1 /* 2 * Copyright (C) 2008 Red Hat. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/math64.h> 23 #include <linux/ratelimit.h> 24 #include "ctree.h" 25 #include "free-space-cache.h" 26 #include "transaction.h" 27 #include "disk-io.h" 28 #include "extent_io.h" 29 #include "inode-map.h" 30 #include "volumes.h" 31 32 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8) 33 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024) 34 35 struct btrfs_trim_range { 36 u64 start; 37 u64 bytes; 38 struct list_head list; 39 }; 40 41 static int link_free_space(struct btrfs_free_space_ctl *ctl, 42 struct btrfs_free_space *info); 43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 44 struct btrfs_free_space *info); 45 46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 47 struct btrfs_path *path, 48 u64 offset) 49 { 50 struct btrfs_key key; 51 struct btrfs_key location; 52 struct btrfs_disk_key disk_key; 53 struct btrfs_free_space_header *header; 54 struct extent_buffer *leaf; 55 struct inode *inode = NULL; 56 int ret; 57 58 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 59 key.offset = offset; 60 key.type = 0; 61 62 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 63 if (ret < 0) 64 return ERR_PTR(ret); 65 if (ret > 0) { 66 btrfs_release_path(path); 67 return ERR_PTR(-ENOENT); 68 } 69 70 leaf = path->nodes[0]; 71 header = btrfs_item_ptr(leaf, path->slots[0], 72 struct btrfs_free_space_header); 73 btrfs_free_space_key(leaf, header, &disk_key); 74 btrfs_disk_key_to_cpu(&location, &disk_key); 75 btrfs_release_path(path); 76 77 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); 78 if (!inode) 79 return ERR_PTR(-ENOENT); 80 if (IS_ERR(inode)) 81 return inode; 82 if (is_bad_inode(inode)) { 83 iput(inode); 84 return ERR_PTR(-ENOENT); 85 } 86 87 mapping_set_gfp_mask(inode->i_mapping, 88 mapping_gfp_mask(inode->i_mapping) & 89 ~(__GFP_FS | __GFP_HIGHMEM)); 90 91 return inode; 92 } 93 94 struct inode *lookup_free_space_inode(struct btrfs_root *root, 95 struct btrfs_block_group_cache 96 *block_group, struct btrfs_path *path) 97 { 98 struct inode *inode = NULL; 99 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 100 101 spin_lock(&block_group->lock); 102 if (block_group->inode) 103 inode = igrab(block_group->inode); 104 spin_unlock(&block_group->lock); 105 if (inode) 106 return inode; 107 108 inode = __lookup_free_space_inode(root, path, 109 block_group->key.objectid); 110 if (IS_ERR(inode)) 111 return inode; 112 113 spin_lock(&block_group->lock); 114 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 115 btrfs_info(root->fs_info, 116 "Old style space inode found, converting."); 117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 118 BTRFS_INODE_NODATACOW; 119 block_group->disk_cache_state = BTRFS_DC_CLEAR; 120 } 121 122 if (!block_group->iref) { 123 block_group->inode = igrab(inode); 124 block_group->iref = 1; 125 } 126 spin_unlock(&block_group->lock); 127 128 return inode; 129 } 130 131 static int __create_free_space_inode(struct btrfs_root *root, 132 struct btrfs_trans_handle *trans, 133 struct btrfs_path *path, 134 u64 ino, u64 offset) 135 { 136 struct btrfs_key key; 137 struct btrfs_disk_key disk_key; 138 struct btrfs_free_space_header *header; 139 struct btrfs_inode_item *inode_item; 140 struct extent_buffer *leaf; 141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 142 int ret; 143 144 ret = btrfs_insert_empty_inode(trans, root, path, ino); 145 if (ret) 146 return ret; 147 148 /* We inline crc's for the free disk space cache */ 149 if (ino != BTRFS_FREE_INO_OBJECTID) 150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 151 152 leaf = path->nodes[0]; 153 inode_item = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_inode_item); 155 btrfs_item_key(leaf, &disk_key, path->slots[0]); 156 memset_extent_buffer(leaf, 0, (unsigned long)inode_item, 157 sizeof(*inode_item)); 158 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 159 btrfs_set_inode_size(leaf, inode_item, 0); 160 btrfs_set_inode_nbytes(leaf, inode_item, 0); 161 btrfs_set_inode_uid(leaf, inode_item, 0); 162 btrfs_set_inode_gid(leaf, inode_item, 0); 163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 164 btrfs_set_inode_flags(leaf, inode_item, flags); 165 btrfs_set_inode_nlink(leaf, inode_item, 1); 166 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 167 btrfs_set_inode_block_group(leaf, inode_item, offset); 168 btrfs_mark_buffer_dirty(leaf); 169 btrfs_release_path(path); 170 171 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 172 key.offset = offset; 173 key.type = 0; 174 ret = btrfs_insert_empty_item(trans, root, path, &key, 175 sizeof(struct btrfs_free_space_header)); 176 if (ret < 0) { 177 btrfs_release_path(path); 178 return ret; 179 } 180 181 leaf = path->nodes[0]; 182 header = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_free_space_header); 184 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); 185 btrfs_set_free_space_key(leaf, header, &disk_key); 186 btrfs_mark_buffer_dirty(leaf); 187 btrfs_release_path(path); 188 189 return 0; 190 } 191 192 int create_free_space_inode(struct btrfs_root *root, 193 struct btrfs_trans_handle *trans, 194 struct btrfs_block_group_cache *block_group, 195 struct btrfs_path *path) 196 { 197 int ret; 198 u64 ino; 199 200 ret = btrfs_find_free_objectid(root, &ino); 201 if (ret < 0) 202 return ret; 203 204 return __create_free_space_inode(root, trans, path, ino, 205 block_group->key.objectid); 206 } 207 208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root, 209 struct btrfs_block_rsv *rsv) 210 { 211 u64 needed_bytes; 212 int ret; 213 214 /* 1 for slack space, 1 for updating the inode */ 215 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + 216 btrfs_calc_trans_metadata_size(root, 1); 217 218 spin_lock(&rsv->lock); 219 if (rsv->reserved < needed_bytes) 220 ret = -ENOSPC; 221 else 222 ret = 0; 223 spin_unlock(&rsv->lock); 224 return ret; 225 } 226 227 int btrfs_truncate_free_space_cache(struct btrfs_root *root, 228 struct btrfs_trans_handle *trans, 229 struct btrfs_block_group_cache *block_group, 230 struct inode *inode) 231 { 232 int ret = 0; 233 struct btrfs_path *path = btrfs_alloc_path(); 234 bool locked = false; 235 236 if (!path) { 237 ret = -ENOMEM; 238 goto fail; 239 } 240 241 if (block_group) { 242 locked = true; 243 mutex_lock(&trans->transaction->cache_write_mutex); 244 if (!list_empty(&block_group->io_list)) { 245 list_del_init(&block_group->io_list); 246 247 btrfs_wait_cache_io(root, trans, block_group, 248 &block_group->io_ctl, path, 249 block_group->key.objectid); 250 btrfs_put_block_group(block_group); 251 } 252 253 /* 254 * now that we've truncated the cache away, its no longer 255 * setup or written 256 */ 257 spin_lock(&block_group->lock); 258 block_group->disk_cache_state = BTRFS_DC_CLEAR; 259 spin_unlock(&block_group->lock); 260 } 261 btrfs_free_path(path); 262 263 btrfs_i_size_write(inode, 0); 264 truncate_pagecache(inode, 0); 265 266 /* 267 * We don't need an orphan item because truncating the free space cache 268 * will never be split across transactions. 269 * We don't need to check for -EAGAIN because we're a free space 270 * cache inode 271 */ 272 ret = btrfs_truncate_inode_items(trans, root, inode, 273 0, BTRFS_EXTENT_DATA_KEY); 274 if (ret) 275 goto fail; 276 277 ret = btrfs_update_inode(trans, root, inode); 278 279 fail: 280 if (locked) 281 mutex_unlock(&trans->transaction->cache_write_mutex); 282 if (ret) 283 btrfs_abort_transaction(trans, root, ret); 284 285 return ret; 286 } 287 288 static int readahead_cache(struct inode *inode) 289 { 290 struct file_ra_state *ra; 291 unsigned long last_index; 292 293 ra = kzalloc(sizeof(*ra), GFP_NOFS); 294 if (!ra) 295 return -ENOMEM; 296 297 file_ra_state_init(ra, inode->i_mapping); 298 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 299 300 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 301 302 kfree(ra); 303 304 return 0; 305 } 306 307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 308 struct btrfs_root *root, int write) 309 { 310 int num_pages; 311 int check_crcs = 0; 312 313 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE); 314 315 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) 316 check_crcs = 1; 317 318 /* Make sure we can fit our crcs into the first page */ 319 if (write && check_crcs && 320 (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) 321 return -ENOSPC; 322 323 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 324 325 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 326 if (!io_ctl->pages) 327 return -ENOMEM; 328 329 io_ctl->num_pages = num_pages; 330 io_ctl->root = root; 331 io_ctl->check_crcs = check_crcs; 332 io_ctl->inode = inode; 333 334 return 0; 335 } 336 337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 338 { 339 kfree(io_ctl->pages); 340 io_ctl->pages = NULL; 341 } 342 343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 344 { 345 if (io_ctl->cur) { 346 io_ctl->cur = NULL; 347 io_ctl->orig = NULL; 348 } 349 } 350 351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 352 { 353 ASSERT(io_ctl->index < io_ctl->num_pages); 354 io_ctl->page = io_ctl->pages[io_ctl->index++]; 355 io_ctl->cur = page_address(io_ctl->page); 356 io_ctl->orig = io_ctl->cur; 357 io_ctl->size = PAGE_CACHE_SIZE; 358 if (clear) 359 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE); 360 } 361 362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 363 { 364 int i; 365 366 io_ctl_unmap_page(io_ctl); 367 368 for (i = 0; i < io_ctl->num_pages; i++) { 369 if (io_ctl->pages[i]) { 370 ClearPageChecked(io_ctl->pages[i]); 371 unlock_page(io_ctl->pages[i]); 372 page_cache_release(io_ctl->pages[i]); 373 } 374 } 375 } 376 377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, 378 int uptodate) 379 { 380 struct page *page; 381 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 382 int i; 383 384 for (i = 0; i < io_ctl->num_pages; i++) { 385 page = find_or_create_page(inode->i_mapping, i, mask); 386 if (!page) { 387 io_ctl_drop_pages(io_ctl); 388 return -ENOMEM; 389 } 390 io_ctl->pages[i] = page; 391 if (uptodate && !PageUptodate(page)) { 392 btrfs_readpage(NULL, page); 393 lock_page(page); 394 if (!PageUptodate(page)) { 395 btrfs_err(BTRFS_I(inode)->root->fs_info, 396 "error reading free space cache"); 397 io_ctl_drop_pages(io_ctl); 398 return -EIO; 399 } 400 } 401 } 402 403 for (i = 0; i < io_ctl->num_pages; i++) { 404 clear_page_dirty_for_io(io_ctl->pages[i]); 405 set_page_extent_mapped(io_ctl->pages[i]); 406 } 407 408 return 0; 409 } 410 411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 412 { 413 __le64 *val; 414 415 io_ctl_map_page(io_ctl, 1); 416 417 /* 418 * Skip the csum areas. If we don't check crcs then we just have a 419 * 64bit chunk at the front of the first page. 420 */ 421 if (io_ctl->check_crcs) { 422 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 423 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 424 } else { 425 io_ctl->cur += sizeof(u64); 426 io_ctl->size -= sizeof(u64) * 2; 427 } 428 429 val = io_ctl->cur; 430 *val = cpu_to_le64(generation); 431 io_ctl->cur += sizeof(u64); 432 } 433 434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 435 { 436 __le64 *gen; 437 438 /* 439 * Skip the crc area. If we don't check crcs then we just have a 64bit 440 * chunk at the front of the first page. 441 */ 442 if (io_ctl->check_crcs) { 443 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 444 io_ctl->size -= sizeof(u64) + 445 (sizeof(u32) * io_ctl->num_pages); 446 } else { 447 io_ctl->cur += sizeof(u64); 448 io_ctl->size -= sizeof(u64) * 2; 449 } 450 451 gen = io_ctl->cur; 452 if (le64_to_cpu(*gen) != generation) { 453 printk_ratelimited(KERN_ERR "BTRFS: space cache generation " 454 "(%Lu) does not match inode (%Lu)\n", *gen, 455 generation); 456 io_ctl_unmap_page(io_ctl); 457 return -EIO; 458 } 459 io_ctl->cur += sizeof(u64); 460 return 0; 461 } 462 463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 464 { 465 u32 *tmp; 466 u32 crc = ~(u32)0; 467 unsigned offset = 0; 468 469 if (!io_ctl->check_crcs) { 470 io_ctl_unmap_page(io_ctl); 471 return; 472 } 473 474 if (index == 0) 475 offset = sizeof(u32) * io_ctl->num_pages; 476 477 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 478 PAGE_CACHE_SIZE - offset); 479 btrfs_csum_final(crc, (char *)&crc); 480 io_ctl_unmap_page(io_ctl); 481 tmp = page_address(io_ctl->pages[0]); 482 tmp += index; 483 *tmp = crc; 484 } 485 486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 487 { 488 u32 *tmp, val; 489 u32 crc = ~(u32)0; 490 unsigned offset = 0; 491 492 if (!io_ctl->check_crcs) { 493 io_ctl_map_page(io_ctl, 0); 