xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 95c96174)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 
37 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
38 					       struct btrfs_path *path,
39 					       u64 offset)
40 {
41 	struct btrfs_key key;
42 	struct btrfs_key location;
43 	struct btrfs_disk_key disk_key;
44 	struct btrfs_free_space_header *header;
45 	struct extent_buffer *leaf;
46 	struct inode *inode = NULL;
47 	int ret;
48 
49 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
50 	key.offset = offset;
51 	key.type = 0;
52 
53 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
54 	if (ret < 0)
55 		return ERR_PTR(ret);
56 	if (ret > 0) {
57 		btrfs_release_path(path);
58 		return ERR_PTR(-ENOENT);
59 	}
60 
61 	leaf = path->nodes[0];
62 	header = btrfs_item_ptr(leaf, path->slots[0],
63 				struct btrfs_free_space_header);
64 	btrfs_free_space_key(leaf, header, &disk_key);
65 	btrfs_disk_key_to_cpu(&location, &disk_key);
66 	btrfs_release_path(path);
67 
68 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
69 	if (!inode)
70 		return ERR_PTR(-ENOENT);
71 	if (IS_ERR(inode))
72 		return inode;
73 	if (is_bad_inode(inode)) {
74 		iput(inode);
75 		return ERR_PTR(-ENOENT);
76 	}
77 
78 	inode->i_mapping->flags &= ~__GFP_FS;
79 
80 	return inode;
81 }
82 
83 struct inode *lookup_free_space_inode(struct btrfs_root *root,
84 				      struct btrfs_block_group_cache
85 				      *block_group, struct btrfs_path *path)
86 {
87 	struct inode *inode = NULL;
88 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
89 
90 	spin_lock(&block_group->lock);
91 	if (block_group->inode)
92 		inode = igrab(block_group->inode);
93 	spin_unlock(&block_group->lock);
94 	if (inode)
95 		return inode;
96 
97 	inode = __lookup_free_space_inode(root, path,
98 					  block_group->key.objectid);
99 	if (IS_ERR(inode))
100 		return inode;
101 
102 	spin_lock(&block_group->lock);
103 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
104 		printk(KERN_INFO "Old style space inode found, converting.\n");
105 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
106 			BTRFS_INODE_NODATACOW;
107 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
108 	}
109 
110 	if (!block_group->iref) {
111 		block_group->inode = igrab(inode);
112 		block_group->iref = 1;
113 	}
114 	spin_unlock(&block_group->lock);
115 
116 	return inode;
117 }
118 
119 int __create_free_space_inode(struct btrfs_root *root,
120 			      struct btrfs_trans_handle *trans,
121 			      struct btrfs_path *path, u64 ino, u64 offset)
122 {
123 	struct btrfs_key key;
124 	struct btrfs_disk_key disk_key;
125 	struct btrfs_free_space_header *header;
126 	struct btrfs_inode_item *inode_item;
127 	struct extent_buffer *leaf;
128 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
129 	int ret;
130 
131 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
132 	if (ret)
133 		return ret;
134 
135 	/* We inline crc's for the free disk space cache */
136 	if (ino != BTRFS_FREE_INO_OBJECTID)
137 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138 
139 	leaf = path->nodes[0];
140 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
141 				    struct btrfs_inode_item);
142 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
143 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
144 			     sizeof(*inode_item));
145 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
146 	btrfs_set_inode_size(leaf, inode_item, 0);
147 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
148 	btrfs_set_inode_uid(leaf, inode_item, 0);
149 	btrfs_set_inode_gid(leaf, inode_item, 0);
150 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
151 	btrfs_set_inode_flags(leaf, inode_item, flags);
152 	btrfs_set_inode_nlink(leaf, inode_item, 1);
153 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
154 	btrfs_set_inode_block_group(leaf, inode_item, offset);
155 	btrfs_mark_buffer_dirty(leaf);
156 	btrfs_release_path(path);
157 
158 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
159 	key.offset = offset;
160 	key.type = 0;
161 
162 	ret = btrfs_insert_empty_item(trans, root, path, &key,
163 				      sizeof(struct btrfs_free_space_header));
164 	if (ret < 0) {
165 		btrfs_release_path(path);
166 		return ret;
167 	}
168 	leaf = path->nodes[0];
169 	header = btrfs_item_ptr(leaf, path->slots[0],
170 				struct btrfs_free_space_header);
171 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
172 	btrfs_set_free_space_key(leaf, header, &disk_key);
173 	btrfs_mark_buffer_dirty(leaf);
174 	btrfs_release_path(path);
175 
176 	return 0;
177 }
178 
179 int create_free_space_inode(struct btrfs_root *root,
180 			    struct btrfs_trans_handle *trans,
181 			    struct btrfs_block_group_cache *block_group,
182 			    struct btrfs_path *path)
183 {
184 	int ret;
185 	u64 ino;
186 
187 	ret = btrfs_find_free_objectid(root, &ino);
188 	if (ret < 0)
189 		return ret;
190 
191 	return __create_free_space_inode(root, trans, path, ino,
192 					 block_group->key.objectid);
193 }
194 
195 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
196 				    struct btrfs_trans_handle *trans,
197 				    struct btrfs_path *path,
198 				    struct inode *inode)
199 {
200 	struct btrfs_block_rsv *rsv;
201 	u64 needed_bytes;
202 	loff_t oldsize;
203 	int ret = 0;
204 
205 	rsv = trans->block_rsv;
206 	trans->block_rsv = &root->fs_info->global_block_rsv;
207 
208 	/* 1 for slack space, 1 for updating the inode */
209 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
210 		btrfs_calc_trans_metadata_size(root, 1);
211 
212 	spin_lock(&trans->block_rsv->lock);
213 	if (trans->block_rsv->reserved < needed_bytes) {
214 		spin_unlock(&trans->block_rsv->lock);
215 		trans->block_rsv = rsv;
216 		return -ENOSPC;
217 	}
218 	spin_unlock(&trans->block_rsv->lock);
219 
220 	oldsize = i_size_read(inode);
221 	btrfs_i_size_write(inode, 0);
222 	truncate_pagecache(inode, oldsize, 0);
223 
224 	/*
225 	 * We don't need an orphan item because truncating the free space cache
226 	 * will never be split across transactions.
227 	 */
228 	ret = btrfs_truncate_inode_items(trans, root, inode,
229 					 0, BTRFS_EXTENT_DATA_KEY);
230 
231 	if (ret) {
232 		trans->block_rsv = rsv;
233 		btrfs_abort_transaction(trans, root, ret);
234 		return ret;
235 	}
236 
237 	ret = btrfs_update_inode(trans, root, inode);
238 	if (ret)
239 		btrfs_abort_transaction(trans, root, ret);
240 	trans->block_rsv = rsv;
241 
242 	return ret;
243 }
244 
245 static int readahead_cache(struct inode *inode)
246 {
247 	struct file_ra_state *ra;
248 	unsigned long last_index;
249 
250 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
251 	if (!ra)
252 		return -ENOMEM;
253 
254 	file_ra_state_init(ra, inode->i_mapping);
255 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
256 
257 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
258 
259 	kfree(ra);
260 
261 	return 0;
262 }
263 
264 struct io_ctl {
265 	void *cur, *orig;
266 	struct page *page;
267 	struct page **pages;
268 	struct btrfs_root *root;
269 	unsigned long size;
270 	int index;
271 	int num_pages;
272 	unsigned check_crcs:1;
273 };
274 
275 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
276 		       struct btrfs_root *root)
277 {
278 	memset(io_ctl, 0, sizeof(struct io_ctl));
279 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
280 		PAGE_CACHE_SHIFT;
281 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
282 				GFP_NOFS);
283 	if (!io_ctl->pages)
284 		return -ENOMEM;
285 	io_ctl->root = root;
286 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
287 		io_ctl->check_crcs = 1;
288 	return 0;
289 }
290 
291 static void io_ctl_free(struct io_ctl *io_ctl)
292 {
293 	kfree(io_ctl->pages);
294 }
295 
296 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
297 {
298 	if (io_ctl->cur) {
299 		kunmap(io_ctl->page);
300 		io_ctl->cur = NULL;
301 		io_ctl->orig = NULL;
302 	}
303 }
304 
305 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
306 {
307 	WARN_ON(io_ctl->cur);
308 	BUG_ON(io_ctl->index >= io_ctl->num_pages);
309 	io_ctl->page = io_ctl->pages[io_ctl->index++];
310 	io_ctl->cur = kmap(io_ctl->page);
311 	io_ctl->orig = io_ctl->cur;
312 	io_ctl->size = PAGE_CACHE_SIZE;
313 	if (clear)
314 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
315 }
316 
317 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
318 {
319 	int i;
320 
321 	io_ctl_unmap_page(io_ctl);
322 
323 	for (i = 0; i < io_ctl->num_pages; i++) {
324 		if (io_ctl->pages[i]) {
325 			ClearPageChecked(io_ctl->pages[i]);
326 			unlock_page(io_ctl->pages[i]);
327 			page_cache_release(io_ctl->pages[i]);
328 		}
329 	}
330 }
331 
332 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
333 				int uptodate)
334 {
335 	struct page *page;
336 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
337 	int i;
338 
339 	for (i = 0; i < io_ctl->num_pages; i++) {
340 		page = find_or_create_page(inode->i_mapping, i, mask);
341 		if (!page) {
342 			io_ctl_drop_pages(io_ctl);
343 			return -ENOMEM;
344 		}
345 		io_ctl->pages[i] = page;
346 		if (uptodate && !PageUptodate(page)) {
347 			btrfs_readpage(NULL, page);
348 			lock_page(page);
349 			if (!PageUptodate(page)) {
350 				printk(KERN_ERR "btrfs: error reading free "
351 				       "space cache\n");
352 				io_ctl_drop_pages(io_ctl);
353 				return -EIO;
354 			}
355 		}
356 	}
357 
358 	for (i = 0; i < io_ctl->num_pages; i++) {
359 		clear_page_dirty_for_io(io_ctl->pages[i]);
360 		set_page_extent_mapped(io_ctl->pages[i]);
361 	}
362 
363 	return 0;
364 }
365 
366 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
367 {
368 	u64 *val;
369 
370 	io_ctl_map_page(io_ctl, 1);
371 
372 	/*
373 	 * Skip the csum areas.  If we don't check crcs then we just have a
374 	 * 64bit chunk at the front of the first page.
375 	 */
376 	if (io_ctl->check_crcs) {
377 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
378 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
379 	} else {
380 		io_ctl->cur += sizeof(u64);
381 		io_ctl->size -= sizeof(u64) * 2;
382 	}
383 
384 	val = io_ctl->cur;
385 	*val = cpu_to_le64(generation);
386 	io_ctl->cur += sizeof(u64);
387 }
388 
389 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
390 {
391 	u64 *gen;
392 
393 	/*
394 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
395 	 * chunk at the front of the first page.
