xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 95e9fd10)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_key key;
44 	struct btrfs_key location;
45 	struct btrfs_disk_key disk_key;
46 	struct btrfs_free_space_header *header;
47 	struct extent_buffer *leaf;
48 	struct inode *inode = NULL;
49 	int ret;
50 
51 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 	key.offset = offset;
53 	key.type = 0;
54 
55 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 	if (ret < 0)
57 		return ERR_PTR(ret);
58 	if (ret > 0) {
59 		btrfs_release_path(path);
60 		return ERR_PTR(-ENOENT);
61 	}
62 
63 	leaf = path->nodes[0];
64 	header = btrfs_item_ptr(leaf, path->slots[0],
65 				struct btrfs_free_space_header);
66 	btrfs_free_space_key(leaf, header, &disk_key);
67 	btrfs_disk_key_to_cpu(&location, &disk_key);
68 	btrfs_release_path(path);
69 
70 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 	if (!inode)
72 		return ERR_PTR(-ENOENT);
73 	if (IS_ERR(inode))
74 		return inode;
75 	if (is_bad_inode(inode)) {
76 		iput(inode);
77 		return ERR_PTR(-ENOENT);
78 	}
79 
80 	mapping_set_gfp_mask(inode->i_mapping,
81 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		printk(KERN_INFO "Old style space inode found, converting.\n");
108 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 			BTRFS_INODE_NODATACOW;
110 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
111 	}
112 
113 	if (!block_group->iref) {
114 		block_group->inode = igrab(inode);
115 		block_group->iref = 1;
116 	}
117 	spin_unlock(&block_group->lock);
118 
119 	return inode;
120 }
121 
122 int __create_free_space_inode(struct btrfs_root *root,
123 			      struct btrfs_trans_handle *trans,
124 			      struct btrfs_path *path, u64 ino, u64 offset)
125 {
126 	struct btrfs_key key;
127 	struct btrfs_disk_key disk_key;
128 	struct btrfs_free_space_header *header;
129 	struct btrfs_inode_item *inode_item;
130 	struct extent_buffer *leaf;
131 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
132 	int ret;
133 
134 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
135 	if (ret)
136 		return ret;
137 
138 	/* We inline crc's for the free disk space cache */
139 	if (ino != BTRFS_FREE_INO_OBJECTID)
140 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
141 
142 	leaf = path->nodes[0];
143 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
144 				    struct btrfs_inode_item);
145 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
146 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
147 			     sizeof(*inode_item));
148 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
149 	btrfs_set_inode_size(leaf, inode_item, 0);
150 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
151 	btrfs_set_inode_uid(leaf, inode_item, 0);
152 	btrfs_set_inode_gid(leaf, inode_item, 0);
153 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
154 	btrfs_set_inode_flags(leaf, inode_item, flags);
155 	btrfs_set_inode_nlink(leaf, inode_item, 1);
156 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
157 	btrfs_set_inode_block_group(leaf, inode_item, offset);
158 	btrfs_mark_buffer_dirty(leaf);
159 	btrfs_release_path(path);
160 
161 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
162 	key.offset = offset;
163 	key.type = 0;
164 
165 	ret = btrfs_insert_empty_item(trans, root, path, &key,
166 				      sizeof(struct btrfs_free_space_header));
167 	if (ret < 0) {
168 		btrfs_release_path(path);
169 		return ret;
170 	}
171 	leaf = path->nodes[0];
172 	header = btrfs_item_ptr(leaf, path->slots[0],
173 				struct btrfs_free_space_header);
174 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
175 	btrfs_set_free_space_key(leaf, header, &disk_key);
176 	btrfs_mark_buffer_dirty(leaf);
177 	btrfs_release_path(path);
178 
179 	return 0;
180 }
181 
182 int create_free_space_inode(struct btrfs_root *root,
183 			    struct btrfs_trans_handle *trans,
184 			    struct btrfs_block_group_cache *block_group,
185 			    struct btrfs_path *path)
186 {
187 	int ret;
188 	u64 ino;
189 
190 	ret = btrfs_find_free_objectid(root, &ino);
191 	if (ret < 0)
192 		return ret;
193 
194 	return __create_free_space_inode(root, trans, path, ino,
195 					 block_group->key.objectid);
196 }
197 
198 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
199 				    struct btrfs_trans_handle *trans,
200 				    struct btrfs_path *path,
201 				    struct inode *inode)
202 {
203 	struct btrfs_block_rsv *rsv;
204 	u64 needed_bytes;
205 	loff_t oldsize;
206 	int ret = 0;
207 
208 	rsv = trans->block_rsv;
209 	trans->block_rsv = &root->fs_info->global_block_rsv;
210 
211 	/* 1 for slack space, 1 for updating the inode */
212 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
213 		btrfs_calc_trans_metadata_size(root, 1);
214 
215 	spin_lock(&trans->block_rsv->lock);
216 	if (trans->block_rsv->reserved < needed_bytes) {
217 		spin_unlock(&trans->block_rsv->lock);
218 		trans->block_rsv = rsv;
219 		return -ENOSPC;
220 	}
221 	spin_unlock(&trans->block_rsv->lock);
222 
223 	oldsize = i_size_read(inode);
224 	btrfs_i_size_write(inode, 0);
225 	truncate_pagecache(inode, oldsize, 0);
226 
227 	/*
228 	 * We don't need an orphan item because truncating the free space cache
229 	 * will never be split across transactions.
230 	 */
231 	ret = btrfs_truncate_inode_items(trans, root, inode,
232 					 0, BTRFS_EXTENT_DATA_KEY);
233 
234 	if (ret) {
235 		trans->block_rsv = rsv;
236 		btrfs_abort_transaction(trans, root, ret);
237 		return ret;
238 	}
239 
240 	ret = btrfs_update_inode(trans, root, inode);
241 	if (ret)
242 		btrfs_abort_transaction(trans, root, ret);
243 	trans->block_rsv = rsv;
244 
245 	return ret;
246 }
247 
248 static int readahead_cache(struct inode *inode)
249 {
250 	struct file_ra_state *ra;
251 	unsigned long last_index;
252 
253 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
254 	if (!ra)
255 		return -ENOMEM;
256 
257 	file_ra_state_init(ra, inode->i_mapping);
258 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
259 
260 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
261 
262 	kfree(ra);
263 
264 	return 0;
265 }
266 
267 struct io_ctl {
268 	void *cur, *orig;
269 	struct page *page;
270 	struct page **pages;
271 	struct btrfs_root *root;
272 	unsigned long size;
273 	int index;
274 	int num_pages;
275 	unsigned check_crcs:1;
276 };
277 
278 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
279 		       struct btrfs_root *root)
280 {
281 	memset(io_ctl, 0, sizeof(struct io_ctl));
282 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
283 		PAGE_CACHE_SHIFT;
284 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
285 				GFP_NOFS);
286 	if (!io_ctl->pages)
287 		return -ENOMEM;
288 	io_ctl->root = root;
289 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
290 		io_ctl->check_crcs = 1;
291 	return 0;
292 }
293 
294 static void io_ctl_free(struct io_ctl *io_ctl)
295 {
296 	kfree(io_ctl->pages);
297 }
298 
299 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
300 {
301 	if (io_ctl->cur) {
302 		kunmap(io_ctl->page);
303 		io_ctl->cur = NULL;
304 		io_ctl->orig = NULL;
305 	}
306 }
307 
308 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
309 {
310 	WARN_ON(io_ctl->cur);
311 	BUG_ON(io_ctl->index >= io_ctl->num_pages);
312 	io_ctl->page = io_ctl->pages[io_ctl->index++];
313 	io_ctl->cur = kmap(io_ctl->page);
314 	io_ctl->orig = io_ctl->cur;
315 	io_ctl->size = PAGE_CACHE_SIZE;
316 	if (clear)
317 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
318 }
319 
320 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
321 {
322 	int i;
323 
324 	io_ctl_unmap_page(io_ctl);
325 
326 	for (i = 0; i < io_ctl->num_pages; i++) {
327 		if (io_ctl->pages[i]) {
328 			ClearPageChecked(io_ctl->pages[i]);
329 			unlock_page(io_ctl->pages[i]);
330 			page_cache_release(io_ctl->pages[i]);
331 		}
332 	}
333 }
334 
335 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
336 				int uptodate)
337 {
338 	struct page *page;
339 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
340 	int i;
341 
342 	for (i = 0; i < io_ctl->num_pages; i++) {
343 		page = find_or_create_page(inode->i_mapping, i, mask);
344 		if (!page) {
345 			io_ctl_drop_pages(io_ctl);
346 			return -ENOMEM;
347 		}
348 		io_ctl->pages[i] = page;
349 		if (uptodate && !PageUptodate(page)) {
350 			btrfs_readpage(NULL, page);
351 			lock_page(page);
352 			if (!PageUptodate(page)) {
353 				printk(KERN_ERR "btrfs: error reading free "
354 				       "space cache\n");
355 				io_ctl_drop_pages(io_ctl);
356 				return -EIO;
357 			}
358 		}
359 	}
360 
361 	for (i = 0; i < io_ctl->num_pages; i++) {
362 		clear_page_dirty_for_io(io_ctl->pages[i]);
363 		set_page_extent_mapped(io_ctl->pages[i]);
364 	}
365 
366 	return 0;
367 }
368 
369 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
370 {
371 	__le64 *val;
372 
373 	io_ctl_map_page(io_ctl, 1);
374 
375 	/*
376 	 * Skip the csum areas.  If we don't check crcs then we just have a
377 	 * 64bit chunk at the front of the first page.
378 	 */
379 	if (io_ctl->check_crcs) {
380 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
381 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
382 	} else {
383 		io_ctl->cur += sizeof(u64);
384 		io_ctl->size -= sizeof(u64) * 2;
385 	}
386 
387 	val = io_ctl->cur;
388 	*val = cpu_to_le64(generation);
389 	io_ctl->cur += sizeof(u64);
390 }
391 
392 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
393 {
394 	__le64 *gen;
395 
396 	/*
397 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
398 	 * chunk at the front of the first page.
