1 /* 2 * Copyright (C) 2008 Red Hat. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/math64.h> 23 #include <linux/ratelimit.h> 24 #include "ctree.h" 25 #include "free-space-cache.h" 26 #include "transaction.h" 27 #include "disk-io.h" 28 #include "extent_io.h" 29 #include "inode-map.h" 30 31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8) 32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024) 33 34 static int link_free_space(struct btrfs_free_space_ctl *ctl, 35 struct btrfs_free_space *info); 36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *info); 38 39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 40 struct btrfs_path *path, 41 u64 offset) 42 { 43 struct btrfs_key key; 44 struct btrfs_key location; 45 struct btrfs_disk_key disk_key; 46 struct btrfs_free_space_header *header; 47 struct extent_buffer *leaf; 48 struct inode *inode = NULL; 49 int ret; 50 51 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 52 key.offset = offset; 53 key.type = 0; 54 55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 56 if (ret < 0) 57 return ERR_PTR(ret); 58 if (ret > 0) { 59 btrfs_release_path(path); 60 return ERR_PTR(-ENOENT); 61 } 62 63 leaf = path->nodes[0]; 64 header = btrfs_item_ptr(leaf, path->slots[0], 65 struct btrfs_free_space_header); 66 btrfs_free_space_key(leaf, header, &disk_key); 67 btrfs_disk_key_to_cpu(&location, &disk_key); 68 btrfs_release_path(path); 69 70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); 71 if (!inode) 72 return ERR_PTR(-ENOENT); 73 if (IS_ERR(inode)) 74 return inode; 75 if (is_bad_inode(inode)) { 76 iput(inode); 77 return ERR_PTR(-ENOENT); 78 } 79 80 mapping_set_gfp_mask(inode->i_mapping, 81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS); 82 83 return inode; 84 } 85 86 struct inode *lookup_free_space_inode(struct btrfs_root *root, 87 struct btrfs_block_group_cache 88 *block_group, struct btrfs_path *path) 89 { 90 struct inode *inode = NULL; 91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 92 93 spin_lock(&block_group->lock); 94 if (block_group->inode) 95 inode = igrab(block_group->inode); 96 spin_unlock(&block_group->lock); 97 if (inode) 98 return inode; 99 100 inode = __lookup_free_space_inode(root, path, 101 block_group->key.objectid); 102 if (IS_ERR(inode)) 103 return inode; 104 105 spin_lock(&block_group->lock); 106 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 107 printk(KERN_INFO "Old style space inode found, converting.\n"); 108 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 109 BTRFS_INODE_NODATACOW; 110 block_group->disk_cache_state = BTRFS_DC_CLEAR; 111 } 112 113 if (!block_group->iref) { 114 block_group->inode = igrab(inode); 115 block_group->iref = 1; 116 } 117 spin_unlock(&block_group->lock); 118 119 return inode; 120 } 121 122 int __create_free_space_inode(struct btrfs_root *root, 123 struct btrfs_trans_handle *trans, 124 struct btrfs_path *path, u64 ino, u64 offset) 125 { 126 struct btrfs_key key; 127 struct btrfs_disk_key disk_key; 128 struct btrfs_free_space_header *header; 129 struct btrfs_inode_item *inode_item; 130 struct extent_buffer *leaf; 131 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 132 int ret; 133 134 ret = btrfs_insert_empty_inode(trans, root, path, ino); 135 if (ret) 136 return ret; 137 138 /* We inline crc's for the free disk space cache */ 139 if (ino != BTRFS_FREE_INO_OBJECTID) 140 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 141 142 leaf = path->nodes[0]; 143 inode_item = btrfs_item_ptr(leaf, path->slots[0], 144 struct btrfs_inode_item); 145 btrfs_item_key(leaf, &disk_key, path->slots[0]); 146 memset_extent_buffer(leaf, 0, (unsigned long)inode_item, 147 sizeof(*inode_item)); 148 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 149 btrfs_set_inode_size(leaf, inode_item, 0); 150 btrfs_set_inode_nbytes(leaf, inode_item, 0); 151 btrfs_set_inode_uid(leaf, inode_item, 0); 152 btrfs_set_inode_gid(leaf, inode_item, 0); 153 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 154 btrfs_set_inode_flags(leaf, inode_item, flags); 155 btrfs_set_inode_nlink(leaf, inode_item, 1); 156 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 157 btrfs_set_inode_block_group(leaf, inode_item, offset); 158 btrfs_mark_buffer_dirty(leaf); 159 btrfs_release_path(path); 160 161 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 162 key.offset = offset; 163 key.type = 0; 164 165 ret = btrfs_insert_empty_item(trans, root, path, &key, 166 sizeof(struct btrfs_free_space_header)); 167 if (ret < 0) { 168 btrfs_release_path(path); 169 return ret; 170 } 171 leaf = path->nodes[0]; 172 header = btrfs_item_ptr(leaf, path->slots[0], 173 struct btrfs_free_space_header); 174 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); 175 btrfs_set_free_space_key(leaf, header, &disk_key); 176 btrfs_mark_buffer_dirty(leaf); 177 btrfs_release_path(path); 178 179 return 0; 180 } 181 182 int create_free_space_inode(struct btrfs_root *root, 183 struct btrfs_trans_handle *trans, 184 struct btrfs_block_group_cache *block_group, 185 struct btrfs_path *path) 186 { 187 int ret; 188 u64 ino; 189 190 ret = btrfs_find_free_objectid(root, &ino); 191 if (ret < 0) 192 return ret; 193 194 return __create_free_space_inode(root, trans, path, ino, 195 block_group->key.objectid); 196 } 197 198 int btrfs_truncate_free_space_cache(struct btrfs_root *root, 199 struct btrfs_trans_handle *trans, 200 struct btrfs_path *path, 201 struct inode *inode) 202 { 203 struct btrfs_block_rsv *rsv; 204 u64 needed_bytes; 205 loff_t oldsize; 206 int ret = 0; 207 208 rsv = trans->block_rsv; 209 trans->block_rsv = &root->fs_info->global_block_rsv; 210 211 /* 1 for slack space, 1 for updating the inode */ 212 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + 213 btrfs_calc_trans_metadata_size(root, 1); 214 215 spin_lock(&trans->block_rsv->lock); 216 if (trans->block_rsv->reserved < needed_bytes) { 217 spin_unlock(&trans->block_rsv->lock); 218 trans->block_rsv = rsv; 219 return -ENOSPC; 220 } 221 spin_unlock(&trans->block_rsv->lock); 222 223 oldsize = i_size_read(inode); 224 btrfs_i_size_write(inode, 0); 225 truncate_pagecache(inode, oldsize, 0); 226 227 /* 228 * We don't need an orphan item because truncating the free space cache 229 * will never be split across transactions. 230 */ 231 ret = btrfs_truncate_inode_items(trans, root, inode, 232 0, BTRFS_EXTENT_DATA_KEY); 233 234 if (ret) { 235 trans->block_rsv = rsv; 236 btrfs_abort_transaction(trans, root, ret); 237 return ret; 238 } 239 240 ret = btrfs_update_inode(trans, root, inode); 241 if (ret) 242 btrfs_abort_transaction(trans, root, ret); 243 trans->block_rsv = rsv; 244 245 return ret; 246 } 247 248 static int readahead_cache(struct inode *inode) 249 { 250 struct file_ra_state *ra; 251 unsigned long last_index; 252 253 ra = kzalloc(sizeof(*ra), GFP_NOFS); 254 if (!ra) 255 return -ENOMEM; 256 257 file_ra_state_init(ra, inode->i_mapping); 258 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 259 260 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 261 262 kfree(ra); 263 264 return 0; 265 } 266 267 struct io_ctl { 268 void *cur, *orig; 269 struct page *page; 270 struct page **pages; 271 struct btrfs_root *root; 272 unsigned long size; 273 int index; 274 int num_pages; 275 unsigned check_crcs:1; 276 }; 277 278 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode, 279 struct btrfs_root *root) 280 { 281 memset(io_ctl, 0, sizeof(struct io_ctl)); 282 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 283 PAGE_CACHE_SHIFT; 284 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages, 285 GFP_NOFS); 286 if (!io_ctl->pages) 287 return -ENOMEM; 288 io_ctl->root = root; 289 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) 290 io_ctl->check_crcs = 1; 291 return 0; 292 } 293 294 static void io_ctl_free(struct io_ctl *io_ctl) 295 { 296 kfree(io_ctl->pages); 297 } 298 299 static void io_ctl_unmap_page(struct io_ctl *io_ctl) 300 { 301 if (io_ctl->cur) { 302 kunmap(io_ctl->page); 303 io_ctl->cur = NULL; 304 io_ctl->orig = NULL; 305 } 306 } 307 308 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear) 309 { 310 WARN_ON(io_ctl->cur); 311 BUG_ON(io_ctl->index >= io_ctl->num_pages); 312 io_ctl->page = io_ctl->pages[io_ctl->index++]; 313 io_ctl->cur = kmap(io_ctl->page); 314 io_ctl->orig = io_ctl->cur; 315 io_ctl->size = PAGE_CACHE_SIZE; 316 if (clear) 317 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE); 318 } 319 320 static void io_ctl_drop_pages(struct io_ctl *io_ctl) 321 { 322 int i; 323 324 io_ctl_unmap_page(io_ctl); 325 326 for (i = 0; i < io_ctl->num_pages; i++) { 327 if (io_ctl->pages[i]) { 328 ClearPageChecked(io_ctl->pages[i]); 329 unlock_page(io_ctl->pages[i]); 330 page_cache_release(io_ctl->pages[i]); 331 } 332 } 333 } 334 335 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode, 336 int uptodate) 337 { 338 struct page *page; 339 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 340 int i; 341 342 for (i = 0; i < io_ctl->num_pages; i++) { 343 page = find_or_create_page(inode->i_mapping, i, mask); 344 if (!page) { 345 io_ctl_drop_pages(io_ctl); 346 return -ENOMEM; 347 } 348 io_ctl->pages[i] = page; 349 if (uptodate && !PageUptodate(page)) { 350 btrfs_readpage(NULL, page); 351 lock_page(page); 352 if (!PageUptodate(page)) { 353 printk(KERN_ERR "btrfs: error reading free " 354 "space cache\n"); 355 io_ctl_drop_pages(io_ctl); 356 return -EIO; 357 } 358 } 359 } 360 361 for (i = 0; i < io_ctl->num_pages; i++) { 362 clear_page_dirty_for_io(io_ctl->pages[i]); 363 set_page_extent_mapped(io_ctl->pages[i]); 364 } 365 366 return 0; 367 } 368 369 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation) 370 { 371 __le64 *val; 372 373 io_ctl_map_page(io_ctl, 1); 374 375 /* 376 * Skip the csum areas. If we don't check crcs then we just have a 377 * 64bit chunk at the front of the first page. 378 */ 379 if (io_ctl->check_crcs) { 380 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 381 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 382 } else { 383 io_ctl->cur += sizeof(u64); 384 