694 		spin_lock(&space_info->lock);
3695 		spin_lock(&block_group->lock);
3696 		if (block_group->ro)
3697 			space_info->bytes_readonly += reserved_bytes;
3698 		block_group->reserved -= reserved_bytes;
3699 		space_info->bytes_reserved -= reserved_bytes;
3700 		spin_unlock(&block_group->lock);
3701 		spin_unlock(&space_info->lock);
3702 	}
3703 
3704 	return ret;
3705 }
3706 
3707 /*
3708  * If @async is set, then we will trim 1 region and return.
3709  */
3710 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3711 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3712 			  bool async)
3713 {
3714 	struct btrfs_discard_ctl *discard_ctl =
3715 					&block_group->fs_info->discard_ctl;
3716 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3717 	struct btrfs_free_space *entry;
3718 	struct rb_node *node;
3719 	int ret = 0;
3720 	u64 extent_start;
3721 	u64 extent_bytes;
3722 	enum btrfs_trim_state extent_trim_state;
3723 	u64 bytes;
3724 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3725 
3726 	while (start < end) {
3727 		struct btrfs_trim_range trim_entry;
3728 
3729 		mutex_lock(&ctl->cache_writeout_mutex);
3730 		spin_lock(&ctl->tree_lock);
3731 
3732 		if (ctl->free_space < minlen)
3733 			goto out_unlock;
3734 
3735 		entry = tree_search_offset(ctl, start, 0, 1);
3736 		if (!entry)
3737 			goto out_unlock;
3738 
3739 		/* Skip bitmaps and if async, already trimmed entries */
3740 		while (entry->bitmap ||
3741 		       (async && btrfs_free_space_trimmed(entry))) {
3742 			node = rb_next(&entry->offset_index);
3743 			if (!node)
3744 				goto out_unlock;
3745 			entry = rb_entry(node, struct btrfs_free_space,
3746 					 offset_index);
3747 		}
3748 
3749 		if (entry->offset >= end)
3750 			goto out_unlock;
3751 
3752 		extent_start = entry->offset;
3753 		extent_bytes = entry->bytes;
3754 		extent_trim_state = entry->trim_state;
3755 		if (async) {
3756 			start = entry->offset;
3757 			bytes = entry->bytes;
3758 			if (bytes < minlen) {
3759 				spin_unlock(&ctl->tree_lock);
3760 				mutex_unlock(&ctl->cache_writeout_mutex);
3761 				goto next;
3762 			}
3763 			unlink_free_space(ctl, entry, true);
3764 			/*
3765 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3766 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3767 			 * X when we come back around.  So trim it now.
3768 			 */
3769 			if (max_discard_size &&
3770 			    bytes >= (max_discard_size +
3771 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3772 				bytes = max_discard_size;
3773 				extent_bytes = max_discard_size;
3774 				entry->offset += max_discard_size;
3775 				entry->bytes -= max_discard_size;
3776 				link_free_space(ctl, entry);
3777 			} else {
3778 				kmem_cache_free(btrfs_free_space_cachep, entry);
3779 			}
3780 		} else {
3781 			start = max(start, extent_start);
3782 			bytes = min(extent_start + extent_bytes, end) - start;
3783 			if (bytes < minlen) {
3784 				spin_unlock(&ctl->tree_lock);
3785 				mutex_unlock(&ctl->cache_writeout_mutex);
3786 				goto next;
3787 			}
3788 
3789 			unlink_free_space(ctl, entry, true);
3790 			kmem_cache_free(btrfs_free_space_cachep, entry);
3791 		}
3792 
3793 		spin_unlock(&ctl->tree_lock);
3794 		trim_entry.start = extent_start;
3795 		trim_entry.bytes = extent_bytes;
3796 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3797 		mutex_unlock(&ctl->cache_writeout_mutex);
3798 
3799 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3800 				  extent_start, extent_bytes, extent_trim_state,
3801 				  &trim_entry);
3802 		if (ret) {
3803 			block_group->discard_cursor = start + bytes;
3804 			break;
3805 		}
3806 next:
3807 		start += bytes;
3808 		block_group->discard_cursor = start;
3809 		if (async && *total_trimmed)
3810 			break;
3811 