399 	 */
400 	if (io_ctl->check_crcs) {
401 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
402 		io_ctl->size -= sizeof(u64) +
403 			(sizeof(u32) * io_ctl->num_pages);
404 	} else {
405 		io_ctl->cur += sizeof(u64);
406 		io_ctl->size -= sizeof(u64) * 2;
407 	}
408 
409 	gen = io_ctl->cur;
410 	if (le64_to_cpu(*gen) != generation) {
411 		printk_ratelimited(KERN_ERR "btrfs: space cache generation "
412 				   "(%Lu) does not match inode (%Lu)\n", *gen,
413 				   generation);
414 		io_ctl_unmap_page(io_ctl);
415 		return -EIO;
416 	}
417 	io_ctl->cur += sizeof(u64);
418 	return 0;
419 }
420 
421 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
422 {
423 	u32 *tmp;
424 	u32 crc = ~(u32)0;
425 	unsigned offset = 0;
426 
427 	if (!io_ctl->check_crcs) {
428 		io_ctl_unmap_page(io_ctl);
429 		return;
430 	}
431 
432 	if (index == 0)
433 		offset = sizeof(u32) * io_ctl->num_pages;
434 
435 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
436 			      PAGE_CACHE_SIZE - offset);
437 	btrfs_csum_final(crc, (char *)&crc);
438 	io_ctl_unmap_page(io_ctl);
439 	tmp = kmap(io_ctl->pages[0]);
440 	tmp += index;
441 	*tmp = crc;
442 	kunmap(io_ctl->pages[0]);
443 }
444 
445 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
446 {
447 	u32 *tmp, val;
448 	u32 crc = ~(u32)0;
449 	unsigned offset = 0;
450 
451 	if (!io_ctl->check_crcs) {
452 		io_ctl_map_page(io_ctl, 0);
453 		return 0;
454 	}
455 
456 	if (index == 0)
457 		offset = sizeof(u32) * io_ctl->num_pages;
458 
459 	tmp = kmap(io_ctl->pages[0]);
460 	tmp += index;
461 	val = *tmp;
462 	kunmap(io_ctl->pages[0]);
463 
464 	io_ctl_map_page(io_ctl, 0);
465 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
466 			      PAGE_CACHE_SIZE - offset);
467 	btrfs_csum_final(crc, (char *)&crc);
468 	if (val != crc) {
469 		printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
470 				   "space cache\n");
471 		io_ctl_unmap_page(io_ctl);
472 		return -EIO;
473 	}
474 
475 	return 0;
476 }
477 
478 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
479 			    void *bitmap)
480 {
481 	struct btrfs_free_space_entry *entry;
482 
483 	if (!io_ctl->cur)
484 		return -ENOSPC;
485 
486 	entry = io_ctl->cur;
487 	entry->offset = cpu_to_le64(offset);
488 	entry->bytes = cpu_to_le64(bytes);
489 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
490 		BTRFS_FREE_SPACE_EXTENT;
491 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
492 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
493 
494 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
495 		return 0;
496 
497 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
498 
499 	/* No more pages to map */
500 	if (io_ctl->index >= io_ctl->num_pages)
501 		return 0;
502 
503 	/* map the next page */
504 	io_ctl_map_page(io_ctl, 1);
505 	return 0;
506 }
507 
508 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
509 {
510 	if (!io_ctl->cur)
511 		return -ENOSPC;
512 
513 	/*
514 	 * If we aren't at the start of the current page, unmap this one and
515 	 * map the next one if there is any left.
516 	 */
517 	if (io_ctl->cur != io_ctl->orig) {
518 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
519 		if (io_ctl->index >= io_ctl->num_pages)
520 			return -ENOSPC;
521 		io_ctl_map_page(io_ctl, 0);
522 	}
523 
524 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
525 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
526 	if (io_ctl->index < io_ctl->num_pages)
527 		io_ctl_map_page(io_ctl, 0);
528 	return 0;
529 }
530 
531 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
532 {
533 	/*
534 	 * If we're not on the boundary we know we've modified the page and we
535 	 * need to crc the page.
536 	 */
537 	if (io_ctl->cur != io_ctl->orig)
538 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 	else
540 		io_ctl_unmap_page(io_ctl);
541 
542 	while (io_ctl->index < io_ctl->num_pages) {
543 		io_ctl_map_page(io_ctl, 1);
544 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
545 	}
546 }
547 
548 static int io_ctl_read_entry(struct io_ctl *io_ctl,
549 			    struct btrfs_free_space *entry, u8 *type)
550 {
551 	struct btrfs_free_space_entry *e;
552 	int ret;
553 
554 	if (!io_ctl->cur) {
555 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
556 		if (ret)
557 			return ret;
558 	}
559 
560 	e = io_ctl->cur;
561 	entry->offset = le64_to_cpu(e->offset);
562 	entry->bytes = le64_to_cpu(e->bytes);
563 	*type = e->type;
564 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
565 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
566 
567 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
568 		return 0;
569 
570 	io_ctl_unmap_page(io_ctl);
571 
572 	return 0;
573 }
574 
575 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
576 			      struct btrfs_free_space *entry)
577 {
578 	int ret;
579 
580 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
581 	if (ret)
582 		return ret;
583 
584 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
585 	io_ctl_unmap_page(io_ctl);
586 
587 	return 0;
588 }
589 
590 /*
591  * Since we attach pinned extents after the fact we can have contiguous sections
592  * of free space that are split up in entries.  This poses a problem with the
593  * tree logging stuff since it could have allocated across what appears to be 2
594  * entries since we would have merged the entries when adding the pinned extents
595  * back to the free space cache.  So run through the space cache that we just
596  * loaded and merge contiguous entries.  This will make the log replay stuff not
597  * blow up and it will make for nicer allocator behavior.
598  */
599 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
600 {
601 	struct btrfs_free_space *e, *prev = NULL;
602 	struct rb_node *n;
603 
604 again:
605 	spin_lock(&ctl->tree_lock);
606 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
607 		e = rb_entry(n, struct btrfs_free_space, offset_index);
608 		if (!prev)
609 			goto next;
610 		if (e->bitmap || prev->bitmap)
611 			goto next;
612 		if (prev->offset + prev->bytes == e->offset) {
613 			unlink_free_space(ctl, prev);
614 			unlink_free_space(ctl, e);
615 			prev->bytes += e->bytes;
616 			kmem_cache_free(btrfs_free_space_cachep, e);
617 			link_free_space(ctl, prev);
618 			prev = NULL;
619 			spin_unlock(&ctl->tree_lock);
620 			goto again;
621 		}
622 next:
623 		prev = e;
624 	}
625 	spin_unlock(&ctl->tree_lock);
626 }
627 
628 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
629 			    struct btrfs_free_space_ctl *ctl,
630 			    struct btrfs_path *path, u64 offset)
631 {
632 	struct btrfs_free_space_header *header;
633 	struct extent_buffer *leaf;
634 	struct io_ctl io_ctl;
635 	struct btrfs_key key;
636 	struct btrfs_free_space *e, *n;
637 	struct list_head bitmaps;
638 	u64 num_entries;
639 	u64 num_bitmaps;
640 	u64 generation;
641 	u8 type;
642 	int ret = 0;
643 
644 	INIT_LIST_HEAD(&bitmaps);
645 
646 	/* Nothing in the space cache, goodbye */
647 	if (!i_size_read(inode))
648 		return 0;
649 
650 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
651 	key.offset = offset;
652 	key.type = 0;
653 
654 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
655 	if (ret < 0)
656 		return 0;
657 	else if (ret > 0) {
658 		btrfs_release_path(path);
659 		return 0;
660 	}
661 
662 	ret = -1;
663 
664 	leaf = path->nodes[0];
665 	header = btrfs_item_ptr(leaf, path->slots[0],
666 				struct btrfs_free_space_header);
667 	num_entries = btrfs_free_space_entries(leaf, header);
668 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
669 	generation = btrfs_free_space_generation(leaf, header);
670 	btrfs_release_path(path);
671 
672 	if (BTRFS_I(inode)->generation != generation) {
673 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
674 		       " not match free space cache generation (%llu)\n",
675 		       (unsigned long long)BTRFS_I(inode)->generation,
676 		       (unsigned long long)generation);
677 		return 0;
678 	}
679 
680 	if (!num_entries)
681 		return 0;
682 
683 	ret = io_ctl_init(&io_ctl, inode, root);
684 	if (ret)
685 		return ret;
686 
687 	ret = readahead_cache(inode);
688 	if (ret)
689 		goto out;
690 
691 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
692 	if (ret)
693 		goto out;
694 
695 	ret = io_ctl_check_crc(&io_ctl, 0);
696 	if (ret)
697 		goto free_cache;
698 
699 	ret = io_ctl_check_generation(&io_ctl, generation);
700 	if (ret)
701 		goto free_cache;
702 
703 	while (num_entries) {
704 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
705 				      GFP_NOFS);
706 		if (!e)
707 			goto free_cache;
708 
709 		ret = io_ctl_read_entry(&io_ctl, e, &type);
710 		if (ret) {
711 			kmem_cache_free(btrfs_free_space_cachep, e);
712 			goto free_cache;
713 		}
714 
715 		if (!e->bytes) {
716 			kmem_cache_free(btrfs_free_space_cachep, e);
717 			goto free_cache;
718 		}
719 
720 		if (type == BTRFS_FREE_SPACE_EXTENT) {
721 			spin_lock(&ctl->tree_lock);
722 			ret = link_free_space(ctl, e);
723 			spin_unlock(&ctl->tree_lock);
724 			if (ret) {
725 				printk(KERN_ERR "Duplicate entries in "
726 				       "free space cache, dumping\n");
727 				kmem_cache_free(btrfs_free_space_cachep, e);
728 				goto free_cache;
729 			}
730 		} else {
731 			BUG_ON(!num_bitmaps);
732 			num_bitmaps--;
733 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
734 			if (!e->bitmap) {
735 				kmem_cache_free(
736 					btrfs_free_space_cachep, e);
737 				goto free_cache;
738 			}
739 			spin_lock(&ctl->tree_lock);
740 			ret = link_free_space(ctl, e);
741 			ctl->total_bitmaps++;
742 			ctl->op->recalc_thresholds(ctl);
743 			spin_unlock(&ctl->tree_lock);
744 			if (ret) {
745 				printk(KERN_ERR "Duplicate entries in "
746 				       "free space cache, dumping\n");
747 				kmem_cache_free(btrfs_free_space_cachep, e);
748 				goto free_cache;
749 			}
750 			list_add_tail(&e->list, &bitmaps);
751 		}
752 
753 		num_entries--;
754 	}
755 
756 	io_ctl_unmap_page(&io_ctl);
757 
758 	/*
759 	 * We add the bitmaps at the end of the entries in order that
760 	 * the bitmap entries are added to the cache.
761 	 */
762 	list_for_each_entry_safe(e, n, &bitmaps, list) {
763 		list_del_init(&e->list);
764 		ret = io_ctl_read_bitmap(&io_ctl, e);
765 		if (ret)
766 			goto free_cache;
767 	}
768 
769 	io_ctl_drop_pages(&io_ctl);
770 	merge_space_tree(ctl);
771 	ret = 1;
772 out:
773 	io_ctl_free(&io_ctl);
774 	return ret;
775 free_cache:
776 	io_ctl_drop_pages(&io_ctl);
777 	__btrfs_remove_free_space_cache(ctl);
778 	goto out;
779 }
780 
781 int load_free_space_cache(struct btrfs_fs_info *fs_info,
782 			  struct btrfs_block_group_cache *block_group)
783 {
784 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
785 	struct btrfs_root *root = fs_info->tree_root;
786 	struct inode *inode;
787 	struct btrfs_path *path;
788 	int ret = 0;
789 	bool matched;
790 	u64 used = btrfs_block_group_used(&block_group->item);
791 
792 	/*
793 	 * If this block group has been marked to be cleared for one reason or
794 	 * another then we can't trust the on disk cache, so just return.
