xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "fs.h"
16 #include "messages.h"
17 #include "misc.h"
18 #include "free-space-cache.h"
19 #include "transaction.h"
20 #include "disk-io.h"
21 #include "extent_io.h"
22 #include "volumes.h"
23 #include "space-info.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "discard.h"
27 #include "subpage.h"
28 #include "inode-item.h"
29 #include "accessors.h"
30 #include "file-item.h"
31 #include "file.h"
32 #include "super.h"
33 
34 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
35 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
36 #define FORCE_EXTENT_THRESHOLD	SZ_1M
37 
38 static struct kmem_cache *btrfs_free_space_cachep;
39 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
40 
41 struct btrfs_trim_range {
42 	u64 start;
43 	u64 bytes;
44 	struct list_head list;
45 };
46 
47 static int link_free_space(struct btrfs_free_space_ctl *ctl,
48 			   struct btrfs_free_space *info);
49 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
50 			      struct btrfs_free_space *info, bool update_stat);
51 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 			 struct btrfs_free_space *bitmap_info, u64 *offset,
53 			 u64 *bytes, bool for_alloc);
54 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 			struct btrfs_free_space *bitmap_info);
56 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 			      struct btrfs_free_space *info, u64 offset,
58 			      u64 bytes, bool update_stats);
59 
60 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
61 {
62 	struct btrfs_free_space *info;
63 	struct rb_node *node;
64 
65 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
66 		info = rb_entry(node, struct btrfs_free_space, offset_index);
67 		if (!info->bitmap) {
68 			unlink_free_space(ctl, info, true);
69 			kmem_cache_free(btrfs_free_space_cachep, info);
70 		} else {
71 			free_bitmap(ctl, info);
72 		}
73 
74 		cond_resched_lock(&ctl->tree_lock);
75 	}
76 }
77 
78 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
79 					       struct btrfs_path *path,
80 					       u64 offset)
81 {
82 	struct btrfs_fs_info *fs_info = root->fs_info;
83 	struct btrfs_key key;
84 	struct btrfs_key location;
85 	struct btrfs_disk_key disk_key;
86 	struct btrfs_free_space_header *header;
87 	struct extent_buffer *leaf;
88 	struct inode *inode = NULL;
89 	unsigned nofs_flag;
90 	int ret;
91 
92 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
93 	key.offset = offset;
94 	key.type = 0;
95 
96 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
97 	if (ret < 0)
98 		return ERR_PTR(ret);
99 	if (ret > 0) {
100 		btrfs_release_path(path);
101 		return ERR_PTR(-ENOENT);
102 	}
103 
104 	leaf = path->nodes[0];
105 	header = btrfs_item_ptr(leaf, path->slots[0],
106 				struct btrfs_free_space_header);
107 	btrfs_free_space_key(leaf, header, &disk_key);
108 	btrfs_disk_key_to_cpu(&location, &disk_key);
109 	btrfs_release_path(path);
110 
111 	/*
112 	 * We are often under a trans handle at this point, so we need to make
113 	 * sure NOFS is set to keep us from deadlocking.
114 	 */
115 	nofs_flag = memalloc_nofs_save();
116 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
117 	btrfs_release_path(path);
118 	memalloc_nofs_restore(nofs_flag);
119 	if (IS_ERR(inode))
120 		return inode;
121 
122 	mapping_set_gfp_mask(inode->i_mapping,
123 			mapping_gfp_constraint(inode->i_mapping,
124 			~(__GFP_FS | __GFP_HIGHMEM)));
125 
126 	return inode;
127 }
128 
129 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
130 		struct btrfs_path *path)
131 {
132 	struct btrfs_fs_info *fs_info = block_group->fs_info;
133 	struct inode *inode = NULL;
134 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
135 
136 	spin_lock(&block_group->lock);
137 	if (block_group->inode)
138 		inode = igrab(block_group->inode);
139 	spin_unlock(&block_group->lock);
140 	if (inode)
141 		return inode;
142 
143 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
144 					  block_group->start);
145 	if (IS_ERR(inode))
146 		return inode;
147 
148 	spin_lock(&block_group->lock);
149 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
150 		btrfs_info(fs_info, "Old style space inode found, converting.");
151 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
152 			BTRFS_INODE_NODATACOW;
153 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
154 	}
155 
156 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
157 		block_group->inode = igrab(inode);
158 	spin_unlock(&block_group->lock);
159 
160 	return inode;
161 }
162 
163 static int __create_free_space_inode(struct btrfs_root *root,
164 				     struct btrfs_trans_handle *trans,
165 				     struct btrfs_path *path,
166 				     u64 ino, u64 offset)
167 {
168 	struct btrfs_key key;
169 	struct btrfs_disk_key disk_key;
170 	struct btrfs_free_space_header *header;
171 	struct btrfs_inode_item *inode_item;
172 	struct extent_buffer *leaf;
173 	/* We inline CRCs for the free disk space cache */
174 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
175 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
176 	int ret;
177 
178 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
179 	if (ret)
180 		return ret;
181 
182 	leaf = path->nodes[0];
183 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
184 				    struct btrfs_inode_item);
185 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
186 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
187 			     sizeof(*inode_item));
188 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
189 	btrfs_set_inode_size(leaf, inode_item, 0);
190 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
191 	btrfs_set_inode_uid(leaf, inode_item, 0);
192 	btrfs_set_inode_gid(leaf, inode_item, 0);
193 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
194 	btrfs_set_inode_flags(leaf, inode_item, flags);
195 	btrfs_set_inode_nlink(leaf, inode_item, 1);
196 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
197 	btrfs_set_inode_block_group(leaf, inode_item, offset);
198 	btrfs_mark_buffer_dirty(leaf);
199 	btrfs_release_path(path);
200 
201 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
202 	key.offset = offset;
203 	key.type = 0;
204 	ret = btrfs_insert_empty_item(trans, root, path, &key,
205 				      sizeof(struct btrfs_free_space_header));
206 	if (ret < 0) {
207 		btrfs_release_path(path);
208 		return ret;
209 	}
210 
211 	leaf = path->nodes[0];
212 	header = btrfs_item_ptr(leaf, path->slots[0],
213 				struct btrfs_free_space_header);
214 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
215 	btrfs_set_free_space_key(leaf, header, &disk_key);
216 	btrfs_mark_buffer_dirty(leaf);
217 	btrfs_release_path(path);
218 
219 	return 0;
220 }
221 
222 int create_free_space_inode(struct btrfs_trans_handle *trans,
223 			    struct btrfs_block_group *block_group,
224 			    struct btrfs_path *path)
225 {
226 	int ret;
227 	u64 ino;
228 
229 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
230 	if (ret < 0)
231 		return ret;
232 
233 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
234 					 ino, block_group->start);
235 }
236 
237 /*
238  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
239  * handles lookup, otherwise it takes ownership and iputs the inode.
240  * Don't reuse an inode pointer after passing it into this function.
241  */
242 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
243 				  struct inode *inode,
244 				  struct btrfs_block_group *block_group)
245 {
246 	struct btrfs_path *path;
247 	struct btrfs_key key;
248 	int ret = 0;
249 
250 	path = btrfs_alloc_path();
251 	if (!path)
252 		return -ENOMEM;
253 
254 	if (!inode)
255 		inode = lookup_free_space_inode(block_group, path);
256 	if (IS_ERR(inode)) {
257 		if (PTR_ERR(inode) != -ENOENT)
258 			ret = PTR_ERR(inode);
259 		goto out;
260 	}
261 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
262 	if (ret) {
263 		btrfs_add_delayed_iput(BTRFS_I(inode));
264 		goto out;
265 	}
266 	clear_nlink(inode);
267 	/* One for the block groups ref */
268 	spin_lock(&block_group->lock);
269 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
270 		block_group->inode = NULL;
271 		spin_unlock(&block_group->lock);
272 		iput(inode);
273 	} else {
274 		spin_unlock(&block_group->lock);
275 	}
276 	/* One for the lookup ref */
277 	btrfs_add_delayed_iput(BTRFS_I(inode));
278 
279 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
280 	key.type = 0;
281 	key.offset = block_group->start;
282 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
283 				-1, 1);
284 	if (ret) {
285 		if (ret > 0)
286 			ret = 0;
287 		goto out;
288 	}
289 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
290 out:
291 	btrfs_free_path(path);
292 	return ret;
293 }
294 
295 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
296 				       struct btrfs_block_rsv *rsv)
297 {
298 	u64 needed_bytes;
299 	int ret;
300 
301 	/* 1 for slack space, 1 for updating the inode */
302 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
303 		btrfs_calc_metadata_size(fs_info, 1);
304 
305 	spin_lock(&rsv->lock);
306 	if (rsv->reserved < needed_bytes)
307 		ret = -ENOSPC;
308 	else
309 		ret = 0;
310 	spin_unlock(&rsv->lock);
311 	return ret;
312 }
313 
314 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
315 				    struct btrfs_block_group *block_group,
316 				    struct inode *vfs_inode)
317 {
318 	struct btrfs_truncate_control control = {
319 		.inode = BTRFS_I(vfs_inode),
320 		.new_size = 0,
321 		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
322 		.min_type = BTRFS_EXTENT_DATA_KEY,
323 		.clear_extent_range = true,
324 	};
325 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
326 	struct btrfs_root *root = inode->root;
327 	struct extent_state *cached_state = NULL;
328 	int ret = 0;
329 	bool locked = false;
330 
331 	if (block_group) {
332 		struct btrfs_path *path = btrfs_alloc_path();
333 
334 		if (!path) {
335 			ret = -ENOMEM;
336 			goto fail;
337 		}
338 		locked = true;
339 		mutex_lock(&trans->transaction->cache_write_mutex);
340 		if (!list_empty(&block_group->io_list)) {
341 			list_del_init(&block_group->io_list);
342 
343 			btrfs_wait_cache_io(trans, block_group, path);
344 			btrfs_put_block_group(block_group);
345 		}
346 
347 		/*
348 		 * now that we've truncated the cache away, its no longer
349 		 * setup or written
350 		 */
351 		spin_lock(&block_group->lock);
352 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
353 		spin_unlock(&block_group->lock);
354 		btrfs_free_path(path);
355 	}
356 
357 	btrfs_i_size_write(inode, 0);
358 	truncate_pagecache(vfs_inode, 0);
359 
360 	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
361 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
362 
363 	/*
364 	 * We skip the throttling logic for free space cache inodes, so we don't
365 	 * need to check for -EAGAIN.
366 	 */
367 	ret = btrfs_truncate_inode_items(trans, root, &control);
368 
369 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
370 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
371 
372 	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
373 	if (ret)
374 		goto fail;
375 
376 	ret = btrfs_update_inode(trans, root, inode);
377 
378 fail:
379 	if (locked)
380 		mutex_unlock(&trans->transaction->cache_write_mutex);
381 	if (ret)
382 		btrfs_abort_transaction(trans, ret);
383 
384 	return ret;
385 }
386 
387 static void readahead_cache(struct inode *inode)
388 {
389 	struct file_ra_state ra;
390 	unsigned long last_index;
391 
392 	file_ra_state_init(&ra, inode->i_mapping);
393 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
394 
395 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
396 }
397 
398 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
399 		       int write)
400 {
401 	int num_pages;
402 
403 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
404 
405 	/* Make sure we can fit our crcs and generation into the first page */
406 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
407 		return -ENOSPC;
408 
409 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
410 
411 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
412 	if (!io_ctl->pages)
413 		return -ENOMEM;
414 
415 	io_ctl->num_pages = num_pages;
416 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
417 	io_ctl->inode = inode;
418 
419 	return 0;
420 }
421 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
422 
423 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
424 {
425 	kfree(io_ctl->pages);
426 	io_ctl->pages = NULL;
427 }
428 
429 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
430 {
431 	if (io_ctl->cur) {
432 		io_ctl->cur = NULL;
433 		io_ctl->orig = NULL;
434 	}
435 }
436 
437 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
438 {
439 	ASSERT(io_ctl->index < io_ctl->num_pages);
440 	io_ctl->page = io_ctl->pages[io_ctl->index++];
441 	io_ctl->cur = page_address(io_ctl->page);
442 	io_ctl->orig = io_ctl->cur;
443 	io_ctl->size = PAGE_SIZE;
444 	if (clear)
445 		clear_page(io_ctl->cur);
446 }
447 
448 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
449 {
450 	int i;
451 
452 	io_ctl_unmap_page(io_ctl);
453 
454 	for (i = 0; i < io_ctl->num_pages; i++) {
455 		if (io_ctl->pages[i]) {
456 			btrfs_page_clear_checked(io_ctl->fs_info,
457 					io_ctl->pages[i],
458 					page_offset(io_ctl->pages[i]),
459 					PAGE_SIZE);
460 			unlock_page(io_ctl->pages[i]);
461 			put_page(io_ctl->pages[i]);
462 		}
463 	}
464 }
465 
466 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
467 {
468 	struct page *page;
469 	struct inode *inode = io_ctl->inode;
470 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
471 	int i;
472 
473 	for (i = 0; i < io_ctl->num_pages; i++) {
474 		int ret;
475 
476 		page = find_or_create_page(inode->i_mapping, i, mask);
477 		if (!page) {
478 			io_ctl_drop_pages(io_ctl);
479 			return -ENOMEM;
480 		}
481 
482 		ret = set_page_extent_mapped(page);
483 		if (ret < 0) {
484 			unlock_page(page);
485 			put_page(page);
486 			io_ctl_drop_pages(io_ctl);
487 			return ret;
488 		}
489 
490 		io_ctl->pages[i] = page;
491 		if (uptodate && !PageUptodate(page)) {
492 			btrfs_read_folio(NULL, page_folio(page));
493 			lock_page(page);
494 			if (page->mapping != inode->i_mapping) {
495 				btrfs_err(BTRFS_I(inode)->root->fs_info,
496 					  "free space cache page truncated");
497 				io_ctl_drop_pages(io_ctl);
498 				return -EIO;
499 			}
500 			if (!PageUptodate(page)) {
501 				btrfs_err(BTRFS_I(inode)->root->fs_info,
502 					   "error reading free space cache");
503 				io_ctl_drop_pages(io_ctl);
504 				return -EIO;
505 			}
506 		}
507 	}
508 
509 	for (i = 0; i < io_ctl->num_pages; i++)
510 		clear_page_dirty_for_io(io_ctl->pages[i]);
511 
512 	return 0;
513 }
514 
515 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
516 {
517 	io_ctl_map_page(io_ctl, 1);
518 
519 	/*
520 	 * Skip the csum areas.  If we don't check crcs then we just have a
521 	 * 64bit chunk at the front of the first page.
522 	 */
523 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
524 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
525 
526 	put_unaligned_le64(generation, io_ctl->cur);
527 	io_ctl->cur += sizeof(u64);
528 }
529 
530 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
531 {
532 	u64 cache_gen;
533 
534 	/*
535 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
536 	 * chunk at the front of the first page.
537 	 */
538 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
539 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
540 
541 	cache_gen = get_unaligned_le64(io_ctl->cur);
542 	if (cache_gen != generation) {
543 		btrfs_err_rl(io_ctl->fs_info,
544 			"space cache generation (%llu) does not match inode (%llu)",
545 				cache_gen, generation);
546 		io_ctl_unmap_page(io_ctl);
547 		return -EIO;
548 	}
549 	io_ctl->cur += sizeof(u64);
550 	return 0;
551 }
552 
553 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
554 {
555 	u32 *tmp;
556 	u32 crc = ~(u32)0;
557 	unsigned offset = 0;
558 
559 	if (index == 0)
560 		offset = sizeof(u32) * io_ctl->num_pages;
561 
562 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
563 	btrfs_crc32c_final(crc, (u8 *)&crc);
564 	io_ctl_unmap_page(io_ctl);
565 	tmp = page_address(io_ctl->pages[0]);
566 	tmp += index;
567 	*tmp = crc;
568 }
569 
570 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
571 {
572 	u32 *tmp, val;
573 	u32 crc = ~(u32)0;
574 	unsigned offset = 0;
575 
576 	if (index == 0)
577 		offset = sizeof(u32) * io_ctl->num_pages;
578 
579 	tmp = page_address(io_ctl->pages[0]);
580 	tmp += index;
581 	val = *tmp;
582 
583 	io_ctl_map_page(io_ctl, 0);
584 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
585 	btrfs_crc32c_final(crc, (u8 *)&crc);
586 	if (val != crc) {
587 		btrfs_err_rl(io_ctl->fs_info,
588 			"csum mismatch on free space cache");
589 		io_ctl_unmap_page(io_ctl);
590 		return -EIO;
591 	}
592 
593 	return 0;
594 }
595 
596 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
597 			    void *bitmap)
598 {
599 	struct btrfs_free_space_entry *entry;
600 
601 	if (!io_ctl->cur)
602 		return -ENOSPC;
603 
604 	entry = io_ctl->cur;
605 	put_unaligned_le64(offset, &entry->offset);
606 	put_unaligned_le64(bytes, &entry->bytes);
607 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
608 		BTRFS_FREE_SPACE_EXTENT;
609 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
610 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
611 
612 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
613 		return 0;
614 
615 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
616 
617 	/* No more pages to map */
618 	if (io_ctl->index >= io_ctl->num_pages)
619 		return 0;
620 
621 	/* map the next page */
622 	io_ctl_map_page(io_ctl, 1);
623 	return 0;
624 }
625 
626 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
627 {
628 	if (!io_ctl->cur)
629 		return -ENOSPC;
630 
631 	/*
632 	 * If we aren't at the start of the current page, unmap this one and
633 	 * map the next one if there is any left.
