1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "ctree.h" 15 #include "free-space-cache.h" 16 #include "transaction.h" 17 #include "disk-io.h" 18 #include "extent_io.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "space-info.h" 22 #include "delalloc-space.h" 23 #include "block-group.h" 24 25 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 26 #define MAX_CACHE_BYTES_PER_GIG SZ_32K 27 28 struct btrfs_trim_range { 29 u64 start; 30 u64 bytes; 31 struct list_head list; 32 }; 33 34 static int link_free_space(struct btrfs_free_space_ctl *ctl, 35 struct btrfs_free_space *info); 36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *info); 38 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 39 struct btrfs_trans_handle *trans, 40 struct btrfs_io_ctl *io_ctl, 41 struct btrfs_path *path); 42 43 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 44 struct btrfs_path *path, 45 u64 offset) 46 { 47 struct btrfs_fs_info *fs_info = root->fs_info; 48 struct btrfs_key key; 49 struct btrfs_key location; 50 struct btrfs_disk_key disk_key; 51 struct btrfs_free_space_header *header; 52 struct extent_buffer *leaf; 53 struct inode *inode = NULL; 54 unsigned nofs_flag; 55 int ret; 56 57 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 58 key.offset = offset; 59 key.type = 0; 60 61 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 62 if (ret < 0) 63 return ERR_PTR(ret); 64 if (ret > 0) { 65 btrfs_release_path(path); 66 return ERR_PTR(-ENOENT); 67 } 68 69 leaf = path->nodes[0]; 70 header = btrfs_item_ptr(leaf, path->slots[0], 71 struct btrfs_free_space_header); 72 btrfs_free_space_key(leaf, header, &disk_key); 73 btrfs_disk_key_to_cpu(&location, &disk_key); 74 btrfs_release_path(path); 75 76 /* 77 * We are often under a trans handle at this point, so we need to make 78 * sure NOFS is set to keep us from deadlocking. 79 */ 80 nofs_flag = memalloc_nofs_save(); 81 inode = btrfs_iget_path(fs_info->sb, &location, root, path); 82 btrfs_release_path(path); 83 memalloc_nofs_restore(nofs_flag); 84 if (IS_ERR(inode)) 85 return inode; 86 87 mapping_set_gfp_mask(inode->i_mapping, 88 mapping_gfp_constraint(inode->i_mapping, 89 ~(__GFP_FS | __GFP_HIGHMEM))); 90 91 return inode; 92 } 93 94 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 95 struct btrfs_path *path) 96 { 97 struct btrfs_fs_info *fs_info = block_group->fs_info; 98 struct inode *inode = NULL; 99 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 100 101 spin_lock(&block_group->lock); 102 if (block_group->inode) 103 inode = igrab(block_group->inode); 104 spin_unlock(&block_group->lock); 105 if (inode) 106 return inode; 107 108 inode = __lookup_free_space_inode(fs_info->tree_root, path, 109 block_group->start); 110 if (IS_ERR(inode)) 111 return inode; 112 113 spin_lock(&block_group->lock); 114 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 115 btrfs_info(fs_info, "Old style space inode found, converting."); 116 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 117 BTRFS_INODE_NODATACOW; 118 block_group->disk_cache_state = BTRFS_DC_CLEAR; 119 } 120 121 if (!block_group->iref) { 122 block_group->inode = igrab(inode); 123 block_group->iref = 1; 124 } 125 spin_unlock(&block_group->lock); 126 127 return inode; 128 } 129 130 static int __create_free_space_inode(struct btrfs_root *root, 131 struct btrfs_trans_handle *trans, 132 struct btrfs_path *path, 133 u64 ino, u64 offset) 134 { 135 struct btrfs_key key; 136 struct btrfs_disk_key disk_key; 137 struct btrfs_free_space_header *header; 138 struct btrfs_inode_item *inode_item; 139 struct extent_buffer *leaf; 140 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 141 int ret; 142 143 ret = btrfs_insert_empty_inode(trans, root, path, ino); 144 if (ret) 145 return ret; 146 147 /* We inline crc's for the free disk space cache */ 148 if (ino != BTRFS_FREE_INO_OBJECTID) 149 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 150 151 leaf = path->nodes[0]; 152 inode_item = btrfs_item_ptr(leaf, path->slots[0], 153 struct btrfs_inode_item); 154 btrfs_item_key(leaf, &disk_key, path->slots[0]); 155 memzero_extent_buffer(leaf, (unsigned long)inode_item, 156 sizeof(*inode_item)); 157 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 158 btrfs_set_inode_size(leaf, inode_item, 0); 159 btrfs_set_inode_nbytes(leaf, inode_item, 0); 160 btrfs_set_inode_uid(leaf, inode_item, 0); 161 btrfs_set_inode_gid(leaf, inode_item, 0); 162 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 163 btrfs_set_inode_flags(leaf, inode_item, flags); 164 btrfs_set_inode_nlink(leaf, inode_item, 1); 165 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 