795 	 */
796 	spin_lock(&block_group->lock);
797 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
798 		spin_unlock(&block_group->lock);
799 		return 0;
800 	}
801 	spin_unlock(&block_group->lock);
802 
803 	path = btrfs_alloc_path();
804 	if (!path)
805 		return 0;
806 	path->search_commit_root = 1;
807 	path->skip_locking = 1;
808 
809 	inode = lookup_free_space_inode(root, block_group, path);
810 	if (IS_ERR(inode)) {
811 		btrfs_free_path(path);
812 		return 0;
813 	}
814 
815 	/* We may have converted the inode and made the cache invalid. */
816 	spin_lock(&block_group->lock);
817 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
818 		spin_unlock(&block_group->lock);
819 		btrfs_free_path(path);
820 		goto out;
821 	}
822 	spin_unlock(&block_group->lock);
823 
824 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
825 				      path, block_group->key.objectid);
826 	btrfs_free_path(path);
827 	if (ret <= 0)
828 		goto out;
829 
830 	spin_lock(&ctl->tree_lock);
831 	matched = (ctl->free_space == (block_group->key.offset - used -
832 				       block_group->bytes_super));
833 	spin_unlock(&ctl->tree_lock);
834 
835 	if (!matched) {
836 		__btrfs_remove_free_space_cache(ctl);
837 		printk(KERN_ERR "block group %llu has an wrong amount of free "
838 		       "space\n", block_group->key.objectid);
839 		ret = -1;
840 	}
841 out:
842 	if (ret < 0) {
843 		/* This cache is bogus, make sure it gets cleared */
844 		spin_lock(&block_group->lock);
845 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
846 		spin_unlock(&block_group->lock);
847 		ret = 0;
848 
849 		printk(KERN_ERR "btrfs: failed to load free space cache "
850 		       "for block group %llu\n", block_group->key.objectid);
851 	}
852 
853 	iput(inode);
854 	return ret;
855 }
856 
857 /**
858  * __btrfs_write_out_cache - write out cached info to an inode
859  * @root - the root the inode belongs to
860  * @ctl - the free space cache we are going to write out
861  * @block_group - the block_group for this cache if it belongs to a block_group
862  * @trans - the trans handle
863  * @path - the path to use
864  * @offset - the offset for the key we'll insert
865  *
866  * This function writes out a free space cache struct to disk for quick recovery
867  * on mount.  This will return 0 if it was successfull in writing the cache out,
868  * and -1 if it was not.
869  */
870 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
871 			    struct btrfs_free_space_ctl *ctl,
872 			    struct btrfs_block_group_cache *block_group,
873 			    struct btrfs_trans_handle *trans,
874 			    struct btrfs_path *path, u64 offset)
875 {
876 	struct btrfs_free_space_header *header;
877 	struct extent_buffer *leaf;
878 	struct rb_node *node;
879 	struct list_head *pos, *n;
880 	struct extent_state *cached_state = NULL;
881 	struct btrfs_free_cluster *cluster = NULL;
882 	struct extent_io_tree *unpin = NULL;
883 	struct io_ctl io_ctl;
884 	struct list_head bitmap_list;
885 	struct btrfs_key key;
886 	u64 start, extent_start, extent_end, len;
887 	int entries = 0;
888 	int bitmaps = 0;
889 	int ret;
890 	int err = -1;
891 
892 	INIT_LIST_HEAD(&bitmap_list);
893 
894 	if (!i_size_read(inode))
895 		return -1;
896 
897 	ret = io_ctl_init(&io_ctl, inode, root);
898 	if (ret)
899 		return -1;
900 
901 	/* Get the cluster for this block_group if it exists */
902 	if (block_group && !list_empty(&block_group->cluster_list))
903 		cluster = list_entry(block_group->cluster_list.next,
904 				     struct btrfs_free_cluster,
905 				     block_group_list);
906 
907 	/* Lock all pages first so we can lock the extent safely. */
908 	io_ctl_prepare_pages(&io_ctl, inode, 0);
909 
910 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
911 			 0, &cached_state);
912 
913 	node = rb_first(&ctl->free_space_offset);
914 	if (!node && cluster) {
915 		node = rb_first(&cluster->root);
916 		cluster = NULL;
917 	}
918 
919 	/* Make sure we can fit our crcs into the first page */
920 	if (io_ctl.check_crcs &&
921 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
922 		WARN_ON(1);
923 		goto out_nospc;
924 	}
925 
926 	io_ctl_set_generation(&io_ctl, trans->transid);
927 
928 	/* Write out the extent entries */
929 	while (node) {
930 		struct btrfs_free_space *e;
931 
932 		e = rb_entry(node, struct btrfs_free_space, offset_index);
933 		entries++;
934 
935 		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
936 				       e->bitmap);
937 		if (ret)
938 			goto out_nospc;
939 
940 		if (e->bitmap) {
941 			list_add_tail(&e->list, &bitmap_list);
942 			bitmaps++;
943 		}
944 		node = rb_next(node);
945 		if (!node && cluster) {
946 			node = rb_first(&cluster->root);
947 			cluster = NULL;
948 		}
949 	}
950 
951 	/*
952 	 * We want to add any pinned extents to our free space cache
953 	 * so we don't leak the space
954 	 */
955 
956 	/*
957 	 * We shouldn't have switched the pinned extents yet so this is the
958 	 * right one
959 	 */
960 	unpin = root->fs_info->pinned_extents;
961 
962 	if (block_group)
963 		start = block_group->key.objectid;
964 
965 	while (block_group && (start < block_group->key.objectid +
966 			       block_group->key.offset)) {
967 		ret = find_first_extent_bit(unpin, start,
968 					    &extent_start, &extent_end,
969 					    EXTENT_DIRTY);
970 		if (ret) {
971 			ret = 0;
972 			break;
973 		}
974 
975 		/* This pinned extent is out of our range */
976 		if (extent_start >= block_group->key.objectid +
977 		    block_group->key.offset)
978 			break;
979 
980 		extent_start = max(extent_start, start);
981 		extent_end = min(block_group->key.objectid +
982 				 block_group->key.offset, extent_end + 1);
983 		len = extent_end - extent_start;
984 
985 		entries++;
986 		ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
987 		if (ret)
988 			goto out_nospc;
989 
990 		start = extent_end;
991 	}
992 
993 	/* Write out the bitmaps */
994 	list_for_each_safe(pos, n, &bitmap_list) {
995 		struct btrfs_free_space *entry =
996 			list_entry(pos, struct btrfs_free_space, list);
997 
998 		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
999 		if (ret)
1000 			goto out_nospc;
1001 		list_del_init(&entry->list);
1002 	}
1003 
1004 	/* Zero out the rest of the pages just to make sure */
1005 	io_ctl_zero_remaining_pages(&io_ctl);
1006 
1007 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1008 				0, i_size_read(inode), &cached_state);
1009 	io_ctl_drop_pages(&io_ctl);
1010 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1011 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1012 
1013 	if (ret)
1014 		goto out;
1015 
1016 
1017 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1018 
1019 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1020 	key.offset = offset;
1021 	key.type = 0;
1022 
1023 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1024 	if (ret < 0) {
1025 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1026 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1027 				 GFP_NOFS);
1028 		goto out;
1029 	}
1030 	leaf = path->nodes[0];
1031 	if (ret > 0) {
1032 		struct btrfs_key found_key;
1033 		BUG_ON(!path->slots[0]);
1034 		path->slots[0]--;
1035 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1036 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1037 		    found_key.offset != offset) {
1038 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1039 					 inode->i_size - 1,
1040 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1041 					 NULL, GFP_NOFS);
1042 			btrfs_release_path(path);
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	BTRFS_I(inode)->generation = trans->transid;
1048 	header = btrfs_item_ptr(leaf, path->slots[0],
1049 				struct btrfs_free_space_header);
1050 	btrfs_set_free_space_entries(leaf, header, entries);
1051 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1052 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1053 	btrfs_mark_buffer_dirty(leaf);
1054 	btrfs_release_path(path);
1055 
1056 	err = 0;
1057 out:
1058 	io_ctl_free(&io_ctl);
1059 	if (err) {
1060 		invalidate_inode_pages2(inode->i_mapping);
1061 		BTRFS_I(inode)->generation = 0;
1062 	}
1063 	btrfs_update_inode(trans, root, inode);
1064 	return err;
1065 
1066 out_nospc:
1067 	list_for_each_safe(pos, n, &bitmap_list) {
1068 		struct btrfs_free_space *entry =
1069 			list_entry(pos, struct btrfs_free_space, list);
1070 		list_del_init(&entry->list);
1071 	}
1072 	io_ctl_drop_pages(&io_ctl);
1073 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1074 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1075 	goto out;
1076 }
1077 
1078 int btrfs_write_out_cache(struct btrfs_root *root,
1079 			  struct btrfs_trans_handle *trans,
1080 			  struct btrfs_block_group_cache *block_group,
1081 			  struct btrfs_path *path)
1082 {
1083 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1084 	struct inode *inode;
1085 	int ret = 0;
1086 
1087 	root = root->fs_info->tree_root;
1088 
1089 	spin_lock(&block_group->lock);
1090 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1091 		spin_unlock(&block_group->lock);
1092 		return 0;
1093 	}
1094 	spin_unlock(&block_group->lock);
1095 
1096 	inode = lookup_free_space_inode(root, block_group, path);
1097 	if (IS_ERR(inode))
1098 		return 0;
1099 
1100 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1101 				      path, block_group->key.objectid);
1102 	if (ret) {
1103 		spin_lock(&block_group->lock);
1104 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1105 		spin_unlock(&block_group->lock);
1106 		ret = 0;
1107 #ifdef DEBUG
1108 		printk(KERN_ERR "btrfs: failed to write free space cache "
1109 		       "for block group %llu\n", block_group->key.objectid);
1110 #endif
1111 	}
1112 
1113 	iput(inode);
1114 	return ret;
1115 }
1116 
1117 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1118 					  u64 offset)
1119 {
1120 	BUG_ON(offset < bitmap_start);
1121 	offset -= bitmap_start;
1122 	return (unsigned long)(div_u64(offset, unit));
1123 }
1124 
1125 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1126 {
1127 	return (unsigned long)(div_u64(bytes, unit));
1128 }
1129 
1130 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1131 				   u64 offset)
1132 {
1133 	u64 bitmap_start;
1134 	u64 bytes_per_bitmap;
1135 
1136 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1137 	bitmap_start = offset - ctl->start;
1138 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1139 	bitmap_start *= bytes_per_bitmap;
1140 	bitmap_start += ctl->start;
1141 
1142 	return bitmap_start;
1143 }
1144 
1145 static int tree_insert_offset(struct rb_root *root, u64 offset,
1146 			      struct rb_node *node, int bitmap)
1147 {
1148 	struct rb_node **p = &root->rb_node;
1149 	struct rb_node *parent = NULL;
1150 	struct btrfs_free_space *info;
1151 
1152 	while (*p) {
1153 		parent = *p;
1154 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1155 
1156 		if (offset < info->offset) {
1157 			p = &(*p)->rb_left;
1158 		} else if (offset > info->offset) {
1159 			p = &(*p)->rb_right;
1160 		} else {
1161 			/*
1162 			 * we could have a bitmap entry and an extent entry
1163 			 * share the same offset.  If this is the case, we want
1164 			 * the extent entry to always be found first if we do a
1165 			 * linear search through the tree, since we want to have
1166 			 * the quickest allocation time, and allocating from an
1167 			 * extent is faster than allocating from a bitmap.  So
1168 			 * if we're inserting a bitmap and we find an entry at
1169 			 * this offset, we want to go right, or after this entry
1170 			 * logically.  If we are inserting an extent and we've
1171 			 * found a bitmap, we want to go left, or before
1172 			 * logically.
