1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "misc.h" 15 #include "ctree.h" 16 #include "free-space-cache.h" 17 #include "transaction.h" 18 #include "disk-io.h" 19 #include "extent_io.h" 20 #include "volumes.h" 21 #include "space-info.h" 22 #include "delalloc-space.h" 23 #include "block-group.h" 24 #include "discard.h" 25 #include "subpage.h" 26 #include "inode-item.h" 27 28 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 29 #define MAX_CACHE_BYTES_PER_GIG SZ_64K 30 #define FORCE_EXTENT_THRESHOLD SZ_1M 31 32 struct btrfs_trim_range { 33 u64 start; 34 u64 bytes; 35 struct list_head list; 36 }; 37 38 static int link_free_space(struct btrfs_free_space_ctl *ctl, 39 struct btrfs_free_space *info); 40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 41 struct btrfs_free_space *info, bool update_stat); 42 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 43 struct btrfs_free_space *bitmap_info, u64 *offset, 44 u64 *bytes, bool for_alloc); 45 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 46 struct btrfs_free_space *bitmap_info); 47 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 48 struct btrfs_free_space *info, u64 offset, 49 u64 bytes, bool update_stats); 50 51 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 52 { 53 struct btrfs_free_space *info; 54 struct rb_node *node; 55 56 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 57 info = rb_entry(node, struct btrfs_free_space, offset_index); 58 if (!info->bitmap) { 59 unlink_free_space(ctl, info, true); 60 kmem_cache_free(btrfs_free_space_cachep, info); 61 } else { 62 free_bitmap(ctl, info); 63 } 64 65 cond_resched_lock(&ctl->tree_lock); 66 } 67 } 68 69 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 70 struct btrfs_path *path, 71 u64 offset) 72 { 73 struct btrfs_fs_info *fs_info = root->fs_info; 74 struct btrfs_key key; 75 struct btrfs_key location; 76 struct btrfs_disk_key disk_key; 77 struct btrfs_free_space_header *header; 78 struct extent_buffer *leaf; 79 struct inode *inode = NULL; 80 unsigned nofs_flag; 81 int ret; 82 83 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 84 key.offset = offset; 85 key.type = 0; 86 87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 88 if (ret < 0) 89 return ERR_PTR(ret); 90 if (ret > 0) { 91 btrfs_release_path(path); 92 return ERR_PTR(-ENOENT); 93 } 94 95 leaf = path->nodes[0]; 96 header = btrfs_item_ptr(leaf, path->slots[0], 97 struct btrfs_free_space_header); 98 btrfs_free_space_key(leaf, header, &disk_key); 99 btrfs_disk_key_to_cpu(&location, &disk_key); 100 btrfs_release_path(path); 101 102 /* 103 * We are often under a trans handle at this point, so we need to make 104 * sure NOFS is set to keep us from deadlocking. 105 */ 106 nofs_flag = memalloc_nofs_save(); 107 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path); 108 btrfs_release_path(path); 109 memalloc_nofs_restore(nofs_flag); 110 if (IS_ERR(inode)) 111 return inode; 112 113 mapping_set_gfp_mask(inode->i_mapping, 114 mapping_gfp_constraint(inode->i_mapping, 115 ~(__GFP_FS | __GFP_HIGHMEM))); 116 117 return inode; 118 } 119 120 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 121 struct btrfs_path *path) 122 { 123 struct btrfs_fs_info *fs_info = block_group->fs_info; 124 struct inode *inode = NULL; 125 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 126 127 spin_lock(&block_group->lock); 128 if (block_group->inode) 129 inode = igrab(block_group->inode); 130 spin_unlock(&block_group->lock); 131 if (inode) 132 return inode; 133 134 inode = __lookup_free_space_inode(fs_info->tree_root, path, 135 block_group->start); 136 if (IS_ERR(inode)) 137 return inode; 138 139 spin_lock(&block_group->lock); 140 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 141 btrfs_info(fs_info, "Old style space inode found, converting."); 142 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 143 BTRFS_INODE_NODATACOW; 144 block_group->disk_cache_state = BTRFS_DC_CLEAR; 145 } 146 147 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) 148 block_group->inode = igrab(inode); 149 spin_unlock(&block_group->lock); 150 151 return inode; 152 } 153 154 static int __create_free_space_inode(struct btrfs_root *root, 155 struct btrfs_trans_handle *trans, 156 struct btrfs_path *path, 157 u64 ino, u64 offset) 158 { 159 struct btrfs_key key; 160 struct btrfs_disk_key disk_key; 161 struct btrfs_free_space_header *header; 162 struct btrfs_inode_item *inode_item; 163 struct extent_buffer *leaf; 164 /* We inline CRCs for the free disk space cache */ 165 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC | 166 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 167 int ret; 168 169 ret = btrfs_insert_empty_inode(trans, root, path, ino); 170 if (ret) 171 return ret; 172 173 leaf = path->nodes[0]; 174 inode_item = btrfs_item_ptr(leaf, path->slots[0], 175 struct btrfs_inode_item); 176 btrfs_item_key(leaf, &disk_key, path->slots[0]); 177 memzero_extent_buffer(leaf, (unsigned long)inode_item, 178 sizeof(*inode_item)); 179 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 180 btrfs_set_inode_size(leaf, inode_item, 0); 181 btrfs_set_inode_nbytes(leaf, inode_item, 0); 182 btrfs_set_inode_uid(leaf, inode_item, 0); 183 btrfs_set_inode_gid(leaf, inode_item, 0); 184 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 185 btrfs_set_inode_flags(leaf, inode_item, flags); 186 btrfs_set_inode_nlink(leaf, inode_item, 1); 187 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 188 btrfs_set_inode_block_group(leaf, inode_item, offset); 189 btrfs_mark_buffer_dirty(leaf); 190 btrfs_release_path(path); 191 192 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 193 key.offset = offset; 194 key.type = 0; 195 ret = btrfs_insert_empty_item(trans, root, path, &key, 196 sizeof(struct btrfs_free_space_header)); 197 if (ret < 0) { 198 btrfs_release_path(path); 199 return ret; 200 } 201 202 leaf = path->nodes[0]; 203 header = btrfs_item_ptr(leaf, path->slots[0], 204 struct btrfs_free_space_header); 205 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 206 btrfs_set_free_space_key(leaf, header, &disk_key); 207 btrfs_mark_buffer_dirty(leaf); 208 btrfs_release_path(path); 209 210 return 0; 211 } 212 213 int create_free_space_inode(struct btrfs_trans_handle *trans, 214 struct btrfs_block_group *block_group, 215 struct btrfs_path *path) 216 { 217 int ret; 218 u64 ino; 219 220 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino); 221 if (ret < 0) 222 return ret; 223 224 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 225 ino, block_group->start); 226 } 227 228 /* 229 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode 230 * handles lookup, otherwise it takes ownership and iputs the inode. 231 * Don't reuse an inode pointer after passing it into this function. 232 */ 233 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans, 234 struct inode *inode, 235 struct btrfs_block_group *block_group) 236 { 237 struct btrfs_path *path; 238 struct btrfs_key key; 239 int ret = 0; 240 241 path = btrfs_alloc_path(); 242 if (!path) 243 return -ENOMEM; 244 245 if (!inode) 246 inode = lookup_free_space_inode(block_group, path); 247 if (IS_ERR(inode)) { 248 if (PTR_ERR(inode) != -ENOENT) 249 ret = PTR_ERR(inode); 250 goto out; 251 } 252 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 253 if (ret) { 254 btrfs_add_delayed_iput(inode); 255 goto out; 256 } 257 clear_nlink(inode); 258 /* One for the block groups ref */ 259 spin_lock(&block_group->lock); 260 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) { 261 block_group->inode = NULL; 262 spin_unlock(&block_group->lock); 263 iput(inode); 264 } else { 265 spin_unlock(&block_group->lock); 266 } 267 /* One for the lookup ref */ 268 btrfs_add_delayed_iput(inode); 269 270 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 271 key.type = 0; 272 key.offset = block_group->start; 273 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path, 274 -1, 1); 275 if (ret) { 276 if (ret > 0) 277 ret = 0; 278 goto out; 279 } 280 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path); 281 out: 282 btrfs_free_path(path); 283 return ret; 284 } 285 286 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 287 struct btrfs_block_rsv *rsv) 288 { 289 u64 needed_bytes; 290 int ret; 291 292 /* 1 for slack space, 1 for updating the inode */ 293 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 294 btrfs_calc_metadata_size(fs_info, 1); 295 296 spin_lock(&rsv->lock); 297 if (rsv->reserved < needed_bytes) 298 ret = -ENOSPC; 299 else 300 ret = 0; 301 spin_unlock(&rsv->lock); 302 return ret; 303 } 304 305 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 306 struct btrfs_block_group *block_group, 307 struct inode *vfs_inode) 308 { 309 struct btrfs_truncate_control control = { 310 .inode = BTRFS_I(vfs_inode), 311 .new_size = 0, 312 .ino = btrfs_ino(BTRFS_I(vfs_inode)), 313 .min_type = BTRFS_EXTENT_DATA_KEY, 314 .clear_extent_range = true, 315 }; 316 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 317 struct btrfs_root *root = inode->root; 318 struct extent_state *cached_state = NULL; 319 int ret = 0; 320 bool locked = false; 321 322 if (block_group) { 323 struct btrfs_path *path = btrfs_alloc_path(); 324 325 if (!path) { 326 ret = -ENOMEM; 327 goto fail; 328 } 329 locked = true; 330 mutex_lock(&trans->transaction->cache_write_mutex); 331 if (!list_empty(&block_group->io_list)) { 332 list_del_init(&block_group->io_list); 333 334 btrfs_wait_cache_io(trans, block_group, path); 335 btrfs_put_block_group(block_group); 336 } 337 338 /* 339 * now that we've truncated the cache away, its no longer 340 * setup or written 341 */ 342 spin_lock(&block_group->lock); 343 block_group->disk_cache_state = BTRFS_DC_CLEAR; 344 spin_unlock(&block_group->lock); 345 btrfs_free_path(path); 346 } 347 348 btrfs_i_size_write(inode, 0); 349 truncate_pagecache(vfs_inode, 0); 350 351 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state); 352 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 353 354 /* 355 * We skip the throttling logic for free space cache inodes, so we don't 356 * need to check for -EAGAIN. 357 */ 358 ret = btrfs_truncate_inode_items(trans, root, &control); 359 360 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 361 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 362 363 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state); 364 if (ret) 365 goto fail; 366 367 ret = btrfs_update_inode(trans, root, inode); 368 369 fail: 370 if (locked) 371 mutex_unlock(&trans->transaction->cache_write_mutex); 372 if (ret) 373 btrfs_abort_transaction(trans, ret); 374 375 return ret; 376 } 377 378 static void readahead_cache(struct inode *inode) 379 { 380 struct file_ra_state ra; 381 unsigned long last_index; 382 383 file_ra_state_init(&ra, inode->i_mapping); 384 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 385 386 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index); 387 } 388 389 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 390 int write) 391 { 392 int num_pages; 393 394 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 395 396 /* Make sure we can fit our crcs and generation into the first page */ 397 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 398 return -ENOSPC; 399 400 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 401 402 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 403 if (!io_ctl->pages) 404 return -ENOMEM; 405 406 io_ctl->num_pages = num_pages; 407 io_ctl->fs_info = btrfs_sb(inode->i_sb); 408 io_ctl->inode = inode; 409 410 return 0; 411 } 412 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 413 414 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 415 { 416 kfree(io_ctl->pages); 417 io_ctl->pages = NULL; 418 } 419 420 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 421 { 422 if (io_ctl->cur) { 423 io_ctl->cur = NULL; 424 io_ctl->orig = NULL; 425 } 426 } 427 428 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 429 { 430 ASSERT(io_ctl->index < io_ctl->num_pages); 431 io_ctl->page = io_ctl->pages[io_ctl->index++]; 432 io_ctl->cur = page_address(io_ctl->page); 433 io_ctl->orig = io_ctl->cur; 434 io_ctl->size = PAGE_SIZE; 435 if (clear) 436 clear_page(io_ctl->cur); 437 } 438 439 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 440 { 441 int i; 442 443 io_ctl_unmap_page(io_ctl); 444 445 for (i = 0; i < io_ctl->num_pages; i++) { 446 if (io_ctl->pages[i]) { 447 btrfs_page_clear_checked(io_ctl->fs_info, 448 io_ctl->pages[i], 449 page_offset(io_ctl->pages[i]), 450 PAGE_SIZE); 451 unlock_page(io_ctl->pages[i]); 452 put_page(io_ctl->pages[i]); 453 } 454 } 455 } 456 457 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate) 458 { 459 struct page *page; 460 struct inode *inode = io_ctl->inode; 461 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 462 int i; 463 464 for (i = 0; i < io_ctl->num_pages; i++) { 465 int ret; 466 467 page = find_or_create_page(inode->i_mapping, i, mask); 468 if (!page) { 469 io_ctl_drop_pages(io_ctl); 470 return -ENOMEM; 471 } 472 473 ret = set_page_extent_mapped(page); 474 if (ret < 0) { 475 unlock_page(page); 476 put_page(page); 477 io_ctl_drop_pages(io_ctl); 478 return ret; 479 } 480 481 io_ctl->pages[i] = page; 482 if (uptodate && !PageUptodate(page)) { 483 btrfs_read_folio(NULL, page_folio(page)); 484 lock_page(page); 485 if (page->mapping != inode->i_mapping) { 486 btrfs_err(BTRFS_I(inode)->root->fs_info, 487 "free space cache page truncated"); 488 io_ctl_drop_pages(io_ctl); 489 return -EIO; 490 } 491 if (!PageUptodate(page)) { 492 btrfs_err(BTRFS_I(inode)->root->fs_info, 493 "error reading free space cache"); 494 io_ctl_drop_pages(io_ctl); 495 return -EIO; 496 } 497 } 498 } 499 500 for (i = 0; i < io_ctl->num_pages; i++) 501 clear_page_dirty_for_io(io_ctl->pages[i]); 502 503 return 0; 504 } 505 506 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 507 { 508 io_ctl_map_page(io_ctl, 1); 509 510 /* 511 * Skip the csum areas. If we don't check crcs then we just have a 512 * 64bit chunk at the front of the first page. 513 */ 514 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 515 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 516 517 put_unaligned_le64(generation, io_ctl->cur); 518 io_ctl->cur += sizeof(u64); 519 } 520 521 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 522 { 523 u64 cache_gen; 524 525 /* 526 * Skip the crc area. If we don't check crcs then we just have a 64bit 527 * chunk at the front of the first page. 528 */ 529 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 530 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 531 532 cache_gen = get_unaligned_le64(io_ctl->cur); 533 if (cache_gen != generation) { 534 btrfs_err_rl(io_ctl->fs_info, 535 "space cache generation (%llu) does not match inode (%llu)", 536 cache_gen, generation); 537 io_ctl_unmap_page(io_ctl); 538 return -EIO; 539 } 540 io_ctl->cur += sizeof(u64); 541 return 0; 542 } 543 544 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 545 { 546 u32 *tmp; 547 u32 crc = ~(u32)0; 548 unsigned offset = 0; 549 550 if (index == 0) 551 offset = sizeof(u32) * io_ctl->num_pages; 552 553 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 554 btrfs_crc32c_final(crc, (u8 *)&crc); 555 io_ctl_unmap_page(io_ctl); 556 tmp = page_address(io_ctl->pages[0]); 557 tmp += index; 558 *tmp = crc; 559 } 560 561 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 562 { 563 u32 *tmp, val; 564 u32 crc = ~(u32)0; 565 unsigned offset = 0; 566 567 if (index == 0) 568 offset = sizeof(u32) * io_ctl->num_pages; 569 570 tmp = page_address(io_ctl->pages[0]); 571 tmp += index; 572 val = *tmp; 573 574 io_ctl_map_page(io_ctl, 0); 575 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 576 