1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "ctree.h" 15 #include "free-space-cache.h" 16 #include "transaction.h" 17 #include "disk-io.h" 18 #include "extent_io.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "space-info.h" 22 #include "delalloc-space.h" 23 #include "block-group.h" 24 #include "discard.h" 25 26 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 27 #define MAX_CACHE_BYTES_PER_GIG SZ_64K 28 #define FORCE_EXTENT_THRESHOLD SZ_1M 29 30 struct btrfs_trim_range { 31 u64 start; 32 u64 bytes; 33 struct list_head list; 34 }; 35 36 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *bitmap_info); 38 static int link_free_space(struct btrfs_free_space_ctl *ctl, 39 struct btrfs_free_space *info); 40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 41 struct btrfs_free_space *info); 42 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 43 struct btrfs_trans_handle *trans, 44 struct btrfs_io_ctl *io_ctl, 45 struct btrfs_path *path); 46 47 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 48 struct btrfs_path *path, 49 u64 offset) 50 { 51 struct btrfs_fs_info *fs_info = root->fs_info; 52 struct btrfs_key key; 53 struct btrfs_key location; 54 struct btrfs_disk_key disk_key; 55 struct btrfs_free_space_header *header; 56 struct extent_buffer *leaf; 57 struct inode *inode = NULL; 58 unsigned nofs_flag; 59 int ret; 60 61 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 62 key.offset = offset; 63 key.type = 0; 64 65 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 66 if (ret < 0) 67 return ERR_PTR(ret); 68 if (ret > 0) { 69 btrfs_release_path(path); 70 return ERR_PTR(-ENOENT); 71 } 72 73 leaf = path->nodes[0]; 74 header = btrfs_item_ptr(leaf, path->slots[0], 75 struct btrfs_free_space_header); 76 btrfs_free_space_key(leaf, header, &disk_key); 77 btrfs_disk_key_to_cpu(&location, &disk_key); 78 btrfs_release_path(path); 79 80 /* 81 * We are often under a trans handle at this point, so we need to make 82 * sure NOFS is set to keep us from deadlocking. 83 */ 84 nofs_flag = memalloc_nofs_save(); 85 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path); 86 btrfs_release_path(path); 87 memalloc_nofs_restore(nofs_flag); 88 if (IS_ERR(inode)) 89 return inode; 90 91 mapping_set_gfp_mask(inode->i_mapping, 92 mapping_gfp_constraint(inode->i_mapping, 93 ~(__GFP_FS | __GFP_HIGHMEM))); 94 95 return inode; 96 } 97 98 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 99 struct btrfs_path *path) 100 { 101 struct btrfs_fs_info *fs_info = block_group->fs_info; 102 struct inode *inode = NULL; 103 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 104 105 spin_lock(&block_group->lock); 106 if (block_group->inode) 107 inode = igrab(block_group->inode); 108 spin_unlock(&block_group->lock); 109 if (inode) 110 return inode; 111 112 inode = __lookup_free_space_inode(fs_info->tree_root, path, 113 block_group->start); 114 if (IS_ERR(inode)) 115 return inode; 116 117 spin_lock(&block_group->lock); 118 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 119 btrfs_info(fs_info, "Old style space inode found, converting."); 120 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 121 BTRFS_INODE_NODATACOW; 122 block_group->disk_cache_state = BTRFS_DC_CLEAR; 123 } 124 125 if (!block_group->iref) { 126 block_group->inode = igrab(inode); 127 block_group->iref = 1; 128 } 129 spin_unlock(&block_group->lock); 130 131 return inode; 132 } 133 134 static int __create_free_space_inode(struct btrfs_root *root, 135 struct btrfs_trans_handle *trans, 136 struct btrfs_path *path, 137 u64 ino, u64 offset) 138 { 139 struct btrfs_key key; 140 struct btrfs_disk_key disk_key; 141 struct btrfs_free_space_header *header; 142 struct btrfs_inode_item *inode_item; 143 struct extent_buffer *leaf; 144 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 145 int ret; 146 147 ret = btrfs_insert_empty_inode(trans, root, path, ino); 148 if (ret) 149 return ret; 150 151 /* We inline crc's for the free disk space cache */ 152 if (ino != BTRFS_FREE_INO_OBJECTID) 153 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 154 155 leaf = path->nodes[0]; 156 inode_item = btrfs_item_ptr(leaf, path->slots[0], 157 struct btrfs_inode_item); 158 btrfs_item_key(leaf, &disk_key, path->slots[0]); 159 memzero_extent_buffer(leaf, (unsigned long)inode_item, 160 sizeof(*inode_item)); 161 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 162 btrfs_set_inode_size(leaf, inode_item, 0); 163 btrfs_set_inode_nbytes(leaf, inode_item, 0); 164 btrfs_set_inode_uid(leaf, inode_item, 0); 165 btrfs_set_inode_gid(leaf, inode_item, 0); 166 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 167 btrfs_set_inode_flags(leaf, inode_item, flags); 168 btrfs_set_inode_nlink(leaf, inode_item, 1); 169 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 170 btrfs_set_inode_block_group(leaf, inode_item, offset); 171 btrfs_mark_buffer_dirty(leaf); 172 btrfs_release_path(path); 173 174 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 175 key.offset = offset; 176 key.type = 0; 177 ret = btrfs_insert_empty_item(trans, root, path, &key, 178 sizeof(struct btrfs_free_space_header)); 179 if (ret < 0) { 180 btrfs_release_path(path); 181 return ret; 182 } 183 184 leaf = path->nodes[0]; 185 header = btrfs_item_ptr(leaf, path->slots[0], 186 struct btrfs_free_space_header); 187 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 188 btrfs_set_free_space_key(leaf, header, &disk_key); 189 btrfs_mark_buffer_dirty(leaf); 190 btrfs_release_path(path); 191 192 return 0; 193 } 194 195 int create_free_space_inode(struct btrfs_trans_handle *trans, 196 struct btrfs_block_group *block_group, 197 struct btrfs_path *path) 198 { 199 int ret; 200 u64 ino; 201 202 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino); 203 if (ret < 0) 204 return ret; 205 206 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 207 ino, block_group->start); 208 } 209 210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 211 struct btrfs_block_rsv *rsv) 212 { 213 u64 needed_bytes; 214 int ret; 215 216 /* 1 for slack space, 1 for updating the inode */ 217 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 218 btrfs_calc_metadata_size(fs_info, 1); 219 220 spin_lock(&rsv->lock); 221 if (rsv->reserved < needed_bytes) 222 ret = -ENOSPC; 223 else 224 ret = 0; 225 spin_unlock(&rsv->lock); 226 return ret; 227 } 228 229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 230 struct btrfs_block_group *block_group, 231 struct inode *inode) 232 { 233 struct btrfs_root *root = BTRFS_I(inode)->root; 234 int ret = 0; 235 bool locked = false; 236 237 if (block_group) { 238 struct btrfs_path *path = btrfs_alloc_path(); 239 240 if (!path) { 241 ret = -ENOMEM; 242 goto fail; 243 } 244 locked = true; 245 mutex_lock(&trans->transaction->cache_write_mutex); 246 if (!list_empty(&block_group->io_list)) { 247 list_del_init(&block_group->io_list); 248 249 btrfs_wait_cache_io(trans, block_group, path); 250 btrfs_put_block_group(block_group); 251 } 252 253 /* 254 * now that we've truncated the cache away, its no longer 255 * setup or written 256 */ 257 spin_lock(&block_group->lock); 258 block_group->disk_cache_state = BTRFS_DC_CLEAR; 259 spin_unlock(&block_group->lock); 260 btrfs_free_path(path); 261 } 262 263 btrfs_i_size_write(BTRFS_I(inode), 0); 264 truncate_pagecache(inode, 0); 265 266 /* 267 * We skip the throttling logic for free space cache inodes, so we don't 268 * need to check for -EAGAIN. 269 */ 270 ret = btrfs_truncate_inode_items(trans, root, inode, 271 0, BTRFS_EXTENT_DATA_KEY); 272 if (ret) 273 goto fail; 274 275 ret = btrfs_update_inode(trans, root, inode); 276 277 fail: 278 if (locked) 279 mutex_unlock(&trans->transaction->cache_write_mutex); 280 if (ret) 281 btrfs_abort_transaction(trans, ret); 282 283 return ret; 284 } 285 286 static void readahead_cache(struct inode *inode) 287 { 288 struct file_ra_state *ra; 289 unsigned long last_index; 290 291 ra = kzalloc(sizeof(*ra), GFP_NOFS); 292 if (!ra) 293 return; 294 295 file_ra_state_init(ra, inode->i_mapping); 296 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 297 298 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 299 300 kfree(ra); 301 } 302 303 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 304 int write) 305 { 306 int num_pages; 307 int check_crcs = 0; 308 309 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 310 311 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) 312 check_crcs = 1; 313 314 /* Make sure we can fit our crcs and generation into the first page */ 315 if (write && check_crcs && 316 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 317 return -ENOSPC; 318 319 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 320 321 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 322 if (!io_ctl->pages) 323 return -ENOMEM; 324 325 io_ctl->num_pages = num_pages; 326 io_ctl->fs_info = btrfs_sb(inode->i_sb); 327 io_ctl->check_crcs = check_crcs; 328 io_ctl->inode = inode; 329 330 return 0; 331 } 332 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 333 334 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 335 { 336 kfree(io_ctl->pages); 337 io_ctl->pages = NULL; 338 } 339 340 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 341 { 342 if (io_ctl->cur) { 343 io_ctl->cur = NULL; 344 io_ctl->orig = NULL; 345 } 346 } 347 348 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 349 { 350 ASSERT(io_ctl->index < io_ctl->num_pages); 351 io_ctl->page = io_ctl->pages[io_ctl->index++]; 352 io_ctl->cur = page_address(io_ctl->page); 353 io_ctl->orig = io_ctl->cur; 354 io_ctl->size = PAGE_SIZE; 355 if (clear) 356 clear_page(io_ctl->cur); 357 } 358 359 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 360 { 361 int i; 362 363 io_ctl_unmap_page(io_ctl); 364 365 for (i = 0; i < io_ctl->num_pages; i++) { 366 if (io_ctl->pages[i]) { 367 ClearPageChecked(io_ctl->pages[i]); 368 unlock_page(io_ctl->pages[i]); 369 put_page(io_ctl->pages[i]); 370 } 371 } 372 } 373 374 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate) 375 { 376 struct page *page; 377 struct inode *inode = io_ctl->inode; 378 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 379 int i; 380 381 for (i = 0; i < io_ctl->num_pages; i++) { 382 page = find_or_create_page(inode->i_mapping, i, mask); 383 if (!page) { 384 io_ctl_drop_pages(io_ctl); 385 return -ENOMEM; 386 } 387 io_ctl->pages[i] = page; 388 if (uptodate && !PageUptodate(page)) { 389 btrfs_readpage(NULL, page); 390 lock_page(page); 391 if (page->mapping != inode->i_mapping) { 392 btrfs_err(BTRFS_I(inode)->root->fs_info, 393 "free space cache page truncated"); 394 io_ctl_drop_pages(io_ctl); 395 return -EIO; 396 } 397 if (!PageUptodate(page)) { 398 btrfs_err(BTRFS_I(inode)->root->fs_info, 399 "error reading free space cache"); 400 io_ctl_drop_pages(io_ctl); 401 return -EIO; 402 } 403 } 404 } 405 406 for (i = 0; i < io_ctl->num_pages; i++) { 407 clear_page_dirty_for_io(io_ctl->pages[i]); 408 set_page_extent_mapped(io_ctl->pages[i]); 409 } 410 411 return 0; 412 } 413 414 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 415 { 416 __le64 *val; 417 418 io_ctl_map_page(io_ctl, 1); 419 420 /* 421 * Skip the csum areas. If we don't check crcs then we just have a 422 * 64bit chunk at the front of the first page. 423 */ 424 if (io_ctl->check_crcs) { 425 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 426 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 427 } else { 428 io_ctl->cur += sizeof(u64); 429 io_ctl->size -= sizeof(u64) * 2; 430 } 431 432 val = io_ctl->cur; 433 *val = cpu_to_le64(generation); 434 io_ctl->cur += sizeof(u64); 435 } 436 437 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 438 { 439 __le64 *gen; 440 441 /* 442 * Skip the crc area. If we don't check crcs then we just have a 64bit 443 * chunk at the front of the first page. 444 */ 445 if (io_ctl->check_crcs) { 446 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 447 io_ctl->size -= sizeof(u64) + 448 (sizeof(u32) * io_ctl->num_pages); 449 } else { 450 io_ctl->cur += sizeof(u64); 451 io_ctl->size -= sizeof(u64) * 2; 452 } 453 454 gen = io_ctl->cur; 455 if (le64_to_cpu(*gen) != generation) { 456 btrfs_err_rl(io_ctl->fs_info, 457 "space cache generation (%llu) does not match inode (%llu)", 458 *gen, generation); 459 io_ctl_unmap_page(io_ctl); 460 return -EIO; 461 } 462 io_ctl->cur += sizeof(u64); 463 return 0; 464 } 465 466 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 467 { 468 u32 *tmp; 469 u32 crc = ~(u32)0; 470 unsigned offset = 0; 471 472 if (!io_ctl->check_crcs) { 473 io_ctl_unmap_page(io_ctl); 474 return; 475 } 476 477 if (index == 0) 478 offset = sizeof(u32) * io_ctl->num_pages; 479 480 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 481 btrfs_crc32c_final(crc, (u8 *)&crc); 482 io_ctl_unmap_page(io_ctl); 483 tmp = page_address(io_ctl->pages[0]); 484 tmp += index; 485 *tmp = crc; 486 } 487 488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 489 { 490 u32 *tmp, val; 491 u32 crc = ~(u32)0; 492 unsigned offset = 0; 493 494 if (!io_ctl->check_crcs) { 495 io_ctl_map_page(io_ctl, 0); 496 return 0; 497 } 498 499 if (index == 0) 500 offset = sizeof(u32) * io_ctl->num_pages; 501 502 tmp = page_address(io_ctl->pages[0]); 503 tmp += index; 504 val = *tmp; 505 506 io_ctl_map_page(io_ctl, 0); 507 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 508 btrfs_crc32c_final(crc, (u8 *)&crc); 509 if (val != crc) { 510 btrfs_err_rl(io_ctl->fs_info, 511 "csum mismatch on free space cache"); 512 io_ctl_unmap_page(io_ctl); 513 return -EIO; 514 } 515 516 return 0; 517 } 518 519 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 520 void *bitmap) 521 { 522 struct btrfs_free_space_entry *entry; 523 524 if (!io_ctl->cur) 525 return -ENOSPC; 526 527 entry = io_ctl->cur; 528 entry->offset = cpu_to_le64(offset); 529 entry->bytes = cpu_to_le64(bytes); 530 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 531 BTRFS_FREE_SPACE_EXTENT; 532 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 533 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 534 535 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 536 return 0; 537 538 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 539 540 /* No more pages to map */ 541 if (io_ctl->index >= io_ctl->num_pages) 542 return 0; 543 544 /* map the next page */ 545 io_ctl_map_page(io_ctl, 1); 546 return 0; 547 } 548 549 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 550 { 551 if (!io_ctl->cur) 552 return -ENOSPC; 553 554 /* 555 * If we aren't at the start of the current page, unmap this one and 556 * map the next one if there is any left. 557 */ 558 if (io_ctl->cur != io_ctl->orig) { 559 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 560 if (io_ctl->index >= io_ctl->num_pages) 561 return -ENOSPC; 562 io_ctl_map_page(io_ctl, 0); 563 } 564 565 copy_page(io_ctl->cur, bitmap); 566 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 567 if (io_ctl->index < io_ctl->num_pages) 568 io_ctl_map_page(io_ctl, 0); 569 return 0; 570 } 571 572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 573 { 574 /* 575 * If we're not on the boundary we know we've modified the page and we 576 * need to crc the page. 577 */ 578 if (io_ctl->cur != io_ctl->orig) 579 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 580 else 581 io_ctl_unmap_page(io_ctl); 582 583 while (io_ctl->index < io_ctl->num_pages) { 584 io_ctl_map_page(io_ctl, 1); 585 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 586 } 587 } 588 589 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 590 struct btrfs_free_space *entry, u8 *type) 591 { 592 struct btrfs_free_space_entry *e; 593 int ret; 594 595 if (!io_ctl->cur) { 596 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 597 if (ret) 598 return ret; 599 } 600 601 e = io_ctl->cur; 602 entry->offset = le64_to_cpu(e->offset); 603 entry->bytes = le64_to_cpu(e->bytes); 604 *type = e->type; 605 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 606 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 607 608 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 609 return 0; 610 611 io_ctl_unmap_page(io_ctl); 612 613 return 0; 614 } 615 616 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 617 struct btrfs_free_space *entry) 618 { 619 int ret; 620 621 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 622 if (ret) 623 return ret; 624 625 copy_page(entry->bitmap, io_ctl->cur); 626 io_ctl_unmap_page(io_ctl); 627 628 return 0; 629 } 630 631 /* 632 * Since we attach pinned extents after the fact we can have contiguous sections 633 * of free space that are split up in entries. This poses a problem with the 634 * tree logging stuff since it could have allocated across what appears to be 2 635 * entries since we would have merged the entries when adding the pinned extents 636 * back to the free space cache. So run through the space cache that we just 637 * loaded and merge contiguous entries. This will make the log replay stuff not 638 * blow up and it will make for nicer allocator behavior. 