1173 			 */
1174 			if (bitmap) {
1175 				if (info->bitmap) {
1176 					WARN_ON_ONCE(1);
1177 					return -EEXIST;
1178 				}
1179 				p = &(*p)->rb_right;
1180 			} else {
1181 				if (!info->bitmap) {
1182 					WARN_ON_ONCE(1);
1183 					return -EEXIST;
1184 				}
1185 				p = &(*p)->rb_left;
1186 			}
1187 		}
1188 	}
1189 
1190 	rb_link_node(node, parent, p);
1191 	rb_insert_color(node, root);
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  * searches the tree for the given offset.
1198  *
1199  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1200  * want a section that has at least bytes size and comes at or after the given
1201  * offset.
1202  */
1203 static struct btrfs_free_space *
1204 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1205 		   u64 offset, int bitmap_only, int fuzzy)
1206 {
1207 	struct rb_node *n = ctl->free_space_offset.rb_node;
1208 	struct btrfs_free_space *entry, *prev = NULL;
1209 
1210 	/* find entry that is closest to the 'offset' */
1211 	while (1) {
1212 		if (!n) {
1213 			entry = NULL;
1214 			break;
1215 		}
1216 
1217 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1218 		prev = entry;
1219 
1220 		if (offset < entry->offset)
1221 			n = n->rb_left;
1222 		else if (offset > entry->offset)
1223 			n = n->rb_right;
1224 		else
1225 			break;
1226 	}
1227 
1228 	if (bitmap_only) {
1229 		if (!entry)
1230 			return NULL;
1231 		if (entry->bitmap)
1232 			return entry;
1233 
1234 		/*
1235 		 * bitmap entry and extent entry may share same offset,
1236 		 * in that case, bitmap entry comes after extent entry.
1237 		 */
1238 		n = rb_next(n);
1239 		if (!n)
1240 			return NULL;
1241 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1242 		if (entry->offset != offset)
1243 			return NULL;
1244 
1245 		WARN_ON(!entry->bitmap);
1246 		return entry;
1247 	} else if (entry) {
1248 		if (entry->bitmap) {
1249 			/*
1250 			 * if previous extent entry covers the offset,
1251 			 * we should return it instead of the bitmap entry
1252 			 */
1253 			n = &entry->offset_index;
1254 			while (1) {
1255 				n = rb_prev(n);
1256 				if (!n)
1257 					break;
1258 				prev = rb_entry(n, struct btrfs_free_space,
1259 						offset_index);
1260 				if (!prev->bitmap) {
1261 					if (prev->offset + prev->bytes > offset)
1262 						entry = prev;
1263 					break;
1264 				}
1265 			}
1266 		}
1267 		return entry;
1268 	}
1269 
1270 	if (!prev)
1271 		return NULL;
1272 
1273 	/* find last entry before the 'offset' */
1274 	entry = prev;
1275 	if (entry->offset > offset) {
1276 		n = rb_prev(&entry->offset_index);
1277 		if (n) {
1278 			entry = rb_entry(n, struct btrfs_free_space,
1279 					offset_index);
1280 			BUG_ON(entry->offset > offset);
1281 		} else {
1282 			if (fuzzy)
1283 				return entry;
1284 			else
1285 				return NULL;
1286 		}
1287 	}
1288 
1289 	if (entry->bitmap) {
1290 		n = &entry->offset_index;
1291 		while (1) {
1292 			n = rb_prev(n);
1293 			if (!n)
1294 				break;
1295 			prev = rb_entry(n, struct btrfs_free_space,
1296 					offset_index);
1297 			if (!prev->bitmap) {
1298 				if (prev->offset + prev->bytes > offset)
1299 					return prev;
1300 				break;
1301 			}
1302 		}
1303 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1304 			return entry;
1305 	} else if (entry->offset + entry->bytes > offset)
1306 		return entry;
1307 
1308 	if (!fuzzy)
1309 		return NULL;
1310 
1311 	while (1) {
1312 		if (entry->bitmap) {
1313 			if (entry->offset + BITS_PER_BITMAP *
1314 			    ctl->unit > offset)
1315 				break;
1316 		} else {
1317 			if (entry->offset + entry->bytes > offset)
1318 				break;
1319 		}
1320 
1321 		n = rb_next(&entry->offset_index);
1322 		if (!n)
1323 			return NULL;
1324 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1325 	}
1326 	return entry;
1327 }
1328 
1329 static inline void
1330 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1331 		    struct btrfs_free_space *info)
1332 {
1333 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1334 	ctl->free_extents--;
1335 }
1336 
1337 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1338 			      struct btrfs_free_space *info)
1339 {
1340 	__unlink_free_space(ctl, info);
1341 	ctl->free_space -= info->bytes;
1342 }
1343 
1344 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1345 			   struct btrfs_free_space *info)
1346 {
1347 	int ret = 0;
1348 
1349 	BUG_ON(!info->bitmap && !info->bytes);
1350 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1351 				 &info->offset_index, (info->bitmap != NULL));
1352 	if (ret)
1353 		return ret;
1354 
1355 	ctl->free_space += info->bytes;
1356 	ctl->free_extents++;
1357 	return ret;
1358 }
1359 
1360 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1361 {
1362 	struct btrfs_block_group_cache *block_group = ctl->private;
1363 	u64 max_bytes;
1364 	u64 bitmap_bytes;
1365 	u64 extent_bytes;
1366 	u64 size = block_group->key.offset;
1367 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1368 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1369 
1370 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1371 
1372 	/*
1373 	 * The goal is to keep the total amount of memory used per 1gb of space
1374 	 * at or below 32k, so we need to adjust how much memory we allow to be
1375 	 * used by extent based free space tracking
1376 	 */
1377 	if (size < 1024 * 1024 * 1024)
1378 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1379 	else
1380 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1381 			div64_u64(size, 1024 * 1024 * 1024);
1382 
1383 	/*
1384 	 * we want to account for 1 more bitmap than what we have so we can make
1385 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1386 	 * we add more bitmaps.
1387 	 */
1388 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1389 
1390 	if (bitmap_bytes >= max_bytes) {
1391 		ctl->extents_thresh = 0;
1392 		return;
1393 	}
1394 
1395 	/*
1396 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1397 	 * bytes we can have, or whatever is less than that.
1398 	 */
1399 	extent_bytes = max_bytes - bitmap_bytes;
1400 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1401 
1402 	ctl->extents_thresh =
1403 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1404 }
1405 
1406 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1407 				       struct btrfs_free_space *info,
1408 				       u64 offset, u64 bytes)
1409 {
1410 	unsigned long start, count;
1411 
1412 	start = offset_to_bit(info->offset, ctl->unit, offset);
1413 	count = bytes_to_bits(bytes, ctl->unit);
1414 	BUG_ON(start + count > BITS_PER_BITMAP);
1415 
1416 	bitmap_clear(info->bitmap, start, count);
1417 
1418 	info->bytes -= bytes;
1419 }
1420 
1421 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1422 			      struct btrfs_free_space *info, u64 offset,
1423 			      u64 bytes)
1424 {
1425 	__bitmap_clear_bits(ctl, info, offset, bytes);
1426 	ctl->free_space -= bytes;
1427 }
1428 
1429 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1430 			    struct btrfs_free_space *info, u64 offset,
1431 			    u64 bytes)
1432 {
1433 	unsigned long start, count;
1434 
1435 	start = offset_to_bit(info->offset, ctl->unit, offset);
1436 	count = bytes_to_bits(bytes, ctl->unit);
1437 	BUG_ON(start + count > BITS_PER_BITMAP);
1438 
1439 	bitmap_set(info->bitmap, start, count);
1440 
1441 	info->bytes += bytes;
1442 	ctl->free_space += bytes;
1443 }
1444 
1445 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1446 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1447 			 u64 *bytes)
1448 {
1449 	unsigned long found_bits = 0;
1450 	unsigned long bits, i;
1451 	unsigned long next_zero;
1452 
1453 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1454 			  max_t(u64, *offset, bitmap_info->offset));
1455 	bits = bytes_to_bits(*bytes, ctl->unit);
1456 
1457 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1458 	     i < BITS_PER_BITMAP;
1459 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1460 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1461 					       BITS_PER_BITMAP, i);
1462 		if ((next_zero - i) >= bits) {
1463 			found_bits = next_zero - i;
1464 			break;
1465 		}
1466 		i = next_zero;
1467 	}
1468 
1469 	if (found_bits) {
1470 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1471 		*bytes = (u64)(found_bits) * ctl->unit;
1472 		return 0;
1473 	}
1474 
1475 	return -1;
1476 }
1477 
1478 static struct btrfs_free_space *
1479 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1480 {
1481 	struct btrfs_free_space *entry;
1482 	struct rb_node *node;
1483 	int ret;
1484 
1485 	if (!ctl->free_space_offset.rb_node)
1486 		return NULL;
1487 
1488 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1489 	if (!entry)
1490 		return NULL;
1491 
1492 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1493 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1494 		if (entry->bytes < *bytes)
1495 			continue;
1496 
1497 		if (entry->bitmap) {
1498 			ret = search_bitmap(ctl, entry, offset, bytes);
1499 			if (!ret)
1500 				return entry;
1501 			continue;
1502 		}
1503 
1504 		*offset = entry->offset;
1505 		*bytes = entry->bytes;
1506 		return entry;
1507 	}
1508 
1509 	return NULL;
1510 }
1511 
1512 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1513 			   struct btrfs_free_space *info, u64 offset)
1514 {
1515 	info->offset = offset_to_bitmap(ctl, offset);
1516 	info->bytes = 0;
1517 	INIT_LIST_HEAD(&info->list);
1518 	link_free_space(ctl, info);
1519 	ctl->total_bitmaps++;
1520 
1521 	ctl->op->recalc_thresholds(ctl);
1522 }
1523 
1524 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1525 			struct btrfs_free_space *bitmap_info)
1526 {
1527 	unlink_free_space(ctl, bitmap_info);
1528 	kfree(bitmap_info->bitmap);
1529 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1530 	ctl->total_bitmaps--;
1531 	ctl->op->recalc_thresholds(ctl);
1532 }
1533 
1534 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1535 			      struct btrfs_free_space *bitmap_info,
1536 			      u64 *offset, u64 *bytes)
1537 {
1538 	u64 end;
1539 	u64 search_start, search_bytes;
1540 	int ret;
1541 
1542 again:
1543 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1544 
1545 	/*
1546 	 * We need to search for bits in this bitmap.  We could only cover some
1547 	 * of the extent in this bitmap thanks to how we add space, so we need
1548 	 * to search for as much as it as we can and clear that amount, and then
1549 	 * go searching for the next bit.