btrfs_crc32c_final(crc, (u8 *)&crc); 577 if (val != crc) { 578 btrfs_err_rl(io_ctl->fs_info, 579 "csum mismatch on free space cache"); 580 io_ctl_unmap_page(io_ctl); 581 return -EIO; 582 } 583 584 return 0; 585 } 586 587 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 588 void *bitmap) 589 { 590 struct btrfs_free_space_entry *entry; 591 592 if (!io_ctl->cur) 593 return -ENOSPC; 594 595 entry = io_ctl->cur; 596 put_unaligned_le64(offset, &entry->offset); 597 put_unaligned_le64(bytes, &entry->bytes); 598 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 599 BTRFS_FREE_SPACE_EXTENT; 600 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 601 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 602 603 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 604 return 0; 605 606 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 607 608 /* No more pages to map */ 609 if (io_ctl->index >= io_ctl->num_pages) 610 return 0; 611 612 /* map the next page */ 613 io_ctl_map_page(io_ctl, 1); 614 return 0; 615 } 616 617 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 618 { 619 if (!io_ctl->cur) 620 return -ENOSPC; 621 622 /* 623 * If we aren't at the start of the current page, unmap this one and 624 * map the next one if there is any left. 625 */ 626 if (io_ctl->cur != io_ctl->orig) { 627 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 628 if (io_ctl->index >= io_ctl->num_pages) 629 return -ENOSPC; 630 io_ctl_map_page(io_ctl, 0); 631 } 632 633 copy_page(io_ctl->cur, bitmap); 634 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 635 if (io_ctl->index < io_ctl->num_pages) 636 io_ctl_map_page(io_ctl, 0); 637 return 0; 638 } 639 640 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 641 { 642 /* 643 * If we're not on the boundary we know we've modified the page and we 644 * need to crc the page. 645 */ 646 if (io_ctl->cur != io_ctl->orig) 647 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 648 else 649 io_ctl_unmap_page(io_ctl); 650 651 while (io_ctl->index < io_ctl->num_pages) { 652 io_ctl_map_page(io_ctl, 1); 653 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 654 } 655 } 656 657 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 658 struct btrfs_free_space *entry, u8 *type) 659 { 660 struct btrfs_free_space_entry *e; 661 int ret; 662 663 if (!io_ctl->cur) { 664 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 665 if (ret) 666 return ret; 667 } 668 669 e = io_ctl->cur; 670 entry->offset = get_unaligned_le64(&e->offset); 671 entry->bytes = get_unaligned_le64(&e->bytes); 672 *type = e->type; 673 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 674 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 675 676 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 677 return 0; 678 679 io_ctl_unmap_page(io_ctl); 680 681 return 0; 682 } 683 684 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 685 struct btrfs_free_space *entry) 686 { 687 int ret; 688 689 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 690 if (ret) 691 return ret; 692 693 copy_page(entry->bitmap, io_ctl->cur); 694 io_ctl_unmap_page(io_ctl); 695 696 return 0; 697 } 698 699 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 700 { 701 struct btrfs_block_group *block_group = ctl->block_group; 702 u64 max_bytes; 703 u64 bitmap_bytes; 704 u64 extent_bytes; 705 u64 size = block_group->length; 706 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 707 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 708 709 max_bitmaps = max_t(u64, max_bitmaps, 1); 710 711 if (ctl->total_bitmaps > max_bitmaps) 712 btrfs_err(block_group->fs_info, 713 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu", 714 block_group->start, block_group->length, 715 ctl->total_bitmaps, ctl->unit, max_bitmaps, 716 bytes_per_bg); 717 ASSERT(ctl->total_bitmaps <= max_bitmaps); 718 719 /* 720 * We are trying to keep the total amount of memory used per 1GiB of 721 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation 722 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of 723 * bitmaps, we may end up using more memory than this. 724 */ 725 if (size < SZ_1G) 726 max_bytes = MAX_CACHE_BYTES_PER_GIG; 727 else 728 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 729 730 bitmap_bytes = ctl->total_bitmaps * ctl->unit; 731 732 /* 733 * we want the extent entry threshold to always be at most 1/2 the max 734 * bytes we can have, or whatever is less than that. 735 */ 736 extent_bytes = max_bytes - bitmap_bytes; 737 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 738 739 ctl->extents_thresh = 740 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 741 } 742 743 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 744 struct btrfs_free_space_ctl *ctl, 745 struct btrfs_path *path, u64 offset) 746 { 747 struct btrfs_fs_info *fs_info = root->fs_info; 748 struct btrfs_free_space_header *header; 749 struct extent_buffer *leaf; 750 struct btrfs_io_ctl io_ctl; 751 struct btrfs_key key; 752 struct btrfs_free_space *e, *n; 753 LIST_HEAD(bitmaps); 754 u64 num_entries; 755 u64 num_bitmaps; 756 u64 generation; 757 u8 type; 758 int ret = 0; 759 760 /* Nothing in the space cache, goodbye */ 761 if (!i_size_read(inode)) 762 return 0; 763 764 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 765 key.offset = offset; 766 key.type = 0; 767 768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 769 if (ret < 0) 770 return 0; 771 else if (ret > 0) { 772 btrfs_release_path(path); 773 return 0; 774 } 775 776 ret = -1; 777 778 leaf = path->nodes[0]; 779 header = btrfs_item_ptr(leaf, path->slots[0], 780 struct btrfs_free_space_header); 781 num_entries = btrfs_free_space_entries(leaf, header); 782 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 783 generation = btrfs_free_space_generation(leaf, header); 784 btrfs_release_path(path); 785 786 if (!BTRFS_I(inode)->generation) { 787 btrfs_info(fs_info, 788 "the free space cache file (%llu) is invalid, skip it", 789 offset); 790 return 0; 791 } 792 793 if (BTRFS_I(inode)->generation != generation) { 794 btrfs_err(fs_info, 795 "free space inode generation (%llu) did not match free space cache generation (%llu)", 796 BTRFS_I(inode)->generation, generation); 797 return 0; 798 } 799 800 if (!num_entries) 801 return 0; 802 803 ret = io_ctl_init(&io_ctl, inode, 0); 804 if (ret) 805 return ret; 806 807 readahead_cache(inode); 808 809 ret = io_ctl_prepare_pages(&io_ctl, true); 810 if (ret) 811 goto out; 812 813 ret = io_ctl_check_crc(&io_ctl, 0); 814 if (ret) 815 goto free_cache; 816 817 ret = io_ctl_check_generation(&io_ctl, generation); 818 if (ret) 819 goto free_cache; 820 821 while (num_entries) { 822 e = kmem_cache_zalloc(btrfs_free_space_cachep, 823 GFP_NOFS); 824 if (!e) { 825 ret = -ENOMEM; 826 goto free_cache; 827 } 828 829 ret = io_ctl_read_entry(&io_ctl, e, &type); 830 if (ret) { 831 kmem_cache_free(btrfs_free_space_cachep, e); 832 goto free_cache; 833 } 834 835 if (!e->bytes) { 836 ret = -1; 837 kmem_cache_free(btrfs_free_space_cachep, e); 838 goto free_cache; 839 } 840 841 if (type == BTRFS_FREE_SPACE_EXTENT) { 842 spin_lock(&ctl->tree_lock); 843 ret = link_free_space(ctl, e); 844 spin_unlock(&ctl->tree_lock); 845 if (ret) { 846 btrfs_err(fs_info, 847 "Duplicate entries in free space cache, dumping"); 848 kmem_cache_free(btrfs_free_space_cachep, e); 849 goto free_cache; 850 } 851 } else { 852 ASSERT(num_bitmaps); 853 num_bitmaps--; 854 e->bitmap = kmem_cache_zalloc( 855 btrfs_free_space_bitmap_cachep, GFP_NOFS); 856 if (!e->bitmap) { 857 ret = -ENOMEM; 858 kmem_cache_free( 859 btrfs_free_space_cachep, e); 860 goto free_cache; 861 } 862 spin_lock(&ctl->tree_lock); 863 ret = link_free_space(ctl, e); 864 ctl->total_bitmaps++; 865 recalculate_thresholds(ctl); 866 spin_unlock(&ctl->tree_lock); 867 if (ret) { 868 btrfs_err(fs_info, 869 "Duplicate entries in free space cache, dumping"); 870 kmem_cache_free(btrfs_free_space_cachep, e); 871 goto free_cache; 872 } 873 list_add_tail(&e->list, &bitmaps); 874 } 875 876 num_entries--; 877 } 878 879 io_ctl_unmap_page(&io_ctl); 880 881 /* 882 * We add the bitmaps at the end of the entries in order that 883 * the bitmap entries are added to the cache. 884 */ 885 list_for_each_entry_safe(e, n, &bitmaps, list) { 886 list_del_init(&e->list); 887 ret = io_ctl_read_bitmap(&io_ctl, e); 888 if (ret) 889 goto free_cache; 890 } 891 892 io_ctl_drop_pages(&io_ctl); 893 ret = 1; 894 out: 895 io_ctl_free(&io_ctl); 896 return ret; 897 free_cache: 898 io_ctl_drop_pages(&io_ctl); 899 900 spin_lock(&ctl->tree_lock); 901 __btrfs_remove_free_space_cache(ctl); 902 spin_unlock(&ctl->tree_lock); 903 goto out; 904 } 905 906 static int copy_free_space_cache(struct btrfs_block_group *block_group, 907 struct btrfs_free_space_ctl *ctl) 908 { 909 struct btrfs_free_space *info; 910 struct rb_node *n; 911 int ret = 0; 912 913 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) { 914 info = rb_entry(n, struct btrfs_free_space, offset_index); 915 if (!info->bitmap) { 916 unlink_free_space(ctl, info, true); 917 ret = btrfs_add_free_space(block_group, info->offset, 918 info->bytes); 919 kmem_cache_free(btrfs_free_space_cachep, info); 920 } else { 921 u64 offset = info->offset; 922 u64 bytes = ctl->unit; 923 924 while (search_bitmap(ctl, info, &offset, &bytes, 925 false) == 0) { 926 ret = btrfs_add_free_space(block_group, offset, 927 bytes); 928 if (ret) 929 break; 930 bitmap_clear_bits(ctl, info, offset, bytes, true); 931 offset = info->offset; 932 bytes = ctl->unit; 933 } 934 free_bitmap(ctl, info); 935 } 936 cond_resched(); 937 } 938 return ret; 939 } 940 941 static struct lock_class_key btrfs_free_space_inode_key; 942 943 int load_free_space_cache(struct btrfs_block_group *block_group) 944 { 945 struct btrfs_fs_info *fs_info = block_group->fs_info; 946 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 947 struct btrfs_free_space_ctl tmp_ctl = {}; 948 struct inode *inode; 949 struct btrfs_path *path; 950 int ret = 0; 951 bool matched; 952 u64 used = block_group->used; 953 954 /* 955 * Because we could potentially discard our loaded free space, we want 956 * to load everything into a temporary structure first, and then if it's 957 * valid copy it all into the actual free space ctl. 958 */ 959 btrfs_init_free_space_ctl(block_group, &tmp_ctl); 960 961 /* 962 * If this block group has been marked to be cleared for one reason or 963 * another then we can't trust the on disk cache, so just return. 964 */ 965 spin_lock(&block_group->lock); 966 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 967 spin_unlock(&block_group->lock); 968 return 0; 969 } 970 spin_unlock(&block_group->lock); 971 972 path = btrfs_alloc_path(); 973 if (!path) 974 return 0; 975 path->search_commit_root = 1; 976 path->skip_locking = 1; 977 978 /* 979 * We must pass a path with search_commit_root set to btrfs_iget in 980 * order to avoid a deadlock when allocating extents for the tree root. 981 * 982 * When we are COWing an extent buffer from the tree root, when looking 983 * for a free extent, at extent-tree.c:find_free_extent(), we can find 984 * block group without its free space cache loaded. When we find one 985 * we must load its space cache which requires reading its free space 986 * cache's inode item from the root tree. If this inode item is located 987 * in the same leaf that we started COWing before, then we end up in 988 * deadlock on the extent buffer (trying to read lock it when we 989 * previously write locked it). 990 * 991 * It's safe to read the inode item using the commit root because 992 * block groups, once loaded, stay in memory forever (until they are 993 * removed) as well as their space caches once loaded. New block groups 994 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 995 * we will never try to read their inode item while the fs is mounted. 996 */ 997 inode = lookup_free_space_inode(block_group, path); 998 if (IS_ERR(inode)) { 999 btrfs_free_path(path); 1000 return 0; 1001 } 1002 1003 /* We may have converted the inode and made the cache invalid. */ 1004 spin_lock(&block_group->lock); 1005 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 1006 spin_unlock(&block_group->lock); 1007 btrfs_free_path(path); 1008 goto out; 1009 } 1010 spin_unlock(&block_group->lock); 1011 1012 /* 1013 * Reinitialize the class of struct inode's mapping->invalidate_lock for 1014 * free space inodes to prevent false positives related to locks for normal 1015 * inodes. 1016 */ 1017 lockdep_set_class(&(&inode->i_data)->invalidate_lock, 1018 &btrfs_free_space_inode_key); 1019 1020 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl, 1021 path, block_group->start); 1022 btrfs_free_path(path); 1023 if (ret <= 0) 1024 goto out; 1025 1026 matched = (tmp_ctl.free_space == (block_group->length - used - 1027 block_group->bytes_super)); 1028 1029 if (matched) { 1030 ret = copy_free_space_cache(block_group, &tmp_ctl); 1031 /* 1032 * ret == 1 means we successfully loaded the free space cache, 1033 * so we need to re-set it here. 1034 */ 1035 if (ret == 0) 1036 ret = 1; 1037 } else { 1038 /* 1039 * We need to call the _locked variant so we don't try to update 1040 * the discard counters. 1041 */ 1042 spin_lock(&tmp_ctl.tree_lock); 1043 __btrfs_remove_free_space_cache(&tmp_ctl); 1044 spin_unlock(&tmp_ctl.tree_lock); 1045 btrfs_warn(fs_info, 1046 "block group %llu has wrong amount of free space", 1047 block_group->start); 1048 ret = -1; 1049 } 1050 out: 1051 if (ret < 0) { 1052 /* This cache is bogus, make sure it gets cleared */ 1053 spin_lock(&block_group->lock); 1054 block_group->disk_cache_state = BTRFS_DC_CLEAR; 1055 spin_unlock(&block_group->lock); 1056 ret = 0; 1057 1058 btrfs_warn(fs_info, 1059 "failed to load free space cache for block group %llu, rebuilding it now", 1060 block_group->start); 1061 } 1062 1063 spin_lock(&ctl->tree_lock); 1064 btrfs_discard_update_discardable(block_group); 1065 spin_unlock(&ctl->tree_lock); 1066 iput(inode); 1067 return ret; 1068 } 1069 1070 static noinline_for_stack 1071 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 1072 struct btrfs_free_space_ctl *ctl, 1073 struct btrfs_block_group *block_group, 1074 int *entries, int *bitmaps, 1075 struct list_head *bitmap_list) 1076 { 1077 int ret; 1078 struct btrfs_free_cluster *cluster = NULL; 1079 struct btrfs_free_cluster *cluster_locked = NULL; 1080 struct rb_node *node = rb_first(&ctl->free_space_offset); 1081 struct btrfs_trim_range *trim_entry; 1082 1083 /* Get the cluster for this block_group if it exists */ 1084 if (block_group && !list_empty(&block_group->cluster_list)) { 1085 cluster = list_entry(block_group->cluster_list.next, 1086 struct btrfs_free_cluster, 1087 block_group_list); 1088 } 1089 1090 if (!node && cluster) { 1091 cluster_locked = cluster; 1092 spin_lock(&cluster_locked->lock); 1093 node = rb_first(&cluster->root); 1094 cluster = NULL; 1095 } 1096 1097 /* Write out the extent entries */ 1098 while (node) { 1099 struct btrfs_free_space *e; 1100 1101 e = rb_entry(node, struct btrfs_free_space, offset_index); 1102 *entries += 1; 1103 1104 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 1105 e->bitmap); 1106 if (ret) 1107 goto fail; 1108 1109 if (e->bitmap) { 1110 list_add_tail(&e->list, bitmap_list); 1111 *bitmaps += 1; 1112 } 1113 node = rb_next(node); 1114 if (!node && cluster) { 1115 node = rb_first(&cluster->root); 1116 cluster_locked = cluster; 1117 spin_lock(&cluster_locked->lock); 1118 cluster = NULL; 1119 } 1120 } 1121 if (cluster_locked) { 1122 spin_unlock(&cluster_locked->lock); 1123 cluster_locked = NULL; 1124 } 1125 1126 /* 1127 * Make sure we don't miss any range that was removed from our rbtree 1128 * because trimming is running. Otherwise after a umount+mount (or crash 1129 * after committing the transaction) we would leak free space and get 1130 * an inconsistent free space cache report from fsck. 1131 */ 1132 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 1133 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 1134 trim_entry->bytes, NULL); 1135 if (ret) 1136 goto fail; 1137 *entries += 1; 1138 } 1139 1140 return 0; 1141 fail: 1142 if (cluster_locked) 1143 spin_unlock(&cluster_locked->lock); 1144 return -ENOSPC; 1145 } 1146 1147 static noinline_for_stack int 1148 update_cache_item(struct btrfs_trans_handle *trans, 1149 struct btrfs_root *root, 1150 struct inode *inode, 1151 struct btrfs_path *path, u64 offset, 1152 int entries, int bitmaps) 1153 { 1154 struct btrfs_key key; 1155 struct btrfs_free_space_header *header; 1156 struct extent_buffer *leaf; 1157 int ret; 1158 1159 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1160 key.offset = offset; 1161 key.type = 0; 1162 1163 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1164 if (ret < 0) { 1165 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1166 EXTENT_DELALLOC, NULL); 1167 goto fail; 1168 } 1169 leaf = path->nodes[0]; 1170 if (ret > 0) { 1171 struct btrfs_key found_key; 1172 ASSERT(path->slots[0]); 1173 path->slots[0]--; 1174 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1175 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1176 found_key.offset != offset) { 1177 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1178 inode->i_size - 1, EXTENT_DELALLOC, 1179 NULL); 1180 btrfs_release_path(path); 1181 goto fail; 1182 } 1183 } 1184 1185 BTRFS_I(inode)->generation = trans->transid; 1186 header = btrfs_item_ptr(leaf, path->slots[0], 1187 struct btrfs_free_space_header); 1188 btrfs_set_free_space_entries(leaf, header, entries); 1189 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1190 btrfs_set_free_space_generation(leaf, header, trans->transid); 1191 btrfs_mark_buffer_dirty(leaf); 1192 btrfs_release_path(path); 1193 1194 return 0; 1195 1196 fail: 1197 return -1; 1198 } 1199 1200 static noinline_for_stack int write_pinned_extent_entries( 1201 struct btrfs_trans_handle *trans, 1202 struct btrfs_block_group *block_group, 1203 struct btrfs_io_ctl *io_ctl, 1204 int *entries) 1205 { 1206 u64 start, extent_start, extent_end, len; 1207 struct extent_io_tree *unpin = NULL; 1208 int ret; 1209 1210 if (!block_group) 1211 return 0; 1212 1213 /* 1214 * We want to add any pinned extents to our free space cache 1215 * so we don't leak the space 1216 * 1217 * We shouldn't have switched the pinned extents yet so this is the 1218 * right one 1219 */ 1220 unpin = &trans->transaction->pinned_extents; 1221 1222 start = block_group->start; 1223 1224 while (start < block_group->start + block_group->length) { 1225 ret = find_first_extent_bit(unpin, start, 1226 &extent_start, &extent_end, 1227 EXTENT_DIRTY, NULL); 1228 if (ret) 1229 return 0; 1230 1231 /* This pinned extent is out of our range */ 1232 if (extent_start >= block_group->start + block_group->length) 1233 return 0; 1234 1235 extent_start = max(extent_start, start); 1236 extent_end = min(block_group->start + block_group->length, 1237 extent_end + 1); 1238 len = extent_end - extent_start; 1239 1240 *entries += 1; 1241 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1242 if (ret) 1243 return -ENOSPC; 1244 1245 start = extent_end; 1246 } 1247 1248 return 0; 1249 } 1250 1251 static noinline_for_stack int 1252 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1253 { 1254 struct btrfs_free_space *entry, *next; 1255 int ret; 1256 1257 /* Write out the bitmaps */ 1258 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1259 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1260 if (ret) 1261 return -ENOSPC; 1262 list_del_init(&entry->list); 1263 } 1264 1265 return 0; 1266 } 1267 1268 static int flush_dirty_cache(struct inode *inode) 1269 { 1270 int ret; 1271 1272 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1273 if (ret) 1274 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1275 EXTENT_DELALLOC, NULL); 1276 1277 return ret; 1278 } 1279 1280 static void noinline_for_stack 1281 cleanup_bitmap_list(struct list_head *bitmap_list) 1282 { 1283 struct btrfs_free_space *entry, *next; 1284 1285 list_for_each_entry_safe(entry, next, bitmap_list, list) 1286 list_del_init(&entry->list); 1287 } 1288 1289 static void noinline_for_stack 1290 cleanup_write_cache_enospc(struct inode *inode, 1291 struct btrfs_io_ctl *io_ctl, 1292 struct extent_state **cached_state) 1293 { 1294 io_ctl_drop_pages(io_ctl); 1295 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1296 cached_state); 1297 } 1298 1299 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1300 struct btrfs_trans_handle *trans, 1301 struct btrfs_block_group *block_group, 1302 struct btrfs_io_ctl *io_ctl, 1303 struct btrfs_path *path, u64 offset) 1304 { 1305 int ret; 1306 struct inode *inode = io_ctl->inode; 1307 1308 if (!inode) 1309 return 0; 1310 1311 /* Flush the dirty pages in the cache file. */ 1312 ret = flush_dirty_cache(inode); 1313 if (ret) 1314 goto out; 1315 1316 /* Update the cache item to tell everyone this cache file is valid. */ 1317 ret = update_cache_item(trans, root, inode, path, offset, 1318 io_ctl->entries, io_ctl->bitmaps); 1319 out: 1320 if (ret) { 1321 invalidate_inode_pages2(inode->i_mapping); 1322 BTRFS_I(inode)->generation = 0; 1323 if (block_group) 1324 btrfs_debug(root->fs_info, 1325 "failed to write free space cache for block group %llu error %d", 1326 block_group->start, ret); 1327 } 1328 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1329 1330 if (block_group) { 1331 /* the dirty list is protected by the dirty_bgs_lock */ 1332 spin_lock(&trans->transaction->dirty_bgs_lock); 1333 1334 /* the disk_cache_state is protected by the block group lock */ 1335 spin_lock(&block_group->lock); 1336 1337 /* 1338 * only mark this as written if we didn't get put back on 1339 * the dirty list while waiting for IO. Otherwise our 1340 * cache state won't be right, and we won't get written again 1341 */ 1342 if (!ret && list_empty(&block_group->dirty_list)) 1343 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1344 else if (ret) 1345 block_group->disk_cache_state = BTRFS_DC_ERROR; 1346 1347 spin_unlock(&block_group->lock); 1348 spin_unlock(&trans->transaction->dirty_bgs_lock); 1349 io_ctl->inode = NULL; 1350 iput(inode); 1351 } 1352 1353 return ret; 1354 1355 } 1356 1357 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1358 struct btrfs_block_group *block_group, 1359 struct btrfs_path *path) 1360 { 1361 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1362 block_group, &block_group->io_ctl, 1363 path, block_group->start); 1364 } 1365 1366 /** 1367 * Write out cached info to an inode 1368 * 1369 * @root: root the inode belongs to 1370 * @inode: freespace inode we are writing out 1371 * @ctl: free space cache we are going to write out 1372 * @block_group: block_group for this cache if it belongs to a block_group 1373 * @io_ctl: holds context for the io 1374 * @trans: the trans handle 1375 * 1376 * This function writes out a free space cache struct to disk for quick recovery 1377 * on mount. This will return 0 if it was successful in writing the cache out, 1378 * or an errno if it was not. 1379 */ 1380 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1381 struct btrfs_free_space_ctl *ctl, 1382 struct btrfs_block_group *block_group, 1383 struct btrfs_io_ctl *io_ctl, 1384 struct btrfs_trans_handle *trans) 1385 { 1386 struct extent_state *cached_state = NULL; 1387 LIST_HEAD(bitmap_list); 1388 int entries = 0; 1389 int bitmaps = 0; 1390 int ret; 1391 int must_iput = 0; 1392 1393 if (!i_size_read(inode)) 1394 return -EIO; 1395 1396 WARN_ON(io_ctl->pages); 1397 ret = io_ctl_init(io_ctl, inode, 1); 1398 if (ret) 1399 return ret; 1400 1401 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1402 down_write(&block_group->data_rwsem); 1403 spin_lock(&block_group->lock); 1404 if (block_group->delalloc_bytes) { 1405 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1406 spin_unlock(&block_group->lock); 1407 up_write(&block_group->data_rwsem); 1408 BTRFS_I(inode)->generation = 0; 1409 ret = 0; 1410 must_iput = 1; 1411 goto out; 1412 } 1413 spin_unlock(&block_group->lock); 1414 } 1415 1416 /* Lock all pages first so we can lock the extent safely. */ 1417 ret = io_ctl_prepare_pages(io_ctl, false); 1418 if (ret) 1419 goto out_unlock; 1420 1421 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1422 &cached_state); 1423 1424 io_ctl_set_generation(io_ctl, trans->transid); 1425 1426 mutex_lock(&ctl->cache_writeout_mutex); 1427 /* Write out the extent entries in the free space cache */ 1428 spin_lock(&ctl->tree_lock); 1429 ret = write_cache_extent_entries(io_ctl, ctl, 1430 block_group, &entries, &bitmaps, 1431 &bitmap_list); 1432 if (ret) 1433 goto out_nospc_locked; 1434 1435 /* 1436 * Some spaces that are freed in the current transaction are pinned, 1437 * they will be added into free space cache after the transaction is 1438 * committed, we shouldn't lose them. 1439 * 1440 * If this changes while we are working we'll get added back to 1441 * the dirty list and redo it. No locking needed 1442 */ 1443 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries); 1444 if (ret) 1445 goto out_nospc_locked; 1446 1447 /* 1448 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1449 * locked while doing it because a concurrent trim can be manipulating 1450 * or freeing the bitmap. 1451 */ 1452 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1453 spin_unlock(&ctl->tree_lock); 1454 mutex_unlock(&ctl->cache_writeout_mutex); 1455 if (ret) 1456 goto out_nospc; 1457 1458 /* Zero out the rest of the pages just to make sure */ 1459 io_ctl_zero_remaining_pages(io_ctl); 1460 1461 /* Everything is written out, now we dirty the pages in the file. */ 1462 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages, 1463 io_ctl->num_pages, 0, i_size_read(inode), 1464 &cached_state, false); 1465 if (ret) 1466 goto out_nospc; 1467 1468 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1469 up_write(&block_group->data_rwsem); 1470 /* 1471 * Release the pages and unlock the extent, we will flush 1472 * them out later 1473 */ 1474 io_ctl_drop_pages(io_ctl); 1475 io_ctl_free(io_ctl); 1476 1477 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1478 &cached_state); 1479 1480 /* 1481 * at this point the pages are under IO and we're happy, 1482 * The caller is responsible for waiting on them and updating 1483 * the cache and the inode 1484 */ 1485 io_ctl->entries = entries; 1486 io_ctl->bitmaps = bitmaps; 1487 1488 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1489 if (ret) 1490 goto out; 1491 1492 return 0; 1493 1494 out_nospc_locked: 1495 cleanup_bitmap_list(&bitmap_list); 1496 spin_unlock(&ctl->tree_lock); 1497 mutex_unlock(&ctl->cache_writeout_mutex); 1498 1499 out_nospc: 1500 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1501 1502 out_unlock: 1503 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1504 up_write(&block_group->data_rwsem); 1505 1506 out: 1507 io_ctl->inode = NULL; 1508 io_ctl_free(io_ctl); 1509 if (ret) { 1510 invalidate_inode_pages2(inode->i_mapping); 1511 BTRFS_I(inode)->generation = 0; 1512 } 1513 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1514 if (must_iput) 1515 iput(inode); 1516 return ret; 1517 } 1518 1519 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1520 struct btrfs_block_group *block_group, 1521 struct btrfs_path *path) 1522 { 1523 struct btrfs_fs_info *fs_info = trans->fs_info; 1524 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1525 struct inode *inode; 1526 int ret = 0; 1527 1528 spin_lock(&block_group->lock); 1529 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1530 spin_unlock(&block_group->lock); 1531 return 0; 1532 } 1533 spin_unlock(&block_group->lock); 1534 1535 inode = lookup_free_space_inode(block_group, path); 1536 if (IS_ERR(inode)) 1537 return 0; 1538 1539 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1540 block_group, &block_group->io_ctl, trans); 1541 if (ret) { 1542 btrfs_debug(fs_info, 1543 "failed to write free space cache for block group %llu error %d", 1544 block_group->start, ret); 1545 spin_lock(&block_group->lock); 1546 block_group->disk_cache_state = BTRFS_DC_ERROR; 1547 spin_unlock(&block_group->lock); 1548 1549 block_group->io_ctl.inode = NULL; 1550 iput(inode); 1551 } 1552 1553 /* 1554 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1555 * to wait for IO and put the inode 1556 */ 1557 1558 return ret; 1559 } 1560 1561 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1562 u64 offset) 1563 { 1564 ASSERT(offset >= bitmap_start); 1565 offset -= bitmap_start; 1566 return (unsigned long)(div_u64(offset, unit)); 1567 } 1568 1569 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1570 { 1571 return (unsigned long)(div_u64(bytes, unit)); 1572 } 1573 1574 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1575 u64 offset) 1576 { 1577 u64 bitmap_start; 1578 u64 bytes_per_bitmap; 1579 1580 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1581 bitmap_start = offset - ctl->start; 1582 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1583 bitmap_start *= bytes_per_bitmap; 1584 bitmap_start += ctl->start; 1585 1586 return bitmap_start; 1587 } 1588 1589 static int tree_insert_offset(struct rb_root *root, u64 offset, 1590 struct rb_node *node, int bitmap) 1591 { 1592 struct rb_node **p = &root->rb_node; 1593 struct rb_node *parent = NULL; 1594 struct btrfs_free_space *info; 1595 1596 while (*p) { 1597 parent = *p; 1598 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1599 1600 if (offset < info->offset) { 1601 p = &(*p)->rb_left; 1602 } else if (offset > info->offset) { 1603 p = &(*p)->rb_right; 1604 } else { 1605 /* 1606 * we could have a bitmap entry and an extent entry 1607 * share the same offset. If this is the case, we want 1608 * the extent entry to always be found first if we do a 1609 * linear search through the tree, since we want to have 1610 * the quickest allocation time, and allocating from an 1611 * extent is faster than allocating from a bitmap. So 1612 * if we're inserting a bitmap and we find an entry at 1613 * this offset, we want to go right, or after this entry 1614 * logically. If we are inserting an extent and we've 1615 * found a bitmap, we want to go left, or before 1616 * logically. 1617 */ 1618 if (bitmap) { 1619 if (info->bitmap) { 1620 WARN_ON_ONCE(1); 1621 return -EEXIST; 1622 } 1623 p = &(*p)->rb_right; 1624 } else { 1625 if (!info->bitmap) { 1626 WARN_ON_ONCE(1); 1627 return -EEXIST; 1628 } 1629 p = &(*p)->rb_left; 1630 } 1631 } 1632 } 1633 1634 rb_link_node(node, parent, p); 1635 rb_insert_color(node, root); 1636 1637 return 0; 1638 } 1639 1640 /* 1641 * This is a little subtle. We *only* have ->max_extent_size set if we actually 1642 * searched through the bitmap and figured out the largest ->max_extent_size, 1643 * otherwise it's 0. In the case that it's 0 we don't want to tell the 1644 * allocator the wrong thing, we want to use the actual real max_extent_size 1645 * we've found already if it's larger, or we want to use ->bytes. 1646 * 1647 * This matters because find_free_space() will skip entries who's ->bytes is 1648 * less than the required bytes. So if we didn't search down this bitmap, we 1649 * may pick some previous entry that has a smaller ->max_extent_size than we 1650 * have. For example, assume we have two entries, one that has 1651 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set 1652 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will 1653 * call into find_free_space(), and return with max_extent_size == 4K, because 1654 * that first bitmap entry had ->max_extent_size set, but the second one did 1655 * not. If instead we returned 8K we'd come in searching for 8K, and find the 1656 * 8K contiguous range. 