639 */ 640 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 641 { 642 struct btrfs_free_space *e, *prev = NULL; 643 struct rb_node *n; 644 645 again: 646 spin_lock(&ctl->tree_lock); 647 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 648 e = rb_entry(n, struct btrfs_free_space, offset_index); 649 if (!prev) 650 goto next; 651 if (e->bitmap || prev->bitmap) 652 goto next; 653 if (prev->offset + prev->bytes == e->offset) { 654 unlink_free_space(ctl, prev); 655 unlink_free_space(ctl, e); 656 prev->bytes += e->bytes; 657 kmem_cache_free(btrfs_free_space_cachep, e); 658 link_free_space(ctl, prev); 659 prev = NULL; 660 spin_unlock(&ctl->tree_lock); 661 goto again; 662 } 663 next: 664 prev = e; 665 } 666 spin_unlock(&ctl->tree_lock); 667 } 668 669 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 670 struct btrfs_free_space_ctl *ctl, 671 struct btrfs_path *path, u64 offset) 672 { 673 struct btrfs_fs_info *fs_info = root->fs_info; 674 struct btrfs_free_space_header *header; 675 struct extent_buffer *leaf; 676 struct btrfs_io_ctl io_ctl; 677 struct btrfs_key key; 678 struct btrfs_free_space *e, *n; 679 LIST_HEAD(bitmaps); 680 u64 num_entries; 681 u64 num_bitmaps; 682 u64 generation; 683 u8 type; 684 int ret = 0; 685 686 /* Nothing in the space cache, goodbye */ 687 if (!i_size_read(inode)) 688 return 0; 689 690 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 691 key.offset = offset; 692 key.type = 0; 693 694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 695 if (ret < 0) 696 return 0; 697 else if (ret > 0) { 698 btrfs_release_path(path); 699 return 0; 700 } 701 702 ret = -1; 703 704 leaf = path->nodes[0]; 705 header = btrfs_item_ptr(leaf, path->slots[0], 706 struct btrfs_free_space_header); 707 num_entries = btrfs_free_space_entries(leaf, header); 708 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 709 generation = btrfs_free_space_generation(leaf, header); 710 btrfs_release_path(path); 711 712 if (!BTRFS_I(inode)->generation) { 713 btrfs_info(fs_info, 714 "the free space cache file (%llu) is invalid, skip it", 715 offset); 716 return 0; 717 } 718 719 if (BTRFS_I(inode)->generation != generation) { 720 btrfs_err(fs_info, 721 "free space inode generation (%llu) did not match free space cache generation (%llu)", 722 BTRFS_I(inode)->generation, generation); 723 return 0; 724 } 725 726 if (!num_entries) 727 return 0; 728 729 ret = io_ctl_init(&io_ctl, inode, 0); 730 if (ret) 731 return ret; 732 733 readahead_cache(inode); 734 735 ret = io_ctl_prepare_pages(&io_ctl, true); 736 if (ret) 737 goto out; 738 739 ret = io_ctl_check_crc(&io_ctl, 0); 740 if (ret) 741 goto free_cache; 742 743 ret = io_ctl_check_generation(&io_ctl, generation); 744 if (ret) 745 goto free_cache; 746 747 while (num_entries) { 748 e = kmem_cache_zalloc(btrfs_free_space_cachep, 749 GFP_NOFS); 750 if (!e) 751 goto free_cache; 752 753 ret = io_ctl_read_entry(&io_ctl, e, &type); 754 if (ret) { 755 kmem_cache_free(btrfs_free_space_cachep, e); 756 goto free_cache; 757 } 758 759 /* 760 * Sync discard ensures that the free space cache is always 761 * trimmed. So when reading this in, the state should reflect 762 * that. We also do this for async as a stop gap for lack of 763 * persistence. 764 */ 765 if (btrfs_test_opt(fs_info, DISCARD_SYNC) || 766 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 767 e->trim_state = BTRFS_TRIM_STATE_TRIMMED; 768 769 if (!e->bytes) { 770 kmem_cache_free(btrfs_free_space_cachep, e); 771 goto free_cache; 772 } 773 774 if (type == BTRFS_FREE_SPACE_EXTENT) { 775 spin_lock(&ctl->tree_lock); 776 ret = link_free_space(ctl, e); 777 spin_unlock(&ctl->tree_lock); 778 if (ret) { 779 btrfs_err(fs_info, 780 "Duplicate entries in free space cache, dumping"); 781 kmem_cache_free(btrfs_free_space_cachep, e); 782 goto free_cache; 783 } 784 } else { 785 ASSERT(num_bitmaps); 786 num_bitmaps--; 787 e->bitmap = kmem_cache_zalloc( 788 btrfs_free_space_bitmap_cachep, GFP_NOFS); 789 if (!e->bitmap) { 790 kmem_cache_free( 791 btrfs_free_space_cachep, e); 792 goto free_cache; 793 } 794 spin_lock(&ctl->tree_lock); 795 ret = link_free_space(ctl, e); 796 ctl->total_bitmaps++; 797 ctl->op->recalc_thresholds(ctl); 798 spin_unlock(&ctl->tree_lock); 799 if (ret) { 800 btrfs_err(fs_info, 801 "Duplicate entries in free space cache, dumping"); 802 kmem_cache_free(btrfs_free_space_cachep, e); 803 goto free_cache; 804 } 805 list_add_tail(&e->list, &bitmaps); 806 } 807 808 num_entries--; 809 } 810 811 io_ctl_unmap_page(&io_ctl); 812 813 /* 814 * We add the bitmaps at the end of the entries in order that 815 * the bitmap entries are added to the cache. 816 */ 817 list_for_each_entry_safe(e, n, &bitmaps, list) { 818 list_del_init(&e->list); 819 ret = io_ctl_read_bitmap(&io_ctl, e); 820 if (ret) 821 goto free_cache; 822 e->bitmap_extents = count_bitmap_extents(ctl, e); 823 if (!btrfs_free_space_trimmed(e)) { 824 ctl->discardable_extents[BTRFS_STAT_CURR] += 825 e->bitmap_extents; 826 ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes; 827 } 828 } 829 830 io_ctl_drop_pages(&io_ctl); 831 merge_space_tree(ctl); 832 ret = 1; 833 out: 834 btrfs_discard_update_discardable(ctl->private, ctl); 835 io_ctl_free(&io_ctl); 836 return ret; 837 free_cache: 838 io_ctl_drop_pages(&io_ctl); 839 __btrfs_remove_free_space_cache(ctl); 840 goto out; 841 } 842 843 int load_free_space_cache(struct btrfs_block_group *block_group) 844 { 845 struct btrfs_fs_info *fs_info = block_group->fs_info; 846 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 847 struct inode *inode; 848 struct btrfs_path *path; 849 int ret = 0; 850 bool matched; 851 u64 used = block_group->used; 852 853 /* 854 * If this block group has been marked to be cleared for one reason or 855 * another then we can't trust the on disk cache, so just return. 856 */ 857 spin_lock(&block_group->lock); 858 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 859 spin_unlock(&block_group->lock); 860 return 0; 861 } 862 spin_unlock(&block_group->lock); 863 864 path = btrfs_alloc_path(); 865 if (!path) 866 return 0; 867 path->search_commit_root = 1; 868 path->skip_locking = 1; 869 870 /* 871 * We must pass a path with search_commit_root set to btrfs_iget in 872 * order to avoid a deadlock when allocating extents for the tree root. 873 * 874 * When we are COWing an extent buffer from the tree root, when looking 875 * for a free extent, at extent-tree.c:find_free_extent(), we can find 876 * block group without its free space cache loaded. When we find one 877 * we must load its space cache which requires reading its free space 878 * cache's inode item from the root tree. If this inode item is located 879 * in the same leaf that we started COWing before, then we end up in 880 * deadlock on the extent buffer (trying to read lock it when we 881 * previously write locked it). 882 * 883 * It's safe to read the inode item using the commit root because 884 * block groups, once loaded, stay in memory forever (until they are 885 * removed) as well as their space caches once loaded. New block groups 886 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 887 * we will never try to read their inode item while the fs is mounted. 888 */ 889 inode = lookup_free_space_inode(block_group, path); 890 if (IS_ERR(inode)) { 891 btrfs_free_path(path); 892 return 0; 893 } 894 895 /* We may have converted the inode and made the cache invalid. */ 896 spin_lock(&block_group->lock); 897 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 898 spin_unlock(&block_group->lock); 899 btrfs_free_path(path); 900 goto out; 901 } 902 spin_unlock(&block_group->lock); 903 904 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 905 path, block_group->start); 906 btrfs_free_path(path); 907 if (ret <= 0) 908 goto out; 909 910 spin_lock(&ctl->tree_lock); 911 matched = (ctl->free_space == (block_group->length - used - 912 block_group->bytes_super)); 913 spin_unlock(&ctl->tree_lock); 914 915 if (!matched) { 916 __btrfs_remove_free_space_cache(ctl); 917 btrfs_warn(fs_info, 918 "block group %llu has wrong amount of free space", 919 block_group->start); 920 ret = -1; 921 } 922 out: 923 if (ret < 0) { 924 /* This cache is bogus, make sure it gets cleared */ 925 spin_lock(&block_group->lock); 926 block_group->disk_cache_state = BTRFS_DC_CLEAR; 927 spin_unlock(&block_group->lock); 928 ret = 0; 929 930 btrfs_warn(fs_info, 931 "failed to load free space cache for block group %llu, rebuilding it now", 932 block_group->start); 933 } 934 935 iput(inode); 936 return ret; 937 } 938 939 static noinline_for_stack 940 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 941 struct btrfs_free_space_ctl *ctl, 942 struct btrfs_block_group *block_group, 943 int *entries, int *bitmaps, 944 struct list_head *bitmap_list) 945 { 946 int ret; 947 struct btrfs_free_cluster *cluster = NULL; 948 struct btrfs_free_cluster *cluster_locked = NULL; 949 struct rb_node *node = rb_first(&ctl->free_space_offset); 950 struct btrfs_trim_range *trim_entry; 951 952 /* Get the cluster for this block_group if it exists */ 953 if (block_group && !list_empty(&block_group->cluster_list)) { 954 cluster = list_entry(block_group->cluster_list.next, 955 struct btrfs_free_cluster, 956 block_group_list); 957 } 958 959 if (!node && cluster) { 960 cluster_locked = cluster; 961 spin_lock(&cluster_locked->lock); 962 node = rb_first(&cluster->root); 963 cluster = NULL; 964 } 965 966 /* Write out the extent entries */ 967 while (node) { 968 struct btrfs_free_space *e; 969 970 e = rb_entry(node, struct btrfs_free_space, offset_index); 971 *entries += 1; 972 973 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 974 e->bitmap); 975 if (ret) 976 goto fail; 977 978 if (e->bitmap) { 979 list_add_tail(&e->list, bitmap_list); 980 *bitmaps += 1; 981 } 982 node = rb_next(node); 983 if (!node && cluster) { 984 node = rb_first(&cluster->root); 985 cluster_locked = cluster; 986 spin_lock(&cluster_locked->lock); 987 cluster = NULL; 988 } 989 } 990 if (cluster_locked) { 991 spin_unlock(&cluster_locked->lock); 992 cluster_locked = NULL; 993 } 994 995 /* 996 * Make sure we don't miss any range that was removed from our rbtree 997 * because trimming is running. Otherwise after a umount+mount (or crash 998 * after committing the transaction) we would leak free space and get 999 * an inconsistent free space cache report from fsck. 1000 */ 1001 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 1002 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 1003 trim_entry->bytes, NULL); 1004 if (ret) 1005 goto fail; 1006 *entries += 1; 1007 } 1008 1009 return 0; 1010 fail: 1011 if (cluster_locked) 1012 spin_unlock(&cluster_locked->lock); 1013 return -ENOSPC; 1014 } 1015 1016 static noinline_for_stack int 1017 update_cache_item(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, 1019 struct inode *inode, 1020 struct btrfs_path *path, u64 offset, 1021 int entries, int bitmaps) 1022 { 1023 struct btrfs_key key; 1024 struct btrfs_free_space_header *header; 1025 struct extent_buffer *leaf; 1026 int ret; 1027 1028 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1029 key.offset = offset; 1030 key.type = 0; 1031 1032 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1033 if (ret < 0) { 1034 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1035 EXTENT_DELALLOC, 0, 0, NULL); 1036 goto fail; 1037 } 1038 leaf = path->nodes[0]; 1039 if (ret > 0) { 1040 struct btrfs_key found_key; 1041 ASSERT(path->slots[0]); 1042 path->slots[0]--; 1043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1044 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1045 found_key.offset != offset) { 1046 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1047 inode->i_size - 1, EXTENT_DELALLOC, 0, 1048 0, NULL); 1049 btrfs_release_path(path); 1050 goto fail; 1051 } 1052 } 1053 1054 BTRFS_I(inode)->generation = trans->transid; 1055 header = btrfs_item_ptr(leaf, path->slots[0], 1056 struct btrfs_free_space_header); 1057 btrfs_set_free_space_entries(leaf, header, entries); 1058 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1059 btrfs_set_free_space_generation(leaf, header, trans->transid); 1060 btrfs_mark_buffer_dirty(leaf); 1061 btrfs_release_path(path); 1062 1063 return 0; 1064 1065 fail: 1066 return -1; 1067 } 1068 1069 static noinline_for_stack int write_pinned_extent_entries( 1070 struct btrfs_trans_handle *trans, 1071 struct btrfs_block_group *block_group, 1072 struct btrfs_io_ctl *io_ctl, 1073 int *entries) 1074 { 1075 u64 start, extent_start, extent_end, len; 1076 struct extent_io_tree *unpin = NULL; 1077 int ret; 1078 1079 if (!block_group) 1080 return 0; 1081 1082 /* 1083 * We want to add any pinned extents to our free space cache 1084 * so we don't leak the space 1085 * 1086 * We