1550 	 */
1551 	search_start = *offset;
1552 	search_bytes = ctl->unit;
1553 	search_bytes = min(search_bytes, end - search_start + 1);
1554 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1555 	BUG_ON(ret < 0 || search_start != *offset);
1556 
1557 	/* We may have found more bits than what we need */
1558 	search_bytes = min(search_bytes, *bytes);
1559 
1560 	/* Cannot clear past the end of the bitmap */
1561 	search_bytes = min(search_bytes, end - search_start + 1);
1562 
1563 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1564 	*offset += search_bytes;
1565 	*bytes -= search_bytes;
1566 
1567 	if (*bytes) {
1568 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1569 		if (!bitmap_info->bytes)
1570 			free_bitmap(ctl, bitmap_info);
1571 
1572 		/*
1573 		 * no entry after this bitmap, but we still have bytes to
1574 		 * remove, so something has gone wrong.
1575 		 */
1576 		if (!next)
1577 			return -EINVAL;
1578 
1579 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1580 				       offset_index);
1581 
1582 		/*
1583 		 * if the next entry isn't a bitmap we need to return to let the
1584 		 * extent stuff do its work.
1585 		 */
1586 		if (!bitmap_info->bitmap)
1587 			return -EAGAIN;
1588 
1589 		/*
1590 		 * Ok the next item is a bitmap, but it may not actually hold
1591 		 * the information for the rest of this free space stuff, so
1592 		 * look for it, and if we don't find it return so we can try
1593 		 * everything over again.
1594 		 */
1595 		search_start = *offset;
1596 		search_bytes = ctl->unit;
1597 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1598 				    &search_bytes);
1599 		if (ret < 0 || search_start != *offset)
1600 			return -EAGAIN;
1601 
1602 		goto again;
1603 	} else if (!bitmap_info->bytes)
1604 		free_bitmap(ctl, bitmap_info);
1605 
1606 	return 0;
1607 }
1608 
1609 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1610 			       struct btrfs_free_space *info, u64 offset,
1611 			       u64 bytes)
1612 {
1613 	u64 bytes_to_set = 0;
1614 	u64 end;
1615 
1616 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1617 
1618 	bytes_to_set = min(end - offset, bytes);
1619 
1620 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1621 
1622 	return bytes_to_set;
1623 
1624 }
1625 
1626 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1627 		      struct btrfs_free_space *info)
1628 {
1629 	struct btrfs_block_group_cache *block_group = ctl->private;
1630 
1631 	/*
1632 	 * If we are below the extents threshold then we can add this as an
1633 	 * extent, and don't have to deal with the bitmap
1634 	 */
1635 	if (ctl->free_extents < ctl->extents_thresh) {
1636 		/*
1637 		 * If this block group has some small extents we don't want to
1638 		 * use up all of our free slots in the cache with them, we want
1639 		 * to reserve them to larger extents, however if we have plent
1640 		 * of cache left then go ahead an dadd them, no sense in adding
1641 		 * the overhead of a bitmap if we don't have to.
1642 		 */
1643 		if (info->bytes <= block_group->sectorsize * 4) {
1644 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1645 				return false;
1646 		} else {
1647 			return false;
1648 		}
1649 	}
1650 
1651 	/*
1652 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1653 	 * don't even bother to create a bitmap for this
1654 	 */
1655 	if (BITS_PER_BITMAP * block_group->sectorsize >
1656 	    block_group->key.offset)
1657 		return false;
1658 
1659 	return true;
1660 }
1661 
1662 static struct btrfs_free_space_op free_space_op = {
1663 	.recalc_thresholds	= recalculate_thresholds,
1664 	.use_bitmap		= use_bitmap,
1665 };
1666 
1667 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1668 			      struct btrfs_free_space *info)
1669 {
1670 	struct btrfs_free_space *bitmap_info;
1671 	struct btrfs_block_group_cache *block_group = NULL;
1672 	int added = 0;
1673 	u64 bytes, offset, bytes_added;
1674 	int ret;
1675 
1676 	bytes = info->bytes;
1677 	offset = info->offset;
1678 
1679 	if (!ctl->op->use_bitmap(ctl, info))
1680 		return 0;
1681 
1682 	if (ctl->op == &free_space_op)
1683 		block_group = ctl->private;
1684 again:
1685 	/*
1686 	 * Since we link bitmaps right into the cluster we need to see if we
1687 	 * have a cluster here, and if so and it has our bitmap we need to add
1688 	 * the free space to that bitmap.
1689 	 */
1690 	if (block_group && !list_empty(&block_group->cluster_list)) {
1691 		struct btrfs_free_cluster *cluster;
1692 		struct rb_node *node;
1693 		struct btrfs_free_space *entry;
1694 
1695 		cluster = list_entry(block_group->cluster_list.next,
1696 				     struct btrfs_free_cluster,
1697 				     block_group_list);
1698 		spin_lock(&cluster->lock);
1699 		node = rb_first(&cluster->root);
1700 		if (!node) {
1701 			spin_unlock(&cluster->lock);
1702 			goto no_cluster_bitmap;
1703 		}
1704 
1705 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1706 		if (!entry->bitmap) {
1707 			spin_unlock(&cluster->lock);
1708 			goto no_cluster_bitmap;
1709 		}
1710 
1711 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1712 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1713 							  offset, bytes);
1714 			bytes -= bytes_added;
1715 			offset += bytes_added;
1716 		}
1717 		spin_unlock(&cluster->lock);
1718 		if (!bytes) {
1719 			ret = 1;
1720 			goto out;
1721 		}
1722 	}
1723 
1724 no_cluster_bitmap:
1725 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1726 					 1, 0);
1727 	if (!bitmap_info) {
1728 		BUG_ON(added);
1729 		goto new_bitmap;
1730 	}
1731 
1732 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1733 	bytes -= bytes_added;
1734 	offset += bytes_added;
1735 	added = 0;
1736 
1737 	if (!bytes) {
1738 		ret = 1;
1739 		goto out;
1740 	} else
1741 		goto again;
1742 
1743 new_bitmap:
1744 	if (info && info->bitmap) {
1745 		add_new_bitmap(ctl, info, offset);
1746 		added = 1;
1747 		info = NULL;
1748 		goto again;
1749 	} else {
1750 		spin_unlock(&ctl->tree_lock);
1751 
1752 		/* no pre-allocated info, allocate a new one */
1753 		if (!info) {
1754 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1755 						 GFP_NOFS);
1756 			if (!info) {
1757 				spin_lock(&ctl->tree_lock);
1758 				ret = -ENOMEM;
1759 				goto out;
1760 			}
1761 		}
1762 
1763 		/* allocate the bitmap */
1764 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1765 		spin_lock(&ctl->tree_lock);
1766 		if (!info->bitmap) {
1767 			ret = -ENOMEM;
1768 			goto out;
1769 		}
1770 		goto again;
1771 	}
1772 
1773 out:
1774 	if (info) {
1775 		if (info->bitmap)
1776 			kfree(info->bitmap);
1777 		kmem_cache_free(btrfs_free_space_cachep, info);
1778 	}
1779 
1780 	return ret;
1781 }
1782 
1783 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1784 			  struct btrfs_free_space *info, bool update_stat)
1785 {
1786 	struct btrfs_free_space *left_info;
1787 	struct btrfs_free_space *right_info;
1788 	bool merged = false;
1789 	u64 offset = info->offset;
1790 	u64 bytes = info->bytes;
1791 
1792 	/*
1793 	 * first we want to see if there is free space adjacent to the range we
1794 	 * are adding, if there is remove that struct and add a new one to
1795 	 * cover the entire range
1796 	 */
1797 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1798 	if (right_info && rb_prev(&right_info->offset_index))
1799 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1800 				     struct btrfs_free_space, offset_index);
1801 	else
1802 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1803 
1804 	if (right_info && !right_info->bitmap) {
1805 		if (update_stat)
1806 			unlink_free_space(ctl, right_info);
1807 		else
1808 			__unlink_free_space(ctl, right_info);
1809 		info->bytes += right_info->bytes;
1810 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1811 		merged = true;
1812 	}
1813 
1814 	if (left_info && !left_info->bitmap &&
1815 	    left_info->offset + left_info->bytes == offset) {
1816 		if (update_stat)
1817 			unlink_free_space(ctl, left_info);
1818 		else
1819 			__unlink_free_space(ctl, left_info);
1820 		info->offset = left_info->offset;
1821 		info->bytes += left_info->bytes;
1822 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1823 		merged = true;
1824 	}
1825 
1826 	return merged;
1827 }
1828 
1829 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1830 			   u64 offset, u64 bytes)
1831 {
1832 	struct btrfs_free_space *info;
1833 	int ret = 0;
1834 
1835 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1836 	if (!info)
1837 		return -ENOMEM;
1838 
1839 	info->offset = offset;
1840 	info->bytes = bytes;
1841 
1842 	spin_lock(&ctl->tree_lock);
1843 
1844 	if (try_merge_free_space(ctl, info, true))
1845 		goto link;
1846 
1847 	/*
1848 	 * There was no extent directly to the left or right of this new
1849 	 * extent then we know we're going to have to allocate a new extent, so
1850 	 * before we do that see if we need to drop this into a bitmap
1851 	 */
1852 	ret = insert_into_bitmap(ctl, info);
1853 	if (ret < 0) {
1854 		goto out;
1855 	} else if (ret) {
1856 		ret = 0;
1857 		goto out;
1858 	}
1859 link:
1860 	ret = link_free_space(ctl, info);
1861 	if (ret)
1862 		kmem_cache_free(btrfs_free_space_cachep, info);
1863 out:
1864 	spin_unlock(&ctl->tree_lock);
1865 
1866 	if (ret) {
1867 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1868 		BUG_ON(ret == -EEXIST);
1869 	}
1870 
1871 	return ret;
1872 }
1873 
1874 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1875 			    u64 offset, u64 bytes)
1876 {
1877 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1878 	struct btrfs_free_space *info;
1879 	int ret = 0;
1880 
1881 	spin_lock(&ctl->tree_lock);
1882 
1883 again:
1884 	if (!bytes)
1885 		goto out_lock;
1886 
1887 	info = tree_search_offset(ctl, offset, 0, 0);
1888 	if (!info) {
1889 		/*
1890 		 * oops didn't find an extent that matched the space we wanted
1891 		 * to remove, look for a bitmap instead
1892 		 */
1893 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1894 					  1, 0);
1895 		if (!info) {
1896 			/* the tree logging code might be calling us before we
1897 			 * have fully loaded the free space rbtree for this
1898 			 * block group.  So it is possible the entry won't
1899 			 * be in the rbtree yet at all.  The caching code
1900 			 * will make sure not to put it in the rbtree if
1901 			 * the logging code has pinned it.