3812 		if (fatal_signal_pending(current)) {
3813 			ret = -ERESTARTSYS;
3814 			break;
3815 		}
3816 
3817 		cond_resched();
3818 	}
3819 
3820 	return ret;
3821 
3822 out_unlock:
3823 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3824 	spin_unlock(&ctl->tree_lock);
3825 	mutex_unlock(&ctl->cache_writeout_mutex);
3826 
3827 	return ret;
3828 }
3829 
3830 /*
3831  * If we break out of trimming a bitmap prematurely, we should reset the
3832  * trimming bit.  In a rather contrieved case, it's possible to race here so
3833  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3834  *
3835  * start = start of bitmap
3836  * end = near end of bitmap
3837  *
3838  * Thread 1:			Thread 2:
3839  * trim_bitmaps(start)
3840  *				trim_bitmaps(end)
3841  *				end_trimming_bitmap()
3842  * reset_trimming_bitmap()
3843  */
3844 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3845 {
3846 	struct btrfs_free_space *entry;
3847 
3848 	spin_lock(&ctl->tree_lock);
3849 	entry = tree_search_offset(ctl, offset, 1, 0);
3850 	if (entry) {
3851 		if (btrfs_free_space_trimmed(entry)) {
3852 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3853 				entry->bitmap_extents;
3854 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3855 		}
3856 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3857 	}
3858 
3859 	spin_unlock(&ctl->tree_lock);
3860 }
3861 
3862 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3863 				struct btrfs_free_space *entry)
3864 {
3865 	if (btrfs_free_space_trimming_bitmap(entry)) {
3866 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3867 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3868 			entry->bitmap_extents;
3869 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3870 	}
3871 }
3872 
3873 /*
3874  * If @async is set, then we will trim 1 region and return.
3875  */
3876 static int trim_bitmaps(struct btrfs_block_group *block_group,
3877 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3878 			u64 maxlen, bool async)
3879 {
3880 	struct btrfs_discard_ctl *discard_ctl =
3881 					&block_group->fs_info->discard_ctl;
3882 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3883 	struct btrfs_free_space *entry;
3884 	int ret = 0;
3885 	int ret2;
3886 	u64 bytes;
3887 	u64 offset = offset_to_bitmap(ctl, start);
3888 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3889 
3890 	while (offset < end) {
3891 		bool next_bitmap = false;
3892 		struct btrfs_trim_range trim_entry;
3893 
3894 		mutex_lock(&ctl->cache_writeout_mutex);
3895 		spin_lock(&ctl->tree_lock);
3896 
3897 		if (ctl->free_space < minlen) {
3898 			block_group->discard_cursor =
3899 				btrfs_block_group_end(block_group);
3900 			spin_unlock(&ctl->tree_lock);
3901 			mutex_unlock(&ctl->cache_writeout_mutex);
3902 			break;
3903 		}
3904 
3905 		entry = tree_search_offset(ctl, offset, 1, 0);
3906 		/*
3907 		 * Bitmaps are marked trimmed lossily now to prevent constant
3908 		 * discarding of the same bitmap (the reason why we are bound
3909 		 * by the filters).  So, retrim the block group bitmaps when we
3910 		 * are preparing to punt to the unused_bgs list.  This uses
3911 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3912 		 * which is the only discard index which sets minlen to 0.
3913 		 */
3914 		if (!entry || (async && minlen && start == offset &&
3915 			       btrfs_free_space_trimmed(entry))) {
3916 			spin_unlock(&ctl->tree_lock);
3917 			mutex_unlock(&ctl->cache_writeout_mutex);
3918 			next_bitmap = true;
3919 			goto next;
3920 		}
3921 
3922 		/*
3923 		 * Async discard bitmap trimming begins at by setting the start
3924 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3925 		 * start of the bitmap.  This lets us know we are fully
3926 		 * scanning the bitmap rather than only some portion of it.