494 return 0; 495 } 496 497 if (index == 0) 498 offset = sizeof(u32) * io_ctl->num_pages; 499 500 tmp = page_address(io_ctl->pages[0]); 501 tmp += index; 502 val = *tmp; 503 504 io_ctl_map_page(io_ctl, 0); 505 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 506 PAGE_CACHE_SIZE - offset); 507 btrfs_csum_final(crc, (char *)&crc); 508 if (val != crc) { 509 printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free " 510 "space cache\n"); 511 io_ctl_unmap_page(io_ctl); 512 return -EIO; 513 } 514 515 return 0; 516 } 517 518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 519 void *bitmap) 520 { 521 struct btrfs_free_space_entry *entry; 522 523 if (!io_ctl->cur) 524 return -ENOSPC; 525 526 entry = io_ctl->cur; 527 entry->offset = cpu_to_le64(offset); 528 entry->bytes = cpu_to_le64(bytes); 529 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 530 BTRFS_FREE_SPACE_EXTENT; 531 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 532 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 533 534 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 535 return 0; 536 537 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 538 539 /* No more pages to map */ 540 if (io_ctl->index >= io_ctl->num_pages) 541 return 0; 542 543 /* map the next page */ 544 io_ctl_map_page(io_ctl, 1); 545 return 0; 546 } 547 548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 549 { 550 if (!io_ctl->cur) 551 return -ENOSPC; 552 553 /* 554 * If we aren't at the start of the current page, unmap this one and 555 * map the next one if there is any left. 556 */ 557 if (io_ctl->cur != io_ctl->orig) { 558 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 559 if (io_ctl->index >= io_ctl->num_pages) 560 return -ENOSPC; 561 io_ctl_map_page(io_ctl, 0); 562 } 563 564 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE); 565 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 566 if (io_ctl->index < io_ctl->num_pages) 567 io_ctl_map_page(io_ctl, 0); 568 return 0; 569 } 570 571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 572 { 573 /* 574 * If we're not on the boundary we know we've modified the page and we 575 * need to crc the page. 576 */ 577 if (io_ctl->cur != io_ctl->orig) 578 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 579 else 580 io_ctl_unmap_page(io_ctl); 581 582 while (io_ctl->index < io_ctl->num_pages) { 583 io_ctl_map_page(io_ctl, 1); 584 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 585 } 586 } 587 588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 589 struct btrfs_free_space *entry, u8 *type) 590 { 591 struct btrfs_free_space_entry *e; 592 int ret; 593 594 if (!io_ctl->cur) { 595 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 596 if (ret) 597 return ret; 598 } 599 600 e = io_ctl->cur; 601 entry->offset = le64_to_cpu(e->offset); 602 entry->bytes = le64_to_cpu(e->bytes); 603 *type = e->type; 604 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 605 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 606 607 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 608 return 0; 609 610 io_ctl_unmap_page(io_ctl); 611 612 return 0; 613 } 614 615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 616 struct btrfs_free_space *entry) 617 { 618 int ret; 619 620 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 621 if (ret) 622 return ret; 623 624 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE); 625 io_ctl_unmap_page(io_ctl); 626 627 return 0; 628 } 629 630 /* 631 * Since we attach pinned extents after the fact we can have contiguous sections 632 * of free space that are split up in entries. This poses a problem with the 633 * tree logging stuff since it could have allocated across what appears to be 2 634 * entries since we would have merged the entries when adding the pinned extents 635 * back to the free space cache. So run through the space cache that we just 636 * loaded and merge contiguous entries. This will make the log replay stuff not 637 * blow up and it will make for nicer allocator behavior. 638 */ 639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 640 { 641 struct btrfs_free_space *e, *prev = NULL; 642 struct rb_node *n; 643 644 again: 645 spin_lock(&ctl->tree_lock); 646 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 647 e = rb_entry(n, struct btrfs_free_space, offset_index); 648 if (!prev) 649 goto next; 650 if (e->bitmap || prev->bitmap) 651 goto next; 652 if (prev->offset + prev->bytes == e->offset) { 653 unlink_free_space(ctl, prev); 654 unlink_free_space(ctl, e); 655 prev->bytes += e->bytes; 656 kmem_cache_free(btrfs_free_space_cachep, e); 657 link_free_space(ctl, prev); 658 prev = NULL; 659 spin_unlock(&ctl->tree_lock); 660 goto again; 661 } 662 next: 663 prev = e; 664 } 665 spin_unlock(&ctl->tree_lock); 666 } 667 668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 669 struct btrfs_free_space_ctl *ctl, 670 struct btrfs_path *path, u64 offset) 671 { 672 struct btrfs_free_space_header *header; 673 struct extent_buffer *leaf; 674 struct btrfs_io_ctl io_ctl; 675 struct btrfs_key key; 676 struct btrfs_free_space *e, *n; 677 LIST_HEAD(bitmaps); 678 u64 num_entries; 679 u64 num_bitmaps; 680 u64 generation; 681 u8 type; 682 int ret = 0; 683 684 /* Nothing in the space cache, goodbye */ 685 if (!i_size_read(inode)) 686 return 0; 687 688 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 689 key.offset = offset; 690 key.type = 0; 691 692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 693 if (ret < 0) 694 return 0; 695 else if (ret > 0) { 696 btrfs_release_path(path); 697 return 0; 698 } 699 700 ret = -1; 701 702 leaf = path->nodes[0]; 703 header = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_free_space_header); 705 num_entries = btrfs_free_space_entries(leaf, header); 706 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 707 generation = btrfs_free_space_generation(leaf, header); 708 btrfs_release_path(path); 709 710 if (!BTRFS_I(inode)->generation) { 711 btrfs_info(root->fs_info, 712 "The free space cache file (%llu) is invalid. skip it\n", 713 offset); 714 return 0; 715 } 716 717 if (BTRFS_I(inode)->generation != generation) { 718 btrfs_err(root->fs_info, 719 "free space inode generation (%llu) " 720 "did not match free space cache generation (%llu)", 721 BTRFS_I(inode)->generation, generation); 722 return 0; 723 } 724 725 if (!num_entries) 726 return 0; 727 728 ret = io_ctl_init(&io_ctl, inode, root, 0); 729 if (ret) 730 return ret; 731 732 ret = readahead_cache(inode); 733 if (ret) 734 goto out; 735 736 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 737 if (ret) 738 goto out; 739 740 ret = io_ctl_check_crc(&io_ctl, 0); 741 if (ret) 742 goto free_cache; 743 744 ret = io_ctl_check_generation(&io_ctl, generation); 745 if (ret) 746 goto free_cache; 747 748 while (num_entries) { 749 e = kmem_cache_zalloc(btrfs_free_space_cachep, 750 GFP_NOFS); 751 if (!e) 752 goto free_cache; 753 754 ret = io_ctl_read_entry(&io_ctl, e, &type); 755 if (ret) { 756 kmem_cache_free(btrfs_free_space_cachep, e); 757 goto free_cache; 758 } 759 760 if (!e->bytes) { 761 kmem_cache_free(btrfs_free_space_cachep, e); 762 goto free_cache; 763 } 764 765 if (type == BTRFS_FREE_SPACE_EXTENT) { 766 spin_lock(&ctl->tree_lock); 767 ret = link_free_space(ctl, e); 768 spin_unlock(&ctl->tree_lock); 769 if (ret) { 770 btrfs_err(root->fs_info, 771 "Duplicate entries in free space cache, dumping"); 772 kmem_cache_free(btrfs_free_space_cachep, e); 773 goto free_cache; 774 } 775 } else { 776 ASSERT(num_bitmaps); 777 num_bitmaps--; 778 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 779 if (!e->bitmap) { 780 kmem_cache_free( 781 btrfs_free_space_cachep, e); 782 goto free_cache; 783 } 784 spin_lock(&ctl->tree_lock); 785 ret = link_free_space(ctl, e); 786 ctl->total_bitmaps++; 787 ctl->op->recalc_thresholds(ctl); 788 spin_unlock(&ctl->tree_lock); 789 if (ret) { 790 btrfs_err(root->fs_info, 791 "Duplicate entries in free space cache, dumping"); 792 kmem_cache_free(btrfs_free_space_cachep, e); 793 goto free_cache; 794 } 795 list_add_tail(&e->list, &bitmaps); 796 } 797 798 num_entries--; 799 } 800 801 io_ctl_unmap_page(&io_ctl); 802 803 /* 804 * We add the bitmaps at the end of the entries in order that 805 * the bitmap entries are added to the cache. 806 */ 807 list_for_each_entry_safe(e, n, &bitmaps, list) { 808 list_del_init(&e->list); 809 ret = io_ctl_read_bitmap(&io_ctl, e); 810 if (ret) 811 goto free_cache; 812 } 813 814 io_ctl_drop_pages(&io_ctl); 815 merge_space_tree(ctl); 816 ret = 1; 817 out: 818 io_ctl_free(&io_ctl); 819 return ret; 820 free_cache: 821 io_ctl_drop_pages(&io_ctl); 822 __btrfs_remove_free_space_cache(ctl); 823 goto out; 824 } 825 826 int load_free_space_cache(struct btrfs_fs_info *fs_info, 827 struct btrfs_block_group_cache *block_group) 828 { 829 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 830 struct btrfs_root *root = fs_info->tree_root; 831 struct inode *inode; 832 struct btrfs_path *path; 833 int ret = 0; 834 bool matched; 835 u64 used = btrfs_block_group_used(&block_group->item); 836 837 /* 838 * If this block group has been marked to be cleared for one reason or 839 * another then we can't trust the on disk cache, so just return. 840 */ 841 spin_lock(&block_group->lock); 842 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 843 spin_unlock(&block_group->lock); 844 return 0; 845 } 846 spin_unlock(&block_group->lock); 847 848 path = btrfs_alloc_path(); 849 if (!path) 850 return 0; 851 path->search_commit_root = 1; 852 path->skip_locking = 1; 853 854 inode = lookup_free_space_inode(root, block_group, path); 855 if (IS_ERR(inode)) { 856 btrfs_free_path(path); 857 return 0; 858 } 859 860 /* We may have converted the inode and made the cache invalid. */ 861 spin_lock(&block_group->lock); 862 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 863 spin_unlock(&block_group->lock); 864 btrfs_free_path(path); 865 goto out; 866 } 867 spin_unlock(&block_group->lock); 868 869 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 870 path, block_group->key.objectid); 871 btrfs_free_path(path); 872 if (ret <= 0) 873 goto out; 874 875 spin_lock(&ctl->tree_lock); 876 matched = (ctl->free_space == (block_group->key.offset - used - 877 block_group->bytes_super)); 878 spin_unlock(&ctl->tree_lock); 879 880 if (!matched) { 881 __btrfs_remove_free_space_cache(ctl); 882 btrfs_warn(fs_info, "block group %llu has wrong amount of free space", 883 block_group->key.objectid); 884 ret = -1; 885 } 886 out: 887 if (ret < 0) { 888 /* This cache is bogus, make sure it gets cleared */ 889 spin_lock(&block_group->lock); 890 block_group->disk_cache_state = BTRFS_DC_CLEAR; 891 spin_unlock(&block_group->lock); 892 ret = 0; 893 894 btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now", 895 block_group->key.objectid); 896 } 897 898 iput(inode); 899 return ret; 900 } 901 902 static noinline_for_stack 903 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 904 struct btrfs_free_space_ctl *ctl, 905 struct btrfs_block_group_cache *block_group, 906 int *entries, int *bitmaps, 907 struct list_head *bitmap_list) 908 { 909 int ret; 910 struct btrfs_free_cluster *cluster = NULL; 911 struct btrfs_free_cluster *cluster_locked = NULL; 912 struct rb_node *node = rb_first(&ctl->free_space_offset); 913 struct btrfs_trim_range *trim_entry; 914 915 /* Get the cluster for this block_group if it exists */ 916 if (block_group && !list_empty(&block_group->cluster_list)) { 917 cluster = list_entry(block_group->cluster_list.next, 918 struct btrfs_free_cluster, 919 block_group_list); 920 } 921 922 if (!node && cluster) { 923 cluster_locked = cluster; 924 spin_lock(&cluster_locked->lock); 925 node = rb_first(&cluster->root); 926 cluster = NULL; 927 } 928 929 /* Write out the extent entries */ 930 while (node) { 931 struct btrfs_free_space *e; 932 933 e = rb_entry(node, struct btrfs_free_space, offset_index); 934 *entries += 1; 935 936 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 937 e->bitmap); 938 if (ret) 939 goto fail; 940 941 if (e->bitmap) { 942 list_add_tail(&e->list, bitmap_list); 943 *bitmaps += 1; 944 } 945 node = rb_next(node); 946 if (!node && cluster) { 947 node = rb_first(&cluster->root); 948 cluster_locked = cluster; 949 spin_lock(&cluster_locked->lock); 950 cluster = NULL; 951 } 952 } 953 if (cluster_locked) { 954 spin_unlock(&cluster_locked->lock); 955 cluster_locked = NULL; 956 } 957 958 /* 959 * Make sure we don't miss any range that was removed from our rbtree 960 * because trimming is running. Otherwise after a umount+mount (or crash 961 * after committing the transaction) we would leak free space and get 962 * an