634 	 */
635 	if (io_ctl->cur != io_ctl->orig) {
636 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
637 		if (io_ctl->index >= io_ctl->num_pages)
638 			return -ENOSPC;
639 		io_ctl_map_page(io_ctl, 0);
640 	}
641 
642 	copy_page(io_ctl->cur, bitmap);
643 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 	if (io_ctl->index < io_ctl->num_pages)
645 		io_ctl_map_page(io_ctl, 0);
646 	return 0;
647 }
648 
649 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
650 {
651 	/*
652 	 * If we're not on the boundary we know we've modified the page and we
653 	 * need to crc the page.
654 	 */
655 	if (io_ctl->cur != io_ctl->orig)
656 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
657 	else
658 		io_ctl_unmap_page(io_ctl);
659 
660 	while (io_ctl->index < io_ctl->num_pages) {
661 		io_ctl_map_page(io_ctl, 1);
662 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
663 	}
664 }
665 
666 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
667 			    struct btrfs_free_space *entry, u8 *type)
668 {
669 	struct btrfs_free_space_entry *e;
670 	int ret;
671 
672 	if (!io_ctl->cur) {
673 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
674 		if (ret)
675 			return ret;
676 	}
677 
678 	e = io_ctl->cur;
679 	entry->offset = get_unaligned_le64(&e->offset);
680 	entry->bytes = get_unaligned_le64(&e->bytes);
681 	*type = e->type;
682 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
683 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
684 
685 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
686 		return 0;
687 
688 	io_ctl_unmap_page(io_ctl);
689 
690 	return 0;
691 }
692 
693 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
694 			      struct btrfs_free_space *entry)
695 {
696 	int ret;
697 
698 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
699 	if (ret)
700 		return ret;
701 
702 	copy_page(entry->bitmap, io_ctl->cur);
703 	io_ctl_unmap_page(io_ctl);
704 
705 	return 0;
706 }
707 
708 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
709 {
710 	struct btrfs_block_group *block_group = ctl->block_group;
711 	u64 max_bytes;
712 	u64 bitmap_bytes;
713 	u64 extent_bytes;
714 	u64 size = block_group->length;
715 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
716 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
717 
718 	max_bitmaps = max_t(u64, max_bitmaps, 1);
719 
720 	if (ctl->total_bitmaps > max_bitmaps)
721 		btrfs_err(block_group->fs_info,
722 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
723 			  block_group->start, block_group->length,
724 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
725 			  bytes_per_bg);
726 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
727 
728 	/*
729 	 * We are trying to keep the total amount of memory used per 1GiB of
730 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
731 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
732 	 * bitmaps, we may end up using more memory than this.
733 	 */
734 	if (size < SZ_1G)
735 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
736 	else
737 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
738 
739 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
740 
741 	/*
742 	 * we want the extent entry threshold to always be at most 1/2 the max
743 	 * bytes we can have, or whatever is less than that.
744 	 */
745 	extent_bytes = max_bytes - bitmap_bytes;
746 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
747 
748 	ctl->extents_thresh =
749 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
750 }
751 
752 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
753 				   struct btrfs_free_space_ctl *ctl,
754 				   struct btrfs_path *path, u64 offset)
755 {
756 	struct btrfs_fs_info *fs_info = root->fs_info;
757 	struct btrfs_free_space_header *header;
758 	struct extent_buffer *leaf;
759 	struct btrfs_io_ctl io_ctl;
760 	struct btrfs_key key;
761 	struct btrfs_free_space *e, *n;
762 	LIST_HEAD(bitmaps);
763 	u64 num_entries;
764 	u64 num_bitmaps;
765 	u64 generation;
766 	u8 type;
767 	int ret = 0;
768 
769 	/* Nothing in the space cache, goodbye */
770 	if (!i_size_read(inode))
771 		return 0;
772 
773 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
774 	key.offset = offset;
775 	key.type = 0;
776 
777 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
778 	if (ret < 0)
779 		return 0;
780 	else if (ret > 0) {
781 		btrfs_release_path(path);
782 		return 0;
783 	}
784 
785 	ret = -1;
786 
787 	leaf = path->nodes[0];
788 	header = btrfs_item_ptr(leaf, path->slots[0],
789 				struct btrfs_free_space_header);
790 	num_entries = btrfs_free_space_entries(leaf, header);
791 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
792 	generation = btrfs_free_space_generation(leaf, header);
793 	btrfs_release_path(path);
794 
795 	if (!BTRFS_I(inode)->generation) {
796 		btrfs_info(fs_info,
797 			   "the free space cache file (%llu) is invalid, skip it",
798 			   offset);
799 		return 0;
800 	}
801 
802 	if (BTRFS_I(inode)->generation != generation) {
803 		btrfs_err(fs_info,
804 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
805 			  BTRFS_I(inode)->generation, generation);
806 		return 0;
807 	}
808 
809 	if (!num_entries)
810 		return 0;
811 
812 	ret = io_ctl_init(&io_ctl, inode, 0);
813 	if (ret)
814 		return ret;
815 
816 	readahead_cache(inode);
817 
818 	ret = io_ctl_prepare_pages(&io_ctl, true);
819 	if (ret)
820 		goto out;
821 
822 	ret = io_ctl_check_crc(&io_ctl, 0);
823 	if (ret)
824 		goto free_cache;
825 
826 	ret = io_ctl_check_generation(&io_ctl, generation);
827 	if (ret)
828 		goto free_cache;
829 
830 	while (num_entries) {
831 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
832 				      GFP_NOFS);
833 		if (!e) {
834 			ret = -ENOMEM;
835 			goto free_cache;
836 		}
837 
838 		ret = io_ctl_read_entry(&io_ctl, e, &type);
839 		if (ret) {
840 			kmem_cache_free(btrfs_free_space_cachep, e);
841 			goto free_cache;
842 		}
843 
844 		if (!e->bytes) {
845 			ret = -1;
846 			kmem_cache_free(btrfs_free_space_cachep, e);
847 			goto free_cache;
848 		}
849 
850 		if (type == BTRFS_FREE_SPACE_EXTENT) {
851 			spin_lock(&ctl->tree_lock);
852 			ret = link_free_space(ctl, e);
853 			spin_unlock(&ctl->tree_lock);
854 			if (ret) {
855 				btrfs_err(fs_info,
856 					"Duplicate entries in free space cache, dumping");
857 				kmem_cache_free(btrfs_free_space_cachep, e);
858 				goto free_cache;
859 			}
860 		} else {
861 			ASSERT(num_bitmaps);
862 			num_bitmaps--;
863 			e->bitmap = kmem_cache_zalloc(
864 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
865 			if (!e->bitmap) {
866 				ret = -ENOMEM;
867 				kmem_cache_free(
868 					btrfs_free_space_cachep, e);
869 				goto free_cache;
870 			}
871 			spin_lock(&ctl->tree_lock);
872 			ret = link_free_space(ctl, e);
873 			if (ret) {
874 				spin_unlock(&ctl->tree_lock);
875 				btrfs_err(fs_info,
876 					"Duplicate entries in free space cache, dumping");
877 				kmem_cache_free(btrfs_free_space_cachep, e);
878 				goto free_cache;
879 			}
880 			ctl->total_bitmaps++;
881 			recalculate_thresholds(ctl);
882 			spin_unlock(&ctl->tree_lock);
883 			list_add_tail(&e->list, &bitmaps);
884 		}
885 
886 		num_entries--;
887 	}
888 
889 	io_ctl_unmap_page(&io_ctl);
890 
891 	/*
892 	 * We add the bitmaps at the end of the entries in order that
893 	 * the bitmap entries are added to the cache.
894 	 */
895 	list_for_each_entry_safe(e, n, &bitmaps, list) {
896 		list_del_init(&e->list);
897 		ret = io_ctl_read_bitmap(&io_ctl, e);
898 		if (ret)
899 			goto free_cache;
900 	}
901 
902 	io_ctl_drop_pages(&io_ctl);
903 	ret = 1;
904 out:
905 	io_ctl_free(&io_ctl);
906 	return ret;
907 free_cache:
908 	io_ctl_drop_pages(&io_ctl);
909 
910 	spin_lock(&ctl->tree_lock);
911 	__btrfs_remove_free_space_cache(ctl);
912 	spin_unlock(&ctl->tree_lock);
913 	goto out;
914 }
915 
916 static int copy_free_space_cache(struct btrfs_block_group *block_group,
917 				 struct btrfs_free_space_ctl *ctl)
918 {
919 	struct btrfs_free_space *info;
920 	struct rb_node *n;
921 	int ret = 0;
922 
923 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
924 		info = rb_entry(n, struct btrfs_free_space, offset_index);
925 		if (!info->bitmap) {
926 			unlink_free_space(ctl, info, true);
927 			ret = btrfs_add_free_space(block_group, info->offset,
928 						   info->bytes);
929 			kmem_cache_free(btrfs_free_space_cachep, info);
930 		} else {
931 			u64 offset = info->offset;
932 			u64 bytes = ctl->unit;
933 
934 			while (search_bitmap(ctl, info, &offset, &bytes,
935 					     false) == 0) {
936 				ret = btrfs_add_free_space(block_group, offset,
937 							   bytes);
938 				if (ret)
939 					break;
940 				bitmap_clear_bits(ctl, info, offset, bytes, true);
941 				offset = info->offset;
942 				bytes = ctl->unit;
943 			}
944 			free_bitmap(ctl, info);
945 		}
946 		cond_resched();
947 	}
948 	return ret;
949 }
950 
951 static struct lock_class_key btrfs_free_space_inode_key;
952 
953 int load_free_space_cache(struct btrfs_block_group *block_group)
954 {
955 	struct btrfs_fs_info *fs_info = block_group->fs_info;
956 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
957 	struct btrfs_free_space_ctl tmp_ctl = {};
958 	struct inode *inode;
959 	struct btrfs_path *path;
960 	int ret = 0;
961 	bool matched;
962 	u64 used = block_group->used;
963 
964 	/*
965 	 * Because we could potentially discard our loaded free space, we want
966 	 * to load everything into a temporary structure first, and then if it's
967 	 * valid copy it all into the actual free space ctl.
968 	 */
969 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
970 
971 	/*
972 	 * If this block group has been marked to be cleared for one reason or
973 	 * another then we can't trust the on disk cache, so just return.
974 	 */
975 	spin_lock(&block_group->lock);
976 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
977 		spin_unlock(&block_group->lock);
978 		return 0;
979 	}
980 	spin_unlock(&block_group->lock);
981 
982 	path = btrfs_alloc_path();
983 	if (!path)
984 		return 0;
985 	path->search_commit_root = 1;
986 	path->skip_locking = 1;
987 
988 	/*
989 	 * We must pass a path with search_commit_root set to btrfs_iget in
990 	 * order to avoid a deadlock when allocating extents for the tree root.
991 	 *
992 	 * When we are COWing an extent buffer from the tree root, when looking
993 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
994 	 * block group without its free space cache loaded. When we find one
995 	 * we must load its space cache which requires reading its free space
996 	 * cache's inode item from the root tree. If this inode item is located
997 	 * in the same leaf that we started COWing before, then we end up in
998 	 * deadlock on the extent buffer (trying to read lock it when we
999 	 * previously write locked it).
1000 	 *
1001 	 * It's safe to read the inode item using the commit root because
1002 	 * block groups, once loaded, stay in memory forever (until they are
1003 	 * removed) as well as their space caches once loaded. New block groups
1004 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
1005 	 * we will never try to read their inode item while the fs is mounted.
1006 	 */
1007 	inode = lookup_free_space_inode(block_group, path);
1008 	if (IS_ERR(inode)) {
1009 		btrfs_free_path(path);
1010 		return 0;
1011 	}
1012 
1013 	/* We may have converted the inode and made the cache invalid. */
1014 	spin_lock(&block_group->lock);
1015 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1016 		spin_unlock(&block_group->lock);
1017 		btrfs_free_path(path);
1018 		goto out;
1019 	}
1020 	spin_unlock(&block_group->lock);
1021 
1022 	/*
1023 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1024 	 * free space inodes to prevent false positives related to locks for normal
1025 	 * inodes.
1026 	 */
1027 	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1028 			  &btrfs_free_space_inode_key);
1029 
1030 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1031 				      path, block_group->start);
1032 	btrfs_free_path(path);
1033 	if (ret <= 0)
1034 		goto out;
1035 
1036 	matched = (tmp_ctl.free_space == (block_group->length - used -
1037 					  block_group->bytes_super));
1038 
1039 	if (matched) {
1040 		ret = copy_free_space_cache(block_group, &tmp_ctl);
1041 		/*
1042 		 * ret == 1 means we successfully loaded the free space cache,
1043 		 * so we need to re-set it here.
1044 		 */
1045 		if (ret == 0)
1046 			ret = 1;
1047 	} else {
1048 		/*
1049 		 * We need to call the _locked variant so we don't try to update
1050 		 * the discard counters.
1051 		 */
1052 		spin_lock(&tmp_ctl.tree_lock);
1053 		__btrfs_remove_free_space_cache(&tmp_ctl);
1054 		spin_unlock(&tmp_ctl.tree_lock);
1055 		btrfs_warn(fs_info,
1056 			   "block group %llu has wrong amount of free space",
1057 			   block_group->start);
1058 		ret = -1;
1059 	}
1060 out:
1061 	if (ret < 0) {
1062 		/* This cache is bogus, make sure it gets cleared */
1063 		spin_lock(&block_group->lock);
1064 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1065 		spin_unlock(&block_group->lock);
1066 		ret = 0;
1067 
1068 		btrfs_warn(fs_info,
1069 			   "failed to load free space cache for block group %llu, rebuilding it now",
1070 			   block_group->start);
1071 	}
1072 
1073 	spin_lock(&ctl->tree_lock);
1074 	btrfs_discard_update_discardable(block_group);
1075 	spin_unlock(&ctl->tree_lock);
1076 	iput(inode);
1077 	return ret;
1078 }
1079 
1080 static noinline_for_stack
1081 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1082 			      struct btrfs_free_space_ctl *ctl,
1083 			      struct btrfs_block_group *block_group,
1084 			      int *entries, int *bitmaps,
1085 			      struct list_head *bitmap_list)
1086 {
1087 	int ret;
1088 	struct btrfs_free_cluster *cluster = NULL;
1089 	struct btrfs_free_cluster *cluster_locked = NULL;
1090 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1091 	struct btrfs_trim_range *trim_entry;
1092 
1093 	/* Get the cluster for this block_group if it exists */
1094 	if (block_group && !list_empty(&block_group->cluster_list)) {
1095 		cluster = list_entry(block_group->cluster_list.next,
1096 				     struct btrfs_free_cluster,
1097 				     block_group_list);
1098 	}
1099 
1100 	if (!node && cluster) {
1101 		cluster_locked = cluster;
1102 		spin_lock(&cluster_locked->lock);
1103 		node = rb_first(&cluster->root);
1104 		cluster = NULL;
1105 	}
1106 
1107 	/* Write out the extent entries */
1108 	while (node) {
1109 		struct btrfs_free_space *e;
1110 
1111 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1112 		*entries += 1;
1113 
1114 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1115 				       e->bitmap);
1116 		if (ret)
1117 			goto fail;
1118 
1119 		if (e->bitmap) {
1120 			list_add_tail(&e->list, bitmap_list);
1121 			*bitmaps += 1;
1122 		}
1123 		node = rb_next(node);
1124 		if (!node && cluster) {
1125 			node = rb_first(&cluster->root);
1126 			cluster_locked = cluster;
1127 			spin_lock(&cluster_locked->lock);
1128 			cluster = NULL;
1129 		}
1130 	}
1131 	if (cluster_locked) {
1132 		spin_unlock(&cluster_locked->lock);
1133 		cluster_locked = NULL;
1134 	}
1135 
1136 	/*
1137 	 * Make sure we don't miss any range that was removed from our rbtree
1138 	 * because trimming is running. Otherwise after a umount+mount (or crash
1139 	 * after committing the transaction) we would leak free space and get
1140 	 * an inconsistent free space cache report from fsck.