io_ctl->size -= sizeof(u64) * 2; 385 } 386 387 val = io_ctl->cur; 388 *val = cpu_to_le64(generation); 389 io_ctl->cur += sizeof(u64); 390 } 391 392 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation) 393 { 394 __le64 *gen; 395 396 /* 397 * Skip the crc area. If we don't check crcs then we just have a 64bit 398 * chunk at the front of the first page. 399 */ 400 if (io_ctl->check_crcs) { 401 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 402 io_ctl->size -= sizeof(u64) + 403 (sizeof(u32) * io_ctl->num_pages); 404 } else { 405 io_ctl->cur += sizeof(u64); 406 io_ctl->size -= sizeof(u64) * 2; 407 } 408 409 gen = io_ctl->cur; 410 if (le64_to_cpu(*gen) != generation) { 411 printk_ratelimited(KERN_ERR "btrfs: space cache generation " 412 "(%Lu) does not match inode (%Lu)\n", *gen, 413 generation); 414 io_ctl_unmap_page(io_ctl); 415 return -EIO; 416 } 417 io_ctl->cur += sizeof(u64); 418 return 0; 419 } 420 421 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index) 422 { 423 u32 *tmp; 424 u32 crc = ~(u32)0; 425 unsigned offset = 0; 426 427 if (!io_ctl->check_crcs) { 428 io_ctl_unmap_page(io_ctl); 429 return; 430 } 431 432 if (index == 0) 433 offset = sizeof(u32) * io_ctl->num_pages; 434 435 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc, 436 PAGE_CACHE_SIZE - offset); 437 btrfs_csum_final(crc, (char *)&crc); 438 io_ctl_unmap_page(io_ctl); 439 tmp = kmap(io_ctl->pages[0]); 440 tmp += index; 441 *tmp = crc; 442 kunmap(io_ctl->pages[0]); 443 } 444 445 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index) 446 { 447 u32 *tmp, val; 448 u32 crc = ~(u32)0; 449 unsigned offset = 0; 450 451 if (!io_ctl->check_crcs) { 452 io_ctl_map_page(io_ctl, 0); 453 return 0; 454 } 455 456 if (index == 0) 457 offset = sizeof(u32) * io_ctl->num_pages; 458 459 tmp = kmap(io_ctl->pages[0]); 460 tmp += index; 461 val = *tmp; 462 kunmap(io_ctl->pages[0]); 463 464 io_ctl_map_page(io_ctl, 0); 465 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc, 466 PAGE_CACHE_SIZE - offset); 467 btrfs_csum_final(crc, (char *)&crc); 468 if (val != crc) { 469 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free " 470 "space cache\n"); 471 io_ctl_unmap_page(io_ctl); 472 return -EIO; 473 } 474 475 return 0; 476 } 477 478 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes, 479 void *bitmap) 480 { 481 struct btrfs_free_space_entry *entry; 482 483 if (!io_ctl->cur) 484 return -ENOSPC; 485 486 entry = io_ctl->cur; 487 entry->offset = cpu_to_le64(offset); 488 entry->bytes = cpu_to_le64(bytes); 489 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 490 BTRFS_FREE_SPACE_EXTENT; 491 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 492 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 493 494 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 495 return 0; 496 497 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 498 499 /* No more pages to map */ 500 if (io_ctl->index >= io_ctl->num_pages) 501 return 0; 502 503 /* map the next page */ 504 io_ctl_map_page(io_ctl, 1); 505 return 0; 506 } 507 508 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap) 509 { 510 if (!io_ctl->cur) 511 return -ENOSPC; 512 513 /* 514 * If we aren't at the start of the current page, unmap this one and 515 * map the next one if there is any left. 516 */ 517 if (io_ctl->cur != io_ctl->orig) { 518 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 519 if (io_ctl->index >= io_ctl->num_pages) 520 return -ENOSPC; 521 io_ctl_map_page(io_ctl, 0); 522 } 523 524 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE); 525 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 526 if (io_ctl->index < io_ctl->num_pages) 527 io_ctl_map_page(io_ctl, 0); 528 return 0; 529 } 530 531 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl) 532 { 533 /* 534 * If we're not on the boundary we know we've modified the page and we 535 * need to crc the page. 536 */ 537 if (io_ctl->cur != io_ctl->orig) 538 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 539 else 540 io_ctl_unmap_page(io_ctl); 541 542 while (io_ctl->index < io_ctl->num_pages) { 543 io_ctl_map_page(io_ctl, 1); 544 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 545 } 546 } 547 548 static int io_ctl_read_entry(struct io_ctl *io_ctl, 549 struct btrfs_free_space *entry, u8 *type) 550 { 551 struct btrfs_free_space_entry *e; 552 int ret; 553 554 if (!io_ctl->cur) { 555 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 556 if (ret) 557 return ret; 558 } 559 560 e = io_ctl->cur; 561 entry->offset = le64_to_cpu(e->offset); 562 entry->bytes = le64_to_cpu(e->bytes); 563 *type = e->type; 564 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 565 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 566 567 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 568 return 0; 569 570 io_ctl_unmap_page(io_ctl); 571 572 return 0; 573 } 574 575 static int io_ctl_read_bitmap(struct io_ctl *io_ctl, 576 struct btrfs_free_space *entry) 577 { 578 int ret; 579 580 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 581 if (ret) 582 return ret; 583 584 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE); 585 io_ctl_unmap_page(io_ctl); 586 587 return 0; 588 } 589 590 /* 591 * Since we attach pinned extents after the fact we can have contiguous sections 592 * of free space that are split up in entries. This poses a problem with the 593 * tree logging stuff since it could have allocated across what appears to be 2 594 * entries since we would have merged the entries when adding the pinned extents 595 * back to the free space cache. So run through the space cache that we just 596 * loaded and merge contiguous entries. This will make the log replay stuff not 597 * blow up and it will make for nicer allocator behavior. 598 */ 599 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 600 { 601 struct btrfs_free_space *e, *prev = NULL; 602 struct rb_node *n; 603 604 again: 605 spin_lock(&ctl->tree_lock); 606 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 607 e = rb_entry(n, struct btrfs_free_space, offset_index); 608 if (!prev) 609 goto next; 610 if (e->bitmap || prev->bitmap) 611 goto next; 612 if (prev->offset + prev->bytes == e->offset) { 613 unlink_free_space(ctl, prev); 614 unlink_free_space(ctl, e); 615 prev->bytes += e->bytes; 616 kmem_cache_free(btrfs_free_space_cachep, e); 617 link_free_space(ctl, prev); 618 prev = NULL; 619 spin_unlock(&ctl->tree_lock); 620 goto again; 621 } 622 next: 623 prev = e; 624 } 625 spin_unlock(&ctl->tree_lock); 626 } 627 628 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 629 struct btrfs_free_space_ctl *ctl, 630 struct btrfs_path *path, u64 offset) 631 { 632 struct btrfs_free_space_header *header; 633 struct extent_buffer *leaf; 634 struct io_ctl io_ctl; 635 struct btrfs_key key; 636 struct btrfs_free_space *e, *n; 637 struct list_head bitmaps; 638 u64 num_entries; 639 u64 num_bitmaps; 640 u64 generation; 641 u8 type; 642 int ret = 0; 643 644 INIT_LIST_HEAD(&bitmaps); 645 646 /* Nothing in the space cache, goodbye */ 647 if (!i_size_read(inode)) 648 return 0; 649 650 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 651 key.offset = offset; 652 key.type = 0; 653 654 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 655 if (ret < 0) 656 return 0; 657 else if (ret > 0) { 658 btrfs_release_path(path); 659 return 0; 660 } 661 662 ret = -1; 663 664 leaf = path->nodes[0]; 665 header = btrfs_item_ptr(leaf, path->slots[0], 666 struct btrfs_free_space_header); 667 num_entries = btrfs_free_space_entries(leaf, header); 668 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 669 generation = btrfs_free_space_generation(leaf, header); 670 btrfs_release_path(path); 671 672 if (BTRFS_I(inode)->generation != generation) { 673 printk(KERN_ERR "btrfs: free space inode generation (%llu) did" 674 " not match free space cache generation (%llu)\n", 675 (unsigned long long)BTRFS_I(inode)->generation, 676 (unsigned long long)generation); 677 return 0; 678 } 679 680 if (!num_entries) 681 return 0; 682 683 ret = io_ctl_init(&io_ctl, inode, root); 684 if (ret) 685 return ret; 686 687 ret = readahead_cache(inode); 688 if (ret) 689 goto out; 690 691 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 692 if (ret) 693 goto out; 694 695 ret = io_ctl_check_crc(&io_ctl, 0); 696 if (ret) 697 goto free_cache; 698 699 ret = io_ctl_check_generation(&io_ctl, generation); 700 if (ret) 701 goto free_cache; 702 703 while (num_entries) { 704 e = kmem_cache_zalloc(btrfs_free_space_cachep, 705 GFP_NOFS); 706 if (!e) 707 goto free_cache; 708 709 ret = io_ctl_read_entry(&io_ctl, e, &type); 710 if (ret) { 711 kmem_cache_free(btrfs_free_space_cachep, e); 712 goto free_cache; 713 } 714 715 if (!e->bytes) { 716 kmem_cache_free(btrfs_free_space_cachep, e); 717 goto free_cache; 718 } 719 720 if (type == BTRFS_FREE_SPACE_EXTENT) { 721 spin_lock(&ctl->tree_lock); 722 ret = link_free_space(ctl, e); 723 spin_unlock(&ctl->tree_lock); 724 if (ret) { 725 printk(KERN_ERR "Duplicate entries in " 726 "free space cache, dumping\n"); 727 kmem_cache_free(btrfs_free_space_cachep, e); 728 goto free_cache; 729 } 730 } else { 731 BUG_ON(!num_bitmaps); 732 num_bitmaps--; 733 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 734 if (!e->bitmap) { 735 kmem_cache_free( 736 btrfs_free_space_cachep, e); 737 goto free_cache; 738 } 739 spin_lock(&ctl->tree_lock); 740 ret = link_free_space(ctl, e); 741 ctl->total_bitmaps++; 742 ctl->op->recalc_thresholds(ctl); 743 spin_unlock(&ctl->tree_lock); 744 if (ret) { 745 printk(KERN_ERR "Duplicate entries in " 746 "free space cache, dumping\n"); 747 kmem_cache_free(btrfs_free_space_cachep, e); 748 goto free_cache; 749 } 750 list_add_tail(&e->list, &bitmaps); 751 } 752 753 num_entries--; 754 } 755 756 io_ctl_unmap_page(&io_ctl); 757 758 /* 759 * We add the bitmaps at the end of the entries in order that 760 * the bitmap entries are added to the cache. 