shouldn't have switched the pinned extents yet so this is the 1087 * right one 1088 */ 1089 unpin = &trans->transaction->pinned_extents; 1090 1091 start = block_group->start; 1092 1093 while (start < block_group->start + block_group->length) { 1094 ret = find_first_extent_bit(unpin, start, 1095 &extent_start, &extent_end, 1096 EXTENT_DIRTY, NULL); 1097 if (ret) 1098 return 0; 1099 1100 /* This pinned extent is out of our range */ 1101 if (extent_start >= block_group->start + block_group->length) 1102 return 0; 1103 1104 extent_start = max(extent_start, start); 1105 extent_end = min(block_group->start + block_group->length, 1106 extent_end + 1); 1107 len = extent_end - extent_start; 1108 1109 *entries += 1; 1110 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1111 if (ret) 1112 return -ENOSPC; 1113 1114 start = extent_end; 1115 } 1116 1117 return 0; 1118 } 1119 1120 static noinline_for_stack int 1121 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1122 { 1123 struct btrfs_free_space *entry, *next; 1124 int ret; 1125 1126 /* Write out the bitmaps */ 1127 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1128 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1129 if (ret) 1130 return -ENOSPC; 1131 list_del_init(&entry->list); 1132 } 1133 1134 return 0; 1135 } 1136 1137 static int flush_dirty_cache(struct inode *inode) 1138 { 1139 int ret; 1140 1141 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1142 if (ret) 1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1144 EXTENT_DELALLOC, 0, 0, NULL); 1145 1146 return ret; 1147 } 1148 1149 static void noinline_for_stack 1150 cleanup_bitmap_list(struct list_head *bitmap_list) 1151 { 1152 struct btrfs_free_space *entry, *next; 1153 1154 list_for_each_entry_safe(entry, next, bitmap_list, list) 1155 list_del_init(&entry->list); 1156 } 1157 1158 static void noinline_for_stack 1159 cleanup_write_cache_enospc(struct inode *inode, 1160 struct btrfs_io_ctl *io_ctl, 1161 struct extent_state **cached_state) 1162 { 1163 io_ctl_drop_pages(io_ctl); 1164 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1165 i_size_read(inode) - 1, cached_state); 1166 } 1167 1168 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1169 struct btrfs_trans_handle *trans, 1170 struct btrfs_block_group *block_group, 1171 struct btrfs_io_ctl *io_ctl, 1172 struct btrfs_path *path, u64 offset) 1173 { 1174 int ret; 1175 struct inode *inode = io_ctl->inode; 1176 1177 if (!inode) 1178 return 0; 1179 1180 /* Flush the dirty pages in the cache file. */ 1181 ret = flush_dirty_cache(inode); 1182 if (ret) 1183 goto out; 1184 1185 /* Update the cache item to tell everyone this cache file is valid. */ 1186 ret = update_cache_item(trans, root, inode, path, offset, 1187 io_ctl->entries, io_ctl->bitmaps); 1188 out: 1189 io_ctl_free(io_ctl); 1190 if (ret) { 1191 invalidate_inode_pages2(inode->i_mapping); 1192 BTRFS_I(inode)->generation = 0; 1193 if (block_group) 1194 btrfs_debug(root->fs_info, 1195 "failed to write free space cache for block group %llu error %d", 1196 block_group->start, ret); 1197 } 1198 btrfs_update_inode(trans, root, inode); 1199 1200 if (block_group) { 1201 /* the dirty list is protected by the dirty_bgs_lock */ 1202 spin_lock(&trans->transaction->dirty_bgs_lock); 1203 1204 /* the disk_cache_state is protected by the block group lock */ 1205 spin_lock(&block_group->lock); 1206 1207 /* 1208 * only mark this as written if we didn't get put back on 1209 * the dirty list while waiting for IO. Otherwise our 1210 * cache state won't be right, and we won't get written again 1211 */ 1212 if (!ret && list_empty(&block_group->dirty_list)) 1213 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1214 else if (ret) 1215 block_group->disk_cache_state = BTRFS_DC_ERROR; 1216 1217 spin_unlock(&block_group->lock); 1218 spin_unlock(&trans->transaction->dirty_bgs_lock); 1219 io_ctl->inode = NULL; 1220 iput(inode); 1221 } 1222 1223 return ret; 1224 1225 } 1226 1227 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 1228 struct btrfs_trans_handle *trans, 1229 struct btrfs_io_ctl *io_ctl, 1230 struct btrfs_path *path) 1231 { 1232 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); 1233 } 1234 1235 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1236 struct btrfs_block_group *block_group, 1237 struct btrfs_path *path) 1238 { 1239 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1240 block_group, &block_group->io_ctl, 1241 path, block_group->start); 1242 } 1243 1244 /** 1245 * __btrfs_write_out_cache - write out cached info to an inode 1246 * @root - the root the inode belongs to 1247 * @ctl - the free space cache we are going to write out 1248 * @block_group - the block_group for this cache if it belongs to a block_group 1249 * @trans - the trans handle 1250 * 1251 * This function writes out a free space cache struct to disk for quick recovery 1252 * on mount. This will return 0 if it was successful in writing the cache out, 1253 * or an errno if it was not. 1254 */ 1255 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1256 struct btrfs_free_space_ctl *ctl, 1257 struct btrfs_block_group *block_group, 1258 struct btrfs_io_ctl *io_ctl, 1259 struct btrfs_trans_handle *trans) 1260 { 1261 struct extent_state *cached_state = NULL; 1262 LIST_HEAD(bitmap_list); 1263 int entries = 0; 1264 int bitmaps = 0; 1265 int ret; 1266 int must_iput = 0; 1267 1268 if (!i_size_read(inode)) 1269 return -EIO; 1270 1271 WARN_ON(io_ctl->pages); 1272 ret = io_ctl_init(io_ctl, inode, 1); 1273 if (ret) 1274 return ret; 1275 1276 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1277 down_write(&block_group->data_rwsem); 1278 spin_lock(&block_group->lock); 1279 if (block_group->delalloc_bytes) { 1280 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1281 spin_unlock(&block_group->lock); 1282 up_write(&block_group->data_rwsem); 1283 BTRFS_I(inode)->generation = 0; 1284 ret = 0; 1285 must_iput = 1; 1286 goto out; 1287 } 1288 spin_unlock(&block_group->lock); 1289 } 1290 1291 /* Lock all pages first so we can lock the extent safely. */ 1292 ret = io_ctl_prepare_pages(io_ctl, false); 1293 if (ret) 1294 goto out_unlock; 1295 1296 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1297 &cached_state); 1298 1299 io_ctl_set_generation(io_ctl, trans->transid); 1300 1301 mutex_lock(&ctl->cache_writeout_mutex); 1302 /* Write out the extent entries in the free space cache */ 1303 spin_lock(&ctl->tree_lock); 1304 ret = write_cache_extent_entries(io_ctl, ctl, 1305 block_group, &entries, &bitmaps, 1306 &bitmap_list); 1307 if (ret) 1308 goto out_nospc_locked; 1309 1310 /* 1311 * Some spaces that are freed in the current transaction are pinned, 1312 * they will be added into free space cache after the transaction is 1313 * committed, we shouldn't lose them. 1314 * 1315 * If this changes while we are working we'll get added back to 1316 * the dirty list and redo it. No locking needed 1317 */ 1318 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries); 1319 if (ret) 1320 goto out_nospc_locked; 1321 1322 /* 1323 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1324 * locked while doing it because a concurrent trim can be manipulating 1325 * or freeing the bitmap. 1326 */ 1327 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1328 spin_unlock(&ctl->tree_lock); 1329 mutex_unlock(&ctl->cache_writeout_mutex); 1330 if (ret) 1331 goto out_nospc; 1332 1333 /* Zero out the rest of the pages just to make sure */ 1334 io_ctl_zero_remaining_pages(io_ctl); 1335 1336 /* Everything is written out, now we dirty the pages in the file. */ 1337 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, 1338 i_size_read(inode), &cached_state); 1339 if (ret) 1340 goto out_nospc; 1341 1342 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1343 up_write(&block_group->data_rwsem); 1344 /* 1345 * Release the pages and unlock the extent, we will flush 1346 * them out later 1347 */ 1348 io_ctl_drop_pages(io_ctl); 1349 1350 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1351 i_size_read(inode) - 1, &cached_state); 1352 1353 /* 1354 * at this point the pages are under IO and we're happy, 1355 * The caller is responsible for waiting on them and updating the 1356 * the cache and the inode 1357 */ 1358 io_ctl->entries = entries; 1359 io_ctl->bitmaps = bitmaps; 1360 1361 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1362 if (ret) 1363 goto out; 1364 1365 return 0; 1366 1367 out_nospc_locked: 1368 cleanup_bitmap_list(&bitmap_list); 1369 spin_unlock(&ctl->tree_lock); 1370 mutex_unlock(&ctl->cache_writeout_mutex); 1371 1372 out_nospc: 1373 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1374 1375 out_unlock: 1376 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1377 up_write(&block_group->data_rwsem); 1378 1379 out: 1380 io_ctl->inode = NULL; 1381 io_ctl_free(io_ctl); 1382 if (ret) { 1383 invalidate_inode_pages2(inode->i_mapping); 1384 BTRFS_I(inode)->generation = 0; 1385 } 1386 btrfs_update_inode(trans, root, inode); 1387 if (must_iput) 1388 iput(inode); 1389 return ret; 1390 } 1391 1392 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1393 struct btrfs_block_group *block_group, 1394 struct btrfs_path *path) 1395 { 1396 struct btrfs_fs_info *fs_info = trans->fs_info; 1397 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1398 struct inode *inode; 1399 int ret = 0; 1400 1401 spin_lock(&block_group->lock); 1402 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1403 spin_unlock(&block_group->lock); 1404 return 0; 1405 } 1406 spin_unlock(&block_group->lock); 1407 1408 inode = lookup_free_space_inode(block_group, path); 1409 if (IS_ERR(inode)) 1410 return 0; 1411 1412 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1413 block_group, &block_group->io_ctl, trans); 1414 if (ret) { 1415 btrfs_debug(fs_info, 1416 "failed to write free space cache for block group %llu error %d", 1417 block_group->start, ret); 1418 spin_lock(&block_group->lock); 1419 block_group->disk_cache_state = BTRFS_DC_ERROR; 1420 spin_unlock(&block_group->lock); 1421 1422 block_group->io_ctl.inode = NULL; 1423 iput(inode); 1424 } 1425 1426 /* 1427 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1428 * to wait for IO and put the inode 1429 */ 1430 1431 return ret; 1432 } 1433 1434 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1435 u64 offset) 1436 { 1437 ASSERT(offset >= bitmap_start); 1438 offset -= bitmap_start; 1439 return (unsigned long)(div_u64(offset, unit)); 1440 } 1441 1442 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1443 { 1444 return (unsigned long)(div_u64(bytes, unit)); 1445 } 1446 1447 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1448 u64 offset) 1449 { 1450 u64 bitmap_start; 1451 u64 bytes_per_bitmap; 1452 1453 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1454 bitmap_start = offset - ctl->start; 1455 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1456 bitmap_start *= bytes_per_bitmap; 1457 bitmap_start += ctl->start; 1458 1459 return bitmap_start; 1460 } 1461 1462 static int tree_insert_offset(struct rb_root *root, u64 offset, 1463 struct rb_node *node, int bitmap) 1464 { 1465 struct rb_node **p = &root->rb_node; 1466 struct rb_node *parent = NULL; 1467 struct btrfs_free_space *info; 1468 1469 while (*p) { 1470 parent = *p; 1471 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1472 1473 if (offset < info->offset) { 1474 p = &(*p)->rb_left; 1475 } else if (offset > info->offset) { 1476 p = &(*p)->rb_right; 1477 } else { 1478 /* 1479 * we could have a bitmap entry and an extent entry 1480 * share the same offset. If this is the case, we want 1481 * the extent entry to always be found first if we do a 1482 * linear search through the tree, since we want to have 1483 * the quickest allocation time, and allocating from an 1484 * extent is faster than allocating from a bitmap. So 1485 * if we're inserting a bitmap and we find an entry at 1486 * this offset, we want to go right, or after this entry 1487 * logically. If we are inserting an extent and we've 1488 * found a bitmap, we want to go left, or before 1489 * logically. 1490 */ 1491 if (bitmap) { 1492 if (info->bitmap) { 1493 WARN_ON_ONCE(1); 1494 return -EEXIST; 1495 } 1496 p = &(*p)->rb_right; 1497 } else { 1498 if (!info->bitmap) { 1499 WARN_ON_ONCE(1); 1500 return -EEXIST; 1501 } 1502 p = &(*p)->rb_left; 1503 } 1504 } 1505 } 1506 1507 rb_link_node(node, parent, p); 1508 rb_insert_color(node, root); 1509 1510 return 0; 1511 } 1512 1513 /* 1514 * searches the tree for the given offset. 1515 * 1516 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1517 * want a section that has at least bytes size and comes at or after the given 1518 * offset. 1519 */ 1520 static struct btrfs_free_space * 1521 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1522 u64 offset, int bitmap_only, int fuzzy) 1523 { 1524 struct rb_node *n = ctl->free_space_offset.rb_node; 1525 struct btrfs_free_space *entry, *prev = NULL; 1526 1527 /* find entry that is closest to the 'offset' */ 1528 while (1) { 1529 if (!n) { 1530 entry = NULL; 1531 break; 1532 } 1533 1534 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1535 prev = entry; 1536 1537 if (offset < entry->offset) 1538 n = n->rb_left; 1539 else if (offset > entry->offset) 1540 n = n->rb_right; 1541 else 1542 break; 1543 } 1544 1545 if (bitmap_only) { 1546 if (!entry) 1547 return NULL; 1548 if (entry->bitmap) 1549 return entry; 1550 1551 /* 1552 * bitmap entry and extent entry may share same offset, 1553 * in that case, bitmap entry comes after extent entry. 