xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision afc98d90)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_key key;
44 	struct btrfs_key location;
45 	struct btrfs_disk_key disk_key;
46 	struct btrfs_free_space_header *header;
47 	struct extent_buffer *leaf;
48 	struct inode *inode = NULL;
49 	int ret;
50 
51 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 	key.offset = offset;
53 	key.type = 0;
54 
55 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 	if (ret < 0)
57 		return ERR_PTR(ret);
58 	if (ret > 0) {
59 		btrfs_release_path(path);
60 		return ERR_PTR(-ENOENT);
61 	}
62 
63 	leaf = path->nodes[0];
64 	header = btrfs_item_ptr(leaf, path->slots[0],
65 				struct btrfs_free_space_header);
66 	btrfs_free_space_key(leaf, header, &disk_key);
67 	btrfs_disk_key_to_cpu(&location, &disk_key);
68 	btrfs_release_path(path);
69 
70 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 	if (!inode)
72 		return ERR_PTR(-ENOENT);
73 	if (IS_ERR(inode))
74 		return inode;
75 	if (is_bad_inode(inode)) {
76 		iput(inode);
77 		return ERR_PTR(-ENOENT);
78 	}
79 
80 	mapping_set_gfp_mask(inode->i_mapping,
81 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		btrfs_info(root->fs_info,
108 			"Old style space inode found, converting.");
109 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
110 			BTRFS_INODE_NODATACOW;
111 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
112 	}
113 
114 	if (!block_group->iref) {
115 		block_group->inode = igrab(inode);
116 		block_group->iref = 1;
117 	}
118 	spin_unlock(&block_group->lock);
119 
120 	return inode;
121 }
122 
123 static int __create_free_space_inode(struct btrfs_root *root,
124 				     struct btrfs_trans_handle *trans,
125 				     struct btrfs_path *path,
126 				     u64 ino, u64 offset)
127 {
128 	struct btrfs_key key;
129 	struct btrfs_disk_key disk_key;
130 	struct btrfs_free_space_header *header;
131 	struct btrfs_inode_item *inode_item;
132 	struct extent_buffer *leaf;
133 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
134 	int ret;
135 
136 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
137 	if (ret)
138 		return ret;
139 
140 	/* We inline crc's for the free disk space cache */
141 	if (ino != BTRFS_FREE_INO_OBJECTID)
142 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
143 
144 	leaf = path->nodes[0];
145 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
146 				    struct btrfs_inode_item);
147 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
148 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
149 			     sizeof(*inode_item));
150 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
151 	btrfs_set_inode_size(leaf, inode_item, 0);
152 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
153 	btrfs_set_inode_uid(leaf, inode_item, 0);
154 	btrfs_set_inode_gid(leaf, inode_item, 0);
155 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
156 	btrfs_set_inode_flags(leaf, inode_item, flags);
157 	btrfs_set_inode_nlink(leaf, inode_item, 1);
158 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_block_group(leaf, inode_item, offset);
160 	btrfs_mark_buffer_dirty(leaf);
161 	btrfs_release_path(path);
162 
163 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
164 	key.offset = offset;
165 	key.type = 0;
166 
167 	ret = btrfs_insert_empty_item(trans, root, path, &key,
168 				      sizeof(struct btrfs_free_space_header));
169 	if (ret < 0) {
170 		btrfs_release_path(path);
171 		return ret;
172 	}
173 	leaf = path->nodes[0];
174 	header = btrfs_item_ptr(leaf, path->slots[0],
175 				struct btrfs_free_space_header);
176 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
177 	btrfs_set_free_space_key(leaf, header, &disk_key);
178 	btrfs_mark_buffer_dirty(leaf);
179 	btrfs_release_path(path);
180 
181 	return 0;
182 }
183 
184 int create_free_space_inode(struct btrfs_root *root,
185 			    struct btrfs_trans_handle *trans,
186 			    struct btrfs_block_group_cache *block_group,
187 			    struct btrfs_path *path)
188 {
189 	int ret;
190 	u64 ino;
191 
192 	ret = btrfs_find_free_objectid(root, &ino);
193 	if (ret < 0)
194 		return ret;
195 
196 	return __create_free_space_inode(root, trans, path, ino,
197 					 block_group->key.objectid);
198 }
199 
200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
201 				       struct btrfs_block_rsv *rsv)
202 {
203 	u64 needed_bytes;
204 	int ret;
205 
206 	/* 1 for slack space, 1 for updating the inode */
207 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
208 		btrfs_calc_trans_metadata_size(root, 1);
209 
210 	spin_lock(&rsv->lock);
211 	if (rsv->reserved < needed_bytes)
212 		ret = -ENOSPC;
213 	else
214 		ret = 0;
215 	spin_unlock(&rsv->lock);
216 	return ret;
217 }
218 
219 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
220 				    struct btrfs_trans_handle *trans,
221 				    struct inode *inode)
222 {
223 	int ret = 0;
224 
225 	btrfs_i_size_write(inode, 0);
226 	truncate_pagecache(inode, 0);
227 
228 	/*
229 	 * We don't need an orphan item because truncating the free space cache
230 	 * will never be split across transactions.
231 	 */
232 	ret = btrfs_truncate_inode_items(trans, root, inode,
233 					 0, BTRFS_EXTENT_DATA_KEY);
234 	if (ret) {
235 		btrfs_abort_transaction(trans, root, ret);
236 		return ret;
237 	}
238 
239 	ret = btrfs_update_inode(trans, root, inode);
240 	if (ret)
241 		btrfs_abort_transaction(trans, root, ret);
242 
243 	return ret;
244 }
245 
246 static int readahead_cache(struct inode *inode)
247 {
248 	struct file_ra_state *ra;
249 	unsigned long last_index;
250 
251 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
252 	if (!ra)
253 		return -ENOMEM;
254 
255 	file_ra_state_init(ra, inode->i_mapping);
256 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
257 
258 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
259 
260 	kfree(ra);
261 
262 	return 0;
263 }
264 
265 struct io_ctl {
266 	void *cur, *orig;
267 	struct page *page;
268 	struct page **pages;
269 	struct btrfs_root *root;
270 	unsigned long size;
271 	int index;
272 	int num_pages;
273 	unsigned check_crcs:1;
274 };
275 
276 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
277 		       struct btrfs_root *root)
278 {
279 	memset(io_ctl, 0, sizeof(struct io_ctl));
280 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
281 		PAGE_CACHE_SHIFT;
282 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
283 				GFP_NOFS);
284 	if (!io_ctl->pages)
285 		return -ENOMEM;
286 	io_ctl->root = root;
287 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
288 		io_ctl->check_crcs = 1;
289 	return 0;
290 }
291 
292 static void io_ctl_free(struct io_ctl *io_ctl)
293 {
294 	kfree(io_ctl->pages);
295 }
296 
297 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
298 {
299 	if (io_ctl->cur) {
300 		kunmap(io_ctl->page);
301 		io_ctl->cur = NULL;
302 		io_ctl->orig = NULL;
303 	}
304 }
305 
306 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
307 {
308 	ASSERT(io_ctl->index < io_ctl->num_pages);
309 	io_ctl->page = io_ctl->pages[io_ctl->index++];
310 	io_ctl->cur = kmap(io_ctl->page);
311 	io_ctl->orig = io_ctl->cur;
312 	io_ctl->size = PAGE_CACHE_SIZE;
313 	if (clear)
314 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
315 }
316 
317 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
318 {
319 	int i;
320 
321 	io_ctl_unmap_page(io_ctl);
322 
323 	for (i = 0; i < io_ctl->num_pages; i++) {
324 		if (io_ctl->pages[i]) {
325 			ClearPageChecked(io_ctl->pages[i]);
326 			unlock_page(io_ctl->pages[i]);
327 			page_cache_release(io_ctl->pages[i]);
328 		}
329 	}
330 }
331 
332 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
333 				int uptodate)
334 {
335 	struct page *page;
336 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
337 	int i;
338 
339 	for (i = 0; i < io_ctl->num_pages; i++) {
340 		page = find_or_create_page(inode->i_mapping, i, mask);
341 		if (!page) {
342 			io_ctl_drop_pages(io_ctl);
343 			return -ENOMEM;
344 		}
345 		io_ctl->pages[i] = page;
346 		if (uptodate && !PageUptodate(page)) {
347 			btrfs_readpage(NULL, page);
348 			lock_page(page);
349 			if (!PageUptodate(page)) {
350 				btrfs_err(BTRFS_I(inode)->root->fs_info,
351 					   "error reading free space cache");
352 				io_ctl_drop_pages(io_ctl);
353 				return -EIO;
354 			}
355 		}
356 	}
357 
358 	for (i = 0; i < io_ctl->num_pages; i++) {
359 		clear_page_dirty_for_io(io_ctl->pages[i]);
360 		set_page_extent_mapped(io_ctl->pages[i]);
361 	}
362 
363 	return 0;
364 }
365 
366 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
367 {
368 	__le64 *val;
369 
370 	io_ctl_map_page(io_ctl, 1);
371 
372 	/*
373 	 * Skip the csum areas.  If we don't check crcs then we just have a
374 	 * 64bit chunk at the front of the first page.
375 	 */
376 	if (io_ctl->check_crcs) {
377 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
378 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
379 	} else {
380 		io_ctl->cur += sizeof(u64);
381 		io_ctl->size -= sizeof(u64) * 2;
382 	}
383 
384 	val = io_ctl->cur;
385 	*val = cpu_to_le64(generation);
386 	io_ctl->cur += sizeof(u64);
387 }
388 
389 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
390 {
391 	__le64 *gen;
392 
393 	/*
394 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
395 	 * chunk at the front of the first page.
396 	 */
397 	if (io_ctl->check_crcs) {
398 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
399 		io_ctl->size -= sizeof(u64) +
400 			(sizeof(u32) * io_ctl->num_pages);
401 	} else {
402 		io_ctl->cur += sizeof(u64);
403 		io_ctl->size -= sizeof(u64) * 2;
404 	}
405 
406 	gen = io_ctl->cur;
407 	if (le64_to_cpu(*gen) != generation) {
408 		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
409 				   "(%Lu) does not match inode (%Lu)\n", *gen,
410 				   generation);
411 		io_ctl_unmap_page(io_ctl);
412 		return -EIO;
413 	}
414 	io_ctl->cur += sizeof(u64);
415 	return 0;
416 }
417 
418 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
419 {
420 	u32 *tmp;
421 	u32 crc = ~(u32)0;
422 	unsigned offset = 0;
423 
424 	if (!io_ctl->check_crcs) {
425 		io_ctl_unmap_page(io_ctl);
426 		return;
427 	}
428 
429 	if (index == 0)
430 		offset = sizeof(u32) * io_ctl->num_pages;
431 
432 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
433 			      PAGE_CACHE_SIZE - offset);
434 	btrfs_csum_final(crc, (char *)&crc);
435 	io_ctl_unmap_page(io_ctl);
436 	tmp = kmap(io_ctl->pages[0]);
437 	tmp += index;
438 	*tmp = crc;
439 	kunmap(io_ctl->pages[0]);
440 }
441 
442 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
443 {
444 	u32 *tmp, val;
445 	u32 crc = ~(u32)0;
446 	unsigned offset = 0;
447 
448 	if (!io_ctl->check_crcs) {
449 		io_ctl_map_page(io_ctl, 0);
450 		return 0;
451 	}
452 
453 	if (index == 0)
454 		offset = sizeof(u32) * io_ctl->num_pages;
455 
456 	tmp = kmap(io_ctl->pages[0]);
457 	tmp += index;
458 	val = *tmp;
459 	kunmap(io_ctl->pages[0]);
460 
461 	io_ctl_map_page(io_ctl, 0);
462 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
463 			      PAGE_CACHE_SIZE - offset);
464 	btrfs_csum_final(crc, (char *)&crc);
465 	if (val != crc) {
466 		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
467 				   "space cache\n");
468 		io_ctl_unmap_page(io_ctl);
469 		return -EIO;
470 	}
471 
472 	return 0;
473 }
474 
475 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
476 			    void *bitmap)
477 {
478 	struct btrfs_free_space_entry *entry;
479 
480 	if (!io_ctl->cur)
481 		return -ENOSPC;
482 
483 	entry = io_ctl->cur;
484 	entry->offset = cpu_to_le64(offset);
485 	entry->bytes = cpu_to_le64(bytes);
486 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
487 		BTRFS_FREE_SPACE_EXTENT;
488 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
489 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
490 
491 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
492 		return 0;
493 
494 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
495 
496 	/* No more pages to map */
497 	if (io_ctl->index >= io_ctl->num_pages)
498 		return 0;
499 
500 	/* map the next page */
501 	io_ctl_map_page(io_ctl, 1);
502 	return 0;
503 }
504 
505 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
506 {
507 	if (!io_ctl->cur)
508 		return -ENOSPC;
509 
510 	/*
511 	 * If we aren't at the start of the current page, unmap this one and
512 	 * map the next one if there is any left.