inconsistent free space cache report from fsck. 963 */ 964 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 965 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 966 trim_entry->bytes, NULL); 967 if (ret) 968 goto fail; 969 *entries += 1; 970 } 971 972 return 0; 973 fail: 974 if (cluster_locked) 975 spin_unlock(&cluster_locked->lock); 976 return -ENOSPC; 977 } 978 979 static noinline_for_stack int 980 update_cache_item(struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 struct inode *inode, 983 struct btrfs_path *path, u64 offset, 984 int entries, int bitmaps) 985 { 986 struct btrfs_key key; 987 struct btrfs_free_space_header *header; 988 struct extent_buffer *leaf; 989 int ret; 990 991 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 992 key.offset = offset; 993 key.type = 0; 994 995 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 996 if (ret < 0) { 997 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 998 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 999 GFP_NOFS); 1000 goto fail; 1001 } 1002 leaf = path->nodes[0]; 1003 if (ret > 0) { 1004 struct btrfs_key found_key; 1005 ASSERT(path->slots[0]); 1006 path->slots[0]--; 1007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1008 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1009 found_key.offset != offset) { 1010 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1011 inode->i_size - 1, 1012 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 1013 NULL, GFP_NOFS); 1014 btrfs_release_path(path); 1015 goto fail; 1016 } 1017 } 1018 1019 BTRFS_I(inode)->generation = trans->transid; 1020 header = btrfs_item_ptr(leaf, path->slots[0], 1021 struct btrfs_free_space_header); 1022 btrfs_set_free_space_entries(leaf, header, entries); 1023 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1024 btrfs_set_free_space_generation(leaf, header, trans->transid); 1025 btrfs_mark_buffer_dirty(leaf); 1026 btrfs_release_path(path); 1027 1028 return 0; 1029 1030 fail: 1031 return -1; 1032 } 1033 1034 static noinline_for_stack int 1035 write_pinned_extent_entries(struct btrfs_root *root, 1036 struct btrfs_block_group_cache *block_group, 1037 struct btrfs_io_ctl *io_ctl, 1038 int *entries) 1039 { 1040 u64 start, extent_start, extent_end, len; 1041 struct extent_io_tree *unpin = NULL; 1042 int ret; 1043 1044 if (!block_group) 1045 return 0; 1046 1047 /* 1048 * We want to add any pinned extents to our free space cache 1049 * so we don't leak the space 1050 * 1051 * We shouldn't have switched the pinned extents yet so this is the 1052 * right one 1053 */ 1054 unpin = root->fs_info->pinned_extents; 1055 1056 start = block_group->key.objectid; 1057 1058 while (start < block_group->key.objectid + block_group->key.offset) { 1059 ret = find_first_extent_bit(unpin, start, 1060 &extent_start, &extent_end, 1061 EXTENT_DIRTY, NULL); 1062 if (ret) 1063 return 0; 1064 1065 /* This pinned extent is out of our range */ 1066 if (extent_start >= block_group->key.objectid + 1067 block_group->key.offset) 1068 return 0; 1069 1070 extent_start = max(extent_start, start); 1071 extent_end = min(block_group->key.objectid + 1072 block_group->key.offset, extent_end + 1); 1073 len = extent_end - extent_start; 1074 1075 *entries += 1; 1076 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1077 if (ret) 1078 return -ENOSPC; 1079 1080 start = extent_end; 1081 } 1082 1083 return 0; 1084 } 1085 1086 static noinline_for_stack int 1087 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1088 { 1089 struct list_head *pos, *n; 1090 int ret; 1091 1092 /* Write out the bitmaps */ 1093 list_for_each_safe(pos, n, bitmap_list) { 1094 struct btrfs_free_space *entry = 1095 list_entry(pos, struct btrfs_free_space, list); 1096 1097 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1098 if (ret) 1099 return -ENOSPC; 1100 list_del_init(&entry->list); 1101 } 1102 1103 return 0; 1104 } 1105 1106 static int flush_dirty_cache(struct inode *inode) 1107 { 1108 int ret; 1109 1110 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1111 if (ret) 1112 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1113 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 1114 GFP_NOFS); 1115 1116 return ret; 1117 } 1118 1119 static void noinline_for_stack 1120 cleanup_bitmap_list(struct list_head *bitmap_list) 1121 { 1122 struct list_head *pos, *n; 1123 1124 list_for_each_safe(pos, n, bitmap_list) { 1125 struct btrfs_free_space *entry = 1126 list_entry(pos, struct btrfs_free_space, list); 1127 list_del_init(&entry->list); 1128 } 1129 } 1130 1131 static void noinline_for_stack 1132 cleanup_write_cache_enospc(struct inode *inode, 1133 struct btrfs_io_ctl *io_ctl, 1134 struct extent_state **cached_state, 1135 struct list_head *bitmap_list) 1136 { 1137 io_ctl_drop_pages(io_ctl); 1138 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1139 i_size_read(inode) - 1, cached_state, 1140 GFP_NOFS); 1141 } 1142 1143 int btrfs_wait_cache_io(struct btrfs_root *root, 1144 struct btrfs_trans_handle *trans, 1145 struct btrfs_block_group_cache *block_group, 1146 struct btrfs_io_ctl *io_ctl, 1147 struct btrfs_path *path, u64 offset) 1148 { 1149 int ret; 1150 struct inode *inode = io_ctl->inode; 1151 1152 if (!inode) 1153 return 0; 1154 1155 if (block_group) 1156 root = root->fs_info->tree_root; 1157 1158 /* Flush the dirty pages in the cache file. */ 1159 ret = flush_dirty_cache(inode); 1160 if (ret) 1161 goto out; 1162 1163 /* Update the cache item to tell everyone this cache file is valid. */ 1164 ret = update_cache_item(trans, root, inode, path, offset, 1165 io_ctl->entries, io_ctl->bitmaps); 1166 out: 1167 io_ctl_free(io_ctl); 1168 if (ret) { 1169 invalidate_inode_pages2(inode->i_mapping); 1170 BTRFS_I(inode)->generation = 0; 1171 if (block_group) { 1172 #ifdef DEBUG 1173 btrfs_err(root->fs_info, 1174 "failed to write free space cache for block group %llu", 1175 block_group->key.objectid); 1176 #endif 1177 } 1178 } 1179 btrfs_update_inode(trans, root, inode); 1180 1181 if (block_group) { 1182 /* the dirty list is protected by the dirty_bgs_lock */ 1183 spin_lock(&trans->transaction->dirty_bgs_lock); 1184 1185 /* the disk_cache_state is protected by the block group lock */ 1186 spin_lock(&block_group->lock); 1187 1188 /* 1189 * only mark this as written if we didn't get put back on 1190 * the dirty list while waiting for IO. Otherwise our 1191 * cache state won't be right, and we won't get written again 1192 */ 1193 if (!ret && list_empty(&block_group->dirty_list)) 1194 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1195 else if (ret) 1196 block_group->disk_cache_state = BTRFS_DC_ERROR; 1197 1198 spin_unlock(&block_group->lock); 1199 spin_unlock(&trans->transaction->dirty_bgs_lock); 1200 io_ctl->inode = NULL; 1201 iput(inode); 1202 } 1203 1204 return ret; 1205 1206 } 1207 1208 /** 1209 * __btrfs_write_out_cache - write out cached info to an inode 1210 * @root - the root the inode belongs to 1211 * @ctl - the free space cache we are going to write out 1212 * @block_group - the block_group for this cache if it belongs to a block_group 1213 * @trans - the trans handle 1214 * @path - the path to use 1215 * @offset - the offset for the key we'll insert 1216 * 1217 * This function writes out a free space cache struct to disk for quick recovery 1218 * on mount. This will return 0 if it was successfull in writing the cache out, 1219 * or an errno if it was not. 1220 */ 1221 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1222 struct btrfs_free_space_ctl *ctl, 1223 struct btrfs_block_group_cache *block_group, 1224 struct btrfs_io_ctl *io_ctl, 1225 struct btrfs_trans_handle *trans, 1226 struct btrfs_path *path, u64 offset) 1227 { 1228 struct extent_state *cached_state = NULL; 1229 LIST_HEAD(bitmap_list); 1230 int entries = 0; 1231 int bitmaps = 0; 1232 int ret; 1233 int must_iput = 0; 1234 1235 if (!i_size_read(inode)) 1236 return -EIO; 1237 1238 WARN_ON(io_ctl->pages); 1239 ret = io_ctl_init(io_ctl, inode, root, 1); 1240 if (ret) 1241 return ret; 1242 1243 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1244 down_write(&block_group->data_rwsem); 1245 spin_lock(&block_group->lock); 1246 if (block_group->delalloc_bytes) { 1247 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1248 spin_unlock(&block_group->lock); 1249 up_write(&block_group->data_rwsem); 1250 BTRFS_I(inode)->generation = 0; 1251 ret = 0; 1252 must_iput = 1; 1253 goto out; 1254 } 1255 spin_unlock(&block_group->lock); 1256 } 1257 1258 /* Lock all pages first so we can lock the extent safely. */ 1259 ret = io_ctl_prepare_pages(io_ctl, inode, 0); 1260 if (ret) 1261 goto out; 1262 1263 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1264 0, &cached_state); 1265 1266 io_ctl_set_generation(io_ctl, trans->transid); 1267 1268 mutex_lock(&ctl->cache_writeout_mutex); 1269 /* Write out the extent entries in the free space cache */ 1270 spin_lock(&ctl->tree_lock); 1271 ret = write_cache_extent_entries(io_ctl, ctl, 1272 block_group, &entries, &bitmaps, 1273 &bitmap_list); 1274 if (ret) 1275 goto out_nospc_locked; 1276 1277 /* 1278 * Some spaces that are freed in the current transaction are pinned, 1279 * they will be added into free space cache after the transaction is 1280 * committed, we shouldn't lose them. 1281 * 1282 * If this changes while we are working we'll get added back to 1283 * the dirty list and redo it. No locking needed 1284 */ 1285 ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries); 1286 if (ret) 1287 goto out_nospc_locked; 1288 1289 /* 1290 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1291 * locked while doing it because a concurrent trim can be manipulating 1292 * or freeing the bitmap. 1293 */ 1294 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1295 spin_unlock(&ctl->tree_lock); 1296 mutex_unlock(&ctl->cache_writeout_mutex); 1297 if (ret) 1298 goto out_nospc; 1299 1300 /* Zero out the rest of the pages just to make sure */ 1301 io_ctl_zero_remaining_pages(io_ctl); 1302 1303 /* Everything is written out, now we dirty the pages in the file. */ 1304 ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages, 1305 0, i_size_read(inode), &cached_state); 1306 if (ret) 1307 goto out_nospc; 1308 1309 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1310 up_write(&block_group->data_rwsem); 1311 /* 1312 * Release the pages and unlock the extent, we will flush 1313 * them out later 1314 */ 1315 io_ctl_drop_pages(io_ctl); 1316 1317 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1318 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1319 1320 /* 1321 * at this point the pages are under IO and we're happy, 1322 * The caller is responsible for waiting on them and updating the 1323 * the cache and the inode 1324 */ 1325 io_ctl->entries = entries; 1326 io_ctl->bitmaps = bitmaps; 1327 1328 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1329 if (ret) 1330 goto out; 1331 1332 return 0; 1333 1334 out: 1335 io_ctl->inode = NULL; 1336 io_ctl_free(io_ctl); 1337 if (ret) { 1338 invalidate_inode_pages2(inode->i_mapping); 1339 BTRFS_I(inode)->generation = 0; 1340 } 1341 btrfs_update_inode(trans, root, inode); 1342 if (must_iput) 1343 iput(inode); 1344 return ret; 1345 1346 out_nospc_locked: 1347 cleanup_bitmap_list(&bitmap_list); 1348 spin_unlock(&ctl->tree_lock); 1349 mutex_unlock(&ctl->cache_writeout_mutex); 1350 1351 out_nospc: 1352 cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list); 1353 1354 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1355 up_write(&block_group->data_rwsem); 1356 1357 goto out; 1358 } 1359 1360 int btrfs_write_out_cache(struct btrfs_root *root, 1361 struct btrfs_trans_handle *trans, 1362 struct btrfs_block_group_cache *block_group, 1363 struct btrfs_path *path) 1364 { 1365 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1366 struct inode *inode; 1367 int ret = 0; 1368 1369 root = root->fs_info->tree_root; 1370 1371 spin_lock(&block_group->lock); 1372 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1373 spin_unlock(&block_group->lock); 1374 return 0; 1375 } 1376 spin_unlock(&block_group->lock); 1377 1378 inode = lookup_free_space_inode(root, block_group, path); 1379 if (IS_ERR(inode)) 1380 return 0; 1381 1382 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, 1383 &block_group->io_ctl, trans, 1384 path, block_group->key.objectid); 1385 if (ret) { 1386 #ifdef DEBUG 1387 btrfs_err(root->fs_info, 1388 "failed to write free space cache for block group %llu", 1389 block_group->key.objectid); 1390 #endif 1391 spin_lock(&block_group->lock); 1392 block_group->disk_cache_state = BTRFS_DC_ERROR; 1393 spin_unlock(&block_group->lock); 1394 