1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "free-space-cache.h" 15 #include "transaction.h" 16 #include "disk-io.h" 17 #include "extent_io.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 21 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 22 #define MAX_CACHE_BYTES_PER_GIG SZ_32K 23 24 struct btrfs_trim_range { 25 u64 start; 26 u64 bytes; 27 struct list_head list; 28 }; 29 30 static int link_free_space(struct btrfs_free_space_ctl *ctl, 31 struct btrfs_free_space *info); 32 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 33 struct btrfs_free_space *info); 34 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 35 struct btrfs_trans_handle *trans, 36 struct btrfs_io_ctl *io_ctl, 37 struct btrfs_path *path); 38 39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 40 struct btrfs_path *path, 41 u64 offset) 42 { 43 struct btrfs_fs_info *fs_info = root->fs_info; 44 struct btrfs_key key; 45 struct btrfs_key location; 46 struct btrfs_disk_key disk_key; 47 struct btrfs_free_space_header *header; 48 struct extent_buffer *leaf; 49 struct inode *inode = NULL; 50 int ret; 51 52 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 53 key.offset = offset; 54 key.type = 0; 55 56 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 57 if (ret < 0) 58 return ERR_PTR(ret); 59 if (ret > 0) { 60 btrfs_release_path(path); 61 return ERR_PTR(-ENOENT); 62 } 63 64 leaf = path->nodes[0]; 65 header = btrfs_item_ptr(leaf, path->slots[0], 66 struct btrfs_free_space_header); 67 btrfs_free_space_key(leaf, header, &disk_key); 68 btrfs_disk_key_to_cpu(&location, &disk_key); 69 btrfs_release_path(path); 70 71 inode = btrfs_iget(fs_info->sb, &location, root, NULL); 72 if (IS_ERR(inode)) 73 return inode; 74 if (is_bad_inode(inode)) { 75 iput(inode); 76 return ERR_PTR(-ENOENT); 77 } 78 79 mapping_set_gfp_mask(inode->i_mapping, 80 mapping_gfp_constraint(inode->i_mapping, 81 ~(__GFP_FS | __GFP_HIGHMEM))); 82 83 return inode; 84 } 85 86 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info, 87 struct btrfs_block_group_cache 88 *block_group, struct btrfs_path *path) 89 { 90 struct inode *inode = NULL; 91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 92 93 spin_lock(&block_group->lock); 94 if (block_group->inode) 95 inode = igrab(block_group->inode); 96 spin_unlock(&block_group->lock); 97 if (inode) 98 return inode; 99 100 inode = __lookup_free_space_inode(fs_info->tree_root, path, 101 block_group->key.objectid); 102 if (IS_ERR(inode)) 103 return inode; 104 105 spin_lock(&block_group->lock); 106 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 107 btrfs_info(fs_info, "Old style space inode found, converting."); 108 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 109 BTRFS_INODE_NODATACOW; 110 block_group->disk_cache_state = BTRFS_DC_CLEAR; 111 } 112 113 if (!block_group->iref) { 114 block_group->inode = igrab(inode); 115 block_group->iref = 1; 116 } 117 spin_unlock(&block_group->lock); 118 119 return inode; 120 } 121 122 static int __create_free_space_inode(struct btrfs_root *root, 123 struct btrfs_trans_handle *trans, 124 struct btrfs_path *path, 125 u64 ino, u64 offset) 126 { 127 struct btrfs_key key; 128 struct btrfs_disk_key disk_key; 129 struct btrfs_free_space_header *header; 130 struct btrfs_inode_item *inode_item; 131 struct extent_buffer *leaf; 132 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 133 int ret; 134 135 ret = btrfs_insert_empty_inode(trans, root, path, ino); 136 if (ret) 137 return ret; 138 139 /* We inline crc's for the free disk space cache */ 140 if (ino != BTRFS_FREE_INO_OBJECTID) 141 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 142 143 leaf = path->nodes[0]; 144 inode_item = btrfs_item_ptr(leaf, path->slots[0], 145 struct btrfs_inode_item); 146 btrfs_item_key(leaf, &disk_key, path->slots[0]); 147 memzero_extent_buffer(leaf, (unsigned long)inode_item, 148 sizeof(*inode_item)); 149 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 150 btrfs_set_inode_size(leaf, inode_item, 0); 151 btrfs_set_inode_nbytes(leaf, inode_item, 0); 152 btrfs_set_inode_uid(leaf, inode_item, 0); 153 btrfs_set_inode_gid(leaf, inode_item, 0); 154 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 155 btrfs_set_inode_flags(leaf, inode_item, flags); 156 btrfs_set_inode_nlink(leaf, inode_item, 1); 157 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 158 btrfs_set_inode_block_group(leaf, inode_item, offset); 159 btrfs_mark_buffer_dirty(leaf); 160 btrfs_release_path(path); 161 162 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 163 key.offset = offset; 164 key.type = 0; 165 ret = btrfs_insert_empty_item(trans, root, path, &key, 166 sizeof(struct btrfs_free_space_header)); 167 if (ret < 0) { 168 btrfs_release_path(path); 169 return ret; 170 } 171 172 leaf = path->nodes[0]; 173 header = btrfs_item_ptr(leaf, path->slots[0], 174 struct btrfs_free_space_header); 175 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 176 btrfs_set_free_space_key(leaf, header, &disk_key); 177 btrfs_mark_buffer_dirty(leaf); 178 btrfs_release_path(path); 179 180 return 0; 181 } 182 183 int create_free_space_inode(struct btrfs_fs_info *fs_info, 184 struct btrfs_trans_handle *trans, 185 struct btrfs_block_group_cache *block_group, 186 struct btrfs_path *path) 187 { 188 int ret; 189 u64 ino; 190 191 ret = btrfs_find_free_objectid(fs_info->tree_root, &ino); 192 if (ret < 0) 193 return ret; 194 195 return __create_free_space_inode(fs_info->tree_root, trans, path, ino, 196 block_group->key.objectid); 197 } 198 199 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 200 struct btrfs_block_rsv *rsv) 201 { 202 u64 needed_bytes; 203 int ret; 204 205 /* 1 for slack space, 1 for updating the inode */ 206 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) + 207 btrfs_calc_trans_metadata_size(fs_info, 1); 208 209 spin_lock(&rsv->lock); 210 if (rsv->reserved < needed_bytes) 211 ret = -ENOSPC; 212 else 213 ret = 0; 214 spin_unlock(&rsv->lock); 215 return ret; 216 } 217 218 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 219 struct btrfs_block_group_cache *block_group, 220 struct inode *inode) 221 { 222 struct btrfs_root *root = BTRFS_I(inode)->root; 223 int ret = 0; 224 bool locked = false; 225 226 if (block_group) { 227 struct btrfs_path *path = btrfs_alloc_path(); 228 229 if (!path) { 230 ret = -ENOMEM; 231 goto fail; 232 } 233 locked = true; 234 mutex_lock(&trans->transaction->cache_write_mutex); 235 if (!list_empty(&block_group->io_list)) { 236 list_del_init(&block_group->io_list); 237 238 btrfs_wait_cache_io(trans, block_group, path); 239 btrfs_put_block_group(block_group); 240 } 241 242 /* 243 * now that we've truncated the cache away, its no longer 244 * setup or written 245 */ 246 spin_lock(&block_group->lock); 247 block_group->disk_cache_state = BTRFS_DC_CLEAR; 248 spin_unlock(&block_group->lock); 249 btrfs_free_path(path); 250 } 251 252 btrfs_i_size_write(BTRFS_I(inode), 0); 253 truncate_pagecache(inode, 0); 254 255 /* 256 * We don't need an orphan item because truncating the free space cache 257 * will never be split across transactions. 258 * We don't need to check for -EAGAIN because we're a free space 259 * cache inode 260 */ 261 ret = btrfs_truncate_inode_items(trans, root, inode, 262 0, BTRFS_EXTENT_DATA_KEY); 263 if (ret) 264 goto fail; 265 266 ret = btrfs_update_inode(trans, root, inode); 267 268 fail: 269 if (locked) 270 mutex_unlock(&trans->transaction->cache_write_mutex); 271 if (ret) 272 btrfs_abort_transaction(trans, ret); 273 274 return ret; 275 } 276 277 static void readahead_cache(struct inode *inode) 278 { 279 struct file_ra_state *ra; 280 unsigned long last_index; 281 282 ra = kzalloc(sizeof(*ra), GFP_NOFS); 283 if (!ra) 284 return; 285 286 file_ra_state_init(ra, inode->i_mapping); 287 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 288 289 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 290 291 kfree(ra); 292 } 293 294 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 295 int write) 296 { 297 int num_pages; 298 int check_crcs = 0; 299 300 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 301 302 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) 303 check_crcs = 1; 304 305 /* Make sure we can fit our crcs into the first page */ 306 if (write && check_crcs && 307 (num_pages * sizeof(u32)) >= PAGE_SIZE) 308 return -ENOSPC; 309 310 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 311 312 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 313 if (!io_ctl->pages) 314 return -ENOMEM; 315 316 io_ctl->num_pages = num_pages; 317 io_ctl->fs_info = btrfs_sb(inode->i_sb); 318 io_ctl->check_crcs = check_crcs; 319 io_ctl->inode = inode; 320 321 return 0; 322 } 323 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 324 325 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 326 { 327 kfree(io_ctl->pages); 328 io_ctl->pages = NULL; 329 } 330 331 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 332 { 333 if (io_ctl->cur) { 334 io_ctl->cur = NULL; 335 io_ctl->orig = NULL; 336 } 337 } 338 339 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 340 { 341 ASSERT(io_ctl->index < io_ctl->num_pages); 342 io_ctl->page = io_ctl->pages[io_ctl->index++]; 343 io_ctl->cur = page_address(io_ctl->page); 344 io_ctl->orig = io_ctl->cur; 345 io_ctl->size = PAGE_SIZE; 346 if (clear) 347 clear_page(io_ctl->cur); 348 } 349 350 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 351 { 352 int i; 353 354 io_ctl_unmap_page(io_ctl); 355 356 for (i = 0; i < io_ctl->num_pages; i++) { 357 if (io_ctl->pages[i]) { 358 ClearPageChecked(io_ctl->pages[i]); 359 unlock_page(io_ctl->pages[i]); 360 put_page(io_ctl->pages[i]); 361 } 362 } 363 } 364 365 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, 366 int uptodate) 367 { 368 struct page *page; 369 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 370 int i; 371 372 for (i = 0; i < io_ctl->num_pages; i++) { 373 page = find_or_create_page(inode->i_mapping, i, mask); 374 if (!page) { 375 io_ctl_drop_pages(io_ctl); 376 return -ENOMEM; 377 } 378 io_ctl->pages[i] = page; 379 if (uptodate && !PageUptodate(page)) { 380 btrfs_readpage(NULL, page); 381 lock_page(page); 382 if (!PageUptodate(page)) { 383 btrfs_err(BTRFS_I(inode)->root->fs_info, 384 "error reading free space cache"); 385 io_ctl_drop_pages(io_ctl); 386 return -EIO; 387 } 388 } 389 } 390 391 for (i = 0; i < io_ctl->num_pages; i++) { 392 clear_page_dirty_for_io(io_ctl->pages[i]); 393 set_page_extent_mapped(io_ctl->pages[i]); 394 } 395 396 return 0; 397 } 398 399 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 400 { 401 __le64 *val; 402 403 io_ctl_map_page(io_ctl, 1); 404 405 /* 406 * Skip the csum areas. If we don't check crcs then we just have a 407 * 64bit chunk at the front of the first page. 408 */ 409 if (io_ctl->check_crcs) { 410 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 411 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 412 } else { 413 io_ctl->cur += sizeof(u64); 414 io_ctl->size -= sizeof(u64) * 2; 415 } 416 417 val = io_ctl->cur; 418 *val = cpu_to_le64(generation); 419 io_ctl->cur += sizeof(u64); 420 } 421 422 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 423 { 424 __le64 *gen; 425 426 /* 427 * Skip the crc area. If we don't check crcs then we just have a 64bit 428 * chunk at the front of the first page. 429 */ 430 if (io_ctl->check_crcs) { 431 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 432 io_ctl->size -= sizeof(u64) + 433 (sizeof(u32) * io_ctl->num_pages); 434 } else { 435 io_ctl->cur += sizeof(u64); 436 io_ctl->size -= sizeof(u64) * 2; 437 } 438 439 gen = io_ctl->cur; 440 if (le64_to_cpu(*gen) != generation) { 441 btrfs_err_rl(io_ctl->fs_info, 442 "space cache generation (%llu) does not match inode (%llu)", 443 *gen, generation); 444 io_ctl_unmap_page(io_ctl); 445 return -EIO; 446 } 447 io_ctl->cur += sizeof(u64); 448 return 0; 449 } 450 451 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 452 { 453 u32 *tmp; 454 u32 crc = ~(u32)0; 455 unsigned offset = 0; 456 457 if (!io_ctl->check_crcs) { 458 io_ctl_unmap_page(io_ctl); 459 return; 460 } 461 462 if (index == 0) 463 offset = sizeof(u32) * io_ctl->num_pages; 464 465 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 466 PAGE_SIZE - offset); 467 btrfs_csum_final(crc, (u8 *)&crc); 468 io_ctl_unmap_page(io_ctl); 469 tmp = page_address(io_ctl->pages[0]); 470 tmp += index; 471 *tmp = crc; 472 } 473 474 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 475 { 476 u32 *tmp, val; 477 u32 crc = ~(u32)0; 478 unsigned offset = 0; 479 480 if (!io_ctl->check_crcs) { 481 io_ctl_map_page(io_ctl, 0); 482 return 0; 483 } 484 485 if (index == 0) 486 offset = sizeof(u32) * io_ctl->num_pages; 487 488 tmp = page_address(io_ctl->pages[0]); 489 tmp += index; 490 val = *tmp; 491 492 io_ctl_map_page(io_ctl, 0); 493 