396 	 */
397 	if (io_ctl->check_crcs) {
398 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
399 		io_ctl->size -= sizeof(u64) +
400 			(sizeof(u32) * io_ctl->num_pages);
401 	} else {
402 		io_ctl->cur += sizeof(u64);
403 		io_ctl->size -= sizeof(u64) * 2;
404 	}
405 
406 	gen = io_ctl->cur;
407 	if (le64_to_cpu(*gen) != generation) {
408 		printk_ratelimited(KERN_ERR "btrfs: space cache generation "
409 				   "(%Lu) does not match inode (%Lu)\n", *gen,
410 				   generation);
411 		io_ctl_unmap_page(io_ctl);
412 		return -EIO;
413 	}
414 	io_ctl->cur += sizeof(u64);
415 	return 0;
416 }
417 
418 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
419 {
420 	u32 *tmp;
421 	u32 crc = ~(u32)0;
422 	unsigned offset = 0;
423 
424 	if (!io_ctl->check_crcs) {
425 		io_ctl_unmap_page(io_ctl);
426 		return;
427 	}
428 
429 	if (index == 0)
430 		offset = sizeof(u32) * io_ctl->num_pages;
431 
432 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
433 			      PAGE_CACHE_SIZE - offset);
434 	btrfs_csum_final(crc, (char *)&crc);
435 	io_ctl_unmap_page(io_ctl);
436 	tmp = kmap(io_ctl->pages[0]);
437 	tmp += index;
438 	*tmp = crc;
439 	kunmap(io_ctl->pages[0]);
440 }
441 
442 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
443 {
444 	u32 *tmp, val;
445 	u32 crc = ~(u32)0;
446 	unsigned offset = 0;
447 
448 	if (!io_ctl->check_crcs) {
449 		io_ctl_map_page(io_ctl, 0);
450 		return 0;
451 	}
452 
453 	if (index == 0)
454 		offset = sizeof(u32) * io_ctl->num_pages;
455 
456 	tmp = kmap(io_ctl->pages[0]);
457 	tmp += index;
458 	val = *tmp;
459 	kunmap(io_ctl->pages[0]);
460 
461 	io_ctl_map_page(io_ctl, 0);
462 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
463 			      PAGE_CACHE_SIZE - offset);
464 	btrfs_csum_final(crc, (char *)&crc);
465 	if (val != crc) {
466 		printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
467 				   "space cache\n");
468 		io_ctl_unmap_page(io_ctl);
469 		return -EIO;
470 	}
471 
472 	return 0;
473 }
474 
475 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
476 			    void *bitmap)
477 {
478 	struct btrfs_free_space_entry *entry;
479 
480 	if (!io_ctl->cur)
481 		return -ENOSPC;
482 
483 	entry = io_ctl->cur;
484 	entry->offset = cpu_to_le64(offset);
485 	entry->bytes = cpu_to_le64(bytes);
486 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
487 		BTRFS_FREE_SPACE_EXTENT;
488 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
489 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
490 
491 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
492 		return 0;
493 
494 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
495 
496 	/* No more pages to map */
497 	if (io_ctl->index >= io_ctl->num_pages)
498 		return 0;
499 
500 	/* map the next page */
501 	io_ctl_map_page(io_ctl, 1);
502 	return 0;
503 }
504 
505 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
506 {
507 	if (!io_ctl->cur)
508 		return -ENOSPC;
509 
510 	/*
511 	 * If we aren't at the start of the current page, unmap this one and
512 	 * map the next one if there is any left.
513 	 */
514 	if (io_ctl->cur != io_ctl->orig) {
515 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
516 		if (io_ctl->index >= io_ctl->num_pages)
517 			return -ENOSPC;
518 		io_ctl_map_page(io_ctl, 0);
519 	}
520 
521 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
522 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
523 	if (io_ctl->index < io_ctl->num_pages)
524 		io_ctl_map_page(io_ctl, 0);
525 	return 0;
526 }
527 
528 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
529 {
530 	/*
531 	 * If we're not on the boundary we know we've modified the page and we
532 	 * need to crc the page.
533 	 */
534 	if (io_ctl->cur != io_ctl->orig)
535 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 	else
537 		io_ctl_unmap_page(io_ctl);
538 
539 	while (io_ctl->index < io_ctl->num_pages) {
540 		io_ctl_map_page(io_ctl, 1);
541 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
542 	}
543 }
544 
545 static int io_ctl_read_entry(struct io_ctl *io_ctl,
546 			    struct btrfs_free_space *entry, u8 *type)
547 {
548 	struct btrfs_free_space_entry *e;
549 	int ret;
550 
551 	if (!io_ctl->cur) {
552 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
553 		if (ret)
554 			return ret;
555 	}
556 
557 	e = io_ctl->cur;
558 	entry->offset = le64_to_cpu(e->offset);
559 	entry->bytes = le64_to_cpu(e->bytes);
560 	*type = e->type;
561 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
562 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
563 
564 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
565 		return 0;
566 
567 	io_ctl_unmap_page(io_ctl);
568 
569 	return 0;
570 }
571 
572 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
573 			      struct btrfs_free_space *entry)
574 {
575 	int ret;
576 
577 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
578 	if (ret)
579 		return ret;
580 
581 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
582 	io_ctl_unmap_page(io_ctl);
583 
584 	return 0;
585 }
586 
587 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
588 			    struct btrfs_free_space_ctl *ctl,
589 			    struct btrfs_path *path, u64 offset)
590 {
591 	struct btrfs_free_space_header *header;
592 	struct extent_buffer *leaf;
593 	struct io_ctl io_ctl;
594 	struct btrfs_key key;
595 	struct btrfs_free_space *e, *n;
596 	struct list_head bitmaps;
597 	u64 num_entries;
598 	u64 num_bitmaps;
599 	u64 generation;
600 	u8 type;
601 	int ret = 0;
602 
603 	INIT_LIST_HEAD(&bitmaps);
604 
605 	/* Nothing in the space cache, goodbye */
606 	if (!i_size_read(inode))
607 		return 0;
608 
609 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
610 	key.offset = offset;
611 	key.type = 0;
612 
613 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
614 	if (ret < 0)
615 		return 0;
616 	else if (ret > 0) {
617 		btrfs_release_path(path);
618 		return 0;
619 	}
620 
621 	ret = -1;
622 
623 	leaf = path->nodes[0];
624 	header = btrfs_item_ptr(leaf, path->slots[0],
625 				struct btrfs_free_space_header);
626 	num_entries = btrfs_free_space_entries(leaf, header);
627 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
628 	generation = btrfs_free_space_generation(leaf, header);
629 	btrfs_release_path(path);
630 
631 	if (BTRFS_I(inode)->generation != generation) {
632 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
633 		       " not match free space cache generation (%llu)\n",
634 		       (unsigned long long)BTRFS_I(inode)->generation,
635 		       (unsigned long long)generation);
636 		return 0;
637 	}
638 
639 	if (!num_entries)
640 		return 0;
641 
642 	ret = io_ctl_init(&io_ctl, inode, root);
643 	if (ret)
644 		return ret;
645 
646 	ret = readahead_cache(inode);
647 	if (ret)
648 		goto out;
649 
650 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
651 	if (ret)
652 		goto out;
653 
654 	ret = io_ctl_check_crc(&io_ctl, 0);
655 	if (ret)
656 		goto free_cache;
657 
658 	ret = io_ctl_check_generation(&io_ctl, generation);
659 	if (ret)
660 		goto free_cache;
661 
662 	while (num_entries) {
663 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
664 				      GFP_NOFS);
665 		if (!e)
666 			goto free_cache;
667 
668 		ret = io_ctl_read_entry(&io_ctl, e, &type);
669 		if (ret) {
670 			kmem_cache_free(btrfs_free_space_cachep, e);
671 			goto free_cache;
672 		}
673 
674 		if (!e->bytes) {
675 			kmem_cache_free(btrfs_free_space_cachep, e);
676 			goto free_cache;
677 		}
678 
679 		if (type == BTRFS_FREE_SPACE_EXTENT) {
680 			spin_lock(&ctl->tree_lock);
681 			ret = link_free_space(ctl, e);
682 			spin_unlock(&ctl->tree_lock);
683 			if (ret) {
684 				printk(KERN_ERR "Duplicate entries in "
685 				       "free space cache, dumping\n");
686 				kmem_cache_free(btrfs_free_space_cachep, e);
687 				goto free_cache;
688 			}
689 		} else {
690 			BUG_ON(!num_bitmaps);
691 			num_bitmaps--;
692 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
693 			if (!e->bitmap) {
694 				kmem_cache_free(
695 					btrfs_free_space_cachep, e);
696 				goto free_cache;
697 			}
698 			spin_lock(&ctl->tree_lock);
699 			ret = link_free_space(ctl, e);
700 			ctl->total_bitmaps++;
701 			ctl->op->recalc_thresholds(ctl);
702 			spin_unlock(&ctl->tree_lock);
703 			if (ret) {
704 				printk(KERN_ERR "Duplicate entries in "
705 				       "free space cache, dumping\n");
706 				kmem_cache_free(btrfs_free_space_cachep, e);
707 				goto free_cache;
708 			}
709 			list_add_tail(&e->list, &bitmaps);
710 		}
711 
712 		num_entries--;
713 	}
714 
715 	io_ctl_unmap_page(&io_ctl);
716 
717 	/*
718 	 * We add the bitmaps at the end of the entries in order that
719 	 * the bitmap entries are added to the cache.
720 	 */
721 	list_for_each_entry_safe(e, n, &bitmaps, list) {
722 		list_del_init(&e->list);
723 		ret = io_ctl_read_bitmap(&io_ctl, e);
724 		if (ret)
725 			goto free_cache;
726 	}
727 
728 	io_ctl_drop_pages(&io_ctl);
729 	ret = 1;
730 out:
731 	io_ctl_free(&io_ctl);
732 	return ret;
733 free_cache:
734 	io_ctl_drop_pages(&io_ctl);
735 	__btrfs_remove_free_space_cache(ctl);
736 	goto out;
737 }
738 
739 int load_free_space_cache(struct btrfs_fs_info *fs_info,
740 			  struct btrfs_block_group_cache *block_group)
741 {
742 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
743 	struct btrfs_root *root = fs_info->tree_root;
744 	struct inode *inode;
745 	struct btrfs_path *path;
746 	int ret = 0;
747 	bool matched;
748 	u64 used = btrfs_block_group_used(&block_group->item);
749 
750 	/*
751 	 * If we're unmounting then just return, since this does a search on the
752 	 * normal root and not the commit root and we could deadlock.
753 	 */
754 	if (btrfs_fs_closing(fs_info))
755 		return 0;
756 
757 	/*
758 	 * If this block group has been marked to be cleared for one reason or
759 	 * another then we can't trust the on disk cache, so just return.