1395 block_group->io_ctl.inode = NULL; 1396 iput(inode); 1397 } 1398 1399 /* 1400 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1401 * to wait for IO and put the inode 1402 */ 1403 1404 return ret; 1405 } 1406 1407 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1408 u64 offset) 1409 { 1410 ASSERT(offset >= bitmap_start); 1411 offset -= bitmap_start; 1412 return (unsigned long)(div_u64(offset, unit)); 1413 } 1414 1415 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1416 { 1417 return (unsigned long)(div_u64(bytes, unit)); 1418 } 1419 1420 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1421 u64 offset) 1422 { 1423 u64 bitmap_start; 1424 u32 bytes_per_bitmap; 1425 1426 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1427 bitmap_start = offset - ctl->start; 1428 bitmap_start = div_u64(bitmap_start, bytes_per_bitmap); 1429 bitmap_start *= bytes_per_bitmap; 1430 bitmap_start += ctl->start; 1431 1432 return bitmap_start; 1433 } 1434 1435 static int tree_insert_offset(struct rb_root *root, u64 offset, 1436 struct rb_node *node, int bitmap) 1437 { 1438 struct rb_node **p = &root->rb_node; 1439 struct rb_node *parent = NULL; 1440 struct btrfs_free_space *info; 1441 1442 while (*p) { 1443 parent = *p; 1444 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1445 1446 if (offset < info->offset) { 1447 p = &(*p)->rb_left; 1448 } else if (offset > info->offset) { 1449 p = &(*p)->rb_right; 1450 } else { 1451 /* 1452 * we could have a bitmap entry and an extent entry 1453 * share the same offset. If this is the case, we want 1454 * the extent entry to always be found first if we do a 1455 * linear search through the tree, since we want to have 1456 * the quickest allocation time, and allocating from an 1457 * extent is faster than allocating from a bitmap. So 1458 * if we're inserting a bitmap and we find an entry at 1459 * this offset, we want to go right, or after this entry 1460 * logically. If we are inserting an extent and we've 1461 * found a bitmap, we want to go left, or before 1462 * logically. 1463 */ 1464 if (bitmap) { 1465 if (info->bitmap) { 1466 WARN_ON_ONCE(1); 1467 return -EEXIST; 1468 } 1469 p = &(*p)->rb_right; 1470 } else { 1471 if (!info->bitmap) { 1472 WARN_ON_ONCE(1); 1473 return -EEXIST; 1474 } 1475 p = &(*p)->rb_left; 1476 } 1477 } 1478 } 1479 1480 rb_link_node(node, parent, p); 1481 rb_insert_color(node, root); 1482 1483 return 0; 1484 } 1485 1486 /* 1487 * searches the tree for the given offset. 1488 * 1489 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1490 * want a section that has at least bytes size and comes at or after the given 1491 * offset. 1492 */ 1493 static struct btrfs_free_space * 1494 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1495 u64 offset, int bitmap_only, int fuzzy) 1496 { 1497 struct rb_node *n = ctl->free_space_offset.rb_node; 1498 struct btrfs_free_space *entry, *prev = NULL; 1499 1500 /* find entry that is closest to the 'offset' */ 1501 while (1) { 1502 if (!n) { 1503 entry = NULL; 1504 break; 1505 } 1506 1507 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1508 prev = entry; 1509 1510 if (offset < entry->offset) 1511 n = n->rb_left; 1512 else if (offset > entry->offset) 1513 n = n->rb_right; 1514 else 1515 break; 1516 } 1517 1518 if (bitmap_only) { 1519 if (!entry) 1520 return NULL; 1521 if (entry->bitmap) 1522 return entry; 1523 1524 /* 1525 * bitmap entry and extent entry may share same offset, 1526 * in that case, bitmap entry comes after extent entry. 1527 */ 1528 n = rb_next(n); 1529 if (!n) 1530 return NULL; 1531 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1532 if (entry->offset != offset) 1533 return NULL; 1534 1535 WARN_ON(!entry->bitmap); 1536 return entry; 1537 } else if (entry) { 1538 if (entry->bitmap) { 1539 /* 1540 * if previous extent entry covers the offset, 1541 * we should return it instead of the bitmap entry 1542 */ 1543 n = rb_prev(&entry->offset_index); 1544 if (n) { 1545 prev = rb_entry(n, struct btrfs_free_space, 1546 offset_index); 1547 if (!prev->bitmap && 1548 prev->offset + prev->bytes > offset) 1549 entry = prev; 1550 } 1551 } 1552 return entry; 1553 } 1554 1555 if (!prev) 1556 return NULL; 1557 1558 /* find last entry before the 'offset' */ 1559 entry = prev; 1560 if (entry->offset > offset) { 1561 n = rb_prev(&entry->offset_index); 1562 if (n) { 1563 entry = rb_entry(n, struct btrfs_free_space, 1564 offset_index); 1565 ASSERT(entry->offset <= offset); 1566 } else { 1567 if (fuzzy) 1568 return entry; 1569 else 1570 return NULL; 1571 } 1572 } 1573 1574 if (entry->bitmap) { 1575 n = rb_prev(&entry->offset_index); 1576 if (n) { 1577 prev = rb_entry(n, struct btrfs_free_space, 1578 offset_index); 1579 if (!prev->bitmap && 1580 prev->offset + prev->bytes > offset) 1581 return prev; 1582 } 1583 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1584 return entry; 1585 } else if (entry->offset + entry->bytes > offset) 1586 return entry; 1587 1588 if (!fuzzy) 1589 return NULL; 1590 1591 while (1) { 1592 if (entry->bitmap) { 1593 if (entry->offset + BITS_PER_BITMAP * 1594 ctl->unit > offset) 1595 break; 1596 } else { 1597 if (entry->offset + entry->bytes > offset) 1598 break; 1599 } 1600 1601 n = rb_next(&entry->offset_index); 1602 if (!n) 1603 return NULL; 1604 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1605 } 1606 return entry; 1607 } 1608 1609 static inline void 1610 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1611 struct btrfs_free_space *info) 1612 { 1613 rb_erase(&info->offset_index, &ctl->free_space_offset); 1614 ctl->free_extents--; 1615 } 1616 1617 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1618 struct btrfs_free_space *info) 1619 { 1620 __unlink_free_space(ctl, info); 1621 ctl->free_space -= info->bytes; 1622 } 1623 1624 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1625 struct btrfs_free_space *info) 1626 { 1627 int ret = 0; 1628 1629 ASSERT(info->bytes || info->bitmap); 1630 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1631 &info->offset_index, (info->bitmap != NULL)); 1632 if (ret) 1633 return ret; 1634 1635 ctl->free_space += info->bytes; 1636 ctl->free_extents++; 1637 return ret; 1638 } 1639 1640 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1641 { 1642 struct btrfs_block_group_cache *block_group = ctl->private; 1643 u64 max_bytes; 1644 u64 bitmap_bytes; 1645 u64 extent_bytes; 1646 u64 size = block_group->key.offset; 1647 u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1648 u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg); 1649 1650 max_bitmaps = max_t(u32, max_bitmaps, 1); 1651 1652 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1653 1654 /* 1655 * The goal is to keep the total amount of memory used per 1gb of space 1656 * at or below 32k, so we need to adjust how much memory we allow to be 1657 * used by extent based free space tracking 1658 */ 1659 if (size < 1024 * 1024 * 1024) 1660 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1661 else 1662 max_bytes = MAX_CACHE_BYTES_PER_GIG * 1663 div_u64(size, 1024 * 1024 * 1024); 1664 1665 /* 1666 * we want to account for 1 more bitmap than what we have so we can make 1667 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1668 * we add more bitmaps. 1669 */ 1670 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE; 1671 1672 if (bitmap_bytes >= max_bytes) { 1673 ctl->extents_thresh = 0; 1674 return; 1675 } 1676 1677 /* 1678 * we want the extent entry threshold to always be at most 1/2 the max 1679 * bytes we can have, or whatever is less than that. 1680 */ 1681 extent_bytes = max_bytes - bitmap_bytes; 1682 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1683 1684 ctl->extents_thresh = 1685 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1686 } 1687 1688 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1689 struct btrfs_free_space *info, 1690 u64 offset, u64 bytes) 1691 { 1692 unsigned long start, count; 1693 1694 start = offset_to_bit(info->offset, ctl->unit, offset); 1695 count = bytes_to_bits(bytes, ctl->unit); 1696 ASSERT(start + count <= BITS_PER_BITMAP); 1697 1698 bitmap_clear(info->bitmap, start, count); 1699 1700 info->bytes -= bytes; 1701 } 1702 1703 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1704 struct btrfs_free_space *info, u64 offset, 1705 u64 bytes) 1706 { 1707 __bitmap_clear_bits(ctl, info, offset, bytes); 1708 ctl->free_space -= bytes; 1709 } 1710 1711 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1712 struct btrfs_free_space *info, u64 offset, 1713 u64 bytes) 1714 { 1715 unsigned long start, count; 1716 1717 start = offset_to_bit(info->offset, ctl->unit, offset); 1718 count = bytes_to_bits(bytes, ctl->unit); 1719 ASSERT(start + count <= BITS_PER_BITMAP); 1720 1721 bitmap_set(info->bitmap, start, count); 1722 1723 info->bytes += bytes; 1724 ctl->free_space += bytes; 1725 } 1726 1727 /* 1728 * If we can not find suitable extent, we will use bytes to record 1729 * the size of the max extent. 1730 */ 1731 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1732 struct btrfs_free_space *bitmap_info, u64 *offset, 1733 u64 *bytes) 1734 { 1735 unsigned long found_bits = 0; 1736 unsigned long max_bits = 0; 1737 unsigned long bits, i; 1738 unsigned long next_zero; 1739 unsigned long extent_bits; 1740 1741 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1742 max_t(u64, *offset, bitmap_info->offset)); 1743 bits = bytes_to_bits(*bytes, ctl->unit); 1744 1745 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1746 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1747 BITS_PER_BITMAP, i); 1748 extent_bits = next_zero - i; 1749 if (extent_bits >= bits) { 1750 found_bits = extent_bits; 1751 break; 1752 } else if (extent_bits > max_bits) { 1753 max_bits = extent_bits; 1754 } 1755 i = next_zero; 1756 } 1757 1758 if (found_bits) { 1759 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1760 *bytes = (u64)(found_bits) * ctl->unit; 1761 return 0; 1762 } 1763 1764 *bytes = (u64)(max_bits) * ctl->unit; 1765 return -1; 1766 } 1767 1768 /* Cache the size of the max extent in bytes */ 1769 static struct btrfs_free_space * 1770 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1771 unsigned long align, u64 *max_extent_size) 1772 { 1773 struct btrfs_free_space *entry; 1774 struct rb_node *node; 1775 u64 tmp; 1776 u64 align_off; 1777 int ret; 1778 1779 if (!ctl->free_space_offset.rb_node) 1780 goto out; 1781 1782 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1783 if (!entry) 1784 goto out; 1785 1786 for (node = &entry->offset_index; node; node = rb_next(node)) { 1787 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1788 if (entry->bytes < *bytes) { 1789 if (entry->bytes > *max_extent_size) 1790 *max_extent_size = entry->bytes; 1791 continue; 1792 } 1793 1794 /* make sure the space returned is big enough 1795 * to match our requested alignment 1796 */ 1797 if (*bytes >= align) { 1798 tmp = entry->offset - ctl->start + align - 1; 1799 tmp = div64_u64(tmp, align); 1800 tmp = tmp * align + ctl->start; 1801 align_off = tmp - entry->offset; 1802 } else { 1803 align_off = 0; 1804 tmp = entry->offset; 1805 } 1806 1807 if (entry->bytes < *bytes + align_off) { 1808 if (entry->bytes > *max_extent_size) 1809 *max_extent_size = entry->bytes; 1810 continue; 1811 } 1812 1813 if (entry->bitmap) { 1814 u64 size = *bytes; 1815 1816 ret = search_bitmap(ctl, entry, &tmp, &size); 1817 if (!ret) { 1818 *offset = tmp; 1819 *bytes = size; 1820 return entry; 1821 } else if (size > *max_extent_size) { 1822 *max_extent_size = size; 1823 } 1824 continue; 1825 } 1826 1827 *offset = tmp; 1828 *bytes = entry->bytes - align_off; 1829 return entry; 1830 } 1831 out: 1832 return NULL; 1833 } 1834 1835 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1836 struct btrfs_free_space *info, u64 offset) 1837 { 1838 info->offset = offset_to_bitmap(ctl, offset); 1839 info->bytes = 0; 1840 INIT_LIST_HEAD(&info->list); 1841 link_free_space(ctl, info); 1842 ctl->total_bitmaps++; 1843 1844 ctl->op->recalc_thresholds(ctl); 1845 } 1846 1847 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1848 struct btrfs_free_space *bitmap_info) 1849 { 1850 unlink_free_space(ctl, bitmap_info); 1851 kfree(bitmap_info->bitmap); 1852 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1853 ctl->total_bitmaps--; 1854 ctl->op->recalc_thresholds(ctl); 1855 } 1856 1857 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1858 struct btrfs_free_space *bitmap_info, 1859 u64 *offset, u64 *bytes) 1860 { 1861 u64 end; 1862 u64 search_start, search_bytes; 1863 int ret; 1864 1865 again: 1866 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1867 1868 /* 1869 * We need to search for bits in this bitmap. We could only cover some 1870 * of the extent in this bitmap thanks to how we add space, so we need 1871 * to search for as much as it as we can and clear that amount, and then 1872 * go searching for the next bit. 1873 */ 1874 search_start = *offset; 1875 search_bytes = ctl->unit; 1876 search_bytes = min(search_bytes, end - search_start + 1); 1877 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); 1878 if (ret < 0 || search_start != *offset) 1879 return -EINVAL; 1880 1881 /* We may have found more bits than what we need */ 1882 search_bytes = min(search_bytes, *bytes); 1883 1884 /* Cannot clear past the end of the bitmap */ 1885 search_bytes = min(search_bytes, end - search_start + 1); 1886 1887 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1888 *offset += search_bytes; 1889 *bytes -= search_bytes; 1890 1891 if (*bytes) { 1892 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1893 if (!bitmap_info->bytes) 1894 free_bitmap(ctl, bitmap_info); 1895 1896 /* 1897 * no entry after this bitmap, but we still have bytes to 1898 * remove, so something has gone wrong. 