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 494 PAGE_SIZE - offset); 495 btrfs_csum_final(crc, (u8 *)&crc); 496 if (val != crc) { 497 btrfs_err_rl(io_ctl->fs_info, 498 "csum mismatch on free space cache"); 499 io_ctl_unmap_page(io_ctl); 500 return -EIO; 501 } 502 503 return 0; 504 } 505 506 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 507 void *bitmap) 508 { 509 struct btrfs_free_space_entry *entry; 510 511 if (!io_ctl->cur) 512 return -ENOSPC; 513 514 entry = io_ctl->cur; 515 entry->offset = cpu_to_le64(offset); 516 entry->bytes = cpu_to_le64(bytes); 517 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 518 BTRFS_FREE_SPACE_EXTENT; 519 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 520 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 521 522 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 523 return 0; 524 525 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 526 527 /* No more pages to map */ 528 if (io_ctl->index >= io_ctl->num_pages) 529 return 0; 530 531 /* map the next page */ 532 io_ctl_map_page(io_ctl, 1); 533 return 0; 534 } 535 536 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 537 { 538 if (!io_ctl->cur) 539 return -ENOSPC; 540 541 /* 542 * If we aren't at the start of the current page, unmap this one and 543 * map the next one if there is any left. 544 */ 545 if (io_ctl->cur != io_ctl->orig) { 546 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 547 if (io_ctl->index >= io_ctl->num_pages) 548 return -ENOSPC; 549 io_ctl_map_page(io_ctl, 0); 550 } 551 552 memcpy(io_ctl->cur, bitmap, PAGE_SIZE); 553 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 554 if (io_ctl->index < io_ctl->num_pages) 555 io_ctl_map_page(io_ctl, 0); 556 return 0; 557 } 558 559 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 560 { 561 /* 562 * If we're not on the boundary we know we've modified the page and we 563 * need to crc the page. 564 */ 565 if (io_ctl->cur != io_ctl->orig) 566 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 567 else 568 io_ctl_unmap_page(io_ctl); 569 570 while (io_ctl->index < io_ctl->num_pages) { 571 io_ctl_map_page(io_ctl, 1); 572 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 573 } 574 } 575 576 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 577 struct btrfs_free_space *entry, u8 *type) 578 { 579 struct btrfs_free_space_entry *e; 580 int ret; 581 582 if (!io_ctl->cur) { 583 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 584 if (ret) 585 return ret; 586 } 587 588 e = io_ctl->cur; 589 entry->offset = le64_to_cpu(e->offset); 590 entry->bytes = le64_to_cpu(e->bytes); 591 *type = e->type; 592 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 593 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 594 595 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 596 return 0; 597 598 io_ctl_unmap_page(io_ctl); 599 600 return 0; 601 } 602 603 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 604 struct btrfs_free_space *entry) 605 { 606 int ret; 607 608 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 609 if (ret) 610 return ret; 611 612 memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE); 613 io_ctl_unmap_page(io_ctl); 614 615 return 0; 616 } 617 618 /* 619 * Since we attach pinned extents after the fact we can have contiguous sections 620 * of free space that are split up in entries. This poses a problem with the 621 * tree logging stuff since it could have allocated across what appears to be 2 622 * entries since we would have merged the entries when adding the pinned extents 623 * back to the free space cache. So run through the space cache that we just 624 * loaded and merge contiguous entries. This will make the log replay stuff not 625 * blow up and it will make for nicer allocator behavior. 626 */ 627 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 628 { 629 struct btrfs_free_space *e, *prev = NULL; 630 struct rb_node *n; 631 632 again: 633 spin_lock(&ctl->tree_lock); 634 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 635 e = rb_entry(n, struct btrfs_free_space, offset_index); 636 if (!prev) 637 goto next; 638 if (e->bitmap || prev->bitmap) 639 goto next; 640 if (prev->offset + prev->bytes == e->offset) { 641 unlink_free_space(ctl, prev); 642 unlink_free_space(ctl, e); 643 prev->bytes += e->bytes; 644 kmem_cache_free(btrfs_free_space_cachep, e); 645 link_free_space(ctl, prev); 646 prev = NULL; 647 spin_unlock(&ctl->tree_lock); 648 goto again; 649 } 650 next: 651 prev = e; 652 } 653 spin_unlock(&ctl->tree_lock); 654 } 655 656 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 657 struct btrfs_free_space_ctl *ctl, 658 struct btrfs_path *path, u64 offset) 659 { 660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 661 struct btrfs_free_space_header *header; 662 struct extent_buffer *leaf; 663 struct btrfs_io_ctl io_ctl; 664 struct btrfs_key key; 665 struct btrfs_free_space *e, *n; 666 LIST_HEAD(bitmaps); 667 u64 num_entries; 668 u64 num_bitmaps; 669 u64 generation; 670 u8 type; 671 int ret = 0; 672 673 /* Nothing in the space cache, goodbye */ 674 if (!i_size_read(inode)) 675 return 0; 676 677 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 678 key.offset = offset; 679 key.type = 0; 680 681 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 682 if (ret < 0) 683 return 0; 684 else if (ret > 0) { 685 btrfs_release_path(path); 686 return 0; 687 } 688 689 ret = -1; 690 691 leaf = path->nodes[0]; 692 header = btrfs_item_ptr(leaf, path->slots[0], 693 struct btrfs_free_space_header); 694 num_entries = btrfs_free_space_entries(leaf, header); 695 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 696 generation = btrfs_free_space_generation(leaf, header); 697 btrfs_release_path(path); 698 699 if (!BTRFS_I(inode)->generation) { 700 btrfs_info(fs_info, 701 "the free space cache file (%llu) is invalid, skip it", 702 offset); 703 return 0; 704 } 705 706 if (BTRFS_I(inode)->generation != generation) { 707 btrfs_err(fs_info, 708 "free space inode generation (%llu) did not match free space cache generation (%llu)", 709 BTRFS_I(inode)->generation, generation); 710 return 0; 711 } 712 713 if (!num_entries) 714 return 0; 715 716 ret = io_ctl_init(&io_ctl, inode, 0); 717 if (ret) 718 return ret; 719 720 readahead_cache(inode); 721 722 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 723 if (ret) 724 goto out; 725 726 ret = io_ctl_check_crc(&io_ctl, 0); 727 if (ret) 728 goto free_cache; 729 730 ret = io_ctl_check_generation(&io_ctl, generation); 731 if (ret) 732 goto free_cache; 733 734 while (num_entries) { 735 e = kmem_cache_zalloc(btrfs_free_space_cachep, 736 GFP_NOFS); 737 if (!e) 738 goto free_cache; 739 740 ret = io_ctl_read_entry(&io_ctl, e, &type); 741 if (ret) { 742 kmem_cache_free(btrfs_free_space_cachep, e); 743 goto free_cache; 744 } 745 746 if (!e->bytes) { 747 kmem_cache_free(btrfs_free_space_cachep, e); 748 goto free_cache; 749 } 750 751 if (type == BTRFS_FREE_SPACE_EXTENT) { 752 spin_lock(&ctl->tree_lock); 753 ret = link_free_space(ctl, e); 754 spin_unlock(&ctl->tree_lock); 755 if (ret) { 756 btrfs_err(fs_info, 757 "Duplicate entries in free space cache, dumping"); 758 kmem_cache_free(btrfs_free_space_cachep, e); 759 goto free_cache; 760 } 761 } else { 762 ASSERT(num_bitmaps); 763 num_bitmaps--; 764 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS); 765 if (!e->bitmap) { 766 kmem_cache_free( 767 btrfs_free_space_cachep, e); 768 goto free_cache; 769 } 770 spin_lock(&ctl->tree_lock); 771 ret = link_free_space(ctl, e); 772 ctl->total_bitmaps++; 773 ctl->op->recalc_thresholds(ctl); 774 spin_unlock(&ctl->tree_lock); 775 if (ret) { 776 btrfs_err(fs_info, 777 "Duplicate entries in free space cache, dumping"); 778 kmem_cache_free(btrfs_free_space_cachep, e); 779 goto free_cache; 780 } 781 list_add_tail(&e->list, &bitmaps); 782 } 783 784 num_entries--; 785 } 786 787 io_ctl_unmap_page(&io_ctl); 788 789 /* 790 * We add the bitmaps at the end of the entries in order that 791 * the bitmap entries are added to the cache. 792 */ 793 list_for_each_entry_safe(e, n, &bitmaps, list) { 794 list_del_init(&e->list); 795 ret = io_ctl_read_bitmap(&io_ctl, e); 796 if (ret) 797 goto free_cache; 798 } 799 800 io_ctl_drop_pages(&io_ctl); 801 merge_space_tree(ctl); 802 ret = 1; 803 out: 804 io_ctl_free(&io_ctl); 805 return ret; 806 free_cache: 807 io_ctl_drop_pages(&io_ctl); 808 __btrfs_remove_free_space_cache(ctl); 809 goto out; 810 } 811 812 int load_free_space_cache(struct btrfs_fs_info *fs_info, 813 struct btrfs_block_group_cache *block_group) 814 { 815 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 816 struct inode *inode; 817 struct btrfs_path *path; 818 int ret = 0; 819 bool matched; 820 u64 used = btrfs_block_group_used(&block_group->item); 821 822 /* 823 * If this block group has been marked to be cleared for one reason or 824 * another then we can't trust the on disk cache, so just return. 825 */ 826 spin_lock(&block_group->lock); 827 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 828 spin_unlock(&block_group->lock); 829 return 0; 830 } 831 spin_unlock(&block_group->lock); 832 833 path = btrfs_alloc_path(); 834 if (!path) 835 return 0; 836 path->search_commit_root = 1; 837 path->skip_locking = 1; 838 839 inode = lookup_free_space_inode(fs_info, block_group, path); 840 if (IS_ERR(inode)) { 841 btrfs_free_path(path); 842 return 0; 843 } 844 845 /* We may have converted the inode and made the cache invalid. */ 846 spin_lock(&block_group->lock); 847 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 848 spin_unlock(&block_group->lock); 849 btrfs_free_path(path); 850 goto out; 851 } 852 spin_unlock(&block_group->lock); 853 854 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 855 path, block_group->key.objectid); 856 btrfs_free_path(path); 857 if (ret <= 0) 858 goto out; 859 860 spin_lock(&ctl->tree_lock); 861 matched = (ctl->free_space == (block_group->key.offset - used - 862 block_group->bytes_super)); 863 spin_unlock(&ctl->tree_lock); 864 865 if (!matched) { 866 __btrfs_remove_free_space_cache(ctl); 867 btrfs_warn(fs_info, 868 "block group %llu has wrong amount of free space", 869 block_group->key.objectid); 870 ret = -1; 871 } 872 out: 873 if (ret < 0) { 874 /* This cache is bogus, make sure it gets cleared */ 875 spin_lock(&block_group->lock); 876 block_group->disk_cache_state = BTRFS_DC_CLEAR; 877 spin_unlock(&block_group->lock); 878 ret = 0; 879 880 btrfs_warn(fs_info, 881 "failed to load free space cache for block group %llu, rebuilding it now", 882 block_group->key.objectid); 883 } 884 885 iput(inode); 886 return ret; 887 } 888 889 static noinline_for_stack 890 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 891 struct btrfs_free_space_ctl *ctl, 892 struct btrfs_block_group_cache *block_group, 893 int *entries, int *bitmaps, 894 struct list_head *bitmap_list) 895 { 896 int ret; 897 struct btrfs_free_cluster *cluster = NULL; 898 struct btrfs_free_cluster *cluster_locked = NULL; 899 struct rb_node *node = rb_first(&ctl->free_space_offset); 900 struct btrfs_trim_range *trim_entry; 901 902 /* Get the cluster for this block_group if it exists */ 903 if (block_group && !list_empty(&block_group->cluster_list)) { 904 cluster = list_entry(block_group->cluster_list.next, 905 struct btrfs_free_cluster, 906 block_group_list); 907 } 908 909 if (!node && cluster) { 910 cluster_locked = cluster; 911 spin_lock(&cluster_locked->lock); 912 node = rb_first(&cluster->root); 913 cluster = NULL; 914 } 915 916 /* Write out the extent entries */ 917 while (node) { 918 struct btrfs_free_space *e; 919 920 e = rb_entry(node, struct btrfs_free_space, offset_index); 921 *entries += 1; 922 923 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 924 e->bitmap); 925 if (ret) 926 goto fail; 927 928 if (e->bitmap) { 929 list_add_tail(&e->list, bitmap_list); 930 *bitmaps += 1; 931 } 932 node = rb_next(node); 933 if (!node && cluster) { 934 node = rb_first(&cluster->root); 935 cluster_locked = cluster; 936 spin_lock(&cluster_locked->lock); 937 cluster = NULL; 938 } 939 } 940 if (cluster_locked) { 941 spin_unlock(&cluster_locked->lock); 942 cluster_locked = NULL; 943 } 944 945 /* 946 * Make sure we don't miss any range that was removed from our rbtree 947 * because trimming is running. Otherwise after a umount+mount (or crash 948 * after committing the transaction) we would leak free space and get 949 * an inconsistent free space cache report from fsck. 950 */ 951 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 952 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 953 trim_entry->bytes, NULL); 954 if (ret) 955 goto fail; 956 *entries += 1; 957 } 958 959 return 0; 960 fail: 961 if (cluster_locked) 962 spin_unlock(&cluster_locked->lock); 963 return -ENOSPC; 964 } 965 966 static noinline_for_stack int 967 update_cache_item(struct btrfs_trans_handle *trans, 968 