1141 	 */
1142 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1143 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1144 				       trim_entry->bytes, NULL);
1145 		if (ret)
1146 			goto fail;
1147 		*entries += 1;
1148 	}
1149 
1150 	return 0;
1151 fail:
1152 	if (cluster_locked)
1153 		spin_unlock(&cluster_locked->lock);
1154 	return -ENOSPC;
1155 }
1156 
1157 static noinline_for_stack int
1158 update_cache_item(struct btrfs_trans_handle *trans,
1159 		  struct btrfs_root *root,
1160 		  struct inode *inode,
1161 		  struct btrfs_path *path, u64 offset,
1162 		  int entries, int bitmaps)
1163 {
1164 	struct btrfs_key key;
1165 	struct btrfs_free_space_header *header;
1166 	struct extent_buffer *leaf;
1167 	int ret;
1168 
1169 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1170 	key.offset = offset;
1171 	key.type = 0;
1172 
1173 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1174 	if (ret < 0) {
1175 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1176 				 EXTENT_DELALLOC, NULL);
1177 		goto fail;
1178 	}
1179 	leaf = path->nodes[0];
1180 	if (ret > 0) {
1181 		struct btrfs_key found_key;
1182 		ASSERT(path->slots[0]);
1183 		path->slots[0]--;
1184 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1185 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1186 		    found_key.offset != offset) {
1187 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1188 					 inode->i_size - 1, EXTENT_DELALLOC,
1189 					 NULL);
1190 			btrfs_release_path(path);
1191 			goto fail;
1192 		}
1193 	}
1194 
1195 	BTRFS_I(inode)->generation = trans->transid;
1196 	header = btrfs_item_ptr(leaf, path->slots[0],
1197 				struct btrfs_free_space_header);
1198 	btrfs_set_free_space_entries(leaf, header, entries);
1199 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1200 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1201 	btrfs_mark_buffer_dirty(leaf);
1202 	btrfs_release_path(path);
1203 
1204 	return 0;
1205 
1206 fail:
1207 	return -1;
1208 }
1209 
1210 static noinline_for_stack int write_pinned_extent_entries(
1211 			    struct btrfs_trans_handle *trans,
1212 			    struct btrfs_block_group *block_group,
1213 			    struct btrfs_io_ctl *io_ctl,
1214 			    int *entries)
1215 {
1216 	u64 start, extent_start, extent_end, len;
1217 	struct extent_io_tree *unpin = NULL;
1218 	int ret;
1219 
1220 	if (!block_group)
1221 		return 0;
1222 
1223 	/*
1224 	 * We want to add any pinned extents to our free space cache
1225 	 * so we don't leak the space
1226 	 *
1227 	 * We shouldn't have switched the pinned extents yet so this is the
1228 	 * right one
1229 	 */
1230 	unpin = &trans->transaction->pinned_extents;
1231 
1232 	start = block_group->start;
1233 
1234 	while (start < block_group->start + block_group->length) {
1235 		ret = find_first_extent_bit(unpin, start,
1236 					    &extent_start, &extent_end,
1237 					    EXTENT_DIRTY, NULL);
1238 		if (ret)
1239 			return 0;
1240 
1241 		/* This pinned extent is out of our range */
1242 		if (extent_start >= block_group->start + block_group->length)
1243 			return 0;
1244 
1245 		extent_start = max(extent_start, start);
1246 		extent_end = min(block_group->start + block_group->length,
1247 				 extent_end + 1);
1248 		len = extent_end - extent_start;
1249 
1250 		*entries += 1;
1251 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1252 		if (ret)
1253 			return -ENOSPC;
1254 
1255 		start = extent_end;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static noinline_for_stack int
1262 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1263 {
1264 	struct btrfs_free_space *entry, *next;
1265 	int ret;
1266 
1267 	/* Write out the bitmaps */
1268 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1269 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1270 		if (ret)
1271 			return -ENOSPC;
1272 		list_del_init(&entry->list);
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 static int flush_dirty_cache(struct inode *inode)
1279 {
1280 	int ret;
1281 
1282 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1283 	if (ret)
1284 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1285 				 EXTENT_DELALLOC, NULL);
1286 
1287 	return ret;
1288 }
1289 
1290 static void noinline_for_stack
1291 cleanup_bitmap_list(struct list_head *bitmap_list)
1292 {
1293 	struct btrfs_free_space *entry, *next;
1294 
1295 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1296 		list_del_init(&entry->list);
1297 }
1298 
1299 static void noinline_for_stack
1300 cleanup_write_cache_enospc(struct inode *inode,
1301 			   struct btrfs_io_ctl *io_ctl,
1302 			   struct extent_state **cached_state)
1303 {
1304 	io_ctl_drop_pages(io_ctl);
1305 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1306 		      cached_state);
1307 }
1308 
1309 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1310 				 struct btrfs_trans_handle *trans,
1311 				 struct btrfs_block_group *block_group,
1312 				 struct btrfs_io_ctl *io_ctl,
1313 				 struct btrfs_path *path, u64 offset)
1314 {
1315 	int ret;
1316 	struct inode *inode = io_ctl->inode;
1317 
1318 	if (!inode)
1319 		return 0;
1320 
1321 	/* Flush the dirty pages in the cache file. */
1322 	ret = flush_dirty_cache(inode);
1323 	if (ret)
1324 		goto out;
1325 
1326 	/* Update the cache item to tell everyone this cache file is valid. */
1327 	ret = update_cache_item(trans, root, inode, path, offset,
1328 				io_ctl->entries, io_ctl->bitmaps);
1329 out:
1330 	if (ret) {
1331 		invalidate_inode_pages2(inode->i_mapping);
1332 		BTRFS_I(inode)->generation = 0;
1333 		if (block_group)
1334 			btrfs_debug(root->fs_info,
1335 	  "failed to write free space cache for block group %llu error %d",
1336 				  block_group->start, ret);
1337 	}
1338 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1339 
1340 	if (block_group) {
1341 		/* the dirty list is protected by the dirty_bgs_lock */
1342 		spin_lock(&trans->transaction->dirty_bgs_lock);
1343 
1344 		/* the disk_cache_state is protected by the block group lock */
1345 		spin_lock(&block_group->lock);
1346 
1347 		/*
1348 		 * only mark this as written if we didn't get put back on
1349 		 * the dirty list while waiting for IO.   Otherwise our
1350 		 * cache state won't be right, and we won't get written again
1351 		 */
1352 		if (!ret && list_empty(&block_group->dirty_list))
1353 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1354 		else if (ret)
1355 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1356 
1357 		spin_unlock(&block_group->lock);
1358 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1359 		io_ctl->inode = NULL;
1360 		iput(inode);
1361 	}
1362 
1363 	return ret;
1364 
1365 }
1366 
1367 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1368 			struct btrfs_block_group *block_group,
1369 			struct btrfs_path *path)
1370 {
1371 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1372 				     block_group, &block_group->io_ctl,
1373 				     path, block_group->start);
1374 }
1375 
1376 /*
1377  * Write out cached info to an inode.
1378  *
1379  * @root:        root the inode belongs to
1380  * @inode:       freespace inode we are writing out
1381  * @ctl:         free space cache we are going to write out
1382  * @block_group: block_group for this cache if it belongs to a block_group
1383  * @io_ctl:      holds context for the io
1384  * @trans:       the trans handle
1385  *
1386  * This function writes out a free space cache struct to disk for quick recovery
1387  * on mount.  This will return 0 if it was successful in writing the cache out,
1388  * or an errno if it was not.
1389  */
1390 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1391 				   struct btrfs_free_space_ctl *ctl,
1392 				   struct btrfs_block_group *block_group,
1393 				   struct btrfs_io_ctl *io_ctl,
1394 				   struct btrfs_trans_handle *trans)
1395 {
1396 	struct extent_state *cached_state = NULL;
1397 	LIST_HEAD(bitmap_list);
1398 	int entries = 0;
1399 	int bitmaps = 0;
1400 	int ret;
1401 	int must_iput = 0;
1402 
1403 	if (!i_size_read(inode))
1404 		return -EIO;
1405 
1406 	WARN_ON(io_ctl->pages);
1407 	ret = io_ctl_init(io_ctl, inode, 1);
1408 	if (ret)
1409 		return ret;
1410 
1411 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1412 		down_write(&block_group->data_rwsem);
1413 		spin_lock(&block_group->lock);
1414 		if (block_group->delalloc_bytes) {
1415 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1416 			spin_unlock(&block_group->lock);
1417 			up_write(&block_group->data_rwsem);
1418 			BTRFS_I(inode)->generation = 0;
1419 			ret = 0;
1420 			must_iput = 1;
1421 			goto out;
1422 		}
1423 		spin_unlock(&block_group->lock);
1424 	}
1425 
1426 	/* Lock all pages first so we can lock the extent safely. */
1427 	ret = io_ctl_prepare_pages(io_ctl, false);
1428 	if (ret)
1429 		goto out_unlock;
1430 
1431 	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1432 		    &cached_state);
1433 
1434 	io_ctl_set_generation(io_ctl, trans->transid);
1435 
1436 	mutex_lock(&ctl->cache_writeout_mutex);
1437 	/* Write out the extent entries in the free space cache */
1438 	spin_lock(&ctl->tree_lock);
1439 	ret = write_cache_extent_entries(io_ctl, ctl,
1440 					 block_group, &entries, &bitmaps,
1441 					 &bitmap_list);
1442 	if (ret)
1443 		goto out_nospc_locked;
1444 
1445 	/*
1446 	 * Some spaces that are freed in the current transaction are pinned,
1447 	 * they will be added into free space cache after the transaction is
1448 	 * committed, we shouldn't lose them.
1449 	 *
1450 	 * If this changes while we are working we'll get added back to
1451 	 * the dirty list and redo it.  No locking needed
1452 	 */
1453 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1454 	if (ret)
1455 		goto out_nospc_locked;
1456 
1457 	/*
1458 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1459 	 * locked while doing it because a concurrent trim can be manipulating
1460 	 * or freeing the bitmap.
1461 	 */
1462 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1463 	spin_unlock(&ctl->tree_lock);
1464 	mutex_unlock(&ctl->cache_writeout_mutex);
1465 	if (ret)
1466 		goto out_nospc;
1467 
1468 	/* Zero out the rest of the pages just to make sure */
1469 	io_ctl_zero_remaining_pages(io_ctl);
1470 
1471 	/* Everything is written out, now we dirty the pages in the file. */
1472 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1473 				io_ctl->num_pages, 0, i_size_read(inode),
1474 				&cached_state, false);
1475 	if (ret)
1476 		goto out_nospc;
1477 
1478 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1479 		up_write(&block_group->data_rwsem);
1480 	/*
1481 	 * Release the pages and unlock the extent, we will flush
1482 	 * them out later
1483 	 */
1484 	io_ctl_drop_pages(io_ctl);
1485 	io_ctl_free(io_ctl);
1486 
1487 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1488 		      &cached_state);
1489 
1490 	/*
1491 	 * at this point the pages are under IO and we're happy,
1492 	 * The caller is responsible for waiting on them and updating
1493 	 * the cache and the inode
1494 	 */
1495 	io_ctl->entries = entries;
1496 	io_ctl->bitmaps = bitmaps;
1497 
1498 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1499 	if (ret)
1500 		goto out;
1501 
1502 	return 0;
1503 
1504 out_nospc_locked:
1505 	cleanup_bitmap_list(&bitmap_list);
1506 	spin_unlock(&ctl->tree_lock);
1507 	mutex_unlock(&ctl->cache_writeout_mutex);
1508 
1509 out_nospc:
1510 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1511 
1512 out_unlock:
1513 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1514 		up_write(&block_group->data_rwsem);
1515 
1516 out:
1517 	io_ctl->inode = NULL;
1518 	io_ctl_free(io_ctl);
1519 	if (ret) {
1520 		invalidate_inode_pages2(inode->i_mapping);
1521 		BTRFS_I(inode)->generation = 0;
1522 	}
1523 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1524 	if (must_iput)
1525 		iput(inode);
1526 	return ret;
1527 }
1528 
1529 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1530 			  struct btrfs_block_group *block_group,
1531 			  struct btrfs_path *path)
1532 {
1533 	struct btrfs_fs_info *fs_info = trans->fs_info;
1534 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1535 	struct inode *inode;
1536 	int ret = 0;
1537 
1538 	spin_lock(&block_group->lock);
1539 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1540 		spin_unlock(&block_group->lock);
1541 		return 0;
1542 	}
1543 	spin_unlock(&block_group->lock);
1544 
1545 	inode = lookup_free_space_inode(block_group, path);
1546 	if (IS_ERR(inode))
1547 		return 0;
1548 
1549 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1550 				block_group, &block_group->io_ctl, trans);
1551 	if (ret) {
1552 		btrfs_debug(fs_info,
1553 	  "failed to write free space cache for block group %llu error %d",
1554 			  block_group->start, ret);
1555 		spin_lock(&block_group->lock);
1556 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1557 		spin_unlock(&block_group->lock);
1558 
1559 		block_group->io_ctl.inode = NULL;
1560 		iput(inode);
1561 	}
1562 
1563 	/*
1564 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1565 	 * to wait for IO and put the inode
1566 	 */
1567 
1568 	return ret;
1569 }
1570 
1571 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1572 					  u64 offset)
1573 {
1574 	ASSERT(offset >= bitmap_start);
1575 	offset -= bitmap_start;
1576 	return (unsigned long)(div_u64(offset, unit));
1577 }
1578 
1579 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1580 {
1581 	return (unsigned long)(div_u64(bytes, unit));
1582 }
1583 
1584 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1585 				   u64 offset)
1586 {
1587 	u64 bitmap_start;
1588 	u64 bytes_per_bitmap;
1589 
1590 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1591 	bitmap_start = offset - ctl->start;
1592 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1593 	bitmap_start *= bytes_per_bitmap;
1594 	bitmap_start += ctl->start;
1595 
1596 	return bitmap_start;
1597 }
1598 
1599 static int tree_insert_offset(struct rb_root *root, u64 offset,
1600 			      struct rb_node *node, int bitmap)
1601 {
1602 	struct rb_node **p = &root->rb_node;
1603 	struct rb_node *parent = NULL;
1604 	struct btrfs_free_space *info;
1605 
1606 	while (*p) {
1607 		parent = *p;
1608 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1609 
1610 		if (offset < info->offset) {
1611 			p = &(*p)->rb_left;
1612 		} else if (offset > info->offset) {
1613 			p = &(*p)->rb_right;
1614 		} else {
1615 			/*
1616 			 * we could have a bitmap entry and an extent entry
1617 			 * share the same offset.  If this is the case, we want
1618 			 * the extent entry to always be found first if we do a
1619 			 * linear search through the tree, since we want to have
1620 			 * the quickest allocation time, and allocating from an
1621 			 * extent is faster than allocating from a bitmap.  So
1622 			 * if we're inserting a bitmap and we find an entry at
1623 			 * this offset, we want to go right, or after this entry
1624 			 * logically.  If we are inserting an extent and we've
1625 			 * found a bitmap, we want to go left, or before
1626 			 * logically.
1627 			 */
1628 			if (bitmap) {
1629 				if (info->bitmap) {
1630 					WARN_ON_ONCE(1);
1631 					return -EEXIST;
1632 				}
1633 				p = &(*p)->rb_right;
1634 			} else {
1635 				if (!info->bitmap) {
1636 					WARN_ON_ONCE(1);
1637 					return -EEXIST;
1638 				}
1639 				p = &(*p)->rb_left;
1640 			}
1641 		}
1642 	}
1643 
1644 	rb_link_node(node, parent, p);
1645 	rb_insert_color(node, root);
1646 
1647 	return 0;
1648 }
1649 
1650 /*
1651  * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1652  * searched through the bitmap and figured out the largest ->max_extent_size,
1653  * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1654  * allocator the wrong thing, we want to use the actual real max_extent_size
1655  * we've found already if it's larger, or we want to use ->bytes.
