1 /* 2 * Copyright (C) 2008 Red Hat. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/math64.h> 23 #include <linux/ratelimit.h> 24 #include "ctree.h" 25 #include "free-space-cache.h" 26 #include "transaction.h" 27 #include "disk-io.h" 28 #include "extent_io.h" 29 #include "inode-map.h" 30 31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8) 32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024) 33 34 static int link_free_space(struct btrfs_free_space_ctl *ctl, 35 struct btrfs_free_space *info); 36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *info); 38 39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 40 struct btrfs_path *path, 41 u64 offset) 42 { 43 struct btrfs_key key; 44 struct btrfs_key location; 45 struct btrfs_disk_key disk_key; 46 struct btrfs_free_space_header *header; 47 struct extent_buffer *leaf; 48 struct inode *inode = NULL; 49 int ret; 50 51 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 52 key.offset = offset; 53 key.type = 0; 54 55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 56 if (ret < 0) 57 return ERR_PTR(ret); 58 if (ret > 0) { 59 btrfs_release_path(path); 60 return ERR_PTR(-ENOENT); 61 } 62 63 leaf = path->nodes[0]; 64 header = btrfs_item_ptr(leaf, path->slots[0], 65 struct btrfs_free_space_header); 66 btrfs_free_space_key(leaf, header, &disk_key); 67 btrfs_disk_key_to_cpu(&location, &disk_key); 68 btrfs_release_path(path); 69 70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); 71 if (!inode) 72 return ERR_PTR(-ENOENT); 73 if (IS_ERR(inode)) 74 return inode; 75 if (is_bad_inode(inode)) { 76 iput(inode); 77 return ERR_PTR(-ENOENT); 78 } 79 80 mapping_set_gfp_mask(inode->i_mapping, 81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS); 82 83 return inode; 84 } 85 86 struct inode *lookup_free_space_inode(struct btrfs_root *root, 87 struct btrfs_block_group_cache 88 *block_group, struct btrfs_path *path) 89 { 90 struct inode *inode = NULL; 91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 92 93 spin_lock(&block_group->lock); 94 if (block_group->inode) 95 inode = igrab(block_group->inode); 96 spin_unlock(&block_group->lock); 97 if (inode) 98 return inode; 99 100 inode = __lookup_free_space_inode(root, path, 101 block_group->key.objectid); 102 if (IS_ERR(inode)) 103 return inode; 104 105 spin_lock(&block_group->lock); 106 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 107 btrfs_info(root->fs_info, 108 "Old style space inode found, converting."); 109 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 110 BTRFS_INODE_NODATACOW; 111 block_group->disk_cache_state = BTRFS_DC_CLEAR; 112 } 113 114 if (!block_group->iref) { 115 block_group->inode = igrab(inode); 116 block_group->iref = 1; 117 } 118 spin_unlock(&block_group->lock); 119 120 return inode; 121 } 122 123 static int __create_free_space_inode(struct btrfs_root *root, 124 struct btrfs_trans_handle *trans, 125 struct btrfs_path *path, 126 u64 ino, u64 offset) 127 { 128 struct btrfs_key key; 129 struct btrfs_disk_key disk_key; 130 struct btrfs_free_space_header *header; 131 struct btrfs_inode_item *inode_item; 132 struct extent_buffer *leaf; 133 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 134 int ret; 135 136 ret = btrfs_insert_empty_inode(trans, root, path, ino); 137 if (ret) 138 return ret; 139 140 /* We inline crc's for the free disk space cache */ 141 if (ino != BTRFS_FREE_INO_OBJECTID) 142 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 143 144 leaf = path->nodes[0]; 145 inode_item = btrfs_item_ptr(leaf, path->slots[0], 146 struct btrfs_inode_item); 147 btrfs_item_key(leaf, &disk_key, path->slots[0]); 148 memset_extent_buffer(leaf, 0, (unsigned long)inode_item, 149 sizeof(*inode_item)); 150 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 151 btrfs_set_inode_size(leaf, inode_item, 0); 152 btrfs_set_inode_nbytes(leaf, inode_item, 0); 153 btrfs_set_inode_uid(leaf, inode_item, 0); 154 btrfs_set_inode_gid(leaf, inode_item, 0); 155 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 156 btrfs_set_inode_flags(leaf, inode_item, flags); 157 btrfs_set_inode_nlink(leaf, inode_item, 1); 158 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 159 btrfs_set_inode_block_group(leaf, inode_item, offset); 160 btrfs_mark_buffer_dirty(leaf); 161 btrfs_release_path(path); 162 163 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 164 key.offset = offset; 165 key.type = 0; 166 167 ret = btrfs_insert_empty_item(trans, root, path, &key, 168 sizeof(struct btrfs_free_space_header)); 169 if (ret < 0) { 170 btrfs_release_path(path); 171 return ret; 172 } 173 leaf = path->nodes[0]; 174 header = btrfs_item_ptr(leaf, path->slots[0], 175 struct btrfs_free_space_header); 176 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); 177 btrfs_set_free_space_key(leaf, header, &disk_key); 178 btrfs_mark_buffer_dirty(leaf); 179 btrfs_release_path(path); 180 181 return 0; 182 } 183 184 int create_free_space_inode(struct btrfs_root *root, 185 struct btrfs_trans_handle *trans, 186 struct btrfs_block_group_cache *block_group, 187 struct btrfs_path *path) 188 { 189 int ret; 190 u64 ino; 191 192 ret = btrfs_find_free_objectid(root, &ino); 193 if (ret < 0) 194 return ret; 195 196 return __create_free_space_inode(root, trans, path, ino, 197 block_group->key.objectid); 198 } 199 200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root, 201 struct btrfs_block_rsv *rsv) 202 { 203 u64 needed_bytes; 204 int ret; 205 206 /* 1 for slack space, 1 for updating the inode */ 207 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + 208 btrfs_calc_trans_metadata_size(root, 1); 209 210 spin_lock(&rsv->lock); 211 if (rsv->reserved < needed_bytes) 212 ret = -ENOSPC; 213 else 214 ret = 0; 215 spin_unlock(&rsv->lock); 216 return ret; 217 } 218 219 int btrfs_truncate_free_space_cache(struct btrfs_root *root, 220 struct btrfs_trans_handle *trans, 221 struct inode *inode) 222 { 223 int ret = 0; 224 225 btrfs_i_size_write(inode, 0); 226 truncate_pagecache(inode, 0); 227 228 /* 229 * We don't need an orphan item because truncating the free space cache 230 * will never be split across transactions. 231 */ 232 ret = btrfs_truncate_inode_items(trans, root, inode, 233 0, BTRFS_EXTENT_DATA_KEY); 234 if (ret) { 235 btrfs_abort_transaction(trans, root, ret); 236 return ret; 237 } 238 239 ret = btrfs_update_inode(trans, root, inode); 240 if (ret) 241 btrfs_abort_transaction(trans, root, ret); 242 243 return ret; 244 } 245 246 static int readahead_cache(struct inode *inode) 247 { 248 struct file_ra_state *ra; 249 unsigned long last_index; 250 251 ra = kzalloc(sizeof(*ra), GFP_NOFS); 252 if (!ra) 253 return -ENOMEM; 254 255 file_ra_state_init(ra, inode->i_mapping); 256 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 257 258 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 259 260 kfree(ra); 261 262 return 0; 263 } 264 265 struct io_ctl { 266 void *cur, *orig; 267 struct page *page; 268 struct page **pages; 269 struct btrfs_root *root; 270 unsigned long size; 271 int index; 272 int num_pages; 273 unsigned check_crcs:1; 274 }; 275 276 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode, 277 struct btrfs_root *root) 278 { 279 memset(io_ctl, 0, sizeof(struct io_ctl)); 280 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 281 PAGE_CACHE_SHIFT; 282 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages, 283 GFP_NOFS); 284 if (!io_ctl->pages) 285 return -ENOMEM; 286 io_ctl->root = root; 287 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) 288 io_ctl->check_crcs = 1; 289 return 0; 290 } 291 292 static void io_ctl_free(struct io_ctl *io_ctl) 293 { 294 kfree(io_ctl->pages); 295 } 296 297 static void io_ctl_unmap_page(struct io_ctl *io_ctl) 298 { 299 if (io_ctl->cur) { 300 kunmap(io_ctl->page); 301 io_ctl->cur = NULL; 302 io_ctl->orig = NULL; 303 } 304 } 305 306 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear) 307 { 308 ASSERT(io_ctl->index < io_ctl->num_pages); 309 io_ctl->page = io_ctl->pages[io_ctl->index++]; 310 io_ctl->cur = kmap(io_ctl->page); 311 io_ctl->orig = io_ctl->cur; 312 io_ctl->size = PAGE_CACHE_SIZE; 313 if (clear) 314 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE); 315 } 316 317 static void io_ctl_drop_pages(struct io_ctl *io_ctl) 318 { 319 int i; 320 321 io_ctl_unmap_page(io_ctl); 322 323 for (i = 0; i < io_ctl->num_pages; i++) { 324 if (io_ctl->pages[i]) { 325 ClearPageChecked(io_ctl->pages[i]); 326 unlock_page(io_ctl->pages[i]); 327 page_cache_release(io_ctl->pages[i]); 328 } 329 } 330 } 331 332 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode, 333 int uptodate) 334 { 335 struct page *page; 336 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 337 int i; 338 339 for (i = 0; i < io_ctl->num_pages; i++) { 340 page = find_or_create_page(inode->i_mapping, i, mask); 341 if (!page) { 342 io_ctl_drop_pages(io_ctl); 343 return -ENOMEM; 344 } 345 io_ctl->pages[i] = page; 346 if (uptodate && !PageUptodate(page)) { 347 btrfs_readpage(NULL, page); 348 lock_page(page); 349 if (!PageUptodate(page)) { 350 printk(KERN_ERR "btrfs: error reading free " 351 "space cache\n"); 352 io_ctl_drop_pages(io_ctl); 353 return -EIO; 354 } 355 } 356 } 357 358 for (i = 0; i < io_ctl->num_pages; i++) { 359 clear_page_dirty_for_io(io_ctl->pages[i]); 360 set_page_extent_mapped(io_ctl->pages[i]); 361 } 362 363 return 0; 364 } 365 366 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation) 367 { 368 __le64 *val; 369 370 io_ctl_map_page(io_ctl, 1); 371 372 /* 373 * Skip the csum areas. If we don't check crcs then we just have a 374 * 64bit chunk at the front of the first page. 375 */ 376 if (io_ctl->check_crcs) { 377 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 378 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 379 } else { 380 io_ctl->cur += sizeof(u64); 381 io_ctl->size -= sizeof(u64) * 2; 382 } 383 384 val = io_ctl->cur; 385 *val = cpu_to_le64(generation); 386 io_ctl->cur += sizeof(u64); 387 } 388 389 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation) 390 { 391 __le64 *gen; 392 393 /* 394 * Skip the crc area. If we don't check crcs then we just have a 64bit 395 * chunk at the front of the first page. 396 */ 397 if (io_ctl->check_crcs) { 398 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 399 io_ctl->size -= sizeof(u64) + 400 (sizeof(u32) * io_ctl->num_pages); 401 } else { 402 io_ctl->cur += sizeof(u64); 403 io_ctl->size -= sizeof(u64) * 2; 404 } 405 406 gen = io_ctl->cur; 407 if (le64_to_cpu(*gen) != generation) { 408 printk_ratelimited(KERN_ERR "btrfs: space cache generation " 409 "(%Lu) does not match inode (%Lu)\n", *gen, 410 generation); 411 io_ctl_unmap_page(io_ctl); 412 return -EIO; 413 } 414 io_ctl->cur += sizeof(u64); 415 return 0; 416 } 417 418 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index) 419 { 420 u32 *tmp; 421 u32 crc = ~(u32)0; 422 unsigned offset = 0; 423 424 if (!io_ctl->check_crcs) { 425 io_ctl_unmap_page(io_ctl); 426 return; 427 } 428 429 if (index == 0) 430 offset = sizeof(u32) * io_ctl->num_pages; 431 432 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 433 PAGE_CACHE_SIZE - offset); 434 btrfs_csum_final(crc, (char *)&crc); 435 io_ctl_unmap_page(io_ctl); 436 tmp = kmap(io_ctl->pages[0]); 437 tmp += index; 438 *tmp = crc; 439 kunmap(io_ctl->pages[0]); 440 } 441 442 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index) 443 { 444 u32 *tmp, val; 445 u32 crc = ~(u32)0; 446 unsigned offset = 0; 447 448 if (!io_ctl->check_crcs) { 449 io_ctl_map_page(io_ctl, 0); 450 return 0; 451 } 452 453 if (index == 0) 454 offset = sizeof(u32) * io_ctl->num_pages; 455 456 tmp = kmap(io_ctl->pages[0]); 457 tmp += index; 458 val = *tmp; 459 kunmap(io_ctl->pages[0]); 460 461 io_ctl_map_page(io_ctl, 0); 462 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 463 PAGE_CACHE_SIZE - offset); 464 btrfs_csum_final(crc, (char *)&crc); 465 if (val != crc) { 466 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free " 467 "space cache\n"); 468 io_ctl_unmap_page(io_ctl); 469 return -EIO; 470 } 471 472 return 0; 473 } 474 475 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes, 476 void *bitmap) 477 { 478 struct btrfs_free_space_entry *entry; 479 480 if (!io_ctl->cur) 481 return -ENOSPC; 482 483 entry = io_ctl->cur; 484 entry->offset = cpu_to_le64(offset); 485 entry->bytes = cpu_to_le64(bytes); 486 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 487 BTRFS_FREE_SPACE_EXTENT; 488 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 489 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 490 491 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 492 return 0; 493 494 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 495 496 /* No more pages to map */ 497 if (io_ctl->index >= io_ctl->num_pages) 498 return 0; 499 500 /* map the next page */ 501 io_ctl_map_page(io_ctl, 1); 502 return 0; 503 } 504 505 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap) 506 { 507 if (!io_ctl->cur) 508 return -ENOSPC; 509 510 /* 511 * If we aren't at the start of the current page, unmap this one and 512 * map the next one if there is any left. 513 */ 514 if (io_ctl->cur != io_ctl->orig) { 515 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 516 if (io_ctl->index >= io_ctl->num_pages) 517 return -ENOSPC; 518 io_ctl_map_page(io_ctl, 0); 519 } 520 521 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE); 522 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 523 if (io_ctl->index < io_ctl->num_pages) 524 io_ctl_map_page(io_ctl, 0); 525 return 0; 526 } 527 528 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl) 529 { 530 /* 531 * If we're not on the boundary we know we've modified the page and we 532 * need to crc the page. 533 */ 534 if (io_ctl->cur != io_ctl->orig) 535 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 536 else 537 io_ctl_unmap_page(io_ctl); 538 539 while (io_ctl->index < io_ctl->num_pages) { 540 io_ctl_map_page(io_ctl, 1); 541 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 542 } 543 } 544 545 static int io_ctl_read_entry(struct io_ctl *io_ctl, 546 struct btrfs_free_space *entry, u8 *type) 547 { 548 struct btrfs_free_space_entry *e; 549 int ret; 550 551 if (!io_ctl->cur) { 552 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 553 if (ret) 554 return ret; 555 } 556 557 e = io_ctl->cur; 558 entry->offset = le64_to_cpu(e->offset); 559 entry->bytes = le64_to_cpu(e->bytes); 560 *type = e->type; 561 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 562 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 563 564 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 565 return 0; 566 567 io_ctl_unmap_page(io_ctl); 568 569 return 0; 570 } 571 572 static int io_ctl_read_bitmap(struct io_ctl *io_ctl, 573 struct btrfs_free_space *entry) 574 { 575 int ret; 576 577 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 578 if (ret) 579 return ret; 580 581 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE); 582 io_ctl_unmap_page(io_ctl); 583 584 return 0; 585 } 586 587 /* 588 * Since we attach pinned extents after the fact we can have contiguous sections 589 * of free space that are split up in entries. This poses a problem with the 590 * tree logging stuff since it could have allocated across what appears to be 2 591 * entries since we would have merged the entries when adding the pinned extents 592 * back to the free space cache. So run through the space cache that we just 593 * loaded and merge contiguous entries. This will make the log replay stuff not 594 * blow up and it will make for nicer allocator behavior. 595 */ 596 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 597 { 598 struct btrfs_free_space *e, *prev = NULL; 599 struct rb_node *n; 600 601 again: 602 spin_lock(&ctl->tree_lock); 603 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 604 e = rb_entry(n, struct btrfs_free_space, offset_index); 605 if (!prev) 606 goto next; 607 if (e->bitmap || prev->bitmap) 608 goto next; 609 if (prev->offset + prev->bytes == e->offset) { 610 unlink_free_space(ctl, prev); 611 unlink_free_space(ctl, e); 612 prev->bytes += e->bytes; 613 kmem_cache_free(btrfs_free_space_cachep, e); 614 link_free_space(ctl, prev); 615 prev = NULL; 616 spin_unlock(&ctl->tree_lock); 617 goto again; 618 } 619 next: 620 prev = e; 621 } 622 spin_unlock(&ctl->tree_lock); 623 } 624 625 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 626 struct btrfs_free_space_ctl *ctl, 627 struct btrfs_path *path, u64 offset) 628 { 629 struct btrfs_free_space_header *header; 630 struct extent_buffer *leaf; 631 struct io_ctl io_ctl; 632 struct btrfs_key key; 633 struct btrfs_free_space *e, *n; 634 struct list_head bitmaps; 635 u64 num_entries; 636 u64 num_bitmaps; 637 u64 generation; 638 u8 type; 639 int ret = 0; 640 641 INIT_LIST_HEAD(&bitmaps); 642 643 /* Nothing in the space cache, goodbye */ 644 if (!i_size_read(inode)) 645 return 0; 646 647 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 648 key.offset = offset; 649 key.type = 0; 650 651 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 652 if (ret < 0) 653 return 0; 654 else if (ret > 0) { 655 btrfs_release_path(path); 656 return 0; 657 } 658 659 ret = -1; 660 661 leaf = path->nodes[0]; 662 header = btrfs_item_ptr(leaf, path->slots[0], 663 struct btrfs_free_space_header); 664 num_entries = btrfs_free_space_entries(leaf, header); 665 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 666 generation = btrfs_free_space_generation(leaf, header); 667 btrfs_release_path(path); 668 669 if (BTRFS_I(inode)->generation != generation) { 670 btrfs_err(root->fs_info, 671 "free space inode generation (%llu) " 672 "did not match free space cache generation (%llu)", 673 BTRFS_I(inode)->generation, generation); 674 return 0; 675 } 676 677 if (!num_entries) 678 return 0; 679 680 ret = io_ctl_init(&io_ctl, inode, root); 681 if (ret) 682 return ret; 683 684 ret = readahead_cache(inode); 685 if (ret) 686 goto out; 687 688 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 689 if (ret) 690 goto out; 691 692 ret = io_ctl_check_crc(&io_ctl, 0); 693 if (ret) 694 goto free_cache; 695 696 ret = io_ctl_check_generation(&io_ctl, generation); 697 if (ret) 698 goto free_cache; 699 700 while (num_entries) { 701 e = kmem_cache_zalloc(btrfs_free_space_cachep, 702 GFP_NOFS); 703 if (!e) 704 goto free_cache; 705 706 ret = io_ctl_read_entry(&io_ctl, e, &type); 707 if (ret) { 708 kmem_cache_free(btrfs_free_space_cachep, e); 709 goto free_cache; 710 } 711 712 if (!e->bytes) { 713 kmem_cache_free(btrfs_free_space_cachep, e); 714 goto free_cache; 715 } 716 717 if (type == BTRFS_FREE_SPACE_EXTENT) { 718 spin_lock(&ctl->tree_lock); 719 ret = link_free_space(ctl, e); 720 spin_unlock(&ctl->tree_lock); 721 if (ret) { 722 btrfs_err(root->fs_info, 723 "Duplicate entries in free space cache, dumping"); 724 kmem_cache_free(btrfs_free_space_cachep, e); 725 goto free_cache; 726 } 727 } else { 728 ASSERT(num_bitmaps); 729 num_bitmaps--; 730 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 731 if (!e->bitmap) { 732 kmem_cache_free( 733 btrfs_free_space_cachep, e); 734 goto free_cache; 735 } 736 spin_lock(&ctl->tree_lock); 737 ret = link_free_space(ctl, e); 738 ctl->total_bitmaps++; 739 ctl->op->recalc_thresholds(ctl); 740 spin_unlock(&ctl->tree_lock); 741 if (ret) { 742 btrfs_err(root->fs_info, 743 "Duplicate entries in free space cache, dumping"); 744 kmem_cache_free(btrfs_free_space_cachep, e); 745 goto free_cache; 746 } 747 list_add_tail(&e->list, &bitmaps); 748 } 749 750 num_entries--; 751 } 752 753 io_ctl_unmap_page(&io_ctl); 754 755 /* 756 * We add the bitmaps at the end of the entries in order that 757 * the bitmap entries are added to the cache. 758 */ 759 list_for_each_entry_safe(e, n, &bitmaps, list) { 760 list_del_init(&e->list); 761 ret = io_ctl_read_bitmap(&io_ctl, e); 762 if (ret) 763 goto free_cache; 764 } 765 766 io_ctl_drop_pages(&io_ctl); 767 merge_space_tree(ctl); 768 ret = 1; 769 out: 770 io_ctl_free(&io_ctl); 771 return ret; 772 free_cache: 773 io_ctl_drop_pages(&io_ctl); 774 __btrfs_remove_free_space_cache(ctl); 775 goto out; 776 } 777 778 int load_free_space_cache(struct btrfs_fs_info *fs_info, 779 struct btrfs_block_group_cache *block_group) 780 { 781 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 782 struct btrfs_root *root = fs_info->tree_root; 783 struct inode *inode; 784 struct btrfs_path *path; 785 int ret = 0; 786 bool matched; 787 u64 used = btrfs_block_group_used(&block_group->item); 788 789 /* 790 * If this block group has been marked to be cleared for one reason or 791 * another then we can't trust the on disk cache, so just return. 