struct btrfs_root *root, 969 struct inode *inode, 970 struct btrfs_path *path, u64 offset, 971 int entries, int bitmaps) 972 { 973 struct btrfs_key key; 974 struct btrfs_free_space_header *header; 975 struct extent_buffer *leaf; 976 int ret; 977 978 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 979 key.offset = offset; 980 key.type = 0; 981 982 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 983 if (ret < 0) { 984 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 985 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL); 986 goto fail; 987 } 988 leaf = path->nodes[0]; 989 if (ret > 0) { 990 struct btrfs_key found_key; 991 ASSERT(path->slots[0]); 992 path->slots[0]--; 993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 994 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 995 found_key.offset != offset) { 996 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 997 inode->i_size - 1, 998 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 999 NULL); 1000 btrfs_release_path(path); 1001 goto fail; 1002 } 1003 } 1004 1005 BTRFS_I(inode)->generation = trans->transid; 1006 header = btrfs_item_ptr(leaf, path->slots[0], 1007 struct btrfs_free_space_header); 1008 btrfs_set_free_space_entries(leaf, header, entries); 1009 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1010 btrfs_set_free_space_generation(leaf, header, trans->transid); 1011 btrfs_mark_buffer_dirty(leaf); 1012 btrfs_release_path(path); 1013 1014 return 0; 1015 1016 fail: 1017 return -1; 1018 } 1019 1020 static noinline_for_stack int 1021 write_pinned_extent_entries(struct btrfs_fs_info *fs_info, 1022 struct btrfs_block_group_cache *block_group, 1023 struct btrfs_io_ctl *io_ctl, 1024 int *entries) 1025 { 1026 u64 start, extent_start, extent_end, len; 1027 struct extent_io_tree *unpin = NULL; 1028 int ret; 1029 1030 if (!block_group) 1031 return 0; 1032 1033 /* 1034 * We want to add any pinned extents to our free space cache 1035 * so we don't leak the space 1036 * 1037 * We shouldn't have switched the pinned extents yet so this is the 1038 * right one 1039 */ 1040 unpin = fs_info->pinned_extents; 1041 1042 start = block_group->key.objectid; 1043 1044 while (start < block_group->key.objectid + block_group->key.offset) { 1045 ret = find_first_extent_bit(unpin, start, 1046 &extent_start, &extent_end, 1047 EXTENT_DIRTY, NULL); 1048 if (ret) 1049 return 0; 1050 1051 /* This pinned extent is out of our range */ 1052 if (extent_start >= block_group->key.objectid + 1053 block_group->key.offset) 1054 return 0; 1055 1056 extent_start = max(extent_start, start); 1057 extent_end = min(block_group->key.objectid + 1058 block_group->key.offset, extent_end + 1); 1059 len = extent_end - extent_start; 1060 1061 *entries += 1; 1062 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1063 if (ret) 1064 return -ENOSPC; 1065 1066 start = extent_end; 1067 } 1068 1069 return 0; 1070 } 1071 1072 static noinline_for_stack int 1073 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1074 { 1075 struct btrfs_free_space *entry, *next; 1076 int ret; 1077 1078 /* Write out the bitmaps */ 1079 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1080 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1081 if (ret) 1082 return -ENOSPC; 1083 list_del_init(&entry->list); 1084 } 1085 1086 return 0; 1087 } 1088 1089 static int flush_dirty_cache(struct inode *inode) 1090 { 1091 int ret; 1092 1093 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1094 if (ret) 1095 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1096 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL); 1097 1098 return ret; 1099 } 1100 1101 static void noinline_for_stack 1102 cleanup_bitmap_list(struct list_head *bitmap_list) 1103 { 1104 struct btrfs_free_space *entry, *next; 1105 1106 list_for_each_entry_safe(entry, next, bitmap_list, list) 1107 list_del_init(&entry->list); 1108 } 1109 1110 static void noinline_for_stack 1111 cleanup_write_cache_enospc(struct inode *inode, 1112 struct btrfs_io_ctl *io_ctl, 1113 struct extent_state **cached_state) 1114 { 1115 io_ctl_drop_pages(io_ctl); 1116 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1117 i_size_read(inode) - 1, cached_state); 1118 } 1119 1120 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1121 struct btrfs_trans_handle *trans, 1122 struct btrfs_block_group_cache *block_group, 1123 struct btrfs_io_ctl *io_ctl, 1124 struct btrfs_path *path, u64 offset) 1125 { 1126 int ret; 1127 struct inode *inode = io_ctl->inode; 1128 struct btrfs_fs_info *fs_info; 1129 1130 if (!inode) 1131 return 0; 1132 1133 fs_info = btrfs_sb(inode->i_sb); 1134 1135 /* Flush the dirty pages in the cache file. */ 1136 ret = flush_dirty_cache(inode); 1137 if (ret) 1138 goto out; 1139 1140 /* Update the cache item to tell everyone this cache file is valid. */ 1141 ret = update_cache_item(trans, root, inode, path, offset, 1142 io_ctl->entries, io_ctl->bitmaps); 1143 out: 1144 io_ctl_free(io_ctl); 1145 if (ret) { 1146 invalidate_inode_pages2(inode->i_mapping); 1147 BTRFS_I(inode)->generation = 0; 1148 if (block_group) { 1149 #ifdef DEBUG 1150 btrfs_err(fs_info, 1151 "failed to write free space cache for block group %llu", 1152 block_group->key.objectid); 1153 #endif 1154 } 1155 } 1156 btrfs_update_inode(trans, root, inode); 1157 1158 if (block_group) { 1159 /* the dirty list is protected by the dirty_bgs_lock */ 1160 spin_lock(&trans->transaction->dirty_bgs_lock); 1161 1162 /* the disk_cache_state is protected by the block group lock */ 1163 spin_lock(&block_group->lock); 1164 1165 /* 1166 * only mark this as written if we didn't get put back on 1167 * the dirty list while waiting for IO. Otherwise our 1168 * cache state won't be right, and we won't get written again 1169 */ 1170 if (!ret && list_empty(&block_group->dirty_list)) 1171 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1172 else if (ret) 1173 block_group->disk_cache_state = BTRFS_DC_ERROR; 1174 1175 spin_unlock(&block_group->lock); 1176 spin_unlock(&trans->transaction->dirty_bgs_lock); 1177 io_ctl->inode = NULL; 1178 iput(inode); 1179 } 1180 1181 return ret; 1182 1183 } 1184 1185 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 1186 struct btrfs_trans_handle *trans, 1187 struct btrfs_io_ctl *io_ctl, 1188 struct btrfs_path *path) 1189 { 1190 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); 1191 } 1192 1193 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1194 struct btrfs_block_group_cache *block_group, 1195 struct btrfs_path *path) 1196 { 1197 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1198 block_group, &block_group->io_ctl, 1199 path, block_group->key.objectid); 1200 } 1201 1202 /** 1203 * __btrfs_write_out_cache - write out cached info to an inode 1204 * @root - the root the inode belongs to 1205 * @ctl - the free space cache we are going to write out 1206 * @block_group - the block_group for this cache if it belongs to a block_group 1207 * @trans - the trans handle 1208 * 1209 * This function writes out a free space cache struct to disk for quick recovery 1210 * on mount. This will return 0 if it was successful in writing the cache out, 1211 * or an errno if it was not. 1212 */ 1213 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1214 struct btrfs_free_space_ctl *ctl, 1215 struct btrfs_block_group_cache *block_group, 1216 struct btrfs_io_ctl *io_ctl, 1217 struct btrfs_trans_handle *trans) 1218 { 1219 struct btrfs_fs_info *fs_info = root->fs_info; 1220 struct extent_state *cached_state = NULL; 1221 LIST_HEAD(bitmap_list); 1222 int entries = 0; 1223 int bitmaps = 0; 1224 int ret; 1225 int must_iput = 0; 1226 1227 if (!i_size_read(inode)) 1228 return -EIO; 1229 1230 WARN_ON(io_ctl->pages); 1231 ret = io_ctl_init(io_ctl, inode, 1); 1232 if (ret) 1233 return ret; 1234 1235 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1236 down_write(&block_group->data_rwsem); 1237 spin_lock(&block_group->lock); 1238 if (block_group->delalloc_bytes) { 1239 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1240 spin_unlock(&block_group->lock); 1241 up_write(&block_group->data_rwsem); 1242 BTRFS_I(inode)->generation = 0; 1243 ret = 0; 1244 must_iput = 1; 1245 goto out; 1246 } 1247 spin_unlock(&block_group->lock); 1248 } 1249 1250 /* Lock all pages first so we can lock the extent safely. */ 1251 ret = io_ctl_prepare_pages(io_ctl, inode, 0); 1252 if (ret) 1253 goto out_unlock; 1254 1255 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1256 &cached_state); 1257 1258 io_ctl_set_generation(io_ctl, trans->transid); 1259 1260 mutex_lock(&ctl->cache_writeout_mutex); 1261 /* Write out the extent entries in the free space cache */ 1262 spin_lock(&ctl->tree_lock); 1263 ret = write_cache_extent_entries(io_ctl, ctl, 1264 block_group, &entries, &bitmaps, 1265 &bitmap_list); 1266 if (ret) 1267 goto out_nospc_locked; 1268 1269 /* 1270 * Some spaces that are freed in the current transaction are pinned, 1271 * they will be added into free space cache after the transaction is 1272 * committed, we shouldn't lose them. 1273 * 1274 * If this changes while we are working we'll get added back to 1275 * the dirty list and redo it. No locking needed 1276 */ 1277 ret = write_pinned_extent_entries(fs_info, block_group, 1278 io_ctl, &entries); 1279 if (ret) 1280 goto out_nospc_locked; 1281 1282 /* 1283 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1284 * locked while doing it because a concurrent trim can be manipulating 1285 * or freeing the bitmap. 1286 */ 1287 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1288 spin_unlock(&ctl->tree_lock); 1289 mutex_unlock(&ctl->cache_writeout_mutex); 1290 if (ret) 1291 goto out_nospc; 1292 1293 /* Zero out the rest of the pages just to make sure */ 1294 io_ctl_zero_remaining_pages(io_ctl); 1295 1296 /* Everything is written out, now we dirty the pages in the file. */ 1297 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, 1298 i_size_read(inode), &cached_state); 1299 if (ret) 1300 goto out_nospc; 1301 1302 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1303 up_write(&block_group->data_rwsem); 1304 /* 1305 * Release the pages and unlock the extent, we will flush 1306 * them out later 1307 */ 1308 io_ctl_drop_pages(io_ctl); 1309 1310 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1311 i_size_read(inode) - 1, &cached_state); 1312 1313 /* 1314 * at this point the pages are under IO and we're happy, 1315 * The caller is responsible for waiting on them and updating the 1316 * the cache and the inode 1317 */ 1318 io_ctl->entries = entries; 1319 io_ctl->bitmaps = bitmaps; 1320 1321 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1322 if (ret) 1323 goto out; 1324 1325 return 0; 1326 1327 out: 1328 io_ctl->inode = NULL; 1329 io_ctl_free(io_ctl); 1330 if (ret) { 1331 invalidate_inode_pages2(inode->i_mapping); 1332 BTRFS_I(inode)->generation = 0; 1333 } 1334 btrfs_update_inode(trans, root, inode); 1335 if (must_iput) 1336 iput(inode); 1337 return ret; 1338 1339 out_nospc_locked: 1340 cleanup_bitmap_list(&bitmap_list); 1341 spin_unlock(&ctl->tree_lock); 1342 mutex_unlock(&ctl->cache_writeout_mutex); 1343 1344 out_nospc: 1345 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1346 1347 out_unlock: 1348 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1349 up_write(&block_group->data_rwsem); 1350 1351 goto out; 1352 } 1353 1354 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info, 1355 struct btrfs_trans_handle *trans, 1356 struct btrfs_block_group_cache *block_group, 1357 struct btrfs_path *path) 1358 { 1359 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1360 struct inode *inode; 1361 int ret = 0; 1362 1363 spin_lock(&block_group->lock); 1364 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1365 spin_unlock(&block_group->lock); 1366 return 0; 1367 } 1368 spin_unlock(&block_group->lock); 1369 1370 inode = lookup_free_space_inode(fs_info, block_group, path); 1371 if (IS_ERR(inode)) 1372 return 0; 1373 1374 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1375 block_group, &block_group->io_ctl, trans); 1376 if (ret) { 1377 #ifdef DEBUG 1378 btrfs_err(fs_info, 1379 "failed to write free space cache for block group %llu", 1380 block_group->key.objectid); 1381 #endif 1382 spin_lock(&block_group->lock); 1383 block_group->disk_cache_state = BTRFS_DC_ERROR; 1384 spin_unlock(&block_group->lock); 1385 1386 block_group->io_ctl.inode = NULL; 1387 iput(inode); 1388 } 1389 1390 /* 1391 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1392 * to wait for IO and put the inode 1393 */ 1394 1395 return ret; 1396 } 1397 1398 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1399 u64 offset) 1400 { 1401 ASSERT(offset >= bitmap_start); 1402 offset -= bitmap_start; 1403 return (unsigned long)(div_u64(offset, unit)); 1404 } 1405 1406 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1407 { 1408 return (unsigned long)(div_u64(bytes, unit)); 1409 } 1410 1411 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1412 u64 offset) 1413 { 1414 u64 bitmap_start; 1415 u64 bytes_per_bitmap; 1416 1417 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1418 bitmap_start = offset - ctl->start; 1419 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1420 bitmap_start *= bytes_per_bitmap; 1421 bitmap_start += ctl->start; 1422 1423 return bitmap_start; 1424 } 1425 1426 static int tree_insert_offset(struct rb_root *root, u64 offset, 1427 struct rb_node *node, int bitmap) 1428 { 1429 struct rb_node **p = &root->rb_node; 1430 struct rb_node *parent = NULL; 1431 struct btrfs_free_space *info; 1432 1433 while (*p) { 1434 parent = *p; 1435 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1436 1437 if (offset < info->offset) { 1438 p = &(*p)->rb_left; 1439 } else if (offset > info->offset) { 1440 p = &(*p)->rb_right; 1441 } else { 1442 /* 1443 * we could have a bitmap entry and an extent entry 1444 * share the same offset. If this is the case, we want 1445 * the extent entry to always be found first if we do a 1446 * linear search through the tree, since we want to have 1447 * the quickest allocation time, and allocating from an 1448 * extent is faster than allocating from a bitmap. So 1449 * if we're inserting a bitmap and we find an entry at 1450 * this offset, we want to go right, or after this entry 1451 * logically. If we are inserting an extent and we've 1452 * found a bitmap, we want to go left, or before 1453 * logically. 