760 	 */
761 	spin_lock(&block_group->lock);
762 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
763 		spin_unlock(&block_group->lock);
764 		return 0;
765 	}
766 	spin_unlock(&block_group->lock);
767 
768 	path = btrfs_alloc_path();
769 	if (!path)
770 		return 0;
771 
772 	inode = lookup_free_space_inode(root, block_group, path);
773 	if (IS_ERR(inode)) {
774 		btrfs_free_path(path);
775 		return 0;
776 	}
777 
778 	/* We may have converted the inode and made the cache invalid. */
779 	spin_lock(&block_group->lock);
780 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
781 		spin_unlock(&block_group->lock);
782 		btrfs_free_path(path);
783 		goto out;
784 	}
785 	spin_unlock(&block_group->lock);
786 
787 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
788 				      path, block_group->key.objectid);
789 	btrfs_free_path(path);
790 	if (ret <= 0)
791 		goto out;
792 
793 	spin_lock(&ctl->tree_lock);
794 	matched = (ctl->free_space == (block_group->key.offset - used -
795 				       block_group->bytes_super));
796 	spin_unlock(&ctl->tree_lock);
797 
798 	if (!matched) {
799 		__btrfs_remove_free_space_cache(ctl);
800 		printk(KERN_ERR "block group %llu has an wrong amount of free "
801 		       "space\n", block_group->key.objectid);
802 		ret = -1;
803 	}
804 out:
805 	if (ret < 0) {
806 		/* This cache is bogus, make sure it gets cleared */
807 		spin_lock(&block_group->lock);
808 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
809 		spin_unlock(&block_group->lock);
810 		ret = 0;
811 
812 		printk(KERN_ERR "btrfs: failed to load free space cache "
813 		       "for block group %llu\n", block_group->key.objectid);
814 	}
815 
816 	iput(inode);
817 	return ret;
818 }
819 
820 /**
821  * __btrfs_write_out_cache - write out cached info to an inode
822  * @root - the root the inode belongs to
823  * @ctl - the free space cache we are going to write out
824  * @block_group - the block_group for this cache if it belongs to a block_group
825  * @trans - the trans handle
826  * @path - the path to use
827  * @offset - the offset for the key we'll insert
828  *
829  * This function writes out a free space cache struct to disk for quick recovery
830  * on mount.  This will return 0 if it was successfull in writing the cache out,
831  * and -1 if it was not.
832  */
833 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
834 			    struct btrfs_free_space_ctl *ctl,
835 			    struct btrfs_block_group_cache *block_group,
836 			    struct btrfs_trans_handle *trans,
837 			    struct btrfs_path *path, u64 offset)
838 {
839 	struct btrfs_free_space_header *header;
840 	struct extent_buffer *leaf;
841 	struct rb_node *node;
842 	struct list_head *pos, *n;
843 	struct extent_state *cached_state = NULL;
844 	struct btrfs_free_cluster *cluster = NULL;
845 	struct extent_io_tree *unpin = NULL;
846 	struct io_ctl io_ctl;
847 	struct list_head bitmap_list;
848 	struct btrfs_key key;
849 	u64 start, extent_start, extent_end, len;
850 	int entries = 0;
851 	int bitmaps = 0;
852 	int ret;
853 	int err = -1;
854 
855 	INIT_LIST_HEAD(&bitmap_list);
856 
857 	if (!i_size_read(inode))
858 		return -1;
859 
860 	ret = io_ctl_init(&io_ctl, inode, root);
861 	if (ret)
862 		return -1;
863 
864 	/* Get the cluster for this block_group if it exists */
865 	if (block_group && !list_empty(&block_group->cluster_list))
866 		cluster = list_entry(block_group->cluster_list.next,
867 				     struct btrfs_free_cluster,
868 				     block_group_list);
869 
870 	/* Lock all pages first so we can lock the extent safely. */
871 	io_ctl_prepare_pages(&io_ctl, inode, 0);
872 
873 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
874 			 0, &cached_state);
875 
876 	node = rb_first(&ctl->free_space_offset);
877 	if (!node && cluster) {
878 		node = rb_first(&cluster->root);
879 		cluster = NULL;
880 	}
881 
882 	/* Make sure we can fit our crcs into the first page */
883 	if (io_ctl.check_crcs &&
884 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
885 		WARN_ON(1);
886 		goto out_nospc;
887 	}
888 
889 	io_ctl_set_generation(&io_ctl, trans->transid);
890 
891 	/* Write out the extent entries */
892 	while (node) {
893 		struct btrfs_free_space *e;
894 
895 		e = rb_entry(node, struct btrfs_free_space, offset_index);
896 		entries++;
897 
898 		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
899 				       e->bitmap);
900 		if (ret)
901 			goto out_nospc;
902 
903 		if (e->bitmap) {
904 			list_add_tail(&e->list, &bitmap_list);
905 			bitmaps++;
906 		}
907 		node = rb_next(node);
908 		if (!node && cluster) {
909 			node = rb_first(&cluster->root);
910 			cluster = NULL;
911 		}
912 	}
913 
914 	/*
915 	 * We want to add any pinned extents to our free space cache
916 	 * so we don't leak the space
917 	 */
918 
919 	/*
920 	 * We shouldn't have switched the pinned extents yet so this is the
921 	 * right one
922 	 */
923 	unpin = root->fs_info->pinned_extents;
924 
925 	if (block_group)
926 		start = block_group->key.objectid;
927 
928 	while (block_group && (start < block_group->key.objectid +
929 			       block_group->key.offset)) {
930 		ret = find_first_extent_bit(unpin, start,
931 					    &extent_start, &extent_end,
932 					    EXTENT_DIRTY);
933 		if (ret) {
934 			ret = 0;
935 			break;
936 		}
937 
938 		/* This pinned extent is out of our range */
939 		if (extent_start >= block_group->key.objectid +
940 		    block_group->key.offset)
941 			break;
942 
943 		extent_start = max(extent_start, start);
944 		extent_end = min(block_group->key.objectid +
945 				 block_group->key.offset, extent_end + 1);
946 		len = extent_end - extent_start;
947 
948 		entries++;
949 		ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
950 		if (ret)
951 			goto out_nospc;
952 
953 		start = extent_end;
954 	}
955 
956 	/* Write out the bitmaps */
957 	list_for_each_safe(pos, n, &bitmap_list) {
958 		struct btrfs_free_space *entry =
959 			list_entry(pos, struct btrfs_free_space, list);
960 
961 		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
962 		if (ret)
963 			goto out_nospc;
964 		list_del_init(&entry->list);
965 	}
966 
967 	/* Zero out the rest of the pages just to make sure */
968 	io_ctl_zero_remaining_pages(&io_ctl);
969 
970 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
971 				0, i_size_read(inode), &cached_state);
972 	io_ctl_drop_pages(&io_ctl);
973 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
974 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
975 
976 	if (ret)
977 		goto out;
978 
979 
980 	ret = filemap_write_and_wait(inode->i_mapping);
981 	if (ret)
982 		goto out;
983 
984 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
985 	key.offset = offset;
986 	key.type = 0;
987 
988 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
989 	if (ret < 0) {
990 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
991 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
992 				 GFP_NOFS);
993 		goto out;
994 	}
995 	leaf = path->nodes[0];
996 	if (ret > 0) {
997 		struct btrfs_key found_key;
998 		BUG_ON(!path->slots[0]);
999 		path->slots[0]--;
1000 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1001 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1002 		    found_key.offset != offset) {
1003 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1004 					 inode->i_size - 1,
1005 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1006 					 NULL, GFP_NOFS);
1007 			btrfs_release_path(path);
1008 			goto out;
1009 		}
1010 	}
1011 
1012 	BTRFS_I(inode)->generation = trans->transid;
1013 	header = btrfs_item_ptr(leaf, path->slots[0],
1014 				struct btrfs_free_space_header);
1015 	btrfs_set_free_space_entries(leaf, header, entries);
1016 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1017 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1018 	btrfs_mark_buffer_dirty(leaf);
1019 	btrfs_release_path(path);
1020 
1021 	err = 0;
1022 out:
1023 	io_ctl_free(&io_ctl);
1024 	if (err) {
1025 		invalidate_inode_pages2(inode->i_mapping);
1026 		BTRFS_I(inode)->generation = 0;
1027 	}
1028 	btrfs_update_inode(trans, root, inode);
1029 	return err;
1030 
1031 out_nospc:
1032 	list_for_each_safe(pos, n, &bitmap_list) {
1033 		struct btrfs_free_space *entry =
1034 			list_entry(pos, struct btrfs_free_space, list);
1035 		list_del_init(&entry->list);
1036 	}
1037 	io_ctl_drop_pages(&io_ctl);
1038 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1039 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1040 	goto out;
1041 }
1042 
1043 int btrfs_write_out_cache(struct btrfs_root *root,
1044 			  struct btrfs_trans_handle *trans,
1045 			  struct btrfs_block_group_cache *block_group,
1046 			  struct btrfs_path *path)
1047 {
1048 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1049 	struct inode *inode;
1050 	int ret = 0;
1051 
1052 	root = root->fs_info->tree_root;
1053 
1054 	spin_lock(&block_group->lock);
1055 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1056 		spin_unlock(&block_group->lock);
1057 		return 0;
1058 	}
1059 	spin_unlock(&block_group->lock);
1060 
1061 	inode = lookup_free_space_inode(root, block_group, path);
1062 	if (IS_ERR(inode))
1063 		return 0;
1064 
1065 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1066 				      path, block_group->key.objectid);
1067 	if (ret) {
1068 		spin_lock(&block_group->lock);
1069 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1070 		spin_unlock(&block_group->lock);
1071 		ret = 0;
1072 #ifdef DEBUG
1073 		printk(KERN_ERR "btrfs: failed to write free space cache "
1074 		       "for block group %llu\n", block_group->key.objectid);
1075 #endif
1076 	}
1077 
1078 	iput(inode);
1079 	return ret;
1080 }
1081 
1082 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1083 					  u64 offset)
1084 {
1085 	BUG_ON(offset < bitmap_start);
1086 	offset -= bitmap_start;
1087 	return (unsigned long)(div_u64(offset, unit));
1088 }
1089 
1090 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1091 {
1092 	return (unsigned long)(div_u64(bytes, unit));
1093 }
1094 
1095 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1096 				   u64 offset)
1097 {
1098 	u64 bitmap_start;
1099 	u64 bytes_per_bitmap;
1100 
1101 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1102 	bitmap_start = offset - ctl->start;
1103 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1104 	bitmap_start *= bytes_per_bitmap;
1105 	bitmap_start += ctl->start;
1106 
1107 	return bitmap_start;
1108 }
1109 
1110 static int tree_insert_offset(struct rb_root *root, u64 offset,
1111 			      struct rb_node *node, int bitmap)
1112 {
1113 	struct rb_node **p = &root->rb_node;
1114 	struct rb_node *parent = NULL;
1115 	struct btrfs_free_space *info;
1116 
1117 	while (*p) {
1118 		parent = *p;
1119 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1120 
1121 		if (offset < info->offset) {
1122 			p = &(*p)->rb_left;
1123 		} else if (offset > info->offset) {
1124 			p = &(*p)->rb_right;
1125 		} else {
1126 			/*
1127 			 * we could have a bitmap entry and an extent entry
1128 			 * share the same offset.  If this is the case, we want
1129 			 * the extent entry to always be found first if we do a
1130 			 * linear search through the tree, since we want to have
1131 			 * the quickest allocation time, and allocating from an
1132 			 * extent is faster than allocating from a bitmap.  So
1133 			 * if we're inserting a bitmap and we find an entry at
1134 			 * this offset, we want to go right, or after this entry
1135 			 * logically.  If we are inserting an extent and we've
1136 			 * found a bitmap, we want to go left, or before
1137 			 * logically.
