xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 952e57ba3769d6fc6139b8a99c32ea2bb63f23e9)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "free-space-cache.h"
22 #include "transaction.h"
23 
24 struct btrfs_free_space {
25 	struct rb_node bytes_index;
26 	struct rb_node offset_index;
27 	u64 offset;
28 	u64 bytes;
29 };
30 
31 static int tree_insert_offset(struct rb_root *root, u64 offset,
32 			      struct rb_node *node)
33 {
34 	struct rb_node **p = &root->rb_node;
35 	struct rb_node *parent = NULL;
36 	struct btrfs_free_space *info;
37 
38 	while (*p) {
39 		parent = *p;
40 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
41 
42 		if (offset < info->offset)
43 			p = &(*p)->rb_left;
44 		else if (offset > info->offset)
45 			p = &(*p)->rb_right;
46 		else
47 			return -EEXIST;
48 	}
49 
50 	rb_link_node(node, parent, p);
51 	rb_insert_color(node, root);
52 
53 	return 0;
54 }
55 
56 static int tree_insert_bytes(struct rb_root *root, u64 bytes,
57 			     struct rb_node *node)
58 {
59 	struct rb_node **p = &root->rb_node;
60 	struct rb_node *parent = NULL;
61 	struct btrfs_free_space *info;
62 
63 	while (*p) {
64 		parent = *p;
65 		info = rb_entry(parent, struct btrfs_free_space, bytes_index);
66 
67 		if (bytes < info->bytes)
68 			p = &(*p)->rb_left;
69 		else
70 			p = &(*p)->rb_right;
71 	}
72 
73 	rb_link_node(node, parent, p);
74 	rb_insert_color(node, root);
75 
76 	return 0;
77 }
78 
79 /*
80  * searches the tree for the given offset.
81  *
82  * fuzzy == 1: this is used for allocations where we are given a hint of where
83  * to look for free space.  Because the hint may not be completely on an offset
84  * mark, or the hint may no longer point to free space we need to fudge our
85  * results a bit.  So we look for free space starting at or after offset with at
86  * least bytes size.  We prefer to find as close to the given offset as we can.
87  * Also if the offset is within a free space range, then we will return the free
88  * space that contains the given offset, which means we can return a free space
89  * chunk with an offset before the provided offset.
90  *
91  * fuzzy == 0: this is just a normal tree search.  Give us the free space that
92  * starts at the given offset which is at least bytes size, and if its not there
93  * return NULL.
94  */
95 static struct btrfs_free_space *tree_search_offset(struct rb_root *root,
96 						   u64 offset, u64 bytes,
97 						   int fuzzy)
98 {
99 	struct rb_node *n = root->rb_node;
100 	struct btrfs_free_space *entry, *ret = NULL;
101 
102 	while (n) {
103 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
104 
105 		if (offset < entry->offset) {
106 			if (fuzzy &&
107 			    (!ret || entry->offset < ret->offset) &&
108 			    (bytes <= entry->bytes))
109 				ret = entry;
110 			n = n->rb_left;
111 		} else if (offset > entry->offset) {
112 			if (fuzzy &&
113 			    (entry->offset + entry->bytes - 1) >= offset &&
114 			    bytes <= entry->bytes) {
115 				ret = entry;
116 				break;
117 			}
118 			n = n->rb_right;
119 		} else {
120 			if (bytes > entry->bytes) {
121 				n = n->rb_right;
122 				continue;
123 			}
124 			ret = entry;
125 			break;
126 		}
127 	}
128 
129 	return ret;
130 }
131 
132 /*
133  * return a chunk at least bytes size, as close to offset that we can get.
134  */
135 static struct btrfs_free_space *tree_search_bytes(struct rb_root *root,
136 						  u64 offset, u64 bytes)
137 {
138 	struct rb_node *n = root->rb_node;
139 	struct btrfs_free_space *entry, *ret = NULL;
140 
141 	while (n) {
142 		entry = rb_entry(n, struct btrfs_free_space, bytes_index);
143 
144 		if (bytes < entry->bytes) {
145 			/*
146 			 * We prefer to get a hole size as close to the size we
147 			 * are asking for so we don't take small slivers out of
148 			 * huge holes, but we also want to get as close to the
149 			 * offset as possible so we don't have a whole lot of
150 			 * fragmentation.