1454 */ 1455 if (bitmap) { 1456 if (info->bitmap) { 1457 WARN_ON_ONCE(1); 1458 return -EEXIST; 1459 } 1460 p = &(*p)->rb_right; 1461 } else { 1462 if (!info->bitmap) { 1463 WARN_ON_ONCE(1); 1464 return -EEXIST; 1465 } 1466 p = &(*p)->rb_left; 1467 } 1468 } 1469 } 1470 1471 rb_link_node(node, parent, p); 1472 rb_insert_color(node, root); 1473 1474 return 0; 1475 } 1476 1477 /* 1478 * searches the tree for the given offset. 1479 * 1480 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1481 * want a section that has at least bytes size and comes at or after the given 1482 * offset. 1483 */ 1484 static struct btrfs_free_space * 1485 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1486 u64 offset, int bitmap_only, int fuzzy) 1487 { 1488 struct rb_node *n = ctl->free_space_offset.rb_node; 1489 struct btrfs_free_space *entry, *prev = NULL; 1490 1491 /* find entry that is closest to the 'offset' */ 1492 while (1) { 1493 if (!n) { 1494 entry = NULL; 1495 break; 1496 } 1497 1498 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1499 prev = entry; 1500 1501 if (offset < entry->offset) 1502 n = n->rb_left; 1503 else if (offset > entry->offset) 1504 n = n->rb_right; 1505 else 1506 break; 1507 } 1508 1509 if (bitmap_only) { 1510 if (!entry) 1511 return NULL; 1512 if (entry->bitmap) 1513 return entry; 1514 1515 /* 1516 * bitmap entry and extent entry may share same offset, 1517 * in that case, bitmap entry comes after extent entry. 1518 */ 1519 n = rb_next(n); 1520 if (!n) 1521 return NULL; 1522 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1523 if (entry->offset != offset) 1524 return NULL; 1525 1526 WARN_ON(!entry->bitmap); 1527 return entry; 1528 } else if (entry) { 1529 if (entry->bitmap) { 1530 /* 1531 * if previous extent entry covers the offset, 1532 * we should return it instead of the bitmap entry 1533 */ 1534 n = rb_prev(&entry->offset_index); 1535 if (n) { 1536 prev = rb_entry(n, struct btrfs_free_space, 1537 offset_index); 1538 if (!prev->bitmap && 1539 prev->offset + prev->bytes > offset) 1540 entry = prev; 1541 } 1542 } 1543 return entry; 1544 } 1545 1546 if (!prev) 1547 return NULL; 1548 1549 /* find last entry before the 'offset' */ 1550 entry = prev; 1551 if (entry->offset > offset) { 1552 n = rb_prev(&entry->offset_index); 1553 if (n) { 1554 entry = rb_entry(n, struct btrfs_free_space, 1555 offset_index); 1556 ASSERT(entry->offset <= offset); 1557 } else { 1558 if (fuzzy) 1559 return entry; 1560 else 1561 return NULL; 1562 } 1563 } 1564 1565 if (entry->bitmap) { 1566 n = rb_prev(&entry->offset_index); 1567 if (n) { 1568 prev = rb_entry(n, struct btrfs_free_space, 1569 offset_index); 1570 if (!prev->bitmap && 1571 prev->offset + prev->bytes > offset) 1572 return prev; 1573 } 1574 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1575 return entry; 1576 } else if (entry->offset + entry->bytes > offset) 1577 return entry; 1578 1579 if (!fuzzy) 1580 return NULL; 1581 1582 while (1) { 1583 if (entry->bitmap) { 1584 if (entry->offset + BITS_PER_BITMAP * 1585 ctl->unit > offset) 1586 break; 1587 } else { 1588 if (entry->offset + entry->bytes > offset) 1589 break; 1590 } 1591 1592 n = rb_next(&entry->offset_index); 1593 if (!n) 1594 return NULL; 1595 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1596 } 1597 return entry; 1598 } 1599 1600 static inline void 1601 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1602 struct btrfs_free_space *info) 1603 { 1604 rb_erase(&info->offset_index, &ctl->free_space_offset); 1605 ctl->free_extents--; 1606 } 1607 1608 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1609 struct btrfs_free_space *info) 1610 { 1611 __unlink_free_space(ctl, info); 1612 ctl->free_space -= info->bytes; 1613 } 1614 1615 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1616 struct btrfs_free_space *info) 1617 { 1618 int ret = 0; 1619 1620 ASSERT(info->bytes || info->bitmap); 1621 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1622 &info->offset_index, (info->bitmap != NULL)); 1623 if (ret) 1624 return ret; 1625 1626 ctl->free_space += info->bytes; 1627 ctl->free_extents++; 1628 return ret; 1629 } 1630 1631 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1632 { 1633 struct btrfs_block_group_cache *block_group = ctl->private; 1634 u64 max_bytes; 1635 u64 bitmap_bytes; 1636 u64 extent_bytes; 1637 u64 size = block_group->key.offset; 1638 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1639 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1640 1641 max_bitmaps = max_t(u64, max_bitmaps, 1); 1642 1643 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1644 1645 /* 1646 * The goal is to keep the total amount of memory used per 1gb of space 1647 * at or below 32k, so we need to adjust how much memory we allow to be 1648 * used by extent based free space tracking 1649 */ 1650 if (size < SZ_1G) 1651 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1652 else 1653 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1654 1655 /* 1656 * we want to account for 1 more bitmap than what we have so we can make 1657 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1658 * we add more bitmaps. 1659 */ 1660 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit; 1661 1662 if (bitmap_bytes >= max_bytes) { 1663 ctl->extents_thresh = 0; 1664 return; 1665 } 1666 1667 /* 1668 * we want the extent entry threshold to always be at most 1/2 the max 1669 * bytes we can have, or whatever is less than that. 1670 */ 1671 extent_bytes = max_bytes - bitmap_bytes; 1672 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1673 1674 ctl->extents_thresh = 1675 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1676 } 1677 1678 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1679 struct btrfs_free_space *info, 1680 u64 offset, u64 bytes) 1681 { 1682 unsigned long start, count; 1683 1684 start = offset_to_bit(info->offset, ctl->unit, offset); 1685 count = bytes_to_bits(bytes, ctl->unit); 1686 ASSERT(start + count <= BITS_PER_BITMAP); 1687 1688 bitmap_clear(info->bitmap, start, count); 1689 1690 info->bytes -= bytes; 1691 } 1692 1693 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1694 struct btrfs_free_space *info, u64 offset, 1695 u64 bytes) 1696 { 1697 __bitmap_clear_bits(ctl, info, offset, bytes); 1698 ctl->free_space -= bytes; 1699 } 1700 1701 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1702 struct btrfs_free_space *info, u64 offset, 1703 u64 bytes) 1704 { 1705 unsigned long start, count; 1706 1707 start = offset_to_bit(info->offset, ctl->unit, offset); 1708 count = bytes_to_bits(bytes, ctl->unit); 1709 ASSERT(start + count <= BITS_PER_BITMAP); 1710 1711 bitmap_set(info->bitmap, start, count); 1712 1713 info->bytes += bytes; 1714 ctl->free_space += bytes; 1715 } 1716 1717 /* 1718 * If we can not find suitable extent, we will use bytes to record 1719 * the size of the max extent. 1720 */ 1721 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1722 struct btrfs_free_space *bitmap_info, u64 *offset, 1723 u64 *bytes, bool for_alloc) 1724 { 1725 unsigned long found_bits = 0; 1726 unsigned long max_bits = 0; 1727 unsigned long bits, i; 1728 unsigned long next_zero; 1729 unsigned long extent_bits; 1730 1731 /* 1732 * Skip searching the bitmap if we don't have a contiguous section that 1733 * is large enough for this allocation. 1734 */ 1735 if (for_alloc && 1736 bitmap_info->max_extent_size && 1737 bitmap_info->max_extent_size < *bytes) { 1738 *bytes = bitmap_info->max_extent_size; 1739 return -1; 1740 } 1741 1742 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1743 max_t(u64, *offset, bitmap_info->offset)); 1744 bits = bytes_to_bits(*bytes, ctl->unit); 1745 1746 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1747 if (for_alloc && bits == 1) { 1748 found_bits = 1; 1749 break; 1750 } 1751 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1752 BITS_PER_BITMAP, i); 1753 extent_bits = next_zero - i; 1754 if (extent_bits >= bits) { 1755 found_bits = extent_bits; 1756 break; 1757 } else if (extent_bits > max_bits) { 1758 max_bits = extent_bits; 1759 } 1760 i = next_zero; 1761 } 1762 1763 if (found_bits) { 1764 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1765 *bytes = (u64)(found_bits) * ctl->unit; 1766 return 0; 1767 } 1768 1769 *bytes = (u64)(max_bits) * ctl->unit; 1770 bitmap_info->max_extent_size = *bytes; 1771 return -1; 1772 } 1773 1774 /* Cache the size of the max extent in bytes */ 1775 static struct btrfs_free_space * 1776 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1777 unsigned long align, u64 *max_extent_size) 1778 { 1779 struct btrfs_free_space *entry; 1780 struct rb_node *node; 1781 u64 tmp; 1782 u64 align_off; 1783 int ret; 1784 1785 if (!ctl->free_space_offset.rb_node) 1786 goto out; 1787 1788 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1789 if (!entry) 1790 goto out; 1791 1792 for (node = &entry->offset_index; node; node = rb_next(node)) { 1793 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1794 if (entry->bytes < *bytes) { 1795 if (entry->bytes > *max_extent_size) 1796 *max_extent_size = entry->bytes; 1797 continue; 1798 } 1799 1800 /* make sure the space returned is big enough 1801 * to match our requested alignment 1802 */ 1803 if (*bytes >= align) { 1804 tmp = entry->offset - ctl->start + align - 1; 1805 tmp = div64_u64(tmp, align); 1806 tmp = tmp * align + ctl->start; 1807 align_off = tmp - entry->offset; 1808 } else { 1809 align_off = 0; 1810 tmp = entry->offset; 1811 } 1812 1813 if (entry->bytes < *bytes + align_off) { 1814 if (entry->bytes > *max_extent_size) 1815 *max_extent_size = entry->bytes; 1816 continue; 1817 } 1818 1819 if (entry->bitmap) { 1820 u64 size = *bytes; 1821 1822 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1823 if (!ret) { 1824 *offset = tmp; 1825 *bytes = size; 1826 return entry; 1827 } else if (size > *max_extent_size) { 1828 *max_extent_size = size; 1829 } 1830 continue; 1831 } 1832 1833 *offset = tmp; 1834 *bytes = entry->bytes - align_off; 1835 return entry; 1836 } 1837 out: 1838 return NULL; 1839 } 1840 1841 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1842 struct btrfs_free_space *info, u64 offset) 1843 { 1844 info->offset = offset_to_bitmap(ctl, offset); 1845 info->bytes = 0; 1846 INIT_LIST_HEAD(&info->list); 1847 link_free_space(ctl, info); 1848 ctl->total_bitmaps++; 1849 1850 ctl->op->recalc_thresholds(ctl); 1851 } 1852 1853 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1854 struct btrfs_free_space *bitmap_info) 1855 { 1856 unlink_free_space(ctl, bitmap_info); 1857 kfree(bitmap_info->bitmap); 1858 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1859 ctl->total_bitmaps--; 1860 ctl->op->recalc_thresholds(ctl); 1861 } 1862 1863 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1864 struct btrfs_free_space *bitmap_info, 1865 u64 *offset, u64 *bytes) 1866 { 1867 u64 end; 1868 u64 search_start, search_bytes; 1869 int ret; 1870 1871 again: 1872 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1873 1874 /* 1875 * We need to search for bits in this bitmap. We could only cover some 1876 * of the extent in this bitmap thanks to how we add space, so we need 1877 * to search for as much as it as we can and clear that amount, and then 1878 * go searching for the next bit. 1879 */ 1880 search_start = *offset; 1881 search_bytes = ctl->unit; 1882 search_bytes = min(search_bytes, end - search_start + 1); 1883 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 1884 false); 1885 if (ret < 0 || search_start != *offset) 1886 return -EINVAL; 1887 1888 /* We may have found more bits than what we need */ 1889 search_bytes = min(search_bytes, *bytes); 1890 1891 /* Cannot clear past the end of the bitmap */ 1892 search_bytes = min(search_bytes, end - search_start + 1); 1893 1894 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1895 *offset += search_bytes; 1896 *bytes -= search_bytes; 1897 1898 if (*bytes) { 1899 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1900 if (!bitmap_info->bytes) 1901 free_bitmap(ctl, bitmap_info); 1902 1903 /* 1904 * no entry after this bitmap, but we still have bytes to 1905 * remove, so something has gone wrong. 