1554 */ 1555 n = rb_next(n); 1556 if (!n) 1557 return NULL; 1558 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1559 if (entry->offset != offset) 1560 return NULL; 1561 1562 WARN_ON(!entry->bitmap); 1563 return entry; 1564 } else if (entry) { 1565 if (entry->bitmap) { 1566 /* 1567 * if previous extent entry covers the offset, 1568 * we should return it instead of the bitmap entry 1569 */ 1570 n = rb_prev(&entry->offset_index); 1571 if (n) { 1572 prev = rb_entry(n, struct btrfs_free_space, 1573 offset_index); 1574 if (!prev->bitmap && 1575 prev->offset + prev->bytes > offset) 1576 entry = prev; 1577 } 1578 } 1579 return entry; 1580 } 1581 1582 if (!prev) 1583 return NULL; 1584 1585 /* find last entry before the 'offset' */ 1586 entry = prev; 1587 if (entry->offset > offset) { 1588 n = rb_prev(&entry->offset_index); 1589 if (n) { 1590 entry = rb_entry(n, struct btrfs_free_space, 1591 offset_index); 1592 ASSERT(entry->offset <= offset); 1593 } else { 1594 if (fuzzy) 1595 return entry; 1596 else 1597 return NULL; 1598 } 1599 } 1600 1601 if (entry->bitmap) { 1602 n = rb_prev(&entry->offset_index); 1603 if (n) { 1604 prev = rb_entry(n, struct btrfs_free_space, 1605 offset_index); 1606 if (!prev->bitmap && 1607 prev->offset + prev->bytes > offset) 1608 return prev; 1609 } 1610 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1611 return entry; 1612 } else if (entry->offset + entry->bytes > offset) 1613 return entry; 1614 1615 if (!fuzzy) 1616 return NULL; 1617 1618 while (1) { 1619 if (entry->bitmap) { 1620 if (entry->offset + BITS_PER_BITMAP * 1621 ctl->unit > offset) 1622 break; 1623 } else { 1624 if (entry->offset + entry->bytes > offset) 1625 break; 1626 } 1627 1628 n = rb_next(&entry->offset_index); 1629 if (!n) 1630 return NULL; 1631 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1632 } 1633 return entry; 1634 } 1635 1636 static inline void 1637 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1638 struct btrfs_free_space *info) 1639 { 1640 rb_erase(&info->offset_index, &ctl->free_space_offset); 1641 ctl->free_extents--; 1642 1643 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1644 ctl->discardable_extents[BTRFS_STAT_CURR]--; 1645 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; 1646 } 1647 } 1648 1649 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1650 struct btrfs_free_space *info) 1651 { 1652 __unlink_free_space(ctl, info); 1653 ctl->free_space -= info->bytes; 1654 } 1655 1656 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1657 struct btrfs_free_space *info) 1658 { 1659 int ret = 0; 1660 1661 ASSERT(info->bytes || info->bitmap); 1662 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1663 &info->offset_index, (info->bitmap != NULL)); 1664 if (ret) 1665 return ret; 1666 1667 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1668 ctl->discardable_extents[BTRFS_STAT_CURR]++; 1669 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 1670 } 1671 1672 ctl->free_space += info->bytes; 1673 ctl->free_extents++; 1674 return ret; 1675 } 1676 1677 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1678 { 1679 struct btrfs_block_group *block_group = ctl->private; 1680 u64 max_bytes; 1681 u64 bitmap_bytes; 1682 u64 extent_bytes; 1683 u64 size = block_group->length; 1684 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1685 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1686 1687 max_bitmaps = max_t(u64, max_bitmaps, 1); 1688 1689 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1690 1691 /* 1692 * We are trying to keep the total amount of memory used per 1GiB of 1693 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation 1694 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of 1695 * bitmaps, we may end up using more memory than this. 1696 */ 1697 if (size < SZ_1G) 1698 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1699 else 1700 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1701 1702 bitmap_bytes = ctl->total_bitmaps * ctl->unit; 1703 1704 /* 1705 * we want the extent entry threshold to always be at most 1/2 the max 1706 * bytes we can have, or whatever is less than that. 1707 */ 1708 extent_bytes = max_bytes - bitmap_bytes; 1709 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1710 1711 ctl->extents_thresh = 1712 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1713 } 1714 1715 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1716 struct btrfs_free_space *info, 1717 u64 offset, u64 bytes) 1718 { 1719 unsigned long start, count, end; 1720 int extent_delta = -1; 1721 1722 start = offset_to_bit(info->offset, ctl->unit, offset); 1723 count = bytes_to_bits(bytes, ctl->unit); 1724 end = start + count; 1725 ASSERT(end <= BITS_PER_BITMAP); 1726 1727 bitmap_clear(info->bitmap, start, count); 1728 1729 info->bytes -= bytes; 1730 if (info->max_extent_size > ctl->unit) 1731 info->max_extent_size = 0; 1732 1733 if (start && test_bit(start - 1, info->bitmap)) 1734 extent_delta++; 1735 1736 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1737 extent_delta++; 1738 1739 info->bitmap_extents += extent_delta; 1740 if (!btrfs_free_space_trimmed(info)) { 1741 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1742 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 1743 } 1744 } 1745 1746 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1747 struct btrfs_free_space *info, u64 offset, 1748 u64 bytes) 1749 { 1750 __bitmap_clear_bits(ctl, info, offset, bytes); 1751 ctl->free_space -= bytes; 1752 } 1753 1754 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1755 struct btrfs_free_space *info, u64 offset, 1756 u64 bytes) 1757 { 1758 unsigned long start, count, end; 1759 int extent_delta = 1; 1760 1761 start = offset_to_bit(info->offset, ctl->unit, offset); 1762 count = bytes_to_bits(bytes, ctl->unit); 1763 end = start + count; 1764 ASSERT(end <= BITS_PER_BITMAP); 1765 1766 bitmap_set(info->bitmap, start, count); 1767 1768 info->bytes += bytes; 1769 ctl->free_space += bytes; 1770 1771 if (start && test_bit(start - 1, info->bitmap)) 1772 extent_delta--; 1773 1774 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1775 extent_delta--; 1776 1777 info->bitmap_extents += extent_delta; 1778 if (!btrfs_free_space_trimmed(info)) { 1779 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1780 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; 1781 } 1782 } 1783 1784 /* 1785 * If we can not find suitable extent, we will use bytes to record 1786 * the size of the max extent. 1787 */ 1788 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1789 struct btrfs_free_space *bitmap_info, u64 *offset, 1790 u64 *bytes, bool for_alloc) 1791 { 1792 unsigned long found_bits = 0; 1793 unsigned long max_bits = 0; 1794 unsigned long bits, i; 1795 unsigned long next_zero; 1796 unsigned long extent_bits; 1797 1798 /* 1799 * Skip searching the bitmap if we don't have a contiguous section that 1800 * is large enough for this allocation. 1801 */ 1802 if (for_alloc && 1803 bitmap_info->max_extent_size && 1804 bitmap_info->max_extent_size < *bytes) { 1805 *bytes = bitmap_info->max_extent_size; 1806 return -1; 1807 } 1808 1809 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1810 max_t(u64, *offset, bitmap_info->offset)); 1811 bits = bytes_to_bits(*bytes, ctl->unit); 1812 1813 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1814 if (for_alloc && bits == 1) { 1815 found_bits = 1; 1816 break; 1817 } 1818 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1819 BITS_PER_BITMAP, i); 1820 extent_bits = next_zero - i; 1821 if (extent_bits >= bits) { 1822 found_bits = extent_bits; 1823 break; 1824 } else if (extent_bits > max_bits) { 1825 max_bits = extent_bits; 1826 } 1827 i = next_zero; 1828 } 1829 1830 if (found_bits) { 1831 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1832 *bytes = (u64)(found_bits) * ctl->unit; 1833 return 0; 1834 } 1835 1836 *bytes = (u64)(max_bits) * ctl->unit; 1837 bitmap_info->max_extent_size = *bytes; 1838 return -1; 1839 } 1840 1841 static inline u64 get_max_extent_size(struct btrfs_free_space *entry) 1842 { 1843 if (entry->bitmap) 1844 return entry->max_extent_size; 1845 return entry->bytes; 1846 } 1847 1848 /* Cache the size of the max extent in bytes */ 1849 static struct btrfs_free_space * 1850 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1851 unsigned long align, u64 *max_extent_size) 1852 { 1853 struct btrfs_free_space *entry; 1854 struct rb_node *node; 1855 u64 tmp; 1856 u64 align_off; 1857 int ret; 1858 1859 if (!ctl->free_space_offset.rb_node) 1860 goto out; 1861 1862 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1863 if (!entry) 1864 goto out; 1865 1866 for (node = &entry->offset_index; node; node = rb_next(node)) { 1867 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1868 if (entry->bytes < *bytes) { 1869 *max_extent_size = max(get_max_extent_size(entry), 1870 *max_extent_size); 1871 continue; 1872 } 1873 1874 /* make sure the space returned is big enough 1875 * to match our requested alignment 1876 */ 1877 if (*bytes >= align) { 1878 tmp = entry->offset - ctl->start + align - 1; 1879 tmp = div64_u64(tmp, align); 1880 tmp = tmp * align + ctl->start; 1881 align_off = tmp - entry->offset; 1882 } else { 1883 align_off = 0; 1884 tmp = entry->offset; 1885 } 1886 1887 if (entry->bytes < *bytes + align_off) { 1888 *max_extent_size = max(get_max_extent_size(entry), 1889 *max_extent_size); 1890 continue; 1891 } 1892 1893 if (entry->bitmap) { 1894 u64 size = *bytes; 1895 1896 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1897 if (!ret) { 1898 *offset = tmp; 1899 *bytes = size; 1900 return entry; 1901 } else { 1902 *max_extent_size = 1903 max(get_max_extent_size(entry), 1904 *max_extent_size); 1905 } 1906 continue; 1907 } 1908 1909 *offset = tmp; 1910 *bytes = entry->bytes - align_off; 1911 return entry; 1912 } 1913 out: 1914 return NULL; 1915 } 1916 1917 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl, 1918 struct btrfs_free_space *bitmap_info) 1919 { 1920 struct btrfs_block_group *block_group = ctl->private; 1921 u64 bytes = bitmap_info->bytes; 1922 unsigned int rs, re; 1923 int count = 0; 1924 1925 if (!block_group || !bytes) 1926 return count; 1927 1928 bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0, 1929 BITS_PER_BITMAP) { 1930 bytes -= (rs - re) * ctl->unit; 1931 count++; 1932 1933 if (!bytes) 1934 break; 1935 } 1936 1937 return count; 1938 } 1939 1940 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1941 struct btrfs_free_space *info, u64 offset) 1942 { 1943 info->offset = offset_to_bitmap(ctl, offset); 1944 info->bytes = 0; 1945 info->bitmap_extents = 0; 1946 INIT_LIST_HEAD(&info->list); 1947 link_free_space(ctl, info); 1948 ctl->total_bitmaps++; 1949 1950 ctl->op->recalc_thresholds(ctl); 1951 } 1952 1953 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1954 struct btrfs_free_space *bitmap_info) 1955 { 1956 /* 1957 * Normally when this is called, the bitmap is completely empty. However, 1958 * if we are blowing up the free space cache for one reason or another 1959 * via __btrfs_remove_free_space_cache(), then it may not be freed and 1960 * we may leave stats on the table. 1961 */ 1962 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { 1963 ctl->discardable_extents[BTRFS_STAT_CURR] -= 1964 bitmap_info->bitmap_extents; 1965 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; 1966 1967 } 1968 unlink_free_space(ctl, bitmap_info); 1969 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 1970 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1971 ctl->total_bitmaps--; 1972 ctl->op->recalc_thresholds(ctl); 1973 } 1974 1975 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1976 struct btrfs_free_space *bitmap_info, 1977 u64 *offset, u64 *bytes) 1978 { 1979 u64 end; 1980 u64 search_start, search_bytes; 1981 int ret; 1982 1983 again: 1984 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1985 1986 /* 1987 * We need to search for bits in this bitmap. We could only cover some 1988 * of the extent in this bitmap thanks to how we add space, so we need 1989 * to search for as much as it as we can and clear that amount, and then 1990 * go searching for the next bit. 1991 */ 1992 search_start = *offset; 1993 search_bytes = ctl->unit; 1994 search_bytes = min(search_bytes, end - search_start + 1); 1995 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 1996 false); 1997 if (ret < 0 || search_start != *offset) 1998 return -EINVAL; 1999 2000 /* We may have found more bits than what we need */ 2001 search_bytes = min(search_bytes, *bytes); 2002 2003 /* Cannot clear past the end of the bitmap */ 2004 search_bytes = min(search_bytes, end - search_start + 1); 2005 2006 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 2007 *offset += search_bytes; 2008 *bytes -= search_bytes; 2009 2010 if (*bytes) { 2011 struct rb_node *next = rb_next(&bitmap_info->offset_index); 2012 if (!bitmap_info->bytes) 2013 free_bitmap(ctl, bitmap_info); 2014 2015 /* 2016 * no entry after this bitmap, but we still have bytes to 2017 * remove, so something has gone wrong. 2018 */ 2019 if (!next) 2020 return -EINVAL; 2021 2022 bitmap_info = rb_entry(next, struct btrfs_free_space, 2023 offset_index); 2024 2025 /* 2026 * if the next entry isn't a bitmap we need to return to let the 2027 * extent stuff do its work. 2028 */ 2029 if (!bitmap_info->bitmap) 2030 return -EAGAIN; 2031 2032 /* 2033 * Ok the next item is a bitmap, but it may not actually hold 2034 * the information for the rest of this free space stuff, so 2035 * look for it, and if we don't find it return so we can try 2036 * everything over again. 2037 */ 2038 search_start = *offset; 2039 search_bytes = ctl->unit; 2040 ret = search_bitmap(ctl, bitmap_info, &search_start, 2041 &search_bytes, false); 2042 if (ret < 0 || search_start != *offset) 2043 return -EAGAIN; 2044 2045 goto again; 2046 } else if (!bitmap_info->bytes) 2047 free_bitmap(ctl, bitmap_info); 2048 2049 return 0; 2050 } 2051 2052 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 2053 struct btrfs_free_space *info, u64 offset, 2054 u64 bytes, enum btrfs_trim_state trim_state) 2055 { 2056 u64 bytes_to_set = 0; 2057 u64 end; 2058 2059 /* 2060 * This is a tradeoff to make bitmap trim state minimal. We mark the 2061 * whole bitmap untrimmed if at any point we add untrimmed regions. 2062 */ 2063 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { 2064 if (btrfs_free_space_trimmed(info)) { 2065 ctl->discardable_extents[BTRFS_STAT_CURR] += 2066 info->bitmap_extents; 2067 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 2068 } 2069 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2070 } 2071 2072 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 2073 2074 bytes_to_set = min(end - offset, bytes); 2075 2076 bitmap_set_bits(ctl, info, offset, bytes_to_set); 2077 2078 /* 2079 * We set some bytes, we have no idea what the max extent size is 2080 * anymore. 2081 */ 2082 info->max_extent_size = 0; 2083 2084 return bytes_to_set; 2085 2086 } 2087 2088 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 2089 struct btrfs_free_space *info) 2090 { 2091 struct btrfs_block_group *block_group = ctl->private; 2092 struct btrfs_fs_info *fs_info = block_group->fs_info; 2093 bool forced = false; 2094 2095 #ifdef CONFIG_BTRFS_DEBUG 2096 if (btrfs_should_fragment_free_space(block_group)) 2097 forced = true; 2098 #endif 2099 2100 /* This is a way to reclaim large regions from the bitmaps. */ 2101 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) 2102 return false; 2103 2104 /* 2105 * If we are below the extents threshold then we can add this as an 2106 * extent, and don't have to deal with the bitmap 2107 */ 2108 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2109 /* 2110 * If this block group has some small extents we don't want to 2111 * use up all of our free slots in the cache with them, we want 2112 * to reserve them to larger extents, however if we have plenty 2113 * of cache left then go ahead an dadd them, no sense in adding 2114 * the overhead of a bitmap if we don't have to. 2115 */ 2116 if (info->bytes <= fs_info->sectorsize * 8) { 2117 if (ctl->free_extents * 3 <= ctl->extents_thresh) 2118 return false; 2119 } else { 2120 return false; 2121 } 2122 } 2123 2124 /* 2125 * The original block groups from mkfs can be really small, like 8 2126 * megabytes, so don't bother with a bitmap for those entries. However 2127 * some block groups can be smaller than what a bitmap would cover but 2128 * are still large enough that they could overflow the 32k memory limit, 2129 * so allow those block groups to still be allowed to have a bitmap 2130 * entry. 