151 			 */
152 			if (offset <= entry->offset) {
153 				if (!ret)
154 					ret = entry;
155 				else if (entry->bytes < ret->bytes)
156 					ret = entry;
157 				else if (entry->offset < ret->offset)
158 					ret = entry;
159 			}
160 			n = n->rb_left;
161 		} else if (bytes > entry->bytes) {
162 			n = n->rb_right;
163 		} else {
164 			/*
165 			 * Ok we may have multiple chunks of the wanted size,
166 			 * so we don't want to take the first one we find, we
167 			 * want to take the one closest to our given offset, so
168 			 * keep searching just in case theres a better match.
169 			 */
170 			n = n->rb_right;
171 			if (offset > entry->offset)
172 				continue;
173 			else if (!ret || entry->offset < ret->offset)
174 				ret = entry;
175 		}
176 	}
177 
178 	return ret;
179 }
180 
181 static void unlink_free_space(struct btrfs_block_group_cache *block_group,
182 			      struct btrfs_free_space *info)
183 {
184 	rb_erase(&info->offset_index, &block_group->free_space_offset);
185 	rb_erase(&info->bytes_index, &block_group->free_space_bytes);
186 }
187 
188 static int link_free_space(struct btrfs_block_group_cache *block_group,
189 			   struct btrfs_free_space *info)
190 {
191 	int ret = 0;
192 
193 
194 	BUG_ON(!info->bytes);
195 	ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
196 				 &info->offset_index);
197 	if (ret)
198 		return ret;
199 
200 	ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes,
201 				&info->bytes_index);
202 	if (ret)
203 		return ret;
204 
205 	return ret;
206 }
207 
208 int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
209 			 u64 offset, u64 bytes)
210 {
211 	struct btrfs_free_space *right_info;
212 	struct btrfs_free_space *left_info;
213 	struct btrfs_free_space *info = NULL;
214 	int ret = 0;
215 
216 	info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
217 	if (!info)
218 		return -ENOMEM;
219 
220 	info->offset = offset;
221 	info->bytes = bytes;
222 
223 	spin_lock(&block_group->tree_lock);
224 
225 	/*
226 	 * first we want to see if there is free space adjacent to the range we
227 	 * are adding, if there is remove that struct and add a new one to
228 	 * cover the entire range
229 	 */
230 	right_info = tree_search_offset(&block_group->free_space_offset,
231 					offset+bytes, 0, 0);
232 	left_info = tree_search_offset(&block_group->free_space_offset,
233 				       offset-1, 0, 1);
234 
235 	if (right_info) {
236 		unlink_free_space(block_group, right_info);
237 		info->bytes += right_info->bytes;
238 		kfree(right_info);
239 	}
240 
241 	if (left_info && left_info->offset + left_info->bytes == offset) {
242 		unlink_free_space(block_group, left_info);
243 		info->offset = left_info->offset;
244 		info->bytes += left_info->bytes;
245 		kfree(left_info);
246 	}
247 
248 	ret = link_free_space(block_group, info);
249 	if (ret)
250 		kfree(info);
251 
252 	spin_unlock(&block_group->tree_lock);
253 
254 	if (ret) {
255 		printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret);
256 		BUG_ON(ret == -EEXIST);
257 	}
258 
259 	return ret;
260 }
261 
262 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
263 			    u64 offset, u64 bytes)
264 {
265 	struct btrfs_free_space *info;
266 	int ret = 0;
267 
268 	spin_lock(&block_group->tree_lock);
269 
270 	info = tree_search_offset(&block_group->free_space_offset, offset, 0,
271 				  1);
272 	if (info && info->offset == offset) {
273 		if (info->bytes < bytes) {
274 			printk(KERN_ERR "Found free space at %llu, size %llu,"
275 			       "trying to use %llu\n",
276 			       (unsigned long long)info->offset,
277 			       (unsigned long long)info->bytes,
278 			       (unsigned long long)bytes);
279 			WARN_ON(1);
280 			ret = -EINVAL;
281 			spin_unlock(&block_group->tree_lock);
282 			goto out;
283 		}
284 		unlink_free_space(block_group, info);
285 
286 		if (info->bytes == bytes) {
287 			kfree(info);
288 			spin_unlock(&block_group->tree_lock);
289 			goto out;
290 		}
291 
292 		info->offset += bytes;
293 		info->bytes -= bytes;
294 
295 		ret = link_free_space(block_group, info);
296 		spin_unlock(&block_group->tree_lock);
297 		BUG_ON(ret);
298 	} else if (info && info->offset < offset &&
299 		   info->offset + info->bytes >= offset + bytes) {