1902 			 */
1903 			goto out_lock;
1904 		}
1905 	}
1906 
1907 	if (!info->bitmap) {
1908 		unlink_free_space(ctl, info);
1909 		if (offset == info->offset) {
1910 			u64 to_free = min(bytes, info->bytes);
1911 
1912 			info->bytes -= to_free;
1913 			info->offset += to_free;
1914 			if (info->bytes) {
1915 				ret = link_free_space(ctl, info);
1916 				WARN_ON(ret);
1917 			} else {
1918 				kmem_cache_free(btrfs_free_space_cachep, info);
1919 			}
1920 
1921 			offset += to_free;
1922 			bytes -= to_free;
1923 			goto again;
1924 		} else {
1925 			u64 old_end = info->bytes + info->offset;
1926 
1927 			info->bytes = offset - info->offset;
1928 			ret = link_free_space(ctl, info);
1929 			WARN_ON(ret);
1930 			if (ret)
1931 				goto out_lock;
1932 
1933 			/* Not enough bytes in this entry to satisfy us */
1934 			if (old_end < offset + bytes) {
1935 				bytes -= old_end - offset;
1936 				offset = old_end;
1937 				goto again;
1938 			} else if (old_end == offset + bytes) {
1939 				/* all done */
1940 				goto out_lock;
1941 			}
1942 			spin_unlock(&ctl->tree_lock);
1943 
1944 			ret = btrfs_add_free_space(block_group, offset + bytes,
1945 						   old_end - (offset + bytes));
1946 			WARN_ON(ret);
1947 			goto out;
1948 		}
1949 	}
1950 
1951 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1952 	if (ret == -EAGAIN)
1953 		goto again;
1954 	BUG_ON(ret); /* logic error */
1955 out_lock:
1956 	spin_unlock(&ctl->tree_lock);
1957 out:
1958 	return ret;
1959 }
1960 
1961 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1962 			   u64 bytes)
1963 {
1964 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1965 	struct btrfs_free_space *info;
1966 	struct rb_node *n;
1967 	int count = 0;
1968 
1969 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1970 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1971 		if (info->bytes >= bytes && !block_group->ro)
1972 			count++;
1973 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1974 		       (unsigned long long)info->offset,
1975 		       (unsigned long long)info->bytes,
1976 		       (info->bitmap) ? "yes" : "no");
1977 	}
1978 	printk(KERN_INFO "block group has cluster?: %s\n",
1979 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1980 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1981 	       "\n", count);
1982 }
1983 
1984 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1985 {
1986 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1987 
1988 	spin_lock_init(&ctl->tree_lock);
1989 	ctl->unit = block_group->sectorsize;
1990 	ctl->start = block_group->key.objectid;
1991 	ctl->private = block_group;
1992 	ctl->op = &free_space_op;
1993 
1994 	/*
1995 	 * we only want to have 32k of ram per block group for keeping
1996 	 * track of free space, and if we pass 1/2 of that we want to
1997 	 * start converting things over to using bitmaps
1998 	 */
1999 	ctl->extents_thresh = ((1024 * 32) / 2) /
2000 				sizeof(struct btrfs_free_space);
2001 }
2002 
2003 /*
2004  * for a given cluster, put all of its extents back into the free
2005  * space cache.  If the block group passed doesn't match the block group
2006  * pointed to by the cluster, someone else raced in and freed the
2007  * cluster already.  In that case, we just return without changing anything
2008  */
2009 static int
2010 __btrfs_return_cluster_to_free_space(
2011 			     struct btrfs_block_group_cache *block_group,
2012 			     struct btrfs_free_cluster *cluster)
2013 {
2014 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2015 	struct btrfs_free_space *entry;
2016 	struct rb_node *node;
2017 
2018 	spin_lock(&cluster->lock);
2019 	if (cluster->block_group != block_group)
2020 		goto out;
2021 
2022 	cluster->block_group = NULL;
2023 	cluster->window_start = 0;
2024 	list_del_init(&cluster->block_group_list);
2025 
2026 	node = rb_first(&cluster->root);
2027 	while (node) {
2028 		bool bitmap;
2029 
2030 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2031 		node = rb_next(&entry->offset_index);
2032 		rb_erase(&entry->offset_index, &cluster->root);
2033 
2034 		bitmap = (entry->bitmap != NULL);
2035 		if (!bitmap)
2036 			try_merge_free_space(ctl, entry, false);
2037 		tree_insert_offset(&ctl->free_space_offset,
2038 				   entry->offset, &entry->offset_index, bitmap);
2039 	}
2040 	cluster->root = RB_ROOT;
2041 
2042 out:
2043 	spin_unlock(&cluster->lock);
2044 	btrfs_put_block_group(block_group);
2045 	return 0;
2046 }
2047 
2048 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2049 {
2050 	struct btrfs_free_space *info;
2051 	struct rb_node *node;
2052 
2053 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2054 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2055 		if (!info->bitmap) {
2056 			unlink_free_space(ctl, info);
2057 			kmem_cache_free(btrfs_free_space_cachep, info);
2058 		} else {
2059 			free_bitmap(ctl, info);
2060 		}
2061 		if (need_resched()) {
2062 			spin_unlock(&ctl->tree_lock);
2063 			cond_resched();
2064 			spin_lock(&ctl->tree_lock);
2065 		}
2066 	}
2067 }
2068 
2069 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2070 {
2071 	spin_lock(&ctl->tree_lock);
2072 	__btrfs_remove_free_space_cache_locked(ctl);
2073 	spin_unlock(&ctl->tree_lock);
2074 }
2075 
2076 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2077 {
2078 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2079 	struct btrfs_free_cluster *cluster;
2080 	struct list_head *head;
2081 
2082 	spin_lock(&ctl->tree_lock);
2083 	while ((head = block_group->cluster_list.next) !=
2084 	       &block_group->cluster_list) {
2085 		cluster = list_entry(head, struct btrfs_free_cluster,
2086 				     block_group_list);
2087 
2088 		WARN_ON(cluster->block_group != block_group);
2089 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2090 		if (need_resched()) {
2091 			spin_unlock(&ctl->tree_lock);
2092 			cond_resched();
2093 			spin_lock(&ctl->tree_lock);
2094 		}
2095 	}
2096 	__btrfs_remove_free_space_cache_locked(ctl);
2097 	spin_unlock(&ctl->tree_lock);
2098 
2099 }
2100 
2101 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2102 			       u64 offset, u64 bytes, u64 empty_size)
2103 {
2104 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2105 	struct btrfs_free_space *entry = NULL;
2106 	u64 bytes_search = bytes + empty_size;
2107 	u64 ret = 0;
2108 
2109 	spin_lock(&ctl->tree_lock);
2110 	entry = find_free_space(ctl, &offset, &bytes_search);
2111 	if (!entry)
2112 		goto out;
2113 
2114 	ret = offset;
2115 	if (entry->bitmap) {
2116 		bitmap_clear_bits(ctl, entry, offset, bytes);
2117 		if (!entry->bytes)
2118 			free_bitmap(ctl, entry);
2119 	} else {
2120 		unlink_free_space(ctl, entry);
2121 		entry->offset += bytes;
2122 		entry->bytes -= bytes;
2123 		if (!entry->bytes)
2124 			kmem_cache_free(btrfs_free_space_cachep, entry);
2125 		else
2126 			link_free_space(ctl, entry);
2127 	}
2128 
2129 out:
2130 	spin_unlock(&ctl->tree_lock);
2131 
2132 	return ret;
2133 }
2134 
2135 /*
2136  * given a cluster, put all of its extents back into the free space
2137  * cache.  If a block group is passed, this function will only free
2138  * a cluster that belongs to the passed block group.
2139  *
2140  * Otherwise, it'll get a reference on the block group pointed to by the
2141  * cluster and remove the cluster from it.