1656  *
1657  * This matters because find_free_space() will skip entries who's ->bytes is
1658  * less than the required bytes.  So if we didn't search down this bitmap, we
1659  * may pick some previous entry that has a smaller ->max_extent_size than we
1660  * have.  For example, assume we have two entries, one that has
1661  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1662  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1663  *  call into find_free_space(), and return with max_extent_size == 4K, because
1664  *  that first bitmap entry had ->max_extent_size set, but the second one did
1665  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1666  *  8K contiguous range.
1667  *
1668  *  Consider the other case, we have 2 8K chunks in that second entry and still
1669  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1670  *  allocator comes in it'll fully search our second bitmap, and this time it'll
1671  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1672  *  right allocation the next loop through.
1673  */
1674 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1675 {
1676 	if (entry->bitmap && entry->max_extent_size)
1677 		return entry->max_extent_size;
1678 	return entry->bytes;
1679 }
1680 
1681 /*
1682  * We want the largest entry to be leftmost, so this is inverted from what you'd
1683  * normally expect.
1684  */
1685 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1686 {
1687 	const struct btrfs_free_space *entry, *exist;
1688 
1689 	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1690 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1691 	return get_max_extent_size(exist) < get_max_extent_size(entry);
1692 }
1693 
1694 /*
1695  * searches the tree for the given offset.
1696  *
1697  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1698  * want a section that has at least bytes size and comes at or after the given
1699  * offset.
1700  */
1701 static struct btrfs_free_space *
1702 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1703 		   u64 offset, int bitmap_only, int fuzzy)
1704 {
1705 	struct rb_node *n = ctl->free_space_offset.rb_node;
1706 	struct btrfs_free_space *entry = NULL, *prev = NULL;
1707 
1708 	/* find entry that is closest to the 'offset' */
1709 	while (n) {
1710 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1711 		prev = entry;
1712 
1713 		if (offset < entry->offset)
1714 			n = n->rb_left;
1715 		else if (offset > entry->offset)
1716 			n = n->rb_right;
1717 		else
1718 			break;
1719 
1720 		entry = NULL;
1721 	}
1722 
1723 	if (bitmap_only) {
1724 		if (!entry)
1725 			return NULL;
1726 		if (entry->bitmap)
1727 			return entry;
1728 
1729 		/*
1730 		 * bitmap entry and extent entry may share same offset,
1731 		 * in that case, bitmap entry comes after extent entry.
1732 		 */
1733 		n = rb_next(n);
1734 		if (!n)
1735 			return NULL;
1736 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1737 		if (entry->offset != offset)
1738 			return NULL;
1739 
1740 		WARN_ON(!entry->bitmap);
1741 		return entry;
1742 	} else if (entry) {
1743 		if (entry->bitmap) {
1744 			/*
1745 			 * if previous extent entry covers the offset,
1746 			 * we should return it instead of the bitmap entry
1747 			 */
1748 			n = rb_prev(&entry->offset_index);
1749 			if (n) {
1750 				prev = rb_entry(n, struct btrfs_free_space,
1751 						offset_index);
1752 				if (!prev->bitmap &&
1753 				    prev->offset + prev->bytes > offset)
1754 					entry = prev;
1755 			}
1756 		}
1757 		return entry;
1758 	}
1759 
1760 	if (!prev)
1761 		return NULL;
1762 
1763 	/* find last entry before the 'offset' */
1764 	entry = prev;
1765 	if (entry->offset > offset) {
1766 		n = rb_prev(&entry->offset_index);
1767 		if (n) {
1768 			entry = rb_entry(n, struct btrfs_free_space,
1769 					offset_index);
1770 			ASSERT(entry->offset <= offset);
1771 		} else {
1772 			if (fuzzy)
1773 				return entry;
1774 			else
1775 				return NULL;
1776 		}
1777 	}
1778 
1779 	if (entry->bitmap) {
1780 		n = rb_prev(&entry->offset_index);
1781 		if (n) {
1782 			prev = rb_entry(n, struct btrfs_free_space,
1783 					offset_index);
1784 			if (!prev->bitmap &&
1785 			    prev->offset + prev->bytes > offset)
1786 				return prev;
1787 		}
1788 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1789 			return entry;
1790 	} else if (entry->offset + entry->bytes > offset)
1791 		return entry;
1792 
1793 	if (!fuzzy)
1794 		return NULL;
1795 
1796 	while (1) {
1797 		n = rb_next(&entry->offset_index);
1798 		if (!n)
1799 			return NULL;
1800 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1801 		if (entry->bitmap) {
1802 			if (entry->offset + BITS_PER_BITMAP *
1803 			    ctl->unit > offset)
1804 				break;
1805 		} else {
1806 			if (entry->offset + entry->bytes > offset)
1807 				break;
1808 		}
1809 	}
1810 	return entry;
1811 }
1812 
1813 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1814 				     struct btrfs_free_space *info,
1815 				     bool update_stat)
1816 {
1817 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1818 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1819 	ctl->free_extents--;
1820 
1821 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1822 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1823 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1824 	}
1825 
1826 	if (update_stat)
1827 		ctl->free_space -= info->bytes;
1828 }
1829 
1830 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1831 			   struct btrfs_free_space *info)
1832 {
1833 	int ret = 0;
1834 
1835 	ASSERT(info->bytes || info->bitmap);
1836 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1837 				 &info->offset_index, (info->bitmap != NULL));
1838 	if (ret)
1839 		return ret;
1840 
1841 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1842 
1843 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1844 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1845 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1846 	}
1847 
1848 	ctl->free_space += info->bytes;
1849 	ctl->free_extents++;
1850 	return ret;
1851 }
1852 
1853 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1854 				struct btrfs_free_space *info)
1855 {
1856 	ASSERT(info->bitmap);
1857 
1858 	/*
1859 	 * If our entry is empty it's because we're on a cluster and we don't
1860 	 * want to re-link it into our ctl bytes index.
1861 	 */
1862 	if (RB_EMPTY_NODE(&info->bytes_index))
1863 		return;
1864 
1865 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1866 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1867 }
1868 
1869 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1870 				     struct btrfs_free_space *info,
1871 				     u64 offset, u64 bytes, bool update_stat)
1872 {
1873 	unsigned long start, count, end;
1874 	int extent_delta = -1;
1875 
1876 	start = offset_to_bit(info->offset, ctl->unit, offset);
1877 	count = bytes_to_bits(bytes, ctl->unit);
1878 	end = start + count;
1879 	ASSERT(end <= BITS_PER_BITMAP);
1880 
1881 	bitmap_clear(info->bitmap, start, count);
1882 
1883 	info->bytes -= bytes;
1884 	if (info->max_extent_size > ctl->unit)
1885 		info->max_extent_size = 0;
1886 
1887 	relink_bitmap_entry(ctl, info);
1888 
1889 	if (start && test_bit(start - 1, info->bitmap))
1890 		extent_delta++;
1891 
1892 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1893 		extent_delta++;
1894 
1895 	info->bitmap_extents += extent_delta;
1896 	if (!btrfs_free_space_trimmed(info)) {
1897 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1898 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1899 	}
1900 
1901 	if (update_stat)
1902 		ctl->free_space -= bytes;
1903 }
1904 
1905 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1906 			    struct btrfs_free_space *info, u64 offset,
1907 			    u64 bytes)
1908 {
1909 	unsigned long start, count, end;
1910 	int extent_delta = 1;
1911 
1912 	start = offset_to_bit(info->offset, ctl->unit, offset);
1913 	count = bytes_to_bits(bytes, ctl->unit);
1914 	end = start + count;
1915 	ASSERT(end <= BITS_PER_BITMAP);
1916 
1917 	bitmap_set(info->bitmap, start, count);
1918 
1919 	/*
1920 	 * We set some bytes, we have no idea what the max extent size is
1921 	 * anymore.
1922 	 */
1923 	info->max_extent_size = 0;
1924 	info->bytes += bytes;
1925 	ctl->free_space += bytes;
1926 
1927 	relink_bitmap_entry(ctl, info);
1928 
1929 	if (start && test_bit(start - 1, info->bitmap))
1930 		extent_delta--;
1931 
1932 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1933 		extent_delta--;
1934 
1935 	info->bitmap_extents += extent_delta;
1936 	if (!btrfs_free_space_trimmed(info)) {
1937 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1938 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1939 	}
1940 }
1941 
1942 /*
1943  * If we can not find suitable extent, we will use bytes to record
1944  * the size of the max extent.
1945  */
1946 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1947 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1948 			 u64 *bytes, bool for_alloc)
1949 {
1950 	unsigned long found_bits = 0;
1951 	unsigned long max_bits = 0;
1952 	unsigned long bits, i;
1953 	unsigned long next_zero;
1954 	unsigned long extent_bits;
1955 
1956 	/*
1957 	 * Skip searching the bitmap if we don't have a contiguous section that
1958 	 * is large enough for this allocation.
1959 	 */
1960 	if (for_alloc &&
1961 	    bitmap_info->max_extent_size &&
1962 	    bitmap_info->max_extent_size < *bytes) {
1963 		*bytes = bitmap_info->max_extent_size;
1964 		return -1;
1965 	}
1966 
1967 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1968 			  max_t(u64, *offset, bitmap_info->offset));
1969 	bits = bytes_to_bits(*bytes, ctl->unit);
1970 
1971 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1972 		if (for_alloc && bits == 1) {
1973 			found_bits = 1;
1974 			break;
1975 		}
1976 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1977 					       BITS_PER_BITMAP, i);
1978 		extent_bits = next_zero - i;
1979 		if (extent_bits >= bits) {
1980 			found_bits = extent_bits;
1981 			break;
1982 		} else if (extent_bits > max_bits) {
1983 			max_bits = extent_bits;
1984 		}
1985 		i = next_zero;
1986 	}
1987 
1988 	if (found_bits) {
1989 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1990 		*bytes = (u64)(found_bits) * ctl->unit;
1991 		return 0;
1992 	}
1993 
1994 	*bytes = (u64)(max_bits) * ctl->unit;
1995 	bitmap_info->max_extent_size = *bytes;
1996 	relink_bitmap_entry(ctl, bitmap_info);
1997 	return -1;
1998 }
1999 
2000 /* Cache the size of the max extent in bytes */
2001 static struct btrfs_free_space *
2002 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2003 		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2004 {
2005 	struct btrfs_free_space *entry;
2006 	struct rb_node *node;
2007 	u64 tmp;
2008 	u64 align_off;
2009 	int ret;
2010 
2011 	if (!ctl->free_space_offset.rb_node)
2012 		goto out;
2013 again:
2014 	if (use_bytes_index) {
2015 		node = rb_first_cached(&ctl->free_space_bytes);
2016 	} else {
2017 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2018 					   0, 1);
2019 		if (!entry)
2020 			goto out;
2021 		node = &entry->offset_index;
2022 	}
2023 
2024 	for (; node; node = rb_next(node)) {
2025 		if (use_bytes_index)
2026 			entry = rb_entry(node, struct btrfs_free_space,
2027 					 bytes_index);
2028 		else
2029 			entry = rb_entry(node, struct btrfs_free_space,
2030 					 offset_index);
2031 
2032 		/*
2033 		 * If we are using the bytes index then all subsequent entries
2034 		 * in this tree are going to be < bytes, so simply set the max
2035 		 * extent size and exit the loop.
2036 		 *
2037 		 * If we're using the offset index then we need to keep going
2038 		 * through the rest of the tree.
2039 		 */
2040 		if (entry->bytes < *bytes) {
2041 			*max_extent_size = max(get_max_extent_size(entry),
2042 					       *max_extent_size);
2043 			if (use_bytes_index)
2044 				break;
2045 			continue;
2046 		}
2047 
2048 		/* make sure the space returned is big enough
2049 		 * to match our requested alignment
2050 		 */
2051 		if (*bytes >= align) {
2052 			tmp = entry->offset - ctl->start + align - 1;
2053 			tmp = div64_u64(tmp, align);
2054 			tmp = tmp * align + ctl->start;
2055 			align_off = tmp - entry->offset;
2056 		} else {
2057 			align_off = 0;
2058 			tmp = entry->offset;
2059 		}
2060 
2061 		/*
2062 		 * We don't break here if we're using the bytes index because we
2063 		 * may have another entry that has the correct alignment that is
2064 		 * the right size, so we don't want to miss that possibility.
2065 		 * At worst this adds another loop through the logic, but if we
2066 		 * broke here we could prematurely ENOSPC.
2067 		 */
2068 		if (entry->bytes < *bytes + align_off) {
2069 			*max_extent_size = max(get_max_extent_size(entry),
2070 					       *max_extent_size);
2071 			continue;
2072 		}
2073 
2074 		if (entry->bitmap) {
2075 			struct rb_node *old_next = rb_next(node);
2076 			u64 size = *bytes;
2077 
2078 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2079 			if (!ret) {
2080 				*offset = tmp;
2081 				*bytes = size;
2082 				return entry;
2083 			} else {
2084 				*max_extent_size =
2085 					max(get_max_extent_size(entry),
2086 					    *max_extent_size);
2087 			}
2088 
2089 			/*
2090 			 * The bitmap may have gotten re-arranged in the space
2091 			 * index here because the max_extent_size may have been
2092 			 * updated.  Start from the beginning again if this
2093 			 * happened.
2094 			 */
2095 			if (use_bytes_index && old_next != rb_next(node))
2096 				goto again;
2097 			continue;
2098 		}
2099 
2100 		*offset = tmp;
2101 		*bytes = entry->bytes - align_off;
2102 		return entry;
2103 	}
2104 out:
2105 	return NULL;
2106 }
2107 
2108 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2109 			   struct btrfs_free_space *info, u64 offset)
2110 {
2111 	info->offset = offset_to_bitmap(ctl, offset);
2112 	info->bytes = 0;
2113 	info->bitmap_extents = 0;
2114 	INIT_LIST_HEAD(&info->list);
2115 	link_free_space(ctl, info);
2116 	ctl->total_bitmaps++;
2117 	recalculate_thresholds(ctl);
2118 }
2119 
2120 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2121 			struct btrfs_free_space *bitmap_info)
2122 {
2123 	/*
2124 	 * Normally when this is called, the bitmap is completely empty. However,
2125 	 * if we are blowing up the free space cache for one reason or another
2126 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2127 	 * we may leave stats on the table.
2128 	 */
2129 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2130 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2131 			bitmap_info->bitmap_extents;
2132 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2133 
2134 	}
2135 	unlink_free_space(ctl, bitmap_info, true);
2136 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2137 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2138 	ctl->total_bitmaps--;
2139 	recalculate_thresholds(ctl);
2140 }
2141 
2142 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2143 			      struct btrfs_free_space *bitmap_info,
2144 			      u64 *offset, u64 *bytes)
2145 {
2146 	u64 end;
2147 	u64 search_start, search_bytes;
2148 	int ret;
2149 
2150 again:
2151 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2152 
2153 	/*
2154 	 * We need to search for bits in this bitmap.  We could only cover some
2155 	 * of the extent in this bitmap thanks to how we add space, so we need
2156 	 * to search for as much as it as we can and clear that amount, and then
2157 	 * go searching for the next bit.
2158 	 */
2159 	search_start = *offset;
2160 	search_bytes = ctl->unit;
2161 	search_bytes = min(search_bytes, end - search_start + 1);
2162 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2163 			    false);
2164 	if (ret < 0 || search_start != *offset)
2165 		return -EINVAL;
2166 
2167 	/* We may have found more bits than what we need */
2168 	search_bytes = min(search_bytes, *bytes);
2169 
2170 	/* Cannot clear past the end of the bitmap */
2171 	search_bytes = min(search_bytes, end - search_start + 1);
2172 
2173 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2174 	*offset += search_bytes;
2175 	*bytes -= search_bytes;
2176 
2177 	if (*bytes) {
2178 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2179 		if (!bitmap_info->bytes)
2180 			free_bitmap(ctl, bitmap_info);
2181 
2182 		/*
2183 		 * no entry after this bitmap, but we still have bytes to
2184 		 * remove, so something has gone wrong.
2185 		 */
2186 		if (!next)
2187 			return -EINVAL;
2188 
2189 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2190 				       offset_index);
2191 
2192 		/*
2193 		 * if the next entry isn't a bitmap we need to return to let the
2194 		 * extent stuff do its work.
2195 		 */
2196 		if (!bitmap_info->bitmap)
2197 			return -EAGAIN;
2198 
2199 		/*
2200 		 * Ok the next item is a bitmap, but it may not actually hold
2201 		 * the information for the rest of this free space stuff, so
2202 		 * look for it, and if we don't find it return so we can try
2203 		 * everything over again.