300 		u64 old_start = info->offset;
301 		/*
302 		 * we're freeing space in the middle of the info,
303 		 * this can happen during tree log replay
304 		 *
305 		 * first unlink the old info and then
306 		 * insert it again after the hole we're creating
307 		 */
308 		unlink_free_space(block_group, info);
309 		if (offset + bytes < info->offset + info->bytes) {
310 			u64 old_end = info->offset + info->bytes;
311 
312 			info->offset = offset + bytes;
313 			info->bytes = old_end - info->offset;
314 			ret = link_free_space(block_group, info);
315 			BUG_ON(ret);
316 		} else {
317 			/* the hole we're creating ends at the end
318 			 * of the info struct, just free the info
319 			 */
320 			kfree(info);
321 		}
322 		spin_unlock(&block_group->tree_lock);
323 		/* step two, insert a new info struct to cover anything
324 		 * before the hole
325 		 */
326 		ret = btrfs_add_free_space(block_group, old_start,
327 					   offset - old_start);
328 		BUG_ON(ret);
329 	} else {
330 		spin_unlock(&block_group->tree_lock);
331 		if (!info) {
332 			printk(KERN_ERR "couldn't find space %llu to free\n",
333 			       (unsigned long long)offset);
334 			printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n",
335 			       block_group->cached,
336 			       (unsigned long long)block_group->key.objectid,
337 			       (unsigned long long)block_group->key.offset);
338 			btrfs_dump_free_space(block_group, bytes);
339 		} else if (info) {
340 			printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, "
341 			       "but wanted offset=%llu bytes=%llu\n",
342 			       (unsigned long long)info->offset,
343 			       (unsigned long long)info->bytes,
344 			       (unsigned long long)offset,
345 			       (unsigned long long)bytes);
346 		}
347 		WARN_ON(1);
348 	}
349 out:
350 	return ret;
351 }
352 
353 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
354 			   u64 bytes)
355 {
356 	struct btrfs_free_space *info;
357 	struct rb_node *n;
358 	int count = 0;
359 
360 	for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
361 		info = rb_entry(n, struct btrfs_free_space, offset_index);
362 		if (info->bytes >= bytes)
363 			count++;
364 		printk(KERN_ERR "entry offset %llu, bytes %llu\n",
365 		       (unsigned long long)info->offset,
366 		       (unsigned long long)info->bytes);
367 	}
368 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
369 	       "\n", count);
370 }
371 
372 u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
373 {
374 	struct btrfs_free_space *info;
375 	struct rb_node *n;
376 	u64 ret = 0;
377 
378 	for (n = rb_first(&block_group->free_space_offset); n;
379 	     n = rb_next(n)) {
380 		info = rb_entry(n, struct btrfs_free_space, offset_index);
381 		ret += info->bytes;
382 	}
383 
384 	return ret;
385 }
386 
387 /*
388  * for a given cluster, put all of its extents back into the free
389  * space cache.  If the block group passed doesn't match the block group
390  * pointed to by the cluster, someone else raced in and freed the
391  * cluster already.  In that case, we just return without changing anything
392  */
393 static int
394 __btrfs_return_cluster_to_free_space(
395 			     struct btrfs_block_group_cache *block_group,
396 			     struct btrfs_free_cluster *cluster)
397 {
398 	struct btrfs_free_space *entry;
399 	struct rb_node *node;
400 
401 	spin_lock(&cluster->lock);
402 	if (cluster->block_group != block_group)
403 		goto out;
404 
405 	cluster->window_start = 0;
406 	node = rb_first(&cluster->root);
407 	while(node) {
408 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
409 		node = rb_next(&entry->offset_index);
410 		rb_erase(&entry->offset_index, &cluster->root);
411 		link_free_space(block_group, entry);
412 	}
413 	list_del_init(&cluster->block_group_list);
414 
415 	btrfs_put_block_group(cluster->block_group);
416 	cluster->block_group = NULL;
417 	cluster->root.rb_node = NULL;
418 out:
419 	spin_unlock(&cluster->lock);
420 	return 0;
421 }
422 
423 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
424 {
425 	struct btrfs_free_space *info;
426 	struct rb_node *node;
427 	struct btrfs_free_cluster *cluster;
428 	struct btrfs_free_cluster *safe;
429 
430 	spin_lock(&block_group->tree_lock);
431 
432 	list_for_each_entry_safe(cluster, safe, &block_group->cluster_list,