3927 		 */
3928 		if (start == offset)
3929 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3930 
3931 		bytes = minlen;
3932 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3933 		if (ret2 || start >= end) {
3934 			/*
3935 			 * We lossily consider a bitmap trimmed if we only skip
3936 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3937 			 */
3938 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3939 				end_trimming_bitmap(ctl, entry);
3940 			else
3941 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3942 			spin_unlock(&ctl->tree_lock);
3943 			mutex_unlock(&ctl->cache_writeout_mutex);
3944 			next_bitmap = true;
3945 			goto next;
3946 		}
3947 
3948 		/*
3949 		 * We already trimmed a region, but are using the locking above
3950 		 * to reset the trim_state.
3951 		 */
3952 		if (async && *total_trimmed) {
3953 			spin_unlock(&ctl->tree_lock);
3954 			mutex_unlock(&ctl->cache_writeout_mutex);
3955 			goto out;
3956 		}
3957 
3958 		bytes = min(bytes, end - start);
3959 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3960 			spin_unlock(&ctl->tree_lock);
3961 			mutex_unlock(&ctl->cache_writeout_mutex);
3962 			goto next;
3963 		}
3964 
3965 		/*
3966 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3967 		 * If X < @minlen, we won't trim X when we come back around.
3968 		 * So trim it now.  We differ here from trimming extents as we
3969 		 * don't keep individual state per bit.
3970 		 */
3971 		if (async &&
3972 		    max_discard_size &&
3973 		    bytes > (max_discard_size + minlen))
3974 			bytes = max_discard_size;
3975 
3976 		bitmap_clear_bits(ctl, entry, start, bytes, true);
3977 		if (entry->bytes == 0)
3978 			free_bitmap(ctl, entry);
3979 
3980 		spin_unlock(&ctl->tree_lock);
3981 		trim_entry.start = start;
3982 		trim_entry.bytes = bytes;
3983 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3984 		mutex_unlock(&ctl->cache_writeout_mutex);
3985 
3986 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3987 				  start, bytes, 0, &trim_entry);
3988 		if (ret) {
3989 			reset_trimming_bitmap(ctl, offset);
3990 			block_group->discard_cursor =
3991 				btrfs_block_group_end(block_group);
3992 			break;
3993 		}
3994 next:
3995 		if (next_bitmap) {
3996 			offset += BITS_PER_BITMAP * ctl->unit;
3997 			start = offset;
3998 		} else {
3999 			start += bytes;
4000 		}
4001 		block_group->discard_cursor = start;
4002 
4003 		if (fatal_signal_pending(current)) {
4004 			if (start != offset)
4005 				reset_trimming_bitmap(ctl, offset);
4006 			ret = -ERESTARTSYS;
4007 			break;
4008 		}
4009 
4010 		cond_resched();
4011 	}
4012 
4013 	if (offset >= end)
4014 		block_group->discard_cursor = end;
4015 
4016 out:
4017 	return ret;
4018 }
4019 
4020 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4021 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4022 {
4023 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4024 	int ret;
4025 	u64 rem = 0;
4026 
4027 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4028 
4029 	*trimmed = 0;
4030 
4031 	spin_lock(&block_group->lock);
4032 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4033 		spin_unlock(&block_group->lock);
4034 		return 0;
4035 	}
4036 	btrfs_freeze_block_group(block_group);
4037 	spin_unlock(&block_group->lock);
4038 
4039 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4040 	if (ret)
4041 		goto out;
4042 
4043 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4044 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4045 	/* If we ended in the middle of a bitmap, reset the trimming flag */
4046 	if (rem)
4047 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4048 out:
4049 	btrfs_unfreeze_block_group(block_group);
4050 	return ret;
4051 }
4052 
4053 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4054 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4055 				   bool async)
4056 {