2131 */ 2132 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2133 return false; 2134 2135 return true; 2136 } 2137 2138 static const struct btrfs_free_space_op free_space_op = { 2139 .recalc_thresholds = recalculate_thresholds, 2140 .use_bitmap = use_bitmap, 2141 }; 2142 2143 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2144 struct btrfs_free_space *info) 2145 { 2146 struct btrfs_free_space *bitmap_info; 2147 struct btrfs_block_group *block_group = NULL; 2148 int added = 0; 2149 u64 bytes, offset, bytes_added; 2150 enum btrfs_trim_state trim_state; 2151 int ret; 2152 2153 bytes = info->bytes; 2154 offset = info->offset; 2155 trim_state = info->trim_state; 2156 2157 if (!ctl->op->use_bitmap(ctl, info)) 2158 return 0; 2159 2160 if (ctl->op == &free_space_op) 2161 block_group = ctl->private; 2162 again: 2163 /* 2164 * Since we link bitmaps right into the cluster we need to see if we 2165 * have a cluster here, and if so and it has our bitmap we need to add 2166 * the free space to that bitmap. 2167 */ 2168 if (block_group && !list_empty(&block_group->cluster_list)) { 2169 struct btrfs_free_cluster *cluster; 2170 struct rb_node *node; 2171 struct btrfs_free_space *entry; 2172 2173 cluster = list_entry(block_group->cluster_list.next, 2174 struct btrfs_free_cluster, 2175 block_group_list); 2176 spin_lock(&cluster->lock); 2177 node = rb_first(&cluster->root); 2178 if (!node) { 2179 spin_unlock(&cluster->lock); 2180 goto no_cluster_bitmap; 2181 } 2182 2183 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2184 if (!entry->bitmap) { 2185 spin_unlock(&cluster->lock); 2186 goto no_cluster_bitmap; 2187 } 2188 2189 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2190 bytes_added = add_bytes_to_bitmap(ctl, entry, offset, 2191 bytes, trim_state); 2192 bytes -= bytes_added; 2193 offset += bytes_added; 2194 } 2195 spin_unlock(&cluster->lock); 2196 if (!bytes) { 2197 ret = 1; 2198 goto out; 2199 } 2200 } 2201 2202 no_cluster_bitmap: 2203 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2204 1, 0); 2205 if (!bitmap_info) { 2206 ASSERT(added == 0); 2207 goto new_bitmap; 2208 } 2209 2210 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 2211 trim_state); 2212 bytes -= bytes_added; 2213 offset += bytes_added; 2214 added = 0; 2215 2216 if (!bytes) { 2217 ret = 1; 2218 goto out; 2219 } else 2220 goto again; 2221 2222 new_bitmap: 2223 if (info && info->bitmap) { 2224 add_new_bitmap(ctl, info, offset); 2225 added = 1; 2226 info = NULL; 2227 goto again; 2228 } else { 2229 spin_unlock(&ctl->tree_lock); 2230 2231 /* no pre-allocated info, allocate a new one */ 2232 if (!info) { 2233 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2234 GFP_NOFS); 2235 if (!info) { 2236 spin_lock(&ctl->tree_lock); 2237 ret = -ENOMEM; 2238 goto out; 2239 } 2240 } 2241 2242 /* allocate the bitmap */ 2243 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2244 GFP_NOFS); 2245 info->trim_state = BTRFS_TRIM_STATE_TRIMMED; 2246 spin_lock(&ctl->tree_lock); 2247 if (!info->bitmap) { 2248 ret = -ENOMEM; 2249 goto out; 2250 } 2251 goto again; 2252 } 2253 2254 out: 2255 if (info) { 2256 if (info->bitmap) 2257 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2258 info->bitmap); 2259 kmem_cache_free(btrfs_free_space_cachep, info); 2260 } 2261 2262 return ret; 2263 } 2264 2265 /* 2266 * Free space merging rules: 2267 * 1) Merge trimmed areas together 2268 * 2) Let untrimmed areas coalesce with trimmed areas 2269 * 3) Always pull neighboring regions from bitmaps 2270 * 2271 * The above rules are for when we merge free space based on btrfs_trim_state. 2272 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the 2273 * same reason: to promote larger extent regions which makes life easier for 2274 * find_free_extent(). Rule 2 enables coalescing based on the common path 2275 * being returning free space from btrfs_finish_extent_commit(). So when free 2276 * space is trimmed, it will prevent aggregating trimmed new region and 2277 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents 2278 * and provide find_free_extent() with the largest extents possible hoping for 2279 * the reuse path. 2280 */ 2281 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2282 struct btrfs_free_space *info, bool update_stat) 2283 { 2284 struct btrfs_free_space *left_info; 2285 struct btrfs_free_space *right_info; 2286 bool merged = false; 2287 u64 offset = info->offset; 2288 u64 bytes = info->bytes; 2289 const bool is_trimmed = btrfs_free_space_trimmed(info); 2290 2291 /* 2292 * first we want to see if there is free space adjacent to the range we 2293 * are adding, if there is remove that struct and add a new one to 2294 * cover the entire range 2295 */ 2296 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2297 if (right_info && rb_prev(&right_info->offset_index)) 2298 left_info = rb_entry(rb_prev(&right_info->offset_index), 2299 struct btrfs_free_space, offset_index); 2300 else 2301 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2302 2303 /* See try_merge_free_space() comment. */ 2304 if (right_info && !right_info->bitmap && 2305 (!is_trimmed || btrfs_free_space_trimmed(right_info))) { 2306 if (update_stat) 2307 unlink_free_space(ctl, right_info); 2308 else 2309 __unlink_free_space(ctl, right_info); 2310 info->bytes += right_info->bytes; 2311 kmem_cache_free(btrfs_free_space_cachep, right_info); 2312 merged = true; 2313 } 2314 2315 /* See try_merge_free_space() comment. */ 2316 if (left_info && !left_info->bitmap && 2317 left_info->offset + left_info->bytes == offset && 2318 (!is_trimmed || btrfs_free_space_trimmed(left_info))) { 2319 if (update_stat) 2320 unlink_free_space(ctl, left_info); 2321 else 2322 __unlink_free_space(ctl, left_info); 2323 info->offset = left_info->offset; 2324 info->bytes += left_info->bytes; 2325 kmem_cache_free(btrfs_free_space_cachep, left_info); 2326 merged = true; 2327 } 2328 2329 return merged; 2330 } 2331 2332 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2333 struct btrfs_free_space *info, 2334 bool update_stat) 2335 { 2336 struct btrfs_free_space *bitmap; 2337 unsigned long i; 2338 unsigned long j; 2339 const u64 end = info->offset + info->bytes; 2340 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2341 u64 bytes; 2342 2343 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2344 if (!bitmap) 2345 return false; 2346 2347 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2348 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2349 if (j == i) 2350 return false; 2351 bytes = (j - i) * ctl->unit; 2352 info->bytes += bytes; 2353 2354 /* See try_merge_free_space() comment. */ 2355 if (!btrfs_free_space_trimmed(bitmap)) 2356 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2357 2358 if (update_stat) 2359 bitmap_clear_bits(ctl, bitmap, end, bytes); 2360 else 2361 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2362 2363 if (!bitmap->bytes) 2364 free_bitmap(ctl, bitmap); 2365 2366 return true; 2367 } 2368 2369 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2370 struct btrfs_free_space *info, 2371 bool update_stat) 2372 { 2373 struct btrfs_free_space *bitmap; 2374 u64 bitmap_offset; 2375 unsigned long i; 2376 unsigned long j; 2377 unsigned long prev_j; 2378 u64 bytes; 2379 2380 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2381 /* If we're on a boundary, try the previous logical bitmap. */ 2382 if (bitmap_offset == info->offset) { 2383 if (info->offset == 0) 2384 return false; 2385 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2386 } 2387 2388 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2389 if (!bitmap) 2390 return false; 2391 2392 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2393 j = 0; 2394 prev_j = (unsigned long)-1; 2395 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2396 if (j > i) 2397 break; 2398 prev_j = j; 2399 } 2400 if (prev_j == i) 2401 return false; 2402 2403 if (prev_j == (unsigned long)-1) 2404 bytes = (i + 1) * ctl->unit; 2405 else 2406 bytes = (i - prev_j) * ctl->unit; 2407 2408 info->offset -= bytes; 2409 info->bytes += bytes; 2410 2411 /* See try_merge_free_space() comment. */ 2412 if (!btrfs_free_space_trimmed(bitmap)) 2413 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2414 2415 if (update_stat) 2416 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2417 else 2418 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2419 2420 if (!bitmap->bytes) 2421 free_bitmap(ctl, bitmap); 2422 2423 return true; 2424 } 2425 2426 /* 2427 * We prefer always to allocate from extent entries, both for clustered and 2428 * non-clustered allocation requests. So when attempting to add a new extent 2429 * entry, try to see if there's adjacent free space in bitmap entries, and if 2430 * there is, migrate that space from the bitmaps to the extent. 2431 * Like this we get better chances of satisfying space allocation requests 2432 * because we attempt to satisfy them based on a single cache entry, and never 2433 * on 2 or more entries - even if the entries represent a contiguous free space 2434 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2435 * ends). 2436 */ 2437 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2438 struct btrfs_free_space *info, 2439 bool update_stat) 2440 { 2441 /* 2442 * Only work with disconnected entries, as we can change their offset, 2443 * and must be extent entries. 2444 */ 2445 ASSERT(!info->bitmap); 2446 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2447 2448 if (ctl->total_bitmaps > 0) { 2449 bool stole_end; 2450 bool stole_front = false; 2451 2452 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2453 if (ctl->total_bitmaps > 0) 2454 stole_front = steal_from_bitmap_to_front(ctl, info, 2455 update_stat); 2456 2457 if (stole_end || stole_front) 2458 try_merge_free_space(ctl, info, update_stat); 2459 } 2460 } 2461 2462 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, 2463 struct btrfs_free_space_ctl *ctl, 2464 u64 offset, u64 bytes, 2465 enum btrfs_trim_state trim_state) 2466 { 2467 struct btrfs_block_group *block_group = ctl->private; 2468 struct btrfs_free_space *info; 2469 int ret = 0; 2470 u64 filter_bytes = bytes; 2471 2472 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2473 if (!info) 2474 return -ENOMEM; 2475 2476 info->offset = offset; 2477 info->bytes = bytes; 2478 info->trim_state = trim_state; 2479 RB_CLEAR_NODE(&info->offset_index); 2480 2481 spin_lock(&ctl->tree_lock); 2482 2483 if (try_merge_free_space(ctl, info, true)) 2484 goto link; 2485 2486 /* 2487 * There was no extent directly to the left or right of this new 2488 * extent then we know we're going to have to allocate a new extent, so 2489 * before we do that see if we need to drop this into a bitmap 2490 */ 2491 ret = insert_into_bitmap(ctl, info); 2492 if (ret < 0) { 2493 goto out; 2494 } else if (ret) { 2495 ret = 0; 2496 goto out; 2497 } 2498 link: 2499 /* 2500 * Only steal free space from adjacent bitmaps if we're sure we're not 2501 * going to add the new free space to existing bitmap entries - because 2502 * that would mean unnecessary work that would be reverted. Therefore 2503 * attempt to steal space from bitmaps if we're adding an extent entry. 2504 */ 2505 steal_from_bitmap(ctl, info, true); 2506 2507 filter_bytes = max(filter_bytes, info->bytes); 2508 2509 ret = link_free_space(ctl, info); 2510 if (ret) 2511 kmem_cache_free(btrfs_free_space_cachep, info); 2512 out: 2513 btrfs_discard_update_discardable(block_group, ctl); 2514 spin_unlock(&ctl->tree_lock); 2515 2516 if (ret) { 2517 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2518 ASSERT(ret != -EEXIST); 2519 } 2520 2521 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { 2522 btrfs_discard_check_filter(block_group, filter_bytes); 2523 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 2524 } 2525 2526 return ret; 2527 } 2528 2529 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2530 u64 bytenr, u64 size) 2531 { 2532 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2533 2534 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) 2535 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2536 2537 return __btrfs_add_free_space(block_group->fs_info, 2538 block_group->free_space_ctl, 2539 bytenr, size, trim_state); 2540 } 2541 2542 /* 2543 * This is a subtle distinction because when adding free space back in general, 2544 * we want it to be added as untrimmed for async. But in the case where we add 2545 * it on loading of a block group, we want to consider it trimmed. 