xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 
22 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
23 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
24 
25 struct btrfs_trim_range {
26 	u64 start;
27 	u64 bytes;
28 	struct list_head list;
29 };
30 
31 static int link_free_space(struct btrfs_free_space_ctl *ctl,
32 			   struct btrfs_free_space *info);
33 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 			      struct btrfs_free_space *info);
35 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 			     struct btrfs_trans_handle *trans,
37 			     struct btrfs_io_ctl *io_ctl,
38 			     struct btrfs_path *path);
39 
40 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 					       struct btrfs_path *path,
42 					       u64 offset)
43 {
44 	struct btrfs_fs_info *fs_info = root->fs_info;
45 	struct btrfs_key key;
46 	struct btrfs_key location;
47 	struct btrfs_disk_key disk_key;
48 	struct btrfs_free_space_header *header;
49 	struct extent_buffer *leaf;
50 	struct inode *inode = NULL;
51 	unsigned nofs_flag;
52 	int ret;
53 
54 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
55 	key.offset = offset;
56 	key.type = 0;
57 
58 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 	if (ret < 0)
60 		return ERR_PTR(ret);
61 	if (ret > 0) {
62 		btrfs_release_path(path);
63 		return ERR_PTR(-ENOENT);
64 	}
65 
66 	leaf = path->nodes[0];
67 	header = btrfs_item_ptr(leaf, path->slots[0],
68 				struct btrfs_free_space_header);
69 	btrfs_free_space_key(leaf, header, &disk_key);
70 	btrfs_disk_key_to_cpu(&location, &disk_key);
71 	btrfs_release_path(path);
72 
73 	/*
74 	 * We are often under a trans handle at this point, so we need to make
75 	 * sure NOFS is set to keep us from deadlocking.
76 	 */
77 	nofs_flag = memalloc_nofs_save();
78 	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
79 	memalloc_nofs_restore(nofs_flag);
80 	if (IS_ERR(inode))
81 		return inode;
82 
83 	mapping_set_gfp_mask(inode->i_mapping,
84 			mapping_gfp_constraint(inode->i_mapping,
85 			~(__GFP_FS | __GFP_HIGHMEM)));
86 
87 	return inode;
88 }
89 
90 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
91 				      struct btrfs_block_group_cache
92 				      *block_group, struct btrfs_path *path)
93 {
94 	struct inode *inode = NULL;
95 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
96 
97 	spin_lock(&block_group->lock);
98 	if (block_group->inode)
99 		inode = igrab(block_group->inode);
100 	spin_unlock(&block_group->lock);
101 	if (inode)
102 		return inode;
103 
104 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
105 					  block_group->key.objectid);
106 	if (IS_ERR(inode))
107 		return inode;
108 
109 	spin_lock(&block_group->lock);
110 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
111 		btrfs_info(fs_info, "Old style space inode found, converting.");
112 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
113 			BTRFS_INODE_NODATACOW;
114 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
115 	}
116 
117 	if (!block_group->iref) {
118 		block_group->inode = igrab(inode);
119 		block_group->iref = 1;
120 	}
121 	spin_unlock(&block_group->lock);
122 
123 	return inode;
124 }
125 
126 static int __create_free_space_inode(struct btrfs_root *root,
127 				     struct btrfs_trans_handle *trans,
128 				     struct btrfs_path *path,
129 				     u64 ino, u64 offset)
130 {
131 	struct btrfs_key key;
132 	struct btrfs_disk_key disk_key;
133 	struct btrfs_free_space_header *header;
134 	struct btrfs_inode_item *inode_item;
135 	struct extent_buffer *leaf;
136 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
137 	int ret;
138 
139 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
140 	if (ret)
141 		return ret;
142 
143 	/* We inline crc's for the free disk space cache */
144 	if (ino != BTRFS_FREE_INO_OBJECTID)
145 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
146 
147 	leaf = path->nodes[0];
148 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
149 				    struct btrfs_inode_item);
150 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
151 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
152 			     sizeof(*inode_item));
153 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
154 	btrfs_set_inode_size(leaf, inode_item, 0);
155 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
156 	btrfs_set_inode_uid(leaf, inode_item, 0);
157 	btrfs_set_inode_gid(leaf, inode_item, 0);
158 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
159 	btrfs_set_inode_flags(leaf, inode_item, flags);
160 	btrfs_set_inode_nlink(leaf, inode_item, 1);
161 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
162 	btrfs_set_inode_block_group(leaf, inode_item, offset);
163 	btrfs_mark_buffer_dirty(leaf);
164 	btrfs_release_path(path);
165 
166 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
167 	key.offset = offset;
168 	key.type = 0;
169 	ret = btrfs_insert_empty_item(trans, root, path, &key,
170 				      sizeof(struct btrfs_free_space_header));
171 	if (ret < 0) {
172 		btrfs_release_path(path);
173 		return ret;
174 	}
175 
176 	leaf = path->nodes[0];
177 	header = btrfs_item_ptr(leaf, path->slots[0],
178 				struct btrfs_free_space_header);
179 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
180 	btrfs_set_free_space_key(leaf, header, &disk_key);
181 	btrfs_mark_buffer_dirty(leaf);
182 	btrfs_release_path(path);
183 
184 	return 0;
185 }
186 
187 int create_free_space_inode(struct btrfs_fs_info *fs_info,
188 			    struct btrfs_trans_handle *trans,
189 			    struct btrfs_block_group_cache *block_group,
190 			    struct btrfs_path *path)
191 {
192 	int ret;
193 	u64 ino;
194 
195 	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
196 	if (ret < 0)
197 		return ret;
198 
199 	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
200 					 block_group->key.objectid);
201 }
202 
203 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
204 				       struct btrfs_block_rsv *rsv)
205 {
206 	u64 needed_bytes;
207 	int ret;
208 
209 	/* 1 for slack space, 1 for updating the inode */
210 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
211 		btrfs_calc_trans_metadata_size(fs_info, 1);
212 
213 	spin_lock(&rsv->lock);
214 	if (rsv->reserved < needed_bytes)
215 		ret = -ENOSPC;
216 	else
217 		ret = 0;
218 	spin_unlock(&rsv->lock);
219 	return ret;
220 }
221 
222 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
223 				    struct btrfs_block_group_cache *block_group,
224 				    struct inode *inode)
225 {
226 	struct btrfs_root *root = BTRFS_I(inode)->root;
227 	int ret = 0;
228 	bool locked = false;
229 
230 	if (block_group) {
231 		struct btrfs_path *path = btrfs_alloc_path();
232 
233 		if (!path) {
234 			ret = -ENOMEM;
235 			goto fail;
236 		}
237 		locked = true;
238 		mutex_lock(&trans->transaction->cache_write_mutex);
239 		if (!list_empty(&block_group->io_list)) {
240 			list_del_init(&block_group->io_list);
241 
242 			btrfs_wait_cache_io(trans, block_group, path);
243 			btrfs_put_block_group(block_group);
244 		}
245 
246 		/*
247 		 * now that we've truncated the cache away, its no longer
248 		 * setup or written
249 		 */
250 		spin_lock(&block_group->lock);
251 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
252 		spin_unlock(&block_group->lock);
253 		btrfs_free_path(path);
254 	}
255 
256 	btrfs_i_size_write(BTRFS_I(inode), 0);
257 	truncate_pagecache(inode, 0);
258 
259 	/*
260 	 * We skip the throttling logic for free space cache inodes, so we don't
261 	 * need to check for -EAGAIN.
262 	 */
263 	ret = btrfs_truncate_inode_items(trans, root, inode,
264 					 0, BTRFS_EXTENT_DATA_KEY);
265 	if (ret)
266 		goto fail;
267 
268 	ret = btrfs_update_inode(trans, root, inode);
269 
270 fail:
271 	if (locked)
272 		mutex_unlock(&trans->transaction->cache_write_mutex);
273 	if (ret)
274 		btrfs_abort_transaction(trans, ret);
275 
276 	return ret;
277 }
278 
279 static void readahead_cache(struct inode *inode)
280 {
281 	struct file_ra_state *ra;
282 	unsigned long last_index;
283 
284 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
285 	if (!ra)
286 		return;
287 
288 	file_ra_state_init(ra, inode->i_mapping);
289 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
290 
291 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
292 
293 	kfree(ra);
294 }
295 
296 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
297 		       int write)
298 {
299 	int num_pages;
300 	int check_crcs = 0;
301 
302 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
303 
304 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
305 		check_crcs = 1;
306 
307 	/* Make sure we can fit our crcs and generation into the first page */
308 	if (write && check_crcs &&
309 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
310 		return -ENOSPC;
311 
312 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
313 
314 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
315 	if (!io_ctl->pages)
316 		return -ENOMEM;
317 
318 	io_ctl->num_pages = num_pages;
319 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
320 	io_ctl->check_crcs = check_crcs;
321 	io_ctl->inode = inode;
322 
323 	return 0;
324 }
325 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
326 
327 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
328 {
329 	kfree(io_ctl->pages);
330 	io_ctl->pages = NULL;
331 }
332 
333 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
334 {
335 	if (io_ctl->cur) {
336 		io_ctl->cur = NULL;
337 		io_ctl->orig = NULL;
338 	}
339 }
340 
341 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
342 {
343 	ASSERT(io_ctl->index < io_ctl->num_pages);
344 	io_ctl->page = io_ctl->pages[io_ctl->index++];
345 	io_ctl->cur = page_address(io_ctl->page);
346 	io_ctl->orig = io_ctl->cur;
347 	io_ctl->size = PAGE_SIZE;
348 	if (clear)
349 		clear_page(io_ctl->cur);
350 }
351 
352 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
353 {
354 	int i;
355 
356 	io_ctl_unmap_page(io_ctl);
357 
358 	for (i = 0; i < io_ctl->num_pages; i++) {
359 		if (io_ctl->pages[i]) {
360 			ClearPageChecked(io_ctl->pages[i]);
361 			unlock_page(io_ctl->pages[i]);
362 			put_page(io_ctl->pages[i]);
363 		}
364 	}
365 }
366 
367 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
368 				int uptodate)
369 {
370 	struct page *page;
371 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
372 	int i;
373 
374 	for (i = 0; i < io_ctl->num_pages; i++) {
375 		page = find_or_create_page(inode->i_mapping, i, mask);
376 		if (!page) {
377 			io_ctl_drop_pages(io_ctl);
378 			return -ENOMEM;
379 		}
380 		io_ctl->pages[i] = page;
381 		if (uptodate && !PageUptodate(page)) {
382 			btrfs_readpage(NULL, page);
383 			lock_page(page);
384 			if (!PageUptodate(page)) {
385 				btrfs_err(BTRFS_I(inode)->root->fs_info,
386 					   "error reading free space cache");
387 				io_ctl_drop_pages(io_ctl);
388 				return -EIO;
389 			}
390 		}
391 	}
392 
393 	for (i = 0; i < io_ctl->num_pages; i++) {
394 		clear_page_dirty_for_io(io_ctl->pages[i]);
395 		set_page_extent_mapped(io_ctl->pages[i]);
396 	}
397 
398 	return 0;
399 }
400 
401 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
402 {
403 	__le64 *val;
404 
405 	io_ctl_map_page(io_ctl, 1);
406 
407 	/*
408 	 * Skip the csum areas.  If we don't check crcs then we just have a
409 	 * 64bit chunk at the front of the first page.
410 	 */
411 	if (io_ctl->check_crcs) {
412 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
413 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
414 	} else {
415 		io_ctl->cur += sizeof(u64);
416 		io_ctl->size -= sizeof(u64) * 2;
417 	}
418 
419 	val = io_ctl->cur;
420 	*val = cpu_to_le64(generation);
421 	io_ctl->cur += sizeof(u64);
422 }
423 
424 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
425 {
426 	__le64 *gen;
427 
428 	/*
429 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
430 	 * chunk at the front of the first page.
431 	 */
432 	if (io_ctl->check_crcs) {
433 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
434 		io_ctl->size -= sizeof(u64) +
435 			(sizeof(u32) * io_ctl->num_pages);
436 	} else {
437 		io_ctl->cur += sizeof(u64);
438 		io_ctl->size -= sizeof(u64) * 2;
439 	}
440 
441 	gen = io_ctl->cur;
442 	if (le64_to_cpu(*gen) != generation) {
443 		btrfs_err_rl(io_ctl->fs_info,
444 			"space cache generation (%llu) does not match inode (%llu)",
445 				*gen, generation);
446 		io_ctl_unmap_page(io_ctl);
447 		return -EIO;
448 	}
449 	io_ctl->cur += sizeof(u64);
450 	return 0;
451 }
452 
453 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
454 {
455 	u32 *tmp;
456 	u32 crc = ~(u32)0;
457 	unsigned offset = 0;
458 
459 	if (!io_ctl->check_crcs) {
460 		io_ctl_unmap_page(io_ctl);
461 		return;
462 	}
463 
464 	if (index == 0)
465 		offset = sizeof(u32) * io_ctl->num_pages;
466 
467 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
468 			      PAGE_SIZE - offset);
469 	btrfs_csum_final(crc, (u8 *)&crc);
470 	io_ctl_unmap_page(io_ctl);
471 	tmp = page_address(io_ctl->pages[0]);
472 	tmp += index;
473 	*tmp = crc;
474 }
475 
476 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
477 {
478 	u32 *tmp, val;
479 	u32 crc = ~(u32)0;
480 	unsigned offset = 0;
481 
482 	if (!io_ctl->check_crcs) {
483 		io_ctl_map_page(io_ctl, 0);
484 		return 0;
485 	}
486 
487 	if (index == 0)
488 		offset = sizeof(u32) * io_ctl->num_pages;
489 
490 	tmp = page_address(io_ctl->pages[0]);
491 	tmp += index;
492 	val = *tmp;
493 
494 	io_ctl_map_page(io_ctl, 0);
495 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
496 			      PAGE_SIZE - offset);
497 	btrfs_csum_final(crc, (u8 *)&crc);
498 	if (val != crc) {
499 		btrfs_err_rl(io_ctl->fs_info,
500 			"csum mismatch on free space cache");
501 		io_ctl_unmap_page(io_ctl);
502 		return -EIO;
503 	}
504 
505 	return 0;
506 }
507 
508 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
509 			    void *bitmap)
510 {
511 	struct btrfs_free_space_entry *entry;
512 
513 	if (!io_ctl->cur)
514 		return -ENOSPC;
515 
516 	entry = io_ctl->cur;
517 	entry->offset = cpu_to_le64(offset);
518 	entry->bytes = cpu_to_le64(bytes);
519 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
520 		BTRFS_FREE_SPACE_EXTENT;
521 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
522 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
523 
524 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
525 		return 0;
526 
527 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
528 
529 	/* No more pages to map */
530 	if (io_ctl->index >= io_ctl->num_pages)
531 		return 0;
532 
533 	/* map the next page */
534 	io_ctl_map_page(io_ctl, 1);
535 	return 0;
536 }
537 
538 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
539 {
540 	if (!io_ctl->cur)
541 		return -ENOSPC;
542 
543 	/*
544 	 * If we aren't at the start of the current page, unmap this one and
545 	 * map the next one if there is any left.