513 	 */
514 	if (io_ctl->cur != io_ctl->orig) {
515 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
516 		if (io_ctl->index >= io_ctl->num_pages)
517 			return -ENOSPC;
518 		io_ctl_map_page(io_ctl, 0);
519 	}
520 
521 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
522 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
523 	if (io_ctl->index < io_ctl->num_pages)
524 		io_ctl_map_page(io_ctl, 0);
525 	return 0;
526 }
527 
528 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
529 {
530 	/*
531 	 * If we're not on the boundary we know we've modified the page and we
532 	 * need to crc the page.
533 	 */
534 	if (io_ctl->cur != io_ctl->orig)
535 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 	else
537 		io_ctl_unmap_page(io_ctl);
538 
539 	while (io_ctl->index < io_ctl->num_pages) {
540 		io_ctl_map_page(io_ctl, 1);
541 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
542 	}
543 }
544 
545 static int io_ctl_read_entry(struct io_ctl *io_ctl,
546 			    struct btrfs_free_space *entry, u8 *type)
547 {
548 	struct btrfs_free_space_entry *e;
549 	int ret;
550 
551 	if (!io_ctl->cur) {
552 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
553 		if (ret)
554 			return ret;
555 	}
556 
557 	e = io_ctl->cur;
558 	entry->offset = le64_to_cpu(e->offset);
559 	entry->bytes = le64_to_cpu(e->bytes);
560 	*type = e->type;
561 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
562 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
563 
564 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
565 		return 0;
566 
567 	io_ctl_unmap_page(io_ctl);
568 
569 	return 0;
570 }
571 
572 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
573 			      struct btrfs_free_space *entry)
574 {
575 	int ret;
576 
577 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
578 	if (ret)
579 		return ret;
580 
581 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
582 	io_ctl_unmap_page(io_ctl);
583 
584 	return 0;
585 }
586 
587 /*
588  * Since we attach pinned extents after the fact we can have contiguous sections
589  * of free space that are split up in entries.  This poses a problem with the
590  * tree logging stuff since it could have allocated across what appears to be 2
591  * entries since we would have merged the entries when adding the pinned extents
592  * back to the free space cache.  So run through the space cache that we just
593  * loaded and merge contiguous entries.  This will make the log replay stuff not
594  * blow up and it will make for nicer allocator behavior.
595  */
596 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
597 {
598 	struct btrfs_free_space *e, *prev = NULL;
599 	struct rb_node *n;
600 
601 again:
602 	spin_lock(&ctl->tree_lock);
603 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
604 		e = rb_entry(n, struct btrfs_free_space, offset_index);
605 		if (!prev)
606 			goto next;
607 		if (e->bitmap || prev->bitmap)
608 			goto next;
609 		if (prev->offset + prev->bytes == e->offset) {
610 			unlink_free_space(ctl, prev);
611 			unlink_free_space(ctl, e);
612 			prev->bytes += e->bytes;
613 			kmem_cache_free(btrfs_free_space_cachep, e);
614 			link_free_space(ctl, prev);
615 			prev = NULL;
616 			spin_unlock(&ctl->tree_lock);
617 			goto again;
618 		}
619 next:
620 		prev = e;
621 	}
622 	spin_unlock(&ctl->tree_lock);
623 }
624 
625 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
626 				   struct btrfs_free_space_ctl *ctl,
627 				   struct btrfs_path *path, u64 offset)
628 {
629 	struct btrfs_free_space_header *header;
630 	struct extent_buffer *leaf;
631 	struct io_ctl io_ctl;
632 	struct btrfs_key key;
633 	struct btrfs_free_space *e, *n;
634 	struct list_head bitmaps;
635 	u64 num_entries;
636 	u64 num_bitmaps;
637 	u64 generation;
638 	u8 type;
639 	int ret = 0;
640 
641 	INIT_LIST_HEAD(&bitmaps);
642 
643 	/* Nothing in the space cache, goodbye */
644 	if (!i_size_read(inode))
645 		return 0;
646 
647 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
648 	key.offset = offset;
649 	key.type = 0;
650 
651 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
652 	if (ret < 0)
653 		return 0;
654 	else if (ret > 0) {
655 		btrfs_release_path(path);
656 		return 0;
657 	}
658 
659 	ret = -1;
660 
661 	leaf = path->nodes[0];
662 	header = btrfs_item_ptr(leaf, path->slots[0],
663 				struct btrfs_free_space_header);
664 	num_entries = btrfs_free_space_entries(leaf, header);
665 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
666 	generation = btrfs_free_space_generation(leaf, header);
667 	btrfs_release_path(path);
668 
669 	if (BTRFS_I(inode)->generation != generation) {
670 		btrfs_err(root->fs_info,
671 			"free space inode generation (%llu) "
672 			"did not match free space cache generation (%llu)",
673 			BTRFS_I(inode)->generation, generation);
674 		return 0;
675 	}
676 
677 	if (!num_entries)
678 		return 0;
679 
680 	ret = io_ctl_init(&io_ctl, inode, root);
681 	if (ret)
682 		return ret;
683 
684 	ret = readahead_cache(inode);
685 	if (ret)
686 		goto out;
687 
688 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
689 	if (ret)
690 		goto out;
691 
692 	ret = io_ctl_check_crc(&io_ctl, 0);
693 	if (ret)
694 		goto free_cache;
695 
696 	ret = io_ctl_check_generation(&io_ctl, generation);
697 	if (ret)
698 		goto free_cache;
699 
700 	while (num_entries) {
701 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
702 				      GFP_NOFS);
703 		if (!e)
704 			goto free_cache;
705 
706 		ret = io_ctl_read_entry(&io_ctl, e, &type);
707 		if (ret) {
708 			kmem_cache_free(btrfs_free_space_cachep, e);
709 			goto free_cache;
710 		}
711 
712 		if (!e->bytes) {
713 			kmem_cache_free(btrfs_free_space_cachep, e);
714 			goto free_cache;
715 		}
716 
717 		if (type == BTRFS_FREE_SPACE_EXTENT) {
718 			spin_lock(&ctl->tree_lock);
719 			ret = link_free_space(ctl, e);
720 			spin_unlock(&ctl->tree_lock);
721 			if (ret) {
722 				btrfs_err(root->fs_info,
723 					"Duplicate entries in free space cache, dumping");
724 				kmem_cache_free(btrfs_free_space_cachep, e);
725 				goto free_cache;
726 			}
727 		} else {
728 			ASSERT(num_bitmaps);
729 			num_bitmaps--;
730 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
731 			if (!e->bitmap) {
732 				kmem_cache_free(
733 					btrfs_free_space_cachep, e);
734 				goto free_cache;
735 			}
736 			spin_lock(&ctl->tree_lock);
737 			ret = link_free_space(ctl, e);
738 			ctl->total_bitmaps++;
739 			ctl->op->recalc_thresholds(ctl);
740 			spin_unlock(&ctl->tree_lock);
741 			if (ret) {
742 				btrfs_err(root->fs_info,
743 					"Duplicate entries in free space cache, dumping");
744 				kmem_cache_free(btrfs_free_space_cachep, e);
745 				goto free_cache;
746 			}
747 			list_add_tail(&e->list, &bitmaps);
748 		}
749 
750 		num_entries--;
751 	}
752 
753 	io_ctl_unmap_page(&io_ctl);
754 
755 	/*
756 	 * We add the bitmaps at the end of the entries in order that
757 	 * the bitmap entries are added to the cache.
758 	 */
759 	list_for_each_entry_safe(e, n, &bitmaps, list) {
760 		list_del_init(&e->list);
761 		ret = io_ctl_read_bitmap(&io_ctl, e);
762 		if (ret)
763 			goto free_cache;
764 	}
765 
766 	io_ctl_drop_pages(&io_ctl);
767 	merge_space_tree(ctl);
768 	ret = 1;
769 out:
770 	io_ctl_free(&io_ctl);
771 	return ret;
772 free_cache:
773 	io_ctl_drop_pages(&io_ctl);
774 	__btrfs_remove_free_space_cache(ctl);
775 	goto out;
776 }
777 
778 int load_free_space_cache(struct btrfs_fs_info *fs_info,
779 			  struct btrfs_block_group_cache *block_group)
780 {
781 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
782 	struct btrfs_root *root = fs_info->tree_root;
783 	struct inode *inode;
784 	struct btrfs_path *path;
785 	int ret = 0;
786 	bool matched;
787 	u64 used = btrfs_block_group_used(&block_group->item);
788 
789 	/*
790 	 * If this block group has been marked to be cleared for one reason or
791 	 * another then we can't trust the on disk cache, so just return.
792 	 */
793 	spin_lock(&block_group->lock);
794 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
795 		spin_unlock(&block_group->lock);
796 		return 0;
797 	}
798 	spin_unlock(&block_group->lock);
799 
800 	path = btrfs_alloc_path();
801 	if (!path)
802 		return 0;
803 	path->search_commit_root = 1;
804 	path->skip_locking = 1;
805 
806 	inode = lookup_free_space_inode(root, block_group, path);
807 	if (IS_ERR(inode)) {
808 		btrfs_free_path(path);
809 		return 0;
810 	}
811 
812 	/* We may have converted the inode and made the cache invalid. */
813 	spin_lock(&block_group->lock);
814 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
815 		spin_unlock(&block_group->lock);
816 		btrfs_free_path(path);
817 		goto out;
818 	}
819 	spin_unlock(&block_group->lock);
820 
821 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
822 				      path, block_group->key.objectid);
823 	btrfs_free_path(path);
824 	if (ret <= 0)
825 		goto out;
826 
827 	spin_lock(&ctl->tree_lock);
828 	matched = (ctl->free_space == (block_group->key.offset - used -
829 				       block_group->bytes_super));
830 	spin_unlock(&ctl->tree_lock);
831 
832 	if (!matched) {
833 		__btrfs_remove_free_space_cache(ctl);
834 		btrfs_err(fs_info, "block group %llu has wrong amount of free space",
835 			block_group->key.objectid);
836 		ret = -1;
837 	}
838 out:
839 	if (ret < 0) {
840 		/* This cache is bogus, make sure it gets cleared */
841 		spin_lock(&block_group->lock);
842 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
843 		spin_unlock(&block_group->lock);
844 		ret = 0;
845 
846 		btrfs_err(fs_info, "failed to load free space cache for block group %llu",
847 			block_group->key.objectid);
848 	}
849 
850 	iput(inode);
851 	return ret;
852 }
853 
854 /**
855  * __btrfs_write_out_cache - write out cached info to an inode
856  * @root - the root the inode belongs to
857  * @ctl - the free space cache we are going to write out
858  * @block_group - the block_group for this cache if it belongs to a block_group
859  * @trans - the trans handle
860  * @path - the path to use
861  * @offset - the offset for the key we'll insert
862  *
863  * This function writes out a free space cache struct to disk for quick recovery
864  * on mount.  This will return 0 if it was successfull in writing the cache out,
865  * and -1 if it was not.