2546 */ 2547 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, 2548 u64 bytenr, u64 size) 2549 { 2550 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2551 2552 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || 2553 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 2554 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2555 2556 return __btrfs_add_free_space(block_group->fs_info, 2557 block_group->free_space_ctl, 2558 bytenr, size, trim_state); 2559 } 2560 2561 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2562 u64 offset, u64 bytes) 2563 { 2564 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2565 struct btrfs_free_space *info; 2566 int ret; 2567 bool re_search = false; 2568 2569 spin_lock(&ctl->tree_lock); 2570 2571 again: 2572 ret = 0; 2573 if (!bytes) 2574 goto out_lock; 2575 2576 info = tree_search_offset(ctl, offset, 0, 0); 2577 if (!info) { 2578 /* 2579 * oops didn't find an extent that matched the space we wanted 2580 * to remove, look for a bitmap instead 2581 */ 2582 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2583 1, 0); 2584 if (!info) { 2585 /* 2586 * If we found a partial bit of our free space in a 2587 * bitmap but then couldn't find the other part this may 2588 * be a problem, so WARN about it. 2589 */ 2590 WARN_ON(re_search); 2591 goto out_lock; 2592 } 2593 } 2594 2595 re_search = false; 2596 if (!info->bitmap) { 2597 unlink_free_space(ctl, info); 2598 if (offset == info->offset) { 2599 u64 to_free = min(bytes, info->bytes); 2600 2601 info->bytes -= to_free; 2602 info->offset += to_free; 2603 if (info->bytes) { 2604 ret = link_free_space(ctl, info); 2605 WARN_ON(ret); 2606 } else { 2607 kmem_cache_free(btrfs_free_space_cachep, info); 2608 } 2609 2610 offset += to_free; 2611 bytes -= to_free; 2612 goto again; 2613 } else { 2614 u64 old_end = info->bytes + info->offset; 2615 2616 info->bytes = offset - info->offset; 2617 ret = link_free_space(ctl, info); 2618 WARN_ON(ret); 2619 if (ret) 2620 goto out_lock; 2621 2622 /* Not enough bytes in this entry to satisfy us */ 2623 if (old_end < offset + bytes) { 2624 bytes -= old_end - offset; 2625 offset = old_end; 2626 goto again; 2627 } else if (old_end == offset + bytes) { 2628 /* all done */ 2629 goto out_lock; 2630 } 2631 spin_unlock(&ctl->tree_lock); 2632 2633 ret = __btrfs_add_free_space(block_group->fs_info, ctl, 2634 offset + bytes, 2635 old_end - (offset + bytes), 2636 info->trim_state); 2637 WARN_ON(ret); 2638 goto out; 2639 } 2640 } 2641 2642 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2643 if (ret == -EAGAIN) { 2644 re_search = true; 2645 goto again; 2646 } 2647 out_lock: 2648 btrfs_discard_update_discardable(block_group, ctl); 2649 spin_unlock(&ctl->tree_lock); 2650 out: 2651 return ret; 2652 } 2653 2654 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2655 u64 bytes) 2656 { 2657 struct btrfs_fs_info *fs_info = block_group->fs_info; 2658 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2659 struct btrfs_free_space *info; 2660 struct rb_node *n; 2661 int count = 0; 2662 2663 spin_lock(&ctl->tree_lock); 2664 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2665 info = rb_entry(n, struct btrfs_free_space, offset_index); 2666 if (info->bytes >= bytes && !block_group->ro) 2667 count++; 2668 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2669 info->offset, info->bytes, 2670 (info->bitmap) ? "yes" : "no"); 2671 } 2672 spin_unlock(&ctl->tree_lock); 2673 btrfs_info(fs_info, "block group has cluster?: %s", 2674 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2675 btrfs_info(fs_info, 2676 "%d blocks of free space at or bigger than bytes is", count); 2677 } 2678 2679 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group) 2680 { 2681 struct btrfs_fs_info *fs_info = block_group->fs_info; 2682 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2683 2684 spin_lock_init(&ctl->tree_lock); 2685 ctl->unit = fs_info->sectorsize; 2686 ctl->start = block_group->start; 2687 ctl->private = block_group; 2688 ctl->op = &free_space_op; 2689 INIT_LIST_HEAD(&ctl->trimming_ranges); 2690 mutex_init(&ctl->cache_writeout_mutex); 2691 2692 /* 2693 * we only want to have 32k of ram per block group for keeping 2694 * track of free space, and if we pass 1/2 of that we want to 2695 * start converting things over to using bitmaps 2696 */ 2697 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2698 } 2699 2700 /* 2701 * for a given cluster, put all of its extents back into the free 2702 * space cache. If the block group passed doesn't match the block group 2703 * pointed to by the cluster, someone else raced in and freed the 2704 * cluster already. In that case, we just return without changing anything 2705 */ 2706 static int 2707 __btrfs_return_cluster_to_free_space( 2708 struct btrfs_block_group *block_group, 2709 struct btrfs_free_cluster *cluster) 2710 { 2711 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2712 struct btrfs_free_space *entry; 2713 struct rb_node *node; 2714 2715 spin_lock(&cluster->lock); 2716 if (cluster->block_group != block_group) 2717 goto out; 2718 2719 cluster->block_group = NULL; 2720 cluster->window_start = 0; 2721 list_del_init(&cluster->block_group_list); 2722 2723 node = rb_first(&cluster->root); 2724 while (node) { 2725 bool bitmap; 2726 2727 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2728 node = rb_next(&entry->offset_index); 2729 rb_erase(&entry->offset_index, &cluster->root); 2730 RB_CLEAR_NODE(&entry->offset_index); 2731 2732 bitmap = (entry->bitmap != NULL); 2733 if (!bitmap) { 2734 /* Merging treats extents as if they were new */ 2735 if (!btrfs_free_space_trimmed(entry)) { 2736 ctl->discardable_extents[BTRFS_STAT_CURR]--; 2737 ctl->discardable_bytes[BTRFS_STAT_CURR] -= 2738 entry->bytes; 2739 } 2740 2741 try_merge_free_space(ctl, entry, false); 2742 steal_from_bitmap(ctl, entry, false); 2743 2744 /* As we insert directly, update these statistics */ 2745 if (!btrfs_free_space_trimmed(entry)) { 2746 ctl->discardable_extents[BTRFS_STAT_CURR]++; 2747 ctl->discardable_bytes[BTRFS_STAT_CURR] += 2748 entry->bytes; 2749 } 2750 } 2751 tree_insert_offset(&ctl->free_space_offset, 2752 entry->offset, &entry->offset_index, bitmap); 2753 } 2754 cluster->root = RB_ROOT; 2755 2756 out: 2757 spin_unlock(&cluster->lock); 2758 btrfs_put_block_group(block_group); 2759 return 0; 2760 } 2761 2762 static void __btrfs_remove_free_space_cache_locked( 2763 struct btrfs_free_space_ctl *ctl) 2764 { 2765 struct btrfs_free_space *info; 2766 struct rb_node *node; 2767 2768 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2769 info = rb_entry(node, struct btrfs_free_space, offset_index); 2770 if (!info->bitmap) { 2771 unlink_free_space(ctl, info); 2772 kmem_cache_free(btrfs_free_space_cachep, info); 2773 } else { 2774 free_bitmap(ctl, info); 2775 } 2776 2777 cond_resched_lock(&ctl->tree_lock); 2778 } 2779 } 2780 2781 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2782 { 2783 spin_lock(&ctl->tree_lock); 2784 __btrfs_remove_free_space_cache_locked(ctl); 2785 if (ctl->private) 2786 btrfs_discard_update_discardable(ctl->private, ctl); 2787 spin_unlock(&ctl->tree_lock); 2788 } 2789 2790 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 2791 { 2792 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2793 struct btrfs_free_cluster *cluster; 2794 struct list_head *head; 2795 2796 spin_lock(&ctl->tree_lock); 2797 while ((head = block_group->cluster_list.next) != 2798 &block_group->cluster_list) { 2799 cluster = list_entry(head, struct btrfs_free_cluster, 2800 block_group_list); 2801 2802 WARN_ON(cluster->block_group != block_group); 2803 __btrfs_return_cluster_to_free_space(block_group, cluster); 2804 2805 cond_resched_lock(&ctl->tree_lock); 2806 } 2807 __btrfs_remove_free_space_cache_locked(ctl); 2808 btrfs_discard_update_discardable(block_group, ctl); 2809 spin_unlock(&ctl->tree_lock); 2810 2811 } 2812 2813 /** 2814 * btrfs_is_free_space_trimmed - see if everything is trimmed 2815 * @block_group: block_group of interest 2816 * 2817 * Walk @block_group's free space rb_tree to determine if everything is trimmed. 2818 */ 2819 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) 2820 { 2821 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2822 struct btrfs_free_space *info; 2823 struct rb_node *node; 2824 bool ret = true; 2825 2826 spin_lock(&ctl->tree_lock); 2827 node = rb_first(&ctl->free_space_offset); 2828 2829 while (node) { 2830 info = rb_entry(node, struct btrfs_free_space, offset_index); 2831 2832 if (!btrfs_free_space_trimmed(info)) { 2833 ret = false; 2834 break; 2835 } 2836 2837 node = rb_next(node); 2838 } 2839 2840 spin_unlock(&ctl->tree_lock); 2841 return ret; 2842 } 2843 2844 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 2845 u64 offset, u64 bytes, u64 empty_size, 2846 u64 *max_extent_size) 2847 { 2848 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2849 struct btrfs_discard_ctl *discard_ctl = 2850 &block_group->fs_info->discard_ctl; 2851 struct btrfs_free_space *entry = NULL; 2852 u64 bytes_search = bytes + empty_size; 2853 u64 ret = 0; 2854 u64 align_gap = 0; 2855 u64 align_gap_len = 0; 2856 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2857 2858 spin_lock(&ctl->tree_lock); 2859 entry = find_free_space(ctl, &offset, &bytes_search, 2860 block_group->full_stripe_len, max_extent_size); 2861 if (!entry) 2862 goto out; 2863 2864 ret = offset; 2865 if (entry->bitmap) { 2866 bitmap_clear_bits(ctl, entry, offset, bytes); 2867 2868 if (!btrfs_free_space_trimmed(entry)) 2869 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 2870 2871 if (!entry->bytes) 2872 free_bitmap(ctl, entry); 2873 } else { 2874 unlink_free_space(ctl, entry); 2875 align_gap_len = offset - entry->offset; 2876 align_gap = entry->offset; 2877 align_gap_trim_state = entry->trim_state; 2878 2879 if (!btrfs_free_space_trimmed(entry)) 2880 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 2881 2882 entry->offset = offset + bytes; 2883 WARN_ON(entry->bytes < bytes + align_gap_len); 2884 2885 entry->bytes -= bytes + align_gap_len; 2886 if (!entry->bytes) 2887 kmem_cache_free(btrfs_free_space_cachep, entry); 2888 else 2889 link_free_space(ctl, entry); 2890 } 2891 out: 2892 btrfs_discard_update_discardable(block_group, ctl); 2893 spin_unlock(&ctl->tree_lock); 2894 2895 if (align_gap_len) 2896 __btrfs_add_free_space(block_group->fs_info, ctl, 2897 align_gap, align_gap_len, 2898 align_gap_trim_state); 2899 return ret; 2900 } 2901 2902 /* 2903 * given a cluster, put all of its extents back into the free space 2904 * cache. If a block group is passed, this function will only free 2905 * a cluster that belongs to the passed block group. 2906 * 2907 * Otherwise, it'll get a reference on the block group pointed to by the 2908 * cluster and remove the cluster from it. 2909 */ 2910 int btrfs_return_cluster_to_free_space( 2911 struct btrfs_block_group *block_group, 2912 struct btrfs_free_cluster *cluster) 2913 { 2914 struct btrfs_free_space_ctl *ctl; 2915 int ret; 2916 2917 /* first, get a safe pointer to the block group */ 2918 spin_lock(&cluster->lock); 2919 if (!block_group) { 2920 block_group = cluster->block_group; 2921 if (!block_group) { 2922 spin_unlock(&cluster->lock); 2923 return 0; 2924 } 2925 } else if (cluster->block_group != block_group) { 2926 /* someone else has already freed it don't redo their work */ 2927 spin_unlock(&cluster->lock); 2928 return 0; 2929 } 2930 atomic_inc(&block_group->count); 2931 spin_unlock(&cluster->lock); 2932 2933 ctl = block_group->free_space_ctl; 2934 2935 /* now return any extents the cluster had on it */ 2936 spin_lock(&ctl->tree_lock); 2937 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2938 spin_unlock(&ctl->tree_lock); 2939 2940 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); 2941 2942 /* finally drop our ref */ 2943 btrfs_put_block_group(block_group); 2944 return ret; 2945 } 2946 2947 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 2948 struct btrfs_free_cluster *cluster, 2949 struct btrfs_free_space *entry, 2950 u64 bytes, u64 min_start, 2951 u64 *max_extent_size) 2952 { 2953 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2954 int err; 2955 u64 search_start = cluster->window_start; 2956 u64 search_bytes = bytes; 2957 u64 ret = 0; 2958 2959 search_start = min_start; 2960 search_bytes = bytes; 2961 2962 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2963 if (err) { 2964 *max_extent_size = max(get_max_extent_size(entry), 2965 *max_extent_size); 2966 return 0; 2967 } 2968 2969 ret = search_start; 2970 __bitmap_clear_bits(ctl, entry, ret, bytes); 2971 2972 return ret; 2973 } 2974 2975 /* 2976 * given a cluster, try to allocate 'bytes' from it, returns 0 2977 * if it couldn't find anything suitably large, or a logical disk offset 2978 * if things worked out 2979 */ 2980 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 2981 struct btrfs_free_cluster *cluster, u64 bytes, 2982 u64 min_start, u64 *max_extent_size) 2983 { 2984 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2985 struct btrfs_discard_ctl *discard_ctl = 2986 &block_group->fs_info->discard_ctl; 2987 struct btrfs_free_space *entry = NULL; 2988 struct rb_node *node; 2989 u64 ret = 0; 2990 2991 spin_lock(&cluster->lock); 2992 if (bytes > cluster->max_size) 2993 goto out; 2994 2995 if (cluster->block_group != block_group) 2996 goto out; 2997 2998 node = rb_first(&cluster->root); 2999 if (!node) 3000 goto out; 3001 3002 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3003 while (1) { 3004 if (entry->bytes < bytes) 3005 *max_extent_size = max(get_max_extent_size(entry), 3006 *max_extent_size); 3007 3008 if (entry->bytes < bytes || 3009 (!entry->bitmap && entry->offset < min_start)) { 3010 node = rb_next(&entry->offset_index); 3011 if (!node) 3012 break; 3013 entry = rb_entry(node, struct btrfs_free_space, 3014 offset_index); 3015 continue; 3016 } 3017 3018 if (entry->bitmap) { 3019 ret = btrfs_alloc_from_bitmap(block_group, 3020 cluster, entry, bytes, 3021 cluster->window_start, 3022 max_extent_size); 3023 if (ret == 0) { 3024 node = rb_next(&entry->offset_index); 3025 if (!node) 3026 break; 3027 entry = rb_entry(node, struct btrfs_free_space, 3028 offset_index); 3029 continue; 3030 } 3031 cluster->window_start += bytes; 3032 } else { 3033 ret = entry->offset; 3034 3035 entry->offset += bytes; 3036 entry->bytes -= bytes; 3037 } 3038 3039 if (entry->bytes == 0) 3040 rb_erase(&entry->offset_index, &cluster->root); 3041 break; 3042 } 3043 out: 3044 spin_unlock(&cluster->lock); 3045 3046 if (!ret) 3047 return 0; 3048 3049 spin_lock(&ctl->tree_lock); 3050 3051 if (!btrfs_free_space_trimmed(entry)) 3052 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3053 3054 ctl->free_space -= bytes; 3055 if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) 3056 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 3057 if (entry->bytes == 0) { 3058 ctl->free_extents--; 3059 if (entry->bitmap) { 3060 kmem_cache_free(btrfs_free_space_bitmap_cachep, 3061 entry->bitmap); 3062 ctl->total_bitmaps--; 3063 ctl->op->recalc_thresholds(ctl); 3064 } else if (!btrfs_free_space_trimmed(entry)) { 3065 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3066 } 3067 kmem_cache_free(btrfs_free_space_cachep, entry); 3068 } 3069 3070 spin_unlock(&ctl->tree_lock); 3071 3072 return ret; 3073 } 3074 3075 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 3076 struct btrfs_free_space *entry, 3077 struct btrfs_free_cluster *cluster, 3078 u64 offset, u64 bytes, 3079 u64 cont1_bytes, u64 min_bytes) 3080 { 3081 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3082 unsigned long next_zero; 3083 unsigned long i; 3084 unsigned long want_bits; 3085 unsigned long min_bits; 3086 unsigned long found_bits; 3087 unsigned long max_bits = 0; 3088 unsigned long start = 0; 3089 unsigned long total_found = 0; 3090 int ret; 3091 3092 i = offset_to_bit(entry->offset, ctl->unit, 3093 max_t(u64, offset, entry->offset)); 3094 want_bits = bytes_to_bits(bytes, ctl->unit); 3095 min_bits = bytes_to_bits(min_bytes, ctl->unit); 3096 3097 /* 3098 * Don't bother looking for a cluster in this bitmap if it's heavily 3099 * fragmented. 