546 	 */
547 	if (io_ctl->cur != io_ctl->orig) {
548 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
549 		if (io_ctl->index >= io_ctl->num_pages)
550 			return -ENOSPC;
551 		io_ctl_map_page(io_ctl, 0);
552 	}
553 
554 	copy_page(io_ctl->cur, bitmap);
555 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 	if (io_ctl->index < io_ctl->num_pages)
557 		io_ctl_map_page(io_ctl, 0);
558 	return 0;
559 }
560 
561 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
562 {
563 	/*
564 	 * If we're not on the boundary we know we've modified the page and we
565 	 * need to crc the page.
566 	 */
567 	if (io_ctl->cur != io_ctl->orig)
568 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
569 	else
570 		io_ctl_unmap_page(io_ctl);
571 
572 	while (io_ctl->index < io_ctl->num_pages) {
573 		io_ctl_map_page(io_ctl, 1);
574 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
575 	}
576 }
577 
578 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
579 			    struct btrfs_free_space *entry, u8 *type)
580 {
581 	struct btrfs_free_space_entry *e;
582 	int ret;
583 
584 	if (!io_ctl->cur) {
585 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
586 		if (ret)
587 			return ret;
588 	}
589 
590 	e = io_ctl->cur;
591 	entry->offset = le64_to_cpu(e->offset);
592 	entry->bytes = le64_to_cpu(e->bytes);
593 	*type = e->type;
594 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
595 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
596 
597 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
598 		return 0;
599 
600 	io_ctl_unmap_page(io_ctl);
601 
602 	return 0;
603 }
604 
605 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
606 			      struct btrfs_free_space *entry)
607 {
608 	int ret;
609 
610 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
611 	if (ret)
612 		return ret;
613 
614 	copy_page(entry->bitmap, io_ctl->cur);
615 	io_ctl_unmap_page(io_ctl);
616 
617 	return 0;
618 }
619 
620 /*
621  * Since we attach pinned extents after the fact we can have contiguous sections
622  * of free space that are split up in entries.  This poses a problem with the
623  * tree logging stuff since it could have allocated across what appears to be 2
624  * entries since we would have merged the entries when adding the pinned extents
625  * back to the free space cache.  So run through the space cache that we just
626  * loaded and merge contiguous entries.  This will make the log replay stuff not
627  * blow up and it will make for nicer allocator behavior.
628  */
629 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
630 {
631 	struct btrfs_free_space *e, *prev = NULL;
632 	struct rb_node *n;
633 
634 again:
635 	spin_lock(&ctl->tree_lock);
636 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
637 		e = rb_entry(n, struct btrfs_free_space, offset_index);
638 		if (!prev)
639 			goto next;
640 		if (e->bitmap || prev->bitmap)
641 			goto next;
642 		if (prev->offset + prev->bytes == e->offset) {
643 			unlink_free_space(ctl, prev);
644 			unlink_free_space(ctl, e);
645 			prev->bytes += e->bytes;
646 			kmem_cache_free(btrfs_free_space_cachep, e);
647 			link_free_space(ctl, prev);
648 			prev = NULL;
649 			spin_unlock(&ctl->tree_lock);
650 			goto again;
651 		}
652 next:
653 		prev = e;
654 	}
655 	spin_unlock(&ctl->tree_lock);
656 }
657 
658 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
659 				   struct btrfs_free_space_ctl *ctl,
660 				   struct btrfs_path *path, u64 offset)
661 {
662 	struct btrfs_fs_info *fs_info = root->fs_info;
663 	struct btrfs_free_space_header *header;
664 	struct extent_buffer *leaf;
665 	struct btrfs_io_ctl io_ctl;
666 	struct btrfs_key key;
667 	struct btrfs_free_space *e, *n;
668 	LIST_HEAD(bitmaps);
669 	u64 num_entries;
670 	u64 num_bitmaps;
671 	u64 generation;
672 	u8 type;
673 	int ret = 0;
674 
675 	/* Nothing in the space cache, goodbye */
676 	if (!i_size_read(inode))
677 		return 0;
678 
679 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
680 	key.offset = offset;
681 	key.type = 0;
682 
683 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
684 	if (ret < 0)
685 		return 0;
686 	else if (ret > 0) {
687 		btrfs_release_path(path);
688 		return 0;
689 	}
690 
691 	ret = -1;
692 
693 	leaf = path->nodes[0];
694 	header = btrfs_item_ptr(leaf, path->slots[0],
695 				struct btrfs_free_space_header);
696 	num_entries = btrfs_free_space_entries(leaf, header);
697 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
698 	generation = btrfs_free_space_generation(leaf, header);
699 	btrfs_release_path(path);
700 
701 	if (!BTRFS_I(inode)->generation) {
702 		btrfs_info(fs_info,
703 			   "the free space cache file (%llu) is invalid, skip it",
704 			   offset);
705 		return 0;
706 	}
707 
708 	if (BTRFS_I(inode)->generation != generation) {
709 		btrfs_err(fs_info,
710 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
711 			  BTRFS_I(inode)->generation, generation);
712 		return 0;
713 	}
714 
715 	if (!num_entries)
716 		return 0;
717 
718 	ret = io_ctl_init(&io_ctl, inode, 0);
719 	if (ret)
720 		return ret;
721 
722 	readahead_cache(inode);
723 
724 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
725 	if (ret)
726 		goto out;
727 
728 	ret = io_ctl_check_crc(&io_ctl, 0);
729 	if (ret)
730 		goto free_cache;
731 
732 	ret = io_ctl_check_generation(&io_ctl, generation);
733 	if (ret)
734 		goto free_cache;
735 
736 	while (num_entries) {
737 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
738 				      GFP_NOFS);
739 		if (!e)
740 			goto free_cache;
741 
742 		ret = io_ctl_read_entry(&io_ctl, e, &type);
743 		if (ret) {
744 			kmem_cache_free(btrfs_free_space_cachep, e);
745 			goto free_cache;
746 		}
747 
748 		if (!e->bytes) {
749 			kmem_cache_free(btrfs_free_space_cachep, e);
750 			goto free_cache;
751 		}
752 
753 		if (type == BTRFS_FREE_SPACE_EXTENT) {
754 			spin_lock(&ctl->tree_lock);
755 			ret = link_free_space(ctl, e);
756 			spin_unlock(&ctl->tree_lock);
757 			if (ret) {
758 				btrfs_err(fs_info,
759 					"Duplicate entries in free space cache, dumping");
760 				kmem_cache_free(btrfs_free_space_cachep, e);
761 				goto free_cache;
762 			}
763 		} else {
764 			ASSERT(num_bitmaps);
765 			num_bitmaps--;
766 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
767 			if (!e->bitmap) {
768 				kmem_cache_free(
769 					btrfs_free_space_cachep, e);
770 				goto free_cache;
771 			}
772 			spin_lock(&ctl->tree_lock);
773 			ret = link_free_space(ctl, e);
774 			ctl->total_bitmaps++;
775 			ctl->op->recalc_thresholds(ctl);
776 			spin_unlock(&ctl->tree_lock);
777 			if (ret) {
778 				btrfs_err(fs_info,
779 					"Duplicate entries in free space cache, dumping");
780 				kmem_cache_free(btrfs_free_space_cachep, e);
781 				goto free_cache;
782 			}
783 			list_add_tail(&e->list, &bitmaps);
784 		}
785 
786 		num_entries--;
787 	}
788 
789 	io_ctl_unmap_page(&io_ctl);
790 
791 	/*
792 	 * We add the bitmaps at the end of the entries in order that
793 	 * the bitmap entries are added to the cache.
794 	 */
795 	list_for_each_entry_safe(e, n, &bitmaps, list) {
796 		list_del_init(&e->list);
797 		ret = io_ctl_read_bitmap(&io_ctl, e);
798 		if (ret)
799 			goto free_cache;
800 	}
801 
802 	io_ctl_drop_pages(&io_ctl);
803 	merge_space_tree(ctl);
804 	ret = 1;
805 out:
806 	io_ctl_free(&io_ctl);
807 	return ret;
808 free_cache:
809 	io_ctl_drop_pages(&io_ctl);
810 	__btrfs_remove_free_space_cache(ctl);
811 	goto out;
812 }
813 
814 int load_free_space_cache(struct btrfs_fs_info *fs_info,
815 			  struct btrfs_block_group_cache *block_group)
816 {
817 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
818 	struct inode *inode;
819 	struct btrfs_path *path;
820 	int ret = 0;
821 	bool matched;
822 	u64 used = btrfs_block_group_used(&block_group->item);
823 
824 	/*
825 	 * If this block group has been marked to be cleared for one reason or
826 	 * another then we can't trust the on disk cache, so just return.
827 	 */
828 	spin_lock(&block_group->lock);
829 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
830 		spin_unlock(&block_group->lock);
831 		return 0;
832 	}
833 	spin_unlock(&block_group->lock);
834 
835 	path = btrfs_alloc_path();
836 	if (!path)
837 		return 0;
838 	path->search_commit_root = 1;
839 	path->skip_locking = 1;
840 
841 	inode = lookup_free_space_inode(fs_info, block_group, path);
842 	if (IS_ERR(inode)) {
843 		btrfs_free_path(path);
844 		return 0;
845 	}
846 
847 	/* We may have converted the inode and made the cache invalid. */
848 	spin_lock(&block_group->lock);
849 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
850 		spin_unlock(&block_group->lock);
851 		btrfs_free_path(path);
852 		goto out;
853 	}
854 	spin_unlock(&block_group->lock);
855 
856 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
857 				      path, block_group->key.objectid);
858 	btrfs_free_path(path);
859 	if (ret <= 0)
860 		goto out;
861 
862 	spin_lock(&ctl->tree_lock);
863 	matched = (ctl->free_space == (block_group->key.offset - used -
864 				       block_group->bytes_super));
865 	spin_unlock(&ctl->tree_lock);
866 
867 	if (!matched) {
868 		__btrfs_remove_free_space_cache(ctl);
869 		btrfs_warn(fs_info,
870 			   "block group %llu has wrong amount of free space",
871 			   block_group->key.objectid);
872 		ret = -1;
873 	}
874 out:
875 	if (ret < 0) {
876 		/* This cache is bogus, make sure it gets cleared */
877 		spin_lock(&block_group->lock);
878 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
879 		spin_unlock(&block_group->lock);
880 		ret = 0;
881 
882 		btrfs_warn(fs_info,
883 			   "failed to load free space cache for block group %llu, rebuilding it now",
884 			   block_group->key.objectid);
885 	}
886 
887 	iput(inode);
888 	return ret;
889 }
890 
891 static noinline_for_stack
892 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
893 			      struct btrfs_free_space_ctl *ctl,
894 			      struct btrfs_block_group_cache *block_group,
895 			      int *entries, int *bitmaps,
896 			      struct list_head *bitmap_list)
897 {
898 	int ret;
899 	struct btrfs_free_cluster *cluster = NULL;
900 	struct btrfs_free_cluster *cluster_locked = NULL;
901 	struct rb_node *node = rb_first(&ctl->free_space_offset);
902 	struct btrfs_trim_range *trim_entry;
903 
904 	/* Get the cluster for this block_group if it exists */
905 	if (block_group && !list_empty(&block_group->cluster_list)) {
906 		cluster = list_entry(block_group->cluster_list.next,
907 				     struct btrfs_free_cluster,
908 				     block_group_list);
909 	}
910 
911 	if (!node && cluster) {
912 		cluster_locked = cluster;
913 		spin_lock(&cluster_locked->lock);
914 		node = rb_first(&cluster->root);
915 		cluster = NULL;
916 	}
917 
918 	/* Write out the extent entries */
919 	while (node) {
920 		struct btrfs_free_space *e;
921 
922 		e = rb_entry(node, struct btrfs_free_space, offset_index);
923 		*entries += 1;
924 
925 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
926 				       e->bitmap);
927 		if (ret)
928 			goto fail;
929 
930 		if (e->bitmap) {
931 			list_add_tail(&e->list, bitmap_list);
932 			*bitmaps += 1;
933 		}
934 		node = rb_next(node);
935 		if (!node && cluster) {
936 			node = rb_first(&cluster->root);
937 			cluster_locked = cluster;
938 			spin_lock(&cluster_locked->lock);
939 			cluster = NULL;
940 		}
941 	}
942 	if (cluster_locked) {
943 		spin_unlock(&cluster_locked->lock);
944 		cluster_locked = NULL;
945 	}
946 
947 	/*
948 	 * Make sure we don't miss any range that was removed from our rbtree
949 	 * because trimming is running. Otherwise after a umount+mount (or crash
950 	 * after committing the transaction) we would leak free space and get
951 	 * an inconsistent free space cache report from fsck.