2204 		 */
2205 		search_start = *offset;
2206 		search_bytes = ctl->unit;
2207 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2208 				    &search_bytes, false);
2209 		if (ret < 0 || search_start != *offset)
2210 			return -EAGAIN;
2211 
2212 		goto again;
2213 	} else if (!bitmap_info->bytes)
2214 		free_bitmap(ctl, bitmap_info);
2215 
2216 	return 0;
2217 }
2218 
2219 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2220 			       struct btrfs_free_space *info, u64 offset,
2221 			       u64 bytes, enum btrfs_trim_state trim_state)
2222 {
2223 	u64 bytes_to_set = 0;
2224 	u64 end;
2225 
2226 	/*
2227 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2228 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2229 	 */
2230 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2231 		if (btrfs_free_space_trimmed(info)) {
2232 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2233 				info->bitmap_extents;
2234 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2235 		}
2236 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2237 	}
2238 
2239 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2240 
2241 	bytes_to_set = min(end - offset, bytes);
2242 
2243 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2244 
2245 	return bytes_to_set;
2246 
2247 }
2248 
2249 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2250 		      struct btrfs_free_space *info)
2251 {
2252 	struct btrfs_block_group *block_group = ctl->block_group;
2253 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2254 	bool forced = false;
2255 
2256 #ifdef CONFIG_BTRFS_DEBUG
2257 	if (btrfs_should_fragment_free_space(block_group))
2258 		forced = true;
2259 #endif
2260 
2261 	/* This is a way to reclaim large regions from the bitmaps. */
2262 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2263 		return false;
2264 
2265 	/*
2266 	 * If we are below the extents threshold then we can add this as an
2267 	 * extent, and don't have to deal with the bitmap
2268 	 */
2269 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2270 		/*
2271 		 * If this block group has some small extents we don't want to
2272 		 * use up all of our free slots in the cache with them, we want
2273 		 * to reserve them to larger extents, however if we have plenty
2274 		 * of cache left then go ahead an dadd them, no sense in adding
2275 		 * the overhead of a bitmap if we don't have to.
2276 		 */
2277 		if (info->bytes <= fs_info->sectorsize * 8) {
2278 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2279 				return false;
2280 		} else {
2281 			return false;
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * The original block groups from mkfs can be really small, like 8
2287 	 * megabytes, so don't bother with a bitmap for those entries.  However
2288 	 * some block groups can be smaller than what a bitmap would cover but
2289 	 * are still large enough that they could overflow the 32k memory limit,
2290 	 * so allow those block groups to still be allowed to have a bitmap
2291 	 * entry.
2292 	 */
2293 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2294 		return false;
2295 
2296 	return true;
2297 }
2298 
2299 static const struct btrfs_free_space_op free_space_op = {
2300 	.use_bitmap		= use_bitmap,
2301 };
2302 
2303 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2304 			      struct btrfs_free_space *info)
2305 {
2306 	struct btrfs_free_space *bitmap_info;
2307 	struct btrfs_block_group *block_group = NULL;
2308 	int added = 0;
2309 	u64 bytes, offset, bytes_added;
2310 	enum btrfs_trim_state trim_state;
2311 	int ret;
2312 
2313 	bytes = info->bytes;
2314 	offset = info->offset;
2315 	trim_state = info->trim_state;
2316 
2317 	if (!ctl->op->use_bitmap(ctl, info))
2318 		return 0;
2319 
2320 	if (ctl->op == &free_space_op)
2321 		block_group = ctl->block_group;
2322 again:
2323 	/*
2324 	 * Since we link bitmaps right into the cluster we need to see if we
2325 	 * have a cluster here, and if so and it has our bitmap we need to add
2326 	 * the free space to that bitmap.
2327 	 */
2328 	if (block_group && !list_empty(&block_group->cluster_list)) {
2329 		struct btrfs_free_cluster *cluster;
2330 		struct rb_node *node;
2331 		struct btrfs_free_space *entry;
2332 
2333 		cluster = list_entry(block_group->cluster_list.next,
2334 				     struct btrfs_free_cluster,
2335 				     block_group_list);
2336 		spin_lock(&cluster->lock);
2337 		node = rb_first(&cluster->root);
2338 		if (!node) {
2339 			spin_unlock(&cluster->lock);
2340 			goto no_cluster_bitmap;
2341 		}
2342 
2343 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2344 		if (!entry->bitmap) {
2345 			spin_unlock(&cluster->lock);
2346 			goto no_cluster_bitmap;
2347 		}
2348 
2349 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2350 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2351 							  bytes, trim_state);
2352 			bytes -= bytes_added;
2353 			offset += bytes_added;
2354 		}
2355 		spin_unlock(&cluster->lock);
2356 		if (!bytes) {
2357 			ret = 1;
2358 			goto out;
2359 		}
2360 	}
2361 
2362 no_cluster_bitmap:
2363 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2364 					 1, 0);
2365 	if (!bitmap_info) {
2366 		ASSERT(added == 0);
2367 		goto new_bitmap;
2368 	}
2369 
2370 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2371 					  trim_state);
2372 	bytes -= bytes_added;
2373 	offset += bytes_added;
2374 	added = 0;
2375 
2376 	if (!bytes) {
2377 		ret = 1;
2378 		goto out;
2379 	} else
2380 		goto again;
2381 
2382 new_bitmap:
2383 	if (info && info->bitmap) {
2384 		add_new_bitmap(ctl, info, offset);
2385 		added = 1;
2386 		info = NULL;
2387 		goto again;
2388 	} else {
2389 		spin_unlock(&ctl->tree_lock);
2390 
2391 		/* no pre-allocated info, allocate a new one */
2392 		if (!info) {
2393 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2394 						 GFP_NOFS);
2395 			if (!info) {
2396 				spin_lock(&ctl->tree_lock);
2397 				ret = -ENOMEM;
2398 				goto out;
2399 			}
2400 		}
2401 
2402 		/* allocate the bitmap */
2403 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2404 						 GFP_NOFS);
2405 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2406 		spin_lock(&ctl->tree_lock);
2407 		if (!info->bitmap) {
2408 			ret = -ENOMEM;
2409 			goto out;
2410 		}
2411 		goto again;
2412 	}
2413 
2414 out:
2415 	if (info) {
2416 		if (info->bitmap)
2417 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2418 					info->bitmap);
2419 		kmem_cache_free(btrfs_free_space_cachep, info);
2420 	}
2421 
2422 	return ret;
2423 }
2424 
2425 /*
2426  * Free space merging rules:
2427  *  1) Merge trimmed areas together
2428  *  2) Let untrimmed areas coalesce with trimmed areas
2429  *  3) Always pull neighboring regions from bitmaps
2430  *
2431  * The above rules are for when we merge free space based on btrfs_trim_state.
2432  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2433  * same reason: to promote larger extent regions which makes life easier for
2434  * find_free_extent().  Rule 2 enables coalescing based on the common path
2435  * being returning free space from btrfs_finish_extent_commit().  So when free
2436  * space is trimmed, it will prevent aggregating trimmed new region and
2437  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2438  * and provide find_free_extent() with the largest extents possible hoping for
2439  * the reuse path.
2440  */
2441 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2442 			  struct btrfs_free_space *info, bool update_stat)
2443 {
2444 	struct btrfs_free_space *left_info = NULL;
2445 	struct btrfs_free_space *right_info;
2446 	bool merged = false;
2447 	u64 offset = info->offset;
2448 	u64 bytes = info->bytes;
2449 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2450 
2451 	/*
2452 	 * first we want to see if there is free space adjacent to the range we
2453 	 * are adding, if there is remove that struct and add a new one to
2454 	 * cover the entire range
2455 	 */
2456 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2457 	if (right_info && rb_prev(&right_info->offset_index))
2458 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2459 				     struct btrfs_free_space, offset_index);
2460 	else if (!right_info)
2461 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2462 
2463 	/* See try_merge_free_space() comment. */
2464 	if (right_info && !right_info->bitmap &&
2465 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2466 		unlink_free_space(ctl, right_info, update_stat);
2467 		info->bytes += right_info->bytes;
2468 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2469 		merged = true;
2470 	}
2471 
2472 	/* See try_merge_free_space() comment. */
2473 	if (left_info && !left_info->bitmap &&
2474 	    left_info->offset + left_info->bytes == offset &&
2475 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2476 		unlink_free_space(ctl, left_info, update_stat);
2477 		info->offset = left_info->offset;
2478 		info->bytes += left_info->bytes;
2479 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2480 		merged = true;
2481 	}
2482 
2483 	return merged;
2484 }
2485 
2486 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2487 				     struct btrfs_free_space *info,
2488 				     bool update_stat)
2489 {
2490 	struct btrfs_free_space *bitmap;
2491 	unsigned long i;
2492 	unsigned long j;
2493 	const u64 end = info->offset + info->bytes;
2494 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2495 	u64 bytes;
2496 
2497 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2498 	if (!bitmap)
2499 		return false;
2500 
2501 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2502 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2503 	if (j == i)
2504 		return false;
2505 	bytes = (j - i) * ctl->unit;
2506 	info->bytes += bytes;
2507 
2508 	/* See try_merge_free_space() comment. */
2509 	if (!btrfs_free_space_trimmed(bitmap))
2510 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2511 
2512 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2513 
2514 	if (!bitmap->bytes)
2515 		free_bitmap(ctl, bitmap);
2516 
2517 	return true;
2518 }
2519 
2520 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2521 				       struct btrfs_free_space *info,
2522 				       bool update_stat)
2523 {
2524 	struct btrfs_free_space *bitmap;
2525 	u64 bitmap_offset;
2526 	unsigned long i;
2527 	unsigned long j;
2528 	unsigned long prev_j;
2529 	u64 bytes;
2530 
2531 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2532 	/* If we're on a boundary, try the previous logical bitmap. */
2533 	if (bitmap_offset == info->offset) {
2534 		if (info->offset == 0)
2535 			return false;
2536 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2537 	}
2538 
2539 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2540 	if (!bitmap)
2541 		return false;
2542 
2543 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2544 	j = 0;
2545 	prev_j = (unsigned long)-1;
2546 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2547 		if (j > i)
2548 			break;
2549 		prev_j = j;
2550 	}
2551 	if (prev_j == i)
2552 		return false;
2553 
2554 	if (prev_j == (unsigned long)-1)
2555 		bytes = (i + 1) * ctl->unit;
2556 	else
2557 		bytes = (i - prev_j) * ctl->unit;
2558 
2559 	info->offset -= bytes;
2560 	info->bytes += bytes;
2561 
2562 	/* See try_merge_free_space() comment. */
2563 	if (!btrfs_free_space_trimmed(bitmap))
2564 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2565 
2566 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2567 
2568 	if (!bitmap->bytes)
2569 		free_bitmap(ctl, bitmap);
2570 
2571 	return true;
2572 }
2573 
2574 /*
2575  * We prefer always to allocate from extent entries, both for clustered and
2576  * non-clustered allocation requests. So when attempting to add a new extent
2577  * entry, try to see if there's adjacent free space in bitmap entries, and if
2578  * there is, migrate that space from the bitmaps to the extent.
2579  * Like this we get better chances of satisfying space allocation requests
2580  * because we attempt to satisfy them based on a single cache entry, and never
2581  * on 2 or more entries - even if the entries represent a contiguous free space
2582  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2583  * ends).
2584  */
2585 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2586 			      struct btrfs_free_space *info,
2587 			      bool update_stat)
2588 {
2589 	/*
2590 	 * Only work with disconnected entries, as we can change their offset,
2591 	 * and must be extent entries.
2592 	 */
2593 	ASSERT(!info->bitmap);
2594 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2595 
2596 	if (ctl->total_bitmaps > 0) {
2597 		bool stole_end;
2598 		bool stole_front = false;
2599 
2600 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2601 		if (ctl->total_bitmaps > 0)
2602 			stole_front = steal_from_bitmap_to_front(ctl, info,
2603 								 update_stat);
2604 
2605 		if (stole_end || stole_front)
2606 			try_merge_free_space(ctl, info, update_stat);
2607 	}
2608 }
2609 
2610 int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2611 			   u64 offset, u64 bytes,
2612 			   enum btrfs_trim_state trim_state)
2613 {
2614 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2615 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2616 	struct btrfs_free_space *info;
2617 	int ret = 0;
2618 	u64 filter_bytes = bytes;
2619 
2620 	ASSERT(!btrfs_is_zoned(fs_info));
2621 
2622 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2623 	if (!info)
2624 		return -ENOMEM;
2625 
2626 	info->offset = offset;
2627 	info->bytes = bytes;
2628 	info->trim_state = trim_state;
2629 	RB_CLEAR_NODE(&info->offset_index);
2630 	RB_CLEAR_NODE(&info->bytes_index);
2631 
2632 	spin_lock(&ctl->tree_lock);
2633 
2634 	if (try_merge_free_space(ctl, info, true))
2635 		goto link;
2636 
2637 	/*
2638 	 * There was no extent directly to the left or right of this new
2639 	 * extent then we know we're going to have to allocate a new extent, so
2640 	 * before we do that see if we need to drop this into a bitmap
2641 	 */
2642 	ret = insert_into_bitmap(ctl, info);
2643 	if (ret < 0) {
2644 		goto out;
2645 	} else if (ret) {
2646 		ret = 0;
2647 		goto out;
2648 	}
2649 link:
2650 	/*
2651 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2652 	 * going to add the new free space to existing bitmap entries - because
2653 	 * that would mean unnecessary work that would be reverted. Therefore
2654 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2655 	 */
2656 	steal_from_bitmap(ctl, info, true);
2657 
2658 	filter_bytes = max(filter_bytes, info->bytes);
2659 
2660 	ret = link_free_space(ctl, info);
2661 	if (ret)
2662 		kmem_cache_free(btrfs_free_space_cachep, info);
2663 out:
2664 	btrfs_discard_update_discardable(block_group);
2665 	spin_unlock(&ctl->tree_lock);
2666 
2667 	if (ret) {
2668 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2669 		ASSERT(ret != -EEXIST);
2670 	}
2671 
2672 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2673 		btrfs_discard_check_filter(block_group, filter_bytes);
2674 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2675 	}
2676 
2677 	return ret;
2678 }
2679 
2680 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2681 					u64 bytenr, u64 size, bool used)
2682 {
2683 	struct btrfs_space_info *sinfo = block_group->space_info;
2684 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2685 	u64 offset = bytenr - block_group->start;
2686 	u64 to_free, to_unusable;
2687 	int bg_reclaim_threshold = 0;
2688 	bool initial = (size == block_group->length);
2689 	u64 reclaimable_unusable;
2690 
2691 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2692 
2693 	if (!initial)
2694 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2695 
2696 	spin_lock(&ctl->tree_lock);
2697 	/* Count initial region as zone_unusable until it gets activated. */
2698 	if (!used)
2699 		to_free = size;
2700 	else if (initial &&
2701 		 test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &block_group->fs_info->flags) &&
2702 		 (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2703 		to_free = 0;
2704 	else if (initial)
2705 		to_free = block_group->zone_capacity;
2706 	else if (offset >= block_group->alloc_offset)
2707 		to_free = size;
2708 	else if (offset + size <= block_group->alloc_offset)
2709 		to_free = 0;
2710 	else
2711 		to_free = offset + size - block_group->alloc_offset;
2712 	to_unusable = size - to_free;
2713 
2714 	ctl->free_space += to_free;
2715 	/*
2716 	 * If the block group is read-only, we should account freed space into
2717 	 * bytes_readonly.
2718 	 */
2719 	if (!block_group->ro)
2720 		block_group->zone_unusable += to_unusable;
2721 	spin_unlock(&ctl->tree_lock);
2722 	if (!used) {
2723 		spin_lock(&block_group->lock);
2724 		block_group->alloc_offset -= size;
2725 		spin_unlock(&block_group->lock);
2726 	}
2727 
2728 	reclaimable_unusable = block_group->zone_unusable -
2729 			       (block_group->length - block_group->zone_capacity);
2730 	/* All the region is now unusable. Mark it as unused and reclaim */
2731 	if (block_group->zone_unusable == block_group->length &&
2732 	    block_group->alloc_offset) {
2733 		btrfs_mark_bg_unused(block_group);
2734 	} else if (bg_reclaim_threshold &&
2735 		   reclaimable_unusable >=
2736 		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2737 		btrfs_mark_bg_to_reclaim(block_group);
2738 	}
2739 
2740 	return 0;
2741 }
2742 
2743 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2744 			 u64 bytenr, u64 size)
2745 {
2746 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2747 
2748 	if (btrfs_is_zoned(block_group->fs_info))
2749 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2750 						    true);
2751 
2752 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2753 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2754 
2755 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2756 }
2757 
2758 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2759 				u64 bytenr, u64 size)
2760 {
2761 	if (btrfs_is_zoned(block_group->fs_info))
2762 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2763 						    false);
2764 
2765 	return btrfs_add_free_space(block_group, bytenr, size);
2766 }
2767 
2768 /*
2769  * This is a subtle distinction because when adding free space back in general,
2770  * we want it to be added as untrimmed for async. But in the case where we add
2771  * it on loading of a block group, we want to consider it trimmed.