2142  */
2143 int btrfs_return_cluster_to_free_space(
2144 			       struct btrfs_block_group_cache *block_group,
2145 			       struct btrfs_free_cluster *cluster)
2146 {
2147 	struct btrfs_free_space_ctl *ctl;
2148 	int ret;
2149 
2150 	/* first, get a safe pointer to the block group */
2151 	spin_lock(&cluster->lock);
2152 	if (!block_group) {
2153 		block_group = cluster->block_group;
2154 		if (!block_group) {
2155 			spin_unlock(&cluster->lock);
2156 			return 0;
2157 		}
2158 	} else if (cluster->block_group != block_group) {
2159 		/* someone else has already freed it don't redo their work */
2160 		spin_unlock(&cluster->lock);
2161 		return 0;
2162 	}
2163 	atomic_inc(&block_group->count);
2164 	spin_unlock(&cluster->lock);
2165 
2166 	ctl = block_group->free_space_ctl;
2167 
2168 	/* now return any extents the cluster had on it */
2169 	spin_lock(&ctl->tree_lock);
2170 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2171 	spin_unlock(&ctl->tree_lock);
2172 
2173 	/* finally drop our ref */
2174 	btrfs_put_block_group(block_group);
2175 	return ret;
2176 }
2177 
2178 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2179 				   struct btrfs_free_cluster *cluster,
2180 				   struct btrfs_free_space *entry,
2181 				   u64 bytes, u64 min_start)
2182 {
2183 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2184 	int err;
2185 	u64 search_start = cluster->window_start;
2186 	u64 search_bytes = bytes;
2187 	u64 ret = 0;
2188 
2189 	search_start = min_start;
2190 	search_bytes = bytes;
2191 
2192 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2193 	if (err)
2194 		return 0;
2195 
2196 	ret = search_start;
2197 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2198 
2199 	return ret;
2200 }
2201 
2202 /*
2203  * given a cluster, try to allocate 'bytes' from it, returns 0
2204  * if it couldn't find anything suitably large, or a logical disk offset
2205  * if things worked out
2206  */
2207 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2208 			     struct btrfs_free_cluster *cluster, u64 bytes,
2209 			     u64 min_start)
2210 {
2211 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2212 	struct btrfs_free_space *entry = NULL;
2213 	struct rb_node *node;
2214 	u64 ret = 0;
2215 
2216 	spin_lock(&cluster->lock);
2217 	if (bytes > cluster->max_size)
2218 		goto out;
2219 
2220 	if (cluster->block_group != block_group)
2221 		goto out;
2222 
2223 	node = rb_first(&cluster->root);
2224 	if (!node)
2225 		goto out;
2226 
2227 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2228 	while(1) {
2229 		if (entry->bytes < bytes ||
2230 		    (!entry->bitmap && entry->offset < min_start)) {
2231 			node = rb_next(&entry->offset_index);
2232 			if (!node)
2233 				break;
2234 			entry = rb_entry(node, struct btrfs_free_space,
2235 					 offset_index);
2236 			continue;
2237 		}
2238 
2239 		if (entry->bitmap) {
2240 			ret = btrfs_alloc_from_bitmap(block_group,
2241 						      cluster, entry, bytes,
2242 						      cluster->window_start);
2243 			if (ret == 0) {
2244 				node = rb_next(&entry->offset_index);
2245 				if (!node)
2246 					break;
2247 				entry = rb_entry(node, struct btrfs_free_space,
2248 						 offset_index);
2249 				continue;
2250 			}
2251 			cluster->window_start += bytes;
2252 		} else {
2253 			ret = entry->offset;
2254 
2255 			entry->offset += bytes;
2256 			entry->bytes -= bytes;
2257 		}
2258 
2259 		if (entry->bytes == 0)
2260 			rb_erase(&entry->offset_index, &cluster->root);
2261 		break;
2262 	}
2263 out:
2264 	spin_unlock(&cluster->lock);
2265 
2266 	if (!ret)
2267 		return 0;
2268 
2269 	spin_lock(&ctl->tree_lock);
2270 
2271 	ctl->free_space -= bytes;
2272 	if (entry->bytes == 0) {
2273 		ctl->free_extents--;
2274 		if (entry->bitmap) {
2275 			kfree(entry->bitmap);
2276 			ctl->total_bitmaps--;
2277 			ctl->op->recalc_thresholds(ctl);
2278 		}
2279 		kmem_cache_free(btrfs_free_space_cachep, entry);
2280 	}
2281 
2282 	spin_unlock(&ctl->tree_lock);
2283 
2284 	return ret;
2285 }
2286 
2287 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2288 				struct btrfs_free_space *entry,
2289 				struct btrfs_free_cluster *cluster,
2290 				u64 offset, u64 bytes,
2291 				u64 cont1_bytes, u64 min_bytes)
2292 {
2293 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2294 	unsigned long next_zero;
2295 	unsigned long i;
2296 	unsigned long want_bits;
2297 	unsigned long min_bits;
2298 	unsigned long found_bits;
2299 	unsigned long start = 0;
2300 	unsigned long total_found = 0;
2301 	int ret;
2302 
2303 	i = offset_to_bit(entry->offset, block_group->sectorsize,
2304 			  max_t(u64, offset, entry->offset));
2305 	want_bits = bytes_to_bits(bytes, block_group->sectorsize);
2306 	min_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2307 
2308 again:
2309 	found_bits = 0;
2310 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2311 	     i < BITS_PER_BITMAP;
2312 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2313 		next_zero = find_next_zero_bit(entry->bitmap,
2314 					       BITS_PER_BITMAP, i);
2315 		if (next_zero - i >= min_bits) {
2316 			found_bits = next_zero - i;
2317 			break;
2318 		}
2319 		i = next_zero;
2320 	}
2321 
2322 	if (!found_bits)
2323 		return -ENOSPC;
2324 
2325 	if (!total_found) {
2326 		start = i;
2327 		cluster->max_size = 0;
2328 	}
2329 
2330 	total_found += found_bits;
2331 
2332 	if (cluster->max_size < found_bits * block_group->sectorsize)
2333 		cluster->max_size = found_bits * block_group->sectorsize;
2334 
2335 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2336 		i = next_zero + 1;
2337 		goto again;
2338 	}
2339 
2340 	cluster->window_start = start * block_group->sectorsize +
2341 		entry->offset;
2342 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2343 	ret = tree_insert_offset(&cluster->root, entry->offset,
2344 				 &entry->offset_index, 1);
2345 	BUG_ON(ret); /* -EEXIST; Logic error */
2346 
2347 	trace_btrfs_setup_cluster(block_group, cluster,
2348 				  total_found * block_group->sectorsize, 1);
2349 	return 0;
2350 }
2351 
2352 /*
2353  * This searches the block group for just extents to fill the cluster with.
2354  * Try to find a cluster with at least bytes total bytes, at least one
2355  * extent of cont1_bytes, and other clusters of at least min_bytes.
2356  */
2357 static noinline int
2358 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2359 			struct btrfs_free_cluster *cluster,
2360 			struct list_head *bitmaps, u64 offset, u64 bytes,
2361 			u64 cont1_bytes, u64 min_bytes)
2362 {
2363 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2364 	struct btrfs_free_space *first = NULL;
2365 	struct btrfs_free_space *entry = NULL;
2366 	struct btrfs_free_space *last;
2367 	struct rb_node *node;
2368 	u64 window_start;
2369 	u64 window_free;
2370 	u64 max_extent;
2371 	u64 total_size = 0;
2372 
2373 	entry = tree_search_offset(ctl, offset, 0, 1);
2374 	if (!entry)
2375 		return -ENOSPC;
2376 
2377 	/*
2378 	 * We don't want bitmaps, so just move along until we find a normal
2379 	 * extent entry.
2380 	 */
2381 	while (entry->bitmap || entry->bytes < min_bytes) {
2382 		if (entry->bitmap && list_empty(&entry->list))
2383 			list_add_tail(&entry->list, bitmaps);
2384 		node = rb_next(&entry->offset_index);
2385 		if (!node)
2386 			return -ENOSPC;
2387 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2388 	}
2389 
2390 	window_start = entry->offset;
2391 	window_free = entry->bytes;
2392 	max_extent = entry->bytes;
2393 	first = entry;
2394 	last = entry;
2395 
2396 	for (node = rb_next(&entry->offset_index); node;
2397 	     node = rb_next(&entry->offset_index)) {
2398 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2399 
2400 		if (entry->bitmap) {
2401 			if (list_empty(&entry->list))
2402 				list_add_tail(&entry->list, bitmaps);
2403 			continue;
2404 		}
2405 
2406 		if (entry->bytes < min_bytes)
2407 			continue;
2408 
2409 		last = entry;
2410 		window_free += entry->bytes;
2411 		if (entry->bytes > max_extent)
2412 			max_extent = entry->bytes;
2413 	}
2414 
2415 	if (window_free < bytes || max_extent < cont1_bytes)
2416 		return -ENOSPC;
2417 
2418 	cluster->window_start = first->offset;
2419 
2420 	node = &first->offset_index;
2421 
2422 	/*
2423 	 * now we've found our entries, pull them out of the free space
2424 	 * cache and put them into the cluster rbtree
2425 	 */
2426 	do {
2427 		int ret;
2428 
2429 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2430 		node = rb_next(&entry->offset_index);
2431 		if (entry->bitmap || entry->bytes < min_bytes)
2432 			continue;
2433 
2434 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2435 		ret = tree_insert_offset(&cluster->root, entry->offset,
2436 					 &entry->offset_index, 0);
2437 		total_size += entry->bytes;
2438 		BUG_ON(ret); /* -EEXIST; Logic error */
2439 	} while (node && entry != last);
2440 
2441 	cluster->max_size = max_extent;
2442 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2443 	return 0;
2444 }
2445 
2446 /*
2447  * This specifically looks for bitmaps that may work in the cluster, we assume
2448  * that we have already failed to find extents that will work.
2449  */
2450 static noinline int
2451 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2452 		     struct btrfs_free_cluster *cluster,
2453 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2454 		     u64 cont1_bytes, u64 min_bytes)
2455 {
2456 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2457 	struct btrfs_free_space *entry;
2458 	int ret = -ENOSPC;
2459 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2460 
2461 	if (ctl->total_bitmaps == 0)
2462 		return -ENOSPC;
2463 
2464 	/*
2465 	 * The bitmap that covers offset won't be in the list unless offset
2466 	 * is just its start offset.
2467 	 */
2468 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2469 	if (entry->offset != bitmap_offset) {
2470 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2471 		if (entry && list_empty(&entry->list))
2472 			list_add(&entry->list, bitmaps);
2473 	}
2474 
2475 	list_for_each_entry(entry, bitmaps, list) {
2476 		if (entry->bytes < bytes)
2477 			continue;
2478 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2479 					   bytes, cont1_bytes, min_bytes);
2480 		if (!ret)
2481 			return 0;
2482 	}
2483 
2484 	/*
2485 	 * The bitmaps list has all the bitmaps that record free space
2486 	 * starting after offset, so no more search is required.
2487 	 */
2488 	return -ENOSPC;
2489 }
2490 
2491 /*
2492  * here we try to find a cluster of blocks in a block group.  The goal
2493  * is to find at least bytes+empty_size.
2494  * We might not find them all in one contiguous area.
2495  *
2496  * returns zero and sets up cluster if things worked out, otherwise
2497  * it returns -enospc
2498  */
2499 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2500 			     struct btrfs_root *root,
2501 			     struct btrfs_block_group_cache *block_group,
2502 			     struct btrfs_free_cluster *cluster,
2503 			     u64 offset, u64 bytes, u64 empty_size)
2504 {
2505 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2506 	struct btrfs_free_space *entry, *tmp;
2507 	LIST_HEAD(bitmaps);
2508 	u64 min_bytes;
2509 	u64 cont1_bytes;
2510 	int ret;
2511 
2512 	/*
2513 	 * Choose the minimum extent size we'll require for this
2514 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2515 	 * For metadata, allow allocates with smaller extents.  For
2516 	 * data, keep it dense.
2517 	 */
2518 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2519 		cont1_bytes = min_bytes = bytes + empty_size;
2520 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2521 		cont1_bytes = bytes;
2522 		min_bytes = block_group->sectorsize;
2523 	} else {
2524 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2525 		min_bytes = block_group->sectorsize;
2526 	}
2527 
2528 	spin_lock(&ctl->tree_lock);
2529 
2530 	/*
2531 	 * If we know we don't have enough space to make a cluster don't even
2532 	 * bother doing all the work to try and find one.