1899 */ 1900 if (!next) 1901 return -EINVAL; 1902 1903 bitmap_info = rb_entry(next, struct btrfs_free_space, 1904 offset_index); 1905 1906 /* 1907 * if the next entry isn't a bitmap we need to return to let the 1908 * extent stuff do its work. 1909 */ 1910 if (!bitmap_info->bitmap) 1911 return -EAGAIN; 1912 1913 /* 1914 * Ok the next item is a bitmap, but it may not actually hold 1915 * the information for the rest of this free space stuff, so 1916 * look for it, and if we don't find it return so we can try 1917 * everything over again. 1918 */ 1919 search_start = *offset; 1920 search_bytes = ctl->unit; 1921 ret = search_bitmap(ctl, bitmap_info, &search_start, 1922 &search_bytes); 1923 if (ret < 0 || search_start != *offset) 1924 return -EAGAIN; 1925 1926 goto again; 1927 } else if (!bitmap_info->bytes) 1928 free_bitmap(ctl, bitmap_info); 1929 1930 return 0; 1931 } 1932 1933 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1934 struct btrfs_free_space *info, u64 offset, 1935 u64 bytes) 1936 { 1937 u64 bytes_to_set = 0; 1938 u64 end; 1939 1940 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1941 1942 bytes_to_set = min(end - offset, bytes); 1943 1944 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1945 1946 return bytes_to_set; 1947 1948 } 1949 1950 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1951 struct btrfs_free_space *info) 1952 { 1953 struct btrfs_block_group_cache *block_group = ctl->private; 1954 1955 /* 1956 * If we are below the extents threshold then we can add this as an 1957 * extent, and don't have to deal with the bitmap 1958 */ 1959 if (ctl->free_extents < ctl->extents_thresh) { 1960 /* 1961 * If this block group has some small extents we don't want to 1962 * use up all of our free slots in the cache with them, we want 1963 * to reserve them to larger extents, however if we have plent 1964 * of cache left then go ahead an dadd them, no sense in adding 1965 * the overhead of a bitmap if we don't have to. 1966 */ 1967 if (info->bytes <= block_group->sectorsize * 4) { 1968 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1969 return false; 1970 } else { 1971 return false; 1972 } 1973 } 1974 1975 /* 1976 * The original block groups from mkfs can be really small, like 8 1977 * megabytes, so don't bother with a bitmap for those entries. However 1978 * some block groups can be smaller than what a bitmap would cover but 1979 * are still large enough that they could overflow the 32k memory limit, 1980 * so allow those block groups to still be allowed to have a bitmap 1981 * entry. 1982 */ 1983 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) 1984 return false; 1985 1986 return true; 1987 } 1988 1989 static struct btrfs_free_space_op free_space_op = { 1990 .recalc_thresholds = recalculate_thresholds, 1991 .use_bitmap = use_bitmap, 1992 }; 1993 1994 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 1995 struct btrfs_free_space *info) 1996 { 1997 struct btrfs_free_space *bitmap_info; 1998 struct btrfs_block_group_cache *block_group = NULL; 1999 int added = 0; 2000 u64 bytes, offset, bytes_added; 2001 int ret; 2002 2003 bytes = info->bytes; 2004 offset = info->offset; 2005 2006 if (!ctl->op->use_bitmap(ctl, info)) 2007 return 0; 2008 2009 if (ctl->op == &free_space_op) 2010 block_group = ctl->private; 2011 again: 2012 /* 2013 * Since we link bitmaps right into the cluster we need to see if we 2014 * have a cluster here, and if so and it has our bitmap we need to add 2015 * the free space to that bitmap. 2016 */ 2017 if (block_group && !list_empty(&block_group->cluster_list)) { 2018 struct btrfs_free_cluster *cluster; 2019 struct rb_node *node; 2020 struct btrfs_free_space *entry; 2021 2022 cluster = list_entry(block_group->cluster_list.next, 2023 struct btrfs_free_cluster, 2024 block_group_list); 2025 spin_lock(&cluster->lock); 2026 node = rb_first(&cluster->root); 2027 if (!node) { 2028 spin_unlock(&cluster->lock); 2029 goto no_cluster_bitmap; 2030 } 2031 2032 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2033 if (!entry->bitmap) { 2034 spin_unlock(&cluster->lock); 2035 goto no_cluster_bitmap; 2036 } 2037 2038 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2039 bytes_added = add_bytes_to_bitmap(ctl, entry, 2040 offset, bytes); 2041 bytes -= bytes_added; 2042 offset += bytes_added; 2043 } 2044 spin_unlock(&cluster->lock); 2045 if (!bytes) { 2046 ret = 1; 2047 goto out; 2048 } 2049 } 2050 2051 no_cluster_bitmap: 2052 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2053 1, 0); 2054 if (!bitmap_info) { 2055 ASSERT(added == 0); 2056 goto new_bitmap; 2057 } 2058 2059 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 2060 bytes -= bytes_added; 2061 offset += bytes_added; 2062 added = 0; 2063 2064 if (!bytes) { 2065 ret = 1; 2066 goto out; 2067 } else 2068 goto again; 2069 2070 new_bitmap: 2071 if (info && info->bitmap) { 2072 add_new_bitmap(ctl, info, offset); 2073 added = 1; 2074 info = NULL; 2075 goto again; 2076 } else { 2077 spin_unlock(&ctl->tree_lock); 2078 2079 /* no pre-allocated info, allocate a new one */ 2080 if (!info) { 2081 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2082 GFP_NOFS); 2083 if (!info) { 2084 spin_lock(&ctl->tree_lock); 2085 ret = -ENOMEM; 2086 goto out; 2087 } 2088 } 2089 2090 /* allocate the bitmap */ 2091 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 2092 spin_lock(&ctl->tree_lock); 2093 if (!info->bitmap) { 2094 ret = -ENOMEM; 2095 goto out; 2096 } 2097 goto again; 2098 } 2099 2100 out: 2101 if (info) { 2102 if (info->bitmap) 2103 kfree(info->bitmap); 2104 kmem_cache_free(btrfs_free_space_cachep, info); 2105 } 2106 2107 return ret; 2108 } 2109 2110 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2111 struct btrfs_free_space *info, bool update_stat) 2112 { 2113 struct btrfs_free_space *left_info; 2114 struct btrfs_free_space *right_info; 2115 bool merged = false; 2116 u64 offset = info->offset; 2117 u64 bytes = info->bytes; 2118 2119 /* 2120 * first we want to see if there is free space adjacent to the range we 2121 * are adding, if there is remove that struct and add a new one to 2122 * cover the entire range 2123 */ 2124 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2125 if (right_info && rb_prev(&right_info->offset_index)) 2126 left_info = rb_entry(rb_prev(&right_info->offset_index), 2127 struct btrfs_free_space, offset_index); 2128 else 2129 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2130 2131 if (right_info && !right_info->bitmap) { 2132 if (update_stat) 2133 unlink_free_space(ctl, right_info); 2134 else 2135 __unlink_free_space(ctl, right_info); 2136 info->bytes += right_info->bytes; 2137 kmem_cache_free(btrfs_free_space_cachep, right_info); 2138 merged = true; 2139 } 2140 2141 if (left_info && !left_info->bitmap && 2142 left_info->offset + left_info->bytes == offset) { 2143 if (update_stat) 2144 unlink_free_space(ctl, left_info); 2145 else 2146 __unlink_free_space(ctl, left_info); 2147 info->offset = left_info->offset; 2148 info->bytes += left_info->bytes; 2149 kmem_cache_free(btrfs_free_space_cachep, left_info); 2150 merged = true; 2151 } 2152 2153 return merged; 2154 } 2155 2156 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2157 struct btrfs_free_space *info, 2158 bool update_stat) 2159 { 2160 struct btrfs_free_space *bitmap; 2161 unsigned long i; 2162 unsigned long j; 2163 const u64 end = info->offset + info->bytes; 2164 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2165 u64 bytes; 2166 2167 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2168 if (!bitmap) 2169 return false; 2170 2171 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2172 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2173 if (j == i) 2174 return false; 2175 bytes = (j - i) * ctl->unit; 2176 info->bytes += bytes; 2177 2178 if (update_stat) 2179 bitmap_clear_bits(ctl, bitmap, end, bytes); 2180 else 2181 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2182 2183 if (!bitmap->bytes) 2184 free_bitmap(ctl, bitmap); 2185 2186 return true; 2187 } 2188 2189 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2190 struct btrfs_free_space *info, 2191 bool update_stat) 2192 { 2193 struct btrfs_free_space *bitmap; 2194 u64 bitmap_offset; 2195 unsigned long i; 2196 unsigned long j; 2197 unsigned long prev_j; 2198 u64 bytes; 2199 2200 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2201 /* If we're on a boundary, try the previous logical bitmap. */ 2202 if (bitmap_offset == info->offset) { 2203 if (info->offset == 0) 2204 return false; 2205 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2206 } 2207 2208 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2209 if (!bitmap) 2210 return false; 2211 2212 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2213 j = 0; 2214 prev_j = (unsigned long)-1; 2215 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2216 if (j > i) 2217 break; 2218 prev_j = j; 2219 } 2220 if (prev_j == i) 2221 return false; 2222 2223 if (prev_j == (unsigned long)-1) 2224 bytes = (i + 1) * ctl->unit; 2225 else 2226 bytes = (i - prev_j) * ctl->unit; 2227 2228 info->offset -= bytes; 2229 info->bytes += bytes; 2230 2231 if (update_stat) 2232 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2233 else 2234 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2235 2236 if (!bitmap->bytes) 2237 free_bitmap(ctl, bitmap); 2238 2239 return true; 2240 } 2241 2242 /* 2243 * We prefer always to allocate from extent entries, both for clustered and 2244 * non-clustered allocation requests. So when attempting to add a new extent 2245 * entry, try to see if there's adjacent free space in bitmap entries, and if 2246 * there is, migrate that space from the bitmaps to the extent. 2247 * Like this we get better chances of satisfying space allocation requests 2248 * because we attempt to satisfy them based on a single cache entry, and never 2249 * on 2 or more entries - even if the entries represent a contiguous free space 2250 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2251 * ends). 2252 */ 2253 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2254 struct btrfs_free_space *info, 2255 bool update_stat) 2256 { 2257 /* 2258 * Only work with disconnected entries, as we can change their offset, 2259 * and must be extent entries. 2260 */ 2261 ASSERT(!info->bitmap); 2262 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2263 2264 if (ctl->total_bitmaps > 0) { 2265 bool stole_end; 2266 bool stole_front = false; 2267 2268 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2269 if (ctl->total_bitmaps > 0) 2270 stole_front = steal_from_bitmap_to_front(ctl, info, 2271 update_stat); 2272 2273 if (stole_end || stole_front) 2274 try_merge_free_space(ctl, info, update_stat); 2275 } 2276 } 2277 2278 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, 2279 u64 offset, u64 bytes) 2280 { 2281 struct btrfs_free_space *info; 2282 int ret = 0; 2283 2284 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2285 if (!info) 2286 return -ENOMEM; 2287 2288 info->offset = offset; 2289 info->bytes = bytes; 2290 RB_CLEAR_NODE(&info->offset_index); 2291 2292 spin_lock(&ctl->tree_lock); 2293 2294 if (try_merge_free_space(ctl, info, true)) 2295 goto link; 2296 2297 /* 2298 * There was no extent directly to the left or right of this new 2299 * extent then we know we're going to have to allocate a new extent, so 2300 * before we do that see if we need to drop this into a bitmap 2301 */ 2302 ret = insert_into_bitmap(ctl, info); 2303 if (ret < 0) { 2304 goto out; 2305 } else if (ret) { 2306 ret = 0; 2307 goto out; 2308 } 2309 link: 2310 /* 2311 * Only steal free space from adjacent bitmaps if we're sure we're not 2312 * going to add the new free space to existing bitmap entries - because 2313 * that would mean unnecessary work that would be reverted. Therefore 2314 * attempt to steal space from bitmaps if we're adding an extent entry. 