433 				 block_group_list) {
434 
435 		WARN_ON(cluster->block_group != block_group);
436 		__btrfs_return_cluster_to_free_space(block_group, cluster);
437 	}
438 
439 	while ((node = rb_last(&block_group->free_space_bytes)) != NULL) {
440 		info = rb_entry(node, struct btrfs_free_space, bytes_index);
441 		unlink_free_space(block_group, info);
442 		kfree(info);
443 		if (need_resched()) {
444 			spin_unlock(&block_group->tree_lock);
445 			cond_resched();
446 			spin_lock(&block_group->tree_lock);
447 		}
448 	}
449 	spin_unlock(&block_group->tree_lock);
450 }
451 
452 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
453 			       u64 offset, u64 bytes, u64 empty_size)
454 {
455 	struct btrfs_free_space *entry = NULL;
456 	u64 ret = 0;
457 
458 	spin_lock(&block_group->tree_lock);
459 	entry = tree_search_offset(&block_group->free_space_offset, offset,
460 				   bytes + empty_size, 1);
461 	if (!entry)
462 		entry = tree_search_bytes(&block_group->free_space_bytes,
463 					  offset, bytes + empty_size);
464 	if (entry) {
465 		unlink_free_space(block_group, entry);
466 		ret = entry->offset;
467 		entry->offset += bytes;
468 		entry->bytes -= bytes;
469 
470 		if (!entry->bytes)
471 			kfree(entry);
472 		else
473 			link_free_space(block_group, entry);
474 	}
475 	spin_unlock(&block_group->tree_lock);
476 
477 	return ret;
478 }
479 
480 /*
481  * given a cluster, put all of its extents back into the free space
482  * cache.  If a block group is passed, this function will only free
483  * a cluster that belongs to the passed block group.
484  *
485  * Otherwise, it'll get a reference on the block group pointed to by the
486  * cluster and remove the cluster from it.
487  */
488 int btrfs_return_cluster_to_free_space(
489 			       struct btrfs_block_group_cache *block_group,
490 			       struct btrfs_free_cluster *cluster)
491 {
492 	int ret;
493 
494 	/* first, get a safe pointer to the block group */
495 	spin_lock(&cluster->lock);
496 	if (!block_group) {
497 		block_group = cluster->block_group;
498 		if (!block_group) {
499 			spin_unlock(&cluster->lock);
500 			return 0;
501 		}
502 	} else if (cluster->block_group != block_group) {
503 		/* someone else has already freed it don't redo their work */
504 		spin_unlock(&cluster->lock);
505 		return 0;
506 	}
507 	atomic_inc(&block_group->count);
508 	spin_unlock(&cluster->lock);
509 
510 	/* now return any extents the cluster had on it */
511 	spin_lock(&block_group->tree_lock);
512 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
513 	spin_unlock(&block_group->tree_lock);
514 
515 	/* finally drop our ref */
516 	btrfs_put_block_group(block_group);
517 	return ret;
518 }
519 
520 /*
521  * given a cluster, try to allocate 'bytes' from it, returns 0
522  * if it couldn't find anything suitably large, or a logical disk offset
523  * if things worked out
524  */
525 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
526 			     struct btrfs_free_cluster *cluster, u64 bytes,
527 			     u64 min_start)
528 {
529 	struct btrfs_free_space *entry = NULL;
530 	struct rb_node *node;
531 	u64 ret = 0;
532 
533 	spin_lock(&cluster->lock);
534 	if (bytes > cluster->max_size)
535 		goto out;
536 
537 	if (cluster->block_group != block_group)
538 		goto out;
539 
540 	node = rb_first(&cluster->root);
541 	if (!node)
542 		goto out;
543 
544 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
545 
546 	while(1) {
547 		if (entry->bytes < bytes || entry->offset < min_start) {
548 			struct rb_node *node;
549 
550 			node = rb_next(&entry->offset_index);
551 			if (!node)
552 				break;
553 			entry = rb_entry(node, struct btrfs_free_space,
554 					 offset_index);
555 			continue;
556 		}
557 		ret = entry->offset;
558 
559 		entry->offset += bytes;
560 		entry->bytes -= bytes;
561 
562 		if (entry->bytes == 0) {
563 			rb_erase(&entry->offset_index, &cluster->root);
564 			kfree(entry);
565 		}
566 		break;
567 	}
568 out:
569 	spin_unlock(&cluster->lock);
570 	return ret;
571 }
572 
573 /*
574  * here we try to find a cluster of blocks in a block group.  The goal
575  * is to find at least bytes free and up to empty_size + bytes free.
576  * We might not find them all in one contiguous area.