952 	 */
953 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
954 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
955 				       trim_entry->bytes, NULL);
956 		if (ret)
957 			goto fail;
958 		*entries += 1;
959 	}
960 
961 	return 0;
962 fail:
963 	if (cluster_locked)
964 		spin_unlock(&cluster_locked->lock);
965 	return -ENOSPC;
966 }
967 
968 static noinline_for_stack int
969 update_cache_item(struct btrfs_trans_handle *trans,
970 		  struct btrfs_root *root,
971 		  struct inode *inode,
972 		  struct btrfs_path *path, u64 offset,
973 		  int entries, int bitmaps)
974 {
975 	struct btrfs_key key;
976 	struct btrfs_free_space_header *header;
977 	struct extent_buffer *leaf;
978 	int ret;
979 
980 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
981 	key.offset = offset;
982 	key.type = 0;
983 
984 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
985 	if (ret < 0) {
986 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
987 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
988 		goto fail;
989 	}
990 	leaf = path->nodes[0];
991 	if (ret > 0) {
992 		struct btrfs_key found_key;
993 		ASSERT(path->slots[0]);
994 		path->slots[0]--;
995 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
996 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
997 		    found_key.offset != offset) {
998 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
999 					 inode->i_size - 1,
1000 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1001 					 NULL);
1002 			btrfs_release_path(path);
1003 			goto fail;
1004 		}
1005 	}
1006 
1007 	BTRFS_I(inode)->generation = trans->transid;
1008 	header = btrfs_item_ptr(leaf, path->slots[0],
1009 				struct btrfs_free_space_header);
1010 	btrfs_set_free_space_entries(leaf, header, entries);
1011 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1012 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1013 	btrfs_mark_buffer_dirty(leaf);
1014 	btrfs_release_path(path);
1015 
1016 	return 0;
1017 
1018 fail:
1019 	return -1;
1020 }
1021 
1022 static noinline_for_stack int
1023 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1024 			    struct btrfs_block_group_cache *block_group,
1025 			    struct btrfs_io_ctl *io_ctl,
1026 			    int *entries)
1027 {
1028 	u64 start, extent_start, extent_end, len;
1029 	struct extent_io_tree *unpin = NULL;
1030 	int ret;
1031 
1032 	if (!block_group)
1033 		return 0;
1034 
1035 	/*
1036 	 * We want to add any pinned extents to our free space cache
1037 	 * so we don't leak the space
1038 	 *
1039 	 * We shouldn't have switched the pinned extents yet so this is the
1040 	 * right one
1041 	 */
1042 	unpin = fs_info->pinned_extents;
1043 
1044 	start = block_group->key.objectid;
1045 
1046 	while (start < block_group->key.objectid + block_group->key.offset) {
1047 		ret = find_first_extent_bit(unpin, start,
1048 					    &extent_start, &extent_end,
1049 					    EXTENT_DIRTY, NULL);
1050 		if (ret)
1051 			return 0;
1052 
1053 		/* This pinned extent is out of our range */
1054 		if (extent_start >= block_group->key.objectid +
1055 		    block_group->key.offset)
1056 			return 0;
1057 
1058 		extent_start = max(extent_start, start);
1059 		extent_end = min(block_group->key.objectid +
1060 				 block_group->key.offset, extent_end + 1);
1061 		len = extent_end - extent_start;
1062 
1063 		*entries += 1;
1064 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1065 		if (ret)
1066 			return -ENOSPC;
1067 
1068 		start = extent_end;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static noinline_for_stack int
1075 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1076 {
1077 	struct btrfs_free_space *entry, *next;
1078 	int ret;
1079 
1080 	/* Write out the bitmaps */
1081 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1082 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1083 		if (ret)
1084 			return -ENOSPC;
1085 		list_del_init(&entry->list);
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static int flush_dirty_cache(struct inode *inode)
1092 {
1093 	int ret;
1094 
1095 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1096 	if (ret)
1097 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1098 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1099 
1100 	return ret;
1101 }
1102 
1103 static void noinline_for_stack
1104 cleanup_bitmap_list(struct list_head *bitmap_list)
1105 {
1106 	struct btrfs_free_space *entry, *next;
1107 
1108 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1109 		list_del_init(&entry->list);
1110 }
1111 
1112 static void noinline_for_stack
1113 cleanup_write_cache_enospc(struct inode *inode,
1114 			   struct btrfs_io_ctl *io_ctl,
1115 			   struct extent_state **cached_state)
1116 {
1117 	io_ctl_drop_pages(io_ctl);
1118 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1119 			     i_size_read(inode) - 1, cached_state);
1120 }
1121 
1122 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1123 				 struct btrfs_trans_handle *trans,
1124 				 struct btrfs_block_group_cache *block_group,
1125 				 struct btrfs_io_ctl *io_ctl,
1126 				 struct btrfs_path *path, u64 offset)
1127 {
1128 	int ret;
1129 	struct inode *inode = io_ctl->inode;
1130 
1131 	if (!inode)
1132 		return 0;
1133 
1134 	/* Flush the dirty pages in the cache file. */
1135 	ret = flush_dirty_cache(inode);
1136 	if (ret)
1137 		goto out;
1138 
1139 	/* Update the cache item to tell everyone this cache file is valid. */
1140 	ret = update_cache_item(trans, root, inode, path, offset,
1141 				io_ctl->entries, io_ctl->bitmaps);
1142 out:
1143 	io_ctl_free(io_ctl);
1144 	if (ret) {
1145 		invalidate_inode_pages2(inode->i_mapping);
1146 		BTRFS_I(inode)->generation = 0;
1147 		if (block_group) {
1148 #ifdef DEBUG
1149 			btrfs_err(root->fs_info,
1150 				  "failed to write free space cache for block group %llu",
1151 				  block_group->key.objectid);
1152 #endif
1153 		}
1154 	}
1155 	btrfs_update_inode(trans, root, inode);
1156 
1157 	if (block_group) {
1158 		/* the dirty list is protected by the dirty_bgs_lock */
1159 		spin_lock(&trans->transaction->dirty_bgs_lock);
1160 
1161 		/* the disk_cache_state is protected by the block group lock */
1162 		spin_lock(&block_group->lock);
1163 
1164 		/*
1165 		 * only mark this as written if we didn't get put back on
1166 		 * the dirty list while waiting for IO.   Otherwise our
1167 		 * cache state won't be right, and we won't get written again
1168 		 */
1169 		if (!ret && list_empty(&block_group->dirty_list))
1170 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1171 		else if (ret)
1172 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1173 
1174 		spin_unlock(&block_group->lock);
1175 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1176 		io_ctl->inode = NULL;
1177 		iput(inode);
1178 	}
1179 
1180 	return ret;
1181 
1182 }
1183 
1184 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1185 				    struct btrfs_trans_handle *trans,
1186 				    struct btrfs_io_ctl *io_ctl,
1187 				    struct btrfs_path *path)
1188 {
1189 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1190 }
1191 
1192 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1193 			struct btrfs_block_group_cache *block_group,
1194 			struct btrfs_path *path)
1195 {
1196 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1197 				     block_group, &block_group->io_ctl,
1198 				     path, block_group->key.objectid);
1199 }
1200 
1201 /**
1202  * __btrfs_write_out_cache - write out cached info to an inode
1203  * @root - the root the inode belongs to
1204  * @ctl - the free space cache we are going to write out
1205  * @block_group - the block_group for this cache if it belongs to a block_group
1206  * @trans - the trans handle
1207  *
1208  * This function writes out a free space cache struct to disk for quick recovery
1209  * on mount.  This will return 0 if it was successful in writing the cache out,
1210  * or an errno if it was not.
1211  */
1212 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1213 				   struct btrfs_free_space_ctl *ctl,
1214 				   struct btrfs_block_group_cache *block_group,
1215 				   struct btrfs_io_ctl *io_ctl,
1216 				   struct btrfs_trans_handle *trans)
1217 {
1218 	struct btrfs_fs_info *fs_info = root->fs_info;
1219 	struct extent_state *cached_state = NULL;
1220 	LIST_HEAD(bitmap_list);
1221 	int entries = 0;
1222 	int bitmaps = 0;
1223 	int ret;
1224 	int must_iput = 0;
1225 
1226 	if (!i_size_read(inode))
1227 		return -EIO;
1228 
1229 	WARN_ON(io_ctl->pages);
1230 	ret = io_ctl_init(io_ctl, inode, 1);
1231 	if (ret)
1232 		return ret;
1233 
1234 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1235 		down_write(&block_group->data_rwsem);
1236 		spin_lock(&block_group->lock);
1237 		if (block_group->delalloc_bytes) {
1238 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1239 			spin_unlock(&block_group->lock);
1240 			up_write(&block_group->data_rwsem);
1241 			BTRFS_I(inode)->generation = 0;
1242 			ret = 0;
1243 			must_iput = 1;
1244 			goto out;
1245 		}
1246 		spin_unlock(&block_group->lock);
1247 	}
1248 
1249 	/* Lock all pages first so we can lock the extent safely. */
1250 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1251 	if (ret)
1252 		goto out_unlock;
1253 
1254 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1255 			 &cached_state);
1256 
1257 	io_ctl_set_generation(io_ctl, trans->transid);
1258 
1259 	mutex_lock(&ctl->cache_writeout_mutex);
1260 	/* Write out the extent entries in the free space cache */
1261 	spin_lock(&ctl->tree_lock);
1262 	ret = write_cache_extent_entries(io_ctl, ctl,
1263 					 block_group, &entries, &bitmaps,
1264 					 &bitmap_list);
1265 	if (ret)
1266 		goto out_nospc_locked;
1267 
1268 	/*
1269 	 * Some spaces that are freed in the current transaction are pinned,
1270 	 * they will be added into free space cache after the transaction is
1271 	 * committed, we shouldn't lose them.
1272 	 *
1273 	 * If this changes while we are working we'll get added back to
1274 	 * the dirty list and redo it.  No locking needed
1275 	 */
1276 	ret = write_pinned_extent_entries(fs_info, block_group,
1277 					  io_ctl, &entries);
1278 	if (ret)
1279 		goto out_nospc_locked;
1280 
1281 	/*
1282 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1283 	 * locked while doing it because a concurrent trim can be manipulating
1284 	 * or freeing the bitmap.
1285 	 */
1286 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1287 	spin_unlock(&ctl->tree_lock);
1288 	mutex_unlock(&ctl->cache_writeout_mutex);
1289 	if (ret)
1290 		goto out_nospc;
1291 
1292 	/* Zero out the rest of the pages just to make sure */
1293 	io_ctl_zero_remaining_pages(io_ctl);
1294 
1295 	/* Everything is written out, now we dirty the pages in the file. */
1296 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1297 				i_size_read(inode), &cached_state);
1298 	if (ret)
1299 		goto out_nospc;
1300 
1301 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1302 		up_write(&block_group->data_rwsem);
1303 	/*
1304 	 * Release the pages and unlock the extent, we will flush
1305 	 * them out later
1306 	 */
1307 	io_ctl_drop_pages(io_ctl);
1308 
1309 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1310 			     i_size_read(inode) - 1, &cached_state);
1311 
1312 	/*
1313 	 * at this point the pages are under IO and we're happy,
1314 	 * The caller is responsible for waiting on them and updating the
1315 	 * the cache and the inode
1316 	 */
1317 	io_ctl->entries = entries;
1318 	io_ctl->bitmaps = bitmaps;
1319 
1320 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1321 	if (ret)
1322 		goto out;
1323 
1324 	return 0;
1325 
1326 out:
1327 	io_ctl->inode = NULL;
1328 	io_ctl_free(io_ctl);
1329 	if (ret) {
1330 		invalidate_inode_pages2(inode->i_mapping);
1331 		BTRFS_I(inode)->generation = 0;
1332 	}
1333 	btrfs_update_inode(trans, root, inode);
1334 	if (must_iput)
1335 		iput(inode);
1336 	return ret;
1337 
1338 out_nospc_locked:
1339 	cleanup_bitmap_list(&bitmap_list);
1340 	spin_unlock(&ctl->tree_lock);
1341 	mutex_unlock(&ctl->cache_writeout_mutex);
1342 
1343 out_nospc:
1344 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1345 
1346 out_unlock:
1347 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1348 		up_write(&block_group->data_rwsem);
1349 
1350 	goto out;
1351 }
1352 
1353 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1354 			  struct btrfs_trans_handle *trans,
1355 			  struct btrfs_block_group_cache *block_group,
1356 			  struct btrfs_path *path)
1357 {
1358 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1359 	struct inode *inode;
1360 	int ret = 0;
1361 
1362 	spin_lock(&block_group->lock);
1363 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1364 		spin_unlock(&block_group->lock);
1365 		return 0;
1366 	}
1367 	spin_unlock(&block_group->lock);
1368 
1369 	inode = lookup_free_space_inode(fs_info, block_group, path);
1370 	if (IS_ERR(inode))
1371 		return 0;
1372 
1373 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1374 				block_group, &block_group->io_ctl, trans);
1375 	if (ret) {
1376 #ifdef DEBUG
1377 		btrfs_err(fs_info,
1378 			  "failed to write free space cache for block group %llu",
1379 			  block_group->key.objectid);
1380 #endif
1381 		spin_lock(&block_group->lock);
1382 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1383 		spin_unlock(&block_group->lock);
1384 
1385 		block_group->io_ctl.inode = NULL;
1386 		iput(inode);
1387 	}
1388 
1389 	/*
1390 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1391 	 * to wait for IO and put the inode
1392 	 */
1393 
1394 	return ret;
1395 }
1396 
1397 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1398 					  u64 offset)
1399 {
1400 	ASSERT(offset >= bitmap_start);
1401 	offset -= bitmap_start;
1402 	return (unsigned long)(div_u64(offset, unit));
1403 }
1404 
1405 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1406 {
1407 	return (unsigned long)(div_u64(bytes, unit));
1408 }
1409 
1410 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1411 				   u64 offset)
1412 {
1413 	u64 bitmap_start;
1414 	u64 bytes_per_bitmap;
1415 
1416 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1417 	bitmap_start = offset - ctl->start;
1418 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1419 	bitmap_start *= bytes_per_bitmap;
1420 	bitmap_start += ctl->start;
1421 
1422 	return bitmap_start;
1423 }
1424 
1425 static int tree_insert_offset(struct rb_root *root, u64 offset,
1426 			      struct rb_node *node, int bitmap)
1427 {
1428 	struct rb_node **p = &root->rb_node;
1429 	struct rb_node *parent = NULL;
1430 	struct btrfs_free_space *info;
1431 
1432 	while (*p) {
1433 		parent = *p;
1434 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1435 
1436 		if (offset < info->offset) {
1437 			p = &(*p)->rb_left;
1438 		} else if (offset > info->offset) {
1439 			p = &(*p)->rb_right;
1440 		} else {
1441 			/*
1442 			 * we could have a bitmap entry and an extent entry
1443 			 * share the same offset.  If this is the case, we want
1444 			 * the extent entry to always be found first if we do a
1445 			 * linear search through the tree, since we want to have
1446 			 * the quickest allocation time, and allocating from an
1447 			 * extent is faster than allocating from a bitmap.  So
1448 			 * if we're inserting a bitmap and we find an entry at
1449 			 * this offset, we want to go right, or after this entry
1450 			 * logically.  If we are inserting an extent and we've
1451 			 * found a bitmap, we want to go left, or before
1452 			 * logically.