2315 */ 2316 steal_from_bitmap(ctl, info, true); 2317 2318 ret = link_free_space(ctl, info); 2319 if (ret) 2320 kmem_cache_free(btrfs_free_space_cachep, info); 2321 out: 2322 spin_unlock(&ctl->tree_lock); 2323 2324 if (ret) { 2325 printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret); 2326 ASSERT(ret != -EEXIST); 2327 } 2328 2329 return ret; 2330 } 2331 2332 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 2333 u64 offset, u64 bytes) 2334 { 2335 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2336 struct btrfs_free_space *info; 2337 int ret; 2338 bool re_search = false; 2339 2340 spin_lock(&ctl->tree_lock); 2341 2342 again: 2343 ret = 0; 2344 if (!bytes) 2345 goto out_lock; 2346 2347 info = tree_search_offset(ctl, offset, 0, 0); 2348 if (!info) { 2349 /* 2350 * oops didn't find an extent that matched the space we wanted 2351 * to remove, look for a bitmap instead 2352 */ 2353 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2354 1, 0); 2355 if (!info) { 2356 /* 2357 * If we found a partial bit of our free space in a 2358 * bitmap but then couldn't find the other part this may 2359 * be a problem, so WARN about it. 2360 */ 2361 WARN_ON(re_search); 2362 goto out_lock; 2363 } 2364 } 2365 2366 re_search = false; 2367 if (!info->bitmap) { 2368 unlink_free_space(ctl, info); 2369 if (offset == info->offset) { 2370 u64 to_free = min(bytes, info->bytes); 2371 2372 info->bytes -= to_free; 2373 info->offset += to_free; 2374 if (info->bytes) { 2375 ret = link_free_space(ctl, info); 2376 WARN_ON(ret); 2377 } else { 2378 kmem_cache_free(btrfs_free_space_cachep, info); 2379 } 2380 2381 offset += to_free; 2382 bytes -= to_free; 2383 goto again; 2384 } else { 2385 u64 old_end = info->bytes + info->offset; 2386 2387 info->bytes = offset - info->offset; 2388 ret = link_free_space(ctl, info); 2389 WARN_ON(ret); 2390 if (ret) 2391 goto out_lock; 2392 2393 /* Not enough bytes in this entry to satisfy us */ 2394 if (old_end < offset + bytes) { 2395 bytes -= old_end - offset; 2396 offset = old_end; 2397 goto again; 2398 } else if (old_end == offset + bytes) { 2399 /* all done */ 2400 goto out_lock; 2401 } 2402 spin_unlock(&ctl->tree_lock); 2403 2404 ret = btrfs_add_free_space(block_group, offset + bytes, 2405 old_end - (offset + bytes)); 2406 WARN_ON(ret); 2407 goto out; 2408 } 2409 } 2410 2411 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2412 if (ret == -EAGAIN) { 2413 re_search = true; 2414 goto again; 2415 } 2416 out_lock: 2417 spin_unlock(&ctl->tree_lock); 2418 out: 2419 return ret; 2420 } 2421 2422 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 2423 u64 bytes) 2424 { 2425 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2426 struct btrfs_free_space *info; 2427 struct rb_node *n; 2428 int count = 0; 2429 2430 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2431 info = rb_entry(n, struct btrfs_free_space, offset_index); 2432 if (info->bytes >= bytes && !block_group->ro) 2433 count++; 2434 btrfs_crit(block_group->fs_info, 2435 "entry offset %llu, bytes %llu, bitmap %s", 2436 info->offset, info->bytes, 2437 (info->bitmap) ? "yes" : "no"); 2438 } 2439 btrfs_info(block_group->fs_info, "block group has cluster?: %s", 2440 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2441 btrfs_info(block_group->fs_info, 2442 "%d blocks of free space at or bigger than bytes is", count); 2443 } 2444 2445 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 2446 { 2447 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2448 2449 spin_lock_init(&ctl->tree_lock); 2450 ctl->unit = block_group->sectorsize; 2451 ctl->start = block_group->key.objectid; 2452 ctl->private = block_group; 2453 ctl->op = &free_space_op; 2454 INIT_LIST_HEAD(&ctl->trimming_ranges); 2455 mutex_init(&ctl->cache_writeout_mutex); 2456 2457 /* 2458 * we only want to have 32k of ram per block group for keeping 2459 * track of free space, and if we pass 1/2 of that we want to 2460 * start converting things over to using bitmaps 2461 */ 2462 ctl->extents_thresh = ((1024 * 32) / 2) / 2463 sizeof(struct btrfs_free_space); 2464 } 2465 2466 /* 2467 * for a given cluster, put all of its extents back into the free 2468 * space cache. If the block group passed doesn't match the block group 2469 * pointed to by the cluster, someone else raced in and freed the 2470 * cluster already. In that case, we just return without changing anything 2471 */ 2472 static int 2473 __btrfs_return_cluster_to_free_space( 2474 struct btrfs_block_group_cache *block_group, 2475 struct btrfs_free_cluster *cluster) 2476 { 2477 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2478 struct btrfs_free_space *entry; 2479 struct rb_node *node; 2480 2481 spin_lock(&cluster->lock); 2482 if (cluster->block_group != block_group) 2483 goto out; 2484 2485 cluster->block_group = NULL; 2486 cluster->window_start = 0; 2487 list_del_init(&cluster->block_group_list); 2488 2489 node = rb_first(&cluster->root); 2490 while (node) { 2491 bool bitmap; 2492 2493 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2494 node = rb_next(&entry->offset_index); 2495 rb_erase(&entry->offset_index, &cluster->root); 2496 RB_CLEAR_NODE(&entry->offset_index); 2497 2498 bitmap = (entry->bitmap != NULL); 2499 if (!bitmap) { 2500 try_merge_free_space(ctl, entry, false); 2501 steal_from_bitmap(ctl, entry, false); 2502 } 2503 tree_insert_offset(&ctl->free_space_offset, 2504 entry->offset, &entry->offset_index, bitmap); 2505 } 2506 cluster->root = RB_ROOT; 2507 2508 out: 2509 spin_unlock(&cluster->lock); 2510 btrfs_put_block_group(block_group); 2511 return 0; 2512 } 2513 2514 static void __btrfs_remove_free_space_cache_locked( 2515 struct btrfs_free_space_ctl *ctl) 2516 { 2517 struct btrfs_free_space *info; 2518 struct rb_node *node; 2519 2520 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2521 info = rb_entry(node, struct btrfs_free_space, offset_index); 2522 if (!info->bitmap) { 2523 unlink_free_space(ctl, info); 2524 kmem_cache_free(btrfs_free_space_cachep, info); 2525 } else { 2526 free_bitmap(ctl, info); 2527 } 2528 2529 cond_resched_lock(&ctl->tree_lock); 2530 } 2531 } 2532 2533 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2534 { 2535 spin_lock(&ctl->tree_lock); 2536 __btrfs_remove_free_space_cache_locked(ctl); 2537 spin_unlock(&ctl->tree_lock); 2538 } 2539 2540 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2541 { 2542 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2543 struct btrfs_free_cluster *cluster; 2544 struct list_head *head; 2545 2546 spin_lock(&ctl->tree_lock); 2547 while ((head = block_group->cluster_list.next) != 2548 &block_group->cluster_list) { 2549 cluster = list_entry(head, struct btrfs_free_cluster, 2550 block_group_list); 2551 2552 WARN_ON(cluster->block_group != block_group); 2553 __btrfs_return_cluster_to_free_space(block_group, cluster); 2554 2555 cond_resched_lock(&ctl->tree_lock); 2556 } 2557 __btrfs_remove_free_space_cache_locked(ctl); 2558 spin_unlock(&ctl->tree_lock); 2559 2560 } 2561 2562 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2563 u64 offset, u64 bytes, u64 empty_size, 2564 u64 *max_extent_size) 2565 { 2566 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2567 struct btrfs_free_space *entry = NULL; 2568 u64 bytes_search = bytes + empty_size; 2569 u64 ret = 0; 2570 u64 align_gap = 0; 2571 u64 align_gap_len = 0; 2572 2573 spin_lock(&ctl->tree_lock); 2574 entry = find_free_space(ctl, &offset, &bytes_search, 2575 block_group->full_stripe_len, max_extent_size); 2576 if (!entry) 2577 goto out; 2578 2579 ret = offset; 2580 if (entry->bitmap) { 2581 bitmap_clear_bits(ctl, entry, offset, bytes); 2582 if (!entry->bytes) 2583 free_bitmap(ctl, entry); 2584 } else { 2585 unlink_free_space(ctl, entry); 2586 align_gap_len = offset - entry->offset; 2587 align_gap = entry->offset; 2588 2589 entry->offset = offset + bytes; 2590 WARN_ON(entry->bytes < bytes + align_gap_len); 2591 2592 entry->bytes -= bytes + align_gap_len; 2593 if (!entry->bytes) 2594 kmem_cache_free(btrfs_free_space_cachep, entry); 2595 else 2596 link_free_space(ctl, entry); 2597 } 2598 out: 2599 spin_unlock(&ctl->tree_lock); 2600 2601 if (align_gap_len) 2602 __btrfs_add_free_space(ctl, align_gap, align_gap_len); 2603 return ret; 2604 } 2605 2606 /* 2607 * given a cluster, put all of its extents back into the free space 2608 * cache. If a block group is passed, this function will only free 2609 * a cluster that belongs to the passed block group. 2610 * 2611 * Otherwise, it'll get a reference on the block group pointed to by the 2612 * cluster and remove the cluster from it. 2613 */ 2614 int btrfs_return_cluster_to_free_space( 2615 struct btrfs_block_group_cache *block_group, 2616 struct btrfs_free_cluster *cluster) 2617 { 2618 struct btrfs_free_space_ctl *ctl; 2619 int ret; 2620 2621 /* first, get a safe pointer to the block group */ 2622 spin_lock(&cluster->lock); 2623 if (!block_group) { 2624 block_group = cluster->block_group; 2625 if (!block_group) { 2626 spin_unlock(&cluster->lock); 2627 return 0; 2628 } 2629 } else if (cluster->block_group != block_group) { 2630 /* someone else has already freed it don't redo their work */ 2631 spin_unlock(&cluster->lock); 2632 return 0; 2633 } 2634 atomic_inc(&block_group->count); 2635 spin_unlock(&cluster->lock); 2636 2637 ctl = block_group->free_space_ctl; 2638 2639 /* now return any extents the cluster had on it */ 2640 spin_lock(&ctl->tree_lock); 2641 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2642 spin_unlock(&ctl->tree_lock); 2643 2644 /* finally drop our ref */ 2645 btrfs_put_block_group(block_group); 2646 return ret; 2647 } 2648 2649 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2650 struct btrfs_free_cluster *cluster, 2651 struct btrfs_free_space *entry, 2652 u64 bytes, u64 min_start, 2653 u64 *max_extent_size) 2654 { 2655 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2656 int err; 2657 u64 search_start = cluster->window_start; 2658 u64 search_bytes = bytes; 2659 u64 ret = 0; 2660 2661 search_start = min_start; 2662 search_bytes = bytes; 2663 2664 err = search_bitmap(ctl, entry, &search_start, &search_bytes); 2665 if (err) { 2666 if (search_bytes > *max_extent_size) 2667 *max_extent_size = search_bytes; 2668 return 0; 2669 } 2670 2671 ret = search_start; 2672 __bitmap_clear_bits(ctl, entry, ret, bytes); 2673 2674 return ret; 2675 } 2676 2677 /* 2678 * given a cluster, try to allocate 'bytes' from it, returns 0 2679 * if it couldn't find anything suitably large, or a logical disk offset 2680 * if things worked out 2681 */ 2682 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2683 struct btrfs_free_cluster *cluster, u64 bytes, 2684 u64 min_start, u64 *max_extent_size) 2685 { 2686 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2687 struct btrfs_free_space *entry = NULL; 2688 struct rb_node *node; 2689 u64 ret = 0; 2690 2691 spin_lock(&cluster->lock); 2692 if (bytes > cluster->max_size) 2693 goto out; 2694 2695 if (cluster->block_group != block_group) 2696 goto out; 2697 2698 node = rb_first(&cluster->root); 2699 if (!node) 2700 goto out; 2701 2702 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2703 while (1) { 2704 if (entry->bytes < bytes && entry->bytes > *max_extent_size) 2705 *max_extent_size = entry->bytes; 2706 2707 if (entry->bytes < bytes || 2708 (!entry->bitmap && entry->offset < min_start)) { 2709 node = rb_next(&entry->offset_index); 2710 if (!node) 2711 break; 2712 entry = rb_entry(node, struct btrfs_free_space, 2713 offset_index); 2714 continue; 2715 } 2716 2717 if (entry->bitmap) { 2718 ret = btrfs_alloc_from_bitmap(block_group, 2719 cluster, entry, bytes, 2720 cluster->window_start, 2721 max_extent_size); 2722 if (ret == 0) { 2723 node = rb_next(&entry->offset_index); 2724 if (!node) 2725 break; 2726 entry = rb_entry(node, struct btrfs_free_space, 2727 offset_index); 2728 continue; 2729 } 2730 cluster->window_start += bytes; 2731 } else { 2732 ret = entry->offset; 2733 2734 entry->offset += bytes; 2735 entry->bytes -= bytes; 2736 } 2737 2738 if (entry->bytes == 0) 2739 rb_erase(&entry->offset_index, &cluster->root); 2740 break; 2741 } 2742 out: 2743 spin_unlock(&cluster->lock); 2744 2745 if (!ret) 2746 return 0; 2747 2748 spin_lock(&ctl->tree_lock); 2749 2750 