866  */
867 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
868 				   struct btrfs_free_space_ctl *ctl,
869 				   struct btrfs_block_group_cache *block_group,
870 				   struct btrfs_trans_handle *trans,
871 				   struct btrfs_path *path, u64 offset)
872 {
873 	struct btrfs_free_space_header *header;
874 	struct extent_buffer *leaf;
875 	struct rb_node *node;
876 	struct list_head *pos, *n;
877 	struct extent_state *cached_state = NULL;
878 	struct btrfs_free_cluster *cluster = NULL;
879 	struct extent_io_tree *unpin = NULL;
880 	struct io_ctl io_ctl;
881 	struct list_head bitmap_list;
882 	struct btrfs_key key;
883 	u64 start, extent_start, extent_end, len;
884 	int entries = 0;
885 	int bitmaps = 0;
886 	int ret;
887 	int err = -1;
888 
889 	INIT_LIST_HEAD(&bitmap_list);
890 
891 	if (!i_size_read(inode))
892 		return -1;
893 
894 	ret = io_ctl_init(&io_ctl, inode, root);
895 	if (ret)
896 		return -1;
897 
898 	/* Get the cluster for this block_group if it exists */
899 	if (block_group && !list_empty(&block_group->cluster_list))
900 		cluster = list_entry(block_group->cluster_list.next,
901 				     struct btrfs_free_cluster,
902 				     block_group_list);
903 
904 	/* Lock all pages first so we can lock the extent safely. */
905 	io_ctl_prepare_pages(&io_ctl, inode, 0);
906 
907 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
908 			 0, &cached_state);
909 
910 	node = rb_first(&ctl->free_space_offset);
911 	if (!node && cluster) {
912 		node = rb_first(&cluster->root);
913 		cluster = NULL;
914 	}
915 
916 	/* Make sure we can fit our crcs into the first page */
917 	if (io_ctl.check_crcs &&
918 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
919 		goto out_nospc;
920 
921 	io_ctl_set_generation(&io_ctl, trans->transid);
922 
923 	/* Write out the extent entries */
924 	while (node) {
925 		struct btrfs_free_space *e;
926 
927 		e = rb_entry(node, struct btrfs_free_space, offset_index);
928 		entries++;
929 
930 		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
931 				       e->bitmap);
932 		if (ret)
933 			goto out_nospc;
934 
935 		if (e->bitmap) {
936 			list_add_tail(&e->list, &bitmap_list);
937 			bitmaps++;
938 		}
939 		node = rb_next(node);
940 		if (!node && cluster) {
941 			node = rb_first(&cluster->root);
942 			cluster = NULL;
943 		}
944 	}
945 
946 	/*
947 	 * We want to add any pinned extents to our free space cache
948 	 * so we don't leak the space
949 	 */
950 
951 	/*
952 	 * We shouldn't have switched the pinned extents yet so this is the
953 	 * right one
954 	 */
955 	unpin = root->fs_info->pinned_extents;
956 
957 	if (block_group)
958 		start = block_group->key.objectid;
959 
960 	while (block_group && (start < block_group->key.objectid +
961 			       block_group->key.offset)) {
962 		ret = find_first_extent_bit(unpin, start,
963 					    &extent_start, &extent_end,
964 					    EXTENT_DIRTY, NULL);
965 		if (ret) {
966 			ret = 0;
967 			break;
968 		}
969 
970 		/* This pinned extent is out of our range */
971 		if (extent_start >= block_group->key.objectid +
972 		    block_group->key.offset)
973 			break;
974 
975 		extent_start = max(extent_start, start);
976 		extent_end = min(block_group->key.objectid +
977 				 block_group->key.offset, extent_end + 1);
978 		len = extent_end - extent_start;
979 
980 		entries++;
981 		ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
982 		if (ret)
983 			goto out_nospc;
984 
985 		start = extent_end;
986 	}
987 
988 	/* Write out the bitmaps */
989 	list_for_each_safe(pos, n, &bitmap_list) {
990 		struct btrfs_free_space *entry =
991 			list_entry(pos, struct btrfs_free_space, list);
992 
993 		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
994 		if (ret)
995 			goto out_nospc;
996 		list_del_init(&entry->list);
997 	}
998 
999 	/* Zero out the rest of the pages just to make sure */
1000 	io_ctl_zero_remaining_pages(&io_ctl);
1001 
1002 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1003 				0, i_size_read(inode), &cached_state);
1004 	io_ctl_drop_pages(&io_ctl);
1005 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1006 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1007 
1008 	if (ret)
1009 		goto out;
1010 
1011 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1012 	if (ret) {
1013 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1014 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1015 				 GFP_NOFS);
1016 		goto out;
1017 	}
1018 
1019 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1020 	key.offset = offset;
1021 	key.type = 0;
1022 
1023 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1024 	if (ret < 0) {
1025 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1026 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1027 				 GFP_NOFS);
1028 		goto out;
1029 	}
1030 	leaf = path->nodes[0];
1031 	if (ret > 0) {
1032 		struct btrfs_key found_key;
1033 		ASSERT(path->slots[0]);
1034 		path->slots[0]--;
1035 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1036 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1037 		    found_key.offset != offset) {
1038 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1039 					 inode->i_size - 1,
1040 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1041 					 NULL, GFP_NOFS);
1042 			btrfs_release_path(path);
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	BTRFS_I(inode)->generation = trans->transid;
1048 	header = btrfs_item_ptr(leaf, path->slots[0],
1049 				struct btrfs_free_space_header);
1050 	btrfs_set_free_space_entries(leaf, header, entries);
1051 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1052 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1053 	btrfs_mark_buffer_dirty(leaf);
1054 	btrfs_release_path(path);
1055 
1056 	err = 0;
1057 out:
1058 	io_ctl_free(&io_ctl);
1059 	if (err) {
1060 		invalidate_inode_pages2(inode->i_mapping);
1061 		BTRFS_I(inode)->generation = 0;
1062 	}
1063 	btrfs_update_inode(trans, root, inode);
1064 	return err;
1065 
1066 out_nospc:
1067 	list_for_each_safe(pos, n, &bitmap_list) {
1068 		struct btrfs_free_space *entry =
1069 			list_entry(pos, struct btrfs_free_space, list);
1070 		list_del_init(&entry->list);
1071 	}
1072 	io_ctl_drop_pages(&io_ctl);
1073 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1074 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1075 	goto out;
1076 }
1077 
1078 int btrfs_write_out_cache(struct btrfs_root *root,
1079 			  struct btrfs_trans_handle *trans,
1080 			  struct btrfs_block_group_cache *block_group,
1081 			  struct btrfs_path *path)
1082 {
1083 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1084 	struct inode *inode;
1085 	int ret = 0;
1086 
1087 	root = root->fs_info->tree_root;
1088 
1089 	spin_lock(&block_group->lock);
1090 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1091 		spin_unlock(&block_group->lock);
1092 		return 0;
1093 	}
1094 	spin_unlock(&block_group->lock);
1095 
1096 	inode = lookup_free_space_inode(root, block_group, path);
1097 	if (IS_ERR(inode))
1098 		return 0;
1099 
1100 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1101 				      path, block_group->key.objectid);
1102 	if (ret) {
1103 		spin_lock(&block_group->lock);
1104 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1105 		spin_unlock(&block_group->lock);
1106 		ret = 0;
1107 #ifdef DEBUG
1108 		btrfs_err(root->fs_info,
1109 			"failed to write free space cache for block group %llu",
1110 			block_group->key.objectid);
1111 #endif
1112 	}
1113 
1114 	iput(inode);
1115 	return ret;
1116 }
1117 
1118 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1119 					  u64 offset)
1120 {
1121 	ASSERT(offset >= bitmap_start);
1122 	offset -= bitmap_start;
1123 	return (unsigned long)(div_u64(offset, unit));
1124 }
1125 
1126 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1127 {
1128 	return (unsigned long)(div_u64(bytes, unit));
1129 }
1130 
1131 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1132 				   u64 offset)
1133 {
1134 	u64 bitmap_start;
1135 	u64 bytes_per_bitmap;
1136 
1137 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1138 	bitmap_start = offset - ctl->start;
1139 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1140 	bitmap_start *= bytes_per_bitmap;
1141 	bitmap_start += ctl->start;
1142 
1143 	return bitmap_start;
1144 }
1145 
1146 static int tree_insert_offset(struct rb_root *root, u64 offset,
1147 			      struct rb_node *node, int bitmap)
1148 {
1149 	struct rb_node **p = &root->rb_node;
1150 	struct rb_node *parent = NULL;
1151 	struct btrfs_free_space *info;
1152 
1153 	while (*p) {
1154 		parent = *p;
1155 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1156 
1157 		if (offset < info->offset) {
1158 			p = &(*p)->rb_left;
1159 		} else if (offset > info->offset) {
1160 			p = &(*p)->rb_right;
1161 		} else {
1162 			/*
1163 			 * we could have a bitmap entry and an extent entry
1164 			 * share the same offset.  If this is the case, we want
1165 			 * the extent entry to always be found first if we do a
1166 			 * linear search through the tree, since we want to have
1167 			 * the quickest allocation time, and allocating from an
1168 			 * extent is faster than allocating from a bitmap.  So
1169 			 * if we're inserting a bitmap and we find an entry at
1170 			 * this offset, we want to go right, or after this entry
1171 			 * logically.  If we are inserting an extent and we've
1172 			 * found a bitmap, we want to go left, or before
1173 			 * logically.
1174 			 */
1175 			if (bitmap) {
1176 				if (info->bitmap) {
1177 					WARN_ON_ONCE(1);
1178 					return -EEXIST;
1179 				}
1180 				p = &(*p)->rb_right;
1181 			} else {
1182 				if (!info->bitmap) {
1183 					WARN_ON_ONCE(1);
1184 					return -EEXIST;
1185 				}
1186 				p = &(*p)->rb_left;
1187 			}
1188 		}
1189 	}
1190 
1191 	rb_link_node(node, parent, p);
1192 	rb_insert_color(node, root);
1193 
1194 	return 0;
1195 }
1196 
1197 /*
1198  * searches the tree for the given offset.
1199  *
1200  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1201  * want a section that has at least bytes size and comes at or after the given
1202  * offset.
1203  */
1204 static struct btrfs_free_space *
1205 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1206 		   u64 offset, int bitmap_only, int fuzzy)
1207 {
1208 	struct rb_node *n = ctl->free_space_offset.rb_node;
1209 	struct btrfs_free_space *entry, *prev = NULL;
1210 
1211 	/* find entry that is closest to the 'offset' */
1212 	while (1) {
1213 		if (!n) {
1214 			entry = NULL;
1215 			break;
1216 		}
1217 
1218 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1219 		prev = entry;
1220 
1221 		if (offset < entry->offset)
1222 			n = n->rb_left;
1223 		else if (offset > entry->offset)
1224 			n = n->rb_right;
1225 		else
1226 			break;
1227 	}
1228 
1229 	if (bitmap_only) {
1230 		if (!entry)
1231 			return NULL;
1232 		if (entry->bitmap)
1233 			return entry;
1234 
1235 		/*
1236 		 * bitmap entry and extent entry may share same offset,
1237 		 * in that case, bitmap entry comes after extent entry.