1453 			 */
1454 			if (bitmap) {
1455 				if (info->bitmap) {
1456 					WARN_ON_ONCE(1);
1457 					return -EEXIST;
1458 				}
1459 				p = &(*p)->rb_right;
1460 			} else {
1461 				if (!info->bitmap) {
1462 					WARN_ON_ONCE(1);
1463 					return -EEXIST;
1464 				}
1465 				p = &(*p)->rb_left;
1466 			}
1467 		}
1468 	}
1469 
1470 	rb_link_node(node, parent, p);
1471 	rb_insert_color(node, root);
1472 
1473 	return 0;
1474 }
1475 
1476 /*
1477  * searches the tree for the given offset.
1478  *
1479  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1480  * want a section that has at least bytes size and comes at or after the given
1481  * offset.
1482  */
1483 static struct btrfs_free_space *
1484 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1485 		   u64 offset, int bitmap_only, int fuzzy)
1486 {
1487 	struct rb_node *n = ctl->free_space_offset.rb_node;
1488 	struct btrfs_free_space *entry, *prev = NULL;
1489 
1490 	/* find entry that is closest to the 'offset' */
1491 	while (1) {
1492 		if (!n) {
1493 			entry = NULL;
1494 			break;
1495 		}
1496 
1497 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1498 		prev = entry;
1499 
1500 		if (offset < entry->offset)
1501 			n = n->rb_left;
1502 		else if (offset > entry->offset)
1503 			n = n->rb_right;
1504 		else
1505 			break;
1506 	}
1507 
1508 	if (bitmap_only) {
1509 		if (!entry)
1510 			return NULL;
1511 		if (entry->bitmap)
1512 			return entry;
1513 
1514 		/*
1515 		 * bitmap entry and extent entry may share same offset,
1516 		 * in that case, bitmap entry comes after extent entry.
1517 		 */
1518 		n = rb_next(n);
1519 		if (!n)
1520 			return NULL;
1521 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1522 		if (entry->offset != offset)
1523 			return NULL;
1524 
1525 		WARN_ON(!entry->bitmap);
1526 		return entry;
1527 	} else if (entry) {
1528 		if (entry->bitmap) {
1529 			/*
1530 			 * if previous extent entry covers the offset,
1531 			 * we should return it instead of the bitmap entry
1532 			 */
1533 			n = rb_prev(&entry->offset_index);
1534 			if (n) {
1535 				prev = rb_entry(n, struct btrfs_free_space,
1536 						offset_index);
1537 				if (!prev->bitmap &&
1538 				    prev->offset + prev->bytes > offset)
1539 					entry = prev;
1540 			}
1541 		}
1542 		return entry;
1543 	}
1544 
1545 	if (!prev)
1546 		return NULL;
1547 
1548 	/* find last entry before the 'offset' */
1549 	entry = prev;
1550 	if (entry->offset > offset) {
1551 		n = rb_prev(&entry->offset_index);
1552 		if (n) {
1553 			entry = rb_entry(n, struct btrfs_free_space,
1554 					offset_index);
1555 			ASSERT(entry->offset <= offset);
1556 		} else {
1557 			if (fuzzy)
1558 				return entry;
1559 			else
1560 				return NULL;
1561 		}
1562 	}
1563 
1564 	if (entry->bitmap) {
1565 		n = rb_prev(&entry->offset_index);
1566 		if (n) {
1567 			prev = rb_entry(n, struct btrfs_free_space,
1568 					offset_index);
1569 			if (!prev->bitmap &&
1570 			    prev->offset + prev->bytes > offset)
1571 				return prev;
1572 		}
1573 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1574 			return entry;
1575 	} else if (entry->offset + entry->bytes > offset)
1576 		return entry;
1577 
1578 	if (!fuzzy)
1579 		return NULL;
1580 
1581 	while (1) {
1582 		if (entry->bitmap) {
1583 			if (entry->offset + BITS_PER_BITMAP *
1584 			    ctl->unit > offset)
1585 				break;
1586 		} else {
1587 			if (entry->offset + entry->bytes > offset)
1588 				break;
1589 		}
1590 
1591 		n = rb_next(&entry->offset_index);
1592 		if (!n)
1593 			return NULL;
1594 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1595 	}
1596 	return entry;
1597 }
1598 
1599 static inline void
1600 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1601 		    struct btrfs_free_space *info)
1602 {
1603 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1604 	ctl->free_extents--;
1605 }
1606 
1607 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1608 			      struct btrfs_free_space *info)
1609 {
1610 	__unlink_free_space(ctl, info);
1611 	ctl->free_space -= info->bytes;
1612 }
1613 
1614 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1615 			   struct btrfs_free_space *info)
1616 {
1617 	int ret = 0;
1618 
1619 	ASSERT(info->bytes || info->bitmap);
1620 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1621 				 &info->offset_index, (info->bitmap != NULL));
1622 	if (ret)
1623 		return ret;
1624 
1625 	ctl->free_space += info->bytes;
1626 	ctl->free_extents++;
1627 	return ret;
1628 }
1629 
1630 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1631 {
1632 	struct btrfs_block_group_cache *block_group = ctl->private;
1633 	u64 max_bytes;
1634 	u64 bitmap_bytes;
1635 	u64 extent_bytes;
1636 	u64 size = block_group->key.offset;
1637 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1638 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1639 
1640 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1641 
1642 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1643 
1644 	/*
1645 	 * The goal is to keep the total amount of memory used per 1gb of space
1646 	 * at or below 32k, so we need to adjust how much memory we allow to be
1647 	 * used by extent based free space tracking
1648 	 */
1649 	if (size < SZ_1G)
1650 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1651 	else
1652 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1653 
1654 	/*
1655 	 * we want to account for 1 more bitmap than what we have so we can make
1656 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1657 	 * we add more bitmaps.
1658 	 */
1659 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1660 
1661 	if (bitmap_bytes >= max_bytes) {
1662 		ctl->extents_thresh = 0;
1663 		return;
1664 	}
1665 
1666 	/*
1667 	 * we want the extent entry threshold to always be at most 1/2 the max
1668 	 * bytes we can have, or whatever is less than that.
1669 	 */
1670 	extent_bytes = max_bytes - bitmap_bytes;
1671 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1672 
1673 	ctl->extents_thresh =
1674 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1675 }
1676 
1677 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1678 				       struct btrfs_free_space *info,
1679 				       u64 offset, u64 bytes)
1680 {
1681 	unsigned long start, count;
1682 
1683 	start = offset_to_bit(info->offset, ctl->unit, offset);
1684 	count = bytes_to_bits(bytes, ctl->unit);
1685 	ASSERT(start + count <= BITS_PER_BITMAP);
1686 
1687 	bitmap_clear(info->bitmap, start, count);
1688 
1689 	info->bytes -= bytes;
1690 	if (info->max_extent_size > ctl->unit)
1691 		info->max_extent_size = 0;
1692 }
1693 
1694 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1695 			      struct btrfs_free_space *info, u64 offset,
1696 			      u64 bytes)
1697 {
1698 	__bitmap_clear_bits(ctl, info, offset, bytes);
1699 	ctl->free_space -= bytes;
1700 }
1701 
1702 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1703 			    struct btrfs_free_space *info, u64 offset,
1704 			    u64 bytes)
1705 {
1706 	unsigned long start, count;
1707 
1708 	start = offset_to_bit(info->offset, ctl->unit, offset);
1709 	count = bytes_to_bits(bytes, ctl->unit);
1710 	ASSERT(start + count <= BITS_PER_BITMAP);
1711 
1712 	bitmap_set(info->bitmap, start, count);
1713 
1714 	info->bytes += bytes;
1715 	ctl->free_space += bytes;
1716 }
1717 
1718 /*
1719  * If we can not find suitable extent, we will use bytes to record
1720  * the size of the max extent.
1721  */
1722 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1723 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1724 			 u64 *bytes, bool for_alloc)
1725 {
1726 	unsigned long found_bits = 0;
1727 	unsigned long max_bits = 0;
1728 	unsigned long bits, i;
1729 	unsigned long next_zero;
1730 	unsigned long extent_bits;
1731 
1732 	/*
1733 	 * Skip searching the bitmap if we don't have a contiguous section that
1734 	 * is large enough for this allocation.
1735 	 */
1736 	if (for_alloc &&
1737 	    bitmap_info->max_extent_size &&
1738 	    bitmap_info->max_extent_size < *bytes) {
1739 		*bytes = bitmap_info->max_extent_size;
1740 		return -1;
1741 	}
1742 
1743 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1744 			  max_t(u64, *offset, bitmap_info->offset));
1745 	bits = bytes_to_bits(*bytes, ctl->unit);
1746 
1747 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1748 		if (for_alloc && bits == 1) {
1749 			found_bits = 1;
1750 			break;
1751 		}
1752 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1753 					       BITS_PER_BITMAP, i);
1754 		extent_bits = next_zero - i;
1755 		if (extent_bits >= bits) {
1756 			found_bits = extent_bits;
1757 			break;
1758 		} else if (extent_bits > max_bits) {
1759 			max_bits = extent_bits;
1760 		}
1761 		i = next_zero;
1762 	}
1763 
1764 	if (found_bits) {
1765 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1766 		*bytes = (u64)(found_bits) * ctl->unit;
1767 		return 0;
1768 	}
1769 
1770 	*bytes = (u64)(max_bits) * ctl->unit;
1771 	bitmap_info->max_extent_size = *bytes;
1772 	return -1;
1773 }
1774 
1775 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1776 {
1777 	if (entry->bitmap)
1778 		return entry->max_extent_size;
1779 	return entry->bytes;
1780 }
1781 
1782 /* Cache the size of the max extent in bytes */
1783 static struct btrfs_free_space *
1784 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1785 		unsigned long align, u64 *max_extent_size)
1786 {
1787 	struct btrfs_free_space *entry;
1788 	struct rb_node *node;
1789 	u64 tmp;
1790 	u64 align_off;
1791 	int ret;
1792 
1793 	if (!ctl->free_space_offset.rb_node)
1794 		goto out;
1795 
1796 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1797 	if (!entry)
1798 		goto out;
1799 
1800 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1801 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1802 		if (entry->bytes < *bytes) {
1803 			*max_extent_size = max(get_max_extent_size(entry),
1804 					       *max_extent_size);
1805 			continue;
1806 		}
1807 
1808 		/* make sure the space returned is big enough
1809 		 * to match our requested alignment
1810 		 */
1811 		if (*bytes >= align) {
1812 			tmp = entry->offset - ctl->start + align - 1;
1813 			tmp = div64_u64(tmp, align);
1814 			tmp = tmp * align + ctl->start;
1815 			align_off = tmp - entry->offset;
1816 		} else {
1817 			align_off = 0;
1818 			tmp = entry->offset;
1819 		}
1820 
1821 		if (entry->bytes < *bytes + align_off) {
1822 			*max_extent_size = max(get_max_extent_size(entry),
1823 					       *max_extent_size);
1824 			continue;
1825 		}
1826 
1827 		if (entry->bitmap) {
1828 			u64 size = *bytes;
1829 
1830 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1831 			if (!ret) {
1832 				*offset = tmp;
1833 				*bytes = size;
1834 				return entry;
1835 			} else {
1836 				*max_extent_size =
1837 					max(get_max_extent_size(entry),
1838 					    *max_extent_size);
1839 			}
1840 			continue;
1841 		}
1842 
1843 		*offset = tmp;
1844 		*bytes = entry->bytes - align_off;
1845 		return entry;
1846 	}
1847 out:
1848 	return NULL;
1849 }
1850 
1851 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1852 			   struct btrfs_free_space *info, u64 offset)
1853 {
1854 	info->offset = offset_to_bitmap(ctl, offset);
1855 	info->bytes = 0;
1856 	INIT_LIST_HEAD(&info->list);
1857 	link_free_space(ctl, info);
1858 	ctl->total_bitmaps++;
1859 
1860 	ctl->op->recalc_thresholds(ctl);
1861 }
1862 
1863 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1864 			struct btrfs_free_space *bitmap_info)
1865 {
1866 	unlink_free_space(ctl, bitmap_info);
1867 	kfree(bitmap_info->bitmap);
1868 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1869 	ctl->total_bitmaps--;
1870 	ctl->op->recalc_thresholds(ctl);
1871 }
1872 
1873 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1874 			      struct btrfs_free_space *bitmap_info,
1875 			      u64 *offset, u64 *bytes)
1876 {
1877 	u64 end;
1878 	u64 search_start, search_bytes;
1879 	int ret;
1880 
1881 again:
1882 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1883 
1884 	/*
1885 	 * We need to search for bits in this bitmap.  We could only cover some
1886 	 * of the extent in this bitmap thanks to how we add space, so we need
1887 	 * to search for as much as it as we can and clear that amount, and then
1888 	 * go searching for the next bit.