761 */ 762 list_for_each_entry_safe(e, n, &bitmaps, list) { 763 list_del_init(&e->list); 764 ret = io_ctl_read_bitmap(&io_ctl, e); 765 if (ret) 766 goto free_cache; 767 } 768 769 io_ctl_drop_pages(&io_ctl); 770 merge_space_tree(ctl); 771 ret = 1; 772 out: 773 io_ctl_free(&io_ctl); 774 return ret; 775 free_cache: 776 io_ctl_drop_pages(&io_ctl); 777 __btrfs_remove_free_space_cache(ctl); 778 goto out; 779 } 780 781 int load_free_space_cache(struct btrfs_fs_info *fs_info, 782 struct btrfs_block_group_cache *block_group) 783 { 784 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 785 struct btrfs_root *root = fs_info->tree_root; 786 struct inode *inode; 787 struct btrfs_path *path; 788 int ret = 0; 789 bool matched; 790 u64 used = btrfs_block_group_used(&block_group->item); 791 792 /* 793 * If this block group has been marked to be cleared for one reason or 794 * another then we can't trust the on disk cache, so just return. 795 */ 796 spin_lock(&block_group->lock); 797 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 798 spin_unlock(&block_group->lock); 799 return 0; 800 } 801 spin_unlock(&block_group->lock); 802 803 path = btrfs_alloc_path(); 804 if (!path) 805 return 0; 806 path->search_commit_root = 1; 807 path->skip_locking = 1; 808 809 inode = lookup_free_space_inode(root, block_group, path); 810 if (IS_ERR(inode)) { 811 btrfs_free_path(path); 812 return 0; 813 } 814 815 /* We may have converted the inode and made the cache invalid. */ 816 spin_lock(&block_group->lock); 817 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 818 spin_unlock(&block_group->lock); 819 btrfs_free_path(path); 820 goto out; 821 } 822 spin_unlock(&block_group->lock); 823 824 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 825 path, block_group->key.objectid); 826 btrfs_free_path(path); 827 if (ret <= 0) 828 goto out; 829 830 spin_lock(&ctl->tree_lock); 831 matched = (ctl->free_space == (block_group->key.offset - used - 832 block_group->bytes_super)); 833 spin_unlock(&ctl->tree_lock); 834 835 if (!matched) { 836 __btrfs_remove_free_space_cache(ctl); 837 printk(KERN_ERR "block group %llu has an wrong amount of free " 838 "space\n", block_group->key.objectid); 839 ret = -1; 840 } 841 out: 842 if (ret < 0) { 843 /* This cache is bogus, make sure it gets cleared */ 844 spin_lock(&block_group->lock); 845 block_group->disk_cache_state = BTRFS_DC_CLEAR; 846 spin_unlock(&block_group->lock); 847 ret = 0; 848 849 printk(KERN_ERR "btrfs: failed to load free space cache " 850 "for block group %llu\n", block_group->key.objectid); 851 } 852 853 iput(inode); 854 return ret; 855 } 856 857 /** 858 * __btrfs_write_out_cache - write out cached info to an inode 859 * @root - the root the inode belongs to 860 * @ctl - the free space cache we are going to write out 861 * @block_group - the block_group for this cache if it belongs to a block_group 862 * @trans - the trans handle 863 * @path - the path to use 864 * @offset - the offset for the key we'll insert 865 * 866 * This function writes out a free space cache struct to disk for quick recovery 867 * on mount. This will return 0 if it was successfull in writing the cache out, 868 * and -1 if it was not. 869 */ 870 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 871 struct btrfs_free_space_ctl *ctl, 872 struct btrfs_block_group_cache *block_group, 873 struct btrfs_trans_handle *trans, 874 struct btrfs_path *path, u64 offset) 875 { 876 struct btrfs_free_space_header *header; 877 struct extent_buffer *leaf; 878 struct rb_node *node; 879 struct list_head *pos, *n; 880 struct extent_state *cached_state = NULL; 881 struct btrfs_free_cluster *cluster = NULL; 882 struct extent_io_tree *unpin = NULL; 883 struct io_ctl io_ctl; 884 struct list_head bitmap_list; 885 struct btrfs_key key; 886 u64 start, extent_start, extent_end, len; 887 int entries = 0; 888 int bitmaps = 0; 889 int ret; 890 int err = -1; 891 892 INIT_LIST_HEAD(&bitmap_list); 893 894 if (!i_size_read(inode)) 895 return -1; 896 897 ret = io_ctl_init(&io_ctl, inode, root); 898 if (ret) 899 return -1; 900 901 /* Get the cluster for this block_group if it exists */ 902 if (block_group && !list_empty(&block_group->cluster_list)) 903 cluster = list_entry(block_group->cluster_list.next, 904 struct btrfs_free_cluster, 905 block_group_list); 906 907 /* Lock all pages first so we can lock the extent safely. */ 908 io_ctl_prepare_pages(&io_ctl, inode, 0); 909 910 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 911 0, &cached_state); 912 913 node = rb_first(&ctl->free_space_offset); 914 if (!node && cluster) { 915 node = rb_first(&cluster->root); 916 cluster = NULL; 917 } 918 919 /* Make sure we can fit our crcs into the first page */ 920 if (io_ctl.check_crcs && 921 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) { 922 WARN_ON(1); 923 goto out_nospc; 924 } 925 926 io_ctl_set_generation(&io_ctl, trans->transid); 927 928 /* Write out the extent entries */ 929 while (node) { 930 struct btrfs_free_space *e; 931 932 e = rb_entry(node, struct btrfs_free_space, offset_index); 933 entries++; 934 935 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes, 936 e->bitmap); 937 if (ret) 938 goto out_nospc; 939 940 if (e->bitmap) { 941 list_add_tail(&e->list, &bitmap_list); 942 bitmaps++; 943 } 944 node = rb_next(node); 945 if (!node && cluster) { 946 node = rb_first(&cluster->root); 947 cluster = NULL; 948 } 949 } 950 951 /* 952 * We want to add any pinned extents to our free space cache 953 * so we don't leak the space 954 */ 955 956 /* 957 * We shouldn't have switched the pinned extents yet so this is the 958 * right one 959 */ 960 unpin = root->fs_info->pinned_extents; 961 962 if (block_group) 963 start = block_group->key.objectid; 964 965 while (block_group && (start < block_group->key.objectid + 966 block_group->key.offset)) { 967 ret = find_first_extent_bit(unpin, start, 968 &extent_start, &extent_end, 969 EXTENT_DIRTY); 970 if (ret) { 971 ret = 0; 972 break; 973 } 974 975 /* This pinned extent is out of our range */ 976 if (extent_start >= block_group->key.objectid + 977 block_group->key.offset) 978 break; 979 980 extent_start = max(extent_start, start); 981 extent_end = min(block_group->key.objectid + 982 block_group->key.offset, extent_end + 1); 983 len = extent_end - extent_start; 984 985 entries++; 986 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL); 987 if (ret) 988 goto out_nospc; 989 990 start = extent_end; 991 } 992 993 /* Write out the bitmaps */ 994 list_for_each_safe(pos, n, &bitmap_list) { 995 struct btrfs_free_space *entry = 996 list_entry(pos, struct btrfs_free_space, list); 997 998 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap); 999 if (ret) 1000 goto out_nospc; 1001 list_del_init(&entry->list); 1002 } 1003 1004 /* Zero out the rest of the pages just to make sure */ 1005 io_ctl_zero_remaining_pages(&io_ctl); 1006 1007 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages, 1008 0, i_size_read(inode), &cached_state); 1009 io_ctl_drop_pages(&io_ctl); 1010 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1011 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1012 1013 if (ret) 1014 goto out; 1015 1016 1017 btrfs_wait_ordered_range(inode, 0, (u64)-1); 1018 1019 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1020 key.offset = offset; 1021 key.type = 0; 1022 1023 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1024 if (ret < 0) { 1025 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1026 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 1027 GFP_NOFS); 1028 goto out; 1029 } 1030 leaf = path->nodes[0]; 1031 if (ret > 0) { 1032 struct btrfs_key found_key; 1033 BUG_ON(!path->slots[0]); 1034 path->slots[0]--; 1035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1036 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1037 found_key.offset != offset) { 1038 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1039 inode->i_size - 1, 1040 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 1041 NULL, GFP_NOFS); 1042 btrfs_release_path(path); 1043 goto out; 1044 } 1045 } 1046 1047 BTRFS_I(inode)->generation = trans->transid; 1048 header = btrfs_item_ptr(leaf, path->slots[0], 1049 struct btrfs_free_space_header); 1050 btrfs_set_free_space_entries(leaf, header, entries); 1051 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1052 btrfs_set_free_space_generation(leaf, header, trans->transid); 1053 btrfs_mark_buffer_dirty(leaf); 1054 btrfs_release_path(path); 1055 1056 err = 0; 1057 out: 1058 io_ctl_free(&io_ctl); 1059 if (err) { 1060 invalidate_inode_pages2(inode->i_mapping); 1061 BTRFS_I(inode)->generation = 0; 1062 } 1063 btrfs_update_inode(trans, root, inode); 1064 return err; 1065 1066 out_nospc: 1067 list_for_each_safe(pos, n, &bitmap_list) { 1068 struct btrfs_free_space *entry = 1069 list_entry(pos, struct btrfs_free_space, list); 1070 list_del_init(&entry->list); 1071 } 1072 io_ctl_drop_pages(&io_ctl); 1073 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1074 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1075 goto out; 1076 } 1077 1078 int btrfs_write_out_cache(struct btrfs_root *root, 1079 struct btrfs_trans_handle *trans, 1080 struct btrfs_block_group_cache *block_group, 1081 struct btrfs_path *path) 1082 { 1083 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1084 struct inode *inode; 1085 int ret = 0; 1086 1087 root = root->fs_info->tree_root; 1088 1089 spin_lock(&block_group->lock); 1090 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1091 spin_unlock(&block_group->lock); 1092 return 0; 1093 } 1094 spin_unlock(&block_group->lock); 1095 1096 inode = lookup_free_space_inode(root, block_group, path); 1097 if (IS_ERR(inode)) 1098 return 0; 1099 1100 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans, 1101 path, block_group->key.objectid); 1102 if (ret) { 1103 spin_lock(&block_group->lock); 1104 block_group->disk_cache_state = BTRFS_DC_ERROR; 1105 spin_unlock(&block_group->lock); 1106 ret = 0; 1107 #ifdef DEBUG 1108 printk(KERN_ERR "btrfs: failed to write free space cache " 1109 "for block group %llu\n", block_group->key.objectid); 1110 #endif 1111 } 1112 1113 iput(inode); 1114 return ret; 1115 } 1116 1117 