1906 */ 1907 if (!next) 1908 return -EINVAL; 1909 1910 bitmap_info = rb_entry(next, struct btrfs_free_space, 1911 offset_index); 1912 1913 /* 1914 * if the next entry isn't a bitmap we need to return to let the 1915 * extent stuff do its work. 1916 */ 1917 if (!bitmap_info->bitmap) 1918 return -EAGAIN; 1919 1920 /* 1921 * Ok the next item is a bitmap, but it may not actually hold 1922 * the information for the rest of this free space stuff, so 1923 * look for it, and if we don't find it return so we can try 1924 * everything over again. 1925 */ 1926 search_start = *offset; 1927 search_bytes = ctl->unit; 1928 ret = search_bitmap(ctl, bitmap_info, &search_start, 1929 &search_bytes, false); 1930 if (ret < 0 || search_start != *offset) 1931 return -EAGAIN; 1932 1933 goto again; 1934 } else if (!bitmap_info->bytes) 1935 free_bitmap(ctl, bitmap_info); 1936 1937 return 0; 1938 } 1939 1940 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1941 struct btrfs_free_space *info, u64 offset, 1942 u64 bytes) 1943 { 1944 u64 bytes_to_set = 0; 1945 u64 end; 1946 1947 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1948 1949 bytes_to_set = min(end - offset, bytes); 1950 1951 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1952 1953 /* 1954 * We set some bytes, we have no idea what the max extent size is 1955 * anymore. 1956 */ 1957 info->max_extent_size = 0; 1958 1959 return bytes_to_set; 1960 1961 } 1962 1963 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1964 struct btrfs_free_space *info) 1965 { 1966 struct btrfs_block_group_cache *block_group = ctl->private; 1967 struct btrfs_fs_info *fs_info = block_group->fs_info; 1968 bool forced = false; 1969 1970 #ifdef CONFIG_BTRFS_DEBUG 1971 if (btrfs_should_fragment_free_space(block_group)) 1972 forced = true; 1973 #endif 1974 1975 /* 1976 * If we are below the extents threshold then we can add this as an 1977 * extent, and don't have to deal with the bitmap 1978 */ 1979 if (!forced && ctl->free_extents < ctl->extents_thresh) { 1980 /* 1981 * If this block group has some small extents we don't want to 1982 * use up all of our free slots in the cache with them, we want 1983 * to reserve them to larger extents, however if we have plenty 1984 * of cache left then go ahead an dadd them, no sense in adding 1985 * the overhead of a bitmap if we don't have to. 1986 */ 1987 if (info->bytes <= fs_info->sectorsize * 4) { 1988 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1989 return false; 1990 } else { 1991 return false; 1992 } 1993 } 1994 1995 /* 1996 * The original block groups from mkfs can be really small, like 8 1997 * megabytes, so don't bother with a bitmap for those entries. However 1998 * some block groups can be smaller than what a bitmap would cover but 1999 * are still large enough that they could overflow the 32k memory limit, 2000 * so allow those block groups to still be allowed to have a bitmap 2001 * entry. 2002 */ 2003 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) 2004 return false; 2005 2006 return true; 2007 } 2008 2009 static const struct btrfs_free_space_op free_space_op = { 2010 .recalc_thresholds = recalculate_thresholds, 2011 .use_bitmap = use_bitmap, 2012 }; 2013 2014 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2015 struct btrfs_free_space *info) 2016 { 2017 struct btrfs_free_space *bitmap_info; 2018 struct btrfs_block_group_cache *block_group = NULL; 2019 int added = 0; 2020 u64 bytes, offset, bytes_added; 2021 int ret; 2022 2023 bytes = info->bytes; 2024 offset = info->offset; 2025 2026 if (!ctl->op->use_bitmap(ctl, info)) 2027 return 0; 2028 2029 if (ctl->op == &free_space_op) 2030 block_group = ctl->private; 2031 again: 2032 /* 2033 * Since we link bitmaps right into the cluster we need to see if we 2034 * have a cluster here, and if so and it has our bitmap we need to add 2035 * the free space to that bitmap. 2036 */ 2037 if (block_group && !list_empty(&block_group->cluster_list)) { 2038 struct btrfs_free_cluster *cluster; 2039 struct rb_node *node; 2040 struct btrfs_free_space *entry; 2041 2042 cluster = list_entry(block_group->cluster_list.next, 2043 struct btrfs_free_cluster, 2044 block_group_list); 2045 spin_lock(&cluster->lock); 2046 node = rb_first(&cluster->root); 2047 if (!node) { 2048 spin_unlock(&cluster->lock); 2049 goto no_cluster_bitmap; 2050 } 2051 2052 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2053 if (!entry->bitmap) { 2054 spin_unlock(&cluster->lock); 2055 goto no_cluster_bitmap; 2056 } 2057 2058 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2059 bytes_added = add_bytes_to_bitmap(ctl, entry, 2060 offset, bytes); 2061 bytes -= bytes_added; 2062 offset += bytes_added; 2063 } 2064 spin_unlock(&cluster->lock); 2065 if (!bytes) { 2066 ret = 1; 2067 goto out; 2068 } 2069 } 2070 2071 no_cluster_bitmap: 2072 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2073 1, 0); 2074 if (!bitmap_info) { 2075 ASSERT(added == 0); 2076 goto new_bitmap; 2077 } 2078 2079 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 2080 bytes -= bytes_added; 2081 offset += bytes_added; 2082 added = 0; 2083 2084 if (!bytes) { 2085 ret = 1; 2086 goto out; 2087 } else 2088 goto again; 2089 2090 new_bitmap: 2091 if (info && info->bitmap) { 2092 add_new_bitmap(ctl, info, offset); 2093 added = 1; 2094 info = NULL; 2095 goto again; 2096 } else { 2097 spin_unlock(&ctl->tree_lock); 2098 2099 /* no pre-allocated info, allocate a new one */ 2100 if (!info) { 2101 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2102 GFP_NOFS); 2103 if (!info) { 2104 spin_lock(&ctl->tree_lock); 2105 ret = -ENOMEM; 2106 goto out; 2107 } 2108 } 2109 2110 /* allocate the bitmap */ 2111 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS); 2112 spin_lock(&ctl->tree_lock); 2113 if (!info->bitmap) { 2114 ret = -ENOMEM; 2115 goto out; 2116 } 2117 goto again; 2118 } 2119 2120 out: 2121 if (info) { 2122 if (info->bitmap) 2123 kfree(info->bitmap); 2124 kmem_cache_free(btrfs_free_space_cachep, info); 2125 } 2126 2127 return ret; 2128 } 2129 2130 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2131 struct btrfs_free_space *info, bool update_stat) 2132 { 2133 struct btrfs_free_space *left_info; 2134 struct btrfs_free_space *right_info; 2135 bool merged = false; 2136 u64 offset = info->offset; 2137 u64 bytes = info->bytes; 2138 2139 /* 2140 * first we want to see if there is free space adjacent to the range we 2141 * are adding, if there is remove that struct and add a new one to 2142 * cover the entire range 2143 */ 2144 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2145 if (right_info && rb_prev(&right_info->offset_index)) 2146 left_info = rb_entry(rb_prev(&right_info->offset_index), 2147 struct btrfs_free_space, offset_index); 2148 else 2149 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2150 2151 if (right_info && !right_info->bitmap) { 2152 if (update_stat) 2153 unlink_free_space(ctl, right_info); 2154 else 2155 __unlink_free_space(ctl, right_info); 2156 info->bytes += right_info->bytes; 2157 kmem_cache_free(btrfs_free_space_cachep, right_info); 2158 merged = true; 2159 } 2160 2161 if (left_info && !left_info->bitmap && 2162 left_info->offset + left_info->bytes == offset) { 2163 if (update_stat) 2164 unlink_free_space(ctl, left_info); 2165 else 2166 __unlink_free_space(ctl, left_info); 2167 info->offset = left_info->offset; 2168 info->bytes += left_info->bytes; 2169 kmem_cache_free(btrfs_free_space_cachep, left_info); 2170 merged = true; 2171 } 2172 2173 return merged; 2174 } 2175 2176 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2177 struct btrfs_free_space *info, 2178 bool update_stat) 2179 { 2180 struct btrfs_free_space *bitmap; 2181 unsigned long i; 2182 unsigned long j; 2183 const u64 end = info->offset + info->bytes; 2184 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2185 u64 bytes; 2186 2187 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2188 if (!bitmap) 2189 return false; 2190 2191 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2192 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2193 if (j == i) 2194 return false; 2195 bytes = (j - i) * ctl->unit; 2196 info->bytes += bytes; 2197 2198 if (update_stat) 2199 bitmap_clear_bits(ctl, bitmap, end, bytes); 2200 else 2201 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2202 2203 if (!bitmap->bytes) 2204 free_bitmap(ctl, bitmap); 2205 2206 return true; 2207 } 2208 2209 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2210 struct btrfs_free_space *info, 2211 bool update_stat) 2212 { 2213 struct btrfs_free_space *bitmap; 2214 u64 bitmap_offset; 2215 unsigned long i; 2216 unsigned long j; 2217 unsigned long prev_j; 2218 u64 bytes; 2219 2220 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2221 /* If we're on a boundary, try the previous logical bitmap. */ 2222 if (bitmap_offset == info->offset) { 2223 if (info->offset == 0) 2224 return false; 2225 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2226 } 2227 2228 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2229 if (!bitmap) 2230 return false; 2231 2232 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2233 j = 0; 2234 prev_j = (unsigned long)-1; 2235 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2236 if (j > i) 2237 break; 2238 prev_j = j; 2239 } 2240 if (prev_j == i) 2241 return false; 2242 2243 if (prev_j == (unsigned long)-1) 2244 bytes = (i + 1) * ctl->unit; 2245 else 2246 bytes = (i - prev_j) * ctl->unit; 2247 2248 info->offset -= bytes; 2249 info->bytes += bytes; 2250 2251 if (update_stat) 2252 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2253 else 2254 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2255 2256 if (!bitmap->bytes) 2257 free_bitmap(ctl, bitmap); 2258 2259 return true; 2260 } 2261 2262 /* 2263 * We prefer always to allocate from extent entries, both for clustered and 2264 * non-clustered allocation requests. So when attempting to add a new extent 2265 * entry, try to see if there's adjacent free space in bitmap entries, and if 2266 * there is, migrate that space from the bitmaps to the extent. 2267 * Like this we get better chances of satisfying space allocation requests 2268 * because we attempt to satisfy them based on a single cache entry, and never 2269 * on 2 or more entries - even if the entries represent a contiguous free space 2270 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2271 * ends). 2272 */ 2273 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2274 struct btrfs_free_space *info, 2275 bool update_stat) 2276 { 2277 /* 2278 * Only work with disconnected entries, as we can change their offset, 2279 * and must be extent entries. 2280 */ 2281 ASSERT(!info->bitmap); 2282 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2283 2284 if (ctl->total_bitmaps > 0) { 2285 bool stole_end; 2286 bool stole_front = false; 2287 2288 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2289 if (ctl->total_bitmaps > 0) 2290 stole_front = steal_from_bitmap_to_front(ctl, info, 2291 update_stat); 2292 2293 if (stole_end || stole_front) 2294 try_merge_free_space(ctl, info, update_stat); 2295 } 2296 } 2297 2298 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, 2299 struct btrfs_free_space_ctl *ctl, 2300 u64 offset, u64 bytes) 2301 { 2302 struct btrfs_free_space *info; 2303 int ret = 0; 2304 2305 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2306 if (!info) 2307 return -ENOMEM; 2308 2309 info->offset = offset; 2310 info->bytes = bytes; 2311 RB_CLEAR_NODE(&info->offset_index); 2312 2313 spin_lock(&ctl->tree_lock); 2314 2315 if (try_merge_free_space(ctl, info, true)) 2316 goto link; 2317 2318 /* 2319 * There was no extent directly to the left or right of this new 2320 * extent then we know we're going to have to allocate a new extent, so 2321 * before we do that see if we need to drop this into a bitmap 2322 */ 2323 ret = insert_into_bitmap(ctl, info); 2324 if (ret < 0) { 2325 goto out; 2326 } else if (ret) { 2327 ret = 0; 2328 goto out; 2329 } 2330 link: 2331 /* 2332 * Only steal free space from adjacent bitmaps if we're sure we're not 2333 * going to add the new free space to existing bitmap entries - because 2334 * that would mean unnecessary work that would be reverted. Therefore 2335 * attempt to steal space from bitmaps if we're adding an extent entry. 