1138 			 */
1139 			if (bitmap) {
1140 				if (info->bitmap) {
1141 					WARN_ON_ONCE(1);
1142 					return -EEXIST;
1143 				}
1144 				p = &(*p)->rb_right;
1145 			} else {
1146 				if (!info->bitmap) {
1147 					WARN_ON_ONCE(1);
1148 					return -EEXIST;
1149 				}
1150 				p = &(*p)->rb_left;
1151 			}
1152 		}
1153 	}
1154 
1155 	rb_link_node(node, parent, p);
1156 	rb_insert_color(node, root);
1157 
1158 	return 0;
1159 }
1160 
1161 /*
1162  * searches the tree for the given offset.
1163  *
1164  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1165  * want a section that has at least bytes size and comes at or after the given
1166  * offset.
1167  */
1168 static struct btrfs_free_space *
1169 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1170 		   u64 offset, int bitmap_only, int fuzzy)
1171 {
1172 	struct rb_node *n = ctl->free_space_offset.rb_node;
1173 	struct btrfs_free_space *entry, *prev = NULL;
1174 
1175 	/* find entry that is closest to the 'offset' */
1176 	while (1) {
1177 		if (!n) {
1178 			entry = NULL;
1179 			break;
1180 		}
1181 
1182 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1183 		prev = entry;
1184 
1185 		if (offset < entry->offset)
1186 			n = n->rb_left;
1187 		else if (offset > entry->offset)
1188 			n = n->rb_right;
1189 		else
1190 			break;
1191 	}
1192 
1193 	if (bitmap_only) {
1194 		if (!entry)
1195 			return NULL;
1196 		if (entry->bitmap)
1197 			return entry;
1198 
1199 		/*
1200 		 * bitmap entry and extent entry may share same offset,
1201 		 * in that case, bitmap entry comes after extent entry.
1202 		 */
1203 		n = rb_next(n);
1204 		if (!n)
1205 			return NULL;
1206 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1207 		if (entry->offset != offset)
1208 			return NULL;
1209 
1210 		WARN_ON(!entry->bitmap);
1211 		return entry;
1212 	} else if (entry) {
1213 		if (entry->bitmap) {
1214 			/*
1215 			 * if previous extent entry covers the offset,
1216 			 * we should return it instead of the bitmap entry
1217 			 */
1218 			n = &entry->offset_index;
1219 			while (1) {
1220 				n = rb_prev(n);
1221 				if (!n)
1222 					break;
1223 				prev = rb_entry(n, struct btrfs_free_space,
1224 						offset_index);
1225 				if (!prev->bitmap) {
1226 					if (prev->offset + prev->bytes > offset)
1227 						entry = prev;
1228 					break;
1229 				}
1230 			}
1231 		}
1232 		return entry;
1233 	}
1234 
1235 	if (!prev)
1236 		return NULL;
1237 
1238 	/* find last entry before the 'offset' */
1239 	entry = prev;
1240 	if (entry->offset > offset) {
1241 		n = rb_prev(&entry->offset_index);
1242 		if (n) {
1243 			entry = rb_entry(n, struct btrfs_free_space,
1244 					offset_index);
1245 			BUG_ON(entry->offset > offset);
1246 		} else {
1247 			if (fuzzy)
1248 				return entry;
1249 			else
1250 				return NULL;
1251 		}
1252 	}
1253 
1254 	if (entry->bitmap) {
1255 		n = &entry->offset_index;
1256 		while (1) {
1257 			n = rb_prev(n);
1258 			if (!n)
1259 				break;
1260 			prev = rb_entry(n, struct btrfs_free_space,
1261 					offset_index);
1262 			if (!prev->bitmap) {
1263 				if (prev->offset + prev->bytes > offset)
1264 					return prev;
1265 				break;
1266 			}
1267 		}
1268 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1269 			return entry;
1270 	} else if (entry->offset + entry->bytes > offset)
1271 		return entry;
1272 
1273 	if (!fuzzy)
1274 		return NULL;
1275 
1276 	while (1) {
1277 		if (entry->bitmap) {
1278 			if (entry->offset + BITS_PER_BITMAP *
1279 			    ctl->unit > offset)
1280 				break;
1281 		} else {
1282 			if (entry->offset + entry->bytes > offset)
1283 				break;
1284 		}
1285 
1286 		n = rb_next(&entry->offset_index);
1287 		if (!n)
1288 			return NULL;
1289 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1290 	}
1291 	return entry;
1292 }
1293 
1294 static inline void
1295 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1296 		    struct btrfs_free_space *info)
1297 {
1298 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1299 	ctl->free_extents--;
1300 }
1301 
1302 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1303 			      struct btrfs_free_space *info)
1304 {
1305 	__unlink_free_space(ctl, info);
1306 	ctl->free_space -= info->bytes;
1307 }
1308 
1309 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1310 			   struct btrfs_free_space *info)
1311 {
1312 	int ret = 0;
1313 
1314 	BUG_ON(!info->bitmap && !info->bytes);
1315 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1316 				 &info->offset_index, (info->bitmap != NULL));
1317 	if (ret)
1318 		return ret;
1319 
1320 	ctl->free_space += info->bytes;
1321 	ctl->free_extents++;
1322 	return ret;
1323 }
1324 
1325 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1326 {
1327 	struct btrfs_block_group_cache *block_group = ctl->private;
1328 	u64 max_bytes;
1329 	u64 bitmap_bytes;
1330 	u64 extent_bytes;
1331 	u64 size = block_group->key.offset;
1332 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1333 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1334 
1335 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1336 
1337 	/*
1338 	 * The goal is to keep the total amount of memory used per 1gb of space
1339 	 * at or below 32k, so we need to adjust how much memory we allow to be
1340 	 * used by extent based free space tracking
1341 	 */
1342 	if (size < 1024 * 1024 * 1024)
1343 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1344 	else
1345 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1346 			div64_u64(size, 1024 * 1024 * 1024);
1347 
1348 	/*
1349 	 * we want to account for 1 more bitmap than what we have so we can make
1350 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1351 	 * we add more bitmaps.
1352 	 */
1353 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1354 
1355 	if (bitmap_bytes >= max_bytes) {
1356 		ctl->extents_thresh = 0;
1357 		return;
1358 	}
1359 
1360 	/*
1361 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1362 	 * bytes we can have, or whatever is less than that.
1363 	 */
1364 	extent_bytes = max_bytes - bitmap_bytes;
1365 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1366 
1367 	ctl->extents_thresh =
1368 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1369 }
1370 
1371 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1372 				       struct btrfs_free_space *info,
1373 				       u64 offset, u64 bytes)
1374 {
1375 	unsigned long start, count;
1376 
1377 	start = offset_to_bit(info->offset, ctl->unit, offset);
1378 	count = bytes_to_bits(bytes, ctl->unit);
1379 	BUG_ON(start + count > BITS_PER_BITMAP);
1380 
1381 	bitmap_clear(info->bitmap, start, count);
1382 
1383 	info->bytes -= bytes;
1384 }
1385 
1386 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1387 			      struct btrfs_free_space *info, u64 offset,
1388 			      u64 bytes)
1389 {
1390 	__bitmap_clear_bits(ctl, info, offset, bytes);
1391 	ctl->free_space -= bytes;
1392 }
1393 
1394 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1395 			    struct btrfs_free_space *info, u64 offset,
1396 			    u64 bytes)
1397 {
1398 	unsigned long start, count;
1399 
1400 	start = offset_to_bit(info->offset, ctl->unit, offset);
1401 	count = bytes_to_bits(bytes, ctl->unit);
1402 	BUG_ON(start + count > BITS_PER_BITMAP);
1403 
1404 	bitmap_set(info->bitmap, start, count);
1405 
1406 	info->bytes += bytes;
1407 	ctl->free_space += bytes;
1408 }
1409 
1410 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1411 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1412 			 u64 *bytes)
1413 {
1414 	unsigned long found_bits = 0;
1415 	unsigned long bits, i;
1416 	unsigned long next_zero;
1417 
1418 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1419 			  max_t(u64, *offset, bitmap_info->offset));
1420 	bits = bytes_to_bits(*bytes, ctl->unit);
1421 
1422 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1423 	     i < BITS_PER_BITMAP;
1424 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1425 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1426 					       BITS_PER_BITMAP, i);
1427 		if ((next_zero - i) >= bits) {
1428 			found_bits = next_zero - i;
1429 			break;
1430 		}
1431 		i = next_zero;
1432 	}
1433 
1434 	if (found_bits) {
1435 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1436 		*bytes = (u64)(found_bits) * ctl->unit;
1437 		return 0;
1438 	}
1439 
1440 	return -1;
1441 }
1442 
1443 static struct btrfs_free_space *
1444 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1445 {
1446 	struct btrfs_free_space *entry;
1447 	struct rb_node *node;
1448 	int ret;
1449 
1450 	if (!ctl->free_space_offset.rb_node)
1451 		return NULL;
1452 
1453 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1454 	if (!entry)
1455 		return NULL;
1456 
1457 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1458 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1459 		if (entry->bytes < *bytes)
1460 			continue;
1461 
1462 		if (entry->bitmap) {
1463 			ret = search_bitmap(ctl, entry, offset, bytes);
1464 			if (!ret)
1465 				return entry;
1466 			continue;
1467 		}
1468 
1469 		*offset = entry->offset;
1470 		*bytes = entry->bytes;
1471 		return entry;
1472 	}
1473 
1474 	return NULL;
1475 }
1476 
1477 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1478 			   struct btrfs_free_space *info, u64 offset)
1479 {
1480 	info->offset = offset_to_bitmap(ctl, offset);
1481 	info->bytes = 0;
1482 	INIT_LIST_HEAD(&info->list);
1483 	link_free_space(ctl, info);
1484 	ctl->total_bitmaps++;
1485 
1486 	ctl->op->recalc_thresholds(ctl);
1487 }
1488 
1489 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1490 			struct btrfs_free_space *bitmap_info)
1491 {
1492 	unlink_free_space(ctl, bitmap_info);
1493 	kfree(bitmap_info->bitmap);
1494 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1495 	ctl->total_bitmaps--;
1496 	ctl->op->recalc_thresholds(ctl);
1497 }
1498 
1499 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1500 			      struct btrfs_free_space *bitmap_info,
1501 			      u64 *offset, u64 *bytes)
1502 {
1503 	u64 end;
1504 	u64 search_start, search_bytes;
1505 	int ret;
1506 
1507 again:
1508 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1509 
1510 	/*
1511 	 * XXX - this can go away after a few releases.
1512 	 *
1513 	 * since the only user of btrfs_remove_free_space is the tree logging
1514 	 * stuff, and the only way to test that is under crash conditions, we
1515 	 * want to have this debug stuff here just in case somethings not
1516 	 * working.  Search the bitmap for the space we are trying to use to
1517 	 * make sure its actually there.  If its not there then we need to stop
1518 	 * because something has gone wrong.