792 */ 793 spin_lock(&block_group->lock); 794 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 795 spin_unlock(&block_group->lock); 796 return 0; 797 } 798 spin_unlock(&block_group->lock); 799 800 path = btrfs_alloc_path(); 801 if (!path) 802 return 0; 803 path->search_commit_root = 1; 804 path->skip_locking = 1; 805 806 inode = lookup_free_space_inode(root, block_group, path); 807 if (IS_ERR(inode)) { 808 btrfs_free_path(path); 809 return 0; 810 } 811 812 /* We may have converted the inode and made the cache invalid. */ 813 spin_lock(&block_group->lock); 814 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 815 spin_unlock(&block_group->lock); 816 btrfs_free_path(path); 817 goto out; 818 } 819 spin_unlock(&block_group->lock); 820 821 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 822 path, block_group->key.objectid); 823 btrfs_free_path(path); 824 if (ret <= 0) 825 goto out; 826 827 spin_lock(&ctl->tree_lock); 828 matched = (ctl->free_space == (block_group->key.offset - used - 829 block_group->bytes_super)); 830 spin_unlock(&ctl->tree_lock); 831 832 if (!matched) { 833 __btrfs_remove_free_space_cache(ctl); 834 btrfs_err(fs_info, "block group %llu has wrong amount of free space", 835 block_group->key.objectid); 836 ret = -1; 837 } 838 out: 839 if (ret < 0) { 840 /* This cache is bogus, make sure it gets cleared */ 841 spin_lock(&block_group->lock); 842 block_group->disk_cache_state = BTRFS_DC_CLEAR; 843 spin_unlock(&block_group->lock); 844 ret = 0; 845 846 btrfs_err(fs_info, "failed to load free space cache for block group %llu", 847 block_group->key.objectid); 848 } 849 850 iput(inode); 851 return ret; 852 } 853 854 /** 855 * __btrfs_write_out_cache - write out cached info to an inode 856 * @root - the root the inode belongs to 857 * @ctl - the free space cache we are going to write out 858 * @block_group - the block_group for this cache if it belongs to a block_group 859 * @trans - the trans handle 860 * @path - the path to use 861 * @offset - the offset for the key we'll insert 862 * 863 * This function writes out a free space cache struct to disk for quick recovery 864 * on mount. This will return 0 if it was successfull in writing the cache out, 865 * and -1 if it was not. 866 */ 867 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 868 struct btrfs_free_space_ctl *ctl, 869 struct btrfs_block_group_cache *block_group, 870 struct btrfs_trans_handle *trans, 871 struct btrfs_path *path, u64 offset) 872 { 873 struct btrfs_free_space_header *header; 874 struct extent_buffer *leaf; 875 struct rb_node *node; 876 struct list_head *pos, *n; 877 struct extent_state *cached_state = NULL; 878 struct btrfs_free_cluster *cluster = NULL; 879 struct extent_io_tree *unpin = NULL; 880 struct io_ctl io_ctl; 881 struct list_head bitmap_list; 882 struct btrfs_key key; 883 u64 start, extent_start, extent_end, len; 884 int entries = 0; 885 int bitmaps = 0; 886 int ret; 887 int err = -1; 888 889 INIT_LIST_HEAD(&bitmap_list); 890 891 if (!i_size_read(inode)) 892 return -1; 893 894 ret = io_ctl_init(&io_ctl, inode, root); 895 if (ret) 896 return -1; 897 898 /* Get the cluster for this block_group if it exists */ 899 if (block_group && !list_empty(&block_group->cluster_list)) 900 cluster = list_entry(block_group->cluster_list.next, 901 struct btrfs_free_cluster, 902 block_group_list); 903 904 /* Lock all pages first so we can lock the extent safely. */ 905 io_ctl_prepare_pages(&io_ctl, inode, 0); 906 907 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 908 0, &cached_state); 909 910 node = rb_first(&ctl->free_space_offset); 911 if (!node && cluster) { 912 node = rb_first(&cluster->root); 913 cluster = NULL; 914 } 915 916 /* Make sure we can fit our crcs into the first page */ 917 if (io_ctl.check_crcs && 918 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) 919 goto out_nospc; 920 921 io_ctl_set_generation(&io_ctl, trans->transid); 922 923 /* Write out the extent entries */ 924 while (node) { 925 struct btrfs_free_space *e; 926 927 e = rb_entry(node, struct btrfs_free_space, offset_index); 928 entries++; 929 930 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes, 931 e->bitmap); 932 if (ret) 933 goto out_nospc; 934 935 if (e->bitmap) { 936 list_add_tail(&e->list, &bitmap_list); 937 bitmaps++; 938 } 939 node = rb_next(node); 940 if (!node && cluster) { 941 node = rb_first(&cluster->root); 942 cluster = NULL; 943 } 944 } 945 946 /* 947 * We want to add any pinned extents to our free space cache 948 * so we don't leak the space 949 */ 950 951 /* 952 * We shouldn't have switched the pinned extents yet so this is the 953 * right one 954 */ 955 unpin = root->fs_info->pinned_extents; 956 957 if (block_group) 958 start = block_group->key.objectid; 959 960 while (block_group && (start < block_group->key.objectid + 961 block_group->key.offset)) { 962 ret = find_first_extent_bit(unpin, start, 963 &extent_start, &extent_end, 964 EXTENT_DIRTY, NULL); 965 if (ret) { 966 ret = 0; 967 break; 968 } 969 970 /* This pinned extent is out of our range */ 971 if (extent_start >= block_group->key.objectid + 972 block_group->key.offset) 973 break; 974 975 extent_start = max(extent_start, start); 976 extent_end = min(block_group->key.objectid + 977 block_group->key.offset, extent_end + 1); 978 len = extent_end - extent_start; 979 980 entries++; 981 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL); 982 if (ret) 983 goto out_nospc; 984 985 start = extent_end; 986 } 987 988 /* Write out the bitmaps */ 989 list_for_each_safe(pos, n, &bitmap_list) { 990 struct btrfs_free_space *entry = 991 list_entry(pos, struct btrfs_free_space, list); 992 993 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap); 994 if (ret) 995 goto out_nospc; 996 list_del_init(&entry->list); 997 } 998 999 /* Zero out the rest of the pages just to make sure */ 1000 io_ctl_zero_remaining_pages(&io_ctl); 1001 1002 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages, 1003 0, i_size_read(inode), &cached_state); 1004 io_ctl_drop_pages(&io_ctl); 1005 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1006 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1007 1008 if (ret) 1009 goto out; 1010 1011 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1012 if (ret) { 1013 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1014 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 1015 GFP_NOFS); 1016 goto out; 1017 } 1018 1019 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1020 key.offset = offset; 1021 key.type = 0; 1022 1023 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1024 if (ret < 0) { 1025 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1026 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 1027 GFP_NOFS); 1028 goto out; 1029 } 1030 leaf = path->nodes[0]; 1031 if (ret > 0) { 1032 struct btrfs_key found_key; 1033 ASSERT(path->slots[0]); 1034 path->slots[0]--; 1035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1036 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1037 found_key.offset != offset) { 1038 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1039 inode->i_size - 1, 1040 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 1041 NULL, GFP_NOFS); 1042 btrfs_release_path(path); 1043 goto out; 1044 } 1045 } 1046 1047 BTRFS_I(inode)->generation = trans->transid; 1048 header = btrfs_item_ptr(leaf, path->slots[0], 1049 struct btrfs_free_space_header); 1050 btrfs_set_free_space_entries(leaf, header, entries); 1051 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1052 btrfs_set_free_space_generation(leaf, header, trans->transid); 1053 btrfs_mark_buffer_dirty(leaf); 1054 btrfs_release_path(path); 1055 1056 err = 0; 1057 out: 1058 io_ctl_free(&io_ctl); 1059 if (err) { 1060 invalidate_inode_pages2(inode->i_mapping); 1061 BTRFS_I(inode)->generation = 0; 1062 } 1063 btrfs_update_inode(trans, root, inode); 1064 return err; 1065 1066 out_nospc: 1067 list_for_each_safe(pos, n, &bitmap_list) { 1068 struct btrfs_free_space *entry = 1069 list_entry(pos, struct btrfs_free_space, list); 1070 list_del_init(&entry->list); 1071 } 1072 io_ctl_drop_pages(&io_ctl); 1073 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1074 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1075 goto out; 1076 } 1077 1078 int btrfs_write_out_cache(struct btrfs_root *root, 1079 struct btrfs_trans_handle *trans, 1080 struct btrfs_block_group_cache *block_group, 1081 struct btrfs_path *path) 1082 { 1083 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1084 struct inode *inode; 1085 int ret = 0; 1086 1087 root = root->fs_info->tree_root; 1088 1089 spin_lock(&block_group->lock); 1090 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1091 spin_unlock(&block_group->lock); 1092 return 0; 1093 } 1094 spin_unlock(&block_group->lock); 1095 1096 inode = lookup_free_space_inode(root, block_group, path); 1097 if (IS_ERR(inode)) 1098 return 0; 1099 1100 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans, 1101 path, block_group->key.objectid); 1102 if (ret) { 1103 spin_lock(&block_group->lock); 1104 block_group->disk_cache_state = BTRFS_DC_ERROR; 1105 spin_unlock(&block_group->lock); 1106 ret = 0; 1107 #ifdef DEBUG 1108 btrfs_err(root->fs_info, 1109 "failed to write free space cache for block group %llu", 1110 block_group->key.objectid); 1111 #endif 1112 } 1113 1114 iput(inode); 1115 return ret; 1116 } 1117 1118 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1119 u64 offset) 1120 { 1121 ASSERT(offset >= bitmap_start); 1122 offset -= bitmap_start; 1123 return (unsigned long)(div_u64(offset, unit)); 1124 } 1125 1126 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1127 { 1128 return (unsigned long)(div_u64(bytes, unit)); 1129 } 1130 1131 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1132 u64 offset) 1133 { 1134 u64 bitmap_start; 1135 u64 bytes_per_bitmap; 1136 1137 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1138 bitmap_start = offset - ctl->start; 1139 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1140 bitmap_start *= bytes_per_bitmap; 1141 bitmap_start += ctl->start; 1142 1143 return bitmap_start; 1144 } 1145 1146 static int tree_insert_offset(struct rb_root *root, u64 offset, 1147 struct rb_node *node, int bitmap) 1148 { 1149 struct rb_node **p = &root->rb_node; 1150 struct rb_node *parent = NULL; 1151 struct btrfs_free_space *info; 1152 1153 while (*p) { 1154 parent = *p; 1155 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1156 1157 if (offset < info->offset) { 1158 p = &(*p)->rb_left; 1159 } else if (offset > info->offset) { 1160 p = &(*p)->rb_right; 1161 } else { 1162 /* 1163 * we could have a bitmap entry and an extent entry 1164 * share the same offset. If this is the case, we want 1165 * the extent entry to always be found first if we do a 1166 * linear search through the tree, since we want to have 1167 * the quickest allocation time, and allocating from an 1168 * extent is faster than allocating from a bitmap. So 1169 * if we're inserting a bitmap and we find an entry at 1170 * this offset, we want to go right, or after this entry 1171 * logically. If we are inserting an extent and we've 1172 * found a bitmap, we want to go left, or before 1173 * logically. 1174 */ 1175 if (bitmap) { 1176 if (info->bitmap) { 1177 WARN_ON_ONCE(1); 1178 return -EEXIST; 1179 } 1180 p = &(*p)->rb_right; 1181 } else { 1182 if (!info->bitmap) { 1183 WARN_ON_ONCE(1); 1184 return -EEXIST; 1185 } 1186 p = &(*p)->rb_left; 1187 } 1188 } 1189 } 1190 1191 rb_link_node(node, parent, p); 1192 rb_insert_color(node, root); 1193 1194 return 0; 1195 } 1196 1197 /* 1198 * searches the tree for the given offset. 