2336 */ 2337 steal_from_bitmap(ctl, info, true); 2338 2339 ret = link_free_space(ctl, info); 2340 if (ret) 2341 kmem_cache_free(btrfs_free_space_cachep, info); 2342 out: 2343 spin_unlock(&ctl->tree_lock); 2344 2345 if (ret) { 2346 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2347 ASSERT(ret != -EEXIST); 2348 } 2349 2350 return ret; 2351 } 2352 2353 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 2354 u64 offset, u64 bytes) 2355 { 2356 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2357 struct btrfs_free_space *info; 2358 int ret; 2359 bool re_search = false; 2360 2361 spin_lock(&ctl->tree_lock); 2362 2363 again: 2364 ret = 0; 2365 if (!bytes) 2366 goto out_lock; 2367 2368 info = tree_search_offset(ctl, offset, 0, 0); 2369 if (!info) { 2370 /* 2371 * oops didn't find an extent that matched the space we wanted 2372 * to remove, look for a bitmap instead 2373 */ 2374 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2375 1, 0); 2376 if (!info) { 2377 /* 2378 * If we found a partial bit of our free space in a 2379 * bitmap but then couldn't find the other part this may 2380 * be a problem, so WARN about it. 2381 */ 2382 WARN_ON(re_search); 2383 goto out_lock; 2384 } 2385 } 2386 2387 re_search = false; 2388 if (!info->bitmap) { 2389 unlink_free_space(ctl, info); 2390 if (offset == info->offset) { 2391 u64 to_free = min(bytes, info->bytes); 2392 2393 info->bytes -= to_free; 2394 info->offset += to_free; 2395 if (info->bytes) { 2396 ret = link_free_space(ctl, info); 2397 WARN_ON(ret); 2398 } else { 2399 kmem_cache_free(btrfs_free_space_cachep, info); 2400 } 2401 2402 offset += to_free; 2403 bytes -= to_free; 2404 goto again; 2405 } else { 2406 u64 old_end = info->bytes + info->offset; 2407 2408 info->bytes = offset - info->offset; 2409 ret = link_free_space(ctl, info); 2410 WARN_ON(ret); 2411 if (ret) 2412 goto out_lock; 2413 2414 /* Not enough bytes in this entry to satisfy us */ 2415 if (old_end < offset + bytes) { 2416 bytes -= old_end - offset; 2417 offset = old_end; 2418 goto again; 2419 } else if (old_end == offset + bytes) { 2420 /* all done */ 2421 goto out_lock; 2422 } 2423 spin_unlock(&ctl->tree_lock); 2424 2425 ret = btrfs_add_free_space(block_group, offset + bytes, 2426 old_end - (offset + bytes)); 2427 WARN_ON(ret); 2428 goto out; 2429 } 2430 } 2431 2432 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2433 if (ret == -EAGAIN) { 2434 re_search = true; 2435 goto again; 2436 } 2437 out_lock: 2438 spin_unlock(&ctl->tree_lock); 2439 out: 2440 return ret; 2441 } 2442 2443 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 2444 u64 bytes) 2445 { 2446 struct btrfs_fs_info *fs_info = block_group->fs_info; 2447 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2448 struct btrfs_free_space *info; 2449 struct rb_node *n; 2450 int count = 0; 2451 2452 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2453 info = rb_entry(n, struct btrfs_free_space, offset_index); 2454 if (info->bytes >= bytes && !block_group->ro) 2455 count++; 2456 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2457 info->offset, info->bytes, 2458 (info->bitmap) ? "yes" : "no"); 2459 } 2460 btrfs_info(fs_info, "block group has cluster?: %s", 2461 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2462 btrfs_info(fs_info, 2463 "%d blocks of free space at or bigger than bytes is", count); 2464 } 2465 2466 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 2467 { 2468 struct btrfs_fs_info *fs_info = block_group->fs_info; 2469 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2470 2471 spin_lock_init(&ctl->tree_lock); 2472 ctl->unit = fs_info->sectorsize; 2473 ctl->start = block_group->key.objectid; 2474 ctl->private = block_group; 2475 ctl->op = &free_space_op; 2476 INIT_LIST_HEAD(&ctl->trimming_ranges); 2477 mutex_init(&ctl->cache_writeout_mutex); 2478 2479 /* 2480 * we only want to have 32k of ram per block group for keeping 2481 * track of free space, and if we pass 1/2 of that we want to 2482 * start converting things over to using bitmaps 2483 */ 2484 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2485 } 2486 2487 /* 2488 * for a given cluster, put all of its extents back into the free 2489 * space cache. If the block group passed doesn't match the block group 2490 * pointed to by the cluster, someone else raced in and freed the 2491 * cluster already. In that case, we just return without changing anything 2492 */ 2493 static int 2494 __btrfs_return_cluster_to_free_space( 2495 struct btrfs_block_group_cache *block_group, 2496 struct btrfs_free_cluster *cluster) 2497 { 2498 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2499 struct btrfs_free_space *entry; 2500 struct rb_node *node; 2501 2502 spin_lock(&cluster->lock); 2503 if (cluster->block_group != block_group) 2504 goto out; 2505 2506 cluster->block_group = NULL; 2507 cluster->window_start = 0; 2508 list_del_init(&cluster->block_group_list); 2509 2510 node = rb_first(&cluster->root); 2511 while (node) { 2512 bool bitmap; 2513 2514 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2515 node = rb_next(&entry->offset_index); 2516 rb_erase(&entry->offset_index, &cluster->root); 2517 RB_CLEAR_NODE(&entry->offset_index); 2518 2519 bitmap = (entry->bitmap != NULL); 2520 if (!bitmap) { 2521 try_merge_free_space(ctl, entry, false); 2522 steal_from_bitmap(ctl, entry, false); 2523 } 2524 tree_insert_offset(&ctl->free_space_offset, 2525 entry->offset, &entry->offset_index, bitmap); 2526 } 2527 cluster->root = RB_ROOT; 2528 2529 out: 2530 spin_unlock(&cluster->lock); 2531 btrfs_put_block_group(block_group); 2532 return 0; 2533 } 2534 2535 static void __btrfs_remove_free_space_cache_locked( 2536 struct btrfs_free_space_ctl *ctl) 2537 { 2538 struct btrfs_free_space *info; 2539 struct rb_node *node; 2540 2541 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2542 info = rb_entry(node, struct btrfs_free_space, offset_index); 2543 if (!info->bitmap) { 2544 unlink_free_space(ctl, info); 2545 kmem_cache_free(btrfs_free_space_cachep, info); 2546 } else { 2547 free_bitmap(ctl, info); 2548 } 2549 2550 cond_resched_lock(&ctl->tree_lock); 2551 } 2552 } 2553 2554 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2555 { 2556 spin_lock(&ctl->tree_lock); 2557 __btrfs_remove_free_space_cache_locked(ctl); 2558 spin_unlock(&ctl->tree_lock); 2559 } 2560 2561 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2562 { 2563 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2564 struct btrfs_free_cluster *cluster; 2565 struct list_head *head; 2566 2567 spin_lock(&ctl->tree_lock); 2568 while ((head = block_group->cluster_list.next) != 2569 &block_group->cluster_list) { 2570 cluster = list_entry(head, struct btrfs_free_cluster, 2571 block_group_list); 2572 2573 WARN_ON(cluster->block_group != block_group); 2574 __btrfs_return_cluster_to_free_space(block_group, cluster); 2575 2576 cond_resched_lock(&ctl->tree_lock); 2577 } 2578 __btrfs_remove_free_space_cache_locked(ctl); 2579 spin_unlock(&ctl->tree_lock); 2580 2581 } 2582 2583 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2584 u64 offset, u64 bytes, u64 empty_size, 2585 u64 *max_extent_size) 2586 { 2587 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2588 struct btrfs_free_space *entry = NULL; 2589 u64 bytes_search = bytes + empty_size; 2590 u64 ret = 0; 2591 u64 align_gap = 0; 2592 u64 align_gap_len = 0; 2593 2594 spin_lock(&ctl->tree_lock); 2595 entry = find_free_space(ctl, &offset, &bytes_search, 2596 block_group->full_stripe_len, max_extent_size); 2597 if (!entry) 2598 goto out; 2599 2600 ret = offset; 2601 if (entry->bitmap) { 2602 bitmap_clear_bits(ctl, entry, offset, bytes); 2603 if (!entry->bytes) 2604 free_bitmap(ctl, entry); 2605 } else { 2606 unlink_free_space(ctl, entry); 2607 align_gap_len = offset - entry->offset; 2608 align_gap = entry->offset; 2609 2610 entry->offset = offset + bytes; 2611 WARN_ON(entry->bytes < bytes + align_gap_len); 2612 2613 entry->bytes -= bytes + align_gap_len; 2614 if (!entry->bytes) 2615 kmem_cache_free(btrfs_free_space_cachep, entry); 2616 else 2617 link_free_space(ctl, entry); 2618 } 2619 out: 2620 spin_unlock(&ctl->tree_lock); 2621 2622 if (align_gap_len) 2623 __btrfs_add_free_space(block_group->fs_info, ctl, 2624 align_gap, align_gap_len); 2625 return ret; 2626 } 2627 2628 /* 2629 * given a cluster, put all of its extents back into the free space 2630 * cache. If a block group is passed, this function will only free 2631 * a cluster that belongs to the passed block group. 2632 * 2633 * Otherwise, it'll get a reference on the block group pointed to by the 2634 * cluster and remove the cluster from it. 2635 */ 2636 int btrfs_return_cluster_to_free_space( 2637 struct btrfs_block_group_cache *block_group, 2638 struct btrfs_free_cluster *cluster) 2639 { 2640 struct btrfs_free_space_ctl *ctl; 2641 int ret; 2642 2643 /* first, get a safe pointer to the block group */ 2644 spin_lock(&cluster->lock); 2645 if (!block_group) { 2646 block_group = cluster->block_group; 2647 if (!block_group) { 2648 spin_unlock(&cluster->lock); 2649 return 0; 2650 } 2651 } else if (cluster->block_group != block_group) { 2652 /* someone else has already freed it don't redo their work */ 2653 spin_unlock(&cluster->lock); 2654 return 0; 2655 } 2656 atomic_inc(&block_group->count); 2657 spin_unlock(&cluster->lock); 2658 2659 ctl = block_group->free_space_ctl; 2660 2661 /* now return any extents the cluster had on it */ 2662 spin_lock(&ctl->tree_lock); 2663 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2664 spin_unlock(&ctl->tree_lock); 2665 2666 /* finally drop our ref */ 2667 btrfs_put_block_group(block_group); 2668 return ret; 2669 } 2670 2671 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2672 struct btrfs_free_cluster *cluster, 2673 struct btrfs_free_space *entry, 2674 u64 bytes, u64 min_start, 2675 u64 *max_extent_size) 2676 { 2677 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2678 int err; 2679 u64 search_start = cluster->window_start; 2680 u64 search_bytes = bytes; 2681 u64 ret = 0; 2682 2683 search_start = min_start; 2684 search_bytes = bytes; 2685 2686 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2687 if (err) { 2688 if (search_bytes > *max_extent_size) 2689 *max_extent_size = search_bytes; 2690 return 0; 2691 } 2692 2693 ret = search_start; 2694 __bitmap_clear_bits(ctl, entry, ret, bytes); 2695 2696 return ret; 2697 } 2698 2699 /* 2700 * given a cluster, try to allocate 'bytes' from it, returns 0 2701 * if it couldn't find anything suitably large, or a logical disk offset 2702 * if things worked out 2703 */ 2704 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2705 struct btrfs_free_cluster *cluster, u64 bytes, 2706 u64 min_start, u64 *max_extent_size) 2707 { 2708 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2709 struct btrfs_free_space *entry = NULL; 2710 struct rb_node *node; 2711 u64 ret = 0; 2712 2713 spin_lock(&cluster->lock); 2714 if (bytes > cluster->max_size) 2715 goto out; 2716 2717 if (cluster->block_group != block_group) 2718 goto out; 2719 2720 node = rb_first(&cluster->root); 2721 if (!node) 2722 goto out; 2723 2724 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2725 while (1) { 2726 if (entry->bytes < bytes && entry->bytes > *max_extent_size) 2727 *max_extent_size = entry->bytes; 2728 2729 if (entry->bytes < bytes || 2730 (!entry->bitmap && entry->offset < min_start)) { 2731 node = rb_next(&entry->offset_index); 2732 if (!node) 2733 break; 2734 entry = rb_entry(node, struct btrfs_free_space, 2735 offset_index); 2736 continue; 2737 } 2738 2739 if (entry->bitmap) { 2740 ret = btrfs_alloc_from_bitmap(block_group, 2741 cluster, entry, bytes, 2742 cluster->window_start, 2743 max_extent_size); 2744 if (ret == 0) { 2745 node = rb_next(&entry->offset_index); 2746 if (!node) 2747 break; 2748 entry = rb_entry(node, struct btrfs_free_space, 2749 offset_index); 2750 continue; 2751 } 2752 cluster->window_start += bytes; 2753 } else { 2754 ret = entry->offset; 2755 2756 entry->offset += bytes; 2757 entry->bytes -= bytes; 2758 } 2759 2760 if (entry->bytes == 0) 2761 rb_erase(&entry->offset_index, &cluster->root); 2762 break; 2763 } 2764 out: 2765 spin_unlock(&cluster->lock); 2766 2767 if (!ret) 2768 return 0; 2769 2770 spin_lock(&ctl->tree_lock); 2771 2772 ctl->free_space -= bytes; 2773 if (entry->bytes == 0) { 2774 ctl->free_extents--; 2775 if (entry->bitmap) { 2776 kfree(entry->bitmap); 2777 ctl->total_bitmaps--; 2778 ctl->op->recalc_thresholds(ctl); 2779 } 2780 kmem_cache_free(btrfs_free_space_cachep, entry); 2781 } 2782 2783 spin_unlock(&ctl->tree_lock); 2784 2785 return ret; 2786 } 2787 2788 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2789 struct btrfs_free_space *entry, 2790 struct btrfs_free_cluster *cluster, 2791 u64 offset, u64 bytes, 2792 u64 cont1_bytes, u64 min_bytes) 2793 { 2794 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2795 unsigned long next_zero; 2796 unsigned long i; 2797 unsigned long want_bits; 2798 unsigned long min_bits; 2799 unsigned long found_bits; 2800 unsigned long max_bits = 0; 2801 unsigned long start = 0; 2802 unsigned long total_found = 0; 2803 int ret; 2804 2805 i = offset_to_bit(entry->offset, ctl->unit, 2806 max_t(u64, offset, entry->offset)); 2807 want_bits = bytes_to_bits(bytes, ctl->unit); 2808 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2809 2810 /* 2811 * Don't bother looking for a cluster in this bitmap if it's heavily 2812 * fragmented. 