1519 	 */
1520 	search_start = *offset;
1521 	search_bytes = *bytes;
1522 	search_bytes = min(search_bytes, end - search_start + 1);
1523 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1524 	BUG_ON(ret < 0 || search_start != *offset);
1525 
1526 	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1527 		bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1528 		*bytes -= end - *offset + 1;
1529 		*offset = end + 1;
1530 	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1531 		bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1532 		*bytes = 0;
1533 	}
1534 
1535 	if (*bytes) {
1536 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1537 		if (!bitmap_info->bytes)
1538 			free_bitmap(ctl, bitmap_info);
1539 
1540 		/*
1541 		 * no entry after this bitmap, but we still have bytes to
1542 		 * remove, so something has gone wrong.
1543 		 */
1544 		if (!next)
1545 			return -EINVAL;
1546 
1547 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1548 				       offset_index);
1549 
1550 		/*
1551 		 * if the next entry isn't a bitmap we need to return to let the
1552 		 * extent stuff do its work.
1553 		 */
1554 		if (!bitmap_info->bitmap)
1555 			return -EAGAIN;
1556 
1557 		/*
1558 		 * Ok the next item is a bitmap, but it may not actually hold
1559 		 * the information for the rest of this free space stuff, so
1560 		 * look for it, and if we don't find it return so we can try
1561 		 * everything over again.
1562 		 */
1563 		search_start = *offset;
1564 		search_bytes = *bytes;
1565 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1566 				    &search_bytes);
1567 		if (ret < 0 || search_start != *offset)
1568 			return -EAGAIN;
1569 
1570 		goto again;
1571 	} else if (!bitmap_info->bytes)
1572 		free_bitmap(ctl, bitmap_info);
1573 
1574 	return 0;
1575 }
1576 
1577 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1578 			       struct btrfs_free_space *info, u64 offset,
1579 			       u64 bytes)
1580 {
1581 	u64 bytes_to_set = 0;
1582 	u64 end;
1583 
1584 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1585 
1586 	bytes_to_set = min(end - offset, bytes);
1587 
1588 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1589 
1590 	return bytes_to_set;
1591 
1592 }
1593 
1594 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1595 		      struct btrfs_free_space *info)
1596 {
1597 	struct btrfs_block_group_cache *block_group = ctl->private;
1598 
1599 	/*
1600 	 * If we are below the extents threshold then we can add this as an
1601 	 * extent, and don't have to deal with the bitmap
1602 	 */
1603 	if (ctl->free_extents < ctl->extents_thresh) {
1604 		/*
1605 		 * If this block group has some small extents we don't want to
1606 		 * use up all of our free slots in the cache with them, we want
1607 		 * to reserve them to larger extents, however if we have plent
1608 		 * of cache left then go ahead an dadd them, no sense in adding
1609 		 * the overhead of a bitmap if we don't have to.
1610 		 */
1611 		if (info->bytes <= block_group->sectorsize * 4) {
1612 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1613 				return false;
1614 		} else {
1615 			return false;
1616 		}
1617 	}
1618 
1619 	/*
1620 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1621 	 * don't even bother to create a bitmap for this
1622 	 */
1623 	if (BITS_PER_BITMAP * block_group->sectorsize >
1624 	    block_group->key.offset)
1625 		return false;
1626 
1627 	return true;
1628 }
1629 
1630 static struct btrfs_free_space_op free_space_op = {
1631 	.recalc_thresholds	= recalculate_thresholds,
1632 	.use_bitmap		= use_bitmap,
1633 };
1634 
1635 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1636 			      struct btrfs_free_space *info)
1637 {
1638 	struct btrfs_free_space *bitmap_info;
1639 	struct btrfs_block_group_cache *block_group = NULL;
1640 	int added = 0;
1641 	u64 bytes, offset, bytes_added;
1642 	int ret;
1643 
1644 	bytes = info->bytes;
1645 	offset = info->offset;
1646 
1647 	if (!ctl->op->use_bitmap(ctl, info))
1648 		return 0;
1649 
1650 	if (ctl->op == &free_space_op)
1651 		block_group = ctl->private;
1652 again:
1653 	/*
1654 	 * Since we link bitmaps right into the cluster we need to see if we
1655 	 * have a cluster here, and if so and it has our bitmap we need to add
1656 	 * the free space to that bitmap.
1657 	 */
1658 	if (block_group && !list_empty(&block_group->cluster_list)) {
1659 		struct btrfs_free_cluster *cluster;
1660 		struct rb_node *node;
1661 		struct btrfs_free_space *entry;
1662 
1663 		cluster = list_entry(block_group->cluster_list.next,
1664 				     struct btrfs_free_cluster,
1665 				     block_group_list);
1666 		spin_lock(&cluster->lock);
1667 		node = rb_first(&cluster->root);
1668 		if (!node) {
1669 			spin_unlock(&cluster->lock);
1670 			goto no_cluster_bitmap;
1671 		}
1672 
1673 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1674 		if (!entry->bitmap) {
1675 			spin_unlock(&cluster->lock);
1676 			goto no_cluster_bitmap;
1677 		}
1678 
1679 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1680 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1681 							  offset, bytes);
1682 			bytes -= bytes_added;
1683 			offset += bytes_added;
1684 		}
1685 		spin_unlock(&cluster->lock);
1686 		if (!bytes) {
1687 			ret = 1;
1688 			goto out;
1689 		}
1690 	}
1691 
1692 no_cluster_bitmap:
1693 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1694 					 1, 0);
1695 	if (!bitmap_info) {
1696 		BUG_ON(added);
1697 		goto new_bitmap;
1698 	}
1699 
1700 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1701 	bytes -= bytes_added;
1702 	offset += bytes_added;
1703 	added = 0;
1704 
1705 	if (!bytes) {
1706 		ret = 1;
1707 		goto out;
1708 	} else
1709 		goto again;
1710 
1711 new_bitmap:
1712 	if (info && info->bitmap) {
1713 		add_new_bitmap(ctl, info, offset);
1714 		added = 1;
1715 		info = NULL;
1716 		goto again;
1717 	} else {
1718 		spin_unlock(&ctl->tree_lock);
1719 
1720 		/* no pre-allocated info, allocate a new one */
1721 		if (!info) {
1722 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1723 						 GFP_NOFS);
1724 			if (!info) {
1725 				spin_lock(&ctl->tree_lock);
1726 				ret = -ENOMEM;
1727 				goto out;
1728 			}
1729 		}
1730 
1731 		/* allocate the bitmap */
1732 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1733 		spin_lock(&ctl->tree_lock);
1734 		if (!info->bitmap) {
1735 			ret = -ENOMEM;
1736 			goto out;
1737 		}
1738 		goto again;
1739 	}
1740 
1741 out:
1742 	if (info) {
1743 		if (info->bitmap)
1744 			kfree(info->bitmap);
1745 		kmem_cache_free(btrfs_free_space_cachep, info);
1746 	}
1747 
1748 	return ret;
1749 }
1750 
1751 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1752 			  struct btrfs_free_space *info, bool update_stat)
1753 {
1754 	struct btrfs_free_space *left_info;
1755 	struct btrfs_free_space *right_info;
1756 	bool merged = false;
1757 	u64 offset = info->offset;
1758 	u64 bytes = info->bytes;
1759 
1760 	/*
1761 	 * first we want to see if there is free space adjacent to the range we
1762 	 * are adding, if there is remove that struct and add a new one to
1763 	 * cover the entire range
1764 	 */
1765 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1766 	if (right_info && rb_prev(&right_info->offset_index))
1767 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1768 				     struct btrfs_free_space, offset_index);
1769 	else
1770 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1771 
1772 	if (right_info && !right_info->bitmap) {
1773 		if (update_stat)
1774 			unlink_free_space(ctl, right_info);
1775 		else
1776 			__unlink_free_space(ctl, right_info);
1777 		info->bytes += right_info->bytes;
1778 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1779 		merged = true;
1780 	}
1781 
1782 	if (left_info && !left_info->bitmap &&
1783 	    left_info->offset + left_info->bytes == offset) {
1784 		if (update_stat)
1785 			unlink_free_space(ctl, left_info);
1786 		else
1787 			__unlink_free_space(ctl, left_info);
1788 		info->offset = left_info->offset;
1789 		info->bytes += left_info->bytes;
1790 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1791 		merged = true;
1792 	}
1793 
1794 	return merged;
1795 }
1796 
1797 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1798 			   u64 offset, u64 bytes)
1799 {
1800 	struct btrfs_free_space *info;
1801 	int ret = 0;
1802 
1803 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1804 	if (!info)
1805 		return -ENOMEM;
1806 
1807 	info->offset = offset;
1808 	info->bytes = bytes;
1809 
1810 	spin_lock(&ctl->tree_lock);
1811 
1812 	if (try_merge_free_space(ctl, info, true))
1813 		goto link;
1814 
1815 	/*
1816 	 * There was no extent directly to the left or right of this new
1817 	 * extent then we know we're going to have to allocate a new extent, so
1818 	 * before we do that see if we need to drop this into a bitmap
1819 	 */
1820 	ret = insert_into_bitmap(ctl, info);
1821 	if (ret < 0) {
1822 		goto out;
1823 	} else if (ret) {
1824 		ret = 0;
1825 		goto out;
1826 	}
1827 link:
1828 	ret = link_free_space(ctl, info);
1829 	if (ret)
1830 		kmem_cache_free(btrfs_free_space_cachep, info);
1831 out:
1832 	spin_unlock(&ctl->tree_lock);
1833 
1834 	if (ret) {
1835 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1836 		BUG_ON(ret == -EEXIST);
1837 	}
1838 
1839 	return ret;
1840 }
1841 
1842 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1843 			    u64 offset, u64 bytes)
1844 {
1845 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1846 	struct btrfs_free_space *info;
1847 	struct btrfs_free_space *next_info = NULL;
1848 	int ret = 0;
1849 
1850 	spin_lock(&ctl->tree_lock);
1851 
1852 again:
1853 	info = tree_search_offset(ctl, offset, 0, 0);
1854 	if (!info) {
1855 		/*
1856 		 * oops didn't find an extent that matched the space we wanted
1857 		 * to remove, look for a bitmap instead
1858 		 */
1859 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1860 					  1, 0);
1861 		if (!info) {
1862 			/* the tree logging code might be calling us before we
1863 			 * have fully loaded the free space rbtree for this
1864 			 * block group.  So it is possible the entry won't
1865 			 * be in the rbtree yet at all.  The caching code
1866 			 * will make sure not to put it in the rbtree if
1867 			 * the logging code has pinned it.