ctl->free_space -= bytes; 2751 if (entry->bytes == 0) { 2752 ctl->free_extents--; 2753 if (entry->bitmap) { 2754 kfree(entry->bitmap); 2755 ctl->total_bitmaps--; 2756 ctl->op->recalc_thresholds(ctl); 2757 } 2758 kmem_cache_free(btrfs_free_space_cachep, entry); 2759 } 2760 2761 spin_unlock(&ctl->tree_lock); 2762 2763 return ret; 2764 } 2765 2766 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2767 struct btrfs_free_space *entry, 2768 struct btrfs_free_cluster *cluster, 2769 u64 offset, u64 bytes, 2770 u64 cont1_bytes, u64 min_bytes) 2771 { 2772 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2773 unsigned long next_zero; 2774 unsigned long i; 2775 unsigned long want_bits; 2776 unsigned long min_bits; 2777 unsigned long found_bits; 2778 unsigned long start = 0; 2779 unsigned long total_found = 0; 2780 int ret; 2781 2782 i = offset_to_bit(entry->offset, ctl->unit, 2783 max_t(u64, offset, entry->offset)); 2784 want_bits = bytes_to_bits(bytes, ctl->unit); 2785 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2786 2787 again: 2788 found_bits = 0; 2789 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2790 next_zero = find_next_zero_bit(entry->bitmap, 2791 BITS_PER_BITMAP, i); 2792 if (next_zero - i >= min_bits) { 2793 found_bits = next_zero - i; 2794 break; 2795 } 2796 i = next_zero; 2797 } 2798 2799 if (!found_bits) 2800 return -ENOSPC; 2801 2802 if (!total_found) { 2803 start = i; 2804 cluster->max_size = 0; 2805 } 2806 2807 total_found += found_bits; 2808 2809 if (cluster->max_size < found_bits * ctl->unit) 2810 cluster->max_size = found_bits * ctl->unit; 2811 2812 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2813 i = next_zero + 1; 2814 goto again; 2815 } 2816 2817 cluster->window_start = start * ctl->unit + entry->offset; 2818 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2819 ret = tree_insert_offset(&cluster->root, entry->offset, 2820 &entry->offset_index, 1); 2821 ASSERT(!ret); /* -EEXIST; Logic error */ 2822 2823 trace_btrfs_setup_cluster(block_group, cluster, 2824 total_found * ctl->unit, 1); 2825 return 0; 2826 } 2827 2828 /* 2829 * This searches the block group for just extents to fill the cluster with. 2830 * Try to find a cluster with at least bytes total bytes, at least one 2831 * extent of cont1_bytes, and other clusters of at least min_bytes. 2832 */ 2833 static noinline int 2834 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2835 struct btrfs_free_cluster *cluster, 2836 struct list_head *bitmaps, u64 offset, u64 bytes, 2837 u64 cont1_bytes, u64 min_bytes) 2838 { 2839 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2840 struct btrfs_free_space *first = NULL; 2841 struct btrfs_free_space *entry = NULL; 2842 struct btrfs_free_space *last; 2843 struct rb_node *node; 2844 u64 window_free; 2845 u64 max_extent; 2846 u64 total_size = 0; 2847 2848 entry = tree_search_offset(ctl, offset, 0, 1); 2849 if (!entry) 2850 return -ENOSPC; 2851 2852 /* 2853 * We don't want bitmaps, so just move along until we find a normal 2854 * extent entry. 2855 */ 2856 while (entry->bitmap || entry->bytes < min_bytes) { 2857 if (entry->bitmap && list_empty(&entry->list)) 2858 list_add_tail(&entry->list, bitmaps); 2859 node = rb_next(&entry->offset_index); 2860 if (!node) 2861 return -ENOSPC; 2862 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2863 } 2864 2865 window_free = entry->bytes; 2866 max_extent = entry->bytes; 2867 first = entry; 2868 last = entry; 2869 2870 for (node = rb_next(&entry->offset_index); node; 2871 node = rb_next(&entry->offset_index)) { 2872 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2873 2874 if (entry->bitmap) { 2875 if (list_empty(&entry->list)) 2876 list_add_tail(&entry->list, bitmaps); 2877 continue; 2878 } 2879 2880 if (entry->bytes < min_bytes) 2881 continue; 2882 2883 last = entry; 2884 window_free += entry->bytes; 2885 if (entry->bytes > max_extent) 2886 max_extent = entry->bytes; 2887 } 2888 2889 if (window_free < bytes || max_extent < cont1_bytes) 2890 return -ENOSPC; 2891 2892 cluster->window_start = first->offset; 2893 2894 node = &first->offset_index; 2895 2896 /* 2897 * now we've found our entries, pull them out of the free space 2898 * cache and put them into the cluster rbtree 2899 */ 2900 do { 2901 int ret; 2902 2903 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2904 node = rb_next(&entry->offset_index); 2905 if (entry->bitmap || entry->bytes < min_bytes) 2906 continue; 2907 2908 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2909 ret = tree_insert_offset(&cluster->root, entry->offset, 2910 &entry->offset_index, 0); 2911 total_size += entry->bytes; 2912 ASSERT(!ret); /* -EEXIST; Logic error */ 2913 } while (node && entry != last); 2914 2915 cluster->max_size = max_extent; 2916 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2917 return 0; 2918 } 2919 2920 /* 2921 * This specifically looks for bitmaps that may work in the cluster, we assume 2922 * that we have already failed to find extents that will work. 2923 */ 2924 static noinline int 2925 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2926 struct btrfs_free_cluster *cluster, 2927 struct list_head *bitmaps, u64 offset, u64 bytes, 2928 u64 cont1_bytes, u64 min_bytes) 2929 { 2930 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2931 struct btrfs_free_space *entry; 2932 int ret = -ENOSPC; 2933 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2934 2935 if (ctl->total_bitmaps == 0) 2936 return -ENOSPC; 2937 2938 /* 2939 * The bitmap that covers offset won't be in the list unless offset 2940 * is just its start offset. 2941 */ 2942 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2943 if (entry->offset != bitmap_offset) { 2944 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2945 if (entry && list_empty(&entry->list)) 2946 list_add(&entry->list, bitmaps); 2947 } 2948 2949 list_for_each_entry(entry, bitmaps, list) { 2950 if (entry->bytes < bytes) 2951 continue; 2952 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2953 bytes, cont1_bytes, min_bytes); 2954 if (!ret) 2955 return 0; 2956 } 2957 2958 /* 2959 * The bitmaps list has all the bitmaps that record free space 2960 * starting after offset, so no more search is required. 2961 */ 2962 return -ENOSPC; 2963 } 2964 2965 /* 2966 * here we try to find a cluster of blocks in a block group. The goal 2967 * is to find at least bytes+empty_size. 2968 * We might not find them all in one contiguous area. 2969 * 2970 * returns zero and sets up cluster if things worked out, otherwise 2971 * it returns -enospc 2972 */ 2973 int btrfs_find_space_cluster(struct btrfs_root *root, 2974 struct btrfs_block_group_cache *block_group, 2975 struct btrfs_free_cluster *cluster, 2976 u64 offset, u64 bytes, u64 empty_size) 2977 { 2978 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2979 struct btrfs_free_space *entry, *tmp; 2980 LIST_HEAD(bitmaps); 2981 u64 min_bytes; 2982 u64 cont1_bytes; 2983 int ret; 2984 2985 /* 2986 * Choose the minimum extent size we'll require for this 2987 * cluster. For SSD_SPREAD, don't allow any fragmentation. 2988 * For metadata, allow allocates with smaller extents. For 2989 * data, keep it dense. 2990 */ 2991 if (btrfs_test_opt(root, SSD_SPREAD)) { 2992 cont1_bytes = min_bytes = bytes + empty_size; 2993 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 2994 cont1_bytes = bytes; 2995 min_bytes = block_group->sectorsize; 2996 } else { 2997 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 2998 min_bytes = block_group->sectorsize; 2999 } 3000 3001 spin_lock(&ctl->tree_lock); 3002 3003 /* 3004 * If we know we don't have enough space to make a cluster don't even 3005 * bother doing all the work to try and find one. 3006 */ 3007 if (ctl->free_space < bytes) { 3008 spin_unlock(&ctl->tree_lock); 3009 return -ENOSPC; 3010 } 3011 3012 spin_lock(&cluster->lock); 3013 3014 /* someone already found a cluster, hooray */ 3015 if (cluster->block_group) { 3016 ret = 0; 3017 goto out; 3018 } 3019 3020 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3021 min_bytes); 3022 3023 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3024 bytes + empty_size, 3025 cont1_bytes, min_bytes); 3026 if (ret) 3027 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3028 offset, bytes + empty_size, 3029 cont1_bytes, min_bytes); 3030 3031 /* Clear our temporary list */ 3032 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3033 list_del_init(&entry->list); 3034 3035 if (!ret) { 3036 atomic_inc(&block_group->count); 3037 list_add_tail(&cluster->block_group_list, 3038 &block_group->cluster_list); 3039 cluster->block_group = block_group; 3040 } else { 3041 trace_btrfs_failed_cluster_setup(block_group); 3042 } 3043 out: 3044 spin_unlock(&cluster->lock); 3045 spin_unlock(&ctl->tree_lock); 3046 3047 return ret; 3048 } 3049 3050 /* 3051 * simple code to zero out a cluster 3052 */ 3053 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3054 { 3055 spin_lock_init(&cluster->lock); 3056 spin_lock_init(&cluster->refill_lock); 3057 cluster->root = RB_ROOT; 3058 cluster->max_size = 0; 3059 INIT_LIST_HEAD(&cluster->block_group_list); 3060 cluster->block_group = NULL; 3061 } 3062 3063 static int do_trimming(struct btrfs_block_group_cache *block_group, 3064 u64 *total_trimmed, u64 start, u64 bytes, 3065 u64 reserved_start, u64 reserved_bytes, 3066 struct btrfs_trim_range *trim_entry) 3067 { 3068 struct btrfs_space_info *space_info = block_group->space_info; 3069 struct btrfs_fs_info *fs_info = block_group->fs_info; 3070 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3071 int ret; 3072 int update = 0; 3073 u64 trimmed = 0; 3074 3075 spin_lock(&space_info->lock); 3076 spin_lock(&block_group->lock); 3077 if (!block_group->ro) { 3078 block_group->reserved += reserved_bytes; 3079 space_info->bytes_reserved += reserved_bytes; 3080 update = 1; 3081 } 3082 spin_unlock(&block_group->lock); 3083 spin_unlock(&space_info->lock); 3084 3085 ret = btrfs_discard_extent(fs_info->extent_root, 3086 start, bytes, &trimmed); 3087 if (!ret) 3088 *total_trimmed += trimmed; 3089 3090 mutex_lock(&ctl->cache_writeout_mutex); 3091 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 3092 list_del(&trim_entry->list); 3093 mutex_unlock(&ctl->cache_writeout_mutex); 3094 3095 if (update) { 3096 spin_lock(&space_info->lock); 3097 spin_lock(&block_group->lock); 3098 if (block_group->ro) 3099 space_info->bytes_readonly += reserved_bytes; 3100 block_group->reserved -= reserved_bytes; 3101 space_info->bytes_reserved -= reserved_bytes; 3102 spin_unlock(&space_info->lock); 3103 spin_unlock(&block_group->lock); 3104 } 3105 3106 return ret; 3107 } 3108 3109 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 3110 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3111 { 3112 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3113 struct btrfs_free_space *entry; 3114 struct rb_node *node; 3115 int ret = 0; 3116 u64 extent_start; 3117 u64 extent_bytes; 3118 u64 bytes; 3119 3120 while (start < end) { 3121 struct btrfs_trim_range trim_entry; 3122 3123 mutex_lock(&ctl->cache_writeout_mutex); 3124 spin_lock(&ctl->tree_lock); 3125 3126 if (ctl->free_space < minlen) { 3127 spin_unlock(&ctl->tree_lock); 3128 mutex_unlock(&ctl->cache_writeout_mutex); 3129 break; 3130 } 3131 3132 entry = tree_search_offset(ctl, start, 0, 1); 3133 if (!entry) { 3134 spin_unlock(&ctl->tree_lock); 3135 mutex_unlock(&ctl->cache_writeout_mutex); 3136 break; 3137 } 3138 3139 /* skip bitmaps */ 3140 while (entry->bitmap) { 3141 node = rb_next(&entry->offset_index); 3142 if (!node) { 3143 spin_unlock(&ctl->tree_lock); 3144 mutex_unlock(&ctl->cache_writeout_mutex); 3145 goto out; 3146 } 3147 entry = rb_entry(node, struct btrfs_free_space, 3148 offset_index); 3149 } 3150 3151 if (entry->offset >= end) { 3152 spin_unlock(&ctl->tree_lock); 3153 mutex_unlock(&ctl->cache_writeout_mutex); 3154 break; 3155 } 3156 3157 extent_start = entry->offset; 3158 extent_bytes = entry->bytes; 3159 start = max(start, extent_start); 3160 bytes = min(extent_start + extent_bytes, end) - start; 3161 if (bytes < minlen) { 3162 spin_unlock(&ctl->tree_lock); 3163 mutex_unlock(&ctl->cache_writeout_mutex); 3164 goto next; 3165 } 3166 3167 unlink_free_space(ctl, entry); 3168 kmem_cache_free(btrfs_free_space_cachep, entry); 3169 3170 spin_unlock(&ctl->tree_lock); 3171 trim_entry.start = extent_start; 3172 trim_entry.bytes = extent_bytes; 3173 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3174 mutex_unlock(&ctl->cache_writeout_mutex); 3175 3176 ret = do_trimming(block_group, total_trimmed, start, bytes, 3177 extent_start, extent_bytes, &trim_entry); 3178 if (ret) 3179 break; 