1889 	 */
1890 	search_start = *offset;
1891 	search_bytes = ctl->unit;
1892 	search_bytes = min(search_bytes, end - search_start + 1);
1893 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1894 			    false);
1895 	if (ret < 0 || search_start != *offset)
1896 		return -EINVAL;
1897 
1898 	/* We may have found more bits than what we need */
1899 	search_bytes = min(search_bytes, *bytes);
1900 
1901 	/* Cannot clear past the end of the bitmap */
1902 	search_bytes = min(search_bytes, end - search_start + 1);
1903 
1904 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1905 	*offset += search_bytes;
1906 	*bytes -= search_bytes;
1907 
1908 	if (*bytes) {
1909 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1910 		if (!bitmap_info->bytes)
1911 			free_bitmap(ctl, bitmap_info);
1912 
1913 		/*
1914 		 * no entry after this bitmap, but we still have bytes to
1915 		 * remove, so something has gone wrong.
1916 		 */
1917 		if (!next)
1918 			return -EINVAL;
1919 
1920 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1921 				       offset_index);
1922 
1923 		/*
1924 		 * if the next entry isn't a bitmap we need to return to let the
1925 		 * extent stuff do its work.
1926 		 */
1927 		if (!bitmap_info->bitmap)
1928 			return -EAGAIN;
1929 
1930 		/*
1931 		 * Ok the next item is a bitmap, but it may not actually hold
1932 		 * the information for the rest of this free space stuff, so
1933 		 * look for it, and if we don't find it return so we can try
1934 		 * everything over again.
1935 		 */
1936 		search_start = *offset;
1937 		search_bytes = ctl->unit;
1938 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1939 				    &search_bytes, false);
1940 		if (ret < 0 || search_start != *offset)
1941 			return -EAGAIN;
1942 
1943 		goto again;
1944 	} else if (!bitmap_info->bytes)
1945 		free_bitmap(ctl, bitmap_info);
1946 
1947 	return 0;
1948 }
1949 
1950 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1951 			       struct btrfs_free_space *info, u64 offset,
1952 			       u64 bytes)
1953 {
1954 	u64 bytes_to_set = 0;
1955 	u64 end;
1956 
1957 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1958 
1959 	bytes_to_set = min(end - offset, bytes);
1960 
1961 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1962 
1963 	/*
1964 	 * We set some bytes, we have no idea what the max extent size is
1965 	 * anymore.
1966 	 */
1967 	info->max_extent_size = 0;
1968 
1969 	return bytes_to_set;
1970 
1971 }
1972 
1973 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1974 		      struct btrfs_free_space *info)
1975 {
1976 	struct btrfs_block_group_cache *block_group = ctl->private;
1977 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1978 	bool forced = false;
1979 
1980 #ifdef CONFIG_BTRFS_DEBUG
1981 	if (btrfs_should_fragment_free_space(block_group))
1982 		forced = true;
1983 #endif
1984 
1985 	/*
1986 	 * If we are below the extents threshold then we can add this as an
1987 	 * extent, and don't have to deal with the bitmap
1988 	 */
1989 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1990 		/*
1991 		 * If this block group has some small extents we don't want to
1992 		 * use up all of our free slots in the cache with them, we want
1993 		 * to reserve them to larger extents, however if we have plenty
1994 		 * of cache left then go ahead an dadd them, no sense in adding
1995 		 * the overhead of a bitmap if we don't have to.
1996 		 */
1997 		if (info->bytes <= fs_info->sectorsize * 4) {
1998 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1999 				return false;
2000 		} else {
2001 			return false;
2002 		}
2003 	}
2004 
2005 	/*
2006 	 * The original block groups from mkfs can be really small, like 8
2007 	 * megabytes, so don't bother with a bitmap for those entries.  However
2008 	 * some block groups can be smaller than what a bitmap would cover but
2009 	 * are still large enough that they could overflow the 32k memory limit,
2010 	 * so allow those block groups to still be allowed to have a bitmap
2011 	 * entry.
2012 	 */
2013 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2014 		return false;
2015 
2016 	return true;
2017 }
2018 
2019 static const struct btrfs_free_space_op free_space_op = {
2020 	.recalc_thresholds	= recalculate_thresholds,
2021 	.use_bitmap		= use_bitmap,
2022 };
2023 
2024 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2025 			      struct btrfs_free_space *info)
2026 {
2027 	struct btrfs_free_space *bitmap_info;
2028 	struct btrfs_block_group_cache *block_group = NULL;
2029 	int added = 0;
2030 	u64 bytes, offset, bytes_added;
2031 	int ret;
2032 
2033 	bytes = info->bytes;
2034 	offset = info->offset;
2035 
2036 	if (!ctl->op->use_bitmap(ctl, info))
2037 		return 0;
2038 
2039 	if (ctl->op == &free_space_op)
2040 		block_group = ctl->private;
2041 again:
2042 	/*
2043 	 * Since we link bitmaps right into the cluster we need to see if we
2044 	 * have a cluster here, and if so and it has our bitmap we need to add
2045 	 * the free space to that bitmap.
2046 	 */
2047 	if (block_group && !list_empty(&block_group->cluster_list)) {
2048 		struct btrfs_free_cluster *cluster;
2049 		struct rb_node *node;
2050 		struct btrfs_free_space *entry;
2051 
2052 		cluster = list_entry(block_group->cluster_list.next,
2053 				     struct btrfs_free_cluster,
2054 				     block_group_list);
2055 		spin_lock(&cluster->lock);
2056 		node = rb_first(&cluster->root);
2057 		if (!node) {
2058 			spin_unlock(&cluster->lock);
2059 			goto no_cluster_bitmap;
2060 		}
2061 
2062 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2063 		if (!entry->bitmap) {
2064 			spin_unlock(&cluster->lock);
2065 			goto no_cluster_bitmap;
2066 		}
2067 
2068 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2069 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2070 							  offset, bytes);
2071 			bytes -= bytes_added;
2072 			offset += bytes_added;
2073 		}
2074 		spin_unlock(&cluster->lock);
2075 		if (!bytes) {
2076 			ret = 1;
2077 			goto out;
2078 		}
2079 	}
2080 
2081 no_cluster_bitmap:
2082 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2083 					 1, 0);
2084 	if (!bitmap_info) {
2085 		ASSERT(added == 0);
2086 		goto new_bitmap;
2087 	}
2088 
2089 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2090 	bytes -= bytes_added;
2091 	offset += bytes_added;
2092 	added = 0;
2093 
2094 	if (!bytes) {
2095 		ret = 1;
2096 		goto out;
2097 	} else
2098 		goto again;
2099 
2100 new_bitmap:
2101 	if (info && info->bitmap) {
2102 		add_new_bitmap(ctl, info, offset);
2103 		added = 1;
2104 		info = NULL;
2105 		goto again;
2106 	} else {
2107 		spin_unlock(&ctl->tree_lock);
2108 
2109 		/* no pre-allocated info, allocate a new one */
2110 		if (!info) {
2111 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2112 						 GFP_NOFS);
2113 			if (!info) {
2114 				spin_lock(&ctl->tree_lock);
2115 				ret = -ENOMEM;
2116 				goto out;
2117 			}
2118 		}
2119 
2120 		/* allocate the bitmap */
2121 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2122 		spin_lock(&ctl->tree_lock);
2123 		if (!info->bitmap) {
2124 			ret = -ENOMEM;
2125 			goto out;
2126 		}
2127 		goto again;
2128 	}
2129 
2130 out:
2131 	if (info) {
2132 		kfree(info->bitmap);
2133 		kmem_cache_free(btrfs_free_space_cachep, info);
2134 	}
2135 
2136 	return ret;
2137 }
2138 
2139 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2140 			  struct btrfs_free_space *info, bool update_stat)
2141 {
2142 	struct btrfs_free_space *left_info;
2143 	struct btrfs_free_space *right_info;
2144 	bool merged = false;
2145 	u64 offset = info->offset;
2146 	u64 bytes = info->bytes;
2147 
2148 	/*
2149 	 * first we want to see if there is free space adjacent to the range we
2150 	 * are adding, if there is remove that struct and add a new one to
2151 	 * cover the entire range
2152 	 */
2153 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2154 	if (right_info && rb_prev(&right_info->offset_index))
2155 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2156 				     struct btrfs_free_space, offset_index);
2157 	else
2158 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2159 
2160 	if (right_info && !right_info->bitmap) {
2161 		if (update_stat)
2162 			unlink_free_space(ctl, right_info);
2163 		else
2164 			__unlink_free_space(ctl, right_info);
2165 		info->bytes += right_info->bytes;
2166 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2167 		merged = true;
2168 	}
2169 
2170 	if (left_info && !left_info->bitmap &&
2171 	    left_info->offset + left_info->bytes == offset) {
2172 		if (update_stat)
2173 			unlink_free_space(ctl, left_info);
2174 		else
2175 			__unlink_free_space(ctl, left_info);
2176 		info->offset = left_info->offset;
2177 		info->bytes += left_info->bytes;
2178 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2179 		merged = true;
2180 	}
2181 
2182 	return merged;
2183 }
2184 
2185 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2186 				     struct btrfs_free_space *info,
2187 				     bool update_stat)
2188 {
2189 	struct btrfs_free_space *bitmap;
2190 	unsigned long i;
2191 	unsigned long j;
2192 	const u64 end = info->offset + info->bytes;
2193 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2194 	u64 bytes;
2195 
2196 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2197 	if (!bitmap)
2198 		return false;
2199 
2200 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2201 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2202 	if (j == i)
2203 		return false;
2204 	bytes = (j - i) * ctl->unit;
2205 	info->bytes += bytes;
2206 
2207 	if (update_stat)
2208 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2209 	else
2210 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2211 
2212 	if (!bitmap->bytes)
2213 		free_bitmap(ctl, bitmap);
2214 
2215 	return true;
2216 }
2217 
2218 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2219 				       struct btrfs_free_space *info,
2220 				       bool update_stat)
2221 {
2222 	struct btrfs_free_space *bitmap;
2223 	u64 bitmap_offset;
2224 	unsigned long i;
2225 	unsigned long j;
2226 	unsigned long prev_j;
2227 	u64 bytes;
2228 
2229 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2230 	/* If we're on a boundary, try the previous logical bitmap. */
2231 	if (bitmap_offset == info->offset) {
2232 		if (info->offset == 0)
2233 			return false;
2234 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2235 	}
2236 
2237 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2238 	if (!bitmap)
2239 		return false;
2240 
2241 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2242 	j = 0;
2243 	prev_j = (unsigned long)-1;
2244 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2245 		if (j > i)
2246 			break;
2247 		prev_j = j;
2248 	}
2249 	if (prev_j == i)
2250 		return false;
2251 
2252 	if (prev_j == (unsigned long)-1)
2253 		bytes = (i + 1) * ctl->unit;
2254 	else
2255 		bytes = (i - prev_j) * ctl->unit;
2256 
2257 	info->offset -= bytes;
2258 	info->bytes += bytes;
2259 
2260 	if (update_stat)
2261 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2262 	else
2263 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2264 
2265 	if (!bitmap->bytes)
2266 		free_bitmap(ctl, bitmap);
2267 
2268 	return true;
2269 }
2270 
2271 /*
2272  * We prefer always to allocate from extent entries, both for clustered and
2273  * non-clustered allocation requests. So when attempting to add a new extent
2274  * entry, try to see if there's adjacent free space in bitmap entries, and if
2275  * there is, migrate that space from the bitmaps to the extent.
2276  * Like this we get better chances of satisfying space allocation requests
2277  * because we attempt to satisfy them based on a single cache entry, and never
2278  * on 2 or more entries - even if the entries represent a contiguous free space
2279  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2280  * ends).
2281  */
2282 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2283 			      struct btrfs_free_space *info,
2284 			      bool update_stat)
2285 {
2286 	/*
2287 	 * Only work with disconnected entries, as we can change their offset,
2288 	 * and must be extent entries.
2289 	 */
2290 	ASSERT(!info->bitmap);
2291 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2292 
2293 	if (ctl->total_bitmaps > 0) {
2294 		bool stole_end;
2295 		bool stole_front = false;
2296 
2297 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2298 		if (ctl->total_bitmaps > 0)
2299 			stole_front = steal_from_bitmap_to_front(ctl, info,
2300 								 update_stat);
2301 
2302 		if (stole_end || stole_front)
2303 			try_merge_free_space(ctl, info, update_stat);
2304 	}
2305 }
2306 
2307 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2308 			   struct btrfs_free_space_ctl *ctl,
2309 			   u64 offset, u64 bytes)
2310 {
2311 	struct btrfs_free_space *info;
2312 	int ret = 0;
2313 
2314 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2315 	if (!info)
2316 		return -ENOMEM;
2317 
2318 	info->offset = offset;
2319 	info->bytes = bytes;
2320 	RB_CLEAR_NODE(&info->offset_index);
2321 
2322 	spin_lock(&ctl->tree_lock);
2323 
2324 	if (try_merge_free_space(ctl, info, true))
2325 		goto link;
2326 
2327 	/*
2328 	 * There was no extent directly to the left or right of this new
2329 	 * extent then we know we're going to have to allocate a new extent, so
2330 	 * before we do that see if we need to drop this into a bitmap
2331 	 */
2332 	ret = insert_into_bitmap(ctl, info);
2333 	if (ret < 0) {
2334 		goto out;
2335 	} else if (ret) {
2336 		ret = 0;
2337 		goto out;
2338 	}
2339 link:
2340 	/*
2341 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2342 	 * going to add the new free space to existing bitmap entries - because
2343 	 * that would mean unnecessary work that would be reverted. Therefore
2344 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2345 	 */
2346 	steal_from_bitmap(ctl, info, true);
2347 
2348 	ret = link_free_space(ctl, info);
2349 	if (ret)
2350 		kmem_cache_free(btrfs_free_space_cachep, info);
2351 out:
2352 	spin_unlock(&ctl->tree_lock);
2353 
2354 	if (ret) {
2355 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2356 		ASSERT(ret != -EEXIST);
2357 	}
2358 
2359 	return ret;
2360 }
2361 
2362 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2363 			    u64 offset, u64 bytes)
2364 {
2365 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2366 	struct btrfs_free_space *info;
2367 	int ret;
2368 	bool re_search = false;
2369 
2370 	spin_lock(&ctl->tree_lock);
2371 
2372 again:
2373 	ret = 0;
2374 	if (!bytes)
2375 		goto out_lock;
2376 
2377 	info = tree_search_offset(ctl, offset, 0, 0);
2378 	if (!info) {
2379 		/*
2380 		 * oops didn't find an extent that matched the space we wanted
2381 		 * to remove, look for a bitmap instead
2382 		 */
2383 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2384 					  1, 0);
2385 		if (!info) {
2386 			/*
2387 			 * If we found a partial bit of our free space in a
2388 			 * bitmap but then couldn't find the other part this may
2389 			 * be a problem, so WARN about it.