1868 			 */
1869 			goto out_lock;
1870 		}
1871 	}
1872 
1873 	if (info->bytes < bytes && rb_next(&info->offset_index)) {
1874 		u64 end;
1875 		next_info = rb_entry(rb_next(&info->offset_index),
1876 					     struct btrfs_free_space,
1877 					     offset_index);
1878 
1879 		if (next_info->bitmap)
1880 			end = next_info->offset +
1881 			      BITS_PER_BITMAP * ctl->unit - 1;
1882 		else
1883 			end = next_info->offset + next_info->bytes;
1884 
1885 		if (next_info->bytes < bytes ||
1886 		    next_info->offset > offset || offset > end) {
1887 			printk(KERN_CRIT "Found free space at %llu, size %llu,"
1888 			      " trying to use %llu\n",
1889 			      (unsigned long long)info->offset,
1890 			      (unsigned long long)info->bytes,
1891 			      (unsigned long long)bytes);
1892 			WARN_ON(1);
1893 			ret = -EINVAL;
1894 			goto out_lock;
1895 		}
1896 
1897 		info = next_info;
1898 	}
1899 
1900 	if (info->bytes == bytes) {
1901 		unlink_free_space(ctl, info);
1902 		if (info->bitmap) {
1903 			kfree(info->bitmap);
1904 			ctl->total_bitmaps--;
1905 		}
1906 		kmem_cache_free(btrfs_free_space_cachep, info);
1907 		ret = 0;
1908 		goto out_lock;
1909 	}
1910 
1911 	if (!info->bitmap && info->offset == offset) {
1912 		unlink_free_space(ctl, info);
1913 		info->offset += bytes;
1914 		info->bytes -= bytes;
1915 		ret = link_free_space(ctl, info);
1916 		WARN_ON(ret);
1917 		goto out_lock;
1918 	}
1919 
1920 	if (!info->bitmap && info->offset <= offset &&
1921 	    info->offset + info->bytes >= offset + bytes) {
1922 		u64 old_start = info->offset;
1923 		/*
1924 		 * we're freeing space in the middle of the info,
1925 		 * this can happen during tree log replay
1926 		 *
1927 		 * first unlink the old info and then
1928 		 * insert it again after the hole we're creating
1929 		 */
1930 		unlink_free_space(ctl, info);
1931 		if (offset + bytes < info->offset + info->bytes) {
1932 			u64 old_end = info->offset + info->bytes;
1933 
1934 			info->offset = offset + bytes;
1935 			info->bytes = old_end - info->offset;
1936 			ret = link_free_space(ctl, info);
1937 			WARN_ON(ret);
1938 			if (ret)
1939 				goto out_lock;
1940 		} else {
1941 			/* the hole we're creating ends at the end
1942 			 * of the info struct, just free the info
1943 			 */
1944 			kmem_cache_free(btrfs_free_space_cachep, info);
1945 		}
1946 		spin_unlock(&ctl->tree_lock);
1947 
1948 		/* step two, insert a new info struct to cover
1949 		 * anything before the hole
1950 		 */
1951 		ret = btrfs_add_free_space(block_group, old_start,
1952 					   offset - old_start);
1953 		WARN_ON(ret); /* -ENOMEM */
1954 		goto out;
1955 	}
1956 
1957 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1958 	if (ret == -EAGAIN)
1959 		goto again;
1960 	BUG_ON(ret); /* logic error */
1961 out_lock:
1962 	spin_unlock(&ctl->tree_lock);
1963 out:
1964 	return ret;
1965 }
1966 
1967 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1968 			   u64 bytes)
1969 {
1970 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1971 	struct btrfs_free_space *info;
1972 	struct rb_node *n;
1973 	int count = 0;
1974 
1975 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1976 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1977 		if (info->bytes >= bytes)
1978 			count++;
1979 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1980 		       (unsigned long long)info->offset,
1981 		       (unsigned long long)info->bytes,
1982 		       (info->bitmap) ? "yes" : "no");
1983 	}
1984 	printk(KERN_INFO "block group has cluster?: %s\n",
1985 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1986 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1987 	       "\n", count);
1988 }
1989 
1990 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1991 {
1992 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1993 
1994 	spin_lock_init(&ctl->tree_lock);
1995 	ctl->unit = block_group->sectorsize;
1996 	ctl->start = block_group->key.objectid;
1997 	ctl->private = block_group;
1998 	ctl->op = &free_space_op;
1999 
2000 	/*
2001 	 * we only want to have 32k of ram per block group for keeping
2002 	 * track of free space, and if we pass 1/2 of that we want to
2003 	 * start converting things over to using bitmaps
2004 	 */
2005 	ctl->extents_thresh = ((1024 * 32) / 2) /
2006 				sizeof(struct btrfs_free_space);
2007 }
2008 
2009 /*
2010  * for a given cluster, put all of its extents back into the free
2011  * space cache.  If the block group passed doesn't match the block group
2012  * pointed to by the cluster, someone else raced in and freed the
2013  * cluster already.  In that case, we just return without changing anything
2014  */
2015 static int
2016 __btrfs_return_cluster_to_free_space(
2017 			     struct btrfs_block_group_cache *block_group,
2018 			     struct btrfs_free_cluster *cluster)
2019 {
2020 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2021 	struct btrfs_free_space *entry;
2022 	struct rb_node *node;
2023 
2024 	spin_lock(&cluster->lock);
2025 	if (cluster->block_group != block_group)
2026 		goto out;
2027 
2028 	cluster->block_group = NULL;
2029 	cluster->window_start = 0;
2030 	list_del_init(&cluster->block_group_list);
2031 
2032 	node = rb_first(&cluster->root);
2033 	while (node) {
2034 		bool bitmap;
2035 
2036 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2037 		node = rb_next(&entry->offset_index);
2038 		rb_erase(&entry->offset_index, &cluster->root);
2039 
2040 		bitmap = (entry->bitmap != NULL);
2041 		if (!bitmap)
2042 			try_merge_free_space(ctl, entry, false);
2043 		tree_insert_offset(&ctl->free_space_offset,
2044 				   entry->offset, &entry->offset_index, bitmap);
2045 	}
2046 	cluster->root = RB_ROOT;
2047 
2048 out:
2049 	spin_unlock(&cluster->lock);
2050 	btrfs_put_block_group(block_group);
2051 	return 0;
2052 }
2053 
2054 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2055 {
2056 	struct btrfs_free_space *info;
2057 	struct rb_node *node;
2058 
2059 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2060 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2061 		if (!info->bitmap) {
2062 			unlink_free_space(ctl, info);
2063 			kmem_cache_free(btrfs_free_space_cachep, info);
2064 		} else {
2065 			free_bitmap(ctl, info);
2066 		}
2067 		if (need_resched()) {
2068 			spin_unlock(&ctl->tree_lock);
2069 			cond_resched();
2070 			spin_lock(&ctl->tree_lock);
2071 		}
2072 	}
2073 }
2074 
2075 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2076 {
2077 	spin_lock(&ctl->tree_lock);
2078 	__btrfs_remove_free_space_cache_locked(ctl);
2079 	spin_unlock(&ctl->tree_lock);
2080 }
2081 
2082 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2083 {
2084 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2085 	struct btrfs_free_cluster *cluster;
2086 	struct list_head *head;
2087 
2088 	spin_lock(&ctl->tree_lock);
2089 	while ((head = block_group->cluster_list.next) !=
2090 	       &block_group->cluster_list) {
2091 		cluster = list_entry(head, struct btrfs_free_cluster,
2092 				     block_group_list);
2093 
2094 		WARN_ON(cluster->block_group != block_group);
2095 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2096 		if (need_resched()) {
2097 			spin_unlock(&ctl->tree_lock);
2098 			cond_resched();
2099 			spin_lock(&ctl->tree_lock);
2100 		}
2101 	}
2102 	__btrfs_remove_free_space_cache_locked(ctl);
2103 	spin_unlock(&ctl->tree_lock);
2104 
2105 }
2106 
2107 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2108 			       u64 offset, u64 bytes, u64 empty_size)
2109 {
2110 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2111 	struct btrfs_free_space *entry = NULL;
2112 	u64 bytes_search = bytes + empty_size;
2113 	u64 ret = 0;
2114 
2115 	spin_lock(&ctl->tree_lock);
2116 	entry = find_free_space(ctl, &offset, &bytes_search);
2117 	if (!entry)
2118 		goto out;
2119 
2120 	ret = offset;
2121 	if (entry->bitmap) {
2122 		bitmap_clear_bits(ctl, entry, offset, bytes);
2123 		if (!entry->bytes)
2124 			free_bitmap(ctl, entry);
2125 	} else {
2126 		unlink_free_space(ctl, entry);
2127 		entry->offset += bytes;
2128 		entry->bytes -= bytes;
2129 		if (!entry->bytes)
2130 			kmem_cache_free(btrfs_free_space_cachep, entry);
2131 		else
2132 			link_free_space(ctl, entry);
2133 	}
2134 
2135 out:
2136 	spin_unlock(&ctl->tree_lock);
2137 
2138 	return ret;
2139 }
2140 
2141 /*
2142  * given a cluster, put all of its extents back into the free space
2143  * cache.  If a block group is passed, this function will only free
2144  * a cluster that belongs to the passed block group.
2145  *
2146  * Otherwise, it'll get a reference on the block group pointed to by the
2147  * cluster and remove the cluster from it.