2772  */
2773 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2774 				       u64 bytenr, u64 size)
2775 {
2776 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2777 
2778 	if (btrfs_is_zoned(block_group->fs_info))
2779 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2780 						    true);
2781 
2782 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2783 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2784 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2785 
2786 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2787 }
2788 
2789 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2790 			    u64 offset, u64 bytes)
2791 {
2792 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2793 	struct btrfs_free_space *info;
2794 	int ret;
2795 	bool re_search = false;
2796 
2797 	if (btrfs_is_zoned(block_group->fs_info)) {
2798 		/*
2799 		 * This can happen with conventional zones when replaying log.
2800 		 * Since the allocation info of tree-log nodes are not recorded
2801 		 * to the extent-tree, calculate_alloc_pointer() failed to
2802 		 * advance the allocation pointer after last allocated tree log
2803 		 * node blocks.
2804 		 *
2805 		 * This function is called from
2806 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2807 		 * Advance the pointer not to overwrite the tree-log nodes.
2808 		 */
2809 		if (block_group->start + block_group->alloc_offset <
2810 		    offset + bytes) {
2811 			block_group->alloc_offset =
2812 				offset + bytes - block_group->start;
2813 		}
2814 		return 0;
2815 	}
2816 
2817 	spin_lock(&ctl->tree_lock);
2818 
2819 again:
2820 	ret = 0;
2821 	if (!bytes)
2822 		goto out_lock;
2823 
2824 	info = tree_search_offset(ctl, offset, 0, 0);
2825 	if (!info) {
2826 		/*
2827 		 * oops didn't find an extent that matched the space we wanted
2828 		 * to remove, look for a bitmap instead
2829 		 */
2830 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2831 					  1, 0);
2832 		if (!info) {
2833 			/*
2834 			 * If we found a partial bit of our free space in a
2835 			 * bitmap but then couldn't find the other part this may
2836 			 * be a problem, so WARN about it.
2837 			 */
2838 			WARN_ON(re_search);
2839 			goto out_lock;
2840 		}
2841 	}
2842 
2843 	re_search = false;
2844 	if (!info->bitmap) {
2845 		unlink_free_space(ctl, info, true);
2846 		if (offset == info->offset) {
2847 			u64 to_free = min(bytes, info->bytes);
2848 
2849 			info->bytes -= to_free;
2850 			info->offset += to_free;
2851 			if (info->bytes) {
2852 				ret = link_free_space(ctl, info);
2853 				WARN_ON(ret);
2854 			} else {
2855 				kmem_cache_free(btrfs_free_space_cachep, info);
2856 			}
2857 
2858 			offset += to_free;
2859 			bytes -= to_free;
2860 			goto again;
2861 		} else {
2862 			u64 old_end = info->bytes + info->offset;
2863 
2864 			info->bytes = offset - info->offset;
2865 			ret = link_free_space(ctl, info);
2866 			WARN_ON(ret);
2867 			if (ret)
2868 				goto out_lock;
2869 
2870 			/* Not enough bytes in this entry to satisfy us */
2871 			if (old_end < offset + bytes) {
2872 				bytes -= old_end - offset;
2873 				offset = old_end;
2874 				goto again;
2875 			} else if (old_end == offset + bytes) {
2876 				/* all done */
2877 				goto out_lock;
2878 			}
2879 			spin_unlock(&ctl->tree_lock);
2880 
2881 			ret = __btrfs_add_free_space(block_group,
2882 						     offset + bytes,
2883 						     old_end - (offset + bytes),
2884 						     info->trim_state);
2885 			WARN_ON(ret);
2886 			goto out;
2887 		}
2888 	}
2889 
2890 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2891 	if (ret == -EAGAIN) {
2892 		re_search = true;
2893 		goto again;
2894 	}
2895 out_lock:
2896 	btrfs_discard_update_discardable(block_group);
2897 	spin_unlock(&ctl->tree_lock);
2898 out:
2899 	return ret;
2900 }
2901 
2902 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2903 			   u64 bytes)
2904 {
2905 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2906 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2907 	struct btrfs_free_space *info;
2908 	struct rb_node *n;
2909 	int count = 0;
2910 
2911 	/*
2912 	 * Zoned btrfs does not use free space tree and cluster. Just print
2913 	 * out the free space after the allocation offset.
2914 	 */
2915 	if (btrfs_is_zoned(fs_info)) {
2916 		btrfs_info(fs_info, "free space %llu active %d",
2917 			   block_group->zone_capacity - block_group->alloc_offset,
2918 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2919 				    &block_group->runtime_flags));
2920 		return;
2921 	}
2922 
2923 	spin_lock(&ctl->tree_lock);
2924 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2925 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2926 		if (info->bytes >= bytes && !block_group->ro)
2927 			count++;
2928 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2929 			   info->offset, info->bytes,
2930 		       (info->bitmap) ? "yes" : "no");
2931 	}
2932 	spin_unlock(&ctl->tree_lock);
2933 	btrfs_info(fs_info, "block group has cluster?: %s",
2934 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2935 	btrfs_info(fs_info,
2936 		   "%d blocks of free space at or bigger than bytes is", count);
2937 }
2938 
2939 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2940 			       struct btrfs_free_space_ctl *ctl)
2941 {
2942 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2943 
2944 	spin_lock_init(&ctl->tree_lock);
2945 	ctl->unit = fs_info->sectorsize;
2946 	ctl->start = block_group->start;
2947 	ctl->block_group = block_group;
2948 	ctl->op = &free_space_op;
2949 	ctl->free_space_bytes = RB_ROOT_CACHED;
2950 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2951 	mutex_init(&ctl->cache_writeout_mutex);
2952 
2953 	/*
2954 	 * we only want to have 32k of ram per block group for keeping
2955 	 * track of free space, and if we pass 1/2 of that we want to
2956 	 * start converting things over to using bitmaps
2957 	 */
2958 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2959 }
2960 
2961 /*
2962  * for a given cluster, put all of its extents back into the free
2963  * space cache.  If the block group passed doesn't match the block group
2964  * pointed to by the cluster, someone else raced in and freed the
2965  * cluster already.  In that case, we just return without changing anything
2966  */
2967 static void __btrfs_return_cluster_to_free_space(
2968 			     struct btrfs_block_group *block_group,
2969 			     struct btrfs_free_cluster *cluster)
2970 {
2971 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2972 	struct btrfs_free_space *entry;
2973 	struct rb_node *node;
2974 
2975 	spin_lock(&cluster->lock);
2976 	if (cluster->block_group != block_group) {
2977 		spin_unlock(&cluster->lock);
2978 		return;
2979 	}
2980 
2981 	cluster->block_group = NULL;
2982 	cluster->window_start = 0;
2983 	list_del_init(&cluster->block_group_list);
2984 
2985 	node = rb_first(&cluster->root);
2986 	while (node) {
2987 		bool bitmap;
2988 
2989 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2990 		node = rb_next(&entry->offset_index);
2991 		rb_erase(&entry->offset_index, &cluster->root);
2992 		RB_CLEAR_NODE(&entry->offset_index);
2993 
2994 		bitmap = (entry->bitmap != NULL);
2995 		if (!bitmap) {
2996 			/* Merging treats extents as if they were new */
2997 			if (!btrfs_free_space_trimmed(entry)) {
2998 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2999 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3000 					entry->bytes;
3001 			}
3002 
3003 			try_merge_free_space(ctl, entry, false);
3004 			steal_from_bitmap(ctl, entry, false);
3005 
3006 			/* As we insert directly, update these statistics */
3007 			if (!btrfs_free_space_trimmed(entry)) {
3008 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3009 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3010 					entry->bytes;
3011 			}
3012 		}
3013 		tree_insert_offset(&ctl->free_space_offset,
3014 				   entry->offset, &entry->offset_index, bitmap);
3015 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3016 			      entry_less);
3017 	}
3018 	cluster->root = RB_ROOT;
3019 	spin_unlock(&cluster->lock);
3020 	btrfs_put_block_group(block_group);
3021 }
3022 
3023 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3024 {
3025 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3026 	struct btrfs_free_cluster *cluster;
3027 	struct list_head *head;
3028 
3029 	spin_lock(&ctl->tree_lock);
3030 	while ((head = block_group->cluster_list.next) !=
3031 	       &block_group->cluster_list) {
3032 		cluster = list_entry(head, struct btrfs_free_cluster,
3033 				     block_group_list);
3034 
3035 		WARN_ON(cluster->block_group != block_group);
3036 		__btrfs_return_cluster_to_free_space(block_group, cluster);
3037 
3038 		cond_resched_lock(&ctl->tree_lock);
3039 	}
3040 	__btrfs_remove_free_space_cache(ctl);
3041 	btrfs_discard_update_discardable(block_group);
3042 	spin_unlock(&ctl->tree_lock);
3043 
3044 }
3045 
3046 /*
3047  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3048  */
3049 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3050 {
3051 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3052 	struct btrfs_free_space *info;
3053 	struct rb_node *node;
3054 	bool ret = true;
3055 
3056 	spin_lock(&ctl->tree_lock);
3057 	node = rb_first(&ctl->free_space_offset);
3058 
3059 	while (node) {
3060 		info = rb_entry(node, struct btrfs_free_space, offset_index);
3061 
3062 		if (!btrfs_free_space_trimmed(info)) {
3063 			ret = false;
3064 			break;
3065 		}
3066 
3067 		node = rb_next(node);
3068 	}
3069 
3070 	spin_unlock(&ctl->tree_lock);
3071 	return ret;
3072 }
3073 
3074 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3075 			       u64 offset, u64 bytes, u64 empty_size,
3076 			       u64 *max_extent_size)
3077 {
3078 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3079 	struct btrfs_discard_ctl *discard_ctl =
3080 					&block_group->fs_info->discard_ctl;
3081 	struct btrfs_free_space *entry = NULL;
3082 	u64 bytes_search = bytes + empty_size;
3083 	u64 ret = 0;
3084 	u64 align_gap = 0;
3085 	u64 align_gap_len = 0;
3086 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3087 	bool use_bytes_index = (offset == block_group->start);
3088 
3089 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3090 
3091 	spin_lock(&ctl->tree_lock);
3092 	entry = find_free_space(ctl, &offset, &bytes_search,
3093 				block_group->full_stripe_len, max_extent_size,
3094 				use_bytes_index);
3095 	if (!entry)
3096 		goto out;
3097 
3098 	ret = offset;
3099 	if (entry->bitmap) {
3100 		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3101 
3102 		if (!btrfs_free_space_trimmed(entry))
3103 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3104 
3105 		if (!entry->bytes)
3106 			free_bitmap(ctl, entry);
3107 	} else {
3108 		unlink_free_space(ctl, entry, true);
3109 		align_gap_len = offset - entry->offset;
3110 		align_gap = entry->offset;
3111 		align_gap_trim_state = entry->trim_state;
3112 
3113 		if (!btrfs_free_space_trimmed(entry))
3114 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3115 
3116 		entry->offset = offset + bytes;
3117 		WARN_ON(entry->bytes < bytes + align_gap_len);
3118 
3119 		entry->bytes -= bytes + align_gap_len;
3120 		if (!entry->bytes)
3121 			kmem_cache_free(btrfs_free_space_cachep, entry);
3122 		else
3123 			link_free_space(ctl, entry);
3124 	}
3125 out:
3126 	btrfs_discard_update_discardable(block_group);
3127 	spin_unlock(&ctl->tree_lock);
3128 
3129 	if (align_gap_len)
3130 		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3131 				       align_gap_trim_state);
3132 	return ret;
3133 }
3134 
3135 /*
3136  * given a cluster, put all of its extents back into the free space
3137  * cache.  If a block group is passed, this function will only free
3138  * a cluster that belongs to the passed block group.
3139  *
3140  * Otherwise, it'll get a reference on the block group pointed to by the
3141  * cluster and remove the cluster from it.
3142  */
3143 void btrfs_return_cluster_to_free_space(
3144 			       struct btrfs_block_group *block_group,
3145 			       struct btrfs_free_cluster *cluster)
3146 {
3147 	struct btrfs_free_space_ctl *ctl;
3148 
3149 	/* first, get a safe pointer to the block group */
3150 	spin_lock(&cluster->lock);
3151 	if (!block_group) {
3152 		block_group = cluster->block_group;
3153 		if (!block_group) {
3154 			spin_unlock(&cluster->lock);
3155 			return;
3156 		}
3157 	} else if (cluster->block_group != block_group) {
3158 		/* someone else has already freed it don't redo their work */
3159 		spin_unlock(&cluster->lock);
3160 		return;
3161 	}
3162 	btrfs_get_block_group(block_group);
3163 	spin_unlock(&cluster->lock);
3164 
3165 	ctl = block_group->free_space_ctl;
3166 
3167 	/* now return any extents the cluster had on it */
3168 	spin_lock(&ctl->tree_lock);
3169 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3170 	spin_unlock(&ctl->tree_lock);
3171 
3172 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3173 
3174 	/* finally drop our ref */
3175 	btrfs_put_block_group(block_group);
3176 }
3177 
3178 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3179 				   struct btrfs_free_cluster *cluster,
3180 				   struct btrfs_free_space *entry,
3181 				   u64 bytes, u64 min_start,
3182 				   u64 *max_extent_size)
3183 {
3184 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3185 	int err;
3186 	u64 search_start = cluster->window_start;
3187 	u64 search_bytes = bytes;
3188 	u64 ret = 0;
3189 
3190 	search_start = min_start;
3191 	search_bytes = bytes;
3192 
3193 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3194 	if (err) {
3195 		*max_extent_size = max(get_max_extent_size(entry),
3196 				       *max_extent_size);
3197 		return 0;
3198 	}
3199 
3200 	ret = search_start;
3201 	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3202 
3203 	return ret;
3204 }
3205 
3206 /*
3207  * given a cluster, try to allocate 'bytes' from it, returns 0
3208  * if it couldn't find anything suitably large, or a logical disk offset
3209  * if things worked out
3210  */
3211 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3212 			     struct btrfs_free_cluster *cluster, u64 bytes,
3213 			     u64 min_start, u64 *max_extent_size)
3214 {
3215 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3216 	struct btrfs_discard_ctl *discard_ctl =
3217 					&block_group->fs_info->discard_ctl;
3218 	struct btrfs_free_space *entry = NULL;
3219 	struct rb_node *node;
3220 	u64 ret = 0;
3221 
3222 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3223 
3224 	spin_lock(&cluster->lock);
3225 	if (bytes > cluster->max_size)
3226 		goto out;
3227 
3228 	if (cluster->block_group != block_group)
3229 		goto out;
3230 
3231 	node = rb_first(&cluster->root);
3232 	if (!node)
3233 		goto out;
3234 
3235 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3236 	while (1) {
3237 		if (entry->bytes < bytes)
3238 			*max_extent_size = max(get_max_extent_size(entry),
3239 					       *max_extent_size);
3240 
3241 		if (entry->bytes < bytes ||
3242 		    (!entry->bitmap && entry->offset < min_start)) {
3243 			node = rb_next(&entry->offset_index);
3244 			if (!node)
3245 				break;
3246 			entry = rb_entry(node, struct btrfs_free_space,
3247 					 offset_index);
3248 			continue;
3249 		}
3250 
3251 		if (entry->bitmap) {
3252 			ret = btrfs_alloc_from_bitmap(block_group,
3253 						      cluster, entry, bytes,
3254 						      cluster->window_start,
3255 						      max_extent_size);
3256 			if (ret == 0) {
3257 				node = rb_next(&entry->offset_index);
3258 				if (!node)
3259 					break;
3260 				entry = rb_entry(node, struct btrfs_free_space,
3261 						 offset_index);
3262 				continue;
3263 			}
3264 			cluster->window_start += bytes;
3265 		} else {
3266 			ret = entry->offset;
3267 
3268 			entry->offset += bytes;
3269 			entry->bytes -= bytes;
3270 		}
3271 
3272 		break;
3273 	}
3274 out:
3275 	spin_unlock(&cluster->lock);
3276 
3277 	if (!ret)
3278 		return 0;
3279 
3280 	spin_lock(&ctl->tree_lock);
3281 
3282 	if (!btrfs_free_space_trimmed(entry))
3283 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3284 
3285 	ctl->free_space -= bytes;
3286 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3287 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3288 
3289 	spin_lock(&cluster->lock);
3290 	if (entry->bytes == 0) {
3291 		rb_erase(&entry->offset_index, &cluster->root);
3292 		ctl->free_extents--;
3293 		if (entry->bitmap) {
3294 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3295 					entry->bitmap);
3296 			ctl->total_bitmaps--;
3297 			recalculate_thresholds(ctl);
3298 		} else if (!btrfs_free_space_trimmed(entry)) {
3299 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3300 		}
3301 		kmem_cache_free(btrfs_free_space_cachep, entry);
3302 	}
3303 
3304 	spin_unlock(&cluster->lock);
3305 	spin_unlock(&ctl->tree_lock);
3306 
3307 	return ret;
3308 }
3309 
3310 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3311 				struct btrfs_free_space *entry,
3312 				struct btrfs_free_cluster *cluster,
3313 				u64 offset, u64 bytes,
3314 				u64 cont1_bytes, u64 min_bytes)
3315 {
3316 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3317 	unsigned long next_zero;
3318 	unsigned long i;
3319 	unsigned long want_bits;
3320 	unsigned long min_bits;
3321 	unsigned long found_bits;
3322 	unsigned long max_bits = 0;
3323 	unsigned long start = 0;
3324 	unsigned long total_found = 0;
3325 	int ret;
3326 
3327 	i = offset_to_bit(entry->offset, ctl->unit,
3328 			  max_t(u64, offset, entry->offset));
3329 	want_bits = bytes_to_bits(bytes, ctl->unit);
3330 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3331 
3332 	/*
3333 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3334 	 * fragmented.