1199 * 1200 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1201 * want a section that has at least bytes size and comes at or after the given 1202 * offset. 1203 */ 1204 static struct btrfs_free_space * 1205 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1206 u64 offset, int bitmap_only, int fuzzy) 1207 { 1208 struct rb_node *n = ctl->free_space_offset.rb_node; 1209 struct btrfs_free_space *entry, *prev = NULL; 1210 1211 /* find entry that is closest to the 'offset' */ 1212 while (1) { 1213 if (!n) { 1214 entry = NULL; 1215 break; 1216 } 1217 1218 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1219 prev = entry; 1220 1221 if (offset < entry->offset) 1222 n = n->rb_left; 1223 else if (offset > entry->offset) 1224 n = n->rb_right; 1225 else 1226 break; 1227 } 1228 1229 if (bitmap_only) { 1230 if (!entry) 1231 return NULL; 1232 if (entry->bitmap) 1233 return entry; 1234 1235 /* 1236 * bitmap entry and extent entry may share same offset, 1237 * in that case, bitmap entry comes after extent entry. 1238 */ 1239 n = rb_next(n); 1240 if (!n) 1241 return NULL; 1242 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1243 if (entry->offset != offset) 1244 return NULL; 1245 1246 WARN_ON(!entry->bitmap); 1247 return entry; 1248 } else if (entry) { 1249 if (entry->bitmap) { 1250 /* 1251 * if previous extent entry covers the offset, 1252 * we should return it instead of the bitmap entry 1253 */ 1254 n = rb_prev(&entry->offset_index); 1255 if (n) { 1256 prev = rb_entry(n, struct btrfs_free_space, 1257 offset_index); 1258 if (!prev->bitmap && 1259 prev->offset + prev->bytes > offset) 1260 entry = prev; 1261 } 1262 } 1263 return entry; 1264 } 1265 1266 if (!prev) 1267 return NULL; 1268 1269 /* find last entry before the 'offset' */ 1270 entry = prev; 1271 if (entry->offset > offset) { 1272 n = rb_prev(&entry->offset_index); 1273 if (n) { 1274 entry = rb_entry(n, struct btrfs_free_space, 1275 offset_index); 1276 ASSERT(entry->offset <= offset); 1277 } else { 1278 if (fuzzy) 1279 return entry; 1280 else 1281 return NULL; 1282 } 1283 } 1284 1285 if (entry->bitmap) { 1286 n = rb_prev(&entry->offset_index); 1287 if (n) { 1288 prev = rb_entry(n, struct btrfs_free_space, 1289 offset_index); 1290 if (!prev->bitmap && 1291 prev->offset + prev->bytes > offset) 1292 return prev; 1293 } 1294 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1295 return entry; 1296 } else if (entry->offset + entry->bytes > offset) 1297 return entry; 1298 1299 if (!fuzzy) 1300 return NULL; 1301 1302 while (1) { 1303 if (entry->bitmap) { 1304 if (entry->offset + BITS_PER_BITMAP * 1305 ctl->unit > offset) 1306 break; 1307 } else { 1308 if (entry->offset + entry->bytes > offset) 1309 break; 1310 } 1311 1312 n = rb_next(&entry->offset_index); 1313 if (!n) 1314 return NULL; 1315 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1316 } 1317 return entry; 1318 } 1319 1320 static inline void 1321 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1322 struct btrfs_free_space *info) 1323 { 1324 rb_erase(&info->offset_index, &ctl->free_space_offset); 1325 ctl->free_extents--; 1326 } 1327 1328 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1329 struct btrfs_free_space *info) 1330 { 1331 __unlink_free_space(ctl, info); 1332 ctl->free_space -= info->bytes; 1333 } 1334 1335 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1336 struct btrfs_free_space *info) 1337 { 1338 int ret = 0; 1339 1340 ASSERT(info->bytes || info->bitmap); 1341 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1342 &info->offset_index, (info->bitmap != NULL)); 1343 if (ret) 1344 return ret; 1345 1346 ctl->free_space += info->bytes; 1347 ctl->free_extents++; 1348 return ret; 1349 } 1350 1351 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1352 { 1353 struct btrfs_block_group_cache *block_group = ctl->private; 1354 u64 max_bytes; 1355 u64 bitmap_bytes; 1356 u64 extent_bytes; 1357 u64 size = block_group->key.offset; 1358 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1359 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1360 1361 max_bitmaps = max(max_bitmaps, 1); 1362 1363 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1364 1365 /* 1366 * The goal is to keep the total amount of memory used per 1gb of space 1367 * at or below 32k, so we need to adjust how much memory we allow to be 1368 * used by extent based free space tracking 1369 */ 1370 if (size < 1024 * 1024 * 1024) 1371 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1372 else 1373 max_bytes = MAX_CACHE_BYTES_PER_GIG * 1374 div64_u64(size, 1024 * 1024 * 1024); 1375 1376 /* 1377 * we want to account for 1 more bitmap than what we have so we can make 1378 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1379 * we add more bitmaps. 1380 */ 1381 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE; 1382 1383 if (bitmap_bytes >= max_bytes) { 1384 ctl->extents_thresh = 0; 1385 return; 1386 } 1387 1388 /* 1389 * we want the extent entry threshold to always be at most 1/2 the maxw 1390 * bytes we can have, or whatever is less than that. 1391 */ 1392 extent_bytes = max_bytes - bitmap_bytes; 1393 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2)); 1394 1395 ctl->extents_thresh = 1396 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space))); 1397 } 1398 1399 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1400 struct btrfs_free_space *info, 1401 u64 offset, u64 bytes) 1402 { 1403 unsigned long start, count; 1404 1405 start = offset_to_bit(info->offset, ctl->unit, offset); 1406 count = bytes_to_bits(bytes, ctl->unit); 1407 ASSERT(start + count <= BITS_PER_BITMAP); 1408 1409 bitmap_clear(info->bitmap, start, count); 1410 1411 info->bytes -= bytes; 1412 } 1413 1414 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1415 struct btrfs_free_space *info, u64 offset, 1416 u64 bytes) 1417 { 1418 __bitmap_clear_bits(ctl, info, offset, bytes); 1419 ctl->free_space -= bytes; 1420 } 1421 1422 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1423 struct btrfs_free_space *info, u64 offset, 1424 u64 bytes) 1425 { 1426 unsigned long start, count; 1427 1428 start = offset_to_bit(info->offset, ctl->unit, offset); 1429 count = bytes_to_bits(bytes, ctl->unit); 1430 ASSERT(start + count <= BITS_PER_BITMAP); 1431 1432 bitmap_set(info->bitmap, start, count); 1433 1434 info->bytes += bytes; 1435 ctl->free_space += bytes; 1436 } 1437 1438 /* 1439 * If we can not find suitable extent, we will use bytes to record 1440 * the size of the max extent. 1441 */ 1442 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1443 struct btrfs_free_space *bitmap_info, u64 *offset, 1444 u64 *bytes) 1445 { 1446 unsigned long found_bits = 0; 1447 unsigned long max_bits = 0; 1448 unsigned long bits, i; 1449 unsigned long next_zero; 1450 unsigned long extent_bits; 1451 1452 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1453 max_t(u64, *offset, bitmap_info->offset)); 1454 bits = bytes_to_bits(*bytes, ctl->unit); 1455 1456 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1457 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1458 BITS_PER_BITMAP, i); 1459 extent_bits = next_zero - i; 1460 if (extent_bits >= bits) { 1461 found_bits = extent_bits; 1462 break; 1463 } else if (extent_bits > max_bits) { 1464 max_bits = extent_bits; 1465 } 1466 i = next_zero; 1467 } 1468 1469 if (found_bits) { 1470 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1471 *bytes = (u64)(found_bits) * ctl->unit; 1472 return 0; 1473 } 1474 1475 *bytes = (u64)(max_bits) * ctl->unit; 1476 return -1; 1477 } 1478 1479 /* Cache the size of the max extent in bytes */ 1480 static struct btrfs_free_space * 1481 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1482 unsigned long align, u64 *max_extent_size) 1483 { 1484 struct btrfs_free_space *entry; 1485 struct rb_node *node; 1486 u64 tmp; 1487 u64 align_off; 1488 int ret; 1489 1490 if (!ctl->free_space_offset.rb_node) 1491 goto out; 1492 1493 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1494 if (!entry) 1495 goto out; 1496 1497 for (node = &entry->offset_index; node; node = rb_next(node)) { 1498 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1499 if (entry->bytes < *bytes) { 1500 if (entry->bytes > *max_extent_size) 1501 *max_extent_size = entry->bytes; 1502 continue; 1503 } 1504 1505 /* make sure the space returned is big enough 1506 * to match our requested alignment 1507 */ 1508 if (*bytes >= align) { 1509 tmp = entry->offset - ctl->start + align - 1; 1510 do_div(tmp, align); 1511 tmp = tmp * align + ctl->start; 1512 align_off = tmp - entry->offset; 1513 } else { 1514 align_off = 0; 1515 tmp = entry->offset; 1516 } 1517 1518 if (entry->bytes < *bytes + align_off) { 1519 if (entry->bytes > *max_extent_size) 1520 *max_extent_size = entry->bytes; 1521 continue; 1522 } 1523 1524 if (entry->bitmap) { 1525 u64 size = *bytes; 1526 1527 ret = search_bitmap(ctl, entry, &tmp, &size); 1528 if (!ret) { 1529 *offset = tmp; 1530 *bytes = size; 1531 return entry; 1532 } else if (size > *max_extent_size) { 1533 *max_extent_size = size; 1534 } 1535 continue; 1536 } 1537 1538 *offset = tmp; 1539 *bytes = entry->bytes - align_off; 1540 return entry; 1541 } 1542 out: 1543 return NULL; 1544 } 1545 1546 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1547 struct btrfs_free_space *info, u64 offset) 1548 { 1549 info->offset = offset_to_bitmap(ctl, offset); 1550 info->bytes = 0; 1551 INIT_LIST_HEAD(&info->list); 1552 link_free_space(ctl, info); 1553 ctl->total_bitmaps++; 1554 1555 ctl->op->recalc_thresholds(ctl); 1556 } 1557 1558 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1559 struct btrfs_free_space *bitmap_info) 1560 { 1561 unlink_free_space(ctl, bitmap_info); 1562 kfree(bitmap_info->bitmap); 1563 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1564 ctl->total_bitmaps--; 1565 ctl->op->recalc_thresholds(ctl); 1566 } 1567 1568 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1569 struct btrfs_free_space *bitmap_info, 1570 u64 *offset, u64 *bytes) 1571 { 1572 u64 end; 1573 u64 search_start, search_bytes; 1574 int ret; 1575 1576 again: 1577 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1578 1579 /* 1580 * We need to search for bits in this bitmap. We could only cover some 1581 * of the extent in this bitmap thanks to how we add space, so we need 1582 * to search for as much as it as we can and clear that amount, and then 1583 * go searching for the next bit. 1584 */ 1585 search_start = *offset; 1586 search_bytes = ctl->unit; 1587 search_bytes = min(search_bytes, end - search_start + 1); 1588 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); 1589 if (ret < 0 || search_start != *offset) 1590 return -EINVAL; 1591 1592 /* We may have found more bits than what we need */ 1593 search_bytes = min(search_bytes, *bytes); 1594 1595 /* Cannot clear past the end of the bitmap */ 1596 search_bytes = min(search_bytes, end - search_start + 1); 1597 1598 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1599 *offset += search_bytes; 1600 *bytes -= search_bytes; 1601 1602 if (*bytes) { 1603 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1604 if (!bitmap_info->bytes) 1605 free_bitmap(ctl, bitmap_info); 1606 1607 /* 1608 * no entry after this bitmap, but we still have bytes to 1609 * remove, so something has gone wrong. 