1238 		 */
1239 		n = rb_next(n);
1240 		if (!n)
1241 			return NULL;
1242 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1243 		if (entry->offset != offset)
1244 			return NULL;
1245 
1246 		WARN_ON(!entry->bitmap);
1247 		return entry;
1248 	} else if (entry) {
1249 		if (entry->bitmap) {
1250 			/*
1251 			 * if previous extent entry covers the offset,
1252 			 * we should return it instead of the bitmap entry
1253 			 */
1254 			n = rb_prev(&entry->offset_index);
1255 			if (n) {
1256 				prev = rb_entry(n, struct btrfs_free_space,
1257 						offset_index);
1258 				if (!prev->bitmap &&
1259 				    prev->offset + prev->bytes > offset)
1260 					entry = prev;
1261 			}
1262 		}
1263 		return entry;
1264 	}
1265 
1266 	if (!prev)
1267 		return NULL;
1268 
1269 	/* find last entry before the 'offset' */
1270 	entry = prev;
1271 	if (entry->offset > offset) {
1272 		n = rb_prev(&entry->offset_index);
1273 		if (n) {
1274 			entry = rb_entry(n, struct btrfs_free_space,
1275 					offset_index);
1276 			ASSERT(entry->offset <= offset);
1277 		} else {
1278 			if (fuzzy)
1279 				return entry;
1280 			else
1281 				return NULL;
1282 		}
1283 	}
1284 
1285 	if (entry->bitmap) {
1286 		n = rb_prev(&entry->offset_index);
1287 		if (n) {
1288 			prev = rb_entry(n, struct btrfs_free_space,
1289 					offset_index);
1290 			if (!prev->bitmap &&
1291 			    prev->offset + prev->bytes > offset)
1292 				return prev;
1293 		}
1294 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1295 			return entry;
1296 	} else if (entry->offset + entry->bytes > offset)
1297 		return entry;
1298 
1299 	if (!fuzzy)
1300 		return NULL;
1301 
1302 	while (1) {
1303 		if (entry->bitmap) {
1304 			if (entry->offset + BITS_PER_BITMAP *
1305 			    ctl->unit > offset)
1306 				break;
1307 		} else {
1308 			if (entry->offset + entry->bytes > offset)
1309 				break;
1310 		}
1311 
1312 		n = rb_next(&entry->offset_index);
1313 		if (!n)
1314 			return NULL;
1315 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1316 	}
1317 	return entry;
1318 }
1319 
1320 static inline void
1321 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1322 		    struct btrfs_free_space *info)
1323 {
1324 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1325 	ctl->free_extents--;
1326 }
1327 
1328 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1329 			      struct btrfs_free_space *info)
1330 {
1331 	__unlink_free_space(ctl, info);
1332 	ctl->free_space -= info->bytes;
1333 }
1334 
1335 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1336 			   struct btrfs_free_space *info)
1337 {
1338 	int ret = 0;
1339 
1340 	ASSERT(info->bytes || info->bitmap);
1341 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1342 				 &info->offset_index, (info->bitmap != NULL));
1343 	if (ret)
1344 		return ret;
1345 
1346 	ctl->free_space += info->bytes;
1347 	ctl->free_extents++;
1348 	return ret;
1349 }
1350 
1351 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1352 {
1353 	struct btrfs_block_group_cache *block_group = ctl->private;
1354 	u64 max_bytes;
1355 	u64 bitmap_bytes;
1356 	u64 extent_bytes;
1357 	u64 size = block_group->key.offset;
1358 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1359 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1360 
1361 	max_bitmaps = max(max_bitmaps, 1);
1362 
1363 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1364 
1365 	/*
1366 	 * The goal is to keep the total amount of memory used per 1gb of space
1367 	 * at or below 32k, so we need to adjust how much memory we allow to be
1368 	 * used by extent based free space tracking
1369 	 */
1370 	if (size < 1024 * 1024 * 1024)
1371 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1372 	else
1373 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1374 			div64_u64(size, 1024 * 1024 * 1024);
1375 
1376 	/*
1377 	 * we want to account for 1 more bitmap than what we have so we can make
1378 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1379 	 * we add more bitmaps.
1380 	 */
1381 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1382 
1383 	if (bitmap_bytes >= max_bytes) {
1384 		ctl->extents_thresh = 0;
1385 		return;
1386 	}
1387 
1388 	/*
1389 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1390 	 * bytes we can have, or whatever is less than that.
1391 	 */
1392 	extent_bytes = max_bytes - bitmap_bytes;
1393 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1394 
1395 	ctl->extents_thresh =
1396 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1397 }
1398 
1399 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1400 				       struct btrfs_free_space *info,
1401 				       u64 offset, u64 bytes)
1402 {
1403 	unsigned long start, count;
1404 
1405 	start = offset_to_bit(info->offset, ctl->unit, offset);
1406 	count = bytes_to_bits(bytes, ctl->unit);
1407 	ASSERT(start + count <= BITS_PER_BITMAP);
1408 
1409 	bitmap_clear(info->bitmap, start, count);
1410 
1411 	info->bytes -= bytes;
1412 }
1413 
1414 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1415 			      struct btrfs_free_space *info, u64 offset,
1416 			      u64 bytes)
1417 {
1418 	__bitmap_clear_bits(ctl, info, offset, bytes);
1419 	ctl->free_space -= bytes;
1420 }
1421 
1422 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1423 			    struct btrfs_free_space *info, u64 offset,
1424 			    u64 bytes)
1425 {
1426 	unsigned long start, count;
1427 
1428 	start = offset_to_bit(info->offset, ctl->unit, offset);
1429 	count = bytes_to_bits(bytes, ctl->unit);
1430 	ASSERT(start + count <= BITS_PER_BITMAP);
1431 
1432 	bitmap_set(info->bitmap, start, count);
1433 
1434 	info->bytes += bytes;
1435 	ctl->free_space += bytes;
1436 }
1437 
1438 /*
1439  * If we can not find suitable extent, we will use bytes to record
1440  * the size of the max extent.
1441  */
1442 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1443 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1444 			 u64 *bytes)
1445 {
1446 	unsigned long found_bits = 0;
1447 	unsigned long max_bits = 0;
1448 	unsigned long bits, i;
1449 	unsigned long next_zero;
1450 	unsigned long extent_bits;
1451 
1452 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1453 			  max_t(u64, *offset, bitmap_info->offset));
1454 	bits = bytes_to_bits(*bytes, ctl->unit);
1455 
1456 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1457 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1458 					       BITS_PER_BITMAP, i);
1459 		extent_bits = next_zero - i;
1460 		if (extent_bits >= bits) {
1461 			found_bits = extent_bits;
1462 			break;
1463 		} else if (extent_bits > max_bits) {
1464 			max_bits = extent_bits;
1465 		}
1466 		i = next_zero;
1467 	}
1468 
1469 	if (found_bits) {
1470 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1471 		*bytes = (u64)(found_bits) * ctl->unit;
1472 		return 0;
1473 	}
1474 
1475 	*bytes = (u64)(max_bits) * ctl->unit;
1476 	return -1;
1477 }
1478 
1479 /* Cache the size of the max extent in bytes */
1480 static struct btrfs_free_space *
1481 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1482 		unsigned long align, u64 *max_extent_size)
1483 {
1484 	struct btrfs_free_space *entry;
1485 	struct rb_node *node;
1486 	u64 tmp;
1487 	u64 align_off;
1488 	int ret;
1489 
1490 	if (!ctl->free_space_offset.rb_node)
1491 		goto out;
1492 
1493 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1494 	if (!entry)
1495 		goto out;
1496 
1497 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1498 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1499 		if (entry->bytes < *bytes) {
1500 			if (entry->bytes > *max_extent_size)
1501 				*max_extent_size = entry->bytes;
1502 			continue;
1503 		}
1504 
1505 		/* make sure the space returned is big enough
1506 		 * to match our requested alignment
1507 		 */
1508 		if (*bytes >= align) {
1509 			tmp = entry->offset - ctl->start + align - 1;
1510 			do_div(tmp, align);
1511 			tmp = tmp * align + ctl->start;
1512 			align_off = tmp - entry->offset;
1513 		} else {
1514 			align_off = 0;
1515 			tmp = entry->offset;
1516 		}
1517 
1518 		if (entry->bytes < *bytes + align_off) {
1519 			if (entry->bytes > *max_extent_size)
1520 				*max_extent_size = entry->bytes;
1521 			continue;
1522 		}
1523 
1524 		if (entry->bitmap) {
1525 			u64 size = *bytes;
1526 
1527 			ret = search_bitmap(ctl, entry, &tmp, &size);
1528 			if (!ret) {
1529 				*offset = tmp;
1530 				*bytes = size;
1531 				return entry;
1532 			} else if (size > *max_extent_size) {
1533 				*max_extent_size = size;
1534 			}
1535 			continue;
1536 		}
1537 
1538 		*offset = tmp;
1539 		*bytes = entry->bytes - align_off;
1540 		return entry;
1541 	}
1542 out:
1543 	return NULL;
1544 }
1545 
1546 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1547 			   struct btrfs_free_space *info, u64 offset)
1548 {
1549 	info->offset = offset_to_bitmap(ctl, offset);
1550 	info->bytes = 0;
1551 	INIT_LIST_HEAD(&info->list);
1552 	link_free_space(ctl, info);
1553 	ctl->total_bitmaps++;
1554 
1555 	ctl->op->recalc_thresholds(ctl);
1556 }
1557 
1558 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1559 			struct btrfs_free_space *bitmap_info)
1560 {
1561 	unlink_free_space(ctl, bitmap_info);
1562 	kfree(bitmap_info->bitmap);
1563 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1564 	ctl->total_bitmaps--;
1565 	ctl->op->recalc_thresholds(ctl);
1566 }
1567 
1568 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1569 			      struct btrfs_free_space *bitmap_info,
1570 			      u64 *offset, u64 *bytes)
1571 {
1572 	u64 end;
1573 	u64 search_start, search_bytes;
1574 	int ret;
1575 
1576 again:
1577 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1578 
1579 	/*
1580 	 * We need to search for bits in this bitmap.  We could only cover some
1581 	 * of the extent in this bitmap thanks to how we add space, so we need
1582 	 * to search for as much as it as we can and clear that amount, and then
1583 	 * go searching for the next bit.
1584 	 */
1585 	search_start = *offset;
1586 	search_bytes = ctl->unit;
1587 	search_bytes = min(search_bytes, end - search_start + 1);
1588 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1589 	if (ret < 0 || search_start != *offset)
1590 		return -EINVAL;
1591 
1592 	/* We may have found more bits than what we need */
1593 	search_bytes = min(search_bytes, *bytes);
1594 
1595 	/* Cannot clear past the end of the bitmap */
1596 	search_bytes = min(search_bytes, end - search_start + 1);
1597 
1598 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1599 	*offset += search_bytes;
1600 	*bytes -= search_bytes;
1601 
1602 	if (*bytes) {
1603 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1604 		if (!bitmap_info->bytes)
1605 			free_bitmap(ctl, bitmap_info);
1606 
1607 		/*
1608 		 * no entry after this bitmap, but we still have bytes to
1609 		 * remove, so something has gone wrong.
1610 		 */
1611 		if (!next)
1612 			return -EINVAL;
1613 
1614 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1615 				       offset_index);
1616 
1617 		/*
1618 		 * if the next entry isn't a bitmap we need to return to let the
1619 		 * extent stuff do its work.
1620 		 */
1621 		if (!bitmap_info->bitmap)
1622 			return -EAGAIN;
1623 
1624 		/*
1625 		 * Ok the next item is a bitmap, but it may not actually hold
1626 		 * the information for the rest of this free space stuff, so
1627 		 * look for it, and if we don't find it return so we can try
1628 		 * everything over again.