2533 	 */
2534 	if (ctl->free_space < bytes) {
2535 		spin_unlock(&ctl->tree_lock);
2536 		return -ENOSPC;
2537 	}
2538 
2539 	spin_lock(&cluster->lock);
2540 
2541 	/* someone already found a cluster, hooray */
2542 	if (cluster->block_group) {
2543 		ret = 0;
2544 		goto out;
2545 	}
2546 
2547 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2548 				 min_bytes);
2549 
2550 	INIT_LIST_HEAD(&bitmaps);
2551 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2552 				      bytes + empty_size,
2553 				      cont1_bytes, min_bytes);
2554 	if (ret)
2555 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2556 					   offset, bytes + empty_size,
2557 					   cont1_bytes, min_bytes);
2558 
2559 	/* Clear our temporary list */
2560 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2561 		list_del_init(&entry->list);
2562 
2563 	if (!ret) {
2564 		atomic_inc(&block_group->count);
2565 		list_add_tail(&cluster->block_group_list,
2566 			      &block_group->cluster_list);
2567 		cluster->block_group = block_group;
2568 	} else {
2569 		trace_btrfs_failed_cluster_setup(block_group);
2570 	}
2571 out:
2572 	spin_unlock(&cluster->lock);
2573 	spin_unlock(&ctl->tree_lock);
2574 
2575 	return ret;
2576 }
2577 
2578 /*
2579  * simple code to zero out a cluster
2580  */
2581 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2582 {
2583 	spin_lock_init(&cluster->lock);
2584 	spin_lock_init(&cluster->refill_lock);
2585 	cluster->root = RB_ROOT;
2586 	cluster->max_size = 0;
2587 	INIT_LIST_HEAD(&cluster->block_group_list);
2588 	cluster->block_group = NULL;
2589 }
2590 
2591 static int do_trimming(struct btrfs_block_group_cache *block_group,
2592 		       u64 *total_trimmed, u64 start, u64 bytes,
2593 		       u64 reserved_start, u64 reserved_bytes)
2594 {
2595 	struct btrfs_space_info *space_info = block_group->space_info;
2596 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2597 	int ret;
2598 	int update = 0;
2599 	u64 trimmed = 0;
2600 
2601 	spin_lock(&space_info->lock);
2602 	spin_lock(&block_group->lock);
2603 	if (!block_group->ro) {
2604 		block_group->reserved += reserved_bytes;
2605 		space_info->bytes_reserved += reserved_bytes;
2606 		update = 1;
2607 	}
2608 	spin_unlock(&block_group->lock);
2609 	spin_unlock(&space_info->lock);
2610 
2611 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2612 					 start, bytes, &trimmed);
2613 	if (!ret)
2614 		*total_trimmed += trimmed;
2615 
2616 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2617 
2618 	if (update) {
2619 		spin_lock(&space_info->lock);
2620 		spin_lock(&block_group->lock);
2621 		if (block_group->ro)
2622 			space_info->bytes_readonly += reserved_bytes;
2623 		block_group->reserved -= reserved_bytes;
2624 		space_info->bytes_reserved -= reserved_bytes;
2625 		spin_unlock(&space_info->lock);
2626 		spin_unlock(&block_group->lock);
2627 	}
2628 
2629 	return ret;
2630 }
2631 
2632 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2633 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2634 {
2635 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2636 	struct btrfs_free_space *entry;
2637 	struct rb_node *node;
2638 	int ret = 0;
2639 	u64 extent_start;
2640 	u64 extent_bytes;
2641 	u64 bytes;
2642 
2643 	while (start < end) {
2644 		spin_lock(&ctl->tree_lock);
2645 
2646 		if (ctl->free_space < minlen) {
2647 			spin_unlock(&ctl->tree_lock);
2648 			break;
2649 		}
2650 
2651 		entry = tree_search_offset(ctl, start, 0, 1);
2652 		if (!entry) {
2653 			spin_unlock(&ctl->tree_lock);
2654 			break;
2655 		}
2656 
2657 		/* skip bitmaps */
2658 		while (entry->bitmap) {
2659 			node = rb_next(&entry->offset_index);
2660 			if (!node) {
2661 				spin_unlock(&ctl->tree_lock);
2662 				goto out;
2663 			}
2664 			entry = rb_entry(node, struct btrfs_free_space,
2665 					 offset_index);
2666 		}
2667 
2668 		if (entry->offset >= end) {
2669 			spin_unlock(&ctl->tree_lock);
2670 			break;
2671 		}
2672 
2673 		extent_start = entry->offset;
2674 		extent_bytes = entry->bytes;
2675 		start = max(start, extent_start);
2676 		bytes = min(extent_start + extent_bytes, end) - start;
2677 		if (bytes < minlen) {
2678 			spin_unlock(&ctl->tree_lock);
2679 			goto next;
2680 		}
2681 
2682 		unlink_free_space(ctl, entry);
2683 		kmem_cache_free(btrfs_free_space_cachep, entry);
2684 
2685 		spin_unlock(&ctl->tree_lock);
2686 
2687 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2688 				  extent_start, extent_bytes);
2689 		if (ret)
2690 			break;
2691 next:
2692 		start += bytes;
2693 
2694 		if (fatal_signal_pending(current)) {
2695 			ret = -ERESTARTSYS;
2696 			break;
2697 		}
2698 
2699 		cond_resched();
2700 	}
2701 out:
2702 	return ret;
2703 }
2704 
2705 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2706 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2707 {
2708 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2709 	struct btrfs_free_space *entry;
2710 	int ret = 0;
2711 	int ret2;
2712 	u64 bytes;
2713 	u64 offset = offset_to_bitmap(ctl, start);
2714 
2715 	while (offset < end) {
2716 		bool next_bitmap = false;
2717 
2718 		spin_lock(&ctl->tree_lock);
2719 
2720 		if (ctl->free_space < minlen) {
2721 			spin_unlock(&ctl->tree_lock);
2722 			break;
2723 		}
2724 
2725 		entry = tree_search_offset(ctl, offset, 1, 0);
2726 		if (!entry) {
2727 			spin_unlock(&ctl->tree_lock);
2728 			next_bitmap = true;
2729 			goto next;
2730 		}
2731 
2732 		bytes = minlen;
2733 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2734 		if (ret2 || start >= end) {
2735 			spin_unlock(&ctl->tree_lock);
2736 			next_bitmap = true;
2737 			goto next;
2738 		}
2739 
2740 		bytes = min(bytes, end - start);
2741 		if (bytes < minlen) {
2742 			spin_unlock(&ctl->tree_lock);
2743 			goto next;
2744 		}
2745 
2746 		bitmap_clear_bits(ctl, entry, start, bytes);
2747 		if (entry->bytes == 0)
2748 			free_bitmap(ctl, entry);
2749 
2750 		spin_unlock(&ctl->tree_lock);
2751 
2752 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2753 				  start, bytes);
2754 		if (ret)
2755 			break;
2756 next:
2757 		if (next_bitmap) {
2758 			offset += BITS_PER_BITMAP * ctl->unit;
2759 		} else {
2760 			start += bytes;
2761 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2762 				offset += BITS_PER_BITMAP * ctl->unit;
2763 		}
2764 
2765 		if (fatal_signal_pending(current)) {
2766 			ret = -ERESTARTSYS;
2767 			break;
2768 		}
2769 
2770 		cond_resched();
2771 	}
2772 
2773 	return ret;
2774 }
2775 
2776 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2777 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2778 {
2779 	int ret;
2780 
2781 	*trimmed = 0;
2782 
2783 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2784 	if (ret)
2785 		return ret;
2786 
2787 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2788 
2789 	return ret;
2790 }
2791 
2792 /*
2793  * Find the left-most item in the cache tree, and then return the
2794  * smallest inode number in the item.
2795  *
2796  * Note: the returned inode number may not be the smallest one in
2797  * the tree, if the left-most item is a bitmap.
2798  */
2799 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2800 {
2801 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2802 	struct btrfs_free_space *entry = NULL;
2803 	u64 ino = 0;
2804 
2805 	spin_lock(&ctl->tree_lock);
2806 
2807 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2808 		goto out;
2809 
2810 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2811 			 struct btrfs_free_space, offset_index);
2812 
2813 	if (!entry->bitmap) {
2814 		ino = entry->offset;
2815 
2816 		unlink_free_space(ctl, entry);
2817 		entry->offset++;
2818 		entry->bytes--;
2819 		if (!entry->bytes)
2820 			kmem_cache_free(btrfs_free_space_cachep, entry);
2821 		else
2822 			link_free_space(ctl, entry);
2823 	} else {
2824 		u64 offset = 0;
2825 		u64 count = 1;
2826 		int ret;
2827 
2828 		ret = search_bitmap(ctl, entry, &offset, &count);
2829 		/* Logic error; Should be empty if it can't find anything */
2830 		BUG_ON(ret);
2831 
2832 		ino = offset;
2833 		bitmap_clear_bits(ctl, entry, offset, 1);
2834 		if (entry->bytes == 0)
2835 			free_bitmap(ctl, entry);
2836 	}
2837 out:
2838 	spin_unlock(&ctl->tree_lock);
2839 
2840 	return ino;
2841 }
2842 
2843 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2844 				    struct btrfs_path *path)
2845 {
2846 	struct inode *inode = NULL;
2847 
2848 	spin_lock(&root->cache_lock);
2849 	if (root->cache_inode)
2850 		inode = igrab(root->cache_inode);
2851 	spin_unlock(&root->cache_lock);
2852 	if (inode)
2853 		return inode;
2854 
2855 	inode = __lookup_free_space_inode(root, path, 0);
2856 	if (IS_ERR(inode))
2857 		return inode;
2858 
2859 	spin_lock(&root->cache_lock);
2860 	if (!btrfs_fs_closing(root->fs_info))
2861 		root->cache_inode = igrab(inode);
2862 	spin_unlock(&root->cache_lock);
2863 
2864 	return inode;
2865 }
2866 
2867 int create_free_ino_inode(struct btrfs_root *root,
2868 			  struct btrfs_trans_handle *trans,
2869 			  struct btrfs_path *path)
2870 {
2871 	return __create_free_space_inode(root, trans, path,
2872 					 BTRFS_FREE_INO_OBJECTID, 0);
2873 }
2874 
2875 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2876 {
2877 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2878 	struct btrfs_path *path;
2879 	struct inode *inode;
2880 	int ret = 0;
2881 	u64 root_gen = btrfs_root_generation(&root->root_item);
2882 
2883 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2884 		return 0;
2885 
2886 	/*
2887 	 * If we're unmounting then just return, since this does a search on the
2888 	 * normal root and not the commit root and we could deadlock.
2889 	 */
2890 	if (btrfs_fs_closing(fs_info))
2891 		return 0;
2892 
2893 	path = btrfs_alloc_path();
2894 	if (!path)
2895 		return 0;
2896 
2897 	inode = lookup_free_ino_inode(root, path);
2898 	if (IS_ERR(inode))
2899 		goto out;
2900 
2901 	if (root_gen != BTRFS_I(inode)->generation)
2902 		goto out_put;
2903 
2904 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2905 
2906 	if (ret < 0)
2907 		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2908 		       "root %llu\n", root->root_key.objectid);
2909 out_put:
2910 	iput(inode);
2911 out:
2912 	btrfs_free_path(path);
2913 	return ret;
2914 }
2915 
2916 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2917 			      struct btrfs_trans_handle *trans,
2918 			      struct btrfs_path *path)
2919 {
2920 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2921 	struct inode *inode;
2922 	int ret;
2923 
2924 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2925 		return 0;
2926 
2927 	inode = lookup_free_ino_inode(root, path);
2928 	if (IS_ERR(inode))
2929 		return 0;
2930 
2931 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2932 	if (ret) {
2933 		btrfs_delalloc_release_metadata(inode, inode->i_size);
2934 #ifdef DEBUG
2935 		printk(KERN_ERR "btrfs: failed to write free ino cache "
2936 		       "for root %llu\n", root->root_key.objectid);
2937 #endif
2938 	}
2939 
2940 	iput(inode);
2941 	return ret;
2942 }
2943