1610 */ 1611 if (!next) 1612 return -EINVAL; 1613 1614 bitmap_info = rb_entry(next, struct btrfs_free_space, 1615 offset_index); 1616 1617 /* 1618 * if the next entry isn't a bitmap we need to return to let the 1619 * extent stuff do its work. 1620 */ 1621 if (!bitmap_info->bitmap) 1622 return -EAGAIN; 1623 1624 /* 1625 * Ok the next item is a bitmap, but it may not actually hold 1626 * the information for the rest of this free space stuff, so 1627 * look for it, and if we don't find it return so we can try 1628 * everything over again. 1629 */ 1630 search_start = *offset; 1631 search_bytes = ctl->unit; 1632 ret = search_bitmap(ctl, bitmap_info, &search_start, 1633 &search_bytes); 1634 if (ret < 0 || search_start != *offset) 1635 return -EAGAIN; 1636 1637 goto again; 1638 } else if (!bitmap_info->bytes) 1639 free_bitmap(ctl, bitmap_info); 1640 1641 return 0; 1642 } 1643 1644 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1645 struct btrfs_free_space *info, u64 offset, 1646 u64 bytes) 1647 { 1648 u64 bytes_to_set = 0; 1649 u64 end; 1650 1651 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1652 1653 bytes_to_set = min(end - offset, bytes); 1654 1655 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1656 1657 return bytes_to_set; 1658 1659 } 1660 1661 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1662 struct btrfs_free_space *info) 1663 { 1664 struct btrfs_block_group_cache *block_group = ctl->private; 1665 1666 /* 1667 * If we are below the extents threshold then we can add this as an 1668 * extent, and don't have to deal with the bitmap 1669 */ 1670 if (ctl->free_extents < ctl->extents_thresh) { 1671 /* 1672 * If this block group has some small extents we don't want to 1673 * use up all of our free slots in the cache with them, we want 1674 * to reserve them to larger extents, however if we have plent 1675 * of cache left then go ahead an dadd them, no sense in adding 1676 * the overhead of a bitmap if we don't have to. 1677 */ 1678 if (info->bytes <= block_group->sectorsize * 4) { 1679 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1680 return false; 1681 } else { 1682 return false; 1683 } 1684 } 1685 1686 /* 1687 * The original block groups from mkfs can be really small, like 8 1688 * megabytes, so don't bother with a bitmap for those entries. However 1689 * some block groups can be smaller than what a bitmap would cover but 1690 * are still large enough that they could overflow the 32k memory limit, 1691 * so allow those block groups to still be allowed to have a bitmap 1692 * entry. 1693 */ 1694 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) 1695 return false; 1696 1697 return true; 1698 } 1699 1700 static struct btrfs_free_space_op free_space_op = { 1701 .recalc_thresholds = recalculate_thresholds, 1702 .use_bitmap = use_bitmap, 1703 }; 1704 1705 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 1706 struct btrfs_free_space *info) 1707 { 1708 struct btrfs_free_space *bitmap_info; 1709 struct btrfs_block_group_cache *block_group = NULL; 1710 int added = 0; 1711 u64 bytes, offset, bytes_added; 1712 int ret; 1713 1714 bytes = info->bytes; 1715 offset = info->offset; 1716 1717 if (!ctl->op->use_bitmap(ctl, info)) 1718 return 0; 1719 1720 if (ctl->op == &free_space_op) 1721 block_group = ctl->private; 1722 again: 1723 /* 1724 * Since we link bitmaps right into the cluster we need to see if we 1725 * have a cluster here, and if so and it has our bitmap we need to add 1726 * the free space to that bitmap. 1727 */ 1728 if (block_group && !list_empty(&block_group->cluster_list)) { 1729 struct btrfs_free_cluster *cluster; 1730 struct rb_node *node; 1731 struct btrfs_free_space *entry; 1732 1733 cluster = list_entry(block_group->cluster_list.next, 1734 struct btrfs_free_cluster, 1735 block_group_list); 1736 spin_lock(&cluster->lock); 1737 node = rb_first(&cluster->root); 1738 if (!node) { 1739 spin_unlock(&cluster->lock); 1740 goto no_cluster_bitmap; 1741 } 1742 1743 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1744 if (!entry->bitmap) { 1745 spin_unlock(&cluster->lock); 1746 goto no_cluster_bitmap; 1747 } 1748 1749 if (entry->offset == offset_to_bitmap(ctl, offset)) { 1750 bytes_added = add_bytes_to_bitmap(ctl, entry, 1751 offset, bytes); 1752 bytes -= bytes_added; 1753 offset += bytes_added; 1754 } 1755 spin_unlock(&cluster->lock); 1756 if (!bytes) { 1757 ret = 1; 1758 goto out; 1759 } 1760 } 1761 1762 no_cluster_bitmap: 1763 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1764 1, 0); 1765 if (!bitmap_info) { 1766 ASSERT(added == 0); 1767 goto new_bitmap; 1768 } 1769 1770 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 1771 bytes -= bytes_added; 1772 offset += bytes_added; 1773 added = 0; 1774 1775 if (!bytes) { 1776 ret = 1; 1777 goto out; 1778 } else 1779 goto again; 1780 1781 new_bitmap: 1782 if (info && info->bitmap) { 1783 add_new_bitmap(ctl, info, offset); 1784 added = 1; 1785 info = NULL; 1786 goto again; 1787 } else { 1788 spin_unlock(&ctl->tree_lock); 1789 1790 /* no pre-allocated info, allocate a new one */ 1791 if (!info) { 1792 info = kmem_cache_zalloc(btrfs_free_space_cachep, 1793 GFP_NOFS); 1794 if (!info) { 1795 spin_lock(&ctl->tree_lock); 1796 ret = -ENOMEM; 1797 goto out; 1798 } 1799 } 1800 1801 /* allocate the bitmap */ 1802 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 1803 spin_lock(&ctl->tree_lock); 1804 if (!info->bitmap) { 1805 ret = -ENOMEM; 1806 goto out; 1807 } 1808 goto again; 1809 } 1810 1811 out: 1812 if (info) { 1813 if (info->bitmap) 1814 kfree(info->bitmap); 1815 kmem_cache_free(btrfs_free_space_cachep, info); 1816 } 1817 1818 return ret; 1819 } 1820 1821 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 1822 struct btrfs_free_space *info, bool update_stat) 1823 { 1824 struct btrfs_free_space *left_info; 1825 struct btrfs_free_space *right_info; 1826 bool merged = false; 1827 u64 offset = info->offset; 1828 u64 bytes = info->bytes; 1829 1830 /* 1831 * first we want to see if there is free space adjacent to the range we 1832 * are adding, if there is remove that struct and add a new one to 1833 * cover the entire range 1834 */ 1835 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 1836 if (right_info && rb_prev(&right_info->offset_index)) 1837 left_info = rb_entry(rb_prev(&right_info->offset_index), 1838 struct btrfs_free_space, offset_index); 1839 else 1840 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 1841 1842 if (right_info && !right_info->bitmap) { 1843 if (update_stat) 1844 unlink_free_space(ctl, right_info); 1845 else 1846 __unlink_free_space(ctl, right_info); 1847 info->bytes += right_info->bytes; 1848 kmem_cache_free(btrfs_free_space_cachep, right_info); 1849 merged = true; 1850 } 1851 1852 if (left_info && !left_info->bitmap && 1853 left_info->offset + left_info->bytes == offset) { 1854 if (update_stat) 1855 unlink_free_space(ctl, left_info); 1856 else 1857 __unlink_free_space(ctl, left_info); 1858 info->offset = left_info->offset; 1859 info->bytes += left_info->bytes; 1860 kmem_cache_free(btrfs_free_space_cachep, left_info); 1861 merged = true; 1862 } 1863 1864 return merged; 1865 } 1866 1867 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, 1868 u64 offset, u64 bytes) 1869 { 1870 struct btrfs_free_space *info; 1871 int ret = 0; 1872 1873 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 1874 if (!info) 1875 return -ENOMEM; 1876 1877 info->offset = offset; 1878 info->bytes = bytes; 1879 1880 spin_lock(&ctl->tree_lock); 1881 1882 if (try_merge_free_space(ctl, info, true)) 1883 goto link; 1884 1885 /* 1886 * There was no extent directly to the left or right of this new 1887 * extent then we know we're going to have to allocate a new extent, so 1888 * before we do that see if we need to drop this into a bitmap 1889 */ 1890 ret = insert_into_bitmap(ctl, info); 1891 if (ret < 0) { 1892 goto out; 1893 } else if (ret) { 1894 ret = 0; 1895 goto out; 1896 } 1897 link: 1898 ret = link_free_space(ctl, info); 1899 if (ret) 1900 kmem_cache_free(btrfs_free_space_cachep, info); 1901 out: 1902 spin_unlock(&ctl->tree_lock); 1903 1904 if (ret) { 1905 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); 1906 ASSERT(ret != -EEXIST); 1907 } 1908 1909 return ret; 1910 } 1911 1912 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 1913 u64 offset, u64 bytes) 1914 { 1915 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1916 struct btrfs_free_space *info; 1917 int ret; 1918 bool re_search = false; 1919 1920 spin_lock(&ctl->tree_lock); 1921 1922 again: 1923 ret = 0; 1924 if (!bytes) 1925 goto out_lock; 1926 1927 info = tree_search_offset(ctl, offset, 0, 0); 1928 if (!info) { 1929 /* 1930 * oops didn't find an extent that matched the space we wanted 1931 * to remove, look for a bitmap instead 1932 */ 1933 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1934 1, 0); 1935 if (!info) { 1936 /* 1937 * If we found a partial bit of our free space in a 1938 * bitmap but then couldn't find the other part this may 1939 * be a problem, so WARN about it. 1940 */ 1941 WARN_ON(re_search); 1942 goto out_lock; 1943 } 1944 } 1945 1946 re_search = false; 1947 if (!info->bitmap) { 1948 unlink_free_space(ctl, info); 1949 if (offset == info->offset) { 1950 u64 to_free = min(bytes, info->bytes); 1951 1952 info->bytes -= to_free; 1953 info->offset += to_free; 1954 if (info->bytes) { 1955 ret = link_free_space(ctl, info); 1956 WARN_ON(ret); 1957 } else { 1958 kmem_cache_free(btrfs_free_space_cachep, info); 1959 } 1960 1961 offset += to_free; 1962 bytes -= to_free; 1963 goto again; 1964 } else { 1965 u64 old_end = info->bytes + info->offset; 1966 1967 info->bytes = offset - info->offset; 1968 ret = link_free_space(ctl, info); 1969 WARN_ON(ret); 1970 if (ret) 1971 goto out_lock; 1972 1973 /* Not enough bytes in this entry to satisfy us */ 1974 if (old_end < offset + bytes) { 1975 bytes -= old_end - offset; 1976 offset = old_end; 1977 goto again; 1978 } else if (old_end == offset + bytes) { 1979 /* all done */ 1980 goto out_lock; 1981 } 1982 spin_unlock(&ctl->tree_lock); 1983 1984 ret = btrfs_add_free_space(block_group, offset + bytes, 1985 old_end - (offset + bytes)); 1986 WARN_ON(ret); 1987 goto out; 1988 } 1989 } 1990 1991 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 1992 if (ret == -EAGAIN) { 1993 re_search = true; 1994 goto again; 1995 } 1996 out_lock: 1997 spin_unlock(&ctl->tree_lock); 1998 out: 1999 return ret; 2000 } 2001 2002 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 2003 u64 bytes) 2004 { 2005 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2006 struct btrfs_free_space *info; 2007 struct rb_node *n; 2008 int count = 0; 2009 2010 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2011 info = rb_entry(n, struct btrfs_free_space, offset_index); 2012 if (info->bytes >= bytes && !block_group->ro) 2013 count++; 2014 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n", 2015 info->offset, info->bytes, 2016 (info->bitmap) ? "yes" : "no"); 2017 } 2018 printk(KERN_INFO "block group has cluster?: %s\n", 2019 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2020 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" 2021 "\n", count); 2022 } 2023 2024 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 2025 { 2026 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2027 2028 spin_lock_init(&ctl->tree_lock); 2029 ctl->unit = block_group->sectorsize; 2030 ctl->start = block_group->key.objectid; 2031 ctl->private = block_group; 2032 ctl->op = &free_space_op; 2033 2034 /* 2035 * we only want to have 32k of ram per block group for keeping 2036 * track of free space, and if we pass 1/2 of that we want to 2037 * start converting things over to using bitmaps 2038 */ 2039 ctl->extents_thresh = ((1024 * 32) / 2) / 2040 sizeof(struct btrfs_free_space); 2041 } 2042 2043 /* 2044 * for a given cluster, put all of its extents back into the free 2045 * space cache. If the block group passed doesn't match the block group 2046 * pointed to by the cluster, someone else raced in and freed the 2047 * cluster already. In that case, we just return without changing anything 2048 */ 2049 static int 2050 __btrfs_return_cluster_to_free_space( 2051 struct btrfs_block_group_cache *block_group, 2052 struct btrfs_free_cluster *cluster) 2053 { 2054 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2055 struct btrfs_free_space *entry; 2056 struct rb_node *node; 2057 2058 spin_lock(&cluster->lock); 2059 if (cluster->block_group != block_group) 2060 goto out; 2061 2062 cluster->block_group = NULL; 2063 cluster->window_start = 0; 2064 list_del_init(&cluster->block_group_list); 2065 2066 node = rb_first(&cluster->root); 2067 while (node) { 2068 bool bitmap; 2069 2070 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2071 node = rb_next(&entry->offset_index); 2072 rb_erase(&entry->offset_index, &cluster->root); 2073 2074 bitmap = (entry->bitmap != NULL); 2075 if (!bitmap) 2076 try_merge_free_space(ctl, entry, false); 2077 tree_insert_offset(&ctl->free_space_offset, 2078 entry->offset, &entry->offset_index, bitmap); 2079 } 2080 cluster->root = RB_ROOT; 2081 2082 out: 2083 spin_unlock(&cluster->lock); 2084 btrfs_put_block_group(block_group); 2085 return 0; 2086 } 2087 2088 static void __btrfs_remove_free_space_cache_locked( 2089 struct btrfs_free_space_ctl *ctl) 2090 { 2091 struct btrfs_free_space *info; 2092 struct rb_node *node; 2093 2094 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2095 info = rb_entry(node, struct btrfs_free_space, offset_index); 2096 if (!info->bitmap) { 2097 unlink_free_space(ctl, info); 2098 kmem_cache_free(btrfs_free_space_cachep, info); 2099 } else { 2100 free_bitmap(ctl, info); 2101 } 2102 if (need_resched()) { 2103 spin_unlock(&ctl->tree_lock); 2104 cond_resched(); 2105 spin_lock(&ctl->tree_lock); 2106 } 2107 } 2108 } 2109 2110 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2111 { 2112 spin_lock(&ctl->tree_lock); 2113 __btrfs_remove_free_space_cache_locked(ctl); 2114 spin_unlock(&ctl->tree_lock); 2115 } 2116 2117 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2118 { 2119 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2120 struct btrfs_free_cluster *cluster; 2121 struct list_head *head; 2122 2123 spin_lock(&ctl->tree_lock); 2124 while ((head = block_group->cluster_list.next) != 2125 &block_group->cluster_list) { 2126 cluster = list_entry(head, struct btrfs_free_cluster, 2127 block_group_list); 2128 2129 WARN_ON(cluster->block_group != block_group); 2130 __btrfs_return_cluster_to_free_space(block_group, cluster); 2131 if (need_resched()) { 2132 spin_unlock(&ctl->tree_lock); 2133 cond_resched(); 2134 spin_lock(&ctl->tree_lock); 2135 } 2136 } 2137 __btrfs_remove_free_space_cache_locked(ctl); 2138 spin_unlock(&ctl->tree_lock); 2139 2140 } 2141 2142 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2143 u64 offset, u64 bytes, u64 empty_size, 2144 u64 *max_extent_size) 2145 { 2146 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2147 struct btrfs_free_space *entry = NULL; 2148 u64 bytes_search = bytes + empty_size; 2149 u64 ret = 0; 2150 u64 align_gap = 0; 2151 u64 align_gap_len = 0; 2152 2153 spin_lock(&ctl->tree_lock); 2154 entry = find_free_space(ctl, &offset, &bytes_search, 2155 block_group->full_stripe_len, max_extent_size); 2156 if (!entry) 2157 goto out; 2158 2159 ret = offset; 2160 if (entry->bitmap) { 2161 bitmap_clear_bits(ctl, entry, offset, bytes); 2162 if (!entry->bytes) 2163 free_bitmap(ctl, entry); 2164 } else { 2165 unlink_free_space(ctl, entry); 2166 align_gap_len = offset - entry->offset; 2167 align_gap = entry->offset; 2168 2169 entry->offset = offset + bytes; 2170 WARN_ON(entry->bytes < bytes + align_gap_len); 2171 2172 entry->bytes -= bytes + align_gap_len; 2173 if (!entry->bytes) 2174 kmem_cache_free(btrfs_free_space_cachep, entry); 2175 else 2176 link_free_space(ctl, entry); 2177 } 2178 out: 2179 spin_unlock(&ctl->tree_lock); 2180 2181 if (align_gap_len) 2182 __btrfs_add_free_space(ctl, align_gap, align_gap_len); 2183 return ret; 2184 } 2185 2186 /* 2187 * given a cluster, put all of its extents back into the free space 2188 * cache. If a block group is passed, this function will only free 2189 * a cluster that belongs to the passed block group. 2190 * 2191 * Otherwise, it'll get a reference on the block group pointed to by the 2192 * cluster and remove the cluster from it. 2193 */ 2194 int btrfs_return_cluster_to_free_space( 2195 struct btrfs_block_group_cache *block_group, 2196 struct btrfs_free_cluster *cluster) 2197 { 2198 struct btrfs_free_space_ctl *ctl; 2199 int ret; 2200 2201 /* first, get a safe pointer to the block group */ 2202 spin_lock(&cluster->lock); 2203 if (!block_group) { 2204 block_group = cluster->block_group; 2205 if (!block_group) { 2206 spin_unlock(&cluster->lock); 2207 return 0; 2208 } 2209 } else if (cluster->block_group != block_group) { 2210 /* someone else has already freed it don't redo their work */ 2211 spin_unlock(&cluster->lock); 2212 return 0; 2213 } 2214 atomic_inc(&block_group->count); 2215 spin_unlock(&cluster->lock); 2216 2217 ctl = block_group->free_space_ctl; 2218 2219 /* now return any extents the cluster had on it */ 2220 spin_lock(&ctl->tree_lock); 2221 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2222 spin_unlock(&ctl->tree_lock); 2223 2224 /* finally drop our ref */ 2225 btrfs_put_block_group(block_group); 2226 return ret; 2227 } 2228 2229 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2230 struct btrfs_free_cluster *cluster, 2231 struct btrfs_free_space *entry, 2232 u64 bytes, u64 min_start, 2233 u64 *max_extent_size) 2234 { 2235 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2236 int err; 2237 u64 search_start = cluster->window_start; 2238 u64 search_bytes = bytes; 2239 u64 ret = 0; 2240 2241 search_start = min_start; 2242 search_bytes = bytes; 2243 2244 err = search_bitmap(ctl, entry, &search_start, &search_bytes); 2245 if (err) { 2246 if (search_bytes > *max_extent_size) 2247 *max_extent_size = search_bytes; 2248 return 0; 2249 } 2250 2251 ret = search_start; 2252 __bitmap_clear_bits(ctl, entry, ret, bytes); 2253 2254 return ret; 2255 } 2256 2257 /* 2258 * given a cluster, try to allocate 'bytes' from it, returns 0 2259 * if it couldn't find anything suitably large, or a logical disk offset 2260 * if things worked out 2261 */ 2262 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2263 struct btrfs_free_cluster *cluster, u64 bytes, 2264 u64 min_start, u64 *max_extent_size) 2265 { 2266 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2267 struct btrfs_free_space *entry = NULL; 2268 struct rb_node *node; 2269 u64 ret = 0; 2270 2271 spin_lock(&cluster->lock); 2272 if (bytes > cluster->max_size) 2273 goto out; 2274 2275 if (cluster->block_group != block_group) 2276 goto out; 2277 2278 node = rb_first(&cluster->root); 2279 if (!node) 2280 goto out; 2281 2282 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2283 while (1) { 2284 if (entry->bytes < bytes && entry->bytes > *max_extent_size) 2285 *max_extent_size = entry->bytes; 2286 2287 if (entry->bytes < bytes || 2288 (!entry->bitmap && entry->offset < min_start)) { 2289 node = rb_next(&entry->offset_index); 2290 if (!node) 2291 break; 2292 entry = rb_entry(node, struct btrfs_free_space, 2293 offset_index); 2294 continue; 2295 } 2296 2297 if (entry->bitmap) { 2298 ret = btrfs_alloc_from_bitmap(block_group, 2299 cluster, entry, bytes, 2300 cluster->window_start, 2301 max_extent_size); 2302 if (ret == 0) { 2303 node = rb_next(&entry->offset_index); 2304 if (!node) 2305 break; 2306 entry = rb_entry(node, struct btrfs_free_space, 2307 offset_index); 2308 continue; 2309 } 2310 cluster->window_start += bytes; 2311 } else { 2312 ret = entry->offset; 2313 2314 entry->offset += bytes; 2315 entry->bytes -= bytes; 2316 } 2317 2318 if (entry->bytes == 0) 2319 rb_erase(&entry->offset_index, &cluster->root); 2320 break; 2321 } 2322 out: 2323 spin_unlock(&cluster->lock); 2324 2325 if (!ret) 2326 return 0; 2327 2328 spin_lock(&ctl->tree_lock); 2329 2330 ctl->free_space -= bytes; 2331 if (entry->bytes == 0) { 2332 ctl->free_extents--; 2333 if (entry->bitmap) { 2334 kfree(entry->bitmap); 2335 ctl->total_bitmaps--; 2336 ctl->op->recalc_thresholds(ctl); 2337 } 2338 kmem_cache_free(btrfs_free_space_cachep, entry); 2339 } 2340 2341 spin_unlock(&ctl->tree_lock); 2342 2343 return ret; 2344 } 2345 2346 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2347 struct btrfs_free_space *entry, 2348 struct btrfs_free_cluster *cluster, 2349 u64 offset, u64 bytes, 2350 u64 cont1_bytes, u64 min_bytes) 2351 { 2352 