1629 		 */
1630 		search_start = *offset;
1631 		search_bytes = ctl->unit;
1632 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1633 				    &search_bytes);
1634 		if (ret < 0 || search_start != *offset)
1635 			return -EAGAIN;
1636 
1637 		goto again;
1638 	} else if (!bitmap_info->bytes)
1639 		free_bitmap(ctl, bitmap_info);
1640 
1641 	return 0;
1642 }
1643 
1644 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1645 			       struct btrfs_free_space *info, u64 offset,
1646 			       u64 bytes)
1647 {
1648 	u64 bytes_to_set = 0;
1649 	u64 end;
1650 
1651 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1652 
1653 	bytes_to_set = min(end - offset, bytes);
1654 
1655 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1656 
1657 	return bytes_to_set;
1658 
1659 }
1660 
1661 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1662 		      struct btrfs_free_space *info)
1663 {
1664 	struct btrfs_block_group_cache *block_group = ctl->private;
1665 
1666 	/*
1667 	 * If we are below the extents threshold then we can add this as an
1668 	 * extent, and don't have to deal with the bitmap
1669 	 */
1670 	if (ctl->free_extents < ctl->extents_thresh) {
1671 		/*
1672 		 * If this block group has some small extents we don't want to
1673 		 * use up all of our free slots in the cache with them, we want
1674 		 * to reserve them to larger extents, however if we have plent
1675 		 * of cache left then go ahead an dadd them, no sense in adding
1676 		 * the overhead of a bitmap if we don't have to.
1677 		 */
1678 		if (info->bytes <= block_group->sectorsize * 4) {
1679 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1680 				return false;
1681 		} else {
1682 			return false;
1683 		}
1684 	}
1685 
1686 	/*
1687 	 * The original block groups from mkfs can be really small, like 8
1688 	 * megabytes, so don't bother with a bitmap for those entries.  However
1689 	 * some block groups can be smaller than what a bitmap would cover but
1690 	 * are still large enough that they could overflow the 32k memory limit,
1691 	 * so allow those block groups to still be allowed to have a bitmap
1692 	 * entry.
1693 	 */
1694 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1695 		return false;
1696 
1697 	return true;
1698 }
1699 
1700 static struct btrfs_free_space_op free_space_op = {
1701 	.recalc_thresholds	= recalculate_thresholds,
1702 	.use_bitmap		= use_bitmap,
1703 };
1704 
1705 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1706 			      struct btrfs_free_space *info)
1707 {
1708 	struct btrfs_free_space *bitmap_info;
1709 	struct btrfs_block_group_cache *block_group = NULL;
1710 	int added = 0;
1711 	u64 bytes, offset, bytes_added;
1712 	int ret;
1713 
1714 	bytes = info->bytes;
1715 	offset = info->offset;
1716 
1717 	if (!ctl->op->use_bitmap(ctl, info))
1718 		return 0;
1719 
1720 	if (ctl->op == &free_space_op)
1721 		block_group = ctl->private;
1722 again:
1723 	/*
1724 	 * Since we link bitmaps right into the cluster we need to see if we
1725 	 * have a cluster here, and if so and it has our bitmap we need to add
1726 	 * the free space to that bitmap.
1727 	 */
1728 	if (block_group && !list_empty(&block_group->cluster_list)) {
1729 		struct btrfs_free_cluster *cluster;
1730 		struct rb_node *node;
1731 		struct btrfs_free_space *entry;
1732 
1733 		cluster = list_entry(block_group->cluster_list.next,
1734 				     struct btrfs_free_cluster,
1735 				     block_group_list);
1736 		spin_lock(&cluster->lock);
1737 		node = rb_first(&cluster->root);
1738 		if (!node) {
1739 			spin_unlock(&cluster->lock);
1740 			goto no_cluster_bitmap;
1741 		}
1742 
1743 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1744 		if (!entry->bitmap) {
1745 			spin_unlock(&cluster->lock);
1746 			goto no_cluster_bitmap;
1747 		}
1748 
1749 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1750 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1751 							  offset, bytes);
1752 			bytes -= bytes_added;
1753 			offset += bytes_added;
1754 		}
1755 		spin_unlock(&cluster->lock);
1756 		if (!bytes) {
1757 			ret = 1;
1758 			goto out;
1759 		}
1760 	}
1761 
1762 no_cluster_bitmap:
1763 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1764 					 1, 0);
1765 	if (!bitmap_info) {
1766 		ASSERT(added == 0);
1767 		goto new_bitmap;
1768 	}
1769 
1770 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1771 	bytes -= bytes_added;
1772 	offset += bytes_added;
1773 	added = 0;
1774 
1775 	if (!bytes) {
1776 		ret = 1;
1777 		goto out;
1778 	} else
1779 		goto again;
1780 
1781 new_bitmap:
1782 	if (info && info->bitmap) {
1783 		add_new_bitmap(ctl, info, offset);
1784 		added = 1;
1785 		info = NULL;
1786 		goto again;
1787 	} else {
1788 		spin_unlock(&ctl->tree_lock);
1789 
1790 		/* no pre-allocated info, allocate a new one */
1791 		if (!info) {
1792 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1793 						 GFP_NOFS);
1794 			if (!info) {
1795 				spin_lock(&ctl->tree_lock);
1796 				ret = -ENOMEM;
1797 				goto out;
1798 			}
1799 		}
1800 
1801 		/* allocate the bitmap */
1802 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1803 		spin_lock(&ctl->tree_lock);
1804 		if (!info->bitmap) {
1805 			ret = -ENOMEM;
1806 			goto out;
1807 		}
1808 		goto again;
1809 	}
1810 
1811 out:
1812 	if (info) {
1813 		if (info->bitmap)
1814 			kfree(info->bitmap);
1815 		kmem_cache_free(btrfs_free_space_cachep, info);
1816 	}
1817 
1818 	return ret;
1819 }
1820 
1821 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1822 			  struct btrfs_free_space *info, bool update_stat)
1823 {
1824 	struct btrfs_free_space *left_info;
1825 	struct btrfs_free_space *right_info;
1826 	bool merged = false;
1827 	u64 offset = info->offset;
1828 	u64 bytes = info->bytes;
1829 
1830 	/*
1831 	 * first we want to see if there is free space adjacent to the range we
1832 	 * are adding, if there is remove that struct and add a new one to
1833 	 * cover the entire range
1834 	 */
1835 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1836 	if (right_info && rb_prev(&right_info->offset_index))
1837 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1838 				     struct btrfs_free_space, offset_index);
1839 	else
1840 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1841 
1842 	if (right_info && !right_info->bitmap) {
1843 		if (update_stat)
1844 			unlink_free_space(ctl, right_info);
1845 		else
1846 			__unlink_free_space(ctl, right_info);
1847 		info->bytes += right_info->bytes;
1848 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1849 		merged = true;
1850 	}
1851 
1852 	if (left_info && !left_info->bitmap &&
1853 	    left_info->offset + left_info->bytes == offset) {
1854 		if (update_stat)
1855 			unlink_free_space(ctl, left_info);
1856 		else
1857 			__unlink_free_space(ctl, left_info);
1858 		info->offset = left_info->offset;
1859 		info->bytes += left_info->bytes;
1860 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1861 		merged = true;
1862 	}
1863 
1864 	return merged;
1865 }
1866 
1867 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1868 			   u64 offset, u64 bytes)
1869 {
1870 	struct btrfs_free_space *info;
1871 	int ret = 0;
1872 
1873 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1874 	if (!info)
1875 		return -ENOMEM;
1876 
1877 	info->offset = offset;
1878 	info->bytes = bytes;
1879 
1880 	spin_lock(&ctl->tree_lock);
1881 
1882 	if (try_merge_free_space(ctl, info, true))
1883 		goto link;
1884 
1885 	/*
1886 	 * There was no extent directly to the left or right of this new
1887 	 * extent then we know we're going to have to allocate a new extent, so
1888 	 * before we do that see if we need to drop this into a bitmap
1889 	 */
1890 	ret = insert_into_bitmap(ctl, info);
1891 	if (ret < 0) {
1892 		goto out;
1893 	} else if (ret) {
1894 		ret = 0;
1895 		goto out;
1896 	}
1897 link:
1898 	ret = link_free_space(ctl, info);
1899 	if (ret)
1900 		kmem_cache_free(btrfs_free_space_cachep, info);
1901 out:
1902 	spin_unlock(&ctl->tree_lock);
1903 
1904 	if (ret) {
1905 		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
1906 		ASSERT(ret != -EEXIST);
1907 	}
1908 
1909 	return ret;
1910 }
1911 
1912 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1913 			    u64 offset, u64 bytes)
1914 {
1915 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1916 	struct btrfs_free_space *info;
1917 	int ret;
1918 	bool re_search = false;
1919 
1920 	spin_lock(&ctl->tree_lock);
1921 
1922 again:
1923 	ret = 0;
1924 	if (!bytes)
1925 		goto out_lock;
1926 
1927 	info = tree_search_offset(ctl, offset, 0, 0);
1928 	if (!info) {
1929 		/*
1930 		 * oops didn't find an extent that matched the space we wanted
1931 		 * to remove, look for a bitmap instead
1932 		 */
1933 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1934 					  1, 0);
1935 		if (!info) {
1936 			/*
1937 			 * If we found a partial bit of our free space in a
1938 			 * bitmap but then couldn't find the other part this may
1939 			 * be a problem, so WARN about it.