2148  */
2149 int btrfs_return_cluster_to_free_space(
2150 			       struct btrfs_block_group_cache *block_group,
2151 			       struct btrfs_free_cluster *cluster)
2152 {
2153 	struct btrfs_free_space_ctl *ctl;
2154 	int ret;
2155 
2156 	/* first, get a safe pointer to the block group */
2157 	spin_lock(&cluster->lock);
2158 	if (!block_group) {
2159 		block_group = cluster->block_group;
2160 		if (!block_group) {
2161 			spin_unlock(&cluster->lock);
2162 			return 0;
2163 		}
2164 	} else if (cluster->block_group != block_group) {
2165 		/* someone else has already freed it don't redo their work */
2166 		spin_unlock(&cluster->lock);
2167 		return 0;
2168 	}
2169 	atomic_inc(&block_group->count);
2170 	spin_unlock(&cluster->lock);
2171 
2172 	ctl = block_group->free_space_ctl;
2173 
2174 	/* now return any extents the cluster had on it */
2175 	spin_lock(&ctl->tree_lock);
2176 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2177 	spin_unlock(&ctl->tree_lock);
2178 
2179 	/* finally drop our ref */
2180 	btrfs_put_block_group(block_group);
2181 	return ret;
2182 }
2183 
2184 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2185 				   struct btrfs_free_cluster *cluster,
2186 				   struct btrfs_free_space *entry,
2187 				   u64 bytes, u64 min_start)
2188 {
2189 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2190 	int err;
2191 	u64 search_start = cluster->window_start;
2192 	u64 search_bytes = bytes;
2193 	u64 ret = 0;
2194 
2195 	search_start = min_start;
2196 	search_bytes = bytes;
2197 
2198 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2199 	if (err)
2200 		return 0;
2201 
2202 	ret = search_start;
2203 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2204 
2205 	return ret;
2206 }
2207 
2208 /*
2209  * given a cluster, try to allocate 'bytes' from it, returns 0
2210  * if it couldn't find anything suitably large, or a logical disk offset
2211  * if things worked out
2212  */
2213 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2214 			     struct btrfs_free_cluster *cluster, u64 bytes,
2215 			     u64 min_start)
2216 {
2217 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2218 	struct btrfs_free_space *entry = NULL;
2219 	struct rb_node *node;
2220 	u64 ret = 0;
2221 
2222 	spin_lock(&cluster->lock);
2223 	if (bytes > cluster->max_size)
2224 		goto out;
2225 
2226 	if (cluster->block_group != block_group)
2227 		goto out;
2228 
2229 	node = rb_first(&cluster->root);
2230 	if (!node)
2231 		goto out;
2232 
2233 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2234 	while(1) {
2235 		if (entry->bytes < bytes ||
2236 		    (!entry->bitmap && entry->offset < min_start)) {
2237 			node = rb_next(&entry->offset_index);
2238 			if (!node)
2239 				break;
2240 			entry = rb_entry(node, struct btrfs_free_space,
2241 					 offset_index);
2242 			continue;
2243 		}
2244 
2245 		if (entry->bitmap) {
2246 			ret = btrfs_alloc_from_bitmap(block_group,
2247 						      cluster, entry, bytes,
2248 						      cluster->window_start);
2249 			if (ret == 0) {
2250 				node = rb_next(&entry->offset_index);
2251 				if (!node)
2252 					break;
2253 				entry = rb_entry(node, struct btrfs_free_space,
2254 						 offset_index);
2255 				continue;
2256 			}
2257 			cluster->window_start += bytes;
2258 		} else {
2259 			ret = entry->offset;
2260 
2261 			entry->offset += bytes;
2262 			entry->bytes -= bytes;
2263 		}
2264 
2265 		if (entry->bytes == 0)
2266 			rb_erase(&entry->offset_index, &cluster->root);
2267 		break;
2268 	}
2269 out:
2270 	spin_unlock(&cluster->lock);
2271 
2272 	if (!ret)
2273 		return 0;
2274 
2275 	spin_lock(&ctl->tree_lock);
2276 
2277 	ctl->free_space -= bytes;
2278 	if (entry->bytes == 0) {
2279 		ctl->free_extents--;
2280 		if (entry->bitmap) {
2281 			kfree(entry->bitmap);
2282 			ctl->total_bitmaps--;
2283 			ctl->op->recalc_thresholds(ctl);
2284 		}
2285 		kmem_cache_free(btrfs_free_space_cachep, entry);
2286 	}
2287 
2288 	spin_unlock(&ctl->tree_lock);
2289 
2290 	return ret;
2291 }
2292 
2293 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2294 				struct btrfs_free_space *entry,
2295 				struct btrfs_free_cluster *cluster,
2296 				u64 offset, u64 bytes,
2297 				u64 cont1_bytes, u64 min_bytes)
2298 {
2299 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2300 	unsigned long next_zero;
2301 	unsigned long i;
2302 	unsigned long want_bits;
2303 	unsigned long min_bits;
2304 	unsigned long found_bits;
2305 	unsigned long start = 0;
2306 	unsigned long total_found = 0;
2307 	int ret;
2308 
2309 	i = offset_to_bit(entry->offset, block_group->sectorsize,
2310 			  max_t(u64, offset, entry->offset));
2311 	want_bits = bytes_to_bits(bytes, block_group->sectorsize);
2312 	min_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2313 
2314 again:
2315 	found_bits = 0;
2316 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2317 	     i < BITS_PER_BITMAP;
2318 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2319 		next_zero = find_next_zero_bit(entry->bitmap,
2320 					       BITS_PER_BITMAP, i);
2321 		if (next_zero - i >= min_bits) {
2322 			found_bits = next_zero - i;
2323 			break;
2324 		}
2325 		i = next_zero;
2326 	}
2327 
2328 	if (!found_bits)
2329 		return -ENOSPC;
2330 
2331 	if (!total_found) {
2332 		start = i;
2333 		cluster->max_size = 0;
2334 	}
2335 
2336 	total_found += found_bits;
2337 
2338 	if (cluster->max_size < found_bits * block_group->sectorsize)
2339 		cluster->max_size = found_bits * block_group->sectorsize;
2340 
2341 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2342 		i = next_zero + 1;
2343 		goto again;
2344 	}
2345 
2346 	cluster->window_start = start * block_group->sectorsize +
2347 		entry->offset;
2348 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2349 	ret = tree_insert_offset(&cluster->root, entry->offset,
2350 				 &entry->offset_index, 1);
2351 	BUG_ON(ret); /* -EEXIST; Logic error */
2352 
2353 	trace_btrfs_setup_cluster(block_group, cluster,
2354 				  total_found * block_group->sectorsize, 1);
2355 	return 0;
2356 }
2357 
2358 /*
2359  * This searches the block group for just extents to fill the cluster with.
2360  * Try to find a cluster with at least bytes total bytes, at least one
2361  * extent of cont1_bytes, and other clusters of at least min_bytes.
2362  */
2363 static noinline int
2364 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2365 			struct btrfs_free_cluster *cluster,
2366 			struct list_head *bitmaps, u64 offset, u64 bytes,
2367 			u64 cont1_bytes, u64 min_bytes)
2368 {
2369 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2370 	struct btrfs_free_space *first = NULL;
2371 	struct btrfs_free_space *entry = NULL;
2372 	struct btrfs_free_space *last;
2373 	struct rb_node *node;
2374 	u64 window_start;
2375 	u64 window_free;
2376 	u64 max_extent;
2377 	u64 total_size = 0;
2378 
2379 	entry = tree_search_offset(ctl, offset, 0, 1);
2380 	if (!entry)
2381 		return -ENOSPC;
2382 
2383 	/*
2384 	 * We don't want bitmaps, so just move along until we find a normal
2385 	 * extent entry.
2386 	 */
2387 	while (entry->bitmap || entry->bytes < min_bytes) {
2388 		if (entry->bitmap && list_empty(&entry->list))
2389 			list_add_tail(&entry->list, bitmaps);
2390 		node = rb_next(&entry->offset_index);
2391 		if (!node)
2392 			return -ENOSPC;
2393 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2394 	}
2395 
2396 	window_start = entry->offset;
2397 	window_free = entry->bytes;
2398 	max_extent = entry->bytes;
2399 	first = entry;
2400 	last = entry;
2401 
2402 	for (node = rb_next(&entry->offset_index); node;
2403 	     node = rb_next(&entry->offset_index)) {
2404 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2405 
2406 		if (entry->bitmap) {
2407 			if (list_empty(&entry->list))
2408 				list_add_tail(&entry->list, bitmaps);
2409 			continue;
2410 		}
2411 
2412 		if (entry->bytes < min_bytes)
2413 			continue;
2414 
2415 		last = entry;
2416 		window_free += entry->bytes;
2417 		if (entry->bytes > max_extent)
2418 			max_extent = entry->bytes;
2419 	}
2420 
2421 	if (window_free < bytes || max_extent < cont1_bytes)
2422 		return -ENOSPC;
2423 
2424 	cluster->window_start = first->offset;
2425 
2426 	node = &first->offset_index;
2427 
2428 	/*
2429 	 * now we've found our entries, pull them out of the free space
2430 	 * cache and put them into the cluster rbtree
2431 	 */
2432 	do {
2433 		int ret;
2434 
2435 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2436 		node = rb_next(&entry->offset_index);
2437 		if (entry->bitmap || entry->bytes < min_bytes)
2438 			continue;
2439 
2440 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2441 		ret = tree_insert_offset(&cluster->root, entry->offset,
2442 					 &entry->offset_index, 0);
2443 		total_size += entry->bytes;
2444 		BUG_ON(ret); /* -EEXIST; Logic error */
2445 	} while (node && entry != last);
2446 
2447 	cluster->max_size = max_extent;
2448 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2449 	return 0;
2450 }
2451 
2452 /*
2453  * This specifically looks for bitmaps that may work in the cluster, we assume
2454  * that we have already failed to find extents that will work.
2455  */
2456 static noinline int
2457 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2458 		     struct btrfs_free_cluster *cluster,
2459 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2460 		     u64 cont1_bytes, u64 min_bytes)
2461 {
2462 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2463 	struct btrfs_free_space *entry;
2464 	int ret = -ENOSPC;
2465 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2466 
2467 	if (ctl->total_bitmaps == 0)
2468 		return -ENOSPC;
2469 
2470 	/*
2471 	 * The bitmap that covers offset won't be in the list unless offset
2472 	 * is just its start offset.
2473 	 */
2474 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2475 	if (entry->offset != bitmap_offset) {
2476 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2477 		if (entry && list_empty(&entry->list))
2478 			list_add(&entry->list, bitmaps);
2479 	}
2480 
2481 	list_for_each_entry(entry, bitmaps, list) {
2482 		if (entry->bytes < bytes)
2483 			continue;
2484 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2485 					   bytes, cont1_bytes, min_bytes);
2486 		if (!ret)
2487 			return 0;
2488 	}
2489 
2490 	/*
2491 	 * The bitmaps list has all the bitmaps that record free space
2492 	 * starting after offset, so no more search is required.
2493 	 */
2494 	return -ENOSPC;
2495 }
2496 
2497 /*
2498  * here we try to find a cluster of blocks in a block group.  The goal
2499  * is to find at least bytes+empty_size.
2500  * We might not find them all in one contiguous area.
2501  *
2502  * returns zero and sets up cluster if things worked out, otherwise
2503  * it returns -enospc
2504  */
2505 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2506 			     struct btrfs_root *root,
2507 			     struct btrfs_block_group_cache *block_group,
2508 			     struct btrfs_free_cluster *cluster,
2509 			     u64 offset, u64 bytes, u64 empty_size)
2510 {
2511 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2512 	struct btrfs_free_space *entry, *tmp;
2513 	LIST_HEAD(bitmaps);
2514 	u64 min_bytes;
2515 	u64 cont1_bytes;
2516 	int ret;
2517 
2518 	/*
2519 	 * Choose the minimum extent size we'll require for this
2520 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2521 	 * For metadata, allow allocates with smaller extents.  For
2522 	 * data, keep it dense.
2523 	 */
2524 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2525 		cont1_bytes = min_bytes = bytes + empty_size;
2526 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2527 		cont1_bytes = bytes;
2528 		min_bytes = block_group->sectorsize;
2529 	} else {
2530 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2531 		min_bytes = block_group->sectorsize;
2532 	}
2533 
2534 	spin_lock(&ctl->tree_lock);
2535 
2536 	/*
2537 	 * If we know we don't have enough space to make a cluster don't even
2538 	 * bother doing all the work to try and find one.