1657 * 1658 * Consider the other case, we have 2 8K chunks in that second entry and still 1659 * don't have ->max_extent_size set. We'll return 16K, and the next time the 1660 * allocator comes in it'll fully search our second bitmap, and this time it'll 1661 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the 1662 * right allocation the next loop through. 1663 */ 1664 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry) 1665 { 1666 if (entry->bitmap && entry->max_extent_size) 1667 return entry->max_extent_size; 1668 return entry->bytes; 1669 } 1670 1671 /* 1672 * We want the largest entry to be leftmost, so this is inverted from what you'd 1673 * normally expect. 1674 */ 1675 static bool entry_less(struct rb_node *node, const struct rb_node *parent) 1676 { 1677 const struct btrfs_free_space *entry, *exist; 1678 1679 entry = rb_entry(node, struct btrfs_free_space, bytes_index); 1680 exist = rb_entry(parent, struct btrfs_free_space, bytes_index); 1681 return get_max_extent_size(exist) < get_max_extent_size(entry); 1682 } 1683 1684 /* 1685 * searches the tree for the given offset. 1686 * 1687 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1688 * want a section that has at least bytes size and comes at or after the given 1689 * offset. 1690 */ 1691 static struct btrfs_free_space * 1692 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1693 u64 offset, int bitmap_only, int fuzzy) 1694 { 1695 struct rb_node *n = ctl->free_space_offset.rb_node; 1696 struct btrfs_free_space *entry = NULL, *prev = NULL; 1697 1698 /* find entry that is closest to the 'offset' */ 1699 while (n) { 1700 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1701 prev = entry; 1702 1703 if (offset < entry->offset) 1704 n = n->rb_left; 1705 else if (offset > entry->offset) 1706 n = n->rb_right; 1707 else 1708 break; 1709 1710 entry = NULL; 1711 } 1712 1713 if (bitmap_only) { 1714 if (!entry) 1715 return NULL; 1716 if (entry->bitmap) 1717 return entry; 1718 1719 /* 1720 * bitmap entry and extent entry may share same offset, 1721 * in that case, bitmap entry comes after extent entry. 1722 */ 1723 n = rb_next(n); 1724 if (!n) 1725 return NULL; 1726 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1727 if (entry->offset != offset) 1728 return NULL; 1729 1730 WARN_ON(!entry->bitmap); 1731 return entry; 1732 } else if (entry) { 1733 if (entry->bitmap) { 1734 /* 1735 * if previous extent entry covers the offset, 1736 * we should return it instead of the bitmap entry 1737 */ 1738 n = rb_prev(&entry->offset_index); 1739 if (n) { 1740 prev = rb_entry(n, struct btrfs_free_space, 1741 offset_index); 1742 if (!prev->bitmap && 1743 prev->offset + prev->bytes > offset) 1744 entry = prev; 1745 } 1746 } 1747 return entry; 1748 } 1749 1750 if (!prev) 1751 return NULL; 1752 1753 /* find last entry before the 'offset' */ 1754 entry = prev; 1755 if (entry->offset > offset) { 1756 n = rb_prev(&entry->offset_index); 1757 if (n) { 1758 entry = rb_entry(n, struct btrfs_free_space, 1759 offset_index); 1760 ASSERT(entry->offset <= offset); 1761 } else { 1762 if (fuzzy) 1763 return entry; 1764 else 1765 return NULL; 1766 } 1767 } 1768 1769 if (entry->bitmap) { 1770 n = rb_prev(&entry->offset_index); 1771 if (n) { 1772 prev = rb_entry(n, struct btrfs_free_space, 1773 offset_index); 1774 if (!prev->bitmap && 1775 prev->offset + prev->bytes > offset) 1776 return prev; 1777 } 1778 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1779 return entry; 1780 } else if (entry->offset + entry->bytes > offset) 1781 return entry; 1782 1783 if (!fuzzy) 1784 return NULL; 1785 1786 while (1) { 1787 n = rb_next(&entry->offset_index); 1788 if (!n) 1789 return NULL; 1790 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1791 if (entry->bitmap) { 1792 if (entry->offset + BITS_PER_BITMAP * 1793 ctl->unit > offset) 1794 break; 1795 } else { 1796 if (entry->offset + entry->bytes > offset) 1797 break; 1798 } 1799 } 1800 return entry; 1801 } 1802 1803 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1804 struct btrfs_free_space *info, 1805 bool update_stat) 1806 { 1807 rb_erase(&info->offset_index, &ctl->free_space_offset); 1808 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); 1809 ctl->free_extents--; 1810 1811 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1812 ctl->discardable_extents[BTRFS_STAT_CURR]--; 1813 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; 1814 } 1815 1816 if (update_stat) 1817 ctl->free_space -= info->bytes; 1818 } 1819 1820 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1821 struct btrfs_free_space *info) 1822 { 1823 int ret = 0; 1824 1825 ASSERT(info->bytes || info->bitmap); 1826 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1827 &info->offset_index, (info->bitmap != NULL)); 1828 if (ret) 1829 return ret; 1830 1831 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); 1832 1833 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1834 ctl->discardable_extents[BTRFS_STAT_CURR]++; 1835 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 1836 } 1837 1838 ctl->free_space += info->bytes; 1839 ctl->free_extents++; 1840 return ret; 1841 } 1842 1843 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl, 1844 struct btrfs_free_space *info) 1845 { 1846 ASSERT(info->bitmap); 1847 1848 /* 1849 * If our entry is empty it's because we're on a cluster and we don't 1850 * want to re-link it into our ctl bytes index. 1851 */ 1852 if (RB_EMPTY_NODE(&info->bytes_index)) 1853 return; 1854 1855 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); 1856 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); 1857 } 1858 1859 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1860 struct btrfs_free_space *info, 1861 u64 offset, u64 bytes, bool update_stat) 1862 { 1863 unsigned long start, count, end; 1864 int extent_delta = -1; 1865 1866 start = offset_to_bit(info->offset, ctl->unit, offset); 1867 count = bytes_to_bits(bytes, ctl->unit); 1868 end = start + count; 1869 ASSERT(end <= BITS_PER_BITMAP); 1870 1871 bitmap_clear(info->bitmap, start, count); 1872 1873 info->bytes -= bytes; 1874 if (info->max_extent_size > ctl->unit) 1875 info->max_extent_size = 0; 1876 1877 relink_bitmap_entry(ctl, info); 1878 1879 if (start && test_bit(start - 1, info->bitmap)) 1880 extent_delta++; 1881 1882 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1883 extent_delta++; 1884 1885 info->bitmap_extents += extent_delta; 1886 if (!btrfs_free_space_trimmed(info)) { 1887 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1888 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 1889 } 1890 1891 if (update_stat) 1892 ctl->free_space -= bytes; 1893 } 1894 1895 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1896 struct btrfs_free_space *info, u64 offset, 1897 u64 bytes) 1898 { 1899 unsigned long start, count, end; 1900 int extent_delta = 1; 1901 1902 start = offset_to_bit(info->offset, ctl->unit, offset); 1903 count = bytes_to_bits(bytes, ctl->unit); 1904 end = start + count; 1905 ASSERT(end <= BITS_PER_BITMAP); 1906 1907 bitmap_set(info->bitmap, start, count); 1908 1909 /* 1910 * We set some bytes, we have no idea what the max extent size is 1911 * anymore. 1912 */ 1913 info->max_extent_size = 0; 1914 info->bytes += bytes; 1915 ctl->free_space += bytes; 1916 1917 relink_bitmap_entry(ctl, info); 1918 1919 if (start && test_bit(start - 1, info->bitmap)) 1920 extent_delta--; 1921 1922 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1923 extent_delta--; 1924 1925 info->bitmap_extents += extent_delta; 1926 if (!btrfs_free_space_trimmed(info)) { 1927 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1928 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; 1929 } 1930 } 1931 1932 /* 1933 * If we can not find suitable extent, we will use bytes to record 1934 * the size of the max extent. 1935 */ 1936 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1937 struct btrfs_free_space *bitmap_info, u64 *offset, 1938 u64 *bytes, bool for_alloc) 1939 { 1940 unsigned long found_bits = 0; 1941 unsigned long max_bits = 0; 1942 unsigned long bits, i; 1943 unsigned long next_zero; 1944 unsigned long extent_bits; 1945 1946 /* 1947 * Skip searching the bitmap if we don't have a contiguous section that 1948 * is large enough for this allocation. 1949 */ 1950 if (for_alloc && 1951 bitmap_info->max_extent_size && 1952 bitmap_info->max_extent_size < *bytes) { 1953 *bytes = bitmap_info->max_extent_size; 1954 return -1; 1955 } 1956 1957 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1958 max_t(u64, *offset, bitmap_info->offset)); 1959 bits = bytes_to_bits(*bytes, ctl->unit); 1960 1961 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1962 if (for_alloc && bits == 1) { 1963 found_bits = 1; 1964 break; 1965 } 1966 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1967 BITS_PER_BITMAP, i); 1968 extent_bits = next_zero - i; 1969 if (extent_bits >= bits) { 1970 found_bits = extent_bits; 1971 break; 1972 } else if (extent_bits > max_bits) { 1973 max_bits = extent_bits; 1974 } 1975 i = next_zero; 1976 } 1977 1978 if (found_bits) { 1979 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1980 *bytes = (u64)(found_bits) * ctl->unit; 1981 return 0; 1982 } 1983 1984 *bytes = (u64)(max_bits) * ctl->unit; 1985 bitmap_info->max_extent_size = *bytes; 1986 relink_bitmap_entry(ctl, bitmap_info); 1987 return -1; 1988 } 1989 1990 /* Cache the size of the max extent in bytes */ 1991 static struct btrfs_free_space * 1992 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1993 unsigned long align, u64 *max_extent_size, bool use_bytes_index) 1994 { 1995 struct btrfs_free_space *entry; 1996 struct rb_node *node; 1997 u64 tmp; 1998 u64 align_off; 1999 int ret; 2000 2001 if (!ctl->free_space_offset.rb_node) 2002 goto out; 2003 again: 2004 if (use_bytes_index) { 2005 node = rb_first_cached(&ctl->free_space_bytes); 2006 } else { 2007 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 2008 0, 1); 2009 if (!entry) 2010 goto out; 2011 node = &entry->offset_index; 2012 } 2013 2014 for (; node; node = rb_next(node)) { 2015 if (use_bytes_index) 2016 entry = rb_entry(node, struct btrfs_free_space, 2017 bytes_index); 2018 else 2019 entry = rb_entry(node, struct btrfs_free_space, 2020 offset_index); 2021 2022 /* 2023 * If we are using the bytes index then all subsequent entries 2024 * in this tree are going to be < bytes, so simply set the max 2025 * extent size and exit the loop. 2026 * 2027 * If we're using the offset index then we need to keep going 2028 * through the rest of the tree. 2029 */ 2030 if (entry->bytes < *bytes) { 2031 *max_extent_size = max(get_max_extent_size(entry), 2032 *max_extent_size); 2033 if (use_bytes_index) 2034 break; 2035 continue; 2036 } 2037 2038 /* make sure the space returned is big enough 2039 * to match our requested alignment 2040 */ 2041 if (*bytes >= align) { 2042 tmp = entry->offset - ctl->start + align - 1; 2043 tmp = div64_u64(tmp, align); 2044 tmp = tmp * align + ctl->start; 2045 align_off = tmp - entry->offset; 2046 } else { 2047 align_off = 0; 2048 tmp = entry->offset; 2049 } 2050 2051 /* 2052 * We don't break here if we're using the bytes index because we 2053 * may have another entry that has the correct alignment that is 2054 * the right size, so we don't want to miss that possibility. 2055 * At worst this adds another loop through the logic, but if we 2056 * broke here we could prematurely ENOSPC. 2057 */ 2058 if (entry->bytes < *bytes + align_off) { 2059 *max_extent_size = max(get_max_extent_size(entry), 2060 *max_extent_size); 2061 continue; 2062 } 2063 2064 if (entry->bitmap) { 2065 struct rb_node *old_next = rb_next(node); 2066 u64 size = *bytes; 2067 2068 ret = search_bitmap(ctl, entry, &tmp, &size, true); 2069 if (!ret) { 2070 *offset = tmp; 2071 *bytes = size; 2072 return entry; 2073 } else { 2074 *max_extent_size = 2075 max(get_max_extent_size(entry), 2076 *max_extent_size); 2077 } 2078 2079 /* 2080 * The bitmap may have gotten re-arranged in the space 2081 * index here because the max_extent_size may have been 2082 * updated. Start from the beginning again if this 2083 * happened. 2084 */ 2085 if (use_bytes_index && old_next != rb_next(node)) 2086 goto again; 2087 continue; 2088 } 2089 2090 *offset = tmp; 2091 *bytes = entry->bytes - align_off; 2092 return entry; 2093 } 2094 out: 2095 return NULL; 2096 } 2097 2098 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 2099 struct btrfs_free_space *info, u64 offset) 2100 { 2101 info->offset = offset_to_bitmap(ctl, offset); 2102 info->bytes = 0; 2103 info->bitmap_extents = 0; 2104 INIT_LIST_HEAD(&info->list); 2105 link_free_space(ctl, info); 2106 ctl->total_bitmaps++; 2107 recalculate_thresholds(ctl); 2108 } 2109 2110 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 2111 struct btrfs_free_space *bitmap_info) 2112 { 2113 /* 2114 * Normally when this is called, the bitmap is completely empty. However, 2115 * if we are blowing up the free space cache for one reason or another 2116 * via __btrfs_remove_free_space_cache(), then it may not be freed and 2117 * we may leave stats on the table. 2118 */ 2119 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { 2120 ctl->discardable_extents[BTRFS_STAT_CURR] -= 2121 bitmap_info->bitmap_extents; 2122 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; 2123 2124 } 2125 unlink_free_space(ctl, bitmap_info, true); 2126 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 2127 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 2128 ctl->total_bitmaps--; 2129 recalculate_thresholds(ctl); 2130 } 2131 2132 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 2133 struct btrfs_free_space *bitmap_info, 2134 u64 *offset, u64 *bytes) 2135 { 2136 u64 end; 2137 u64 search_start, search_bytes; 2138 int ret; 2139 2140 again: 2141 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 2142 2143 /* 2144 * We need to search for bits in this bitmap. We could only cover some 2145 * of the extent in this bitmap thanks to how we add space, so we need 2146 * to search for as much as it as we can and clear that amount, and then 2147 * go searching for the next bit. 2148 */ 2149 search_start = *offset; 2150 search_bytes = ctl->unit; 2151 search_bytes = min(search_bytes, end - search_start + 1); 2152 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 2153 false); 2154 if (ret < 0 || search_start != *offset) 2155 return -EINVAL; 2156 2157 /* We may have found more bits than what we need */ 2158 search_bytes = min(search_bytes, *bytes); 2159 2160 /* Cannot clear past the end of the bitmap */ 2161 search_bytes = min(search_bytes, end - search_start + 1); 2162 2163 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true); 2164 *offset += search_bytes; 2165 *bytes -= search_bytes; 2166 2167 if (*bytes) { 2168 struct rb_node *next = rb_next(&bitmap_info->offset_index); 2169 if (!bitmap_info->bytes) 2170 free_bitmap(ctl, bitmap_info); 2171 2172 /* 2173 * no entry after this bitmap, but we still have bytes to 2174 * remove, so something has gone wrong. 2175 */ 2176 if (!next) 2177 return -EINVAL; 2178 2179 bitmap_info = rb_entry(next, struct btrfs_free_space, 2180 offset_index); 2181 2182 /* 2183 * if the next entry isn't a bitmap we need to return to let the 2184 * extent stuff do its work. 2185 */ 2186 if (!bitmap_info->bitmap) 2187 return -EAGAIN; 2188 2189 /* 2190 * Ok the next item is a bitmap, but it may not actually hold 2191 * the information for the rest of this free space stuff, so 2192 * look for it, and if we don't find it return so we can try 2193 * everything over again. 