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2353 unsigned long next_zero; 2354 unsigned long i; 2355 unsigned long want_bits; 2356 unsigned long min_bits; 2357 unsigned long found_bits; 2358 unsigned long start = 0; 2359 unsigned long total_found = 0; 2360 int ret; 2361 2362 i = offset_to_bit(entry->offset, ctl->unit, 2363 max_t(u64, offset, entry->offset)); 2364 want_bits = bytes_to_bits(bytes, ctl->unit); 2365 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2366 2367 again: 2368 found_bits = 0; 2369 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2370 next_zero = find_next_zero_bit(entry->bitmap, 2371 BITS_PER_BITMAP, i); 2372 if (next_zero - i >= min_bits) { 2373 found_bits = next_zero - i; 2374 break; 2375 } 2376 i = next_zero; 2377 } 2378 2379 if (!found_bits) 2380 return -ENOSPC; 2381 2382 if (!total_found) { 2383 start = i; 2384 cluster->max_size = 0; 2385 } 2386 2387 total_found += found_bits; 2388 2389 if (cluster->max_size < found_bits * ctl->unit) 2390 cluster->max_size = found_bits * ctl->unit; 2391 2392 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2393 i = next_zero + 1; 2394 goto again; 2395 } 2396 2397 cluster->window_start = start * ctl->unit + entry->offset; 2398 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2399 ret = tree_insert_offset(&cluster->root, entry->offset, 2400 &entry->offset_index, 1); 2401 ASSERT(!ret); /* -EEXIST; Logic error */ 2402 2403 trace_btrfs_setup_cluster(block_group, cluster, 2404 total_found * ctl->unit, 1); 2405 return 0; 2406 } 2407 2408 /* 2409 * This searches the block group for just extents to fill the cluster with. 2410 * Try to find a cluster with at least bytes total bytes, at least one 2411 * extent of cont1_bytes, and other clusters of at least min_bytes. 2412 */ 2413 static noinline int 2414 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2415 struct btrfs_free_cluster *cluster, 2416 struct list_head *bitmaps, u64 offset, u64 bytes, 2417 u64 cont1_bytes, u64 min_bytes) 2418 { 2419 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2420 struct btrfs_free_space *first = NULL; 2421 struct btrfs_free_space *entry = NULL; 2422 struct btrfs_free_space *last; 2423 struct rb_node *node; 2424 u64 window_start; 2425 u64 window_free; 2426 u64 max_extent; 2427 u64 total_size = 0; 2428 2429 entry = tree_search_offset(ctl, offset, 0, 1); 2430 if (!entry) 2431 return -ENOSPC; 2432 2433 /* 2434 * We don't want bitmaps, so just move along until we find a normal 2435 * extent entry. 2436 */ 2437 while (entry->bitmap || entry->bytes < min_bytes) { 2438 if (entry->bitmap && list_empty(&entry->list)) 2439 list_add_tail(&entry->list, bitmaps); 2440 node = rb_next(&entry->offset_index); 2441 if (!node) 2442 return -ENOSPC; 2443 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2444 } 2445 2446 window_start = entry->offset; 2447 window_free = entry->bytes; 2448 max_extent = entry->bytes; 2449 first = entry; 2450 last = entry; 2451 2452 for (node = rb_next(&entry->offset_index); node; 2453 node = rb_next(&entry->offset_index)) { 2454 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2455 2456 if (entry->bitmap) { 2457 if (list_empty(&entry->list)) 2458 list_add_tail(&entry->list, bitmaps); 2459 continue; 2460 } 2461 2462 if (entry->bytes < min_bytes) 2463 continue; 2464 2465 last = entry; 2466 window_free += entry->bytes; 2467 if (entry->bytes > max_extent) 2468 max_extent = entry->bytes; 2469 } 2470 2471 if (window_free < bytes || max_extent < cont1_bytes) 2472 return -ENOSPC; 2473 2474 cluster->window_start = first->offset; 2475 2476 node = &first->offset_index; 2477 2478 /* 2479 * now we've found our entries, pull them out of the free space 2480 * cache and put them into the cluster rbtree 2481 */ 2482 do { 2483 int ret; 2484 2485 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2486 node = rb_next(&entry->offset_index); 2487 if (entry->bitmap || entry->bytes < min_bytes) 2488 continue; 2489 2490 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2491 ret = tree_insert_offset(&cluster->root, entry->offset, 2492 &entry->offset_index, 0); 2493 total_size += entry->bytes; 2494 ASSERT(!ret); /* -EEXIST; Logic error */ 2495 } while (node && entry != last); 2496 2497 cluster->max_size = max_extent; 2498 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2499 return 0; 2500 } 2501 2502 /* 2503 * This specifically looks for bitmaps that may work in the cluster, we assume 2504 * that we have already failed to find extents that will work. 2505 */ 2506 static noinline int 2507 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2508 struct btrfs_free_cluster *cluster, 2509 struct list_head *bitmaps, u64 offset, u64 bytes, 2510 u64 cont1_bytes, u64 min_bytes) 2511 { 2512 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2513 struct btrfs_free_space *entry; 2514 int ret = -ENOSPC; 2515 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2516 2517 if (ctl->total_bitmaps == 0) 2518 return -ENOSPC; 2519 2520 /* 2521 * The bitmap that covers offset won't be in the list unless offset 2522 * is just its start offset. 2523 */ 2524 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2525 if (entry->offset != bitmap_offset) { 2526 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2527 if (entry && list_empty(&entry->list)) 2528 list_add(&entry->list, bitmaps); 2529 } 2530 2531 list_for_each_entry(entry, bitmaps, list) { 2532 if (entry->bytes < bytes) 2533 continue; 2534 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2535 bytes, cont1_bytes, min_bytes); 2536 if (!ret) 2537 return 0; 2538 } 2539 2540 /* 2541 * The bitmaps list has all the bitmaps that record free space 2542 * starting after offset, so no more search is required. 2543 */ 2544 return -ENOSPC; 2545 } 2546 2547 /* 2548 * here we try to find a cluster of blocks in a block group. The goal 2549 * is to find at least bytes+empty_size. 2550 * We might not find them all in one contiguous area. 2551 * 2552 * returns zero and sets up cluster if things worked out, otherwise 2553 * it returns -enospc 2554 */ 2555 int btrfs_find_space_cluster(struct btrfs_root *root, 2556 struct btrfs_block_group_cache *block_group, 2557 struct btrfs_free_cluster *cluster, 2558 u64 offset, u64 bytes, u64 empty_size) 2559 { 2560 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2561 struct btrfs_free_space *entry, *tmp; 2562 LIST_HEAD(bitmaps); 2563 u64 min_bytes; 2564 u64 cont1_bytes; 2565 int ret; 2566 2567 /* 2568 * Choose the minimum extent size we'll require for this 2569 * cluster. For SSD_SPREAD, don't allow any fragmentation. 2570 * For metadata, allow allocates with smaller extents. For 2571 * data, keep it dense. 2572 */ 2573 if (btrfs_test_opt(root, SSD_SPREAD)) { 2574 cont1_bytes = min_bytes = bytes + empty_size; 2575 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 2576 cont1_bytes = bytes; 2577 min_bytes = block_group->sectorsize; 2578 } else { 2579 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 2580 min_bytes = block_group->sectorsize; 2581 } 2582 2583 spin_lock(&ctl->tree_lock); 2584 2585 /* 2586 * If we know we don't have enough space to make a cluster don't even 2587 * bother doing all the work to try and find one. 2588 */ 2589 if (ctl->free_space < bytes) { 2590 spin_unlock(&ctl->tree_lock); 2591 return -ENOSPC; 2592 } 2593 2594 spin_lock(&cluster->lock); 2595 2596 /* someone already found a cluster, hooray */ 2597 if (cluster->block_group) { 2598 ret = 0; 2599 goto out; 2600 } 2601 2602 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 2603 min_bytes); 2604 2605 INIT_LIST_HEAD(&bitmaps); 2606 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 2607 bytes + empty_size, 2608 cont1_bytes, min_bytes); 2609 if (ret) 2610 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 2611 offset, bytes + empty_size, 2612 cont1_bytes, min_bytes); 2613 2614 /* Clear our temporary list */ 2615 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 2616 list_del_init(&entry->list); 2617 2618 if (!ret) { 2619 atomic_inc(&block_group->count); 2620 list_add_tail(&cluster->block_group_list, 2621 &block_group->cluster_list); 2622 cluster->block_group = block_group; 2623 } else { 2624 trace_btrfs_failed_cluster_setup(block_group); 2625 } 2626 out: 2627 spin_unlock(&cluster->lock); 2628 spin_unlock(&ctl->tree_lock); 2629 2630 return ret; 2631 } 2632 2633 /* 2634 * simple code to zero out a cluster 2635 */ 2636 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 2637 { 2638 spin_lock_init(&cluster->lock); 2639 spin_lock_init(&cluster->refill_lock); 2640 cluster->root = RB_ROOT; 2641 cluster->max_size = 0; 2642 INIT_LIST_HEAD(&cluster->block_group_list); 2643 cluster->block_group = NULL; 2644 } 2645 2646 static int do_trimming(struct btrfs_block_group_cache *block_group, 2647 u64 *total_trimmed, u64 start, u64 bytes, 2648 u64 reserved_start, u64 reserved_bytes) 2649 { 2650 struct btrfs_space_info *space_info = block_group->space_info; 2651 struct btrfs_fs_info *fs_info = block_group->fs_info; 2652 int ret; 2653 int update = 0; 2654 u64 trimmed = 0; 2655 2656 spin_lock(&space_info->lock); 2657 spin_lock(&block_group->lock); 2658 if (!block_group->ro) { 2659 block_group->reserved += reserved_bytes; 2660 space_info->bytes_reserved += reserved_bytes; 2661 update = 1; 2662 } 2663 spin_unlock(&block_group->lock); 2664 spin_unlock(&space_info->lock); 2665 2666 ret = btrfs_error_discard_extent(fs_info->extent_root, 2667 start, bytes, &trimmed); 2668 if (!ret) 2669 *total_trimmed += trimmed; 2670 2671 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 2672 2673 if (update) { 2674 spin_lock(&space_info->lock); 2675 spin_lock(&block_group->lock); 2676 if (block_group->ro) 2677 space_info->bytes_readonly += reserved_bytes; 2678 block_group->reserved -= reserved_bytes; 2679 space_info->bytes_reserved -= reserved_bytes; 2680 spin_unlock(&space_info->lock); 2681 spin_unlock(&block_group->lock); 2682 } 2683 2684 return ret; 2685 } 2686 2687 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 2688 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2689 { 2690 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2691 struct btrfs_free_space *entry; 2692 struct rb_node *node; 2693 int ret = 0; 2694 u64 extent_start; 2695 u64 extent_bytes; 2696 u64 bytes; 2697 2698 while (start < end) { 2699 spin_lock(&ctl->tree_lock); 2700 2701 if (ctl->free_space < minlen) { 2702 spin_unlock(&ctl->tree_lock); 2703 break; 2704 } 2705 2706 entry = tree_search_offset(ctl, start, 0, 1); 2707 if (!entry) { 2708 spin_unlock(&ctl->tree_lock); 2709 break; 2710 } 2711 2712 /* skip bitmaps */ 2713 while (entry->bitmap) { 2714 node = rb_next(&entry->offset_index); 2715 if (!node) { 2716 