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1118 u64 offset) 1119 { 1120 BUG_ON(offset < bitmap_start); 1121 offset -= bitmap_start; 1122 return (unsigned long)(div_u64(offset, unit)); 1123 } 1124 1125 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1126 { 1127 return (unsigned long)(div_u64(bytes, unit)); 1128 } 1129 1130 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1131 u64 offset) 1132 { 1133 u64 bitmap_start; 1134 u64 bytes_per_bitmap; 1135 1136 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1137 bitmap_start = offset - ctl->start; 1138 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1139 bitmap_start *= bytes_per_bitmap; 1140 bitmap_start += ctl->start; 1141 1142 return bitmap_start; 1143 } 1144 1145 static int tree_insert_offset(struct rb_root *root, u64 offset, 1146 struct rb_node *node, int bitmap) 1147 { 1148 struct rb_node **p = &root->rb_node; 1149 struct rb_node *parent = NULL; 1150 struct btrfs_free_space *info; 1151 1152 while (*p) { 1153 parent = *p; 1154 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1155 1156 if (offset < info->offset) { 1157 p = &(*p)->rb_left; 1158 } else if (offset > info->offset) { 1159 p = &(*p)->rb_right; 1160 } else { 1161 /* 1162 * we could have a bitmap entry and an extent entry 1163 * share the same offset. If this is the case, we want 1164 * the extent entry to always be found first if we do a 1165 * linear search through the tree, since we want to have 1166 * the quickest allocation time, and allocating from an 1167 * extent is faster than allocating from a bitmap. So 1168 * if we're inserting a bitmap and we find an entry at 1169 * this offset, we want to go right, or after this entry 1170 * logically. If we are inserting an extent and we've 1171 * found a bitmap, we want to go left, or before 1172 * logically. 1173 */ 1174 if (bitmap) { 1175 if (info->bitmap) { 1176 WARN_ON_ONCE(1); 1177 return -EEXIST; 1178 } 1179 p = &(*p)->rb_right; 1180 } else { 1181 if (!info->bitmap) { 1182 WARN_ON_ONCE(1); 1183 return -EEXIST; 1184 } 1185 p = &(*p)->rb_left; 1186 } 1187 } 1188 } 1189 1190 rb_link_node(node, parent, p); 1191 rb_insert_color(node, root); 1192 1193 return 0; 1194 } 1195 1196 /* 1197 * searches the tree for the given offset. 1198 * 1199 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1200 * want a section that has at least bytes size and comes at or after the given 1201 * offset. 1202 */ 1203 static struct btrfs_free_space * 1204 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1205 u64 offset, int bitmap_only, int fuzzy) 1206 { 1207 struct rb_node *n = ctl->free_space_offset.rb_node; 1208 struct btrfs_free_space *entry, *prev = NULL; 1209 1210 /* find entry that is closest to the 'offset' */ 1211 while (1) { 1212 if (!n) { 1213 entry = NULL; 1214 break; 1215 } 1216 1217 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1218 prev = entry; 1219 1220 if (offset < entry->offset) 1221 n = n->rb_left; 1222 else if (offset > entry->offset) 1223 n = n->rb_right; 1224 else 1225 break; 1226 } 1227 1228 if (bitmap_only) { 1229 if (!entry) 1230 return NULL; 1231 if (entry->bitmap) 1232 return entry; 1233 1234 /* 1235 * bitmap entry and extent entry may share same offset, 1236 * in that case, bitmap entry comes after extent entry. 1237 */ 1238 n = rb_next(n); 1239 if (!n) 1240 return NULL; 1241 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1242 if (entry->offset != offset) 1243 return NULL; 1244 1245 WARN_ON(!entry->bitmap); 1246 return entry; 1247 } else if (entry) { 1248 if (entry->bitmap) { 1249 /* 1250 * if previous extent entry covers the offset, 1251 * we should return it instead of the bitmap entry 1252 */ 1253 n = &entry->offset_index; 1254 while (1) { 1255 n = rb_prev(n); 1256 if (!n) 1257 break; 1258 prev = rb_entry(n, struct btrfs_free_space, 1259 offset_index); 1260 if (!prev->bitmap) { 1261 if (prev->offset + prev->bytes > offset) 1262 entry = prev; 1263 break; 1264 } 1265 } 1266 } 1267 return entry; 1268 } 1269 1270 if (!prev) 1271 return NULL; 1272 1273 /* find last entry before the 'offset' */ 1274 entry = prev; 1275 if (entry->offset > offset) { 1276 n = rb_prev(&entry->offset_index); 1277 if (n) { 1278 entry = rb_entry(n, struct btrfs_free_space, 1279 offset_index); 1280 BUG_ON(entry->offset > offset); 1281 } else { 1282 if (fuzzy) 1283 return entry; 1284 else 1285 return NULL; 1286 } 1287 } 1288 1289 if (entry->bitmap) { 1290 n = &entry->offset_index; 1291 while (1) { 1292 n = rb_prev(n); 1293 if (!n) 1294 break; 1295 prev = rb_entry(n, struct btrfs_free_space, 1296 offset_index); 1297 if (!prev->bitmap) { 1298 if (prev->offset + prev->bytes > offset) 1299 return prev; 1300 break; 1301 } 1302 } 1303 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1304 return entry; 1305 } else if (entry->offset + entry->bytes > offset) 1306 return entry; 1307 1308 if (!fuzzy) 1309 return NULL; 1310 1311 while (1) { 1312 if (entry->bitmap) { 1313 if (entry->offset + BITS_PER_BITMAP * 1314 ctl->unit > offset) 1315 break; 1316 } else { 1317 if (entry->offset + entry->bytes > offset) 1318 break; 1319 } 1320 1321 n = rb_next(&entry->offset_index); 1322 if (!n) 1323 return NULL; 1324 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1325 } 1326 return entry; 1327 } 1328 1329 static inline void 1330 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1331 struct btrfs_free_space *info) 1332 { 1333 rb_erase(&info->offset_index, &ctl->free_space_offset); 1334 ctl->free_extents--; 1335 } 1336 1337 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1338 struct btrfs_free_space *info) 1339 { 1340 __unlink_free_space(ctl, info); 1341 ctl->free_space -= info->bytes; 1342 } 1343 1344 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1345 struct btrfs_free_space *info) 1346 { 1347 int ret = 0; 1348 1349 BUG_ON(!info->bitmap && !info->bytes); 1350 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1351 &info->offset_index, (info->bitmap != NULL)); 1352 if (ret) 1353 return ret; 1354 1355 ctl->free_space += info->bytes; 1356 ctl->free_extents++; 1357 return ret; 1358 } 1359 1360 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1361 { 1362 struct btrfs_block_group_cache *block_group = ctl->private; 1363 u64 max_bytes; 1364 u64 bitmap_bytes; 1365 u64 extent_bytes; 1366 u64 size = block_group->key.offset; 1367 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize; 1368 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1369 1370 BUG_ON(ctl->total_bitmaps > max_bitmaps); 1371 1372 /* 1373 * The goal is to keep the total amount of memory used per 1gb of space 1374 * at or below 32k, so we need to adjust how much memory we allow to be 1375 * used by extent based free space tracking 1376 */ 1377 if (size < 1024 * 1024 * 1024) 1378 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1379 else 1380 max_bytes = MAX_CACHE_BYTES_PER_GIG * 1381 div64_u64(size, 1024 * 1024 * 1024); 1382 1383 /* 1384 * we want to account for 1 more bitmap than what we have so we can make 1385 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1386 * we add more bitmaps. 1387 */ 1388 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE; 1389 1390 if (bitmap_bytes >= max_bytes) { 1391 ctl->extents_thresh = 0; 1392 return; 1393 } 1394 1395 /* 1396 * we want the extent entry threshold to always be at most 1/2 the maxw 1397 * bytes we can have, or whatever is less than that. 1398 */ 1399 extent_bytes = max_bytes - bitmap_bytes; 1400 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2)); 1401 1402 ctl->extents_thresh = 1403 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space))); 1404 } 1405 1406 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1407 struct btrfs_free_space *info, 1408 u64 offset, u64 bytes) 1409 { 1410 unsigned long start, count; 1411 1412 start = offset_to_bit(info->offset, ctl->unit, offset); 1413 count = bytes_to_bits(bytes, ctl->unit); 1414 BUG_ON(start + count > BITS_PER_BITMAP); 1415 1416 bitmap_clear(info->bitmap, start, count); 1417 1418 info->bytes -= bytes; 1419 } 1420 1421 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1422 struct btrfs_free_space *info, u64 offset, 1423 u64 bytes) 1424 { 1425 __bitmap_clear_bits(ctl, info, offset, bytes); 1426 ctl->free_space -= bytes; 1427 } 1428 1429 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1430 struct btrfs_free_space *info, u64 offset, 1431 u64 bytes) 1432 { 1433 unsigned long start, count; 1434 1435 start = offset_to_bit(info->offset, ctl->unit, offset); 1436 count = bytes_to_bits(bytes, ctl->unit); 1437 BUG_ON(start + count > BITS_PER_BITMAP); 1438 1439 bitmap_set(info->bitmap, start, count); 1440 1441 info->bytes += bytes; 1442 ctl->free_space += bytes; 1443 } 1444 1445 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1446 struct btrfs_free_space *bitmap_info, u64 *offset, 1447 u64 *bytes) 1448 { 1449 unsigned long found_bits = 0; 1450 unsigned long bits, i; 1451 unsigned long next_zero; 1452 1453 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1454 max_t(u64, *offset, bitmap_info->offset)); 1455 bits = bytes_to_bits(*bytes, ctl->unit); 1456 1457 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i); 1458 i < BITS_PER_BITMAP; 1459 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) { 1460 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1461 BITS_PER_BITMAP, i); 1462 if ((next_zero - i) >= bits) { 1463 found_bits = next_zero - i; 1464 break; 1465 } 1466 i = next_zero; 1467 } 1468 1469 if (found_bits) { 1470 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1471 *bytes = (u64)(found_bits) * ctl->unit; 1472 return 0; 1473 } 1474 1475 return -1; 1476 } 1477 1478 static struct btrfs_free_space * 1479 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes) 1480 { 1481 struct btrfs_free_space *entry; 1482 struct rb_node *node; 1483 int ret; 1484 1485 if (!ctl->free_space_offset.rb_node) 1486 return NULL; 1487 1488 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1489 if (!entry) 1490 return NULL; 1491 1492 for (node = &entry->offset_index; node; node = rb_next(node)) { 1493 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1494 if (entry->bytes < *bytes) 1495 continue; 1496 1497 if (entry->bitmap) { 1498 ret = search_bitmap(ctl, entry, offset, bytes); 1499 if (!ret) 1500 return entry; 1501 continue; 1502 } 1503 1504 *offset = entry->offset; 1505 *bytes = entry->bytes; 1506 return entry; 1507 } 1508 1509 return NULL; 1510 } 1511 1512 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1513 struct btrfs_free_space *info, u64 offset) 1514 { 1515 info->offset = offset_to_bitmap(ctl, offset); 1516 info->bytes = 0; 1517 INIT_LIST_HEAD(&info->list); 1518 link_free_space(ctl, info); 1519 ctl->total_bitmaps++; 1520 1521 ctl->op->recalc_thresholds(ctl); 1522 } 1523 1524 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1525 struct btrfs_free_space *bitmap_info) 1526 { 1527 unlink_free_space(ctl, bitmap_info); 1528 kfree(bitmap_info->bitmap); 1529 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1530 ctl->total_bitmaps--; 1531 ctl->op->recalc_thresholds(ctl); 1532 } 1533 1534 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1535 struct btrfs_free_space *bitmap_info, 1536 u64 *offset, u64 *bytes) 1537 { 1538 u64 end; 1539 u64 search_start, search_bytes; 1540 int ret; 1541 1542 again: 1543 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1544 1545 /* 1546 * We need to search for bits in this bitmap. We could only cover some 1547 * of the extent in this bitmap thanks to how we add space, so we need 1548 * to search for as much as it as we can and clear that amount, and then 1549 * go searching for the next bit. 1550 */ 1551 search_start = *offset; 1552 search_bytes = ctl->unit; 1553 search_bytes = min(search_bytes, end - search_start + 1); 1554 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); 1555 BUG_ON(ret < 0 || search_start != *offset); 1556 1557 /* We may have found more bits than what we need */ 1558 search_bytes = min(search_bytes, *bytes); 1559 1560 /* Cannot clear past the end of the bitmap */ 1561 search_bytes = min(search_bytes, end - search_start + 1); 1562 1563 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1564 *offset += search_bytes; 1565 *bytes -= search_bytes; 1566 1567 if (*bytes) { 1568 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1569 if (!bitmap_info->bytes) 1570 free_bitmap(ctl, bitmap_info); 1571 1572 /* 1573 * no entry after this bitmap, but we still have bytes to 1574 * remove, so something has gone wrong. 1575 */ 1576 if (!next) 1577 return -EINVAL; 1578 1579 bitmap_info = rb_entry(next, struct btrfs_free_space, 1580 offset_index); 1581 1582 /* 1583 * if the next entry isn't a bitmap we need to return to let the 1584 * extent stuff do its work. 1585 */ 1586 if (!bitmap_info->bitmap) 1587 return -EAGAIN; 1588 1589 /* 1590 * Ok the next item is a bitmap, but it may not actually hold 1591 * the information for the rest of this free space stuff, so 1592 * look for it, and if we don't find it return so we can try 1593 * everything over again. 1594 */ 1595 search_start = *offset; 1596 search_bytes = ctl->unit; 1597 ret = search_bitmap(ctl, bitmap_info, &search_start, 1598 &search_bytes); 1599 if (ret < 0 || search_start != *offset) 1600 return -EAGAIN; 1601 1602 goto again; 1603 } else if (!bitmap_info->bytes) 1604 free_bitmap(ctl, bitmap_info); 1605 1606 return 0; 1607 } 1608 1609 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1610 struct btrfs_free_space *info, u64 offset, 1611 u64 bytes) 1612 { 1613 u64 bytes_to_set = 0; 1614 u64 end; 1615 1616 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1617 1618 bytes_to_set = min(end - offset, bytes); 1619 1620 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1621 1622 return bytes_to_set; 1623 1624 } 1625 1626 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1627 struct btrfs_free_space *info) 1628 { 1629 struct btrfs_block_group_cache *block_group = ctl->private; 1630 1631 /* 1632 * If we are below the extents threshold then we can add this as an 1633 * extent, and don't have to deal with the bitmap 1634 */ 1635 if (ctl->free_extents < ctl->extents_thresh) { 1636 /* 1637 * If this block group has some small extents we don't want to 1638 * use up all of our free slots in the cache with them, we want 1639 * to reserve them to larger extents, however if we have plent 1640 * of cache left then go ahead an dadd them, no sense in adding 1641 * the overhead of a bitmap if we don't have to. 1642 */ 1643 if (info->bytes <= block_group->sectorsize * 4) { 1644 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1645 return false; 1646 } else { 1647 return false; 1648 } 1649 } 1650 1651 /* 1652 * some block groups are so tiny they can't be enveloped by a bitmap, so 1653 * don't even bother to create a bitmap for this 1654 */ 1655 if (BITS_PER_BITMAP * block_group->sectorsize > 1656 block_group->key.offset) 1657 return false; 1658 1659 return true; 1660 } 1661 1662 static struct btrfs_free_space_op free_space_op = { 1663 .recalc_thresholds = recalculate_thresholds, 1664 .use_bitmap = use_bitmap, 1665 }; 1666 1667 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 1668 struct btrfs_free_space *info) 1669 { 1670 struct btrfs_free_space *bitmap_info; 1671 struct btrfs_block_group_cache *block_group = NULL; 1672 int added = 0; 1673 u64 bytes, offset, bytes_added; 1674 int ret; 1675 1676 bytes = info->bytes; 1677 offset = info->offset; 1678 1679 if (!ctl->op->use_bitmap(ctl, info)) 1680 return 0; 1681 1682 if (ctl->op == &free_space_op) 1683 block_group = ctl->private; 1684 again: 1685 /* 1686 * Since we link bitmaps right into the cluster we need to see if we 1687 * have a cluster here, and if so and it has our bitmap we need to add 1688 * the free space to that bitmap. 1689 */ 1690 if (block_group && !list_empty(&block_group->cluster_list)) { 1691 struct btrfs_free_cluster *cluster; 1692 struct rb_node *node; 1693 struct btrfs_free_space *entry; 1694 1695 cluster = list_entry(block_group->cluster_list.next, 1696 struct btrfs_free_cluster, 1697 block_group_list); 1698 spin_lock(&cluster->lock); 1699 node = rb_first(&cluster->root); 1700 if (!node) { 1701 spin_unlock(&cluster->lock); 1702 goto no_cluster_bitmap; 1703 } 1704 1705 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1706 if (!entry->bitmap) { 1707 spin_unlock(&cluster->lock); 1708 goto no_cluster_bitmap; 1709 } 1710 1711 if (entry->offset == offset_to_bitmap(ctl, offset)) { 1712 bytes_added = add_bytes_to_bitmap(ctl, entry, 1713 offset, bytes); 1714 bytes -= bytes_added; 1715 offset += bytes_added; 1716 } 1717 spin_unlock(&cluster->lock); 1718 if (!bytes) { 1719 ret = 1; 1720 goto out; 1721 } 1722 } 1723 1724 no_cluster_bitmap: 1725 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1726 1, 0); 1727 if (!bitmap_info) { 1728 BUG_ON(added); 1729 goto new_bitmap; 1730 } 1731 1732 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 1733 bytes -= bytes_added; 1734 offset += bytes_added; 1735 added = 0; 1736 1737 if (!bytes) { 1738 ret = 1; 1739 goto out; 1740 } else 1741 goto again; 1742 1743 new_bitmap: 1744 if (info && info->bitmap) { 1745 add_new_bitmap(ctl, info, offset); 1746 added = 1; 1747 info = NULL; 1748 goto again; 1749 } else { 1750 spin_unlock(&ctl->tree_lock); 1751 1752 /* no pre-allocated info, allocate a new one */ 1753 if (!info) { 1754 info = kmem_cache_zalloc(btrfs_free_space_cachep, 1755 GFP_NOFS); 1756 if (!info) { 1757 spin_lock(&ctl->tree_lock); 1758 ret = -ENOMEM; 1759 goto out; 1760 } 1761 } 1762 1763 /* allocate the bitmap */ 1764 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 1765 spin_lock(&ctl->tree_lock); 1766 if (!info->bitmap) { 1767 ret = -ENOMEM; 1768 goto out; 1769 } 1770 goto again; 1771 } 1772 1773 out: 1774 if (info) { 1775 if (info->bitmap) 1776 kfree(info->bitmap); 1777 kmem_cache_free(btrfs_free_space_cachep, info); 1778 } 1779 1780 return ret; 1781 } 1782 1783 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 1784 struct btrfs_free_space *info, bool update_stat) 1785 { 1786 struct btrfs_free_space *left_info; 1787 struct btrfs_free_space *right_info; 1788 bool merged = false; 1789 u64 offset = info->offset; 1790 u64 bytes = info->bytes; 1791 1792 /* 1793 * first we want to see if there is free space adjacent to the range we 1794 * are adding, if there is remove that struct and add a new one to 1795 * cover the entire range 1796 */ 1797 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 1798 if (right_info && rb_prev(&right_info->offset_index)) 1799 left_info = rb_entry(rb_prev(&right_info->offset_index), 1800 struct btrfs_free_space, offset_index); 1801 else 1802 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 1803 1804 if (right_info && !right_info->bitmap) { 1805 if (update_stat) 1806 unlink_free_space(ctl, right_info); 1807 else 1808 __unlink_free_space(ctl, right_info); 1809 info->bytes += right_info->bytes; 1810 kmem_cache_free(btrfs_free_space_cachep, right_info); 1811 merged = true; 1812 } 1813 1814 if (left_info && !left_info->bitmap && 1815 left_info->offset + left_info->bytes == offset) { 1816 if (update_stat) 1817 unlink_free_space(ctl, left_info); 1818 else 1819 __unlink_free_space(ctl, left_info); 1820 info->offset = left_info->offset; 1821 info->bytes += left_info->bytes; 1822 kmem_cache_free(btrfs_free_space_cachep, left_info); 1823 merged = true; 1824 } 1825 1826 return merged; 1827 } 1828 1829 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, 1830 u64 offset, u64 bytes) 1831 { 1832 struct btrfs_free_space *info; 1833 int ret = 0; 1834 1835 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 1836 if (!info) 1837 return -ENOMEM; 1838 1839 info->offset = offset; 1840 info->bytes = bytes; 1841 1842 spin_lock(&ctl->tree_lock); 1843 1844 if (try_merge_free_space(ctl, info, true)) 1845 goto link; 1846 1847 /* 1848 * There was no extent directly to the left or right of this new 1849 * extent then we know we're going to have to allocate a new extent, so 1850 * before we do that see if we need to drop this into a bitmap 1851 */ 1852 ret = insert_into_bitmap(ctl, info); 1853 if (ret < 0) { 1854 goto out; 1855 } else if (ret) { 1856 ret = 0; 1857 goto out; 1858 } 1859 link: 1860 ret = link_free_space(ctl, info); 1861 if (ret) 1862 kmem_cache_free(btrfs_free_space_cachep, info); 1863 out: 1864 spin_unlock(&ctl->tree_lock); 1865 1866 if (ret) { 1867 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); 1868 BUG_ON(ret == -EEXIST); 1869 } 1870 1871 return ret; 1872 } 1873 1874 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 1875 u64 offset, u64 bytes) 1876 { 1877 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1878 struct btrfs_free_space *info; 1879 int ret = 0; 1880 1881 spin_lock(&ctl->tree_lock); 1882 1883 again: 1884 if (!bytes) 1885 goto out_lock; 1886 1887 info = tree_search_offset(ctl, offset, 0, 0); 1888 if (!info) { 1889 /* 1890 * oops didn't find an extent that matched the space we wanted 1891 * to remove, look for a bitmap instead 1892 */ 1893 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1894 1, 0); 1895 if (!info) { 1896 /* the tree logging code might be calling us before we 1897 * have fully loaded the free space rbtree for this 1898 * block group. So it is possible the entry won't 1899 * be in the rbtree yet at all. The caching code 1900 * will make sure not to put it in the rbtree if 1901 * the logging code has pinned it. 1902 */ 1903 goto out_lock; 1904 } 1905 } 1906 1907 if (!info->bitmap) { 1908 unlink_free_space(ctl, info); 1909 if (offset == info->offset) { 1910 u64 to_free = min(bytes, info->bytes); 1911 1912 info->bytes -= to_free; 1913 info->offset += to_free; 1914 if (info->bytes) { 1915 ret = link_free_space(ctl, info); 1916 WARN_ON(ret); 1917 } else { 1918 kmem_cache_free(btrfs_free_space_cachep, info); 1919 } 1920 1921 offset += to_free; 1922 bytes -= to_free; 1923 goto again; 1924 } else { 1925 u64 old_end = info->bytes + info->offset; 1926 1927 info->bytes = offset - info->offset; 1928 ret = link_free_space(ctl, info); 1929 WARN_ON(ret); 1930 if (ret) 1931 goto out_lock; 1932 1933 /* Not enough bytes in this entry to satisfy us */ 1934 if (old_end < offset + bytes) { 1935 bytes -= old_end - offset; 1936 offset = old_end; 1937 goto again; 1938 } else if (old_end == offset + bytes) { 1939 /* all done */ 1940 goto out_lock; 1941 } 1942 spin_unlock(&ctl->tree_lock); 1943 1944 ret = btrfs_add_free_space(block_group, offset + bytes, 1945 old_end - (offset + bytes)); 1946 WARN_ON(ret); 1947 goto out; 1948 } 1949 } 1950 1951 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 1952 if (ret == -EAGAIN) 1953 goto again; 1954 BUG_ON(ret); /* logic error */ 1955 out_lock: 1956 spin_unlock(&ctl->tree_lock); 1957 out: 1958 return ret; 1959 } 1960 1961 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 1962 u64 bytes) 1963 { 1964 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1965 struct btrfs_free_space *info; 1966 struct rb_node *n; 1967 int count = 0; 1968 1969 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 1970 info = rb_entry(n, struct btrfs_free_space, offset_index); 1971 if (info->bytes >= bytes && !block_group->ro) 1972 count++; 1973 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n", 1974 (unsigned long long)info->offset, 1975 (unsigned long long)info->bytes, 1976 (info->bitmap) ? "yes" : "no"); 1977 } 1978 printk(KERN_INFO "block group has cluster?: %s\n", 1979 list_empty(&block_group->cluster_list) ? "no" : "yes"); 1980 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" 1981 "\n", count); 1982 } 1983 1984 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 1985 { 1986 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1987 1988 spin_lock_init(&ctl->tree_lock); 1989 ctl->unit = block_group->sectorsize; 1990 ctl->start = block_group->key.objectid; 1991 ctl->private = block_group; 1992 ctl->op = &free_space_op; 1993 1994 /* 1995 * we only want to have 32k of ram per block group for keeping 1996 * track of free space, and if we pass 1/2 of that we want to 1997 * start converting things over to using bitmaps 1998 */ 1999 ctl->extents_thresh = ((1024 * 32) / 2) / 2000 sizeof(struct btrfs_free_space); 2001 } 2002 2003 /* 2004 * for a given cluster, put all of its extents back into the free 2005 * space cache. If the block group passed doesn't match the block group 2006 * pointed to by the cluster, someone else raced in and freed the 2007 * cluster already. In that case, we just return without changing anything 2008 */ 2009 static int 2010 __btrfs_return_cluster_to_free_space( 2011 struct btrfs_block_group_cache *block_group, 2012 struct btrfs_free_cluster *cluster) 2013 { 2014 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2015 struct btrfs_free_space *entry; 2016 struct rb_node *node; 2017 2018 spin_lock(&cluster->lock); 2019 if (cluster->block_group != block_group) 2020 goto out; 2021 2022 cluster->block_group = NULL; 2023 cluster->window_start = 0; 2024 list_del_init(&cluster->block_group_list); 2025 2026 node = rb_first(&cluster->root); 2027 while (node) { 2028 bool bitmap; 2029 2030 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2031 node = rb_next(&entry->offset_index); 2032 rb_erase(&entry->offset_index, &cluster->root); 2033 2034 bitmap = (entry->bitmap != NULL); 2035 if (!bitmap) 2036 try_merge_free_space(ctl, entry, false); 2037 tree_insert_offset(&ctl->free_space_offset, 2038 entry->offset, &entry->offset_index, bitmap); 2039 } 2040 cluster->root = RB_ROOT; 2041 2042 out: 2043 spin_unlock(&cluster->lock); 2044 btrfs_put_block_group(block_group); 2045 return 0; 2046 } 2047 2048 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl) 2049 { 2050 struct btrfs_free_space *info; 2051 struct rb_node *node; 2052 2053 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2054 info = rb_entry(node, struct btrfs_free_space, offset_index); 2055 if (!info->bitmap) { 2056 unlink_free_space(ctl, info); 2057 kmem_cache_free(btrfs_free_space_cachep, info); 2058 } else { 2059 free_bitmap(ctl, info); 2060 } 2061 if (need_resched()) { 2062 spin_unlock(&ctl->tree_lock); 2063 cond_resched(); 2064 spin_lock(&ctl->tree_lock); 2065 } 2066 } 2067 } 2068 2069 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2070 { 2071 spin_lock(&ctl->tree_lock); 2072 __btrfs_remove_free_space_cache_locked(ctl); 2073 spin_unlock(&ctl->tree_lock); 2074 } 2075 2076 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2077 { 2078 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2079 struct btrfs_free_cluster *cluster; 2080 struct list_head *head; 2081 2082 spin_lock(&ctl->tree_lock); 2083 while ((head = block_group->cluster_list.next) != 2084 &block_group->cluster_list) { 2085 cluster = list_entry(head, struct btrfs_free_cluster, 2086 block_group_list); 2087 2088 WARN_ON(cluster->block_group != block_group); 2089 __btrfs_return_cluster_to_free_space(block_group, cluster); 2090 if (need_resched()) { 2091 spin_unlock(&ctl->tree_lock); 2092 cond_resched(); 2093 spin_lock(&ctl->tree_lock); 2094 } 2095 } 2096 __btrfs_remove_free_space_cache_locked(ctl); 2097 spin_unlock(&ctl->tree_lock); 2098 2099 } 2100 2101 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2102 u64 offset, u64 bytes, u64 empty_size) 2103 { 2104 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2105 struct btrfs_free_space *entry = NULL; 2106 u64 bytes_search = bytes + empty_size; 2107 u64 ret = 0; 2108 2109 spin_lock(&ctl->tree_lock); 2110 entry = find_free_space(ctl, &offset, &bytes_search); 2111 if (!entry) 2112 goto out; 2113 2114 ret = offset; 2115 if (entry->bitmap) { 2116 bitmap_clear_bits(ctl, entry, offset, bytes); 2117 if (!entry->bytes) 2118 free_bitmap(ctl, entry); 2119 } else { 2120 unlink_free_space(ctl, entry); 2121 entry->offset += bytes; 2122 entry->bytes -= bytes; 2123 if (!entry->bytes) 2124 kmem_cache_free(btrfs_free_space_cachep, entry); 2125 else 2126 link_free_space(ctl, entry); 2127 } 2128 2129 out: 2130 spin_unlock(&ctl->tree_lock); 2131 2132 return ret; 2133 } 2134 2135 /* 2136 * given a cluster, put all of its extents back into the free space 2137 * cache. If a block group is passed, this function will only free 2138 * a cluster that belongs to the passed block group. 2139 * 2140 * Otherwise, it'll get a reference on the block group pointed to by the 2141 * cluster and remove the cluster from it. 2142 */ 2143 int btrfs_return_cluster_to_free_space( 2144 struct btrfs_block_group_cache *block_group, 2145 struct btrfs_free_cluster *cluster) 2146 { 2147 struct btrfs_free_space_ctl *ctl; 2148 int ret; 2149 2150 /* first, get a safe pointer to the block group */ 2151 spin_lock(&cluster->lock); 2152 if (!block_group) { 2153 block_group = cluster->block_group; 2154 if (!block_group) { 2155 spin_unlock(&cluster->lock); 2156 return 0; 2157 } 2158 } else if (cluster->block_group != block_group) { 2159 /* someone else has already freed it don't redo their work */ 2160 spin_unlock(&cluster->lock); 2161 return 0; 2162 } 2163 atomic_inc(&block_group->count); 2164 spin_unlock(&cluster->lock); 2165 2166 ctl = block_group->free_space_ctl; 2167 2168 /* now return any extents the cluster had on it */ 2169 spin_lock(&ctl->tree_lock); 2170 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2171 spin_unlock(&ctl->tree_lock); 2172 2173 /* finally drop our ref */ 2174 btrfs_put_block_group(block_group); 2175 return ret; 2176 } 2177 2178 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2179 struct btrfs_free_cluster *cluster, 2180 struct btrfs_free_space *entry, 2181 u64 bytes, u64 min_start) 2182 { 2183 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2184 int err; 2185 u64 search_start = cluster->window_start; 2186 u64 search_bytes = bytes; 2187 u64 ret = 0; 2188 2189 search_start = min_start; 2190 search_bytes = bytes; 2191 2192 err = search_bitmap(ctl, entry, &search_start, &search_bytes); 2193 if (err) 2194 return 0; 2195 2196 ret = search_start; 2197 __bitmap_clear_bits(ctl, entry, ret, bytes); 2198 2199 return ret; 2200 } 2201 2202 /* 2203 * given a cluster, try to allocate 'bytes' from it, returns 0 2204 * if it couldn't find anything