577  *
578  * returns zero and sets up cluster if things worked out, otherwise
579  * it returns -enospc
580  */
581 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
582 			     struct btrfs_root *root,
583 			     struct btrfs_block_group_cache *block_group,
584 			     struct btrfs_free_cluster *cluster,
585 			     u64 offset, u64 bytes, u64 empty_size)
586 {
587 	struct btrfs_free_space *entry = NULL;
588 	struct rb_node *node;
589 	struct btrfs_free_space *next;
590 	struct btrfs_free_space *last;
591 	u64 min_bytes;
592 	u64 window_start;
593 	u64 window_free;
594 	u64 max_extent = 0;
595 	int total_retries = 0;
596 	int ret;
597 
598 	/* for metadata, allow allocates with more holes */
599 	if (btrfs_test_opt(root, SSD_SPREAD)) {
600 		min_bytes = bytes + empty_size;
601 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
602 		/*
603 		 * we want to do larger allocations when we are
604 		 * flushing out the delayed refs, it helps prevent
605 		 * making more work as we go along.
606 		 */
607 		if (trans->transaction->delayed_refs.flushing)
608 			min_bytes = max(bytes, (bytes + empty_size) >> 1);
609 		else
610 			min_bytes = max(bytes, (bytes + empty_size) >> 4);
611 	} else
612 		min_bytes = max(bytes, (bytes + empty_size) >> 2);
613 
614 	spin_lock(&block_group->tree_lock);
615 	spin_lock(&cluster->lock);
616 
617 	/* someone already found a cluster, hooray */
618 	if (cluster->block_group) {
619 		ret = 0;
620 		goto out;
621 	}
622 again:
623 	min_bytes = min(min_bytes, bytes + empty_size);
624 	entry = tree_search_bytes(&block_group->free_space_bytes,
625 				  offset, min_bytes);
626 	if (!entry) {
627 		ret = -ENOSPC;
628 		goto out;
629 	}
630 	window_start = entry->offset;
631 	window_free = entry->bytes;
632 	last = entry;
633 	max_extent = entry->bytes;
634 
635 	while(1) {
636 		/* out window is just right, lets fill it */
637 		if (window_free >= bytes + empty_size)
638 			break;
639 
640 		node = rb_next(&last->offset_index);
641 		if (!node) {
642 			ret = -ENOSPC;
643 			goto out;
644 		}
645 		next = rb_entry(node, struct btrfs_free_space, offset_index);
646 
647 		/*
648 		 * we haven't filled the empty size and the window is
649 		 * very large.  reset and try again
650 		 */
651 		if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
652 		    next->offset - window_start > (bytes + empty_size) * 2) {
653 			entry = next;
654 			window_start = entry->offset;
655 			window_free = entry->bytes;
656 			last = entry;
657 			max_extent = 0;
658 			total_retries++;
659 			if (total_retries % 64 == 0) {
660 				if (min_bytes >= (bytes + empty_size)) {
661 					ret = -ENOSPC;
662 					goto out;
663 				}
664 				/*
665 				 * grow our allocation a bit, we're not having
666 				 * much luck
667 				 */
668 				min_bytes *= 2;
669 				goto again;
670 			}
671 		} else {
672 			last = next;
673 			window_free += next->bytes;
674 			if (entry->bytes > max_extent)
675 				max_extent = entry->bytes;
676 		}
677 	}
678 
679 	cluster->window_start = entry->offset;
680 
681 	/*
682 	 * now we've found our entries, pull them out of the free space
683 	 * cache and put them into the cluster rbtree
684 	 *
685 	 * The cluster includes an rbtree, but only uses the offset index
686 	 * of each free space cache entry.
687 	 */
688 	while(1) {
689 		node = rb_next(&entry->offset_index);
690 		unlink_free_space(block_group, entry);
691 		ret = tree_insert_offset(&cluster->root, entry->offset,
692 					 &entry->offset_index);
693 		BUG_ON(ret);
694 
695 		if (!node || entry == last)
696 			break;
697 
698 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
699 	}
700 	ret = 0;
701 	cluster->max_size = max_extent;
702 	atomic_inc(&block_group->count);
703 	list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
704 	cluster->block_group = block_group;
705 out:
706 	spin_unlock(&cluster->lock);
707 	spin_unlock(&block_group->tree_lock);
708 
709 	return ret;
710 }
711 
712 /*
713  * simple code to zero out a cluster
714  */
715 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
716 {
717 	spin_lock_init(&cluster->lock);
718 	spin_lock_init(&cluster->refill_lock);
719 	cluster->root.rb_node = NULL;
720 	cluster->max_size = 0;
721 	INIT_LIST_HEAD(&cluster->block_group_list);
722 	cluster->block_group = NULL;
723 }
724 
725