1940 			 */
1941 			WARN_ON(re_search);
1942 			goto out_lock;
1943 		}
1944 	}
1945 
1946 	re_search = false;
1947 	if (!info->bitmap) {
1948 		unlink_free_space(ctl, info);
1949 		if (offset == info->offset) {
1950 			u64 to_free = min(bytes, info->bytes);
1951 
1952 			info->bytes -= to_free;
1953 			info->offset += to_free;
1954 			if (info->bytes) {
1955 				ret = link_free_space(ctl, info);
1956 				WARN_ON(ret);
1957 			} else {
1958 				kmem_cache_free(btrfs_free_space_cachep, info);
1959 			}
1960 
1961 			offset += to_free;
1962 			bytes -= to_free;
1963 			goto again;
1964 		} else {
1965 			u64 old_end = info->bytes + info->offset;
1966 
1967 			info->bytes = offset - info->offset;
1968 			ret = link_free_space(ctl, info);
1969 			WARN_ON(ret);
1970 			if (ret)
1971 				goto out_lock;
1972 
1973 			/* Not enough bytes in this entry to satisfy us */
1974 			if (old_end < offset + bytes) {
1975 				bytes -= old_end - offset;
1976 				offset = old_end;
1977 				goto again;
1978 			} else if (old_end == offset + bytes) {
1979 				/* all done */
1980 				goto out_lock;
1981 			}
1982 			spin_unlock(&ctl->tree_lock);
1983 
1984 			ret = btrfs_add_free_space(block_group, offset + bytes,
1985 						   old_end - (offset + bytes));
1986 			WARN_ON(ret);
1987 			goto out;
1988 		}
1989 	}
1990 
1991 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1992 	if (ret == -EAGAIN) {
1993 		re_search = true;
1994 		goto again;
1995 	}
1996 out_lock:
1997 	spin_unlock(&ctl->tree_lock);
1998 out:
1999 	return ret;
2000 }
2001 
2002 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2003 			   u64 bytes)
2004 {
2005 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2006 	struct btrfs_free_space *info;
2007 	struct rb_node *n;
2008 	int count = 0;
2009 
2010 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2011 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2012 		if (info->bytes >= bytes && !block_group->ro)
2013 			count++;
2014 		btrfs_crit(block_group->fs_info,
2015 			   "entry offset %llu, bytes %llu, bitmap %s",
2016 			   info->offset, info->bytes,
2017 		       (info->bitmap) ? "yes" : "no");
2018 	}
2019 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2020 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2021 	btrfs_info(block_group->fs_info,
2022 		   "%d blocks of free space at or bigger than bytes is", count);
2023 }
2024 
2025 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2026 {
2027 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2028 
2029 	spin_lock_init(&ctl->tree_lock);
2030 	ctl->unit = block_group->sectorsize;
2031 	ctl->start = block_group->key.objectid;
2032 	ctl->private = block_group;
2033 	ctl->op = &free_space_op;
2034 
2035 	/*
2036 	 * we only want to have 32k of ram per block group for keeping
2037 	 * track of free space, and if we pass 1/2 of that we want to
2038 	 * start converting things over to using bitmaps
2039 	 */
2040 	ctl->extents_thresh = ((1024 * 32) / 2) /
2041 				sizeof(struct btrfs_free_space);
2042 }
2043 
2044 /*
2045  * for a given cluster, put all of its extents back into the free
2046  * space cache.  If the block group passed doesn't match the block group
2047  * pointed to by the cluster, someone else raced in and freed the
2048  * cluster already.  In that case, we just return without changing anything
2049  */
2050 static int
2051 __btrfs_return_cluster_to_free_space(
2052 			     struct btrfs_block_group_cache *block_group,
2053 			     struct btrfs_free_cluster *cluster)
2054 {
2055 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2056 	struct btrfs_free_space *entry;
2057 	struct rb_node *node;
2058 
2059 	spin_lock(&cluster->lock);
2060 	if (cluster->block_group != block_group)
2061 		goto out;
2062 
2063 	cluster->block_group = NULL;
2064 	cluster->window_start = 0;
2065 	list_del_init(&cluster->block_group_list);
2066 
2067 	node = rb_first(&cluster->root);
2068 	while (node) {
2069 		bool bitmap;
2070 
2071 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2072 		node = rb_next(&entry->offset_index);
2073 		rb_erase(&entry->offset_index, &cluster->root);
2074 
2075 		bitmap = (entry->bitmap != NULL);
2076 		if (!bitmap)
2077 			try_merge_free_space(ctl, entry, false);
2078 		tree_insert_offset(&ctl->free_space_offset,
2079 				   entry->offset, &entry->offset_index, bitmap);
2080 	}
2081 	cluster->root = RB_ROOT;
2082 
2083 out:
2084 	spin_unlock(&cluster->lock);
2085 	btrfs_put_block_group(block_group);
2086 	return 0;
2087 }
2088 
2089 static void __btrfs_remove_free_space_cache_locked(
2090 				struct btrfs_free_space_ctl *ctl)
2091 {
2092 	struct btrfs_free_space *info;
2093 	struct rb_node *node;
2094 
2095 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2096 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2097 		if (!info->bitmap) {
2098 			unlink_free_space(ctl, info);
2099 			kmem_cache_free(btrfs_free_space_cachep, info);
2100 		} else {
2101 			free_bitmap(ctl, info);
2102 		}
2103 		if (need_resched()) {
2104 			spin_unlock(&ctl->tree_lock);
2105 			cond_resched();
2106 			spin_lock(&ctl->tree_lock);
2107 		}
2108 	}
2109 }
2110 
2111 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2112 {
2113 	spin_lock(&ctl->tree_lock);
2114 	__btrfs_remove_free_space_cache_locked(ctl);
2115 	spin_unlock(&ctl->tree_lock);
2116 }
2117 
2118 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2119 {
2120 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2121 	struct btrfs_free_cluster *cluster;
2122 	struct list_head *head;
2123 
2124 	spin_lock(&ctl->tree_lock);
2125 	while ((head = block_group->cluster_list.next) !=
2126 	       &block_group->cluster_list) {
2127 		cluster = list_entry(head, struct btrfs_free_cluster,
2128 				     block_group_list);
2129 
2130 		WARN_ON(cluster->block_group != block_group);
2131 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2132 		if (need_resched()) {
2133 			spin_unlock(&ctl->tree_lock);
2134 			cond_resched();
2135 			spin_lock(&ctl->tree_lock);
2136 		}
2137 	}
2138 	__btrfs_remove_free_space_cache_locked(ctl);
2139 	spin_unlock(&ctl->tree_lock);
2140 
2141 }
2142 
2143 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2144 			       u64 offset, u64 bytes, u64 empty_size,
2145 			       u64 *max_extent_size)
2146 {
2147 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2148 	struct btrfs_free_space *entry = NULL;
2149 	u64 bytes_search = bytes + empty_size;
2150 	u64 ret = 0;
2151 	u64 align_gap = 0;
2152 	u64 align_gap_len = 0;
2153 
2154 	spin_lock(&ctl->tree_lock);
2155 	entry = find_free_space(ctl, &offset, &bytes_search,
2156 				block_group->full_stripe_len, max_extent_size);
2157 	if (!entry)
2158 		goto out;
2159 
2160 	ret = offset;
2161 	if (entry->bitmap) {
2162 		bitmap_clear_bits(ctl, entry, offset, bytes);
2163 		if (!entry->bytes)
2164 			free_bitmap(ctl, entry);
2165 	} else {
2166 		unlink_free_space(ctl, entry);
2167 		align_gap_len = offset - entry->offset;
2168 		align_gap = entry->offset;
2169 
2170 		entry->offset = offset + bytes;
2171 		WARN_ON(entry->bytes < bytes + align_gap_len);
2172 
2173 		entry->bytes -= bytes + align_gap_len;
2174 		if (!entry->bytes)
2175 			kmem_cache_free(btrfs_free_space_cachep, entry);
2176 		else
2177 			link_free_space(ctl, entry);
2178 	}
2179 out:
2180 	spin_unlock(&ctl->tree_lock);
2181 
2182 	if (align_gap_len)
2183 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2184 	return ret;
2185 }
2186 
2187 /*
2188  * given a cluster, put all of its extents back into the free space
2189  * cache.  If a block group is passed, this function will only free
2190  * a cluster that belongs to the passed block group.
2191  *
2192  * Otherwise, it'll get a reference on the block group pointed to by the
2193  * cluster and remove the cluster from it.
2194  */
2195 int btrfs_return_cluster_to_free_space(
2196 			       struct btrfs_block_group_cache *block_group,
2197 			       struct btrfs_free_cluster *cluster)
2198 {
2199 	struct btrfs_free_space_ctl *ctl;
2200 	int ret;
2201 
2202 	/* first, get a safe pointer to the block group */
2203 	spin_lock(&cluster->lock);
2204 	if (!block_group) {
2205 		block_group = cluster->block_group;
2206 		if (!block_group) {
2207 			spin_unlock(&cluster->lock);
2208 			return 0;
2209 		}
2210 	} else if (cluster->block_group != block_group) {
2211 		/* someone else has already freed it don't redo their work */
2212 		spin_unlock(&cluster->lock);
2213 		return 0;
2214 	}
2215 	atomic_inc(&block_group->count);
2216 	spin_unlock(&cluster->lock);
2217 
2218 	ctl = block_group->free_space_ctl;
2219 
2220 	/* now return any extents the cluster had on it */
2221 	spin_lock(&ctl->tree_lock);
2222 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2223 	spin_unlock(&ctl->tree_lock);
2224 
2225 	/* finally drop our ref */
2226 	btrfs_put_block_group(block_group);
2227 	return ret;
2228 }
2229 
2230 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2231 				   struct btrfs_free_cluster *cluster,
2232 				   struct btrfs_free_space *entry,
2233 				   u64 bytes, u64 min_start,
2234 				   u64 *max_extent_size)
2235 {
2236 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2237 	int err;
2238 	u64 search_start = cluster->window_start;
2239 	u64 search_bytes = bytes;
2240 	u64 ret = 0;
2241 
2242 	search_start = min_start;
2243 	search_bytes = bytes;
2244 
2245 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2246 	if (err) {
2247 		if (search_bytes > *max_extent_size)
2248 			*max_extent_size = search_bytes;
2249 		return 0;
2250 	}
2251 
2252 	ret = search_start;
2253 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2254 
2255 	return ret;
2256 }
2257 
2258 /*
2259  * given a cluster, try to allocate 'bytes' from it, returns 0
2260  * if it couldn't find anything suitably large, or a logical disk offset
2261  * if things worked out
2262  */
2263 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2264 			     struct btrfs_free_cluster *cluster, u64 bytes,
2265 			     u64 min_start, u64 *max_extent_size)
2266 {
2267 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2268 	struct btrfs_free_space *entry = NULL;
2269 	struct rb_node *node;
2270 	u64 ret = 0;
2271 
2272 	spin_lock(&cluster->lock);
2273 	if (bytes > cluster->max_size)
2274 		goto out;
2275 
2276 	if (cluster->block_group != block_group)
2277 		goto out;
2278 
2279 	node = rb_first(&cluster->root);
2280 	if (!node)
2281 		goto out;
2282 
2283 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2284 	while (1) {
2285 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2286 			*max_extent_size = entry->bytes;
2287 
2288 		if (entry->bytes < bytes ||
2289 		    (!entry->bitmap && entry->offset < min_start)) {
2290 			node = rb_next(&entry->offset_index);
2291 			if (!node)
2292 				break;
2293 			entry = rb_entry(node, struct btrfs_free_space,
2294 					 offset_index);
2295 			continue;
2296 		}
2297 
2298 		if (entry->bitmap) {
2299 			ret = btrfs_alloc_from_bitmap(block_group,
2300 						      cluster, entry, bytes,
2301 						      cluster->window_start,
2302 						      max_extent_size);
2303 			if (ret == 0) {
2304 				node = rb_next(&entry->offset_index);
2305 				if (!node)
2306 					break;
2307 				entry = rb_entry(node, struct btrfs_free_space,
2308 						 offset_index);
2309 				continue;
2310 			}
2311 			cluster->window_start += bytes;
2312 		} else {
2313 			ret = entry->offset;
2314 
2315 			entry->offset += bytes;
2316 			entry->bytes -= bytes;
2317 		}
2318 
2319 		if (entry->bytes == 0)
2320 			rb_erase(&entry->offset_index, &cluster->root);
2321 		break;
2322 	}
2323 out:
2324 	spin_unlock(&cluster->lock);
2325 
2326 	if (!ret)
2327 		return 0;
2328 
2329 	spin_lock(&ctl->tree_lock);
2330 
2331 	ctl->free_space -= bytes;
2332 	if (entry->bytes == 0) {
2333 		ctl->free_extents--;
2334 		if (entry->bitmap) {
2335 			kfree(entry->bitmap);
2336 			ctl->total_bitmaps--;
2337 			ctl->op->recalc_thresholds(ctl);
2338 		}
2339 		kmem_cache_free(btrfs_free_space_cachep, entry);
2340 	}
2341 
2342 	spin_unlock(&ctl->tree_lock);
2343 
2344 	return ret;
2345 }
2346 
2347 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2348 				struct btrfs_free_space *entry,
2349 				struct btrfs_free_cluster *cluster,
2350 				u64 offset, u64 bytes,
2351 				u64 cont1_bytes, u64 min_bytes)
2352 {
2353 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2354 	unsigned long next_zero;
2355 	unsigned long i;
2356 	unsigned long want_bits;
2357 	unsigned long min_bits;
2358 	unsigned long found_bits;
2359 	unsigned long start = 0;
2360 	unsigned long total_found = 0;
2361 	int ret;
2362 
2363 	i = offset_to_bit(entry->offset, ctl->unit,
2364 			  max_t(u64, offset, entry->offset));
2365 	want_bits = bytes_to_bits(bytes, ctl->unit);
2366 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2367 
2368 again:
2369 	found_bits = 0;
2370 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2371 		next_zero = find_next_zero_bit(entry->bitmap,
2372 					       BITS_PER_BITMAP, i);
2373 		if (next_zero - i >= min_bits) {
2374 			found_bits = next_zero - i;
2375 			break;
2376 		}
2377 		i = next_zero;
2378 	}
2379 
2380 	if (!found_bits)
2381 		return -ENOSPC;
2382 
2383 	if (!total_found) {
2384 		start = i;
2385 		cluster->max_size = 0;
2386 	}
2387 
2388 	total_found += found_bits;
2389 
2390 	if (cluster->max_size < found_bits * ctl->unit)
2391 		cluster->max_size = found_bits * ctl->unit;
2392 
2393 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2394 		i = next_zero + 1;
2395 		goto again;
2396 	}
2397 
2398 	cluster->window_start = start * ctl->unit + entry->offset;
2399 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2400 	ret = tree_insert_offset(&cluster->root, entry->offset,
2401 				 &entry->offset_index, 1);
2402 	ASSERT(!ret); /* -EEXIST; Logic error */
2403 
2404 	trace_btrfs_setup_cluster(block_group, cluster,
2405 				  total_found * ctl->unit, 1);
2406 	return 0;
2407 }
2408 
2409 /*
2410  * This searches the block group for just extents to fill the cluster with.