suitably large, or a logical disk offset 2205 * if things worked out 2206 */ 2207 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2208 struct btrfs_free_cluster *cluster, u64 bytes, 2209 u64 min_start) 2210 { 2211 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2212 struct btrfs_free_space *entry = NULL; 2213 struct rb_node *node; 2214 u64 ret = 0; 2215 2216 spin_lock(&cluster->lock); 2217 if (bytes > cluster->max_size) 2218 goto out; 2219 2220 if (cluster->block_group != block_group) 2221 goto out; 2222 2223 node = rb_first(&cluster->root); 2224 if (!node) 2225 goto out; 2226 2227 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2228 while(1) { 2229 if (entry->bytes < bytes || 2230 (!entry->bitmap && entry->offset < min_start)) { 2231 node = rb_next(&entry->offset_index); 2232 if (!node) 2233 break; 2234 entry = rb_entry(node, struct btrfs_free_space, 2235 offset_index); 2236 continue; 2237 } 2238 2239 if (entry->bitmap) { 2240 ret = btrfs_alloc_from_bitmap(block_group, 2241 cluster, entry, bytes, 2242 cluster->window_start); 2243 if (ret == 0) { 2244 node = rb_next(&entry->offset_index); 2245 if (!node) 2246 break; 2247 entry = rb_entry(node, struct btrfs_free_space, 2248 offset_index); 2249 continue; 2250 } 2251 cluster->window_start += bytes; 2252 } else { 2253 ret = entry->offset; 2254 2255 entry->offset += bytes; 2256 entry->bytes -= bytes; 2257 } 2258 2259 if (entry->bytes == 0) 2260 rb_erase(&entry->offset_index, &cluster->root); 2261 break; 2262 } 2263 out: 2264 spin_unlock(&cluster->lock); 2265 2266 if (!ret) 2267 return 0; 2268 2269 spin_lock(&ctl->tree_lock); 2270 2271 ctl->free_space -= bytes; 2272 if (entry->bytes == 0) { 2273 ctl->free_extents--; 2274 if (entry->bitmap) { 2275 kfree(entry->bitmap); 2276 ctl->total_bitmaps--; 2277 ctl->op->recalc_thresholds(ctl); 2278 } 2279 kmem_cache_free(btrfs_free_space_cachep, entry); 2280 } 2281 2282 spin_unlock(&ctl->tree_lock); 2283 2284 return ret; 2285 } 2286 2287 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2288 struct btrfs_free_space *entry, 2289 struct btrfs_free_cluster *cluster, 2290 u64 offset, u64 bytes, 2291 u64 cont1_bytes, u64 min_bytes) 2292 { 2293 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2294 unsigned long next_zero; 2295 unsigned long i; 2296 unsigned long want_bits; 2297 unsigned long min_bits; 2298 unsigned long found_bits; 2299 unsigned long start = 0; 2300 unsigned long total_found = 0; 2301 int ret; 2302 2303 i = offset_to_bit(entry->offset, block_group->sectorsize, 2304 max_t(u64, offset, entry->offset)); 2305 want_bits = bytes_to_bits(bytes, block_group->sectorsize); 2306 min_bits = bytes_to_bits(min_bytes, block_group->sectorsize); 2307 2308 again: 2309 found_bits = 0; 2310 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i); 2311 i < BITS_PER_BITMAP; 2312 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) { 2313 next_zero = find_next_zero_bit(entry->bitmap, 2314 BITS_PER_BITMAP, i); 2315 if (next_zero - i >= min_bits) { 2316 found_bits = next_zero - i; 2317 break; 2318 } 2319 i = next_zero; 2320 } 2321 2322 if (!found_bits) 2323 return -ENOSPC; 2324 2325 if (!total_found) { 2326 start = i; 2327 cluster->max_size = 0; 2328 } 2329 2330 total_found += found_bits; 2331 2332 if (cluster->max_size < found_bits * block_group->sectorsize) 2333 cluster->max_size = found_bits * block_group->sectorsize; 2334 2335 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2336 i = next_zero + 1; 2337 goto again; 2338 } 2339 2340 cluster->window_start = start * block_group->sectorsize + 2341 entry->offset; 2342 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2343 ret = tree_insert_offset(&cluster->root, entry->offset, 2344 &entry->offset_index, 1); 2345 BUG_ON(ret); /* -EEXIST; Logic error */ 2346 2347 trace_btrfs_setup_cluster(block_group, cluster, 2348 total_found * block_group->sectorsize, 1); 2349 return 0; 2350 } 2351 2352 /* 2353 * This searches the block group for just extents to fill the cluster with. 2354 * Try to find a cluster with at least bytes total bytes, at least one 2355 * extent of cont1_bytes, and other clusters of at least min_bytes. 2356 */ 2357 static noinline int 2358 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2359 struct btrfs_free_cluster *cluster, 2360 struct list_head *bitmaps, u64 offset, u64 bytes, 2361 u64 cont1_bytes, u64 min_bytes) 2362 { 2363 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2364 struct btrfs_free_space *first = NULL; 2365 struct btrfs_free_space *entry = NULL; 2366 struct btrfs_free_space *last; 2367 struct rb_node *node; 2368 u64 window_start; 2369 u64 window_free; 2370 u64 max_extent; 2371 u64 total_size = 0; 2372 2373 entry = tree_search_offset(ctl, offset, 0, 1); 2374 if (!entry) 2375 return -ENOSPC; 2376 2377 /* 2378 * We don't want bitmaps, so just move along until we find a normal 2379 * extent entry. 2380 */ 2381 while (entry->bitmap || entry->bytes < min_bytes) { 2382 if (entry->bitmap && list_empty(&entry->list)) 2383 list_add_tail(&entry->list, bitmaps); 2384 node = rb_next(&entry->offset_index); 2385 if (!node) 2386 return -ENOSPC; 2387 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2388 } 2389 2390 window_start = entry->offset; 2391 window_free = entry->bytes; 2392 max_extent = entry->bytes; 2393 first = entry; 2394 last = entry; 2395 2396 for (node = rb_next(&entry->offset_index); node; 2397 node = rb_next(&entry->offset_index)) { 2398 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2399 2400 if (entry->bitmap) { 2401 if (list_empty(&entry->list)) 2402 list_add_tail(&entry->list, bitmaps); 2403 continue; 2404 } 2405 2406 if (entry->bytes < min_bytes) 2407 continue; 2408 2409 last = entry; 2410 window_free += entry->bytes; 2411 if (entry->bytes > max_extent) 2412 max_extent = entry->bytes; 2413 } 2414 2415 if (window_free < bytes || max_extent < cont1_bytes) 2416 return -ENOSPC; 2417 2418 cluster->window_start = first->offset; 2419 2420 node = &first->offset_index; 2421 2422 /* 2423 * now we've found our entries, pull them out of the free space 2424 * cache and put them into the cluster rbtree 2425 */ 2426 do { 2427 int ret; 2428 2429 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2430 node = rb_next(&entry->offset_index); 2431 if (entry->bitmap || entry->bytes < min_bytes) 2432 continue; 2433 2434 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2435 ret = tree_insert_offset(&cluster->root, entry->offset, 2436 &entry->offset_index, 0); 2437 total_size += entry->bytes; 2438 BUG_ON(ret); /* -EEXIST; Logic error */ 2439 } while (node && entry != last); 2440 2441 cluster->max_size = max_extent; 2442 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2443 return 0; 2444 } 2445 2446 /* 2447 * This specifically looks for bitmaps that may work in the cluster, we assume 2448 * that we have already failed to find extents that will work. 2449 */ 2450 static noinline int 2451 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2452 struct btrfs_free_cluster *cluster, 2453 struct list_head *bitmaps, u64 offset, u64 bytes, 2454 u64 cont1_bytes, u64 min_bytes) 2455 { 2456 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2457 struct btrfs_free_space *entry; 2458 int ret = -ENOSPC; 2459 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2460 2461 if (ctl->total_bitmaps == 0) 2462 return -ENOSPC; 2463 2464 /* 2465 * The bitmap that covers offset won't be in the list unless offset 2466 * is just its start offset. 2467 */ 2468 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2469 if (entry->offset != bitmap_offset) { 2470 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2471 if (entry && list_empty(&entry->list)) 2472 list_add(&entry->list, bitmaps); 2473 } 2474 2475 list_for_each_entry(entry, bitmaps, list) { 2476 if (entry->bytes < bytes) 2477 continue; 2478 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2479 bytes, cont1_bytes, min_bytes); 2480 if (!ret) 2481 return 0; 2482 } 2483 2484 /* 2485 * The bitmaps list has all the bitmaps that record free space 2486 * starting after offset, so no more search is required. 2487 */ 2488 return -ENOSPC; 2489 } 2490 2491 /* 2492 * here we try to find a cluster of blocks in a block group. The goal 2493 * is to find at least bytes+empty_size. 2494 * We might not find them all in one contiguous area. 2495 * 2496 * returns zero and sets up cluster if things worked out, otherwise 2497 * it returns -enospc 2498 */ 2499 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, 2500 struct btrfs_root *root, 2501 struct btrfs_block_group_cache *block_group, 2502 struct btrfs_free_cluster *cluster, 2503 u64 offset, u64 bytes, u64 empty_size) 2504 { 2505 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2506 struct btrfs_free_space *entry, *tmp; 2507 LIST_HEAD(bitmaps); 2508 u64 min_bytes; 2509 u64 cont1_bytes; 2510 int ret; 2511 2512 /* 2513 * Choose the minimum extent size we'll require for this 2514 * cluster. For SSD_SPREAD, don't allow any fragmentation. 2515 * For metadata, allow allocates with smaller extents. For 2516 * data, keep it dense. 