2194 */ 2195 search_start = *offset; 2196 search_bytes = ctl->unit; 2197 ret = search_bitmap(ctl, bitmap_info, &search_start, 2198 &search_bytes, false); 2199 if (ret < 0 || search_start != *offset) 2200 return -EAGAIN; 2201 2202 goto again; 2203 } else if (!bitmap_info->bytes) 2204 free_bitmap(ctl, bitmap_info); 2205 2206 return 0; 2207 } 2208 2209 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 2210 struct btrfs_free_space *info, u64 offset, 2211 u64 bytes, enum btrfs_trim_state trim_state) 2212 { 2213 u64 bytes_to_set = 0; 2214 u64 end; 2215 2216 /* 2217 * This is a tradeoff to make bitmap trim state minimal. We mark the 2218 * whole bitmap untrimmed if at any point we add untrimmed regions. 2219 */ 2220 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { 2221 if (btrfs_free_space_trimmed(info)) { 2222 ctl->discardable_extents[BTRFS_STAT_CURR] += 2223 info->bitmap_extents; 2224 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 2225 } 2226 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2227 } 2228 2229 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 2230 2231 bytes_to_set = min(end - offset, bytes); 2232 2233 bitmap_set_bits(ctl, info, offset, bytes_to_set); 2234 2235 return bytes_to_set; 2236 2237 } 2238 2239 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 2240 struct btrfs_free_space *info) 2241 { 2242 struct btrfs_block_group *block_group = ctl->block_group; 2243 struct btrfs_fs_info *fs_info = block_group->fs_info; 2244 bool forced = false; 2245 2246 #ifdef CONFIG_BTRFS_DEBUG 2247 if (btrfs_should_fragment_free_space(block_group)) 2248 forced = true; 2249 #endif 2250 2251 /* This is a way to reclaim large regions from the bitmaps. */ 2252 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) 2253 return false; 2254 2255 /* 2256 * If we are below the extents threshold then we can add this as an 2257 * extent, and don't have to deal with the bitmap 2258 */ 2259 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2260 /* 2261 * If this block group has some small extents we don't want to 2262 * use up all of our free slots in the cache with them, we want 2263 * to reserve them to larger extents, however if we have plenty 2264 * of cache left then go ahead an dadd them, no sense in adding 2265 * the overhead of a bitmap if we don't have to. 2266 */ 2267 if (info->bytes <= fs_info->sectorsize * 8) { 2268 if (ctl->free_extents * 3 <= ctl->extents_thresh) 2269 return false; 2270 } else { 2271 return false; 2272 } 2273 } 2274 2275 /* 2276 * The original block groups from mkfs can be really small, like 8 2277 * megabytes, so don't bother with a bitmap for those entries. However 2278 * some block groups can be smaller than what a bitmap would cover but 2279 * are still large enough that they could overflow the 32k memory limit, 2280 * so allow those block groups to still be allowed to have a bitmap 2281 * entry. 2282 */ 2283 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2284 return false; 2285 2286 return true; 2287 } 2288 2289 static const struct btrfs_free_space_op free_space_op = { 2290 .use_bitmap = use_bitmap, 2291 }; 2292 2293 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2294 struct btrfs_free_space *info) 2295 { 2296 struct btrfs_free_space *bitmap_info; 2297 struct btrfs_block_group *block_group = NULL; 2298 int added = 0; 2299 u64 bytes, offset, bytes_added; 2300 enum btrfs_trim_state trim_state; 2301 int ret; 2302 2303 bytes = info->bytes; 2304 offset = info->offset; 2305 trim_state = info->trim_state; 2306 2307 if (!ctl->op->use_bitmap(ctl, info)) 2308 return 0; 2309 2310 if (ctl->op == &free_space_op) 2311 block_group = ctl->block_group; 2312 again: 2313 /* 2314 * Since we link bitmaps right into the cluster we need to see if we 2315 * have a cluster here, and if so and it has our bitmap we need to add 2316 * the free space to that bitmap. 2317 */ 2318 if (block_group && !list_empty(&block_group->cluster_list)) { 2319 struct btrfs_free_cluster *cluster; 2320 struct rb_node *node; 2321 struct btrfs_free_space *entry; 2322 2323 cluster = list_entry(block_group->cluster_list.next, 2324 struct btrfs_free_cluster, 2325 block_group_list); 2326 spin_lock(&cluster->lock); 2327 node = rb_first(&cluster->root); 2328 if (!node) { 2329 spin_unlock(&cluster->lock); 2330 goto no_cluster_bitmap; 2331 } 2332 2333 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2334 if (!entry->bitmap) { 2335 spin_unlock(&cluster->lock); 2336 goto no_cluster_bitmap; 2337 } 2338 2339 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2340 bytes_added = add_bytes_to_bitmap(ctl, entry, offset, 2341 bytes, trim_state); 2342 bytes -= bytes_added; 2343 offset += bytes_added; 2344 } 2345 spin_unlock(&cluster->lock); 2346 if (!bytes) { 2347 ret = 1; 2348 goto out; 2349 } 2350 } 2351 2352 no_cluster_bitmap: 2353 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2354 1, 0); 2355 if (!bitmap_info) { 2356 ASSERT(added == 0); 2357 goto new_bitmap; 2358 } 2359 2360 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 2361 trim_state); 2362 bytes -= bytes_added; 2363 offset += bytes_added; 2364 added = 0; 2365 2366 if (!bytes) { 2367 ret = 1; 2368 goto out; 2369 } else 2370 goto again; 2371 2372 new_bitmap: 2373 if (info && info->bitmap) { 2374 add_new_bitmap(ctl, info, offset); 2375 added = 1; 2376 info = NULL; 2377 goto again; 2378 } else { 2379 spin_unlock(&ctl->tree_lock); 2380 2381 /* no pre-allocated info, allocate a new one */ 2382 if (!info) { 2383 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2384 GFP_NOFS); 2385 if (!info) { 2386 spin_lock(&ctl->tree_lock); 2387 ret = -ENOMEM; 2388 goto out; 2389 } 2390 } 2391 2392 /* allocate the bitmap */ 2393 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2394 GFP_NOFS); 2395 info->trim_state = BTRFS_TRIM_STATE_TRIMMED; 2396 spin_lock(&ctl->tree_lock); 2397 if (!info->bitmap) { 2398 ret = -ENOMEM; 2399 goto out; 2400 } 2401 goto again; 2402 } 2403 2404 out: 2405 if (info) { 2406 if (info->bitmap) 2407 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2408 info->bitmap); 2409 kmem_cache_free(btrfs_free_space_cachep, info); 2410 } 2411 2412 return ret; 2413 } 2414 2415 /* 2416 * Free space merging rules: 2417 * 1) Merge trimmed areas together 2418 * 2) Let untrimmed areas coalesce with trimmed areas 2419 * 3) Always pull neighboring regions from bitmaps 2420 * 2421 * The above rules are for when we merge free space based on btrfs_trim_state. 2422 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the 2423 * same reason: to promote larger extent regions which makes life easier for 2424 * find_free_extent(). Rule 2 enables coalescing based on the common path 2425 * being returning free space from btrfs_finish_extent_commit(). So when free 2426 * space is trimmed, it will prevent aggregating trimmed new region and 2427 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents 2428 * and provide find_free_extent() with the largest extents possible hoping for 2429 * the reuse path. 2430 */ 2431 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2432 struct btrfs_free_space *info, bool update_stat) 2433 { 2434 struct btrfs_free_space *left_info = NULL; 2435 struct btrfs_free_space *right_info; 2436 bool merged = false; 2437 u64 offset = info->offset; 2438 u64 bytes = info->bytes; 2439 const bool is_trimmed = btrfs_free_space_trimmed(info); 2440 2441 /* 2442 * first we want to see if there is free space adjacent to the range we 2443 * are adding, if there is remove that struct and add a new one to 2444 * cover the entire range 2445 */ 2446 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2447 if (right_info && rb_prev(&right_info->offset_index)) 2448 left_info = rb_entry(rb_prev(&right_info->offset_index), 2449 struct btrfs_free_space, offset_index); 2450 else if (!right_info) 2451 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2452 2453 /* See try_merge_free_space() comment. */ 2454 if (right_info && !right_info->bitmap && 2455 (!is_trimmed || btrfs_free_space_trimmed(right_info))) { 2456 unlink_free_space(ctl, right_info, update_stat); 2457 info->bytes += right_info->bytes; 2458 kmem_cache_free(btrfs_free_space_cachep, right_info); 2459 merged = true; 2460 } 2461 2462 /* See try_merge_free_space() comment. */ 2463 if (left_info && !left_info->bitmap && 2464 left_info->offset + left_info->bytes == offset && 2465 (!is_trimmed || btrfs_free_space_trimmed(left_info))) { 2466 unlink_free_space(ctl, left_info, update_stat); 2467 info->offset = left_info->offset; 2468 info->bytes += left_info->bytes; 2469 kmem_cache_free(btrfs_free_space_cachep, left_info); 2470 merged = true; 2471 } 2472 2473 return merged; 2474 } 2475 2476 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2477 struct btrfs_free_space *info, 2478 bool update_stat) 2479 { 2480 struct btrfs_free_space *bitmap; 2481 unsigned long i; 2482 unsigned long j; 2483 const u64 end = info->offset + info->bytes; 2484 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2485 u64 bytes; 2486 2487 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2488 if (!bitmap) 2489 return false; 2490 2491 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2492 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2493 if (j == i) 2494 return false; 2495 bytes = (j - i) * ctl->unit; 2496 info->bytes += bytes; 2497 2498 /* See try_merge_free_space() comment. */ 2499 if (!btrfs_free_space_trimmed(bitmap)) 2500 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2501 2502 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat); 2503 2504 if (!bitmap->bytes) 2505 free_bitmap(ctl, bitmap); 2506 2507 return true; 2508 } 2509 2510 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2511 struct btrfs_free_space *info, 2512 bool update_stat) 2513 { 2514 struct btrfs_free_space *bitmap; 2515 u64 bitmap_offset; 2516 unsigned long i; 2517 unsigned long j; 2518 unsigned long prev_j; 2519 u64 bytes; 2520 2521 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2522 /* If we're on a boundary, try the previous logical bitmap. */ 2523 if (bitmap_offset == info->offset) { 2524 if (info->offset == 0) 2525 return false; 2526 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2527 } 2528 2529 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2530 if (!bitmap) 2531 return false; 2532 2533 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2534 j = 0; 2535 prev_j = (unsigned long)-1; 2536 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2537 if (j > i) 2538 break; 2539 prev_j = j; 2540 } 2541 if (prev_j == i) 2542 return false; 2543 2544 if (prev_j == (unsigned long)-1) 2545 bytes = (i + 1) * ctl->unit; 2546 else 2547 bytes = (i - prev_j) * ctl->unit; 2548 2549 info->offset -= bytes; 2550 info->bytes += bytes; 2551 2552 /* See try_merge_free_space() comment. */ 2553 if (!btrfs_free_space_trimmed(bitmap)) 2554 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2555 2556 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat); 2557 2558 if (!bitmap->bytes) 2559 free_bitmap(ctl, bitmap); 2560 2561 return true; 2562 } 2563 2564 /* 2565 * We prefer always to allocate from extent entries, both for clustered and 2566 * non-clustered allocation requests. So when attempting to add a new extent 2567 * entry, try to see if there's adjacent free space in bitmap entries, and if 2568 * there is, migrate that space from the bitmaps to the extent. 2569 * Like this we get better chances of satisfying space allocation requests 2570 * because we attempt to satisfy them based on a single cache entry, and never 2571 * on 2 or more entries - even if the entries represent a contiguous free space 2572 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2573 * ends). 2574 */ 2575 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2576 struct btrfs_free_space *info, 2577 bool update_stat) 2578 { 2579 /* 2580 * Only work with disconnected entries, as we can change their offset, 2581 * and must be extent entries. 2582 */ 2583 ASSERT(!info->bitmap); 2584 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2585 2586 if (ctl->total_bitmaps > 0) { 2587 bool stole_end; 2588 bool stole_front = false; 2589 2590 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2591 if (ctl->total_bitmaps > 0) 2592 stole_front = steal_from_bitmap_to_front(ctl, info, 2593 update_stat); 2594 2595 if (stole_end || stole_front) 2596 try_merge_free_space(ctl, info, update_stat); 2597 } 2598 } 2599 2600 int __btrfs_add_free_space(struct btrfs_block_group *block_group, 2601 u64 offset, u64 bytes, 2602 enum btrfs_trim_state trim_state) 2603 { 2604 struct btrfs_fs_info *fs_info = block_group->fs_info; 2605 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2606 struct btrfs_free_space *info; 2607 int ret = 0; 2608 u64 filter_bytes = bytes; 2609 2610 ASSERT(!btrfs_is_zoned(fs_info)); 2611 2612 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2613 if (!info) 2614 return -ENOMEM; 2615 2616 info->offset = offset; 2617 info->bytes = bytes; 2618 info->trim_state = trim_state; 2619 RB_CLEAR_NODE(&info->offset_index); 2620 RB_CLEAR_NODE(&info->bytes_index); 2621 2622 spin_lock(&ctl->tree_lock); 2623 2624 if (try_merge_free_space(ctl, info, true)) 2625 goto link; 2626 2627 /* 2628 * There was no extent directly to the left or right of this new 2629 * extent then we know we're going to have to allocate a new extent, so 2630 * before we do that see if we need to drop this into a bitmap 2631 */ 2632 ret = insert_into_bitmap(ctl, info); 2633 if (ret < 0) { 2634 goto out; 2635 } else if (ret) { 2636 ret = 0; 2637 goto out; 2638 } 2639 link: 2640 /* 2641 * Only steal free space from adjacent bitmaps if we're sure we're not 2642 * going to add the new free space to existing bitmap entries - because 2643 * that would mean unnecessary work that would be reverted. Therefore 2644 * attempt to steal space from bitmaps if we're adding an extent entry. 2645 */ 2646 steal_from_bitmap(ctl, info, true); 2647 2648 filter_bytes = max(filter_bytes, info->bytes); 2649 2650 ret = link_free_space(ctl, info); 2651 if (ret) 2652 kmem_cache_free(btrfs_free_space_cachep, info); 2653 out: 2654 btrfs_discard_update_discardable(block_group); 2655 spin_unlock(&ctl->tree_lock); 2656 2657 if (ret) { 2658 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2659 ASSERT(ret != -EEXIST); 2660 } 2661 2662 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { 2663 btrfs_discard_check_filter(block_group, filter_bytes); 2664 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 2665 } 2666 2667 return ret; 2668 } 2669 2670 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group, 2671 u64 bytenr, u64 size, bool used) 2672 { 2673 struct btrfs_space_info *sinfo = block_group->space_info; 2674 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2675 u64 offset = bytenr - block_group->start; 2676 u64 to_free, to_unusable; 2677 int bg_reclaim_threshold = 0; 2678 bool initial = (size == block_group->length); 2679 u64 reclaimable_unusable; 2680 2681 WARN_ON(!initial && offset + size > block_group->zone_capacity); 2682 2683 if (!initial) 2684 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold); 2685 2686 spin_lock(&ctl->tree_lock); 2687 if (!used) 2688 to_free = size; 2689 else if (initial) 2690 to_free = block_group->zone_capacity; 2691 else if (offset >= block_group->alloc_offset) 2692 to_free = size; 2693 else if (offset + size <= block_group->alloc_offset) 2694 to_free = 0; 2695 else 2696 to_free = offset + size - block_group->alloc_offset; 2697 to_unusable = size - to_free; 2698 2699 ctl->free_space += to_free; 2700 /* 2701 * If the block group is read-only, we should account freed space into 2702 * bytes_readonly. 