2411  * Try to find a cluster with at least bytes total bytes, at least one
2412  * extent of cont1_bytes, and other clusters of at least min_bytes.
2413  */
2414 static noinline int
2415 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2416 			struct btrfs_free_cluster *cluster,
2417 			struct list_head *bitmaps, u64 offset, u64 bytes,
2418 			u64 cont1_bytes, u64 min_bytes)
2419 {
2420 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2421 	struct btrfs_free_space *first = NULL;
2422 	struct btrfs_free_space *entry = NULL;
2423 	struct btrfs_free_space *last;
2424 	struct rb_node *node;
2425 	u64 window_free;
2426 	u64 max_extent;
2427 	u64 total_size = 0;
2428 
2429 	entry = tree_search_offset(ctl, offset, 0, 1);
2430 	if (!entry)
2431 		return -ENOSPC;
2432 
2433 	/*
2434 	 * We don't want bitmaps, so just move along until we find a normal
2435 	 * extent entry.
2436 	 */
2437 	while (entry->bitmap || entry->bytes < min_bytes) {
2438 		if (entry->bitmap && list_empty(&entry->list))
2439 			list_add_tail(&entry->list, bitmaps);
2440 		node = rb_next(&entry->offset_index);
2441 		if (!node)
2442 			return -ENOSPC;
2443 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2444 	}
2445 
2446 	window_free = entry->bytes;
2447 	max_extent = entry->bytes;
2448 	first = entry;
2449 	last = entry;
2450 
2451 	for (node = rb_next(&entry->offset_index); node;
2452 	     node = rb_next(&entry->offset_index)) {
2453 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2454 
2455 		if (entry->bitmap) {
2456 			if (list_empty(&entry->list))
2457 				list_add_tail(&entry->list, bitmaps);
2458 			continue;
2459 		}
2460 
2461 		if (entry->bytes < min_bytes)
2462 			continue;
2463 
2464 		last = entry;
2465 		window_free += entry->bytes;
2466 		if (entry->bytes > max_extent)
2467 			max_extent = entry->bytes;
2468 	}
2469 
2470 	if (window_free < bytes || max_extent < cont1_bytes)
2471 		return -ENOSPC;
2472 
2473 	cluster->window_start = first->offset;
2474 
2475 	node = &first->offset_index;
2476 
2477 	/*
2478 	 * now we've found our entries, pull them out of the free space
2479 	 * cache and put them into the cluster rbtree
2480 	 */
2481 	do {
2482 		int ret;
2483 
2484 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2485 		node = rb_next(&entry->offset_index);
2486 		if (entry->bitmap || entry->bytes < min_bytes)
2487 			continue;
2488 
2489 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2490 		ret = tree_insert_offset(&cluster->root, entry->offset,
2491 					 &entry->offset_index, 0);
2492 		total_size += entry->bytes;
2493 		ASSERT(!ret); /* -EEXIST; Logic error */
2494 	} while (node && entry != last);
2495 
2496 	cluster->max_size = max_extent;
2497 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2498 	return 0;
2499 }
2500 
2501 /*
2502  * This specifically looks for bitmaps that may work in the cluster, we assume
2503  * that we have already failed to find extents that will work.
2504  */
2505 static noinline int
2506 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2507 		     struct btrfs_free_cluster *cluster,
2508 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2509 		     u64 cont1_bytes, u64 min_bytes)
2510 {
2511 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2512 	struct btrfs_free_space *entry;
2513 	int ret = -ENOSPC;
2514 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2515 
2516 	if (ctl->total_bitmaps == 0)
2517 		return -ENOSPC;
2518 
2519 	/*
2520 	 * The bitmap that covers offset won't be in the list unless offset
2521 	 * is just its start offset.
2522 	 */
2523 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2524 	if (entry->offset != bitmap_offset) {
2525 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2526 		if (entry && list_empty(&entry->list))
2527 			list_add(&entry->list, bitmaps);
2528 	}
2529 
2530 	list_for_each_entry(entry, bitmaps, list) {
2531 		if (entry->bytes < bytes)
2532 			continue;
2533 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2534 					   bytes, cont1_bytes, min_bytes);
2535 		if (!ret)
2536 			return 0;
2537 	}
2538 
2539 	/*
2540 	 * The bitmaps list has all the bitmaps that record free space
2541 	 * starting after offset, so no more search is required.
2542 	 */
2543 	return -ENOSPC;
2544 }
2545 
2546 /*
2547  * here we try to find a cluster of blocks in a block group.  The goal
2548  * is to find at least bytes+empty_size.
2549  * We might not find them all in one contiguous area.
2550  *
2551  * returns zero and sets up cluster if things worked out, otherwise
2552  * it returns -enospc
2553  */
2554 int btrfs_find_space_cluster(struct btrfs_root *root,
2555 			     struct btrfs_block_group_cache *block_group,
2556 			     struct btrfs_free_cluster *cluster,
2557 			     u64 offset, u64 bytes, u64 empty_size)
2558 {
2559 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2560 	struct btrfs_free_space *entry, *tmp;
2561 	LIST_HEAD(bitmaps);
2562 	u64 min_bytes;
2563 	u64 cont1_bytes;
2564 	int ret;
2565 
2566 	/*
2567 	 * Choose the minimum extent size we'll require for this
2568 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2569 	 * For metadata, allow allocates with smaller extents.  For
2570 	 * data, keep it dense.
2571 	 */
2572 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2573 		cont1_bytes = min_bytes = bytes + empty_size;
2574 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2575 		cont1_bytes = bytes;
2576 		min_bytes = block_group->sectorsize;
2577 	} else {
2578 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2579 		min_bytes = block_group->sectorsize;
2580 	}
2581 
2582 	spin_lock(&ctl->tree_lock);
2583 
2584 	/*
2585 	 * If we know we don't have enough space to make a cluster don't even
2586 	 * bother doing all the work to try and find one.
2587 	 */
2588 	if (ctl->free_space < bytes) {
2589 		spin_unlock(&ctl->tree_lock);
2590 		return -ENOSPC;
2591 	}
2592 
2593 	spin_lock(&cluster->lock);
2594 
2595 	/* someone already found a cluster, hooray */
2596 	if (cluster->block_group) {
2597 		ret = 0;
2598 		goto out;
2599 	}
2600 
2601 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2602 				 min_bytes);
2603 
2604 	INIT_LIST_HEAD(&bitmaps);
2605 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2606 				      bytes + empty_size,
2607 				      cont1_bytes, min_bytes);
2608 	if (ret)
2609 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2610 					   offset, bytes + empty_size,
2611 					   cont1_bytes, min_bytes);
2612 
2613 	/* Clear our temporary list */
2614 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2615 		list_del_init(&entry->list);
2616 
2617 	if (!ret) {
2618 		atomic_inc(&block_group->count);
2619 		list_add_tail(&cluster->block_group_list,
2620 			      &block_group->cluster_list);
2621 		cluster->block_group = block_group;
2622 	} else {
2623 		trace_btrfs_failed_cluster_setup(block_group);
2624 	}
2625 out:
2626 	spin_unlock(&cluster->lock);
2627 	spin_unlock(&ctl->tree_lock);
2628 
2629 	return ret;
2630 }
2631 
2632 /*
2633  * simple code to zero out a cluster
2634  */
2635 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2636 {
2637 	spin_lock_init(&cluster->lock);
2638 	spin_lock_init(&cluster->refill_lock);
2639 	cluster->root = RB_ROOT;
2640 	cluster->max_size = 0;
2641 	INIT_LIST_HEAD(&cluster->block_group_list);
2642 	cluster->block_group = NULL;
2643 }
2644 
2645 static int do_trimming(struct btrfs_block_group_cache *block_group,
2646 		       u64 *total_trimmed, u64 start, u64 bytes,
2647 		       u64 reserved_start, u64 reserved_bytes)
2648 {
2649 	struct btrfs_space_info *space_info = block_group->space_info;
2650 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2651 	int ret;
2652 	int update = 0;
2653 	u64 trimmed = 0;
2654 
2655 	spin_lock(&space_info->lock);
2656 	spin_lock(&block_group->lock);
2657 	if (!block_group->ro) {
2658 		block_group->reserved += reserved_bytes;
2659 		space_info->bytes_reserved += reserved_bytes;
2660 		update = 1;
2661 	}
2662 	spin_unlock(&block_group->lock);
2663 	spin_unlock(&space_info->lock);
2664 
2665 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2666 					 start, bytes, &trimmed);
2667 	if (!ret)
2668 		*total_trimmed += trimmed;
2669 
2670 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2671 
2672 	if (update) {
2673 		spin_lock(&space_info->lock);
2674 		spin_lock(&block_group->lock);
2675 		if (block_group->ro)
2676 			space_info->bytes_readonly += reserved_bytes;
2677 		block_group->reserved -= reserved_bytes;
2678 		space_info->bytes_reserved -= reserved_bytes;
2679 		spin_unlock(&space_info->lock);
2680 		spin_unlock(&block_group->lock);
2681 	}
2682 
2683 	return ret;
2684 }
2685 
2686 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2687 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2688 {
2689 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2690 	struct btrfs_free_space *entry;
2691 	struct rb_node *node;
2692 	int ret = 0;
2693 	u64 extent_start;
2694 	u64 extent_bytes;
2695 	u64 bytes;
2696 
2697 	while (start < end) {
2698 		spin_lock(&ctl->tree_lock);
2699 
2700 		if (ctl->free_space < minlen) {
2701 			spin_unlock(&ctl->tree_lock);
2702 			break;
2703 		}
2704 
2705 		entry = tree_search_offset(ctl, start, 0, 1);
2706 		if (!entry) {
2707 			spin_unlock(&ctl->tree_lock);
2708 			break;
2709 		}
2710 
2711 		/* skip bitmaps */
2712 		while (entry->bitmap) {
2713 			node = rb_next(&entry->offset_index);
2714 			if (!node) {
2715 				spin_unlock(&ctl->tree_lock);
2716 				goto out;
2717 			}
2718 			entry = rb_entry(node, struct btrfs_free_space,
2719 					 offset_index);
2720 		}
2721 
2722 		if (entry->offset >= end) {
2723 			spin_unlock(&ctl->tree_lock);
2724 			break;
2725 		}
2726 
2727 		extent_start = entry->offset;
2728 		extent_bytes = entry->bytes;
2729 		start = max(start, extent_start);
2730 		bytes = min(extent_start + extent_bytes, end) - start;
2731 		if (bytes < minlen) {
2732 			spin_unlock(&ctl->tree_lock);
2733 			goto next;
2734 		}
2735 
2736 		unlink_free_space(ctl, entry);
2737 		kmem_cache_free(btrfs_free_space_cachep, entry);
2738 
2739 		spin_unlock(&ctl->tree_lock);
2740 
2741 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2742 				  extent_start, extent_bytes);
2743 		if (ret)
2744 			break;
2745 next:
2746 		start += bytes;
2747 
2748 		if (fatal_signal_pending(current)) {
2749 			ret = -ERESTARTSYS;
2750 			break;
2751 		}
2752 
2753 		cond_resched();
2754 	}
2755 out:
2756 	return ret;
2757 }
2758 
2759 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2760 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2761 {
2762 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2763 	struct btrfs_free_space *entry;
2764 	int ret = 0;
2765 	int ret2;
2766 	u64 bytes;
2767 	u64 offset = offset_to_bitmap(ctl, start);
2768 
2769 	while (offset < end) {
2770 		bool next_bitmap = false;
2771 
2772 		spin_lock(&ctl->tree_lock);
2773 
2774 		if (ctl->free_space < minlen) {
2775 			spin_unlock(&ctl->tree_lock);
2776 			break;
2777 		}
2778 
2779 		entry = tree_search_offset(ctl, offset, 1, 0);
2780 		if (!entry) {
2781 			spin_unlock(&ctl->tree_lock);
2782 			next_bitmap = true;
2783 			goto next;
2784 		}
2785 
2786 		bytes = minlen;
2787 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2788 		if (ret2 || start >= end) {
2789 			spin_unlock(&ctl->tree_lock);
2790 			next_bitmap = true;
2791 			goto next;
2792 		}
2793 
2794 		bytes = min(bytes, end - start);
2795 		if (bytes < minlen) {
2796 			spin_unlock(&ctl->tree_lock);
2797 			goto next;
2798 		}
2799 
2800 		bitmap_clear_bits(ctl, entry, start, bytes);
2801 		if (entry->bytes == 0)
2802 			free_bitmap(ctl, entry);
2803 
2804 		spin_unlock(&ctl->tree_lock);
2805 
2806 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2807 				  start, bytes);
2808 		if (ret)
2809 			break;
2810 next:
2811 		if (next_bitmap) {
2812 			offset += BITS_PER_BITMAP * ctl->unit;
2813 		} else {
2814 			start += bytes;
2815 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2816 				offset += BITS_PER_BITMAP * ctl->unit;
2817 		}
2818 
2819 		if (fatal_signal_pending(current)) {
2820 			ret = -ERESTARTSYS;
2821 			break;
2822 		}
2823 
2824 		cond_resched();
2825 	}
2826 
2827 	return ret;
2828 }
2829 
2830 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2831 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2832 {
2833 	int ret;
2834 
2835 	*trimmed = 0;
2836 
2837 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2838 	if (ret)
2839 		return ret;
2840 
2841 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2842 
2843 	return ret;
2844 }
2845 
2846 /*
2847  * Find the left-most item in the cache tree, and then return the
2848  * smallest inode number in the item.