3335 	 */
3336 	if (entry->max_extent_size &&
3337 	    entry->max_extent_size < cont1_bytes)
3338 		return -ENOSPC;
3339 again:
3340 	found_bits = 0;
3341 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3342 		next_zero = find_next_zero_bit(entry->bitmap,
3343 					       BITS_PER_BITMAP, i);
3344 		if (next_zero - i >= min_bits) {
3345 			found_bits = next_zero - i;
3346 			if (found_bits > max_bits)
3347 				max_bits = found_bits;
3348 			break;
3349 		}
3350 		if (next_zero - i > max_bits)
3351 			max_bits = next_zero - i;
3352 		i = next_zero;
3353 	}
3354 
3355 	if (!found_bits) {
3356 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3357 		return -ENOSPC;
3358 	}
3359 
3360 	if (!total_found) {
3361 		start = i;
3362 		cluster->max_size = 0;
3363 	}
3364 
3365 	total_found += found_bits;
3366 
3367 	if (cluster->max_size < found_bits * ctl->unit)
3368 		cluster->max_size = found_bits * ctl->unit;
3369 
3370 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3371 		i = next_zero + 1;
3372 		goto again;
3373 	}
3374 
3375 	cluster->window_start = start * ctl->unit + entry->offset;
3376 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3377 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3378 
3379 	/*
3380 	 * We need to know if we're currently on the normal space index when we
3381 	 * manipulate the bitmap so that we know we need to remove and re-insert
3382 	 * it into the space_index tree.  Clear the bytes_index node here so the
3383 	 * bitmap manipulation helpers know not to mess with the space_index
3384 	 * until this bitmap entry is added back into the normal cache.
3385 	 */
3386 	RB_CLEAR_NODE(&entry->bytes_index);
3387 
3388 	ret = tree_insert_offset(&cluster->root, entry->offset,
3389 				 &entry->offset_index, 1);
3390 	ASSERT(!ret); /* -EEXIST; Logic error */
3391 
3392 	trace_btrfs_setup_cluster(block_group, cluster,
3393 				  total_found * ctl->unit, 1);
3394 	return 0;
3395 }
3396 
3397 /*
3398  * This searches the block group for just extents to fill the cluster with.
3399  * Try to find a cluster with at least bytes total bytes, at least one
3400  * extent of cont1_bytes, and other clusters of at least min_bytes.
3401  */
3402 static noinline int
3403 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3404 			struct btrfs_free_cluster *cluster,
3405 			struct list_head *bitmaps, u64 offset, u64 bytes,
3406 			u64 cont1_bytes, u64 min_bytes)
3407 {
3408 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3409 	struct btrfs_free_space *first = NULL;
3410 	struct btrfs_free_space *entry = NULL;
3411 	struct btrfs_free_space *last;
3412 	struct rb_node *node;
3413 	u64 window_free;
3414 	u64 max_extent;
3415 	u64 total_size = 0;
3416 
3417 	entry = tree_search_offset(ctl, offset, 0, 1);
3418 	if (!entry)
3419 		return -ENOSPC;
3420 
3421 	/*
3422 	 * We don't want bitmaps, so just move along until we find a normal
3423 	 * extent entry.
3424 	 */
3425 	while (entry->bitmap || entry->bytes < min_bytes) {
3426 		if (entry->bitmap && list_empty(&entry->list))
3427 			list_add_tail(&entry->list, bitmaps);
3428 		node = rb_next(&entry->offset_index);
3429 		if (!node)
3430 			return -ENOSPC;
3431 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3432 	}
3433 
3434 	window_free = entry->bytes;
3435 	max_extent = entry->bytes;
3436 	first = entry;
3437 	last = entry;
3438 
3439 	for (node = rb_next(&entry->offset_index); node;
3440 	     node = rb_next(&entry->offset_index)) {
3441 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3442 
3443 		if (entry->bitmap) {
3444 			if (list_empty(&entry->list))
3445 				list_add_tail(&entry->list, bitmaps);
3446 			continue;
3447 		}
3448 
3449 		if (entry->bytes < min_bytes)
3450 			continue;
3451 
3452 		last = entry;
3453 		window_free += entry->bytes;
3454 		if (entry->bytes > max_extent)
3455 			max_extent = entry->bytes;
3456 	}
3457 
3458 	if (window_free < bytes || max_extent < cont1_bytes)
3459 		return -ENOSPC;
3460 
3461 	cluster->window_start = first->offset;
3462 
3463 	node = &first->offset_index;
3464 
3465 	/*
3466 	 * now we've found our entries, pull them out of the free space
3467 	 * cache and put them into the cluster rbtree
3468 	 */
3469 	do {
3470 		int ret;
3471 
3472 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3473 		node = rb_next(&entry->offset_index);
3474 		if (entry->bitmap || entry->bytes < min_bytes)
3475 			continue;
3476 
3477 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3478 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3479 		ret = tree_insert_offset(&cluster->root, entry->offset,
3480 					 &entry->offset_index, 0);
3481 		total_size += entry->bytes;
3482 		ASSERT(!ret); /* -EEXIST; Logic error */
3483 	} while (node && entry != last);
3484 
3485 	cluster->max_size = max_extent;
3486 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3487 	return 0;
3488 }
3489 
3490 /*
3491  * This specifically looks for bitmaps that may work in the cluster, we assume
3492  * that we have already failed to find extents that will work.
3493  */
3494 static noinline int
3495 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3496 		     struct btrfs_free_cluster *cluster,
3497 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3498 		     u64 cont1_bytes, u64 min_bytes)
3499 {
3500 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3501 	struct btrfs_free_space *entry = NULL;
3502 	int ret = -ENOSPC;
3503 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3504 
3505 	if (ctl->total_bitmaps == 0)
3506 		return -ENOSPC;
3507 
3508 	/*
3509 	 * The bitmap that covers offset won't be in the list unless offset
3510 	 * is just its start offset.
3511 	 */
3512 	if (!list_empty(bitmaps))
3513 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3514 
3515 	if (!entry || entry->offset != bitmap_offset) {
3516 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3517 		if (entry && list_empty(&entry->list))
3518 			list_add(&entry->list, bitmaps);
3519 	}
3520 
3521 	list_for_each_entry(entry, bitmaps, list) {
3522 		if (entry->bytes < bytes)
3523 			continue;
3524 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3525 					   bytes, cont1_bytes, min_bytes);
3526 		if (!ret)
3527 			return 0;
3528 	}
3529 
3530 	/*
3531 	 * The bitmaps list has all the bitmaps that record free space
3532 	 * starting after offset, so no more search is required.
3533 	 */
3534 	return -ENOSPC;
3535 }
3536 
3537 /*
3538  * here we try to find a cluster of blocks in a block group.  The goal
3539  * is to find at least bytes+empty_size.
3540  * We might not find them all in one contiguous area.
3541  *
3542  * returns zero and sets up cluster if things worked out, otherwise
3543  * it returns -enospc
3544  */
3545 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3546 			     struct btrfs_free_cluster *cluster,
3547 			     u64 offset, u64 bytes, u64 empty_size)
3548 {
3549 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3550 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3551 	struct btrfs_free_space *entry, *tmp;
3552 	LIST_HEAD(bitmaps);
3553 	u64 min_bytes;
3554 	u64 cont1_bytes;
3555 	int ret;
3556 
3557 	/*
3558 	 * Choose the minimum extent size we'll require for this
3559 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3560 	 * For metadata, allow allocates with smaller extents.  For
3561 	 * data, keep it dense.
3562 	 */
3563 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3564 		cont1_bytes = bytes + empty_size;
3565 		min_bytes = cont1_bytes;
3566 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3567 		cont1_bytes = bytes;
3568 		min_bytes = fs_info->sectorsize;
3569 	} else {
3570 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3571 		min_bytes = fs_info->sectorsize;
3572 	}
3573 
3574 	spin_lock(&ctl->tree_lock);
3575 
3576 	/*
3577 	 * If we know we don't have enough space to make a cluster don't even
3578 	 * bother doing all the work to try and find one.
3579 	 */
3580 	if (ctl->free_space < bytes) {
3581 		spin_unlock(&ctl->tree_lock);
3582 		return -ENOSPC;
3583 	}
3584 
3585 	spin_lock(&cluster->lock);
3586 
3587 	/* someone already found a cluster, hooray */
3588 	if (cluster->block_group) {
3589 		ret = 0;
3590 		goto out;
3591 	}
3592 
3593 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3594 				 min_bytes);
3595 
3596 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3597 				      bytes + empty_size,
3598 				      cont1_bytes, min_bytes);
3599 	if (ret)
3600 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3601 					   offset, bytes + empty_size,
3602 					   cont1_bytes, min_bytes);
3603 
3604 	/* Clear our temporary list */
3605 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3606 		list_del_init(&entry->list);
3607 
3608 	if (!ret) {
3609 		btrfs_get_block_group(block_group);
3610 		list_add_tail(&cluster->block_group_list,
3611 			      &block_group->cluster_list);
3612 		cluster->block_group = block_group;
3613 	} else {
3614 		trace_btrfs_failed_cluster_setup(block_group);
3615 	}
3616 out:
3617 	spin_unlock(&cluster->lock);
3618 	spin_unlock(&ctl->tree_lock);
3619 
3620 	return ret;
3621 }
3622 
3623 /*
3624  * simple code to zero out a cluster
3625  */
3626 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3627 {
3628 	spin_lock_init(&cluster->lock);
3629 	spin_lock_init(&cluster->refill_lock);
3630 	cluster->root = RB_ROOT;
3631 	cluster->max_size = 0;
3632 	cluster->fragmented = false;
3633 	INIT_LIST_HEAD(&cluster->block_group_list);
3634 	cluster->block_group = NULL;
3635 }
3636 
3637 static int do_trimming(struct btrfs_block_group *block_group,
3638 		       u64 *total_trimmed, u64 start, u64 bytes,
3639 		       u64 reserved_start, u64 reserved_bytes,
3640 		       enum btrfs_trim_state reserved_trim_state,
3641 		       struct btrfs_trim_range *trim_entry)
3642 {
3643 	struct btrfs_space_info *space_info = block_group->space_info;
3644 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3645 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3646 	int ret;
3647 	int update = 0;
3648 	const u64 end = start + bytes;
3649 	const u64 reserved_end = reserved_start + reserved_bytes;
3650 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3651 	u64 trimmed = 0;
3652 
3653 	spin_lock(&space_info->lock);
3654 	spin_lock(&block_group->lock);
3655 	if (!block_group->ro) {
3656 		block_group->reserved += reserved_bytes;
3657 		space_info->bytes_reserved += reserved_bytes;
3658 		update = 1;
3659 	}
3660 	spin_unlock(&block_group->lock);
3661 	spin_unlock(&space_info->lock);
3662 
3663 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3664 	if (!ret) {
3665 		*total_trimmed += trimmed;
3666 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3667 	}
3668 
3669 	mutex_lock(&ctl->cache_writeout_mutex);
3670 	if (reserved_start < start)
3671 		__btrfs_add_free_space(block_group, reserved_start,
3672 				       start - reserved_start,
3673 				       reserved_trim_state);
3674 	if (start + bytes < reserved_start + reserved_bytes)
3675 		__btrfs_add_free_space(block_group, end, reserved_end - end,
3676 				       reserved_trim_state);
3677 	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3678 	list_del(&trim_entry->list);
3679 	mutex_unlock(&ctl->cache_writeout_mutex);
3680 
3681 	if (update) {
3682 		spin_lock(&space_info->lock);
3683 		spin_lock(&block_group->lock);
3684 		if (block_group->ro)
3685 			space_info->bytes_readonly += reserved_bytes;
3686 		block_group->reserved -= reserved_bytes;
3687 		space_info->bytes_reserved -= reserved_bytes;
3688 		spin_unlock(&block_group->lock);
3689 		spin_unlock(&space_info->lock);
3690 	}
3691 
3692 	return ret;
3693 }
3694 
3695 /*
3696  * If @async is set, then we will trim 1 region and return.
3697  */
3698 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3699 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3700 			  bool async)
3701 {
3702 	struct btrfs_discard_ctl *discard_ctl =
3703 					&block_group->fs_info->discard_ctl;
3704 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3705 	struct btrfs_free_space *entry;
3706 	struct rb_node *node;
3707 	int ret = 0;
3708 	u64 extent_start;
3709 	u64 extent_bytes;
3710 	enum btrfs_trim_state extent_trim_state;
3711 	u64 bytes;
3712 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3713 
3714 	while (start < end) {
3715 		struct btrfs_trim_range trim_entry;
3716 
3717 		mutex_lock(&ctl->cache_writeout_mutex);
3718 		spin_lock(&ctl->tree_lock);
3719 
3720 		if (ctl->free_space < minlen)
3721 			goto out_unlock;
3722 
3723 		entry = tree_search_offset(ctl, start, 0, 1);
3724 		if (!entry)
3725 			goto out_unlock;
3726 
3727 		/* Skip bitmaps and if async, already trimmed entries */
3728 		while (entry->bitmap ||
3729 		       (async && btrfs_free_space_trimmed(entry))) {
3730 			node = rb_next(&entry->offset_index);
3731 			if (!node)
3732 				goto out_unlock;
3733 			entry = rb_entry(node, struct btrfs_free_space,
3734 					 offset_index);
3735 		}
3736 
3737 		if (entry->offset >= end)
3738 			goto out_unlock;
3739 
3740 		extent_start = entry->offset;
3741 		extent_bytes = entry->bytes;
3742 		extent_trim_state = entry->trim_state;
3743 		if (async) {
3744 			start = entry->offset;
3745 			bytes = entry->bytes;
3746 			if (bytes < minlen) {
3747 				spin_unlock(&ctl->tree_lock);
3748 				mutex_unlock(&ctl->cache_writeout_mutex);
3749 				goto next;
3750 			}
3751 			unlink_free_space(ctl, entry, true);
3752 			/*
3753 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3754 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3755 			 * X when we come back around.  So trim it now.