2390 			 */
2391 			WARN_ON(re_search);
2392 			goto out_lock;
2393 		}
2394 	}
2395 
2396 	re_search = false;
2397 	if (!info->bitmap) {
2398 		unlink_free_space(ctl, info);
2399 		if (offset == info->offset) {
2400 			u64 to_free = min(bytes, info->bytes);
2401 
2402 			info->bytes -= to_free;
2403 			info->offset += to_free;
2404 			if (info->bytes) {
2405 				ret = link_free_space(ctl, info);
2406 				WARN_ON(ret);
2407 			} else {
2408 				kmem_cache_free(btrfs_free_space_cachep, info);
2409 			}
2410 
2411 			offset += to_free;
2412 			bytes -= to_free;
2413 			goto again;
2414 		} else {
2415 			u64 old_end = info->bytes + info->offset;
2416 
2417 			info->bytes = offset - info->offset;
2418 			ret = link_free_space(ctl, info);
2419 			WARN_ON(ret);
2420 			if (ret)
2421 				goto out_lock;
2422 
2423 			/* Not enough bytes in this entry to satisfy us */
2424 			if (old_end < offset + bytes) {
2425 				bytes -= old_end - offset;
2426 				offset = old_end;
2427 				goto again;
2428 			} else if (old_end == offset + bytes) {
2429 				/* all done */
2430 				goto out_lock;
2431 			}
2432 			spin_unlock(&ctl->tree_lock);
2433 
2434 			ret = btrfs_add_free_space(block_group, offset + bytes,
2435 						   old_end - (offset + bytes));
2436 			WARN_ON(ret);
2437 			goto out;
2438 		}
2439 	}
2440 
2441 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2442 	if (ret == -EAGAIN) {
2443 		re_search = true;
2444 		goto again;
2445 	}
2446 out_lock:
2447 	spin_unlock(&ctl->tree_lock);
2448 out:
2449 	return ret;
2450 }
2451 
2452 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2453 			   u64 bytes)
2454 {
2455 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2456 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2457 	struct btrfs_free_space *info;
2458 	struct rb_node *n;
2459 	int count = 0;
2460 
2461 	spin_lock(&ctl->tree_lock);
2462 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2463 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2464 		if (info->bytes >= bytes && !block_group->ro)
2465 			count++;
2466 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2467 			   info->offset, info->bytes,
2468 		       (info->bitmap) ? "yes" : "no");
2469 	}
2470 	spin_unlock(&ctl->tree_lock);
2471 	btrfs_info(fs_info, "block group has cluster?: %s",
2472 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2473 	btrfs_info(fs_info,
2474 		   "%d blocks of free space at or bigger than bytes is", count);
2475 }
2476 
2477 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2478 {
2479 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2480 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2481 
2482 	spin_lock_init(&ctl->tree_lock);
2483 	ctl->unit = fs_info->sectorsize;
2484 	ctl->start = block_group->key.objectid;
2485 	ctl->private = block_group;
2486 	ctl->op = &free_space_op;
2487 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2488 	mutex_init(&ctl->cache_writeout_mutex);
2489 
2490 	/*
2491 	 * we only want to have 32k of ram per block group for keeping
2492 	 * track of free space, and if we pass 1/2 of that we want to
2493 	 * start converting things over to using bitmaps
2494 	 */
2495 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2496 }
2497 
2498 /*
2499  * for a given cluster, put all of its extents back into the free
2500  * space cache.  If the block group passed doesn't match the block group
2501  * pointed to by the cluster, someone else raced in and freed the
2502  * cluster already.  In that case, we just return without changing anything
2503  */
2504 static int
2505 __btrfs_return_cluster_to_free_space(
2506 			     struct btrfs_block_group_cache *block_group,
2507 			     struct btrfs_free_cluster *cluster)
2508 {
2509 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2510 	struct btrfs_free_space *entry;
2511 	struct rb_node *node;
2512 
2513 	spin_lock(&cluster->lock);
2514 	if (cluster->block_group != block_group)
2515 		goto out;
2516 
2517 	cluster->block_group = NULL;
2518 	cluster->window_start = 0;
2519 	list_del_init(&cluster->block_group_list);
2520 
2521 	node = rb_first(&cluster->root);
2522 	while (node) {
2523 		bool bitmap;
2524 
2525 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2526 		node = rb_next(&entry->offset_index);
2527 		rb_erase(&entry->offset_index, &cluster->root);
2528 		RB_CLEAR_NODE(&entry->offset_index);
2529 
2530 		bitmap = (entry->bitmap != NULL);
2531 		if (!bitmap) {
2532 			try_merge_free_space(ctl, entry, false);
2533 			steal_from_bitmap(ctl, entry, false);
2534 		}
2535 		tree_insert_offset(&ctl->free_space_offset,
2536 				   entry->offset, &entry->offset_index, bitmap);
2537 	}
2538 	cluster->root = RB_ROOT;
2539 
2540 out:
2541 	spin_unlock(&cluster->lock);
2542 	btrfs_put_block_group(block_group);
2543 	return 0;
2544 }
2545 
2546 static void __btrfs_remove_free_space_cache_locked(
2547 				struct btrfs_free_space_ctl *ctl)
2548 {
2549 	struct btrfs_free_space *info;
2550 	struct rb_node *node;
2551 
2552 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2553 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2554 		if (!info->bitmap) {
2555 			unlink_free_space(ctl, info);
2556 			kmem_cache_free(btrfs_free_space_cachep, info);
2557 		} else {
2558 			free_bitmap(ctl, info);
2559 		}
2560 
2561 		cond_resched_lock(&ctl->tree_lock);
2562 	}
2563 }
2564 
2565 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2566 {
2567 	spin_lock(&ctl->tree_lock);
2568 	__btrfs_remove_free_space_cache_locked(ctl);
2569 	spin_unlock(&ctl->tree_lock);
2570 }
2571 
2572 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2573 {
2574 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2575 	struct btrfs_free_cluster *cluster;
2576 	struct list_head *head;
2577 
2578 	spin_lock(&ctl->tree_lock);
2579 	while ((head = block_group->cluster_list.next) !=
2580 	       &block_group->cluster_list) {
2581 		cluster = list_entry(head, struct btrfs_free_cluster,
2582 				     block_group_list);
2583 
2584 		WARN_ON(cluster->block_group != block_group);
2585 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2586 
2587 		cond_resched_lock(&ctl->tree_lock);
2588 	}
2589 	__btrfs_remove_free_space_cache_locked(ctl);
2590 	spin_unlock(&ctl->tree_lock);
2591 
2592 }
2593 
2594 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2595 			       u64 offset, u64 bytes, u64 empty_size,
2596 			       u64 *max_extent_size)
2597 {
2598 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2599 	struct btrfs_free_space *entry = NULL;
2600 	u64 bytes_search = bytes + empty_size;
2601 	u64 ret = 0;
2602 	u64 align_gap = 0;
2603 	u64 align_gap_len = 0;
2604 
2605 	spin_lock(&ctl->tree_lock);
2606 	entry = find_free_space(ctl, &offset, &bytes_search,
2607 				block_group->full_stripe_len, max_extent_size);
2608 	if (!entry)
2609 		goto out;
2610 
2611 	ret = offset;
2612 	if (entry->bitmap) {
2613 		bitmap_clear_bits(ctl, entry, offset, bytes);
2614 		if (!entry->bytes)
2615 			free_bitmap(ctl, entry);
2616 	} else {
2617 		unlink_free_space(ctl, entry);
2618 		align_gap_len = offset - entry->offset;
2619 		align_gap = entry->offset;
2620 
2621 		entry->offset = offset + bytes;
2622 		WARN_ON(entry->bytes < bytes + align_gap_len);
2623 
2624 		entry->bytes -= bytes + align_gap_len;
2625 		if (!entry->bytes)
2626 			kmem_cache_free(btrfs_free_space_cachep, entry);
2627 		else
2628 			link_free_space(ctl, entry);
2629 	}
2630 out:
2631 	spin_unlock(&ctl->tree_lock);
2632 
2633 	if (align_gap_len)
2634 		__btrfs_add_free_space(block_group->fs_info, ctl,
2635 				       align_gap, align_gap_len);
2636 	return ret;
2637 }
2638 
2639 /*
2640  * given a cluster, put all of its extents back into the free space
2641  * cache.  If a block group is passed, this function will only free
2642  * a cluster that belongs to the passed block group.
2643  *
2644  * Otherwise, it'll get a reference on the block group pointed to by the
2645  * cluster and remove the cluster from it.
2646  */
2647 int btrfs_return_cluster_to_free_space(
2648 			       struct btrfs_block_group_cache *block_group,
2649 			       struct btrfs_free_cluster *cluster)
2650 {
2651 	struct btrfs_free_space_ctl *ctl;
2652 	int ret;
2653 
2654 	/* first, get a safe pointer to the block group */
2655 	spin_lock(&cluster->lock);
2656 	if (!block_group) {
2657 		block_group = cluster->block_group;
2658 		if (!block_group) {
2659 			spin_unlock(&cluster->lock);
2660 			return 0;
2661 		}
2662 	} else if (cluster->block_group != block_group) {
2663 		/* someone else has already freed it don't redo their work */
2664 		spin_unlock(&cluster->lock);
2665 		return 0;
2666 	}
2667 	atomic_inc(&block_group->count);
2668 	spin_unlock(&cluster->lock);
2669 
2670 	ctl = block_group->free_space_ctl;
2671 
2672 	/* now return any extents the cluster had on it */
2673 	spin_lock(&ctl->tree_lock);
2674 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2675 	spin_unlock(&ctl->tree_lock);
2676 
2677 	/* finally drop our ref */
2678 	btrfs_put_block_group(block_group);
2679 	return ret;
2680 }
2681 
2682 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2683 				   struct btrfs_free_cluster *cluster,
2684 				   struct btrfs_free_space *entry,
2685 				   u64 bytes, u64 min_start,
2686 				   u64 *max_extent_size)
2687 {
2688 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2689 	int err;
2690 	u64 search_start = cluster->window_start;
2691 	u64 search_bytes = bytes;
2692 	u64 ret = 0;
2693 
2694 	search_start = min_start;
2695 	search_bytes = bytes;
2696 
2697 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2698 	if (err) {
2699 		*max_extent_size = max(get_max_extent_size(entry),
2700 				       *max_extent_size);
2701 		return 0;
2702 	}
2703 
2704 	ret = search_start;
2705 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2706 
2707 	return ret;
2708 }
2709 
2710 /*
2711  * given a cluster, try to allocate 'bytes' from it, returns 0
2712  * if it couldn't find anything suitably large, or a logical disk offset
2713  * if things worked out
2714  */
2715 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2716 			     struct btrfs_free_cluster *cluster, u64 bytes,
2717 			     u64 min_start, u64 *max_extent_size)
2718 {
2719 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2720 	struct btrfs_free_space *entry = NULL;
2721 	struct rb_node *node;
2722 	u64 ret = 0;
2723 
2724 	spin_lock(&cluster->lock);
2725 	if (bytes > cluster->max_size)
2726 		goto out;
2727 
2728 	if (cluster->block_group != block_group)
2729 		goto out;
2730 
2731 	node = rb_first(&cluster->root);
2732 	if (!node)
2733 		goto out;
2734 
2735 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2736 	while (1) {
2737 		if (entry->bytes < bytes)
2738 			*max_extent_size = max(get_max_extent_size(entry),
2739 					       *max_extent_size);
2740 
2741 		if (entry->bytes < bytes ||
2742 		    (!entry->bitmap && entry->offset < min_start)) {
2743 			node = rb_next(&entry->offset_index);
2744 			if (!node)
2745 				break;
2746 			entry = rb_entry(node, struct btrfs_free_space,
2747 					 offset_index);
2748 			continue;
2749 		}
2750 
2751 		if (entry->bitmap) {
2752 			ret = btrfs_alloc_from_bitmap(block_group,
2753 						      cluster, entry, bytes,
2754 						      cluster->window_start,
2755 						      max_extent_size);
2756 			if (ret == 0) {
2757 				node = rb_next(&entry->offset_index);
2758 				if (!node)
2759 					break;
2760 				entry = rb_entry(node, struct btrfs_free_space,
2761 						 offset_index);
2762 				continue;
2763 			}
2764 			cluster->window_start += bytes;
2765 		} else {
2766 			ret = entry->offset;
2767 
2768 			entry->offset += bytes;
2769 			entry->bytes -= bytes;
2770 		}
2771 
2772 		if (entry->bytes == 0)
2773 			rb_erase(&entry->offset_index, &cluster->root);
2774 		break;
2775 	}
2776 out:
2777 	spin_unlock(&cluster->lock);
2778 
2779 	if (!ret)
2780 		return 0;
2781 
2782 	spin_lock(&ctl->tree_lock);
2783 
2784 	ctl->free_space -= bytes;
2785 	if (entry->bytes == 0) {
2786 		ctl->free_extents--;
2787 		if (entry->bitmap) {
2788 			kfree(entry->bitmap);
2789 			ctl->total_bitmaps--;
2790 			ctl->op->recalc_thresholds(ctl);
2791 		}
2792 		kmem_cache_free(btrfs_free_space_cachep, entry);
2793 	}
2794 
2795 	spin_unlock(&ctl->tree_lock);
2796 
2797 	return ret;
2798 }
2799 
2800 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2801 				struct btrfs_free_space *entry,
2802 				struct btrfs_free_cluster *cluster,
2803 				u64 offset, u64 bytes,
2804 				u64 cont1_bytes, u64 min_bytes)
2805 {
2806 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2807 	unsigned long next_zero;
2808 	unsigned long i;
2809 	unsigned long want_bits;
2810 	unsigned long min_bits;
2811 	unsigned long found_bits;
2812 	unsigned long max_bits = 0;
2813 	unsigned long start = 0;
2814 	unsigned long total_found = 0;
2815 	int ret;
2816 
2817 	i = offset_to_bit(entry->offset, ctl->unit,
2818 			  max_t(u64, offset, entry->offset));
2819 	want_bits = bytes_to_bits(bytes, ctl->unit);
2820 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2821 
2822 	/*
2823 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2824 	 * fragmented.