spin_unlock(&ctl->tree_lock); 2717 goto out; 2718 } 2719 entry = rb_entry(node, struct btrfs_free_space, 2720 offset_index); 2721 } 2722 2723 if (entry->offset >= end) { 2724 spin_unlock(&ctl->tree_lock); 2725 break; 2726 } 2727 2728 extent_start = entry->offset; 2729 extent_bytes = entry->bytes; 2730 start = max(start, extent_start); 2731 bytes = min(extent_start + extent_bytes, end) - start; 2732 if (bytes < minlen) { 2733 spin_unlock(&ctl->tree_lock); 2734 goto next; 2735 } 2736 2737 unlink_free_space(ctl, entry); 2738 kmem_cache_free(btrfs_free_space_cachep, entry); 2739 2740 spin_unlock(&ctl->tree_lock); 2741 2742 ret = do_trimming(block_group, total_trimmed, start, bytes, 2743 extent_start, extent_bytes); 2744 if (ret) 2745 break; 2746 next: 2747 start += bytes; 2748 2749 if (fatal_signal_pending(current)) { 2750 ret = -ERESTARTSYS; 2751 break; 2752 } 2753 2754 cond_resched(); 2755 } 2756 out: 2757 return ret; 2758 } 2759 2760 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 2761 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2762 { 2763 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2764 struct btrfs_free_space *entry; 2765 int ret = 0; 2766 int ret2; 2767 u64 bytes; 2768 u64 offset = offset_to_bitmap(ctl, start); 2769 2770 while (offset < end) { 2771 bool next_bitmap = false; 2772 2773 spin_lock(&ctl->tree_lock); 2774 2775 if (ctl->free_space < minlen) { 2776 spin_unlock(&ctl->tree_lock); 2777 break; 2778 } 2779 2780 entry = tree_search_offset(ctl, offset, 1, 0); 2781 if (!entry) { 2782 spin_unlock(&ctl->tree_lock); 2783 next_bitmap = true; 2784 goto next; 2785 } 2786 2787 bytes = minlen; 2788 ret2 = search_bitmap(ctl, entry, &start, &bytes); 2789 if (ret2 || start >= end) { 2790 spin_unlock(&ctl->tree_lock); 2791 next_bitmap = true; 2792 goto next; 2793 } 2794 2795 bytes = min(bytes, end - start); 2796 if (bytes < minlen) { 2797 spin_unlock(&ctl->tree_lock); 2798 goto next; 2799 } 2800 2801 bitmap_clear_bits(ctl, entry, start, bytes); 2802 if (entry->bytes == 0) 2803 free_bitmap(ctl, entry); 2804 2805 spin_unlock(&ctl->tree_lock); 2806 2807 ret = do_trimming(block_group, total_trimmed, start, bytes, 2808 start, bytes); 2809 if (ret) 2810 break; 2811 next: 2812 if (next_bitmap) { 2813 offset += BITS_PER_BITMAP * ctl->unit; 2814 } else { 2815 start += bytes; 2816 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 2817 offset += BITS_PER_BITMAP * ctl->unit; 2818 } 2819 2820 if (fatal_signal_pending(current)) { 2821 ret = -ERESTARTSYS; 2822 break; 2823 } 2824 2825 cond_resched(); 2826 } 2827 2828 return ret; 2829 } 2830 2831 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 2832 u64 *trimmed, u64 start, u64 end, u64 minlen) 2833 { 2834 int ret; 2835 2836 *trimmed = 0; 2837 2838 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 2839 if (ret) 2840 return ret; 2841 2842 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 2843 2844 return ret; 2845 } 2846 2847 /* 2848 * Find the left-most item in the cache tree, and then return the 2849 * smallest inode number in the item. 2850 * 2851 * Note: the returned inode number may not be the smallest one in 2852 * the tree, if the left-most item is a bitmap. 2853 */ 2854 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 2855 { 2856 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 2857 struct btrfs_free_space *entry = NULL; 2858 u64 ino = 0; 2859 2860 spin_lock(&ctl->tree_lock); 2861 2862 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 2863 goto out; 2864 2865 entry = rb_entry(rb_first(&ctl->free_space_offset), 2866 struct btrfs_free_space, offset_index); 2867 2868 if (!entry->bitmap) { 2869 ino = entry->offset; 2870 2871 unlink_free_space(ctl, entry); 2872 entry->offset++; 2873 entry->bytes--; 2874 if (!entry->bytes) 2875 kmem_cache_free(btrfs_free_space_cachep, entry); 2876 else 2877 link_free_space(ctl, entry); 2878 } else { 2879 u64 offset = 0; 2880 u64 count = 1; 2881 int ret; 2882 2883 ret = search_bitmap(ctl, entry, &offset, &count); 2884 /* Logic error; Should be empty if it can't find anything */ 2885 ASSERT(!ret); 2886 2887 ino = offset; 2888 bitmap_clear_bits(ctl, entry, offset, 1); 2889 if (entry->bytes == 0) 2890 free_bitmap(ctl, entry); 2891 } 2892 out: 2893 spin_unlock(&ctl->tree_lock); 2894 2895 return ino; 2896 } 2897 2898 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 2899 struct btrfs_path *path) 2900 { 2901 struct inode *inode = NULL; 2902 2903 spin_lock(&root->cache_lock); 2904 if (root->cache_inode) 2905 inode = igrab(root->cache_inode); 2906 spin_unlock(&root->cache_lock); 2907 if (inode) 2908 return inode; 2909 2910 inode = __lookup_free_space_inode(root, path, 0); 2911 if (IS_ERR(inode)) 2912 return inode; 2913 2914 spin_lock(&root->cache_lock); 2915 if (!btrfs_fs_closing(root->fs_info)) 2916 root->cache_inode = igrab(inode); 2917 spin_unlock(&root->cache_lock); 2918 2919 return inode; 2920 } 2921 2922 int create_free_ino_inode(struct btrfs_root *root, 2923 struct btrfs_trans_handle *trans, 2924 struct btrfs_path *path) 2925 { 2926 return __create_free_space_inode(root, trans, path, 2927 BTRFS_FREE_INO_OBJECTID, 0); 2928 } 2929 2930 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2931 { 2932 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 2933 struct btrfs_path *path; 2934 struct inode *inode; 2935 int ret = 0; 2936 u64 root_gen = btrfs_root_generation(&root->root_item); 2937 2938 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 2939 return 0; 2940 2941 /* 2942 * If we're unmounting then just return, since this does a search on the 2943 * normal root and not the commit root and we could deadlock. 2944 */ 2945 if (btrfs_fs_closing(fs_info)) 2946 return 0; 2947 2948 path = btrfs_alloc_path(); 2949 if (!path) 2950 return 0; 2951 2952 inode = lookup_free_ino_inode(root, path); 2953 if (IS_ERR(inode)) 2954 goto out; 2955 2956 if (root_gen != BTRFS_I(inode)->generation) 2957 goto out_put; 2958 2959 ret = __load_free_space_cache(root, inode, ctl, path, 0); 2960 2961 if (ret < 0) 2962 btrfs_err(fs_info, 2963 "failed to load free ino cache for root %llu", 2964 root->root_key.objectid); 2965 out_put: 2966 iput(inode); 2967 out: 2968 btrfs_free_path(path); 2969 return ret; 2970 } 2971 2972 int btrfs_write_out_ino_cache(struct btrfs_root *root, 2973 struct btrfs_trans_handle *trans, 2974 struct btrfs_path *path, 2975 struct inode *inode) 2976 { 2977 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 2978 int ret; 2979 2980 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 2981 return 0; 2982 2983 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0); 2984 if (ret) { 2985 btrfs_delalloc_release_metadata(inode, inode->i_size); 2986 #ifdef DEBUG 2987 btrfs_err(root->fs_info, 2988 "failed to write free ino cache for root %llu", 2989 root->root_key.objectid); 2990 #endif 2991 } 2992 2993 return ret; 2994 } 2995 2996 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 2997 /* 2998 * Use this if you need to make a bitmap or extent entry specifically, it 2999 * doesn't do any of the merging that add_free_space does, this acts a lot like 3000 * how the free space cache loading stuff works, so you can get really weird 3001 * configurations. 3002 */ 3003 int test_add_free_space_entry(struct btrfs_block_group_cache *cache, 3004 u64 offset, u64 bytes, bool bitmap) 3005 { 3006 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3007 struct btrfs_free_space *info = NULL, *bitmap_info; 3008 void *map = NULL; 3009 u64 bytes_added; 3010 int ret; 3011 3012 again: 3013 if (!info) { 3014 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3015 if (!info) 3016 return -ENOMEM; 3017 } 3018 3019 if (!bitmap) { 3020 spin_lock(&ctl->tree_lock); 3021 info->offset = offset; 3022 info->bytes = bytes; 3023 ret = link_free_space(ctl, info); 3024 spin_unlock(&ctl->tree_lock); 3025 if (ret) 3026 kmem_cache_free(btrfs_free_space_cachep, info); 3027 return ret; 3028 } 3029 3030 if (!map) { 3031 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 3032 if (!map) { 3033 kmem_cache_free(btrfs_free_space_cachep, info); 3034 return -ENOMEM; 3035 } 3036 } 3037 3038 spin_lock(&ctl->tree_lock); 3039 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3040 1, 0); 3041 if (!bitmap_info) { 3042 info->bitmap = map; 3043 map = NULL; 3044 add_new_bitmap(ctl, info, offset); 3045 bitmap_info = info; 3046 } 3047 3048 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3049 bytes -= bytes_added; 3050 offset += bytes_added; 3051 spin_unlock(&ctl->tree_lock); 3052 3053 if (bytes) 3054 goto again; 3055 3056 if (map) 3057 kfree(map); 3058 return 0; 3059 } 3060 3061 /* 3062 * Checks to see if the given range is in the free space cache. This is really 3063 * just used to check the absence of space, so if there is free space in the 3064 * range at all we will return 1. 3065 */ 3066 int test_check_exists(struct btrfs_block_group_cache *cache, 3067 u64 offset, u64 bytes) 3068 { 3069 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3070 struct btrfs_free_space *info; 3071 int ret = 0; 3072 3073 spin_lock(&ctl->tree_lock); 3074 info = tree_search_offset(ctl, offset, 0, 0); 3075 if (!info) { 3076 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3077 1, 0); 3078 if (!info) 3079 goto out; 3080 } 3081 3082 have_info: 3083 if (info->bitmap) { 3084 u64 bit_off, bit_bytes; 3085 struct rb_node *n; 3086 struct btrfs_free_space *tmp; 3087 3088 bit_off = offset; 3089 bit_bytes = ctl->unit; 3090 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes); 3091 if (!ret) { 3092 if (bit_off == offset) { 3093 ret = 1; 3094 goto out; 3095 } else if (bit_off > offset && 3096 offset + bytes > bit_off) { 3097 ret = 1; 3098 goto out; 3099 } 3100 } 3101 3102 n = rb_prev(&info->offset_index); 3103 while (n) { 3104 tmp = rb_entry(n, struct btrfs_free_space, 3105 offset_index); 3106 if (tmp->offset + tmp->bytes < offset) 3107 break; 3108 if (offset + bytes < tmp->offset) { 3109 n = rb_prev(&info->offset_index); 3110 continue; 3111 } 3112 info = tmp; 3113 goto have_info; 3114 } 3115 3116 n = rb_next(&info->offset_index); 3117 while (n) { 3118 tmp = rb_entry(n, struct btrfs_free_space, 3119 offset_index); 3120 if (offset + bytes < tmp->offset) 3121 break; 3122 if (tmp->offset + tmp->bytes < offset) { 3123 n = rb_next(&info->offset_index); 3124 continue; 3125 } 3126 info = tmp; 3127 goto have_info; 3128 } 3129 3130 goto out; 3131 } 3132 3133 if (info->offset == offset) { 3134 ret = 1; 3135 goto out; 3136 } 3137 3138 if (offset > info->offset && offset < info->offset + info->bytes) 3139 ret = 1; 3140 out: 3141 spin_unlock(&ctl->tree_lock); 3142 return ret; 3143 } 3144 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3145