3100 */ 3101 if (entry->max_extent_size && 3102 entry->max_extent_size < cont1_bytes) 3103 return -ENOSPC; 3104 again: 3105 found_bits = 0; 3106 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 3107 next_zero = find_next_zero_bit(entry->bitmap, 3108 BITS_PER_BITMAP, i); 3109 if (next_zero - i >= min_bits) { 3110 found_bits = next_zero - i; 3111 if (found_bits > max_bits) 3112 max_bits = found_bits; 3113 break; 3114 } 3115 if (next_zero - i > max_bits) 3116 max_bits = next_zero - i; 3117 i = next_zero; 3118 } 3119 3120 if (!found_bits) { 3121 entry->max_extent_size = (u64)max_bits * ctl->unit; 3122 return -ENOSPC; 3123 } 3124 3125 if (!total_found) { 3126 start = i; 3127 cluster->max_size = 0; 3128 } 3129 3130 total_found += found_bits; 3131 3132 if (cluster->max_size < found_bits * ctl->unit) 3133 cluster->max_size = found_bits * ctl->unit; 3134 3135 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 3136 i = next_zero + 1; 3137 goto again; 3138 } 3139 3140 cluster->window_start = start * ctl->unit + entry->offset; 3141 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3142 ret = tree_insert_offset(&cluster->root, entry->offset, 3143 &entry->offset_index, 1); 3144 ASSERT(!ret); /* -EEXIST; Logic error */ 3145 3146 trace_btrfs_setup_cluster(block_group, cluster, 3147 total_found * ctl->unit, 1); 3148 return 0; 3149 } 3150 3151 /* 3152 * This searches the block group for just extents to fill the cluster with. 3153 * Try to find a cluster with at least bytes total bytes, at least one 3154 * extent of cont1_bytes, and other clusters of at least min_bytes. 3155 */ 3156 static noinline int 3157 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 3158 struct btrfs_free_cluster *cluster, 3159 struct list_head *bitmaps, u64 offset, u64 bytes, 3160 u64 cont1_bytes, u64 min_bytes) 3161 { 3162 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3163 struct btrfs_free_space *first = NULL; 3164 struct btrfs_free_space *entry = NULL; 3165 struct btrfs_free_space *last; 3166 struct rb_node *node; 3167 u64 window_free; 3168 u64 max_extent; 3169 u64 total_size = 0; 3170 3171 entry = tree_search_offset(ctl, offset, 0, 1); 3172 if (!entry) 3173 return -ENOSPC; 3174 3175 /* 3176 * We don't want bitmaps, so just move along until we find a normal 3177 * extent entry. 3178 */ 3179 while (entry->bitmap || entry->bytes < min_bytes) { 3180 if (entry->bitmap && list_empty(&entry->list)) 3181 list_add_tail(&entry->list, bitmaps); 3182 node = rb_next(&entry->offset_index); 3183 if (!node) 3184 return -ENOSPC; 3185 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3186 } 3187 3188 window_free = entry->bytes; 3189 max_extent = entry->bytes; 3190 first = entry; 3191 last = entry; 3192 3193 for (node = rb_next(&entry->offset_index); node; 3194 node = rb_next(&entry->offset_index)) { 3195 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3196 3197 if (entry->bitmap) { 3198 if (list_empty(&entry->list)) 3199 list_add_tail(&entry->list, bitmaps); 3200 continue; 3201 } 3202 3203 if (entry->bytes < min_bytes) 3204 continue; 3205 3206 last = entry; 3207 window_free += entry->bytes; 3208 if (entry->bytes > max_extent) 3209 max_extent = entry->bytes; 3210 } 3211 3212 if (window_free < bytes || max_extent < cont1_bytes) 3213 return -ENOSPC; 3214 3215 cluster->window_start = first->offset; 3216 3217 node = &first->offset_index; 3218 3219 /* 3220 * now we've found our entries, pull them out of the free space 3221 * cache and put them into the cluster rbtree 3222 */ 3223 do { 3224 int ret; 3225 3226 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3227 node = rb_next(&entry->offset_index); 3228 if (entry->bitmap || entry->bytes < min_bytes) 3229 continue; 3230 3231 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3232 ret = tree_insert_offset(&cluster->root, entry->offset, 3233 &entry->offset_index, 0); 3234 total_size += entry->bytes; 3235 ASSERT(!ret); /* -EEXIST; Logic error */ 3236 } while (node && entry != last); 3237 3238 cluster->max_size = max_extent; 3239 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 3240 return 0; 3241 } 3242 3243 /* 3244 * This specifically looks for bitmaps that may work in the cluster, we assume 3245 * that we have already failed to find extents that will work. 3246 */ 3247 static noinline int 3248 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3249 struct btrfs_free_cluster *cluster, 3250 struct list_head *bitmaps, u64 offset, u64 bytes, 3251 u64 cont1_bytes, u64 min_bytes) 3252 { 3253 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3254 struct btrfs_free_space *entry = NULL; 3255 int ret = -ENOSPC; 3256 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3257 3258 if (ctl->total_bitmaps == 0) 3259 return -ENOSPC; 3260 3261 /* 3262 * The bitmap that covers offset won't be in the list unless offset 3263 * is just its start offset. 3264 */ 3265 if (!list_empty(bitmaps)) 3266 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3267 3268 if (!entry || entry->offset != bitmap_offset) { 3269 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3270 if (entry && list_empty(&entry->list)) 3271 list_add(&entry->list, bitmaps); 3272 } 3273 3274 list_for_each_entry(entry, bitmaps, list) { 3275 if (entry->bytes < bytes) 3276 continue; 3277 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3278 bytes, cont1_bytes, min_bytes); 3279 if (!ret) 3280 return 0; 3281 } 3282 3283 /* 3284 * The bitmaps list has all the bitmaps that record free space 3285 * starting after offset, so no more search is required. 3286 */ 3287 return -ENOSPC; 3288 } 3289 3290 /* 3291 * here we try to find a cluster of blocks in a block group. The goal 3292 * is to find at least bytes+empty_size. 3293 * We might not find them all in one contiguous area. 3294 * 3295 * returns zero and sets up cluster if things worked out, otherwise 3296 * it returns -enospc 3297 */ 3298 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3299 struct btrfs_free_cluster *cluster, 3300 u64 offset, u64 bytes, u64 empty_size) 3301 { 3302 struct btrfs_fs_info *fs_info = block_group->fs_info; 3303 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3304 struct btrfs_free_space *entry, *tmp; 3305 LIST_HEAD(bitmaps); 3306 u64 min_bytes; 3307 u64 cont1_bytes; 3308 int ret; 3309 3310 /* 3311 * Choose the minimum extent size we'll require for this 3312 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3313 * For metadata, allow allocates with smaller extents. For 3314 * data, keep it dense. 3315 */ 3316 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3317 cont1_bytes = min_bytes = bytes + empty_size; 3318 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3319 cont1_bytes = bytes; 3320 min_bytes = fs_info->sectorsize; 3321 } else { 3322 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3323 min_bytes = fs_info->sectorsize; 3324 } 3325 3326 spin_lock(&ctl->tree_lock); 3327 3328 /* 3329 * If we know we don't have enough space to make a cluster don't even 3330 * bother doing all the work to try and find one. 3331 */ 3332 if (ctl->free_space < bytes) { 3333 spin_unlock(&ctl->tree_lock); 3334 return -ENOSPC; 3335 } 3336 3337 spin_lock(&cluster->lock); 3338 3339 /* someone already found a cluster, hooray */ 3340 if (cluster->block_group) { 3341 ret = 0; 3342 goto out; 3343 } 3344 3345 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3346 min_bytes); 3347 3348 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3349 bytes + empty_size, 3350 cont1_bytes, min_bytes); 3351 if (ret) 3352 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3353 offset, bytes + empty_size, 3354 cont1_bytes, min_bytes); 3355 3356 /* Clear our temporary list */ 3357 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3358 list_del_init(&entry->list); 3359 3360 if (!ret) { 3361 atomic_inc(&block_group->count); 3362 list_add_tail(&cluster->block_group_list, 3363 &block_group->cluster_list); 3364 cluster->block_group = block_group; 3365 } else { 3366 trace_btrfs_failed_cluster_setup(block_group); 3367 } 3368 out: 3369 spin_unlock(&cluster->lock); 3370 spin_unlock(&ctl->tree_lock); 3371 3372 return ret; 3373 } 3374 3375 /* 3376 * simple code to zero out a cluster 3377 */ 3378 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3379 { 3380 spin_lock_init(&cluster->lock); 3381 spin_lock_init(&cluster->refill_lock); 3382 cluster->root = RB_ROOT; 3383 cluster->max_size = 0; 3384 cluster->fragmented = false; 3385 INIT_LIST_HEAD(&cluster->block_group_list); 3386 cluster->block_group = NULL; 3387 } 3388 3389 static int do_trimming(struct btrfs_block_group *block_group, 3390 u64 *total_trimmed, u64 start, u64 bytes, 3391 u64 reserved_start, u64 reserved_bytes, 3392 enum btrfs_trim_state reserved_trim_state, 3393 struct btrfs_trim_range *trim_entry) 3394 { 3395 struct btrfs_space_info *space_info = block_group->space_info; 3396 struct btrfs_fs_info *fs_info = block_group->fs_info; 3397 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3398 int ret; 3399 int update = 0; 3400 const u64 end = start + bytes; 3401 const u64 reserved_end = reserved_start + reserved_bytes; 3402 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3403 u64 trimmed = 0; 3404 3405 spin_lock(&space_info->lock); 3406 spin_lock(&block_group->lock); 3407 if (!block_group->ro) { 3408 block_group->reserved += reserved_bytes; 3409 space_info->bytes_reserved += reserved_bytes; 3410 update = 1; 3411 } 3412 spin_unlock(&block_group->lock); 3413 spin_unlock(&space_info->lock); 3414 3415 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3416 if (!ret) { 3417 *total_trimmed += trimmed; 3418 trim_state = BTRFS_TRIM_STATE_TRIMMED; 3419 } 3420 3421 mutex_lock(&ctl->cache_writeout_mutex); 3422 if (reserved_start < start) 3423 __btrfs_add_free_space(fs_info, ctl, reserved_start, 3424 start - reserved_start, 3425 reserved_trim_state); 3426 if (start + bytes < reserved_start + reserved_bytes) 3427 __btrfs_add_free_space(fs_info, ctl, end, reserved_end - end, 3428 reserved_trim_state); 3429 __btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state); 3430 list_del(&trim_entry->list); 3431 mutex_unlock(&ctl->cache_writeout_mutex); 3432 3433 if (update) { 3434 spin_lock(&space_info->lock); 3435 spin_lock(&block_group->lock); 3436 if (block_group->ro) 3437 space_info->bytes_readonly += reserved_bytes; 3438 block_group->reserved -= reserved_bytes; 3439 space_info->bytes_reserved -= reserved_bytes; 3440 spin_unlock(&block_group->lock); 3441 spin_unlock(&space_info->lock); 3442 } 3443 3444 return ret; 3445 } 3446 3447 /* 3448 * If @async is set, then we will trim 1 region and return. 3449 */ 3450 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3451 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3452 bool async) 3453 { 3454 struct btrfs_discard_ctl *discard_ctl = 3455 &block_group->fs_info->discard_ctl; 3456 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3457 struct btrfs_free_space *entry; 3458 struct rb_node *node; 3459 int ret = 0; 3460 u64 extent_start; 3461 u64 extent_bytes; 3462 enum btrfs_trim_state extent_trim_state; 3463 u64 bytes; 3464 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3465 3466 while (start < end) { 3467 struct btrfs_trim_range trim_entry; 3468 3469 mutex_lock(&ctl->cache_writeout_mutex); 3470 spin_lock(&ctl->tree_lock); 3471 3472 if (ctl->free_space < minlen) 3473 goto out_unlock; 3474 3475 entry = tree_search_offset(ctl, start, 0, 1); 3476 if (!entry) 3477 goto out_unlock; 3478 3479 /* Skip bitmaps and if async, already trimmed entries */ 3480 while (entry->bitmap || 3481 (async && btrfs_free_space_trimmed(entry))) { 3482 node = rb_next(&entry->offset_index); 3483 if (!node) 3484 goto out_unlock; 3485 entry = rb_entry(node, struct btrfs_free_space, 3486 offset_index); 3487 } 3488 3489 if (entry->offset >= end) 3490 goto out_unlock; 3491 3492 extent_start = entry->offset; 3493 extent_bytes = entry->bytes; 3494 extent_trim_state = entry->trim_state; 3495 if (async) { 3496 start = entry->offset; 3497 bytes = entry->bytes; 3498 if (bytes < minlen) { 3499 spin_unlock(&ctl->tree_lock); 3500 mutex_unlock(&ctl->cache_writeout_mutex); 3501 goto next; 3502 } 3503 unlink_free_space(ctl, entry); 3504 /* 3505 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3506 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim 3507 * X when we come back around. So trim it now. 3508 */ 3509 if (max_discard_size && 3510 bytes >= (max_discard_size + 3511 BTRFS_ASYNC_DISCARD_MIN_FILTER)) { 3512 bytes = max_discard_size; 3513 extent_bytes = max_discard_size; 3514 entry->offset += max_discard_size; 3515 entry->bytes -= max_discard_size; 3516 link_free_space(ctl, entry); 3517 } else { 3518 kmem_cache_free(btrfs_free_space_cachep, entry); 3519 } 3520 } else { 3521 start = max(start, extent_start); 3522 bytes = min(extent_start + extent_bytes, end) - start; 3523 if (bytes < minlen) { 3524 spin_unlock(&ctl->tree_lock); 3525 mutex_unlock(&ctl->cache_writeout_mutex); 3526 goto next; 3527 } 3528 3529 unlink_free_space(ctl, entry); 3530 kmem_cache_free(btrfs_free_space_cachep, entry); 3531 } 3532 3533 spin_unlock(&ctl->tree_lock); 3534 trim_entry.start = extent_start; 3535 trim_entry.bytes = extent_bytes; 3536 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3537 mutex_unlock(&ctl->cache_writeout_mutex); 3538 3539 ret = do_trimming(block_group, total_trimmed, start, bytes, 3540 extent_start, extent_bytes, extent_trim_state, 3541 &trim_entry); 3542 if (ret) { 3543 block_group->discard_cursor = start + bytes; 3544 break; 3545 } 3546 next: 3547 start += bytes; 3548 block_group->discard_cursor = start; 3549 if (async && *total_trimmed) 3550 break; 3551 3552 if (fatal_signal_pending(current)) { 3553 ret = -ERESTARTSYS; 3554 break; 3555 } 3556 3557 cond_resched(); 3558 } 3559 3560 return ret; 3561 3562 out_unlock: 3563 block_group->discard_cursor = btrfs_block_group_end(block_group); 3564 spin_unlock(&ctl->tree_lock); 3565 mutex_unlock(&ctl->cache_writeout_mutex); 3566 3567 return ret; 3568 } 3569 3570 /* 3571 * If we break out of trimming a bitmap prematurely, we should reset the 3572 * trimming bit. In a rather contrieved case, it's possible to race here so 3573 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. 3574 * 3575 * start = start of bitmap 3576 * end = near end of bitmap 3577 * 3578 * Thread 1: Thread 2: 3579 * trim_bitmaps(start) 3580 * trim_bitmaps(end) 3581 * end_trimming_bitmap() 3582 * reset_trimming_bitmap() 3583 */ 3584 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) 3585 { 3586 struct btrfs_free_space *entry; 3587 3588 spin_lock(&ctl->tree_lock); 3589 entry = tree_search_offset(ctl, offset, 1, 0); 3590 if (entry) { 3591 if (btrfs_free_space_trimmed(entry)) { 3592 ctl->discardable_extents[BTRFS_STAT_CURR] += 3593 entry->bitmap_extents; 3594 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; 3595 } 3596 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3597 } 3598 3599 spin_unlock(&ctl->tree_lock); 3600 } 3601 3602 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, 3603 struct btrfs_free_space *entry) 3604 { 3605 if (btrfs_free_space_trimming_bitmap(entry)) { 3606 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; 3607 ctl->discardable_extents[BTRFS_STAT_CURR] -= 3608 entry->bitmap_extents; 3609 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; 3610 } 3611 } 3612 3613 /* 3614 * If @async is set, then we will trim 1 region and return. 