2539 	 */
2540 	if (ctl->free_space < bytes) {
2541 		spin_unlock(&ctl->tree_lock);
2542 		return -ENOSPC;
2543 	}
2544 
2545 	spin_lock(&cluster->lock);
2546 
2547 	/* someone already found a cluster, hooray */
2548 	if (cluster->block_group) {
2549 		ret = 0;
2550 		goto out;
2551 	}
2552 
2553 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2554 				 min_bytes);
2555 
2556 	INIT_LIST_HEAD(&bitmaps);
2557 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2558 				      bytes + empty_size,
2559 				      cont1_bytes, min_bytes);
2560 	if (ret)
2561 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2562 					   offset, bytes + empty_size,
2563 					   cont1_bytes, min_bytes);
2564 
2565 	/* Clear our temporary list */
2566 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2567 		list_del_init(&entry->list);
2568 
2569 	if (!ret) {
2570 		atomic_inc(&block_group->count);
2571 		list_add_tail(&cluster->block_group_list,
2572 			      &block_group->cluster_list);
2573 		cluster->block_group = block_group;
2574 	} else {
2575 		trace_btrfs_failed_cluster_setup(block_group);
2576 	}
2577 out:
2578 	spin_unlock(&cluster->lock);
2579 	spin_unlock(&ctl->tree_lock);
2580 
2581 	return ret;
2582 }
2583 
2584 /*
2585  * simple code to zero out a cluster
2586  */
2587 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2588 {
2589 	spin_lock_init(&cluster->lock);
2590 	spin_lock_init(&cluster->refill_lock);
2591 	cluster->root = RB_ROOT;
2592 	cluster->max_size = 0;
2593 	INIT_LIST_HEAD(&cluster->block_group_list);
2594 	cluster->block_group = NULL;
2595 }
2596 
2597 static int do_trimming(struct btrfs_block_group_cache *block_group,
2598 		       u64 *total_trimmed, u64 start, u64 bytes,
2599 		       u64 reserved_start, u64 reserved_bytes)
2600 {
2601 	struct btrfs_space_info *space_info = block_group->space_info;
2602 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2603 	int ret;
2604 	int update = 0;
2605 	u64 trimmed = 0;
2606 
2607 	spin_lock(&space_info->lock);
2608 	spin_lock(&block_group->lock);
2609 	if (!block_group->ro) {
2610 		block_group->reserved += reserved_bytes;
2611 		space_info->bytes_reserved += reserved_bytes;
2612 		update = 1;
2613 	}
2614 	spin_unlock(&block_group->lock);
2615 	spin_unlock(&space_info->lock);
2616 
2617 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2618 					 start, bytes, &trimmed);
2619 	if (!ret)
2620 		*total_trimmed += trimmed;
2621 
2622 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2623 
2624 	if (update) {
2625 		spin_lock(&space_info->lock);
2626 		spin_lock(&block_group->lock);
2627 		if (block_group->ro)
2628 			space_info->bytes_readonly += reserved_bytes;
2629 		block_group->reserved -= reserved_bytes;
2630 		space_info->bytes_reserved -= reserved_bytes;
2631 		spin_unlock(&space_info->lock);
2632 		spin_unlock(&block_group->lock);
2633 	}
2634 
2635 	return ret;
2636 }
2637 
2638 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2639 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2640 {
2641 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2642 	struct btrfs_free_space *entry;
2643 	struct rb_node *node;
2644 	int ret = 0;
2645 	u64 extent_start;
2646 	u64 extent_bytes;
2647 	u64 bytes;
2648 
2649 	while (start < end) {
2650 		spin_lock(&ctl->tree_lock);
2651 
2652 		if (ctl->free_space < minlen) {
2653 			spin_unlock(&ctl->tree_lock);
2654 			break;
2655 		}
2656 
2657 		entry = tree_search_offset(ctl, start, 0, 1);
2658 		if (!entry) {
2659 			spin_unlock(&ctl->tree_lock);
2660 			break;
2661 		}
2662 
2663 		/* skip bitmaps */
2664 		while (entry->bitmap) {
2665 			node = rb_next(&entry->offset_index);
2666 			if (!node) {
2667 				spin_unlock(&ctl->tree_lock);
2668 				goto out;
2669 			}
2670 			entry = rb_entry(node, struct btrfs_free_space,
2671 					 offset_index);
2672 		}
2673 
2674 		if (entry->offset >= end) {
2675 			spin_unlock(&ctl->tree_lock);
2676 			break;
2677 		}
2678 
2679 		extent_start = entry->offset;
2680 		extent_bytes = entry->bytes;
2681 		start = max(start, extent_start);
2682 		bytes = min(extent_start + extent_bytes, end) - start;
2683 		if (bytes < minlen) {
2684 			spin_unlock(&ctl->tree_lock);
2685 			goto next;
2686 		}
2687 
2688 		unlink_free_space(ctl, entry);
2689 		kmem_cache_free(btrfs_free_space_cachep, entry);
2690 
2691 		spin_unlock(&ctl->tree_lock);
2692 
2693 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2694 				  extent_start, extent_bytes);
2695 		if (ret)
2696 			break;
2697 next:
2698 		start += bytes;
2699 
2700 		if (fatal_signal_pending(current)) {
2701 			ret = -ERESTARTSYS;
2702 			break;
2703 		}
2704 
2705 		cond_resched();
2706 	}
2707 out:
2708 	return ret;
2709 }
2710 
2711 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2712 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2713 {
2714 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2715 	struct btrfs_free_space *entry;
2716 	int ret = 0;
2717 	int ret2;
2718 	u64 bytes;
2719 	u64 offset = offset_to_bitmap(ctl, start);
2720 
2721 	while (offset < end) {
2722 		bool next_bitmap = false;
2723 
2724 		spin_lock(&ctl->tree_lock);
2725 
2726 		if (ctl->free_space < minlen) {
2727 			spin_unlock(&ctl->tree_lock);
2728 			break;
2729 		}
2730 
2731 		entry = tree_search_offset(ctl, offset, 1, 0);
2732 		if (!entry) {
2733 			spin_unlock(&ctl->tree_lock);
2734 			next_bitmap = true;
2735 			goto next;
2736 		}
2737 
2738 		bytes = minlen;
2739 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2740 		if (ret2 || start >= end) {
2741 			spin_unlock(&ctl->tree_lock);
2742 			next_bitmap = true;
2743 			goto next;
2744 		}
2745 
2746 		bytes = min(bytes, end - start);
2747 		if (bytes < minlen) {
2748 			spin_unlock(&ctl->tree_lock);
2749 			goto next;
2750 		}
2751 
2752 		bitmap_clear_bits(ctl, entry, start, bytes);
2753 		if (entry->bytes == 0)
2754 			free_bitmap(ctl, entry);
2755 
2756 		spin_unlock(&ctl->tree_lock);
2757 
2758 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2759 				  start, bytes);
2760 		if (ret)
2761 			break;
2762 next:
2763 		if (next_bitmap) {
2764 			offset += BITS_PER_BITMAP * ctl->unit;
2765 		} else {
2766 			start += bytes;
2767 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2768 				offset += BITS_PER_BITMAP * ctl->unit;
2769 		}
2770 
2771 		if (fatal_signal_pending(current)) {
2772 			ret = -ERESTARTSYS;
2773 			break;
2774 		}
2775 
2776 		cond_resched();
2777 	}
2778 
2779 	return ret;
2780 }
2781 
2782 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2783 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2784 {
2785 	int ret;
2786 
2787 	*trimmed = 0;
2788 
2789 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2790 	if (ret)
2791 		return ret;
2792 
2793 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2794 
2795 	return ret;
2796 }
2797 
2798 /*
2799  * Find the left-most item in the cache tree, and then return the
2800  * smallest inode number in the item.
2801  *
2802  * Note: the returned inode number may not be the smallest one in
2803  * the tree, if the left-most item is a bitmap.
2804  */
2805 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2806 {
2807 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2808 	struct btrfs_free_space *entry = NULL;
2809 	u64 ino = 0;
2810 
2811 	spin_lock(&ctl->tree_lock);
2812 
2813 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2814 		goto out;
2815 
2816 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2817 			 struct btrfs_free_space, offset_index);
2818 
2819 	if (!entry->bitmap) {
2820 		ino = entry->offset;
2821 
2822 		unlink_free_space(ctl, entry);
2823 		entry->offset++;
2824 		entry->bytes--;
2825 		if (!entry->bytes)
2826 			kmem_cache_free(btrfs_free_space_cachep, entry);
2827 		else
2828 			link_free_space(ctl, entry);
2829 	} else {
2830 		u64 offset = 0;
2831 		u64 count = 1;
2832 		int ret;
2833 
2834 		ret = search_bitmap(ctl, entry, &offset, &count);
2835 		/* Logic error; Should be empty if it can't find anything */
2836 		BUG_ON(ret);
2837 
2838 		ino = offset;
2839 		bitmap_clear_bits(ctl, entry, offset, 1);
2840 		if (entry->bytes == 0)
2841 			free_bitmap(ctl, entry);
2842 	}
2843 out:
2844 	spin_unlock(&ctl->tree_lock);
2845 
2846 	return ino;
2847 }
2848 
2849 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2850 				    struct btrfs_path *path)
2851 {
2852 	struct inode *inode = NULL;
2853 
2854 	spin_lock(&root->cache_lock);
2855 	if (root->cache_inode)
2856 		inode = igrab(root->cache_inode);
2857 	spin_unlock(&root->cache_lock);
2858 	if (inode)
2859 		return inode;
2860 
2861 	inode = __lookup_free_space_inode(root, path, 0);
2862 	if (IS_ERR(inode))
2863 		return inode;
2864 
2865 	spin_lock(&root->cache_lock);
2866 	if (!btrfs_fs_closing(root->fs_info))
2867 		root->cache_inode = igrab(inode);
2868 	spin_unlock(&root->cache_lock);
2869 
2870 	return inode;
2871 }
2872 
2873 int create_free_ino_inode(struct btrfs_root *root,
2874 			  struct btrfs_trans_handle *trans,
2875 			  struct btrfs_path *path)
2876 {
2877 	return __create_free_space_inode(root, trans, path,
2878 					 BTRFS_FREE_INO_OBJECTID, 0);
2879 }
2880 
2881 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2882 {
2883 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2884 	struct btrfs_path *path;
2885 	struct inode *inode;
2886 	int ret = 0;
2887 	u64 root_gen = btrfs_root_generation(&root->root_item);
2888 
2889 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2890 		return 0;
2891 
2892 	/*
2893 	 * If we're unmounting then just return, since this does a search on the
2894 	 * normal root and not the commit root and we could deadlock.
2895 	 */
2896 	if (btrfs_fs_closing(fs_info))
2897 		return 0;
2898 
2899 	path = btrfs_alloc_path();
2900 	if (!path)
2901 		return 0;
2902 
2903 	inode = lookup_free_ino_inode(root, path);
2904 	if (IS_ERR(inode))
2905 		goto out;
2906 
2907 	if (root_gen != BTRFS_I(inode)->generation)
2908 		goto out_put;
2909 
2910 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2911 
2912 	if (ret < 0)
2913 		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2914 		       "root %llu\n", root->root_key.objectid);
2915 out_put:
2916 	iput(inode);
2917 out:
2918 	btrfs_free_path(path);
2919 	return ret;
2920 }
2921 
2922 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2923 			      struct btrfs_trans_handle *trans,
2924 			      struct btrfs_path *path)
2925 {
2926 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2927 	struct inode *inode;
2928 	int ret;
2929 
2930 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2931 		return 0;
2932 
2933 	inode = lookup_free_ino_inode(root, path);
2934 	if (IS_ERR(inode))
2935 		return 0;
2936 
2937 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2938 	if (ret) {
2939 		btrfs_delalloc_release_metadata(inode, inode->i_size);
2940 #ifdef DEBUG
2941 		printk(KERN_ERR "btrfs: failed to write free ino cache "
2942 		       "for root %llu\n", root->root_key.objectid);
2943 #endif
2944 	}
2945 
2946 	iput(inode);
2947 	return ret;
2948 }
2949