4057 	int ret;
4058 
4059 	*trimmed = 0;
4060 
4061 	spin_lock(&block_group->lock);
4062 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4063 		spin_unlock(&block_group->lock);
4064 		return 0;
4065 	}
4066 	btrfs_freeze_block_group(block_group);
4067 	spin_unlock(&block_group->lock);
4068 
4069 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4070 	btrfs_unfreeze_block_group(block_group);
4071 
4072 	return ret;
4073 }
4074 
4075 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4076 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4077 				   u64 maxlen, bool async)
4078 {
4079 	int ret;
4080 
4081 	*trimmed = 0;
4082 
4083 	spin_lock(&block_group->lock);
4084 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4085 		spin_unlock(&block_group->lock);
4086 		return 0;
4087 	}
4088 	btrfs_freeze_block_group(block_group);
4089 	spin_unlock(&block_group->lock);
4090 
4091 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4092 			   async);
4093 
4094 	btrfs_unfreeze_block_group(block_group);
4095 
4096 	return ret;
4097 }
4098 
4099 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4100 {
4101 	return btrfs_super_cache_generation(fs_info->super_copy);
4102 }
4103 
4104 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4105 				       struct btrfs_trans_handle *trans)
4106 {
4107 	struct btrfs_block_group *block_group;
4108 	struct rb_node *node;
4109 	int ret = 0;
4110 
4111 	btrfs_info(fs_info, "cleaning free space cache v1");
4112 
4113 	node = rb_first_cached(&fs_info->block_group_cache_tree);
4114 	while (node) {
4115 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4116 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4117 		if (ret)
4118 			goto out;
4119 		node = rb_next(node);
4120 	}
4121 out:
4122 	return ret;
4123 }
4124 
4125 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4126 {
4127 	struct btrfs_trans_handle *trans;
4128 	int ret;
4129 
4130 	/*
4131 	 * update_super_roots will appropriately set or unset
4132 	 * super_copy->cache_generation based on SPACE_CACHE and
4133 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4134 	 * transaction commit whether we are enabling space cache v1 and don't
4135 	 * have any other work to do, or are disabling it and removing free
4136 	 * space inodes.
4137 	 */
4138 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4139 	if (IS_ERR(trans))
4140 		return PTR_ERR(trans);
4141 
4142 	if (!active) {
4143 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4144 		ret = cleanup_free_space_cache_v1(fs_info, trans);
4145 		if (ret) {
4146 			btrfs_abort_transaction(trans, ret);
4147 			btrfs_end_transaction(trans);
4148 			goto out;
4149 		}
4150 	}
4151 
4152 	ret = btrfs_commit_transaction(trans);
4153 out:
4154 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4155 
4156 	return ret;
4157 }
4158 
4159 int __init btrfs_free_space_init(void)
4160 {
4161 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4162 			sizeof(struct btrfs_free_space), 0,
4163 			SLAB_MEM_SPREAD, NULL);
4164 	if (!btrfs_free_space_cachep)
4165 		return -ENOMEM;
4166 
4167 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4168 							PAGE_SIZE, PAGE_SIZE,
4169 							SLAB_MEM_SPREAD, NULL);
4170 	if (!btrfs_free_space_bitmap_cachep) {
4171 		kmem_cache_destroy(btrfs_free_space_cachep);
4172 		return -ENOMEM;
4173 	}
4174 
4175 	return 0;
4176 }
4177 
4178 void __cold btrfs_free_space_exit(void)
4179 {
4180 	kmem_cache_destroy(btrfs_free_space_cachep);
4181 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4182 }
4183 
4184 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4185 /*
4186  * Use this if you need to make a bitmap or extent entry specifically, it
4187  * doesn't do any of the merging that add_free_space does, this acts a lot like
4188  * how the free space cache loading stuff works, so you can get really weird
4189  * configurations.