3180 next: 3181 start += bytes; 3182 3183 if (fatal_signal_pending(current)) { 3184 ret = -ERESTARTSYS; 3185 break; 3186 } 3187 3188 cond_resched(); 3189 } 3190 out: 3191 return ret; 3192 } 3193 3194 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 3195 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3196 { 3197 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3198 struct btrfs_free_space *entry; 3199 int ret = 0; 3200 int ret2; 3201 u64 bytes; 3202 u64 offset = offset_to_bitmap(ctl, start); 3203 3204 while (offset < end) { 3205 bool next_bitmap = false; 3206 struct btrfs_trim_range trim_entry; 3207 3208 mutex_lock(&ctl->cache_writeout_mutex); 3209 spin_lock(&ctl->tree_lock); 3210 3211 if (ctl->free_space < minlen) { 3212 spin_unlock(&ctl->tree_lock); 3213 mutex_unlock(&ctl->cache_writeout_mutex); 3214 break; 3215 } 3216 3217 entry = tree_search_offset(ctl, offset, 1, 0); 3218 if (!entry) { 3219 spin_unlock(&ctl->tree_lock); 3220 mutex_unlock(&ctl->cache_writeout_mutex); 3221 next_bitmap = true; 3222 goto next; 3223 } 3224 3225 bytes = minlen; 3226 ret2 = search_bitmap(ctl, entry, &start, &bytes); 3227 if (ret2 || start >= end) { 3228 spin_unlock(&ctl->tree_lock); 3229 mutex_unlock(&ctl->cache_writeout_mutex); 3230 next_bitmap = true; 3231 goto next; 3232 } 3233 3234 bytes = min(bytes, end - start); 3235 if (bytes < minlen) { 3236 spin_unlock(&ctl->tree_lock); 3237 mutex_unlock(&ctl->cache_writeout_mutex); 3238 goto next; 3239 } 3240 3241 bitmap_clear_bits(ctl, entry, start, bytes); 3242 if (entry->bytes == 0) 3243 free_bitmap(ctl, entry); 3244 3245 spin_unlock(&ctl->tree_lock); 3246 trim_entry.start = start; 3247 trim_entry.bytes = bytes; 3248 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3249 mutex_unlock(&ctl->cache_writeout_mutex); 3250 3251 ret = do_trimming(block_group, total_trimmed, start, bytes, 3252 start, bytes, &trim_entry); 3253 if (ret) 3254 break; 3255 next: 3256 if (next_bitmap) { 3257 offset += BITS_PER_BITMAP * ctl->unit; 3258 } else { 3259 start += bytes; 3260 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 3261 offset += BITS_PER_BITMAP * ctl->unit; 3262 } 3263 3264 if (fatal_signal_pending(current)) { 3265 ret = -ERESTARTSYS; 3266 break; 3267 } 3268 3269 cond_resched(); 3270 } 3271 3272 return ret; 3273 } 3274 3275 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache) 3276 { 3277 atomic_inc(&cache->trimming); 3278 } 3279 3280 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group) 3281 { 3282 struct extent_map_tree *em_tree; 3283 struct extent_map *em; 3284 bool cleanup; 3285 3286 spin_lock(&block_group->lock); 3287 cleanup = (atomic_dec_and_test(&block_group->trimming) && 3288 block_group->removed); 3289 spin_unlock(&block_group->lock); 3290 3291 if (cleanup) { 3292 lock_chunks(block_group->fs_info->chunk_root); 3293 em_tree = &block_group->fs_info->mapping_tree.map_tree; 3294 write_lock(&em_tree->lock); 3295 em = lookup_extent_mapping(em_tree, block_group->key.objectid, 3296 1); 3297 BUG_ON(!em); /* logic error, can't happen */ 3298 /* 3299 * remove_extent_mapping() will delete us from the pinned_chunks 3300 * list, which is protected by the chunk mutex. 3301 */ 3302 remove_extent_mapping(em_tree, em); 3303 write_unlock(&em_tree->lock); 3304 unlock_chunks(block_group->fs_info->chunk_root); 3305 3306 /* once for us and once for the tree */ 3307 free_extent_map(em); 3308 free_extent_map(em); 3309 3310 /* 3311 * We've left one free space entry and other tasks trimming 3312 * this block group have left 1 entry each one. Free them. 3313 */ 3314 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3315 } 3316 } 3317 3318 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 3319 u64 *trimmed, u64 start, u64 end, u64 minlen) 3320 { 3321 int ret; 3322 3323 *trimmed = 0; 3324 3325 spin_lock(&block_group->lock); 3326 if (block_group->removed) { 3327 spin_unlock(&block_group->lock); 3328 return 0; 3329 } 3330 btrfs_get_block_group_trimming(block_group); 3331 spin_unlock(&block_group->lock); 3332 3333 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 3334 if (ret) 3335 goto out; 3336 3337 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 3338 out: 3339 btrfs_put_block_group_trimming(block_group); 3340 return ret; 3341 } 3342 3343 /* 3344 * Find the left-most item in the cache tree, and then return the 3345 * smallest inode number in the item. 3346 * 3347 * Note: the returned inode number may not be the smallest one in 3348 * the tree, if the left-most item is a bitmap. 3349 */ 3350 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3351 { 3352 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3353 struct btrfs_free_space *entry = NULL; 3354 u64 ino = 0; 3355 3356 spin_lock(&ctl->tree_lock); 3357 3358 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3359 goto out; 3360 3361 entry = rb_entry(rb_first(&ctl->free_space_offset), 3362 struct btrfs_free_space, offset_index); 3363 3364 if (!entry->bitmap) { 3365 ino = entry->offset; 3366 3367 unlink_free_space(ctl, entry); 3368 entry->offset++; 3369 entry->bytes--; 3370 if (!entry->bytes) 3371 kmem_cache_free(btrfs_free_space_cachep, entry); 3372 else 3373 link_free_space(ctl, entry); 3374 } else { 3375 u64 offset = 0; 3376 u64 count = 1; 3377 int ret; 3378 3379 ret = search_bitmap(ctl, entry, &offset, &count); 3380 /* Logic error; Should be empty if it can't find anything */ 3381 ASSERT(!ret); 3382 3383 ino = offset; 3384 bitmap_clear_bits(ctl, entry, offset, 1); 3385 if (entry->bytes == 0) 3386 free_bitmap(ctl, entry); 3387 } 3388 out: 3389 spin_unlock(&ctl->tree_lock); 3390 3391 return ino; 3392 } 3393 3394 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3395 struct btrfs_path *path) 3396 { 3397 struct inode *inode = NULL; 3398 3399 spin_lock(&root->ino_cache_lock); 3400 if (root->ino_cache_inode) 3401 inode = igrab(root->ino_cache_inode); 3402 spin_unlock(&root->ino_cache_lock); 3403 if (inode) 3404 return inode; 3405 3406 inode = __lookup_free_space_inode(root, path, 0); 3407 if (IS_ERR(inode)) 3408 return inode; 3409 3410 spin_lock(&root->ino_cache_lock); 3411 if (!btrfs_fs_closing(root->fs_info)) 3412 root->ino_cache_inode = igrab(inode); 3413 spin_unlock(&root->ino_cache_lock); 3414 3415 return inode; 3416 } 3417 3418 int create_free_ino_inode(struct btrfs_root *root, 3419 struct btrfs_trans_handle *trans, 3420 struct btrfs_path *path) 3421 { 3422 return __create_free_space_inode(root, trans, path, 3423 BTRFS_FREE_INO_OBJECTID, 0); 3424 } 3425 3426 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3427 { 3428 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3429 struct btrfs_path *path; 3430 struct inode *inode; 3431 int ret = 0; 3432 u64 root_gen = btrfs_root_generation(&root->root_item); 3433 3434 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 3435 return 0; 3436 3437 /* 3438 * If we're unmounting then just return, since this does a search on the 3439 * normal root and not the commit root and we could deadlock. 3440 */ 3441 if (btrfs_fs_closing(fs_info)) 3442 return 0; 3443 3444 path = btrfs_alloc_path(); 3445 if (!path) 3446 return 0; 3447 3448 inode = lookup_free_ino_inode(root, path); 3449 if (IS_ERR(inode)) 3450 goto out; 3451 3452 if (root_gen != BTRFS_I(inode)->generation) 3453 goto out_put; 3454 3455 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3456 3457 if (ret < 0) 3458 btrfs_err(fs_info, 3459 "failed to load free ino cache for root %llu", 3460 root->root_key.objectid); 3461 out_put: 3462 iput(inode); 3463 out: 3464 btrfs_free_path(path); 3465 return ret; 3466 } 3467 3468 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3469 struct btrfs_trans_handle *trans, 3470 struct btrfs_path *path, 3471 struct inode *inode) 3472 { 3473 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3474 int ret; 3475 struct btrfs_io_ctl io_ctl; 3476 bool release_metadata = true; 3477 3478 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 3479 return 0; 3480 3481 memset(&io_ctl, 0, sizeof(io_ctl)); 3482 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, 3483 trans, path, 0); 3484 if (!ret) { 3485 /* 3486 * At this point writepages() didn't error out, so our metadata 3487 * reservation is released when the writeback finishes, at 3488 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 3489 * with or without an error. 3490 */ 3491 release_metadata = false; 3492 ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0); 3493 } 3494 3495 if (ret) { 3496 if (release_metadata) 3497 btrfs_delalloc_release_metadata(inode, inode->i_size); 3498 #ifdef DEBUG 3499 btrfs_err(root->fs_info, 3500 "failed to write free ino cache for root %llu", 3501 root->root_key.objectid); 3502 #endif 3503 } 3504 3505 return ret; 3506 } 3507 3508 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3509 /* 3510 * Use this if you need to make a bitmap or extent entry specifically, it 3511 * doesn't do any of the merging that add_free_space does, this acts a lot like 3512 * how the free space cache loading stuff works, so you can get really weird 3513 * configurations. 3514 */ 3515 int test_add_free_space_entry(struct btrfs_block_group_cache *cache, 3516 u64 offset, u64 bytes, bool bitmap) 3517 { 3518 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3519 struct btrfs_free_space *info = NULL, *bitmap_info; 3520 void *map = NULL; 3521 u64 bytes_added; 3522 int ret; 3523 3524 again: 3525 if (!info) { 3526 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3527 if (!info) 3528 return -ENOMEM; 3529 } 3530 3531 if (!bitmap) { 3532 spin_lock(&ctl->tree_lock); 3533 info->offset = offset; 3534 info->bytes = bytes; 3535 ret = link_free_space(ctl, info); 3536 spin_unlock(&ctl->tree_lock); 3537 if (ret) 3538 kmem_cache_free(btrfs_free_space_cachep, info); 3539 return ret; 3540 } 3541 3542 if (!map) { 3543 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 3544 if (!map) { 3545 kmem_cache_free(btrfs_free_space_cachep, info); 3546 return -ENOMEM; 3547 } 3548 } 3549 3550 spin_lock(&ctl->tree_lock); 3551 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3552 1, 0); 3553 if (!bitmap_info) { 3554 info->bitmap = map; 3555 map = NULL; 3556 add_new_bitmap(ctl, info, offset); 3557 bitmap_info = info; 3558 info = NULL; 3559 } 3560 3561 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3562 bytes -= bytes_added; 3563 offset += bytes_added; 3564 spin_unlock(&ctl->tree_lock); 3565 3566 if (bytes) 3567 goto again; 3568 3569 if (info) 3570 kmem_cache_free(btrfs_free_space_cachep, info); 3571 if (map) 3572 kfree(map); 3573 return 0; 3574 } 3575 3576 /* 3577 * Checks to see if the given range is in the free space cache. This is really 3578 * just used to check the absence of space, so if there is free space in the 3579 * range at all we will return 1. 3580 */ 3581 int test_check_exists(struct btrfs_block_group_cache *cache, 3582 u64 offset, u64 bytes) 3583 { 3584 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3585 struct btrfs_free_space *info; 3586 int ret = 0; 3587 3588 spin_lock(&ctl->tree_lock); 3589 info = tree_search_offset(ctl, offset, 0, 0); 3590 if (!info) { 3591 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3592 1, 0); 3593 if (!info) 3594 goto out; 3595 } 3596 3597 have_info: 3598 if (info->bitmap) { 3599 u64 bit_off, bit_bytes; 3600 struct rb_node *n; 3601 struct btrfs_free_space *tmp; 3602 3603 bit_off = offset; 3604 bit_bytes = ctl->unit; 3605 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes); 3606 if (!ret) { 3607 if (bit_off == offset) { 3608 ret = 1; 3609 goto out; 3610 } else if (bit_off > offset && 3611 offset + bytes > bit_off) { 3612 ret = 1; 3613 goto out; 3614 } 3615 } 3616 3617 n = rb_prev(&info->offset_index); 3618 while (n) { 3619 tmp = rb_entry(n, struct btrfs_free_space, 3620 offset_index); 3621 if (tmp->offset + tmp->bytes < offset) 3622 break; 3623 if (offset + bytes < tmp->offset) { 3624 n = rb_prev(&info->offset_index); 3625 continue; 3626 } 3627 info = tmp; 3628 goto have_info; 3629 } 3630 3631 n = rb_next(&info->offset_index); 3632 while (n) { 3633 tmp = rb_entry(n, struct btrfs_free_space, 3634 offset_index); 3635 if (offset + bytes < tmp->offset) 3636 break; 3637 if (tmp->offset + tmp->bytes < offset) { 3638 n = rb_next(&info->offset_index); 3639 continue; 3640 } 3641 info = tmp; 3642 goto have_info; 3643 } 3644 3645 ret = 0; 3646 goto out; 3647 } 3648 3649 if (info->offset == offset) { 3650 ret = 1; 3651 goto out; 3652 } 3653 3654 if (offset > info->offset && offset < info->offset + info->bytes) 3655 ret = 1; 3656 out: 3657 spin_unlock(&ctl->tree_lock); 3658 return ret; 3659 } 3660 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3661