2825 	 */
2826 	if (entry->max_extent_size &&
2827 	    entry->max_extent_size < cont1_bytes)
2828 		return -ENOSPC;
2829 again:
2830 	found_bits = 0;
2831 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2832 		next_zero = find_next_zero_bit(entry->bitmap,
2833 					       BITS_PER_BITMAP, i);
2834 		if (next_zero - i >= min_bits) {
2835 			found_bits = next_zero - i;
2836 			if (found_bits > max_bits)
2837 				max_bits = found_bits;
2838 			break;
2839 		}
2840 		if (next_zero - i > max_bits)
2841 			max_bits = next_zero - i;
2842 		i = next_zero;
2843 	}
2844 
2845 	if (!found_bits) {
2846 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2847 		return -ENOSPC;
2848 	}
2849 
2850 	if (!total_found) {
2851 		start = i;
2852 		cluster->max_size = 0;
2853 	}
2854 
2855 	total_found += found_bits;
2856 
2857 	if (cluster->max_size < found_bits * ctl->unit)
2858 		cluster->max_size = found_bits * ctl->unit;
2859 
2860 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2861 		i = next_zero + 1;
2862 		goto again;
2863 	}
2864 
2865 	cluster->window_start = start * ctl->unit + entry->offset;
2866 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2867 	ret = tree_insert_offset(&cluster->root, entry->offset,
2868 				 &entry->offset_index, 1);
2869 	ASSERT(!ret); /* -EEXIST; Logic error */
2870 
2871 	trace_btrfs_setup_cluster(block_group, cluster,
2872 				  total_found * ctl->unit, 1);
2873 	return 0;
2874 }
2875 
2876 /*
2877  * This searches the block group for just extents to fill the cluster with.
2878  * Try to find a cluster with at least bytes total bytes, at least one
2879  * extent of cont1_bytes, and other clusters of at least min_bytes.
2880  */
2881 static noinline int
2882 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2883 			struct btrfs_free_cluster *cluster,
2884 			struct list_head *bitmaps, u64 offset, u64 bytes,
2885 			u64 cont1_bytes, u64 min_bytes)
2886 {
2887 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2888 	struct btrfs_free_space *first = NULL;
2889 	struct btrfs_free_space *entry = NULL;
2890 	struct btrfs_free_space *last;
2891 	struct rb_node *node;
2892 	u64 window_free;
2893 	u64 max_extent;
2894 	u64 total_size = 0;
2895 
2896 	entry = tree_search_offset(ctl, offset, 0, 1);
2897 	if (!entry)
2898 		return -ENOSPC;
2899 
2900 	/*
2901 	 * We don't want bitmaps, so just move along until we find a normal
2902 	 * extent entry.
2903 	 */
2904 	while (entry->bitmap || entry->bytes < min_bytes) {
2905 		if (entry->bitmap && list_empty(&entry->list))
2906 			list_add_tail(&entry->list, bitmaps);
2907 		node = rb_next(&entry->offset_index);
2908 		if (!node)
2909 			return -ENOSPC;
2910 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2911 	}
2912 
2913 	window_free = entry->bytes;
2914 	max_extent = entry->bytes;
2915 	first = entry;
2916 	last = entry;
2917 
2918 	for (node = rb_next(&entry->offset_index); node;
2919 	     node = rb_next(&entry->offset_index)) {
2920 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2921 
2922 		if (entry->bitmap) {
2923 			if (list_empty(&entry->list))
2924 				list_add_tail(&entry->list, bitmaps);
2925 			continue;
2926 		}
2927 
2928 		if (entry->bytes < min_bytes)
2929 			continue;
2930 
2931 		last = entry;
2932 		window_free += entry->bytes;
2933 		if (entry->bytes > max_extent)
2934 			max_extent = entry->bytes;
2935 	}
2936 
2937 	if (window_free < bytes || max_extent < cont1_bytes)
2938 		return -ENOSPC;
2939 
2940 	cluster->window_start = first->offset;
2941 
2942 	node = &first->offset_index;
2943 
2944 	/*
2945 	 * now we've found our entries, pull them out of the free space
2946 	 * cache and put them into the cluster rbtree
2947 	 */
2948 	do {
2949 		int ret;
2950 
2951 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2952 		node = rb_next(&entry->offset_index);
2953 		if (entry->bitmap || entry->bytes < min_bytes)
2954 			continue;
2955 
2956 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2957 		ret = tree_insert_offset(&cluster->root, entry->offset,
2958 					 &entry->offset_index, 0);
2959 		total_size += entry->bytes;
2960 		ASSERT(!ret); /* -EEXIST; Logic error */
2961 	} while (node && entry != last);
2962 
2963 	cluster->max_size = max_extent;
2964 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2965 	return 0;
2966 }
2967 
2968 /*
2969  * This specifically looks for bitmaps that may work in the cluster, we assume
2970  * that we have already failed to find extents that will work.
2971  */
2972 static noinline int
2973 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2974 		     struct btrfs_free_cluster *cluster,
2975 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2976 		     u64 cont1_bytes, u64 min_bytes)
2977 {
2978 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979 	struct btrfs_free_space *entry = NULL;
2980 	int ret = -ENOSPC;
2981 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2982 
2983 	if (ctl->total_bitmaps == 0)
2984 		return -ENOSPC;
2985 
2986 	/*
2987 	 * The bitmap that covers offset won't be in the list unless offset
2988 	 * is just its start offset.
2989 	 */
2990 	if (!list_empty(bitmaps))
2991 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2992 
2993 	if (!entry || entry->offset != bitmap_offset) {
2994 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2995 		if (entry && list_empty(&entry->list))
2996 			list_add(&entry->list, bitmaps);
2997 	}
2998 
2999 	list_for_each_entry(entry, bitmaps, list) {
3000 		if (entry->bytes < bytes)
3001 			continue;
3002 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3003 					   bytes, cont1_bytes, min_bytes);
3004 		if (!ret)
3005 			return 0;
3006 	}
3007 
3008 	/*
3009 	 * The bitmaps list has all the bitmaps that record free space
3010 	 * starting after offset, so no more search is required.
3011 	 */
3012 	return -ENOSPC;
3013 }
3014 
3015 /*
3016  * here we try to find a cluster of blocks in a block group.  The goal
3017  * is to find at least bytes+empty_size.
3018  * We might not find them all in one contiguous area.
3019  *
3020  * returns zero and sets up cluster if things worked out, otherwise
3021  * it returns -enospc
3022  */
3023 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3024 			     struct btrfs_block_group_cache *block_group,
3025 			     struct btrfs_free_cluster *cluster,
3026 			     u64 offset, u64 bytes, u64 empty_size)
3027 {
3028 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3029 	struct btrfs_free_space *entry, *tmp;
3030 	LIST_HEAD(bitmaps);
3031 	u64 min_bytes;
3032 	u64 cont1_bytes;
3033 	int ret;
3034 
3035 	/*
3036 	 * Choose the minimum extent size we'll require for this
3037 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3038 	 * For metadata, allow allocates with smaller extents.  For
3039 	 * data, keep it dense.
3040 	 */
3041 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3042 		cont1_bytes = min_bytes = bytes + empty_size;
3043 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3044 		cont1_bytes = bytes;
3045 		min_bytes = fs_info->sectorsize;
3046 	} else {
3047 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3048 		min_bytes = fs_info->sectorsize;
3049 	}
3050 
3051 	spin_lock(&ctl->tree_lock);
3052 
3053 	/*
3054 	 * If we know we don't have enough space to make a cluster don't even
3055 	 * bother doing all the work to try and find one.
3056 	 */
3057 	if (ctl->free_space < bytes) {
3058 		spin_unlock(&ctl->tree_lock);
3059 		return -ENOSPC;
3060 	}
3061 
3062 	spin_lock(&cluster->lock);
3063 
3064 	/* someone already found a cluster, hooray */
3065 	if (cluster->block_group) {
3066 		ret = 0;
3067 		goto out;
3068 	}
3069 
3070 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3071 				 min_bytes);
3072 
3073 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3074 				      bytes + empty_size,
3075 				      cont1_bytes, min_bytes);
3076 	if (ret)
3077 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3078 					   offset, bytes + empty_size,
3079 					   cont1_bytes, min_bytes);
3080 
3081 	/* Clear our temporary list */
3082 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3083 		list_del_init(&entry->list);
3084 
3085 	if (!ret) {
3086 		atomic_inc(&block_group->count);
3087 		list_add_tail(&cluster->block_group_list,
3088 			      &block_group->cluster_list);
3089 		cluster->block_group = block_group;
3090 	} else {
3091 		trace_btrfs_failed_cluster_setup(block_group);
3092 	}
3093 out:
3094 	spin_unlock(&cluster->lock);
3095 	spin_unlock(&ctl->tree_lock);
3096 
3097 	return ret;
3098 }
3099 
3100 /*
3101  * simple code to zero out a cluster
3102  */
3103 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3104 {
3105 	spin_lock_init(&cluster->lock);
3106 	spin_lock_init(&cluster->refill_lock);
3107 	cluster->root = RB_ROOT;
3108 	cluster->max_size = 0;
3109 	cluster->fragmented = false;
3110 	INIT_LIST_HEAD(&cluster->block_group_list);
3111 	cluster->block_group = NULL;
3112 }
3113 
3114 static int do_trimming(struct btrfs_block_group_cache *block_group,
3115 		       u64 *total_trimmed, u64 start, u64 bytes,
3116 		       u64 reserved_start, u64 reserved_bytes,
3117 		       struct btrfs_trim_range *trim_entry)
3118 {
3119 	struct btrfs_space_info *space_info = block_group->space_info;
3120 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3121 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3122 	int ret;
3123 	int update = 0;
3124 	u64 trimmed = 0;
3125 
3126 	spin_lock(&space_info->lock);
3127 	spin_lock(&block_group->lock);
3128 	if (!block_group->ro) {
3129 		block_group->reserved += reserved_bytes;
3130 		space_info->bytes_reserved += reserved_bytes;
3131 		update = 1;
3132 	}
3133 	spin_unlock(&block_group->lock);
3134 	spin_unlock(&space_info->lock);
3135 
3136 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3137 	if (!ret)
3138 		*total_trimmed += trimmed;
3139 
3140 	mutex_lock(&ctl->cache_writeout_mutex);
3141 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3142 	list_del(&trim_entry->list);
3143 	mutex_unlock(&ctl->cache_writeout_mutex);
3144 
3145 	if (update) {
3146 		spin_lock(&space_info->lock);
3147 		spin_lock(&block_group->lock);
3148 		if (block_group->ro)
3149 			space_info->bytes_readonly += reserved_bytes;
3150 		block_group->reserved -= reserved_bytes;
3151 		space_info->bytes_reserved -= reserved_bytes;
3152 		spin_unlock(&space_info->lock);
3153 		spin_unlock(&block_group->lock);
3154 	}
3155 
3156 	return ret;
3157 }
3158 
3159 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3160 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3161 {
3162 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3163 	struct btrfs_free_space *entry;
3164 	struct rb_node *node;
3165 	int ret = 0;
3166 	u64 extent_start;
3167 	u64 extent_bytes;
3168 	u64 bytes;
3169 
3170 	while (start < end) {
3171 		struct btrfs_trim_range trim_entry;
3172 
3173 		mutex_lock(&ctl->cache_writeout_mutex);
3174 		spin_lock(&ctl->tree_lock);
3175 
3176 		if (ctl->free_space < minlen) {
3177 			spin_unlock(&ctl->tree_lock);
3178 			mutex_unlock(&ctl->cache_writeout_mutex);
3179 			break;
3180 		}
3181 
3182 		entry = tree_search_offset(ctl, start, 0, 1);
3183 		if (!entry) {
3184 			spin_unlock(&ctl->tree_lock);
3185 			mutex_unlock(&ctl->cache_writeout_mutex);
3186 			break;
3187 		}
3188 
3189 		/* skip bitmaps */
3190 		while (entry->bitmap) {
3191 			node = rb_next(&entry->offset_index);
3192 			if (!node) {
3193 				spin_unlock(&ctl->tree_lock);
3194 				mutex_unlock(&ctl->cache_writeout_mutex);
3195 				goto out;
3196 			}
3197 			entry = rb_entry(node, struct btrfs_free_space,
3198 					 offset_index);
3199 		}
3200 
3201 		if (entry->offset >= end) {
3202 			spin_unlock(&ctl->tree_lock);
3203 			mutex_unlock(&ctl->cache_writeout_mutex);
3204 			break;
3205 		}
3206 
3207 		extent_start = entry->offset;
3208 		extent_bytes = entry->bytes;
3209 		start = max(start, extent_start);
3210 		bytes = min(extent_start + extent_bytes, end) - start;
3211 		if (bytes < minlen) {
3212 			spin_unlock(&ctl->tree_lock);
3213 			mutex_unlock(&ctl->cache_writeout_mutex);
3214 			goto next;
3215 		}
3216 
3217 		unlink_free_space(ctl, entry);
3218 		kmem_cache_free(btrfs_free_space_cachep, entry);
3219 
3220 		spin_unlock(&ctl->tree_lock);
3221 		trim_entry.start = extent_start;
3222 		trim_entry.bytes = extent_bytes;
3223 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3224 		mutex_unlock(&ctl->cache_writeout_mutex);
3225 
3226 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3227 				  extent_start, extent_bytes, &trim_entry);
3228 		if (ret)
3229 			break;
3230 next:
3231 		start += bytes;
3232 
3233 		if (fatal_signal_pending(current)) {
3234 			ret = -ERESTARTSYS;
3235 			break;
3236 		}
3237 
3238 		cond_resched();
3239 	}
3240 out:
3241 	return ret;
3242 }
3243 
3244 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3245 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3246 {
3247 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3248 	struct btrfs_free_space *entry;
3249 	int ret = 0;
3250 	int ret2;
3251 	u64 bytes;
3252 	u64 offset = offset_to_bitmap(ctl, start);
3253 
3254 	while (offset < end) {
3255 		bool next_bitmap = false;
3256 		struct btrfs_trim_range trim_entry;
3257 
3258 		mutex_lock(&ctl->cache_writeout_mutex);
3259 		spin_lock(&ctl->tree_lock);
3260 
3261 		if (ctl->free_space < minlen) {
3262 			spin_unlock(&ctl->tree_lock);
3263 			mutex_unlock(&ctl->cache_writeout_mutex);
3264 			break;
3265 		}
3266 
3267 		entry = tree_search_offset(ctl, offset, 1, 0);
3268 		if (!entry) {
3269 			spin_unlock(&ctl->tree_lock);
3270 			mutex_unlock(&ctl->cache_writeout_mutex);
3271 			next_bitmap = true;
3272 			goto next;
3273 		}
3274 
3275 		bytes = minlen;
3276 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3277 		if (ret2 || start >= end) {
3278 			spin_unlock(&ctl->tree_lock);
3279 			mutex_unlock(&ctl->cache_writeout_mutex);
3280 			next_bitmap = true;
3281 			goto next;
3282 		}
3283 
3284 		bytes = min(bytes, end - start);
3285 		if (bytes < minlen) {
3286 			spin_unlock(&ctl->tree_lock);
3287 			mutex_unlock(&ctl->cache_writeout_mutex);
3288 			goto next;
3289 		}
3290 
3291 		bitmap_clear_bits(ctl, entry, start, bytes);
3292 		if (entry->bytes == 0)
3293 			free_bitmap(ctl, entry);
3294 
3295 		spin_unlock(&ctl->tree_lock);
3296 		trim_entry.start = start;
3297 		trim_entry.bytes = bytes;
3298 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3299 		mutex_unlock(&ctl->cache_writeout_mutex);
3300 
3301 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3302 				  start, bytes, &trim_entry);
3303 		if (ret)
3304 			break;
3305 next:
3306 		if (next_bitmap) {
3307 			offset += BITS_PER_BITMAP * ctl->unit;
3308 		} else {
3309 			start += bytes;
3310 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3311 				offset += BITS_PER_BITMAP * ctl->unit;
3312 		}
3313 
3314 		if (fatal_signal_pending(current)) {
3315 			ret = -ERESTARTSYS;
3316 			break;
3317 		}
3318 
3319 		cond_resched();
3320 	}
3321 
3322 	return ret;
3323 }
3324 
3325 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3326 {
3327 	atomic_inc(&cache->trimming);
3328 }
3329 
3330 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3331 {
3332 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3333 	struct extent_map_tree *em_tree;
3334 	struct extent_map *em;
3335 	bool cleanup;
3336 
3337 	spin_lock(&block_group->lock);
3338 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3339 		   block_group->removed);
3340 	spin_unlock(&block_group->lock);
3341 
3342 	if (cleanup) {
3343 		mutex_lock(&fs_info->chunk_mutex);
3344 		em_tree = &fs_info->mapping_tree.map_tree;
3345 		write_lock(&em_tree->lock);
3346 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3347 					   1);
3348 		BUG_ON(!em); /* logic error, can't happen */
3349 		/*
3350 		 * remove_extent_mapping() will delete us from the pinned_chunks
3351 		 * list, which is protected by the chunk mutex.