2703 */ 2704 if (!block_group->ro) 2705 block_group->zone_unusable += to_unusable; 2706 spin_unlock(&ctl->tree_lock); 2707 if (!used) { 2708 spin_lock(&block_group->lock); 2709 block_group->alloc_offset -= size; 2710 spin_unlock(&block_group->lock); 2711 } 2712 2713 reclaimable_unusable = block_group->zone_unusable - 2714 (block_group->length - block_group->zone_capacity); 2715 /* All the region is now unusable. Mark it as unused and reclaim */ 2716 if (block_group->zone_unusable == block_group->length) { 2717 btrfs_mark_bg_unused(block_group); 2718 } else if (bg_reclaim_threshold && 2719 reclaimable_unusable >= 2720 div_factor_fine(block_group->zone_capacity, 2721 bg_reclaim_threshold)) { 2722 btrfs_mark_bg_to_reclaim(block_group); 2723 } 2724 2725 return 0; 2726 } 2727 2728 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2729 u64 bytenr, u64 size) 2730 { 2731 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2732 2733 if (btrfs_is_zoned(block_group->fs_info)) 2734 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2735 true); 2736 2737 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) 2738 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2739 2740 return __btrfs_add_free_space(block_group, bytenr, size, trim_state); 2741 } 2742 2743 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group, 2744 u64 bytenr, u64 size) 2745 { 2746 if (btrfs_is_zoned(block_group->fs_info)) 2747 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2748 false); 2749 2750 return btrfs_add_free_space(block_group, bytenr, size); 2751 } 2752 2753 /* 2754 * This is a subtle distinction because when adding free space back in general, 2755 * we want it to be added as untrimmed for async. But in the case where we add 2756 * it on loading of a block group, we want to consider it trimmed. 2757 */ 2758 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, 2759 u64 bytenr, u64 size) 2760 { 2761 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2762 2763 if (btrfs_is_zoned(block_group->fs_info)) 2764 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2765 true); 2766 2767 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || 2768 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 2769 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2770 2771 return __btrfs_add_free_space(block_group, bytenr, size, trim_state); 2772 } 2773 2774 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2775 u64 offset, u64 bytes) 2776 { 2777 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2778 struct btrfs_free_space *info; 2779 int ret; 2780 bool re_search = false; 2781 2782 if (btrfs_is_zoned(block_group->fs_info)) { 2783 /* 2784 * This can happen with conventional zones when replaying log. 2785 * Since the allocation info of tree-log nodes are not recorded 2786 * to the extent-tree, calculate_alloc_pointer() failed to 2787 * advance the allocation pointer after last allocated tree log 2788 * node blocks. 2789 * 2790 * This function is called from 2791 * btrfs_pin_extent_for_log_replay() when replaying the log. 2792 * Advance the pointer not to overwrite the tree-log nodes. 2793 */ 2794 if (block_group->start + block_group->alloc_offset < 2795 offset + bytes) { 2796 block_group->alloc_offset = 2797 offset + bytes - block_group->start; 2798 } 2799 return 0; 2800 } 2801 2802 spin_lock(&ctl->tree_lock); 2803 2804 again: 2805 ret = 0; 2806 if (!bytes) 2807 goto out_lock; 2808 2809 info = tree_search_offset(ctl, offset, 0, 0); 2810 if (!info) { 2811 /* 2812 * oops didn't find an extent that matched the space we wanted 2813 * to remove, look for a bitmap instead 2814 */ 2815 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2816 1, 0); 2817 if (!info) { 2818 /* 2819 * If we found a partial bit of our free space in a 2820 * bitmap but then couldn't find the other part this may 2821 * be a problem, so WARN about it. 2822 */ 2823 WARN_ON(re_search); 2824 goto out_lock; 2825 } 2826 } 2827 2828 re_search = false; 2829 if (!info->bitmap) { 2830 unlink_free_space(ctl, info, true); 2831 if (offset == info->offset) { 2832 u64 to_free = min(bytes, info->bytes); 2833 2834 info->bytes -= to_free; 2835 info->offset += to_free; 2836 if (info->bytes) { 2837 ret = link_free_space(ctl, info); 2838 WARN_ON(ret); 2839 } else { 2840 kmem_cache_free(btrfs_free_space_cachep, info); 2841 } 2842 2843 offset += to_free; 2844 bytes -= to_free; 2845 goto again; 2846 } else { 2847 u64 old_end = info->bytes + info->offset; 2848 2849 info->bytes = offset - info->offset; 2850 ret = link_free_space(ctl, info); 2851 WARN_ON(ret); 2852 if (ret) 2853 goto out_lock; 2854 2855 /* Not enough bytes in this entry to satisfy us */ 2856 if (old_end < offset + bytes) { 2857 bytes -= old_end - offset; 2858 offset = old_end; 2859 goto again; 2860 } else if (old_end == offset + bytes) { 2861 /* all done */ 2862 goto out_lock; 2863 } 2864 spin_unlock(&ctl->tree_lock); 2865 2866 ret = __btrfs_add_free_space(block_group, 2867 offset + bytes, 2868 old_end - (offset + bytes), 2869 info->trim_state); 2870 WARN_ON(ret); 2871 goto out; 2872 } 2873 } 2874 2875 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2876 if (ret == -EAGAIN) { 2877 re_search = true; 2878 goto again; 2879 } 2880 out_lock: 2881 btrfs_discard_update_discardable(block_group); 2882 spin_unlock(&ctl->tree_lock); 2883 out: 2884 return ret; 2885 } 2886 2887 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2888 u64 bytes) 2889 { 2890 struct btrfs_fs_info *fs_info = block_group->fs_info; 2891 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2892 struct btrfs_free_space *info; 2893 struct rb_node *n; 2894 int count = 0; 2895 2896 /* 2897 * Zoned btrfs does not use free space tree and cluster. Just print 2898 * out the free space after the allocation offset. 2899 */ 2900 if (btrfs_is_zoned(fs_info)) { 2901 btrfs_info(fs_info, "free space %llu active %d", 2902 block_group->zone_capacity - block_group->alloc_offset, 2903 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2904 &block_group->runtime_flags)); 2905 return; 2906 } 2907 2908 spin_lock(&ctl->tree_lock); 2909 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2910 info = rb_entry(n, struct btrfs_free_space, offset_index); 2911 if (info->bytes >= bytes && !block_group->ro) 2912 count++; 2913 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2914 info->offset, info->bytes, 2915 (info->bitmap) ? "yes" : "no"); 2916 } 2917 spin_unlock(&ctl->tree_lock); 2918 btrfs_info(fs_info, "block group has cluster?: %s", 2919 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2920 btrfs_info(fs_info, 2921 "%d blocks of free space at or bigger than bytes is", count); 2922 } 2923 2924 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group, 2925 struct btrfs_free_space_ctl *ctl) 2926 { 2927 struct btrfs_fs_info *fs_info = block_group->fs_info; 2928 2929 spin_lock_init(&ctl->tree_lock); 2930 ctl->unit = fs_info->sectorsize; 2931 ctl->start = block_group->start; 2932 ctl->block_group = block_group; 2933 ctl->op = &free_space_op; 2934 ctl->free_space_bytes = RB_ROOT_CACHED; 2935 INIT_LIST_HEAD(&ctl->trimming_ranges); 2936 mutex_init(&ctl->cache_writeout_mutex); 2937 2938 /* 2939 * we only want to have 32k of ram per block group for keeping 2940 * track of free space, and if we pass 1/2 of that we want to 2941 * start converting things over to using bitmaps 2942 */ 2943 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2944 } 2945 2946 /* 2947 * for a given cluster, put all of its extents back into the free 2948 * space cache. If the block group passed doesn't match the block group 2949 * pointed to by the cluster, someone else raced in and freed the 2950 * cluster already. In that case, we just return without changing anything 2951 */ 2952 static void __btrfs_return_cluster_to_free_space( 2953 struct btrfs_block_group *block_group, 2954 struct btrfs_free_cluster *cluster) 2955 { 2956 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2957 struct btrfs_free_space *entry; 2958 struct rb_node *node; 2959 2960 spin_lock(&cluster->lock); 2961 if (cluster->block_group != block_group) { 2962 spin_unlock(&cluster->lock); 2963 return; 2964 } 2965 2966 cluster->block_group = NULL; 2967 cluster->window_start = 0; 2968 list_del_init(&cluster->block_group_list); 2969 2970 node = rb_first(&cluster->root); 2971 while (node) { 2972 bool bitmap; 2973 2974 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2975 node = rb_next(&entry->offset_index); 2976 rb_erase(&entry->offset_index, &cluster->root); 2977 RB_CLEAR_NODE(&entry->offset_index); 2978 2979 bitmap = (entry->bitmap != NULL); 2980 if (!bitmap) { 2981 /* Merging treats extents as if they were new */ 2982 if (!btrfs_free_space_trimmed(entry)) { 2983 ctl->discardable_extents[BTRFS_STAT_CURR]--; 2984 ctl->discardable_bytes[BTRFS_STAT_CURR] -= 2985 entry->bytes; 2986 } 2987 2988 try_merge_free_space(ctl, entry, false); 2989 steal_from_bitmap(ctl, entry, false); 2990 2991 /* As we insert directly, update these statistics */ 2992 if (!btrfs_free_space_trimmed(entry)) { 2993 ctl->discardable_extents[BTRFS_STAT_CURR]++; 2994 ctl->discardable_bytes[BTRFS_STAT_CURR] += 2995 entry->bytes; 2996 } 2997 } 2998 tree_insert_offset(&ctl->free_space_offset, 2999 entry->offset, &entry->offset_index, bitmap); 3000 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes, 3001 entry_less); 3002 } 3003 cluster->root = RB_ROOT; 3004 spin_unlock(&cluster->lock); 3005 btrfs_put_block_group(block_group); 3006 } 3007 3008 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 3009 { 3010 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3011 struct btrfs_free_cluster *cluster; 3012 struct list_head *head; 3013 3014 spin_lock(&ctl->tree_lock); 3015 while ((head = block_group->cluster_list.next) != 3016 &block_group->cluster_list) { 3017 cluster = list_entry(head, struct btrfs_free_cluster, 3018 block_group_list); 3019 3020 WARN_ON(cluster->block_group != block_group); 3021 __btrfs_return_cluster_to_free_space(block_group, cluster); 3022 3023 cond_resched_lock(&ctl->tree_lock); 3024 } 3025 __btrfs_remove_free_space_cache(ctl); 3026 btrfs_discard_update_discardable(block_group); 3027 spin_unlock(&ctl->tree_lock); 3028 3029 } 3030 3031 /** 3032 * btrfs_is_free_space_trimmed - see if everything is trimmed 3033 * @block_group: block_group of interest 3034 * 3035 * Walk @block_group's free space rb_tree to determine if everything is trimmed. 3036 */ 3037 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) 3038 { 3039 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3040 struct btrfs_free_space *info; 3041 struct rb_node *node; 3042 bool ret = true; 3043 3044 spin_lock(&ctl->tree_lock); 3045 node = rb_first(&ctl->free_space_offset); 3046 3047 while (node) { 3048 info = rb_entry(node, struct btrfs_free_space, offset_index); 3049 3050 if (!btrfs_free_space_trimmed(info)) { 3051 ret = false; 3052 break; 3053 } 3054 3055 node = rb_next(node); 3056 } 3057 3058 spin_unlock(&ctl->tree_lock); 3059 return ret; 3060 } 3061 3062 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 3063 u64 offset, u64 bytes, u64 empty_size, 3064 u64 *max_extent_size) 3065 { 3066 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3067 struct btrfs_discard_ctl *discard_ctl = 3068 &block_group->fs_info->discard_ctl; 3069 struct btrfs_free_space *entry = NULL; 3070 u64 bytes_search = bytes + empty_size; 3071 u64 ret = 0; 3072 u64 align_gap = 0; 3073 u64 align_gap_len = 0; 3074 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3075 bool use_bytes_index = (offset == block_group->start); 3076 3077 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3078 3079 spin_lock(&ctl->tree_lock); 3080 entry = find_free_space(ctl, &offset, &bytes_search, 3081 block_group->full_stripe_len, max_extent_size, 3082 use_bytes_index); 3083 if (!entry) 3084 goto out; 3085 3086 ret = offset; 3087 if (entry->bitmap) { 3088 bitmap_clear_bits(ctl, entry, offset, bytes, true); 3089 3090 if (!btrfs_free_space_trimmed(entry)) 3091 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3092 3093 if (!entry->bytes) 3094 free_bitmap(ctl, entry); 3095 } else { 3096 unlink_free_space(ctl, entry, true); 3097 align_gap_len = offset - entry->offset; 3098 align_gap = entry->offset; 3099 align_gap_trim_state = entry->trim_state; 3100 3101 if (!btrfs_free_space_trimmed(entry)) 3102 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3103 3104 entry->offset = offset + bytes; 3105 WARN_ON(entry->bytes < bytes + align_gap_len); 3106 3107 entry->bytes -= bytes + align_gap_len; 3108 if (!entry->bytes) 3109 kmem_cache_free(btrfs_free_space_cachep, entry); 3110 else 3111 link_free_space(ctl, entry); 3112 } 3113 out: 3114 btrfs_discard_update_discardable(block_group); 3115 spin_unlock(&ctl->tree_lock); 3116 3117 if (align_gap_len) 3118 __btrfs_add_free_space(block_group, align_gap, align_gap_len, 3119 align_gap_trim_state); 3120 return ret; 3121 } 3122 3123 /* 3124 * given a cluster, put all of its extents back into the free space 3125 * cache. If a block group is passed, this function will only free 3126 * a cluster that belongs to the passed block group. 3127 * 3128 * Otherwise, it'll get a reference on the block group pointed to by the 3129 * cluster and remove the cluster from it. 3130 */ 3131 void btrfs_return_cluster_to_free_space( 3132 struct btrfs_block_group *block_group, 3133 struct btrfs_free_cluster *cluster) 3134 { 3135 struct btrfs_free_space_ctl *ctl; 3136 3137 /* first, get a safe pointer to the block group */ 3138 spin_lock(&cluster->lock); 3139 if (!block_group) { 3140 block_group = cluster->block_group; 3141 if (!block_group) { 3142 spin_unlock(&cluster->lock); 3143 return; 3144 } 3145 } else if (cluster->block_group != block_group) { 3146 /* someone else has already freed it don't redo their work */ 3147 spin_unlock(&cluster->lock); 3148 return; 3149 } 3150 btrfs_get_block_group(block_group); 3151 spin_unlock(&cluster->lock); 3152 3153 ctl = block_group->free_space_ctl; 3154 3155 /* now return any extents the cluster had on it */ 3156 spin_lock(&ctl->tree_lock); 3157 __btrfs_return_cluster_to_free_space(block_group, cluster); 3158 spin_unlock(&ctl->tree_lock); 3159 3160 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); 3161 3162 /* finally drop our ref */ 3163 btrfs_put_block_group(block_group); 3164 } 3165 3166 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 3167 struct btrfs_free_cluster *cluster, 3168 struct btrfs_free_space *entry, 3169 u64 bytes, u64 min_start, 3170 u64 *max_extent_size) 3171 { 3172 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3173 int err; 3174 u64 search_start = cluster->window_start; 3175 u64 search_bytes = bytes; 3176 u64 ret = 0; 3177 3178 search_start = min_start; 3179 search_bytes = bytes; 3180 3181 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 3182 if (err) { 3183 *max_extent_size = max(get_max_extent_size(entry), 3184 *max_extent_size); 3185 return 0; 3186 } 3187 3188 ret = search_start; 3189 bitmap_clear_bits(ctl, entry, ret, bytes, false); 3190 3191 return ret; 3192 } 3193 3194 /* 3195 * given a cluster, try to allocate 'bytes' from it, returns 0 3196 * if it couldn't find anything suitably large, or a logical disk offset 3197 * if things worked out 3198 */ 3199 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 3200 struct btrfs_free_cluster *cluster, u64 bytes, 3201 u64 min_start, u64 *max_extent_size) 3202 { 3203 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3204 struct btrfs_discard_ctl *discard_ctl = 3205 &block_group->fs_info->discard_ctl; 3206 struct btrfs_free_space *entry = NULL; 3207 struct rb_node *node; 3208 u64 ret = 0; 3209 3210 