2849  *
2850  * Note: the returned inode number may not be the smallest one in
2851  * the tree, if the left-most item is a bitmap.
2852  */
2853 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2854 {
2855 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2856 	struct btrfs_free_space *entry = NULL;
2857 	u64 ino = 0;
2858 
2859 	spin_lock(&ctl->tree_lock);
2860 
2861 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2862 		goto out;
2863 
2864 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2865 			 struct btrfs_free_space, offset_index);
2866 
2867 	if (!entry->bitmap) {
2868 		ino = entry->offset;
2869 
2870 		unlink_free_space(ctl, entry);
2871 		entry->offset++;
2872 		entry->bytes--;
2873 		if (!entry->bytes)
2874 			kmem_cache_free(btrfs_free_space_cachep, entry);
2875 		else
2876 			link_free_space(ctl, entry);
2877 	} else {
2878 		u64 offset = 0;
2879 		u64 count = 1;
2880 		int ret;
2881 
2882 		ret = search_bitmap(ctl, entry, &offset, &count);
2883 		/* Logic error; Should be empty if it can't find anything */
2884 		ASSERT(!ret);
2885 
2886 		ino = offset;
2887 		bitmap_clear_bits(ctl, entry, offset, 1);
2888 		if (entry->bytes == 0)
2889 			free_bitmap(ctl, entry);
2890 	}
2891 out:
2892 	spin_unlock(&ctl->tree_lock);
2893 
2894 	return ino;
2895 }
2896 
2897 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2898 				    struct btrfs_path *path)
2899 {
2900 	struct inode *inode = NULL;
2901 
2902 	spin_lock(&root->cache_lock);
2903 	if (root->cache_inode)
2904 		inode = igrab(root->cache_inode);
2905 	spin_unlock(&root->cache_lock);
2906 	if (inode)
2907 		return inode;
2908 
2909 	inode = __lookup_free_space_inode(root, path, 0);
2910 	if (IS_ERR(inode))
2911 		return inode;
2912 
2913 	spin_lock(&root->cache_lock);
2914 	if (!btrfs_fs_closing(root->fs_info))
2915 		root->cache_inode = igrab(inode);
2916 	spin_unlock(&root->cache_lock);
2917 
2918 	return inode;
2919 }
2920 
2921 int create_free_ino_inode(struct btrfs_root *root,
2922 			  struct btrfs_trans_handle *trans,
2923 			  struct btrfs_path *path)
2924 {
2925 	return __create_free_space_inode(root, trans, path,
2926 					 BTRFS_FREE_INO_OBJECTID, 0);
2927 }
2928 
2929 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2930 {
2931 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2932 	struct btrfs_path *path;
2933 	struct inode *inode;
2934 	int ret = 0;
2935 	u64 root_gen = btrfs_root_generation(&root->root_item);
2936 
2937 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2938 		return 0;
2939 
2940 	/*
2941 	 * If we're unmounting then just return, since this does a search on the
2942 	 * normal root and not the commit root and we could deadlock.
2943 	 */
2944 	if (btrfs_fs_closing(fs_info))
2945 		return 0;
2946 
2947 	path = btrfs_alloc_path();
2948 	if (!path)
2949 		return 0;
2950 
2951 	inode = lookup_free_ino_inode(root, path);
2952 	if (IS_ERR(inode))
2953 		goto out;
2954 
2955 	if (root_gen != BTRFS_I(inode)->generation)
2956 		goto out_put;
2957 
2958 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2959 
2960 	if (ret < 0)
2961 		btrfs_err(fs_info,
2962 			"failed to load free ino cache for root %llu",
2963 			root->root_key.objectid);
2964 out_put:
2965 	iput(inode);
2966 out:
2967 	btrfs_free_path(path);
2968 	return ret;
2969 }
2970 
2971 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2972 			      struct btrfs_trans_handle *trans,
2973 			      struct btrfs_path *path,
2974 			      struct inode *inode)
2975 {
2976 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2977 	int ret;
2978 
2979 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2980 		return 0;
2981 
2982 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2983 	if (ret) {
2984 		btrfs_delalloc_release_metadata(inode, inode->i_size);
2985 #ifdef DEBUG
2986 		btrfs_err(root->fs_info,
2987 			"failed to write free ino cache for root %llu",
2988 			root->root_key.objectid);
2989 #endif
2990 	}
2991 
2992 	return ret;
2993 }
2994 
2995 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2996 /*
2997  * Use this if you need to make a bitmap or extent entry specifically, it
2998  * doesn't do any of the merging that add_free_space does, this acts a lot like
2999  * how the free space cache loading stuff works, so you can get really weird
3000  * configurations.
3001  */
3002 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3003 			      u64 offset, u64 bytes, bool bitmap)
3004 {
3005 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3006 	struct btrfs_free_space *info = NULL, *bitmap_info;
3007 	void *map = NULL;
3008 	u64 bytes_added;
3009 	int ret;
3010 
3011 again:
3012 	if (!info) {
3013 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3014 		if (!info)
3015 			return -ENOMEM;
3016 	}
3017 
3018 	if (!bitmap) {
3019 		spin_lock(&ctl->tree_lock);
3020 		info->offset = offset;
3021 		info->bytes = bytes;
3022 		ret = link_free_space(ctl, info);
3023 		spin_unlock(&ctl->tree_lock);
3024 		if (ret)
3025 			kmem_cache_free(btrfs_free_space_cachep, info);
3026 		return ret;
3027 	}
3028 
3029 	if (!map) {
3030 		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3031 		if (!map) {
3032 			kmem_cache_free(btrfs_free_space_cachep, info);
3033 			return -ENOMEM;
3034 		}
3035 	}
3036 
3037 	spin_lock(&ctl->tree_lock);
3038 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3039 					 1, 0);
3040 	if (!bitmap_info) {
3041 		info->bitmap = map;
3042 		map = NULL;
3043 		add_new_bitmap(ctl, info, offset);
3044 		bitmap_info = info;
3045 	}
3046 
3047 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3048 	bytes -= bytes_added;
3049 	offset += bytes_added;
3050 	spin_unlock(&ctl->tree_lock);
3051 
3052 	if (bytes)
3053 		goto again;
3054 
3055 	if (map)
3056 		kfree(map);
3057 	return 0;
3058 }
3059 
3060 /*
3061  * Checks to see if the given range is in the free space cache.  This is really
3062  * just used to check the absence of space, so if there is free space in the
3063  * range at all we will return 1.
3064  */
3065 int test_check_exists(struct btrfs_block_group_cache *cache,
3066 		      u64 offset, u64 bytes)
3067 {
3068 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3069 	struct btrfs_free_space *info;
3070 	int ret = 0;
3071 
3072 	spin_lock(&ctl->tree_lock);
3073 	info = tree_search_offset(ctl, offset, 0, 0);
3074 	if (!info) {
3075 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3076 					  1, 0);
3077 		if (!info)
3078 			goto out;
3079 	}
3080 
3081 have_info:
3082 	if (info->bitmap) {
3083 		u64 bit_off, bit_bytes;
3084 		struct rb_node *n;
3085 		struct btrfs_free_space *tmp;
3086 
3087 		bit_off = offset;
3088 		bit_bytes = ctl->unit;
3089 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3090 		if (!ret) {
3091 			if (bit_off == offset) {
3092 				ret = 1;
3093 				goto out;
3094 			} else if (bit_off > offset &&
3095 				   offset + bytes > bit_off) {
3096 				ret = 1;
3097 				goto out;
3098 			}
3099 		}
3100 
3101 		n = rb_prev(&info->offset_index);
3102 		while (n) {
3103 			tmp = rb_entry(n, struct btrfs_free_space,
3104 				       offset_index);
3105 			if (tmp->offset + tmp->bytes < offset)
3106 				break;
3107 			if (offset + bytes < tmp->offset) {
3108 				n = rb_prev(&info->offset_index);
3109 				continue;
3110 			}
3111 			info = tmp;
3112 			goto have_info;
3113 		}
3114 
3115 		n = rb_next(&info->offset_index);
3116 		while (n) {
3117 			tmp = rb_entry(n, struct btrfs_free_space,
3118 				       offset_index);
3119 			if (offset + bytes < tmp->offset)
3120 				break;
3121 			if (tmp->offset + tmp->bytes < offset) {
3122 				n = rb_next(&info->offset_index);
3123 				continue;
3124 			}
3125 			info = tmp;
3126 			goto have_info;
3127 		}
3128 
3129 		goto out;
3130 	}
3131 
3132 	if (info->offset == offset) {
3133 		ret = 1;
3134 		goto out;
3135 	}
3136 
3137 	if (offset > info->offset && offset < info->offset + info->bytes)
3138 		ret = 1;
3139 out:
3140 	spin_unlock(&ctl->tree_lock);
3141 	return ret;
3142 }
3143 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3144