3352 		 */
3353 		remove_extent_mapping(em_tree, em);
3354 		write_unlock(&em_tree->lock);
3355 		mutex_unlock(&fs_info->chunk_mutex);
3356 
3357 		/* once for us and once for the tree */
3358 		free_extent_map(em);
3359 		free_extent_map(em);
3360 
3361 		/*
3362 		 * We've left one free space entry and other tasks trimming
3363 		 * this block group have left 1 entry each one. Free them.
3364 		 */
3365 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3366 	}
3367 }
3368 
3369 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3370 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3371 {
3372 	int ret;
3373 
3374 	*trimmed = 0;
3375 
3376 	spin_lock(&block_group->lock);
3377 	if (block_group->removed) {
3378 		spin_unlock(&block_group->lock);
3379 		return 0;
3380 	}
3381 	btrfs_get_block_group_trimming(block_group);
3382 	spin_unlock(&block_group->lock);
3383 
3384 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3385 	if (ret)
3386 		goto out;
3387 
3388 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3389 out:
3390 	btrfs_put_block_group_trimming(block_group);
3391 	return ret;
3392 }
3393 
3394 /*
3395  * Find the left-most item in the cache tree, and then return the
3396  * smallest inode number in the item.
3397  *
3398  * Note: the returned inode number may not be the smallest one in
3399  * the tree, if the left-most item is a bitmap.
3400  */
3401 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3402 {
3403 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3404 	struct btrfs_free_space *entry = NULL;
3405 	u64 ino = 0;
3406 
3407 	spin_lock(&ctl->tree_lock);
3408 
3409 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3410 		goto out;
3411 
3412 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3413 			 struct btrfs_free_space, offset_index);
3414 
3415 	if (!entry->bitmap) {
3416 		ino = entry->offset;
3417 
3418 		unlink_free_space(ctl, entry);
3419 		entry->offset++;
3420 		entry->bytes--;
3421 		if (!entry->bytes)
3422 			kmem_cache_free(btrfs_free_space_cachep, entry);
3423 		else
3424 			link_free_space(ctl, entry);
3425 	} else {
3426 		u64 offset = 0;
3427 		u64 count = 1;
3428 		int ret;
3429 
3430 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3431 		/* Logic error; Should be empty if it can't find anything */
3432 		ASSERT(!ret);
3433 
3434 		ino = offset;
3435 		bitmap_clear_bits(ctl, entry, offset, 1);
3436 		if (entry->bytes == 0)
3437 			free_bitmap(ctl, entry);
3438 	}
3439 out:
3440 	spin_unlock(&ctl->tree_lock);
3441 
3442 	return ino;
3443 }
3444 
3445 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3446 				    struct btrfs_path *path)
3447 {
3448 	struct inode *inode = NULL;
3449 
3450 	spin_lock(&root->ino_cache_lock);
3451 	if (root->ino_cache_inode)
3452 		inode = igrab(root->ino_cache_inode);
3453 	spin_unlock(&root->ino_cache_lock);
3454 	if (inode)
3455 		return inode;
3456 
3457 	inode = __lookup_free_space_inode(root, path, 0);
3458 	if (IS_ERR(inode))
3459 		return inode;
3460 
3461 	spin_lock(&root->ino_cache_lock);
3462 	if (!btrfs_fs_closing(root->fs_info))
3463 		root->ino_cache_inode = igrab(inode);
3464 	spin_unlock(&root->ino_cache_lock);
3465 
3466 	return inode;
3467 }
3468 
3469 int create_free_ino_inode(struct btrfs_root *root,
3470 			  struct btrfs_trans_handle *trans,
3471 			  struct btrfs_path *path)
3472 {
3473 	return __create_free_space_inode(root, trans, path,
3474 					 BTRFS_FREE_INO_OBJECTID, 0);
3475 }
3476 
3477 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3478 {
3479 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3480 	struct btrfs_path *path;
3481 	struct inode *inode;
3482 	int ret = 0;
3483 	u64 root_gen = btrfs_root_generation(&root->root_item);
3484 
3485 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3486 		return 0;
3487 
3488 	/*
3489 	 * If we're unmounting then just return, since this does a search on the
3490 	 * normal root and not the commit root and we could deadlock.
3491 	 */
3492 	if (btrfs_fs_closing(fs_info))
3493 		return 0;
3494 
3495 	path = btrfs_alloc_path();
3496 	if (!path)
3497 		return 0;
3498 
3499 	inode = lookup_free_ino_inode(root, path);
3500 	if (IS_ERR(inode))
3501 		goto out;
3502 
3503 	if (root_gen != BTRFS_I(inode)->generation)
3504 		goto out_put;
3505 
3506 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3507 
3508 	if (ret < 0)
3509 		btrfs_err(fs_info,
3510 			"failed to load free ino cache for root %llu",
3511 			root->root_key.objectid);
3512 out_put:
3513 	iput(inode);
3514 out:
3515 	btrfs_free_path(path);
3516 	return ret;
3517 }
3518 
3519 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3520 			      struct btrfs_trans_handle *trans,
3521 			      struct btrfs_path *path,
3522 			      struct inode *inode)
3523 {
3524 	struct btrfs_fs_info *fs_info = root->fs_info;
3525 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3526 	int ret;
3527 	struct btrfs_io_ctl io_ctl;
3528 	bool release_metadata = true;
3529 
3530 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3531 		return 0;
3532 
3533 	memset(&io_ctl, 0, sizeof(io_ctl));
3534 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3535 	if (!ret) {
3536 		/*
3537 		 * At this point writepages() didn't error out, so our metadata
3538 		 * reservation is released when the writeback finishes, at
3539 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3540 		 * with or without an error.
3541 		 */
3542 		release_metadata = false;
3543 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3544 	}
3545 
3546 	if (ret) {
3547 		if (release_metadata)
3548 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3549 					inode->i_size, true);
3550 #ifdef DEBUG
3551 		btrfs_err(fs_info,
3552 			  "failed to write free ino cache for root %llu",
3553 			  root->root_key.objectid);
3554 #endif
3555 	}
3556 
3557 	return ret;
3558 }
3559 
3560 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3561 /*
3562  * Use this if you need to make a bitmap or extent entry specifically, it
3563  * doesn't do any of the merging that add_free_space does, this acts a lot like
3564  * how the free space cache loading stuff works, so you can get really weird
3565  * configurations.
3566  */
3567 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3568 			      u64 offset, u64 bytes, bool bitmap)
3569 {
3570 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3571 	struct btrfs_free_space *info = NULL, *bitmap_info;
3572 	void *map = NULL;
3573 	u64 bytes_added;
3574 	int ret;
3575 
3576 again:
3577 	if (!info) {
3578 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3579 		if (!info)
3580 			return -ENOMEM;
3581 	}
3582 
3583 	if (!bitmap) {
3584 		spin_lock(&ctl->tree_lock);
3585 		info->offset = offset;
3586 		info->bytes = bytes;
3587 		info->max_extent_size = 0;
3588 		ret = link_free_space(ctl, info);
3589 		spin_unlock(&ctl->tree_lock);
3590 		if (ret)
3591 			kmem_cache_free(btrfs_free_space_cachep, info);
3592 		return ret;
3593 	}
3594 
3595 	if (!map) {
3596 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3597 		if (!map) {
3598 			kmem_cache_free(btrfs_free_space_cachep, info);
3599 			return -ENOMEM;
3600 		}
3601 	}
3602 
3603 	spin_lock(&ctl->tree_lock);
3604 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3605 					 1, 0);
3606 	if (!bitmap_info) {
3607 		info->bitmap = map;
3608 		map = NULL;
3609 		add_new_bitmap(ctl, info, offset);
3610 		bitmap_info = info;
3611 		info = NULL;
3612 	}
3613 
3614 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3615 
3616 	bytes -= bytes_added;
3617 	offset += bytes_added;
3618 	spin_unlock(&ctl->tree_lock);
3619 
3620 	if (bytes)
3621 		goto again;
3622 
3623 	if (info)
3624 		kmem_cache_free(btrfs_free_space_cachep, info);
3625 	kfree(map);
3626 	return 0;
3627 }
3628 
3629 /*
3630  * Checks to see if the given range is in the free space cache.  This is really
3631  * just used to check the absence of space, so if there is free space in the
3632  * range at all we will return 1.
3633  */
3634 int test_check_exists(struct btrfs_block_group_cache *cache,
3635 		      u64 offset, u64 bytes)
3636 {
3637 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3638 	struct btrfs_free_space *info;
3639 	int ret = 0;
3640 
3641 	spin_lock(&ctl->tree_lock);
3642 	info = tree_search_offset(ctl, offset, 0, 0);
3643 	if (!info) {
3644 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3645 					  1, 0);
3646 		if (!info)
3647 			goto out;
3648 	}
3649 
3650 have_info:
3651 	if (info->bitmap) {
3652 		u64 bit_off, bit_bytes;
3653 		struct rb_node *n;
3654 		struct btrfs_free_space *tmp;
3655 
3656 		bit_off = offset;
3657 		bit_bytes = ctl->unit;
3658 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3659 		if (!ret) {
3660 			if (bit_off == offset) {
3661 				ret = 1;
3662 				goto out;
3663 			} else if (bit_off > offset &&
3664 				   offset + bytes > bit_off) {
3665 				ret = 1;
3666 				goto out;
3667 			}
3668 		}
3669 
3670 		n = rb_prev(&info->offset_index);
3671 		while (n) {
3672 			tmp = rb_entry(n, struct btrfs_free_space,
3673 				       offset_index);
3674 			if (tmp->offset + tmp->bytes < offset)
3675 				break;
3676 			if (offset + bytes < tmp->offset) {
3677 				n = rb_prev(&tmp->offset_index);
3678 				continue;
3679 			}
3680 			info = tmp;
3681 			goto have_info;
3682 		}
3683 
3684 		n = rb_next(&info->offset_index);
3685 		while (n) {
3686 			tmp = rb_entry(n, struct btrfs_free_space,
3687 				       offset_index);
3688 			if (offset + bytes < tmp->offset)
3689 				break;
3690 			if (tmp->offset + tmp->bytes < offset) {
3691 				n = rb_next(&tmp->offset_index);
3692 				continue;
3693 			}
3694 			info = tmp;
3695 			goto have_info;
3696 		}
3697 
3698 		ret = 0;
3699 		goto out;
3700 	}
3701 
3702 	if (info->offset == offset) {
3703 		ret = 1;
3704 		goto out;
3705 	}
3706 
3707 	if (offset > info->offset && offset < info->offset + info->bytes)
3708 		ret = 1;
3709 out:
3710 	spin_unlock(&ctl->tree_lock);
3711 	return ret;
3712 }
3713 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3714