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3211 3212 spin_lock(&cluster->lock); 3213 if (bytes > cluster->max_size) 3214 goto out; 3215 3216 if (cluster->block_group != block_group) 3217 goto out; 3218 3219 node = rb_first(&cluster->root); 3220 if (!node) 3221 goto out; 3222 3223 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3224 while (1) { 3225 if (entry->bytes < bytes) 3226 *max_extent_size = max(get_max_extent_size(entry), 3227 *max_extent_size); 3228 3229 if (entry->bytes < bytes || 3230 (!entry->bitmap && entry->offset < min_start)) { 3231 node = rb_next(&entry->offset_index); 3232 if (!node) 3233 break; 3234 entry = rb_entry(node, struct btrfs_free_space, 3235 offset_index); 3236 continue; 3237 } 3238 3239 if (entry->bitmap) { 3240 ret = btrfs_alloc_from_bitmap(block_group, 3241 cluster, entry, bytes, 3242 cluster->window_start, 3243 max_extent_size); 3244 if (ret == 0) { 3245 node = rb_next(&entry->offset_index); 3246 if (!node) 3247 break; 3248 entry = rb_entry(node, struct btrfs_free_space, 3249 offset_index); 3250 continue; 3251 } 3252 cluster->window_start += bytes; 3253 } else { 3254 ret = entry->offset; 3255 3256 entry->offset += bytes; 3257 entry->bytes -= bytes; 3258 } 3259 3260 break; 3261 } 3262 out: 3263 spin_unlock(&cluster->lock); 3264 3265 if (!ret) 3266 return 0; 3267 3268 spin_lock(&ctl->tree_lock); 3269 3270 if (!btrfs_free_space_trimmed(entry)) 3271 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3272 3273 ctl->free_space -= bytes; 3274 if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) 3275 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 3276 3277 spin_lock(&cluster->lock); 3278 if (entry->bytes == 0) { 3279 rb_erase(&entry->offset_index, &cluster->root); 3280 ctl->free_extents--; 3281 if (entry->bitmap) { 3282 kmem_cache_free(btrfs_free_space_bitmap_cachep, 3283 entry->bitmap); 3284 ctl->total_bitmaps--; 3285 recalculate_thresholds(ctl); 3286 } else if (!btrfs_free_space_trimmed(entry)) { 3287 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3288 } 3289 kmem_cache_free(btrfs_free_space_cachep, entry); 3290 } 3291 3292 spin_unlock(&cluster->lock); 3293 spin_unlock(&ctl->tree_lock); 3294 3295 return ret; 3296 } 3297 3298 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 3299 struct btrfs_free_space *entry, 3300 struct btrfs_free_cluster *cluster, 3301 u64 offset, u64 bytes, 3302 u64 cont1_bytes, u64 min_bytes) 3303 { 3304 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3305 unsigned long next_zero; 3306 unsigned long i; 3307 unsigned long want_bits; 3308 unsigned long min_bits; 3309 unsigned long found_bits; 3310 unsigned long max_bits = 0; 3311 unsigned long start = 0; 3312 unsigned long total_found = 0; 3313 int ret; 3314 3315 i = offset_to_bit(entry->offset, ctl->unit, 3316 max_t(u64, offset, entry->offset)); 3317 want_bits = bytes_to_bits(bytes, ctl->unit); 3318 min_bits = bytes_to_bits(min_bytes, ctl->unit); 3319 3320 /* 3321 * Don't bother looking for a cluster in this bitmap if it's heavily 3322 * fragmented. 3323 */ 3324 if (entry->max_extent_size && 3325 entry->max_extent_size < cont1_bytes) 3326 return -ENOSPC; 3327 again: 3328 found_bits = 0; 3329 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 3330 next_zero = find_next_zero_bit(entry->bitmap, 3331 BITS_PER_BITMAP, i); 3332 if (next_zero - i >= min_bits) { 3333 found_bits = next_zero - i; 3334 if (found_bits > max_bits) 3335 max_bits = found_bits; 3336 break; 3337 } 3338 if (next_zero - i > max_bits) 3339 max_bits = next_zero - i; 3340 i = next_zero; 3341 } 3342 3343 if (!found_bits) { 3344 entry->max_extent_size = (u64)max_bits * ctl->unit; 3345 return -ENOSPC; 3346 } 3347 3348 if (!total_found) { 3349 start = i; 3350 cluster->max_size = 0; 3351 } 3352 3353 total_found += found_bits; 3354 3355 if (cluster->max_size < found_bits * ctl->unit) 3356 cluster->max_size = found_bits * ctl->unit; 3357 3358 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 3359 i = next_zero + 1; 3360 goto again; 3361 } 3362 3363 cluster->window_start = start * ctl->unit + entry->offset; 3364 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3365 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); 3366 3367 /* 3368 * We need to know if we're currently on the normal space index when we 3369 * manipulate the bitmap so that we know we need to remove and re-insert 3370 * it into the space_index tree. Clear the bytes_index node here so the 3371 * bitmap manipulation helpers know not to mess with the space_index 3372 * until this bitmap entry is added back into the normal cache. 3373 */ 3374 RB_CLEAR_NODE(&entry->bytes_index); 3375 3376 ret = tree_insert_offset(&cluster->root, entry->offset, 3377 &entry->offset_index, 1); 3378 ASSERT(!ret); /* -EEXIST; Logic error */ 3379 3380 trace_btrfs_setup_cluster(block_group, cluster, 3381 total_found * ctl->unit, 1); 3382 return 0; 3383 } 3384 3385 /* 3386 * This searches the block group for just extents to fill the cluster with. 3387 * Try to find a cluster with at least bytes total bytes, at least one 3388 * extent of cont1_bytes, and other clusters of at least min_bytes. 3389 */ 3390 static noinline int 3391 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 3392 struct btrfs_free_cluster *cluster, 3393 struct list_head *bitmaps, u64 offset, u64 bytes, 3394 u64 cont1_bytes, u64 min_bytes) 3395 { 3396 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3397 struct btrfs_free_space *first = NULL; 3398 struct btrfs_free_space *entry = NULL; 3399 struct btrfs_free_space *last; 3400 struct rb_node *node; 3401 u64 window_free; 3402 u64 max_extent; 3403 u64 total_size = 0; 3404 3405 entry = tree_search_offset(ctl, offset, 0, 1); 3406 if (!entry) 3407 return -ENOSPC; 3408 3409 /* 3410 * We don't want bitmaps, so just move along until we find a normal 3411 * extent entry. 3412 */ 3413 while (entry->bitmap || entry->bytes < min_bytes) { 3414 if (entry->bitmap && list_empty(&entry->list)) 3415 list_add_tail(&entry->list, bitmaps); 3416 node = rb_next(&entry->offset_index); 3417 if (!node) 3418 return -ENOSPC; 3419 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3420 } 3421 3422 window_free = entry->bytes; 3423 max_extent = entry->bytes; 3424 first = entry; 3425 last = entry; 3426 3427 for (node = rb_next(&entry->offset_index); node; 3428 node = rb_next(&entry->offset_index)) { 3429 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3430 3431 if (entry->bitmap) { 3432 if (list_empty(&entry->list)) 3433 list_add_tail(&entry->list, bitmaps); 3434 continue; 3435 } 3436 3437 if (entry->bytes < min_bytes) 3438 continue; 3439 3440 last = entry; 3441 window_free += entry->bytes; 3442 if (entry->bytes > max_extent) 3443 max_extent = entry->bytes; 3444 } 3445 3446 if (window_free < bytes || max_extent < cont1_bytes) 3447 return -ENOSPC; 3448 3449 cluster->window_start = first->offset; 3450 3451 node = &first->offset_index; 3452 3453 /* 3454 * now we've found our entries, pull them out of the free space 3455 * cache and put them into the cluster rbtree 3456 */ 3457 do { 3458 int ret; 3459 3460 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3461 node = rb_next(&entry->offset_index); 3462 if (entry->bitmap || entry->bytes < min_bytes) 3463 continue; 3464 3465 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3466 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); 3467 ret = tree_insert_offset(&cluster->root, entry->offset, 3468 &entry->offset_index, 0); 3469 total_size += entry->bytes; 3470 ASSERT(!ret); /* -EEXIST; Logic error */ 3471 } while (node && entry != last); 3472 3473 cluster->max_size = max_extent; 3474 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 3475 return 0; 3476 } 3477 3478 /* 3479 * This specifically looks for bitmaps that may work in the cluster, we assume 3480 * that we have already failed to find extents that will work. 3481 */ 3482 static noinline int 3483 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3484 struct btrfs_free_cluster *cluster, 3485 struct list_head *bitmaps, u64 offset, u64 bytes, 3486 u64 cont1_bytes, u64 min_bytes) 3487 { 3488 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3489 struct btrfs_free_space *entry = NULL; 3490 int ret = -ENOSPC; 3491 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3492 3493 if (ctl->total_bitmaps == 0) 3494 return -ENOSPC; 3495 3496 /* 3497 * The bitmap that covers offset won't be in the list unless offset 3498 * is just its start offset. 3499 */ 3500 if (!list_empty(bitmaps)) 3501 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3502 3503 if (!entry || entry->offset != bitmap_offset) { 3504 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3505 if (entry && list_empty(&entry->list)) 3506 list_add(&entry->list, bitmaps); 3507 } 3508 3509 list_for_each_entry(entry, bitmaps, list) { 3510 if (entry->bytes < bytes) 3511 continue; 3512 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3513 bytes, cont1_bytes, min_bytes); 3514 if (!ret) 3515 return 0; 3516 } 3517 3518 /* 3519 * The bitmaps list has all the bitmaps that record free space 3520 * starting after offset, so no more search is required. 3521 */ 3522 return -ENOSPC; 3523 } 3524 3525 /* 3526 * here we try to find a cluster of blocks in a block group. The goal 3527 * is to find at least bytes+empty_size. 3528 * We might not find them all in one contiguous area. 3529 * 3530 * returns zero and sets up cluster if things worked out, otherwise 3531 * it returns -enospc 3532 */ 3533 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3534 struct btrfs_free_cluster *cluster, 3535 u64 offset, u64 bytes, u64 empty_size) 3536 { 3537 struct btrfs_fs_info *fs_info = block_group->fs_info; 3538 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3539 struct btrfs_free_space *entry, *tmp; 3540 LIST_HEAD(bitmaps); 3541 u64 min_bytes; 3542 u64 cont1_bytes; 3543 int ret; 3544 3545 /* 3546 * Choose the minimum extent size we'll require for this 3547 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3548 * For metadata, allow allocates with smaller extents. For 3549 * data, keep it dense. 3550 */ 3551 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3552 cont1_bytes = bytes + empty_size; 3553 min_bytes = cont1_bytes; 3554 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3555 cont1_bytes = bytes; 3556 min_bytes = fs_info->sectorsize; 3557 } else { 3558 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3559 min_bytes = fs_info->sectorsize; 3560 } 3561 3562 spin_lock(&ctl->tree_lock); 3563 3564 /* 3565 * If we know we don't have enough space to make a cluster don't even 3566 * bother doing all the work to try and find one. 3567 */ 3568 if (ctl->free_space < bytes) { 3569 spin_unlock(&ctl->tree_lock); 3570 return -ENOSPC; 3571 } 3572 3573 spin_lock(&cluster->lock); 3574 3575 /* someone already found a cluster, hooray */ 3576 if (cluster->block_group) { 3577 ret = 0; 3578 goto out; 3579 } 3580 3581 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3582 min_bytes); 3583 3584 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3585 bytes + empty_size, 3586 cont1_bytes, min_bytes); 3587 if (ret) 3588 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3589 offset, bytes + empty_size, 3590 cont1_bytes, min_bytes); 3591 3592 /* Clear our temporary list */ 3593 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3594 list_del_init(&entry->list); 3595 3596 if (!ret) { 3597 btrfs_get_block_group(block_group); 3598 list_add_tail(&cluster->block_group_list, 3599 &block_group->cluster_list); 3600 cluster->block_group = block_group; 3601 } else { 3602 trace_btrfs_failed_cluster_setup(block_group); 3603 } 3604 out: 3605 spin_unlock(&cluster->lock); 3606 spin_unlock(&ctl->tree_lock); 3607 3608 return ret; 3609 } 3610 3611 /* 3612 * simple code to zero out a cluster 3613 */ 3614 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3615 { 3616 spin_lock_init(&cluster->lock); 3617 spin_lock_init(&cluster->refill_lock); 3618 cluster->root = RB_ROOT; 3619 cluster->max_size = 0; 3620 cluster->fragmented = false; 3621 INIT_LIST_HEAD(&cluster->block_group_list); 3622 cluster->block_group = NULL; 3623 } 3624 3625 static int do_trimming(struct btrfs_block_group *block_group, 3626 u64 *total_trimmed, u64 start, u64 bytes, 3627 u64 reserved_start, u64 reserved_bytes, 3628 enum btrfs_trim_state reserved_trim_state, 3629 struct btrfs_trim_range *trim_entry) 3630 { 3631 struct btrfs_space_info *space_info = block_group->space_info; 3632 struct btrfs_fs_info *fs_info = block_group->fs_info; 3633 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3634 int ret; 3635 int update = 0; 3636 const u64 end = start + bytes; 3637 const u64 reserved_end = reserved_start + reserved_bytes; 3638 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3639 u64 trimmed = 0; 3640 3641 spin_lock(&space_info->lock); 3642 spin_lock(&block_group->lock); 3643 if (!block_group->ro) { 3644 block_group->reserved += reserved_bytes; 3645 space_info->bytes_reserved += reserved_bytes; 3646 update = 1; 3647 } 3648 spin_unlock(&block_group->lock); 3649 spin_unlock(&space_info->lock); 3650 3651 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3652 if (!ret) { 3653 *total_trimmed += trimmed; 3654 trim_state = BTRFS_TRIM_STATE_TRIMMED; 3655 } 3656 3657 mutex_lock(&ctl->cache_writeout_mutex); 3658 if (reserved_start < start) 3659 __btrfs_add_free_space(block_group, reserved_start, 3660 start - reserved_start, 3661 reserved_trim_state); 3662 if (start + bytes < reserved_start + reserved_bytes) 3663 __btrfs_add_free_space(block_group, end, reserved_end - end, 3664 reserved_trim_state); 3665 __btrfs_add_free_space(block_group, start, bytes, trim_state); 3666 list_del(&trim_entry->list); 3667 mutex_unlock(&ctl->cache_writeout_mutex); 3668 3669 if (update) { 3670 spin_lock(&space_info->lock); 3671 spin_lock(&block_group->lock); 3672 if (block_group->ro) 3673 space_info->bytes_readonly += reserved_bytes; 3674 block_group->reserved -= reserved_bytes; 3675 space_info->bytes_reserved -= reserved_bytes; 3676 spin_unlock(&block_group->lock); 3677 spin_unlock(&space_info->lock); 3678 } 3679 3680 return ret; 3681 } 3682 3683 /* 3684 * If @async is set, then we will trim 1 region and return. 