2813 */ 2814 if (entry->max_extent_size && 2815 entry->max_extent_size < cont1_bytes) 2816 return -ENOSPC; 2817 again: 2818 found_bits = 0; 2819 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2820 next_zero = find_next_zero_bit(entry->bitmap, 2821 BITS_PER_BITMAP, i); 2822 if (next_zero - i >= min_bits) { 2823 found_bits = next_zero - i; 2824 if (found_bits > max_bits) 2825 max_bits = found_bits; 2826 break; 2827 } 2828 if (next_zero - i > max_bits) 2829 max_bits = next_zero - i; 2830 i = next_zero; 2831 } 2832 2833 if (!found_bits) { 2834 entry->max_extent_size = (u64)max_bits * ctl->unit; 2835 return -ENOSPC; 2836 } 2837 2838 if (!total_found) { 2839 start = i; 2840 cluster->max_size = 0; 2841 } 2842 2843 total_found += found_bits; 2844 2845 if (cluster->max_size < found_bits * ctl->unit) 2846 cluster->max_size = found_bits * ctl->unit; 2847 2848 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2849 i = next_zero + 1; 2850 goto again; 2851 } 2852 2853 cluster->window_start = start * ctl->unit + entry->offset; 2854 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2855 ret = tree_insert_offset(&cluster->root, entry->offset, 2856 &entry->offset_index, 1); 2857 ASSERT(!ret); /* -EEXIST; Logic error */ 2858 2859 trace_btrfs_setup_cluster(block_group, cluster, 2860 total_found * ctl->unit, 1); 2861 return 0; 2862 } 2863 2864 /* 2865 * This searches the block group for just extents to fill the cluster with. 2866 * Try to find a cluster with at least bytes total bytes, at least one 2867 * extent of cont1_bytes, and other clusters of at least min_bytes. 2868 */ 2869 static noinline int 2870 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2871 struct btrfs_free_cluster *cluster, 2872 struct list_head *bitmaps, u64 offset, u64 bytes, 2873 u64 cont1_bytes, u64 min_bytes) 2874 { 2875 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2876 struct btrfs_free_space *first = NULL; 2877 struct btrfs_free_space *entry = NULL; 2878 struct btrfs_free_space *last; 2879 struct rb_node *node; 2880 u64 window_free; 2881 u64 max_extent; 2882 u64 total_size = 0; 2883 2884 entry = tree_search_offset(ctl, offset, 0, 1); 2885 if (!entry) 2886 return -ENOSPC; 2887 2888 /* 2889 * We don't want bitmaps, so just move along until we find a normal 2890 * extent entry. 2891 */ 2892 while (entry->bitmap || entry->bytes < min_bytes) { 2893 if (entry->bitmap && list_empty(&entry->list)) 2894 list_add_tail(&entry->list, bitmaps); 2895 node = rb_next(&entry->offset_index); 2896 if (!node) 2897 return -ENOSPC; 2898 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2899 } 2900 2901 window_free = entry->bytes; 2902 max_extent = entry->bytes; 2903 first = entry; 2904 last = entry; 2905 2906 for (node = rb_next(&entry->offset_index); node; 2907 node = rb_next(&entry->offset_index)) { 2908 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2909 2910 if (entry->bitmap) { 2911 if (list_empty(&entry->list)) 2912 list_add_tail(&entry->list, bitmaps); 2913 continue; 2914 } 2915 2916 if (entry->bytes < min_bytes) 2917 continue; 2918 2919 last = entry; 2920 window_free += entry->bytes; 2921 if (entry->bytes > max_extent) 2922 max_extent = entry->bytes; 2923 } 2924 2925 if (window_free < bytes || max_extent < cont1_bytes) 2926 return -ENOSPC; 2927 2928 cluster->window_start = first->offset; 2929 2930 node = &first->offset_index; 2931 2932 /* 2933 * now we've found our entries, pull them out of the free space 2934 * cache and put them into the cluster rbtree 2935 */ 2936 do { 2937 int ret; 2938 2939 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2940 node = rb_next(&entry->offset_index); 2941 if (entry->bitmap || entry->bytes < min_bytes) 2942 continue; 2943 2944 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2945 ret = tree_insert_offset(&cluster->root, entry->offset, 2946 &entry->offset_index, 0); 2947 total_size += entry->bytes; 2948 ASSERT(!ret); /* -EEXIST; Logic error */ 2949 } while (node && entry != last); 2950 2951 cluster->max_size = max_extent; 2952 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2953 return 0; 2954 } 2955 2956 /* 2957 * This specifically looks for bitmaps that may work in the cluster, we assume 2958 * that we have already failed to find extents that will work. 2959 */ 2960 static noinline int 2961 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2962 struct btrfs_free_cluster *cluster, 2963 struct list_head *bitmaps, u64 offset, u64 bytes, 2964 u64 cont1_bytes, u64 min_bytes) 2965 { 2966 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2967 struct btrfs_free_space *entry = NULL; 2968 int ret = -ENOSPC; 2969 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2970 2971 if (ctl->total_bitmaps == 0) 2972 return -ENOSPC; 2973 2974 /* 2975 * The bitmap that covers offset won't be in the list unless offset 2976 * is just its start offset. 2977 */ 2978 if (!list_empty(bitmaps)) 2979 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2980 2981 if (!entry || entry->offset != bitmap_offset) { 2982 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2983 if (entry && list_empty(&entry->list)) 2984 list_add(&entry->list, bitmaps); 2985 } 2986 2987 list_for_each_entry(entry, bitmaps, list) { 2988 if (entry->bytes < bytes) 2989 continue; 2990 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2991 bytes, cont1_bytes, min_bytes); 2992 if (!ret) 2993 return 0; 2994 } 2995 2996 /* 2997 * The bitmaps list has all the bitmaps that record free space 2998 * starting after offset, so no more search is required. 2999 */ 3000 return -ENOSPC; 3001 } 3002 3003 /* 3004 * here we try to find a cluster of blocks in a block group. The goal 3005 * is to find at least bytes+empty_size. 3006 * We might not find them all in one contiguous area. 3007 * 3008 * returns zero and sets up cluster if things worked out, otherwise 3009 * it returns -enospc 3010 */ 3011 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info, 3012 struct btrfs_block_group_cache *block_group, 3013 struct btrfs_free_cluster *cluster, 3014 u64 offset, u64 bytes, u64 empty_size) 3015 { 3016 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3017 struct btrfs_free_space *entry, *tmp; 3018 LIST_HEAD(bitmaps); 3019 u64 min_bytes; 3020 u64 cont1_bytes; 3021 int ret; 3022 3023 /* 3024 * Choose the minimum extent size we'll require for this 3025 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3026 * For metadata, allow allocates with smaller extents. For 3027 * data, keep it dense. 3028 */ 3029 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3030 cont1_bytes = min_bytes = bytes + empty_size; 3031 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3032 cont1_bytes = bytes; 3033 min_bytes = fs_info->sectorsize; 3034 } else { 3035 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3036 min_bytes = fs_info->sectorsize; 3037 } 3038 3039 spin_lock(&ctl->tree_lock); 3040 3041 /* 3042 * If we know we don't have enough space to make a cluster don't even 3043 * bother doing all the work to try and find one. 3044 */ 3045 if (ctl->free_space < bytes) { 3046 spin_unlock(&ctl->tree_lock); 3047 return -ENOSPC; 3048 } 3049 3050 spin_lock(&cluster->lock); 3051 3052 /* someone already found a cluster, hooray */ 3053 if (cluster->block_group) { 3054 ret = 0; 3055 goto out; 3056 } 3057 3058 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3059 min_bytes); 3060 3061 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3062 bytes + empty_size, 3063 cont1_bytes, min_bytes); 3064 if (ret) 3065 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3066 offset, bytes + empty_size, 3067 cont1_bytes, min_bytes); 3068 3069 /* Clear our temporary list */ 3070 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3071 list_del_init(&entry->list); 3072 3073 if (!ret) { 3074 atomic_inc(&block_group->count); 3075 list_add_tail(&cluster->block_group_list, 3076 &block_group->cluster_list); 3077 cluster->block_group = block_group; 3078 } else { 3079 trace_btrfs_failed_cluster_setup(block_group); 3080 } 3081 out: 3082 spin_unlock(&cluster->lock); 3083 spin_unlock(&ctl->tree_lock); 3084 3085 return ret; 3086 } 3087 3088 /* 3089 * simple code to zero out a cluster 3090 */ 3091 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3092 { 3093 spin_lock_init(&cluster->lock); 3094 spin_lock_init(&cluster->refill_lock); 3095 cluster->root = RB_ROOT; 3096 cluster->max_size = 0; 3097 cluster->fragmented = false; 3098 INIT_LIST_HEAD(&cluster->block_group_list); 3099 cluster->block_group = NULL; 3100 } 3101 3102 static int do_trimming(struct btrfs_block_group_cache *block_group, 3103 u64 *total_trimmed, u64 start, u64 bytes, 3104 u64 reserved_start, u64 reserved_bytes, 3105 struct btrfs_trim_range *trim_entry) 3106 { 3107 struct btrfs_space_info *space_info = block_group->space_info; 3108 struct btrfs_fs_info *fs_info = block_group->fs_info; 3109 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3110 int ret; 3111 int update = 0; 3112 u64 trimmed = 0; 3113 3114 spin_lock(&space_info->lock); 3115 spin_lock(&block_group->lock); 3116 if (!block_group->ro) { 3117 block_group->reserved += reserved_bytes; 3118 space_info->bytes_reserved += reserved_bytes; 3119 update = 1; 3120 } 3121 spin_unlock(&block_group->lock); 3122 spin_unlock(&space_info->lock); 3123 3124 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3125 if (!ret) 3126 *total_trimmed += trimmed; 3127 3128 mutex_lock(&ctl->cache_writeout_mutex); 3129 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 3130 list_del(&trim_entry->list); 3131 mutex_unlock(&ctl->cache_writeout_mutex); 3132 3133 if (update) { 3134 spin_lock(&space_info->lock); 3135 spin_lock(&block_group->lock); 3136 if (block_group->ro) 3137 space_info->bytes_readonly += reserved_bytes; 3138 block_group->reserved -= reserved_bytes; 3139 space_info->bytes_reserved -= reserved_bytes; 3140 spin_unlock(&space_info->lock); 3141 spin_unlock(&block_group->lock); 3142 } 3143 3144 return ret; 3145 } 3146 3147 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 3148 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3149 { 3150 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3151 struct btrfs_free_space *entry; 3152 struct rb_node *node; 3153 int ret = 0; 3154 u64 extent_start; 3155 u64 extent_bytes; 3156 u64 bytes; 3157 3158 while (start < end) { 3159 struct btrfs_trim_range trim_entry; 3160 3161 mutex_lock(&ctl->cache_writeout_mutex); 3162 spin_lock(&ctl->tree_lock); 3163 3164 if (ctl->free_space < minlen) { 3165 spin_unlock(&ctl->tree_lock); 3166 mutex_unlock(&ctl->cache_writeout_mutex); 3167 break; 3168 } 3169 3170 entry = tree_search_offset(ctl, start, 0, 1); 3171 if (!entry) { 3172 spin_unlock(&ctl->tree_lock); 3173 mutex_unlock(&ctl->cache_writeout_mutex); 3174 break; 3175 } 3176 3177 /* skip bitmaps */ 3178 while (entry->bitmap) { 3179 node = rb_next(&entry->offset_index); 3180 if (!node) { 3181 spin_unlock(&ctl->tree_lock); 3182 mutex_unlock(&ctl->cache_writeout_mutex); 3183 goto out; 3184 } 3185 entry = rb_entry(node, struct btrfs_free_space, 3186 offset_index); 3187 } 3188 3189 if (entry->offset >= end) { 3190 spin_unlock(&ctl->tree_lock); 3191 mutex_unlock(&ctl->cache_writeout_mutex); 3192 break; 3193 } 3194 3195 extent_start = entry->offset; 3196 extent_bytes = entry->bytes; 3197 start = max(start, extent_start); 3198 bytes = min(extent_start + extent_bytes, end) - start; 3199 if (bytes < minlen) { 3200 spin_unlock(&ctl->tree_lock); 3201 mutex_unlock(&ctl->cache_writeout_mutex); 3202 goto next; 3203 } 3204 3205 unlink_free_space(ctl, entry); 3206 kmem_cache_free(btrfs_free_space_cachep, entry); 3207 3208 spin_unlock(&ctl->tree_lock); 3209 trim_entry.start = extent_start; 3210 trim_entry.bytes = extent_bytes; 3211 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3212 mutex_unlock(&ctl->cache_writeout_mutex); 3213 3214 ret = do_trimming(block_group, total_trimmed, start, bytes, 3215 extent_start, extent_bytes, &trim_entry); 3216 if (ret) 3217 break; 3218 next: 3219 start += bytes; 3220 3221 if (fatal_signal_pending(current)) { 3222 ret = -ERESTARTSYS; 3223 break; 3224 } 3225 3226 cond_resched(); 3227 } 3228 out: 3229 return ret; 3230 } 3231 3232 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 3233 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3234 { 3235 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3236 struct btrfs_free_space *entry; 3237 int ret = 0; 3238 int ret2; 3239 u64 bytes; 3240 u64 offset = offset_to_bitmap(ctl, start); 3241 3242 while (offset < end) { 3243 bool next_bitmap = false; 3244 struct btrfs_trim_range trim_entry; 3245 3246 mutex_lock(&ctl->cache_writeout_mutex); 3247 spin_lock(&ctl->tree_lock); 3248 3249 if (ctl->free_space < minlen) { 3250 spin_unlock(&ctl->tree_lock); 3251 mutex_unlock(&ctl->cache_writeout_mutex); 3252 break; 3253 } 3254 3255 entry = tree_search_offset(ctl, offset, 1, 0); 3256 if (!entry) { 3257 spin_unlock(&ctl->tree_lock); 3258 mutex_unlock(&ctl->cache_writeout_mutex); 3259 next_bitmap = true; 3260 goto next; 3261 } 3262 3263 bytes = minlen; 3264 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3265 if (ret2 || start >= end) { 3266 spin_unlock(&ctl->tree_lock); 3267 mutex_unlock(&ctl->cache_writeout_mutex); 3268 next_bitmap = true; 3269 goto next; 3270 } 3271 3272 bytes = min(bytes, end - start); 3273 if (bytes < minlen) { 3274 spin_unlock(&ctl->tree_lock); 3275 mutex_unlock(&ctl->cache_writeout_mutex); 3276 goto next; 3277 } 3278 3279 bitmap_clear_bits(ctl, entry, start, bytes); 3280 if (entry->bytes == 0) 3281 free_bitmap(ctl, entry); 3282 3283 spin_unlock(&ctl->tree_lock); 3284 trim_entry.start = start; 3285 trim_entry.bytes = bytes; 3286 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3287 mutex_unlock(&ctl->cache_writeout_mutex); 3288 3289 ret = do_trimming(block_group, total_trimmed, start, bytes, 3290 start, bytes, &trim_entry); 3291 if (ret) 3292 break; 3293 next: 3294 if (next_bitmap) { 3295 offset += BITS_PER_BITMAP * ctl->unit; 3296 } else { 3297 start += bytes; 3298 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 3299 offset += BITS_PER_BITMAP * ctl->unit; 3300 } 3301 3302 if (fatal_signal_pending(current)) { 3303 ret = -ERESTARTSYS; 3304 break; 3305 } 3306 3307 cond_resched(); 3308 } 3309 3310 return ret; 3311 } 3312 3313 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache) 3314 { 3315 atomic_inc(&cache->trimming); 3316 } 3317 3318 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group) 3319 { 3320 struct btrfs_fs_info *fs_info = block_group->fs_info; 3321 struct extent_map_tree *em_tree; 3322 struct extent_map *em; 3323 bool cleanup; 3324 3325 spin_lock(&block_group->lock); 3326 cleanup = (atomic_dec_and_test(&block_group->trimming) && 3327 block_group->removed); 3328 spin_unlock(&block_group->lock); 3329 3330 if (cleanup) { 3331 mutex_lock(&fs_info->chunk_mutex); 3332 em_tree = &fs_info->mapping_tree.map_tree; 3333 write_lock(&em_tree->lock); 3334 em = lookup_extent_mapping(em_tree, block_group->key.objectid, 3335 1); 3336 BUG_ON(!em); /* logic error, can't happen */ 3337 /* 3338 * remove_extent_mapping() will delete us from the pinned_chunks 3339 * list, which is protected by the chunk mutex. 3340 */ 3341 remove_extent_mapping(em_tree, em); 3342 write_unlock(&em_tree->lock); 3343 mutex_unlock(&fs_info->chunk_mutex); 3344 3345 /* once for us and once for the tree */ 3346 free_extent_map(em); 3347 free_extent_map(em); 3348 3349 /* 3350 * We've left one free space entry and other tasks trimming 3351 * this block group have left 1 entry each one. Free them. 3352 */ 3353 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3354 } 3355 } 3356 3357 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 3358 u64 *trimmed, u64 start, u64 end, u64 minlen) 3359 { 3360 int ret; 3361 3362 *trimmed = 0; 3363 3364 spin_lock(&block_group->lock); 3365 if (block_group->removed) { 3366 spin_unlock(&block_group->lock); 3367 return 0; 3368 } 3369 btrfs_get_block_group_trimming(block_group); 3370 spin_unlock(&block_group->lock); 3371 3372 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 3373 if (ret) 3374 goto out; 3375 3376 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 3377 out: 3378 btrfs_put_block_group_trimming(block_group); 3379 return ret; 3380 } 3381 3382 /* 3383 * Find the left-most item in the cache tree, and then return the 3384 * smallest inode number in the item. 3385 * 3386 * Note: the returned inode number may not be the smallest one in 3387 * the tree, if the left-most item is a bitmap. 3388 */ 3389 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3390 { 3391 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3392 struct btrfs_free_space *entry = NULL; 3393 u64 ino = 0; 3394 3395 spin_lock(&ctl->tree_lock); 3396 3397 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3398 goto out; 3399 3400 entry = rb_entry(rb_first(&ctl->free_space_offset), 3401 struct btrfs_free_space, offset_index); 3402 3403 if (!entry->bitmap) { 3404 ino = entry->offset; 3405 3406 unlink_free_space(ctl, entry); 3407 entry->offset++; 3408 entry->bytes--; 3409 if (!entry->bytes) 3410 kmem_cache_free(btrfs_free_space_cachep, entry); 3411 else 3412 link_free_space(ctl, entry); 3413 } else { 3414 u64 offset = 0; 3415 u64 count = 1; 3416 int ret; 3417 3418 ret = search_bitmap(ctl, entry, &offset, &count, true); 3419 /* Logic error; Should be empty if it can't find anything */ 3420 ASSERT(!ret); 3421 3422 ino = offset; 3423 bitmap_clear_bits(ctl, entry, offset, 1); 3424 if (entry->bytes == 0) 3425 free_bitmap(ctl, entry); 3426 } 3427 out: 3428 spin_unlock(&ctl->tree_lock); 3429 3430 return ino; 3431 } 3432 3433 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3434 struct btrfs_path *path) 3435 { 3436 struct inode *inode = NULL; 3437 3438 spin_lock(&root->ino_cache_lock); 3439 if (root->ino_cache_inode) 3440 inode = igrab(root->ino_cache_inode); 3441 spin_unlock(&root->ino_cache_lock); 3442 if (inode) 3443 return inode; 3444 3445 inode = __lookup_free_space_inode(root, path, 0); 3446 if (IS_ERR(inode)) 3447 return inode; 3448 3449 spin_lock(&root->ino_cache_lock); 3450 if (!btrfs_fs_closing(root->fs_info)) 3451 root->ino_cache_inode = igrab(inode); 3452 spin_unlock(&root->ino_cache_lock); 3453 3454 return inode; 3455 } 3456 3457 int create_free_ino_inode(struct btrfs_root *root, 3458 struct btrfs_trans_handle *trans, 3459 struct btrfs_path *path) 3460 { 3461 return __create_free_space_inode(root, trans, path, 3462 BTRFS_FREE_INO_OBJECTID, 0); 3463 } 3464 3465 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3466 { 3467 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3468 struct btrfs_path *path; 3469 struct inode *inode; 3470 int ret = 0; 3471 u64 root_gen = btrfs_root_generation(&root->root_item); 3472 3473 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3474 return 0; 3475 3476 /* 3477 * If we're unmounting then just return, since this does a search on the 3478 * normal root and not the commit root and we could deadlock. 3479 */ 3480 if (btrfs_fs_closing(fs_info)) 3481 return 0; 3482 3483 path = btrfs_alloc_path(); 3484 if (!path) 3485 return 0; 3486 3487 inode = lookup_free_ino_inode(root, path); 3488 if (IS_ERR(inode)) 3489 goto out; 3490 3491 if (root_gen != BTRFS_I(inode)->generation) 3492 goto out_put; 3493 3494 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3495 3496 if (ret < 0) 3497 btrfs_err(fs_info, 3498 "failed to load free ino cache for root %llu", 3499 root->root_key.objectid); 3500 out_put: 3501 iput(inode); 3502 out: 3503 btrfs_free_path(path); 3504 return ret; 3505 } 3506 3507 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3508 struct btrfs_trans_handle *trans, 3509 struct btrfs_path *path, 3510 struct inode *inode) 3511 { 3512 struct btrfs_fs_info *fs_info = root->fs_info; 3513 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3514 int ret; 3515 struct btrfs_io_ctl io_ctl; 3516 bool release_metadata = true; 3517 3518 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3519 return 0; 3520 3521 memset(&io_ctl, 0, sizeof(io_ctl)); 3522 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); 3523 if (!ret) { 3524 /* 3525 * At this point writepages() didn't error out, so our metadata 3526 * reservation is released when the writeback finishes, at 3527 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 3528 * with or without an error. 3529 */ 3530 release_metadata = false; 3531 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); 3532 } 3533 3534 if (ret) { 3535 if (release_metadata) 3536 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3537 inode->i_size, true); 3538 #ifdef DEBUG 3539 btrfs_err(fs_info, 3540 "failed to write free ino cache for root %llu", 3541 root->root_key.objectid); 3542 #endif 3543 } 3544 3545 return ret; 3546 } 3547 3548 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3549 /* 3550 * Use this if you need to make a bitmap or extent entry specifically, it 3551 * doesn't do any of the merging that add_free_space does, this acts a lot like 3552 * how the free space cache loading stuff works, so you can get really weird 3553 * configurations. 3554 */ 3555 int test_add_free_space_entry(struct btrfs_block_group_cache *cache, 3556 u64 offset, u64 bytes, bool bitmap) 3557 { 3558 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3559 struct btrfs_free_space *info = NULL, *bitmap_info; 3560 void *map = NULL; 3561 u64 bytes_added; 3562 int ret; 3563 3564 again: 3565 if (!info) { 3566 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3567 if (!info) 3568 return -ENOMEM; 3569 } 3570 3571 if (!bitmap) { 3572 spin_lock(&ctl->tree_lock); 3573 info->offset = offset; 3574 info->bytes = bytes; 3575 info->max_extent_size = 0; 3576 ret = link_free_space(ctl, info); 3577 spin_unlock(&ctl->tree_lock); 3578 if (ret) 3579 kmem_cache_free(btrfs_free_space_cachep, info); 3580 return ret; 3581 } 3582 3583 if (!map) { 3584 map = kzalloc(PAGE_SIZE, GFP_NOFS); 3585 if (!map) { 3586 kmem_cache_free(btrfs_free_space_cachep, info); 3587 return -ENOMEM; 3588 } 3589 } 3590 3591 spin_lock(&ctl->tree_lock); 3592 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3593 1, 0); 3594 if (!bitmap_info) { 3595 info->bitmap = map; 3596 map = NULL; 3597 add_new_bitmap(ctl, info, offset); 3598 bitmap_info = info; 3599 info = NULL; 3600 } 3601 3602 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3603 3604 bytes -= bytes_added; 3605 offset += bytes_added; 3606 spin_unlock(&ctl->tree_lock); 3607 3608 if (bytes) 3609 goto again; 3610 3611 if (info) 3612 kmem_cache_free(btrfs_free_space_cachep, info); 3613 if (map) 3614 kfree(map); 3615 return 0; 3616 } 3617 3618 /* 3619 * Checks to see if the given range is in the free space cache. This is really 3620 * just used to check the absence of space, so if there is free space in the 3621 * range at all we will return 1. 3622 */ 3623 int test_check_exists(struct btrfs_block_group_cache *cache, 3624 u64 offset, u64 bytes) 3625 { 3626 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3627 struct btrfs_free_space *info; 3628 int ret = 0; 3629 3630 spin_lock(&ctl->tree_lock); 3631 info = tree_search_offset(ctl, offset, 0, 0); 3632 if (!info) { 3633 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3634 1, 0); 3635 if (!info) 3636 goto out; 3637 } 3638 3639 have_info: 3640 if (info->bitmap) { 3641 u64 bit_off, bit_bytes; 3642 struct rb_node *n; 3643 struct btrfs_free_space *tmp; 3644 3645 bit_off = offset; 3646 bit_bytes = ctl->unit; 3647 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 3648 if (!ret) { 3649 if (bit_off == offset) { 3650 ret = 1; 3651 goto out; 3652 } else if (bit_off > offset && 3653 offset + bytes > bit_off) { 3654 ret = 1; 3655 goto out; 3656 } 3657 } 3658 3659 n = rb_prev(&info->offset_index); 3660 while (n) { 3661 tmp = rb_entry(n, struct btrfs_free_space, 3662 offset_index); 3663 if (tmp->offset + tmp->bytes < offset) 3664 break; 3665 if (offset + bytes < tmp->offset) { 3666 n = rb_prev(&tmp->offset_index); 3667 continue; 3668 } 3669 info = tmp; 3670 goto have_info; 3671 } 3672 3673 n = rb_next(&info->offset_index); 3674 while (n) { 3675 tmp = rb_entry(n, struct btrfs_free_space, 3676 offset_index); 3677 if (offset + bytes < tmp->offset) 3678 break; 3679 if (tmp->offset + tmp->bytes < offset) { 3680 n = rb_next(&tmp->offset_index); 3681 continue; 3682 } 3683 info = tmp; 3684 goto have_info; 3685 } 3686 3687 ret = 0; 3688 goto out; 3689 } 3690 3691 if (info->offset == offset) { 3692 ret = 1; 3693 goto out; 3694 } 3695 3696 if (offset > info->offset && offset < info->offset + info->bytes) 3697 ret = 1; 3698 out: 3699 spin_unlock(&ctl->tree_lock); 3700 return ret; 3701 } 3702 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3703