3615 */ 3616 static int trim_bitmaps(struct btrfs_block_group *block_group, 3617 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3618 u64 maxlen, bool async) 3619 { 3620 struct btrfs_discard_ctl *discard_ctl = 3621 &block_group->fs_info->discard_ctl; 3622 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3623 struct btrfs_free_space *entry; 3624 int ret = 0; 3625 int ret2; 3626 u64 bytes; 3627 u64 offset = offset_to_bitmap(ctl, start); 3628 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3629 3630 while (offset < end) { 3631 bool next_bitmap = false; 3632 struct btrfs_trim_range trim_entry; 3633 3634 mutex_lock(&ctl->cache_writeout_mutex); 3635 spin_lock(&ctl->tree_lock); 3636 3637 if (ctl->free_space < minlen) { 3638 block_group->discard_cursor = 3639 btrfs_block_group_end(block_group); 3640 spin_unlock(&ctl->tree_lock); 3641 mutex_unlock(&ctl->cache_writeout_mutex); 3642 break; 3643 } 3644 3645 entry = tree_search_offset(ctl, offset, 1, 0); 3646 /* 3647 * Bitmaps are marked trimmed lossily now to prevent constant 3648 * discarding of the same bitmap (the reason why we are bound 3649 * by the filters). So, retrim the block group bitmaps when we 3650 * are preparing to punt to the unused_bgs list. This uses 3651 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED 3652 * which is the only discard index which sets minlen to 0. 3653 */ 3654 if (!entry || (async && minlen && start == offset && 3655 btrfs_free_space_trimmed(entry))) { 3656 spin_unlock(&ctl->tree_lock); 3657 mutex_unlock(&ctl->cache_writeout_mutex); 3658 next_bitmap = true; 3659 goto next; 3660 } 3661 3662 /* 3663 * Async discard bitmap trimming begins at by setting the start 3664 * to be key.objectid and the offset_to_bitmap() aligns to the 3665 * start of the bitmap. This lets us know we are fully 3666 * scanning the bitmap rather than only some portion of it. 3667 */ 3668 if (start == offset) 3669 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; 3670 3671 bytes = minlen; 3672 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3673 if (ret2 || start >= end) { 3674 /* 3675 * We lossily consider a bitmap trimmed if we only skip 3676 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. 3677 */ 3678 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) 3679 end_trimming_bitmap(ctl, entry); 3680 else 3681 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3682 spin_unlock(&ctl->tree_lock); 3683 mutex_unlock(&ctl->cache_writeout_mutex); 3684 next_bitmap = true; 3685 goto next; 3686 } 3687 3688 /* 3689 * We already trimmed a region, but are using the locking above 3690 * to reset the trim_state. 3691 */ 3692 if (async && *total_trimmed) { 3693 spin_unlock(&ctl->tree_lock); 3694 mutex_unlock(&ctl->cache_writeout_mutex); 3695 goto out; 3696 } 3697 3698 bytes = min(bytes, end - start); 3699 if (bytes < minlen || (async && maxlen && bytes > maxlen)) { 3700 spin_unlock(&ctl->tree_lock); 3701 mutex_unlock(&ctl->cache_writeout_mutex); 3702 goto next; 3703 } 3704 3705 /* 3706 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3707 * If X < @minlen, we won't trim X when we come back around. 3708 * So trim it now. We differ here from trimming extents as we 3709 * don't keep individual state per bit. 3710 */ 3711 if (async && 3712 max_discard_size && 3713 bytes > (max_discard_size + minlen)) 3714 bytes = max_discard_size; 3715 3716 bitmap_clear_bits(ctl, entry, start, bytes); 3717 if (entry->bytes == 0) 3718 free_bitmap(ctl, entry); 3719 3720 spin_unlock(&ctl->tree_lock); 3721 trim_entry.start = start; 3722 trim_entry.bytes = bytes; 3723 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3724 mutex_unlock(&ctl->cache_writeout_mutex); 3725 3726 ret = do_trimming(block_group, total_trimmed, start, bytes, 3727 start, bytes, 0, &trim_entry); 3728 if (ret) { 3729 reset_trimming_bitmap(ctl, offset); 3730 block_group->discard_cursor = 3731 btrfs_block_group_end(block_group); 3732 break; 3733 } 3734 next: 3735 if (next_bitmap) { 3736 offset += BITS_PER_BITMAP * ctl->unit; 3737 start = offset; 3738 } else { 3739 start += bytes; 3740 } 3741 block_group->discard_cursor = start; 3742 3743 if (fatal_signal_pending(current)) { 3744 if (start != offset) 3745 reset_trimming_bitmap(ctl, offset); 3746 ret = -ERESTARTSYS; 3747 break; 3748 } 3749 3750 cond_resched(); 3751 } 3752 3753 if (offset >= end) 3754 block_group->discard_cursor = end; 3755 3756 out: 3757 return ret; 3758 } 3759 3760 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 3761 u64 *trimmed, u64 start, u64 end, u64 minlen) 3762 { 3763 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3764 int ret; 3765 u64 rem = 0; 3766 3767 *trimmed = 0; 3768 3769 spin_lock(&block_group->lock); 3770 if (block_group->removed) { 3771 spin_unlock(&block_group->lock); 3772 return 0; 3773 } 3774 btrfs_freeze_block_group(block_group); 3775 spin_unlock(&block_group->lock); 3776 3777 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); 3778 if (ret) 3779 goto out; 3780 3781 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); 3782 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); 3783 /* If we ended in the middle of a bitmap, reset the trimming flag */ 3784 if (rem) 3785 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); 3786 out: 3787 btrfs_unfreeze_block_group(block_group); 3788 return ret; 3789 } 3790 3791 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, 3792 u64 *trimmed, u64 start, u64 end, u64 minlen, 3793 bool async) 3794 { 3795 int ret; 3796 3797 *trimmed = 0; 3798 3799 spin_lock(&block_group->lock); 3800 if (block_group->removed) { 3801 spin_unlock(&block_group->lock); 3802 return 0; 3803 } 3804 btrfs_freeze_block_group(block_group); 3805 spin_unlock(&block_group->lock); 3806 3807 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); 3808 btrfs_unfreeze_block_group(block_group); 3809 3810 return ret; 3811 } 3812 3813 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, 3814 u64 *trimmed, u64 start, u64 end, u64 minlen, 3815 u64 maxlen, bool async) 3816 { 3817 int ret; 3818 3819 *trimmed = 0; 3820 3821 spin_lock(&block_group->lock); 3822 if (block_group->removed) { 3823 spin_unlock(&block_group->lock); 3824 return 0; 3825 } 3826 btrfs_freeze_block_group(block_group); 3827 spin_unlock(&block_group->lock); 3828 3829 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, 3830 async); 3831 3832 btrfs_unfreeze_block_group(block_group); 3833 3834 return ret; 3835 } 3836 3837 /* 3838 * Find the left-most item in the cache tree, and then return the 3839 * smallest inode number in the item. 3840 * 3841 * Note: the returned inode number may not be the smallest one in 3842 * the tree, if the left-most item is a bitmap. 3843 */ 3844 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3845 { 3846 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3847 struct btrfs_free_space *entry = NULL; 3848 u64 ino = 0; 3849 3850 spin_lock(&ctl->tree_lock); 3851 3852 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3853 goto out; 3854 3855 entry = rb_entry(rb_first(&ctl->free_space_offset), 3856 struct btrfs_free_space, offset_index); 3857 3858 if (!entry->bitmap) { 3859 ino = entry->offset; 3860 3861 unlink_free_space(ctl, entry); 3862 entry->offset++; 3863 entry->bytes--; 3864 if (!entry->bytes) 3865 kmem_cache_free(btrfs_free_space_cachep, entry); 3866 else 3867 link_free_space(ctl, entry); 3868 } else { 3869 u64 offset = 0; 3870 u64 count = 1; 3871 int ret; 3872 3873 ret = search_bitmap(ctl, entry, &offset, &count, true); 3874 /* Logic error; Should be empty if it can't find anything */ 3875 ASSERT(!ret); 3876 3877 ino = offset; 3878 bitmap_clear_bits(ctl, entry, offset, 1); 3879 if (entry->bytes == 0) 3880 free_bitmap(ctl, entry); 3881 } 3882 out: 3883 spin_unlock(&ctl->tree_lock); 3884 3885 return ino; 3886 } 3887 3888 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3889 struct btrfs_path *path) 3890 { 3891 struct inode *inode = NULL; 3892 3893 spin_lock(&root->ino_cache_lock); 3894 if (root->ino_cache_inode) 3895 inode = igrab(root->ino_cache_inode); 3896 spin_unlock(&root->ino_cache_lock); 3897 if (inode) 3898 return inode; 3899 3900 inode = __lookup_free_space_inode(root, path, 0); 3901 if (IS_ERR(inode)) 3902 return inode; 3903 3904 spin_lock(&root->ino_cache_lock); 3905 if (!btrfs_fs_closing(root->fs_info)) 3906 root->ino_cache_inode = igrab(inode); 3907 spin_unlock(&root->ino_cache_lock); 3908 3909 return inode; 3910 } 3911 3912 int create_free_ino_inode(struct btrfs_root *root, 3913 struct btrfs_trans_handle *trans, 3914 struct btrfs_path *path) 3915 { 3916 return __create_free_space_inode(root, trans, path, 3917 BTRFS_FREE_INO_OBJECTID, 0); 3918 } 3919 3920 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3921 { 3922 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3923 struct btrfs_path *path; 3924 struct inode *inode; 3925 int ret = 0; 3926 u64 root_gen = btrfs_root_generation(&root->root_item); 3927 3928 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3929 return 0; 3930 3931 /* 3932 * If we're unmounting then just return, since this does a search on the 3933 * normal root and not the commit root and we could deadlock. 3934 */ 3935 if (btrfs_fs_closing(fs_info)) 3936 return 0; 3937 3938 path = btrfs_alloc_path(); 3939 if (!path) 3940 return 0; 3941 3942 inode = lookup_free_ino_inode(root, path); 3943 if (IS_ERR(inode)) 3944 goto out; 3945 3946 if (root_gen != BTRFS_I(inode)->generation) 3947 goto out_put; 3948 3949 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3950 3951 if (ret < 0) 3952 btrfs_err(fs_info, 3953 "failed to load free ino cache for root %llu", 3954 root->root_key.objectid); 3955 out_put: 3956 iput(inode); 3957 out: 3958 btrfs_free_path(path); 3959 return ret; 3960 } 3961 3962 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3963 struct btrfs_trans_handle *trans, 3964 struct btrfs_path *path, 3965 struct inode *inode) 3966 { 3967 struct btrfs_fs_info *fs_info = root->fs_info; 3968 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3969 int ret; 3970 struct btrfs_io_ctl io_ctl; 3971 bool release_metadata = true; 3972 3973 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3974 return 0; 3975 3976 memset(&io_ctl, 0, sizeof(io_ctl)); 3977 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); 3978 if (!ret) { 3979 /* 3980 * At this point writepages() didn't error out, so our metadata 3981 * reservation is released when the writeback finishes, at 3982 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 3983 * with or without an error. 3984 */ 3985 release_metadata = false; 3986 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); 3987 } 3988 3989 if (ret) { 3990 if (release_metadata) 3991 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3992 inode->i_size, true); 3993 btrfs_debug(fs_info, 3994 "failed to write free ino cache for root %llu error %d", 3995 root->root_key.objectid, ret); 3996 } 3997 3998 return ret; 3999 } 4000 4001 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4002 /* 4003 * Use this if you need to make a bitmap or extent entry specifically, it 4004 * doesn't do any of the merging that add_free_space does, this acts a lot like 4005 * how the free space cache loading stuff works, so you can get really weird 4006 * configurations. 4007 */ 4008 int test_add_free_space_entry(struct btrfs_block_group *cache, 4009 u64 offset, u64 bytes, bool bitmap) 4010 { 4011 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4012 struct btrfs_free_space *info = NULL, *bitmap_info; 4013 void *map = NULL; 4014 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; 4015 u64 bytes_added; 4016 int ret; 4017 4018 again: 4019 if (!info) { 4020 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 4021 if (!info) 4022 return -ENOMEM; 4023 } 4024 4025 if (!bitmap) { 4026 spin_lock(&ctl->tree_lock); 4027 info->offset = offset; 4028 info->bytes = bytes; 4029 info->max_extent_size = 0; 4030 ret = link_free_space(ctl, info); 4031 spin_unlock(&ctl->tree_lock); 4032 if (ret) 4033 kmem_cache_free(btrfs_free_space_cachep, info); 4034 return ret; 4035 } 4036 4037 if (!map) { 4038 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 4039 if (!map) { 4040 kmem_cache_free(btrfs_free_space_cachep, info); 4041 return -ENOMEM; 4042 } 4043 } 4044 4045 spin_lock(&ctl->tree_lock); 4046 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4047 1, 0); 4048 if (!bitmap_info) { 4049 info->bitmap = map; 4050 map = NULL; 4051 add_new_bitmap(ctl, info, offset); 4052 bitmap_info = info; 4053 info = NULL; 4054 } 4055 4056 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 4057 trim_state); 4058 4059 bytes -= bytes_added; 4060 offset += bytes_added; 4061 spin_unlock(&ctl->tree_lock); 4062 4063 if (bytes) 4064 goto again; 4065 4066 if (info) 4067 kmem_cache_free(btrfs_free_space_cachep, info); 4068 if (map) 4069 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 4070 return 0; 4071 } 4072 4073 /* 4074 * Checks to see if the given range is in the free space cache. This is really 4075 * just used to check the absence of space, so if there is free space in the 4076 * range at all we will return 1. 4077 */ 4078 int test_check_exists(struct btrfs_block_group *cache, 4079 u64 offset, u64 bytes) 4080 { 4081 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4082 struct btrfs_free_space *info; 4083 int ret = 0; 4084 4085 spin_lock(&ctl->tree_lock); 4086 info = tree_search_offset(ctl, offset, 0, 0); 4087 if (!info) { 4088 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4089 1, 0); 4090 if (!info) 4091 goto out; 4092 } 4093 4094 have_info: 4095 if (info->bitmap) { 4096 u64 bit_off, bit_bytes; 4097 struct rb_node *n; 4098 struct btrfs_free_space *tmp; 4099 4100 bit_off = offset; 4101 bit_bytes = ctl->unit; 4102 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 4103 if (!ret) { 4104 if (bit_off == offset) { 4105 ret = 1; 4106 goto out; 4107 } else if (bit_off > offset && 4108 offset + bytes > bit_off) { 4109 ret = 1; 4110 goto out; 4111 } 4112 } 4113 4114 n = rb_prev(&info->offset_index); 4115 while (n) { 4116 tmp = rb_entry(n, struct btrfs_free_space, 4117 offset_index); 4118 if (tmp->offset + tmp->bytes < offset) 4119 break; 4120 if (offset + bytes < tmp->offset) { 4121 n = rb_prev(&tmp->offset_index); 4122 continue; 4123 } 4124 info = tmp; 4125 goto have_info; 4126 } 4127 4128 n = rb_next(&info->offset_index); 4129 while (n) { 4130 tmp = rb_entry(n, struct btrfs_free_space, 4131 offset_index); 4132 if (offset + bytes < tmp->offset) 4133 break; 4134 if (tmp->offset + tmp->bytes < offset) { 4135 n = rb_next(&tmp->offset_index); 4136 continue; 4137 } 4138 info = tmp; 4139 goto have_info; 4140 } 4141 4142 ret = 0; 4143 goto out; 4144 } 4145 4146 if (info->offset == offset) { 4147 ret = 1; 4148 goto out; 4149 } 4150 4151 if (offset > info->offset && offset < info->offset + info->bytes) 4152 ret = 1; 4153 out: 4154 spin_unlock(&ctl->tree_lock); 4155 return ret; 4156 } 4157 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 4158