4190  */
4191 int test_add_free_space_entry(struct btrfs_block_group *cache,
4192 			      u64 offset, u64 bytes, bool bitmap)
4193 {
4194 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4195 	struct btrfs_free_space *info = NULL, *bitmap_info;
4196 	void *map = NULL;
4197 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4198 	u64 bytes_added;
4199 	int ret;
4200 
4201 again:
4202 	if (!info) {
4203 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4204 		if (!info)
4205 			return -ENOMEM;
4206 	}
4207 
4208 	if (!bitmap) {
4209 		spin_lock(&ctl->tree_lock);
4210 		info->offset = offset;
4211 		info->bytes = bytes;
4212 		info->max_extent_size = 0;
4213 		ret = link_free_space(ctl, info);
4214 		spin_unlock(&ctl->tree_lock);
4215 		if (ret)
4216 			kmem_cache_free(btrfs_free_space_cachep, info);
4217 		return ret;
4218 	}
4219 
4220 	if (!map) {
4221 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4222 		if (!map) {
4223 			kmem_cache_free(btrfs_free_space_cachep, info);
4224 			return -ENOMEM;
4225 		}
4226 	}
4227 
4228 	spin_lock(&ctl->tree_lock);
4229 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4230 					 1, 0);
4231 	if (!bitmap_info) {
4232 		info->bitmap = map;
4233 		map = NULL;
4234 		add_new_bitmap(ctl, info, offset);
4235 		bitmap_info = info;
4236 		info = NULL;
4237 	}
4238 
4239 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4240 					  trim_state);
4241 
4242 	bytes -= bytes_added;
4243 	offset += bytes_added;
4244 	spin_unlock(&ctl->tree_lock);
4245 
4246 	if (bytes)
4247 		goto again;
4248 
4249 	if (info)
4250 		kmem_cache_free(btrfs_free_space_cachep, info);
4251 	if (map)
4252 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4253 	return 0;
4254 }
4255 
4256 /*
4257  * Checks to see if the given range is in the free space cache.  This is really
4258  * just used to check the absence of space, so if there is free space in the
4259  * range at all we will return 1.
4260  */
4261 int test_check_exists(struct btrfs_block_group *cache,
4262 		      u64 offset, u64 bytes)
4263 {
4264 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4265 	struct btrfs_free_space *info;
4266 	int ret = 0;
4267 
4268 	spin_lock(&ctl->tree_lock);
4269 	info = tree_search_offset(ctl, offset, 0, 0);
4270 	if (!info) {
4271 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4272 					  1, 0);
4273 		if (!info)
4274 			goto out;
4275 	}
4276 
4277 have_info:
4278 	if (info->bitmap) {
4279 		u64 bit_off, bit_bytes;
4280 		struct rb_node *n;
4281 		struct btrfs_free_space *tmp;
4282 
4283 		bit_off = offset;
4284 		bit_bytes = ctl->unit;
4285 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4286 		if (!ret) {
4287 			if (bit_off == offset) {
4288 				ret = 1;
4289 				goto out;
4290 			} else if (bit_off > offset &&
4291 				   offset + bytes > bit_off) {
4292 				ret = 1;
4293 				goto out;
4294 			}
4295 		}
4296 
4297 		n = rb_prev(&info->offset_index);
4298 		while (n) {
4299 			tmp = rb_entry(n, struct btrfs_free_space,
4300 				       offset_index);
4301 			if (tmp->offset + tmp->bytes < offset)
4302 				break;
4303 			if (offset + bytes < tmp->offset) {
4304 				n = rb_prev(&tmp->offset_index);
4305 				continue;
4306 			}
4307 			info = tmp;
4308 			goto have_info;
4309 		}
4310 
4311 		n = rb_next(&info->offset_index);
4312 		while (n) {
4313 			tmp = rb_entry(n, struct btrfs_free_space,
4314 				       offset_index);
4315 			if (offset + bytes < tmp->offset)
4316 				break;
4317 			if (tmp->offset + tmp->bytes < offset) {
4318 				n = rb_next(&tmp->offset_index);
4319 				continue;
4320 			}
4321 			info = tmp;
4322 			goto have_info;
4323 		}
4324 
4325 		ret = 0;
4326 		goto out;
4327 	}
4328 
4329 	if (info->offset == offset) {
4330 		ret = 1;
4331 		goto out;
4332 	}
4333 
4334 	if (offset > info->offset && offset < info->offset + info->bytes)
4335 		ret = 1;
4336 out:
4337 	spin_unlock(&ctl->tree_lock);
4338 	return ret;
4339 }
4340 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4341