2517 */ 2518 if (btrfs_test_opt(root, SSD_SPREAD)) { 2519 cont1_bytes = min_bytes = bytes + empty_size; 2520 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 2521 cont1_bytes = bytes; 2522 min_bytes = block_group->sectorsize; 2523 } else { 2524 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 2525 min_bytes = block_group->sectorsize; 2526 } 2527 2528 spin_lock(&ctl->tree_lock); 2529 2530 /* 2531 * If we know we don't have enough space to make a cluster don't even 2532 * bother doing all the work to try and find one. 2533 */ 2534 if (ctl->free_space < bytes) { 2535 spin_unlock(&ctl->tree_lock); 2536 return -ENOSPC; 2537 } 2538 2539 spin_lock(&cluster->lock); 2540 2541 /* someone already found a cluster, hooray */ 2542 if (cluster->block_group) { 2543 ret = 0; 2544 goto out; 2545 } 2546 2547 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 2548 min_bytes); 2549 2550 INIT_LIST_HEAD(&bitmaps); 2551 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 2552 bytes + empty_size, 2553 cont1_bytes, min_bytes); 2554 if (ret) 2555 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 2556 offset, bytes + empty_size, 2557 cont1_bytes, min_bytes); 2558 2559 /* Clear our temporary list */ 2560 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 2561 list_del_init(&entry->list); 2562 2563 if (!ret) { 2564 atomic_inc(&block_group->count); 2565 list_add_tail(&cluster->block_group_list, 2566 &block_group->cluster_list); 2567 cluster->block_group = block_group; 2568 } else { 2569 trace_btrfs_failed_cluster_setup(block_group); 2570 } 2571 out: 2572 spin_unlock(&cluster->lock); 2573 spin_unlock(&ctl->tree_lock); 2574 2575 return ret; 2576 } 2577 2578 /* 2579 * simple code to zero out a cluster 2580 */ 2581 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 2582 { 2583 spin_lock_init(&cluster->lock); 2584 spin_lock_init(&cluster->refill_lock); 2585 cluster->root = RB_ROOT; 2586 cluster->max_size = 0; 2587 INIT_LIST_HEAD(&cluster->block_group_list); 2588 cluster->block_group = NULL; 2589 } 2590 2591 static int do_trimming(struct btrfs_block_group_cache *block_group, 2592 u64 *total_trimmed, u64 start, u64 bytes, 2593 u64 reserved_start, u64 reserved_bytes) 2594 { 2595 struct btrfs_space_info *space_info = block_group->space_info; 2596 struct btrfs_fs_info *fs_info = block_group->fs_info; 2597 int ret; 2598 int update = 0; 2599 u64 trimmed = 0; 2600 2601 spin_lock(&space_info->lock); 2602 spin_lock(&block_group->lock); 2603 if (!block_group->ro) { 2604 block_group->reserved += reserved_bytes; 2605 space_info->bytes_reserved += reserved_bytes; 2606 update = 1; 2607 } 2608 spin_unlock(&block_group->lock); 2609 spin_unlock(&space_info->lock); 2610 2611 ret = btrfs_error_discard_extent(fs_info->extent_root, 2612 start, bytes, &trimmed); 2613 if (!ret) 2614 *total_trimmed += trimmed; 2615 2616 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 2617 2618 if (update) { 2619 spin_lock(&space_info->lock); 2620 spin_lock(&block_group->lock); 2621 if (block_group->ro) 2622 space_info->bytes_readonly += reserved_bytes; 2623 block_group->reserved -= reserved_bytes; 2624 space_info->bytes_reserved -= reserved_bytes; 2625 spin_unlock(&space_info->lock); 2626 spin_unlock(&block_group->lock); 2627 } 2628 2629 return ret; 2630 } 2631 2632 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 2633 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2634 { 2635 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2636 struct btrfs_free_space *entry; 2637 struct rb_node *node; 2638 int ret = 0; 2639 u64 extent_start; 2640 u64 extent_bytes; 2641 u64 bytes; 2642 2643 while (start < end) { 2644 spin_lock(&ctl->tree_lock); 2645 2646 if (ctl->free_space < minlen) { 2647 spin_unlock(&ctl->tree_lock); 2648 break; 2649 } 2650 2651 entry = tree_search_offset(ctl, start, 0, 1); 2652 if (!entry) { 2653 spin_unlock(&ctl->tree_lock); 2654 break; 2655 } 2656 2657 /* skip bitmaps */ 2658 while (entry->bitmap) { 2659 node = rb_next(&entry->offset_index); 2660 if (!node) { 2661 spin_unlock(&ctl->tree_lock); 2662 goto out; 2663 } 2664 entry = rb_entry(node, struct btrfs_free_space, 2665 offset_index); 2666 } 2667 2668 if (entry->offset >= end) { 2669 spin_unlock(&ctl->tree_lock); 2670 break; 2671 } 2672 2673 extent_start = entry->offset; 2674 extent_bytes = entry->bytes; 2675 start = max(start, extent_start); 2676 bytes = min(extent_start + extent_bytes, end) - start; 2677 if (bytes < minlen) { 2678 spin_unlock(&ctl->tree_lock); 2679 goto next; 2680 } 2681 2682 unlink_free_space(ctl, entry); 2683 kmem_cache_free(btrfs_free_space_cachep, entry); 2684 2685 spin_unlock(&ctl->tree_lock); 2686 2687 ret = do_trimming(block_group, total_trimmed, start, bytes, 2688 extent_start, extent_bytes); 2689 if (ret) 2690 break; 2691 next: 2692 start += bytes; 2693 2694 if (fatal_signal_pending(current)) { 2695 ret = -ERESTARTSYS; 2696 break; 2697 } 2698 2699 cond_resched(); 2700 } 2701 out: 2702 return ret; 2703 } 2704 2705 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 2706 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2707 { 2708 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2709 struct btrfs_free_space *entry; 2710 int ret = 0; 2711 int ret2; 2712 u64 bytes; 2713 u64 offset = offset_to_bitmap(ctl, start); 2714 2715 while (offset < end) { 2716 bool next_bitmap = false; 2717 2718 spin_lock(&ctl->tree_lock); 2719 2720 if (ctl->free_space < minlen) { 2721 spin_unlock(&ctl->tree_lock); 2722 break; 2723 } 2724 2725 entry = tree_search_offset(ctl, offset, 1, 0); 2726 if (!entry) { 2727 spin_unlock(&ctl->tree_lock); 2728 next_bitmap = true; 2729 goto next; 2730 } 2731 2732 bytes = minlen; 2733 ret2 = search_bitmap(ctl, entry, &start, &bytes); 2734 if (ret2 || start >= end) { 2735 spin_unlock(&ctl->tree_lock); 2736 next_bitmap = true; 2737 goto next; 2738 } 2739 2740 bytes = min(bytes, end - start); 2741 if (bytes < minlen) { 2742 spin_unlock(&ctl->tree_lock); 2743 goto next; 2744 } 2745 2746 bitmap_clear_bits(ctl, entry, start, bytes); 2747 if (entry->bytes == 0) 2748 free_bitmap(ctl, entry); 2749 2750 spin_unlock(&ctl->tree_lock); 2751 2752 ret = do_trimming(block_group, total_trimmed, start, bytes, 2753 start, bytes); 2754 if (ret) 2755 break; 2756 next: 2757 if (next_bitmap) { 2758 offset += BITS_PER_BITMAP * ctl->unit; 2759 } else { 2760 start += bytes; 2761 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 2762 offset += BITS_PER_BITMAP * ctl->unit; 2763 } 2764 2765 if (fatal_signal_pending(current)) { 2766 ret = -ERESTARTSYS; 2767 break; 2768 } 2769 2770 cond_resched(); 2771 } 2772 2773 return ret; 2774 } 2775 2776 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 2777 u64 *trimmed, u64 start, u64 end, u64 minlen) 2778 { 2779 int ret; 2780 2781 *trimmed = 0; 2782 2783 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 2784 if (ret) 2785 return ret; 2786 2787 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 2788 2789 return ret; 2790 } 2791 2792 /* 2793 * Find the left-most item in the cache tree, and then return the 2794 * smallest inode number in the item. 2795 * 2796 * Note: the returned inode number may not be the smallest one in 2797 * the tree, if the left-most item is a bitmap. 2798 */ 2799 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 2800 { 2801 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 2802 struct btrfs_free_space *entry = NULL; 2803 u64 ino = 0; 2804 2805 spin_lock(&ctl->tree_lock); 2806 2807 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 2808 goto out; 2809 2810 entry = rb_entry(rb_first(&ctl->free_space_offset), 2811 struct btrfs_free_space, offset_index); 2812 2813 if (!entry->bitmap) { 2814 ino = entry->offset; 2815 2816 unlink_free_space(ctl, entry); 2817 entry->offset++; 2818 entry->bytes--; 2819 if (!entry->bytes) 2820 kmem_cache_free(btrfs_free_space_cachep, entry); 2821 else 2822 link_free_space(ctl, entry); 2823 } else { 2824 u64 offset = 0; 2825 u64 count = 1; 2826 int ret; 2827 2828 ret = search_bitmap(ctl, entry, &offset, &count); 2829 /* Logic error; Should be empty if it can't find anything */ 2830 BUG_ON(ret); 2831 2832 ino = offset; 2833 bitmap_clear_bits(ctl, entry, offset, 1); 2834 if (entry->bytes == 0) 2835 free_bitmap(ctl, entry); 2836 } 2837 out: 2838 spin_unlock(&ctl->tree_lock); 2839 2840 return ino; 2841 } 2842 2843 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 2844 struct btrfs_path *path) 2845 { 2846 struct inode *inode = NULL; 2847 2848 spin_lock(&root->cache_lock); 2849 if (root->cache_inode) 2850 inode = igrab(root->cache_inode); 2851 spin_unlock(&root->cache_lock); 2852 if (inode) 2853 return inode; 2854 2855 inode = __lookup_free_space_inode(root, path, 0); 2856 if (IS_ERR(inode)) 2857 return inode; 2858 2859 spin_lock(&root->cache_lock); 2860 if (!btrfs_fs_closing(root->fs_info)) 2861 root->cache_inode = igrab(inode); 2862 spin_unlock(&root->cache_lock); 2863 2864 return inode; 2865 } 2866 2867 int create_free_ino_inode(struct btrfs_root *root, 2868 struct btrfs_trans_handle *trans, 2869 struct btrfs_path *path) 2870 { 2871 return __create_free_space_inode(root, trans, path, 2872 BTRFS_FREE_INO_OBJECTID, 0); 2873 } 2874 2875 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2876 { 2877 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 2878 struct btrfs_path *path; 2879 struct inode *inode; 2880 int ret = 0; 2881 u64 root_gen = btrfs_root_generation(&root->root_item); 2882 2883 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 2884 return 0; 2885 2886 /* 2887 * If we're unmounting then just return, since this does a search on the 2888 * normal root and not the commit root and we could deadlock. 2889 */ 2890 if (btrfs_fs_closing(fs_info)) 2891 return 0; 2892 2893 path = btrfs_alloc_path(); 2894 if (!path) 2895 return 0; 2896 2897 inode = lookup_free_ino_inode(root, path); 2898 if (IS_ERR(inode)) 2899 goto out; 2900 2901 if (root_gen != BTRFS_I(inode)->generation) 2902 goto out_put; 2903 2904 ret = __load_free_space_cache(root, inode, ctl, path, 0); 2905 2906 if (ret < 0) 2907 printk(KERN_ERR "btrfs: failed to load free ino cache for " 2908 "root %llu\n", root->root_key.objectid); 2909 out_put: 2910 iput(inode); 2911 out: 2912 btrfs_free_path(path); 2913 return ret; 2914 } 2915 2916 int btrfs_write_out_ino_cache(struct btrfs_root *root, 2917 struct btrfs_trans_handle *trans, 2918 struct btrfs_path *path) 2919 { 2920 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 2921 struct inode *inode; 2922 int ret; 2923 2924 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 2925 return 0; 2926 2927 inode = lookup_free_ino_inode(root, path); 2928 if (IS_ERR(inode)) 2929 return 0; 2930 2931 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0); 2932 if (ret) { 2933 btrfs_delalloc_release_metadata(inode, inode->i_size); 2934 #ifdef DEBUG 2935 printk(KERN_ERR "btrfs: failed to write free ino cache " 2936 "for root %llu\n", root->root_key.objectid); 2937 #endif 2938 } 2939 2940 iput(inode); 2941 return ret; 2942 } 2943