3685 */ 3686 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3687 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3688 bool async) 3689 { 3690 struct btrfs_discard_ctl *discard_ctl = 3691 &block_group->fs_info->discard_ctl; 3692 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3693 struct btrfs_free_space *entry; 3694 struct rb_node *node; 3695 int ret = 0; 3696 u64 extent_start; 3697 u64 extent_bytes; 3698 enum btrfs_trim_state extent_trim_state; 3699 u64 bytes; 3700 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3701 3702 while (start < end) { 3703 struct btrfs_trim_range trim_entry; 3704 3705 mutex_lock(&ctl->cache_writeout_mutex); 3706 spin_lock(&ctl->tree_lock); 3707 3708 if (ctl->free_space < minlen) 3709 goto out_unlock; 3710 3711 entry = tree_search_offset(ctl, start, 0, 1); 3712 if (!entry) 3713 goto out_unlock; 3714 3715 /* Skip bitmaps and if async, already trimmed entries */ 3716 while (entry->bitmap || 3717 (async && btrfs_free_space_trimmed(entry))) { 3718 node = rb_next(&entry->offset_index); 3719 if (!node) 3720 goto out_unlock; 3721 entry = rb_entry(node, struct btrfs_free_space, 3722 offset_index); 3723 } 3724 3725 if (entry->offset >= end) 3726 goto out_unlock; 3727 3728 extent_start = entry->offset; 3729 extent_bytes = entry->bytes; 3730 extent_trim_state = entry->trim_state; 3731 if (async) { 3732 start = entry->offset; 3733 bytes = entry->bytes; 3734 if (bytes < minlen) { 3735 spin_unlock(&ctl->tree_lock); 3736 mutex_unlock(&ctl->cache_writeout_mutex); 3737 goto next; 3738 } 3739 unlink_free_space(ctl, entry, true); 3740 /* 3741 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3742 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim 3743 * X when we come back around. So trim it now. 3744 */ 3745 if (max_discard_size && 3746 bytes >= (max_discard_size + 3747 BTRFS_ASYNC_DISCARD_MIN_FILTER)) { 3748 bytes = max_discard_size; 3749 extent_bytes = max_discard_size; 3750 entry->offset += max_discard_size; 3751 entry->bytes -= max_discard_size; 3752 link_free_space(ctl, entry); 3753 } else { 3754 kmem_cache_free(btrfs_free_space_cachep, entry); 3755 } 3756 } else { 3757 start = max(start, extent_start); 3758 bytes = min(extent_start + extent_bytes, end) - start; 3759 if (bytes < minlen) { 3760 spin_unlock(&ctl->tree_lock); 3761 mutex_unlock(&ctl->cache_writeout_mutex); 3762 goto next; 3763 } 3764 3765 unlink_free_space(ctl, entry, true); 3766 kmem_cache_free(btrfs_free_space_cachep, entry); 3767 } 3768 3769 spin_unlock(&ctl->tree_lock); 3770 trim_entry.start = extent_start; 3771 trim_entry.bytes = extent_bytes; 3772 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3773 mutex_unlock(&ctl->cache_writeout_mutex); 3774 3775 ret = do_trimming(block_group, total_trimmed, start, bytes, 3776 extent_start, extent_bytes, extent_trim_state, 3777 &trim_entry); 3778 if (ret) { 3779 block_group->discard_cursor = start + bytes; 3780 break; 3781 } 3782 next: 3783 start += bytes; 3784 block_group->discard_cursor = start; 3785 if (async && *total_trimmed) 3786 break; 3787 3788 if (fatal_signal_pending(current)) { 3789 ret = -ERESTARTSYS; 3790 break; 3791 } 3792 3793 cond_resched(); 3794 } 3795 3796 return ret; 3797 3798 out_unlock: 3799 block_group->discard_cursor = btrfs_block_group_end(block_group); 3800 spin_unlock(&ctl->tree_lock); 3801 mutex_unlock(&ctl->cache_writeout_mutex); 3802 3803 return ret; 3804 } 3805 3806 /* 3807 * If we break out of trimming a bitmap prematurely, we should reset the 3808 * trimming bit. In a rather contrieved case, it's possible to race here so 3809 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. 3810 * 3811 * start = start of bitmap 3812 * end = near end of bitmap 3813 * 3814 * Thread 1: Thread 2: 3815 * trim_bitmaps(start) 3816 * trim_bitmaps(end) 3817 * end_trimming_bitmap() 3818 * reset_trimming_bitmap() 3819 */ 3820 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) 3821 { 3822 struct btrfs_free_space *entry; 3823 3824 spin_lock(&ctl->tree_lock); 3825 entry = tree_search_offset(ctl, offset, 1, 0); 3826 if (entry) { 3827 if (btrfs_free_space_trimmed(entry)) { 3828 ctl->discardable_extents[BTRFS_STAT_CURR] += 3829 entry->bitmap_extents; 3830 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; 3831 } 3832 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3833 } 3834 3835 spin_unlock(&ctl->tree_lock); 3836 } 3837 3838 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, 3839 struct btrfs_free_space *entry) 3840 { 3841 if (btrfs_free_space_trimming_bitmap(entry)) { 3842 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; 3843 ctl->discardable_extents[BTRFS_STAT_CURR] -= 3844 entry->bitmap_extents; 3845 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; 3846 } 3847 } 3848 3849 /* 3850 * If @async is set, then we will trim 1 region and return. 3851 */ 3852 static int trim_bitmaps(struct btrfs_block_group *block_group, 3853 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3854 u64 maxlen, bool async) 3855 { 3856 struct btrfs_discard_ctl *discard_ctl = 3857 &block_group->fs_info->discard_ctl; 3858 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3859 struct btrfs_free_space *entry; 3860 int ret = 0; 3861 int ret2; 3862 u64 bytes; 3863 u64 offset = offset_to_bitmap(ctl, start); 3864 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3865 3866 while (offset < end) { 3867 bool next_bitmap = false; 3868 struct btrfs_trim_range trim_entry; 3869 3870 mutex_lock(&ctl->cache_writeout_mutex); 3871 spin_lock(&ctl->tree_lock); 3872 3873 if (ctl->free_space < minlen) { 3874 block_group->discard_cursor = 3875 btrfs_block_group_end(block_group); 3876 spin_unlock(&ctl->tree_lock); 3877 mutex_unlock(&ctl->cache_writeout_mutex); 3878 break; 3879 } 3880 3881 entry = tree_search_offset(ctl, offset, 1, 0); 3882 /* 3883 * Bitmaps are marked trimmed lossily now to prevent constant 3884 * discarding of the same bitmap (the reason why we are bound 3885 * by the filters). So, retrim the block group bitmaps when we 3886 * are preparing to punt to the unused_bgs list. This uses 3887 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED 3888 * which is the only discard index which sets minlen to 0. 3889 */ 3890 if (!entry || (async && minlen && start == offset && 3891 btrfs_free_space_trimmed(entry))) { 3892 spin_unlock(&ctl->tree_lock); 3893 mutex_unlock(&ctl->cache_writeout_mutex); 3894 next_bitmap = true; 3895 goto next; 3896 } 3897 3898 /* 3899 * Async discard bitmap trimming begins at by setting the start 3900 * to be key.objectid and the offset_to_bitmap() aligns to the 3901 * start of the bitmap. This lets us know we are fully 3902 * scanning the bitmap rather than only some portion of it. 3903 */ 3904 if (start == offset) 3905 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; 3906 3907 bytes = minlen; 3908 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3909 if (ret2 || start >= end) { 3910 /* 3911 * We lossily consider a bitmap trimmed if we only skip 3912 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. 3913 */ 3914 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) 3915 end_trimming_bitmap(ctl, entry); 3916 else 3917 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3918 spin_unlock(&ctl->tree_lock); 3919 mutex_unlock(&ctl->cache_writeout_mutex); 3920 next_bitmap = true; 3921 goto next; 3922 } 3923 3924 /* 3925 * We already trimmed a region, but are using the locking above 3926 * to reset the trim_state. 3927 */ 3928 if (async && *total_trimmed) { 3929 spin_unlock(&ctl->tree_lock); 3930 mutex_unlock(&ctl->cache_writeout_mutex); 3931 goto out; 3932 } 3933 3934 bytes = min(bytes, end - start); 3935 if (bytes < minlen || (async && maxlen && bytes > maxlen)) { 3936 spin_unlock(&ctl->tree_lock); 3937 mutex_unlock(&ctl->cache_writeout_mutex); 3938 goto next; 3939 } 3940 3941 /* 3942 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3943 * If X < @minlen, we won't trim X when we come back around. 3944 * So trim it now. We differ here from trimming extents as we 3945 * don't keep individual state per bit. 3946 */ 3947 if (async && 3948 max_discard_size && 3949 bytes > (max_discard_size + minlen)) 3950 bytes = max_discard_size; 3951 3952 bitmap_clear_bits(ctl, entry, start, bytes, true); 3953 if (entry->bytes == 0) 3954 free_bitmap(ctl, entry); 3955 3956 spin_unlock(&ctl->tree_lock); 3957 trim_entry.start = start; 3958 trim_entry.bytes = bytes; 3959 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3960 mutex_unlock(&ctl->cache_writeout_mutex); 3961 3962 ret = do_trimming(block_group, total_trimmed, start, bytes, 3963 start, bytes, 0, &trim_entry); 3964 if (ret) { 3965 reset_trimming_bitmap(ctl, offset); 3966 block_group->discard_cursor = 3967 btrfs_block_group_end(block_group); 3968 break; 3969 } 3970 next: 3971 if (next_bitmap) { 3972 offset += BITS_PER_BITMAP * ctl->unit; 3973 start = offset; 3974 } else { 3975 start += bytes; 3976 } 3977 block_group->discard_cursor = start; 3978 3979 if (fatal_signal_pending(current)) { 3980 if (start != offset) 3981 reset_trimming_bitmap(ctl, offset); 3982 ret = -ERESTARTSYS; 3983 break; 3984 } 3985 3986 cond_resched(); 3987 } 3988 3989 if (offset >= end) 3990 block_group->discard_cursor = end; 3991 3992 out: 3993 return ret; 3994 } 3995 3996 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 3997 u64 *trimmed, u64 start, u64 end, u64 minlen) 3998 { 3999 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 4000 int ret; 4001 u64 rem = 0; 4002 4003 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 4004 4005 *trimmed = 0; 4006 4007 spin_lock(&block_group->lock); 4008 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4009 spin_unlock(&block_group->lock); 4010 return 0; 4011 } 4012 btrfs_freeze_block_group(block_group); 4013 spin_unlock(&block_group->lock); 4014 4015 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); 4016 if (ret) 4017 goto out; 4018 4019 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); 4020 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); 4021 /* If we ended in the middle of a bitmap, reset the trimming flag */ 4022 if (rem) 4023 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); 4024 out: 4025 btrfs_unfreeze_block_group(block_group); 4026 return ret; 4027 } 4028 4029 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, 4030 u64 *trimmed, u64 start, u64 end, u64 minlen, 4031 bool async) 4032 { 4033 int ret; 4034 4035 *trimmed = 0; 4036 4037 spin_lock(&block_group->lock); 4038 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4039 spin_unlock(&block_group->lock); 4040 return 0; 4041 } 4042 btrfs_freeze_block_group(block_group); 4043 spin_unlock(&block_group->lock); 4044 4045 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); 4046 btrfs_unfreeze_block_group(block_group); 4047 4048 return ret; 4049 } 4050 4051 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, 4052 u64 *trimmed, u64 start, u64 end, u64 minlen, 4053 u64 maxlen, bool async) 4054 { 4055 int ret; 4056 4057 *trimmed = 0; 4058 4059 spin_lock(&block_group->lock); 4060 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4061 spin_unlock(&block_group->lock); 4062 return 0; 4063 } 4064 btrfs_freeze_block_group(block_group); 4065 spin_unlock(&block_group->lock); 4066 4067 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, 4068 async); 4069 4070 btrfs_unfreeze_block_group(block_group); 4071 4072 return ret; 4073 } 4074 4075 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info) 4076 { 4077 return btrfs_super_cache_generation(fs_info->super_copy); 4078 } 4079 4080 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info, 4081 struct btrfs_trans_handle *trans) 4082 { 4083 struct btrfs_block_group *block_group; 4084 struct rb_node *node; 4085 int ret = 0; 4086 4087 btrfs_info(fs_info, "cleaning free space cache v1"); 4088 4089 node = rb_first_cached(&fs_info->block_group_cache_tree); 4090 while (node) { 4091 block_group = rb_entry(node, struct btrfs_block_group, cache_node); 4092 ret = btrfs_remove_free_space_inode(trans, NULL, block_group); 4093 if (ret) 4094 goto out; 4095 node = rb_next(node); 4096 } 4097 out: 4098 return ret; 4099 } 4100 4101 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active) 4102 { 4103 struct btrfs_trans_handle *trans; 4104 int ret; 4105 4106 /* 4107 * update_super_roots will appropriately set or unset 4108 * super_copy->cache_generation based on SPACE_CACHE and 4109 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a 4110 * transaction commit whether we are enabling space cache v1 and don't 4111 * have any other work to do, or are disabling it and removing free 4112 * space inodes. 4113 */ 4114 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4115 if (IS_ERR(trans)) 4116 return PTR_ERR(trans); 4117 4118 if (!active) { 4119 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); 4120 ret = cleanup_free_space_cache_v1(fs_info, trans); 4121 if (ret) { 4122 btrfs_abort_transaction(trans, ret); 4123 btrfs_end_transaction(trans); 4124 goto out; 4125 } 4126 } 4127 4128 ret = btrfs_commit_transaction(trans); 4129 out: 4130 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); 4131 4132 return ret; 4133 } 4134 4135 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4136 /* 4137 * Use this if you need to make a bitmap or extent entry specifically, it 4138 * doesn't do any of the merging that add_free_space does, this acts a lot like 4139 * how the free space cache loading stuff works, so you can get really weird 4140 * configurations. 4141 */ 4142 int test_add_free_space_entry(struct btrfs_block_group *cache, 4143 u64 offset, u64 bytes, bool bitmap) 4144 { 4145 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4146 struct btrfs_free_space *info = NULL, *bitmap_info; 4147 void *map = NULL; 4148 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; 4149 u64 bytes_added; 4150 int ret; 4151 4152 again: 4153 if (!info) { 4154 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 4155 if (!info) 4156 return -ENOMEM; 4157 } 4158 4159 if (!bitmap) { 4160 spin_lock(&ctl->tree_lock); 4161 info->offset = offset; 4162 info->bytes = bytes; 4163 info->max_extent_size = 0; 4164 ret = link_free_space(ctl, info); 4165 spin_unlock(&ctl->tree_lock); 4166 if (ret) 4167 kmem_cache_free(btrfs_free_space_cachep, info); 4168 return ret; 4169 } 4170 4171 if (!map) { 4172 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 4173 if (!map) { 4174 kmem_cache_free(btrfs_free_space_cachep, info); 4175 return -ENOMEM; 4176 } 4177 } 4178 4179 spin_lock(&ctl->tree_lock); 4180 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4181 1, 0); 4182 if (!bitmap_info) { 4183 info->bitmap = map; 4184 map = NULL; 4185 add_new_bitmap(ctl, info, offset); 4186 bitmap_info = info; 4187 info = NULL; 4188 } 4189 4190 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 4191 trim_state); 4192 4193 bytes -= bytes_added; 4194 offset += bytes_added; 4195 spin_unlock(&ctl->tree_lock); 4196 4197 if (bytes) 4198 goto again; 4199 4200 if (info) 4201 kmem_cache_free(btrfs_free_space_cachep, info); 4202 if (map) 4203 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 4204 return 0; 4205 } 4206 4207 /* 4208 * Checks to see if the given range is in the free space cache. This is really 4209 * just used to check the absence of space, so if there is free space in the 4210 * range at all we will return 1. 4211 */ 4212 int test_check_exists(struct btrfs_block_group *cache, 4213 u64 offset, u64 bytes) 4214 { 4215 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4216 struct btrfs_free_space *info; 4217 int ret = 0; 4218 4219 spin_lock(&ctl->tree_lock); 4220 info = tree_search_offset(ctl, offset, 0, 0); 4221 if (!info) { 4222 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4223 1, 0); 4224 if (!info) 4225 goto out; 4226 } 4227 4228 have_info: 4229 if (info->bitmap) { 4230 u64 bit_off, bit_bytes; 4231 struct rb_node *n; 4232 struct btrfs_free_space *tmp; 4233 4234 bit_off = offset; 4235 bit_bytes = ctl->unit; 4236 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 4237 if (!ret) { 4238 if (bit_off == offset) { 4239 ret = 1; 4240 goto out; 4241 } else if (bit_off > offset && 4242 offset + bytes > bit_off) { 4243 ret = 1; 4244 goto out; 4245 } 4246 } 4247 4248 n = rb_prev(&info->offset_index); 4249 while (n) { 4250 tmp = rb_entry(n, struct btrfs_free_space, 4251 offset_index); 4252 if (tmp->offset + tmp->bytes < offset) 4253 break; 4254 if (offset + bytes < tmp->offset) { 4255 n = rb_prev(&tmp->offset_index); 4256 continue; 4257 } 4258 info = tmp; 4259 goto have_info; 4260 } 4261 4262 n = rb_next(&info->offset_index); 4263 while (n) { 4264 tmp = rb_entry(n, struct btrfs_free_space, 4265 offset_index); 4266 if (offset + bytes < tmp->offset) 4267 break; 4268 if (tmp->offset + tmp->bytes < offset) { 4269 n = rb_next(&tmp->offset_index); 4270 continue; 4271 } 4272 info = tmp; 4273 goto have_info; 4274 } 4275 4276 ret = 0; 4277 goto out; 4278 } 4279 4280 if (info->offset == offset) { 4281 ret = 1; 4282 goto out; 4283 } 4284 4285 if (offset > info->offset && offset < info->offset + info->bytes) 4286 ret = 1; 4287 out: 4288 spin_unlock(&ctl->tree_lock); 4289 return ret; 4290 } 4291 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 4292