3756 			 */
3757 			if (max_discard_size &&
3758 			    bytes >= (max_discard_size +
3759 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3760 				bytes = max_discard_size;
3761 				extent_bytes = max_discard_size;
3762 				entry->offset += max_discard_size;
3763 				entry->bytes -= max_discard_size;
3764 				link_free_space(ctl, entry);
3765 			} else {
3766 				kmem_cache_free(btrfs_free_space_cachep, entry);
3767 			}
3768 		} else {
3769 			start = max(start, extent_start);
3770 			bytes = min(extent_start + extent_bytes, end) - start;
3771 			if (bytes < minlen) {
3772 				spin_unlock(&ctl->tree_lock);
3773 				mutex_unlock(&ctl->cache_writeout_mutex);
3774 				goto next;
3775 			}
3776 
3777 			unlink_free_space(ctl, entry, true);
3778 			kmem_cache_free(btrfs_free_space_cachep, entry);
3779 		}
3780 
3781 		spin_unlock(&ctl->tree_lock);
3782 		trim_entry.start = extent_start;
3783 		trim_entry.bytes = extent_bytes;
3784 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3785 		mutex_unlock(&ctl->cache_writeout_mutex);
3786 
3787 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3788 				  extent_start, extent_bytes, extent_trim_state,
3789 				  &trim_entry);
3790 		if (ret) {
3791 			block_group->discard_cursor = start + bytes;
3792 			break;
3793 		}
3794 next:
3795 		start += bytes;
3796 		block_group->discard_cursor = start;
3797 		if (async && *total_trimmed)
3798 			break;
3799 
3800 		if (fatal_signal_pending(current)) {
3801 			ret = -ERESTARTSYS;
3802 			break;
3803 		}
3804 
3805 		cond_resched();
3806 	}
3807 
3808 	return ret;
3809 
3810 out_unlock:
3811 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3812 	spin_unlock(&ctl->tree_lock);
3813 	mutex_unlock(&ctl->cache_writeout_mutex);
3814 
3815 	return ret;
3816 }
3817 
3818 /*
3819  * If we break out of trimming a bitmap prematurely, we should reset the
3820  * trimming bit.  In a rather contrieved case, it's possible to race here so
3821  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3822  *
3823  * start = start of bitmap
3824  * end = near end of bitmap
3825  *
3826  * Thread 1:			Thread 2:
3827  * trim_bitmaps(start)
3828  *				trim_bitmaps(end)
3829  *				end_trimming_bitmap()
3830  * reset_trimming_bitmap()
3831  */
3832 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3833 {
3834 	struct btrfs_free_space *entry;
3835 
3836 	spin_lock(&ctl->tree_lock);
3837 	entry = tree_search_offset(ctl, offset, 1, 0);
3838 	if (entry) {
3839 		if (btrfs_free_space_trimmed(entry)) {
3840 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3841 				entry->bitmap_extents;
3842 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3843 		}
3844 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3845 	}
3846 
3847 	spin_unlock(&ctl->tree_lock);
3848 }
3849 
3850 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3851 				struct btrfs_free_space *entry)
3852 {
3853 	if (btrfs_free_space_trimming_bitmap(entry)) {
3854 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3855 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3856 			entry->bitmap_extents;
3857 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3858 	}
3859 }
3860 
3861 /*
3862  * If @async is set, then we will trim 1 region and return.
3863  */
3864 static int trim_bitmaps(struct btrfs_block_group *block_group,
3865 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3866 			u64 maxlen, bool async)
3867 {
3868 	struct btrfs_discard_ctl *discard_ctl =
3869 					&block_group->fs_info->discard_ctl;
3870 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3871 	struct btrfs_free_space *entry;
3872 	int ret = 0;
3873 	int ret2;
3874 	u64 bytes;
3875 	u64 offset = offset_to_bitmap(ctl, start);
3876 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3877 
3878 	while (offset < end) {
3879 		bool next_bitmap = false;
3880 		struct btrfs_trim_range trim_entry;
3881 
3882 		mutex_lock(&ctl->cache_writeout_mutex);
3883 		spin_lock(&ctl->tree_lock);
3884 
3885 		if (ctl->free_space < minlen) {
3886 			block_group->discard_cursor =
3887 				btrfs_block_group_end(block_group);
3888 			spin_unlock(&ctl->tree_lock);
3889 			mutex_unlock(&ctl->cache_writeout_mutex);
3890 			break;
3891 		}
3892 
3893 		entry = tree_search_offset(ctl, offset, 1, 0);
3894 		/*
3895 		 * Bitmaps are marked trimmed lossily now to prevent constant
3896 		 * discarding of the same bitmap (the reason why we are bound
3897 		 * by the filters).  So, retrim the block group bitmaps when we
3898 		 * are preparing to punt to the unused_bgs list.  This uses
3899 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3900 		 * which is the only discard index which sets minlen to 0.
3901 		 */
3902 		if (!entry || (async && minlen && start == offset &&
3903 			       btrfs_free_space_trimmed(entry))) {
3904 			spin_unlock(&ctl->tree_lock);
3905 			mutex_unlock(&ctl->cache_writeout_mutex);
3906 			next_bitmap = true;
3907 			goto next;
3908 		}
3909 
3910 		/*
3911 		 * Async discard bitmap trimming begins at by setting the start
3912 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3913 		 * start of the bitmap.  This lets us know we are fully
3914 		 * scanning the bitmap rather than only some portion of it.
3915 		 */
3916 		if (start == offset)
3917 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3918 
3919 		bytes = minlen;
3920 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3921 		if (ret2 || start >= end) {
3922 			/*
3923 			 * We lossily consider a bitmap trimmed if we only skip
3924 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3925 			 */
3926 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3927 				end_trimming_bitmap(ctl, entry);
3928 			else
3929 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3930 			spin_unlock(&ctl->tree_lock);
3931 			mutex_unlock(&ctl->cache_writeout_mutex);
3932 			next_bitmap = true;
3933 			goto next;
3934 		}
3935 
3936 		/*
3937 		 * We already trimmed a region, but are using the locking above
3938 		 * to reset the trim_state.
3939 		 */
3940 		if (async && *total_trimmed) {
3941 			spin_unlock(&ctl->tree_lock);
3942 			mutex_unlock(&ctl->cache_writeout_mutex);
3943 			goto out;
3944 		}
3945 
3946 		bytes = min(bytes, end - start);
3947 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3948 			spin_unlock(&ctl->tree_lock);
3949 			mutex_unlock(&ctl->cache_writeout_mutex);
3950 			goto next;
3951 		}
3952 
3953 		/*
3954 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3955 		 * If X < @minlen, we won't trim X when we come back around.
3956 		 * So trim it now.  We differ here from trimming extents as we
3957 		 * don't keep individual state per bit.
3958 		 */
3959 		if (async &&
3960 		    max_discard_size &&
3961 		    bytes > (max_discard_size + minlen))
3962 			bytes = max_discard_size;
3963 
3964 		bitmap_clear_bits(ctl, entry, start, bytes, true);
3965 		if (entry->bytes == 0)
3966 			free_bitmap(ctl, entry);
3967 
3968 		spin_unlock(&ctl->tree_lock);
3969 		trim_entry.start = start;
3970 		trim_entry.bytes = bytes;
3971 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3972 		mutex_unlock(&ctl->cache_writeout_mutex);
3973 
3974 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3975 				  start, bytes, 0, &trim_entry);
3976 		if (ret) {
3977 			reset_trimming_bitmap(ctl, offset);
3978 			block_group->discard_cursor =
3979 				btrfs_block_group_end(block_group);
3980 			break;
3981 		}
3982 next:
3983 		if (next_bitmap) {
3984 			offset += BITS_PER_BITMAP * ctl->unit;
3985 			start = offset;
3986 		} else {
3987 			start += bytes;
3988 		}
3989 		block_group->discard_cursor = start;
3990 
3991 		if (fatal_signal_pending(current)) {
3992 			if (start != offset)
3993 				reset_trimming_bitmap(ctl, offset);
3994 			ret = -ERESTARTSYS;
3995 			break;
3996 		}
3997 
3998 		cond_resched();
3999 	}
4000 
4001 	if (offset >= end)
4002 		block_group->discard_cursor = end;
4003 
4004 out:
4005 	return ret;
4006 }
4007 
4008 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4009 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4010 {
4011 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4012 	int ret;
4013 	u64 rem = 0;
4014 
4015 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4016 
4017 	*trimmed = 0;
4018 
4019 	spin_lock(&block_group->lock);
4020 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4021 		spin_unlock(&block_group->lock);
4022 		return 0;
4023 	}
4024 	btrfs_freeze_block_group(block_group);
4025 	spin_unlock(&block_group->lock);
4026 
4027 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4028 	if (ret)
4029 		goto out;
4030 
4031 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4032 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4033 	/* If we ended in the middle of a bitmap, reset the trimming flag */
4034 	if (rem)
4035 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4036 out:
4037 	btrfs_unfreeze_block_group(block_group);
4038 	return ret;
4039 }
4040 
4041 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4042 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4043 				   bool async)
4044 {
4045 	int ret;
4046 
4047 	*trimmed = 0;
4048 
4049 	spin_lock(&block_group->lock);
4050 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4051 		spin_unlock(&block_group->lock);
4052 		return 0;
4053 	}
4054 	btrfs_freeze_block_group(block_group);
4055 	spin_unlock(&block_group->lock);
4056 
4057 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4058 	btrfs_unfreeze_block_group(block_group);
4059 
4060 	return ret;
4061 }
4062 
4063 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4064 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4065 				   u64 maxlen, bool async)
4066 {
4067 	int ret;
4068 
4069 	*trimmed = 0;
4070 
4071 	spin_lock(&block_group->lock);
4072 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4073 		spin_unlock(&block_group->lock);
4074 		return 0;
4075 	}
4076 	btrfs_freeze_block_group(block_group);
4077 	spin_unlock(&block_group->lock);
4078 
4079 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4080 			   async);
4081 
4082 	btrfs_unfreeze_block_group(block_group);
4083 
4084 	return ret;
4085 }
4086 
4087 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4088 {
4089 	return btrfs_super_cache_generation(fs_info->super_copy);
4090 }
4091 
4092 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4093 				       struct btrfs_trans_handle *trans)
4094 {
4095 	struct btrfs_block_group *block_group;
4096 	struct rb_node *node;
4097 	int ret = 0;
4098 
4099 	btrfs_info(fs_info, "cleaning free space cache v1");
4100 
4101 	node = rb_first_cached(&fs_info->block_group_cache_tree);
4102 	while (node) {
4103 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4104 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4105 		if (ret)
4106 			goto out;
4107 		node = rb_next(node);
4108 	}
4109 out:
4110 	return ret;
4111 }
4112 
4113 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4114 {
4115 	struct btrfs_trans_handle *trans;
4116 	int ret;
4117 
4118 	/*
4119 	 * update_super_roots will appropriately set or unset
4120 	 * super_copy->cache_generation based on SPACE_CACHE and
4121 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4122 	 * transaction commit whether we are enabling space cache v1 and don't
4123 	 * have any other work to do, or are disabling it and removing free
4124 	 * space inodes.
4125 	 */
4126 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4127 	if (IS_ERR(trans))
4128 		return PTR_ERR(trans);
4129 
4130 	if (!active) {
4131 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4132 		ret = cleanup_free_space_cache_v1(fs_info, trans);
4133 		if (ret) {
4134 			btrfs_abort_transaction(trans, ret);
4135 			btrfs_end_transaction(trans);
4136 			goto out;
4137 		}
4138 	}
4139 
4140 	ret = btrfs_commit_transaction(trans);
4141 out:
4142 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4143 
4144 	return ret;
4145 }
4146 
4147 int __init btrfs_free_space_init(void)
4148 {
4149 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4150 			sizeof(struct btrfs_free_space), 0,
4151 			SLAB_MEM_SPREAD, NULL);
4152 	if (!btrfs_free_space_cachep)
4153 		return -ENOMEM;
4154 
4155 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4156 							PAGE_SIZE, PAGE_SIZE,
4157 							SLAB_MEM_SPREAD, NULL);
4158 	if (!btrfs_free_space_bitmap_cachep) {
4159 		kmem_cache_destroy(btrfs_free_space_cachep);
4160 		return -ENOMEM;
4161 	}
4162 
4163 	return 0;
4164 }
4165 
4166 void __cold btrfs_free_space_exit(void)
4167 {
4168 	kmem_cache_destroy(btrfs_free_space_cachep);
4169 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4170 }
4171 
4172 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4173 /*
4174  * Use this if you need to make a bitmap or extent entry specifically, it
4175  * doesn't do any of the merging that add_free_space does, this acts a lot like
4176  * how the free space cache loading stuff works, so you can get really weird
4177  * configurations.
4178  */
4179 int test_add_free_space_entry(struct btrfs_block_group *cache,
4180 			      u64 offset, u64 bytes, bool bitmap)
4181 {
4182 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4183 	struct btrfs_free_space *info = NULL, *bitmap_info;
4184 	void *map = NULL;
4185 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4186 	u64 bytes_added;
4187 	int ret;
4188 
4189 again:
4190 	if (!info) {
4191 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4192 		if (!info)
4193 			return -ENOMEM;
4194 	}
4195 
4196 	if (!bitmap) {
4197 		spin_lock(&ctl->tree_lock);
4198 		info->offset = offset;
4199 		info->bytes = bytes;
4200 		info->max_extent_size = 0;
4201 		ret = link_free_space(ctl, info);
4202 		spin_unlock(&ctl->tree_lock);
4203 		if (ret)
4204 			kmem_cache_free(btrfs_free_space_cachep, info);
4205 		return ret;
4206 	}
4207 
4208 	if (!map) {
4209 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4210 		if (!map) {
4211 			kmem_cache_free(btrfs_free_space_cachep, info);
4212 			return -ENOMEM;
4213 		}
4214 	}
4215 
4216 	spin_lock(&ctl->tree_lock);
4217 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4218 					 1, 0);
4219 	if (!bitmap_info) {
4220 		info->bitmap = map;
4221 		map = NULL;
4222 		add_new_bitmap(ctl, info, offset);
4223 		bitmap_info = info;
4224 		info = NULL;
4225 	}
4226 
4227 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4228 					  trim_state);
4229 
4230 	bytes -= bytes_added;
4231 	offset += bytes_added;
4232 	spin_unlock(&ctl->tree_lock);
4233 
4234 	if (bytes)
4235 		goto again;
4236 
4237 	if (info)
4238 		kmem_cache_free(btrfs_free_space_cachep, info);
4239 	if (map)
4240 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4241 	return 0;
4242 }
4243 
4244 /*
4245  * Checks to see if the given range is in the free space cache.  This is really
4246  * just used to check the absence of space, so if there is free space in the
4247  * range at all we will return 1.
4248  */
4249 int test_check_exists(struct btrfs_block_group *cache,
4250 		      u64 offset, u64 bytes)
4251 {
4252 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4253 	struct btrfs_free_space *info;
4254 	int ret = 0;
4255 
4256 	spin_lock(&ctl->tree_lock);
4257 	info = tree_search_offset(ctl, offset, 0, 0);
4258 	if (!info) {
4259 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4260 					  1, 0);
4261 		if (!info)
4262 			goto out;
4263 	}
4264 
4265 have_info:
4266 	if (info->bitmap) {
4267 		u64 bit_off, bit_bytes;
4268 		struct rb_node *n;
4269 		struct btrfs_free_space *tmp;
4270 
4271 		bit_off = offset;
4272 		bit_bytes = ctl->unit;
4273 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4274 		if (!ret) {
4275 			if (bit_off == offset) {
4276 				ret = 1;
4277 				goto out;
4278 			} else if (bit_off > offset &&
4279 				   offset + bytes > bit_off) {
4280 				ret = 1;
4281 				goto out;
4282 			}
4283 		}
4284 
4285 		n = rb_prev(&info->offset_index);
4286 		while (n) {
4287 			tmp = rb_entry(n, struct btrfs_free_space,
4288 				       offset_index);
4289 			if (tmp->offset + tmp->bytes < offset)
4290 				break;
4291 			if (offset + bytes < tmp->offset) {
4292 				n = rb_prev(&tmp->offset_index);
4293 				continue;
4294 			}
4295 			info = tmp;
4296 			goto have_info;
4297 		}
4298 
4299 		n = rb_next(&info->offset_index);
4300 		while (n) {
4301 			tmp = rb_entry(n, struct btrfs_free_space,
4302 				       offset_index);
4303 			if (offset + bytes < tmp->offset)
4304 				break;
4305 			if (tmp->offset + tmp->bytes < offset) {
4306 				n = rb_next(&tmp->offset_index);
4307 				continue;
4308 			}
4309 			info = tmp;
4310 			goto have_info;
4311 		}
4312 
4313 		ret = 0;
4314 		goto out;
4315 	}
4316 
4317 	if (info->offset == offset) {
4318 		ret = 1;
4319 		goto out;
4320 	}
4321 
4322 	if (offset > info->offset && offset < info->offset + info->bytes)
4323 		ret = 1;
4324 out:
4325 	spin_unlock(&ctl->tree_lock);
4326 	return ret;
4327 }
4328 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4329