166 btrfs_set_inode_block_group(leaf, inode_item, offset); 167 btrfs_mark_buffer_dirty(leaf); 168 btrfs_release_path(path); 169 170 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 171 key.offset = offset; 172 key.type = 0; 173 ret = btrfs_insert_empty_item(trans, root, path, &key, 174 sizeof(struct btrfs_free_space_header)); 175 if (ret < 0) { 176 btrfs_release_path(path); 177 return ret; 178 } 179 180 leaf = path->nodes[0]; 181 header = btrfs_item_ptr(leaf, path->slots[0], 182 struct btrfs_free_space_header); 183 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 184 btrfs_set_free_space_key(leaf, header, &disk_key); 185 btrfs_mark_buffer_dirty(leaf); 186 btrfs_release_path(path); 187 188 return 0; 189 } 190 191 int create_free_space_inode(struct btrfs_trans_handle *trans, 192 struct btrfs_block_group *block_group, 193 struct btrfs_path *path) 194 { 195 int ret; 196 u64 ino; 197 198 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino); 199 if (ret < 0) 200 return ret; 201 202 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 203 ino, block_group->start); 204 } 205 206 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 207 struct btrfs_block_rsv *rsv) 208 { 209 u64 needed_bytes; 210 int ret; 211 212 /* 1 for slack space, 1 for updating the inode */ 213 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 214 btrfs_calc_metadata_size(fs_info, 1); 215 216 spin_lock(&rsv->lock); 217 if (rsv->reserved < needed_bytes) 218 ret = -ENOSPC; 219 else 220 ret = 0; 221 spin_unlock(&rsv->lock); 222 return ret; 223 } 224 225 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 226 struct btrfs_block_group *block_group, 227 struct inode *inode) 228 { 229 struct btrfs_root *root = BTRFS_I(inode)->root; 230 int ret = 0; 231 bool locked = false; 232 233 if (block_group) { 234 struct btrfs_path *path = btrfs_alloc_path(); 235 236 if (!path) { 237 ret = -ENOMEM; 238 goto fail; 239 } 240 locked = true; 241 mutex_lock(&trans->transaction->cache_write_mutex); 242 if (!list_empty(&block_group->io_list)) { 243 list_del_init(&block_group->io_list); 244 245 btrfs_wait_cache_io(trans, block_group, path); 246 btrfs_put_block_group(block_group); 247 } 248 249 /* 250 * now that we've truncated the cache away, its no longer 251 * setup or written 252 */ 253 spin_lock(&block_group->lock); 254 block_group->disk_cache_state = BTRFS_DC_CLEAR; 255 spin_unlock(&block_group->lock); 256 btrfs_free_path(path); 257 } 258 259 btrfs_i_size_write(BTRFS_I(inode), 0); 260 truncate_pagecache(inode, 0); 261 262 /* 263 * We skip the throttling logic for free space cache inodes, so we don't 264 * need to check for -EAGAIN. 265 */ 266 ret = btrfs_truncate_inode_items(trans, root, inode, 267 0, BTRFS_EXTENT_DATA_KEY); 268 if (ret) 269 goto fail; 270 271 ret = btrfs_update_inode(trans, root, inode); 272 273 fail: 274 if (locked) 275 mutex_unlock(&trans->transaction->cache_write_mutex); 276 if (ret) 277 btrfs_abort_transaction(trans, ret); 278 279 return ret; 280 } 281 282 static void readahead_cache(struct inode *inode) 283 { 284 struct file_ra_state *ra; 285 unsigned long last_index; 286 287 ra = kzalloc(sizeof(*ra), GFP_NOFS); 288 if (!ra) 289 return; 290 291 file_ra_state_init(ra, inode->i_mapping); 292 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 293 294 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 295 296 kfree(ra); 297 } 298 299 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 300 int write) 301 { 302 int num_pages; 303 int check_crcs = 0; 304 305 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 306 307 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) 308 check_crcs = 1; 309 310 /* Make sure we can fit our crcs and generation into the first page */ 311 if (write && check_crcs && 312 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 313 return -ENOSPC; 314 315 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 316 317 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 318 if (!io_ctl->pages) 319 return -ENOMEM; 320 321 io_ctl->num_pages = num_pages; 322 io_ctl->fs_info = btrfs_sb(inode->i_sb); 323 io_ctl->check_crcs = check_crcs; 324 io_ctl->inode = inode; 325 326 return 0; 327 } 328 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 329 330 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 331 { 332 kfree(io_ctl->pages); 333 io_ctl->pages = NULL; 334 } 335 336 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 337 { 338 if (io_ctl->cur) { 339 io_ctl->cur = NULL; 340 io_ctl->orig = NULL; 341 } 342 } 343 344 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 345 { 346 ASSERT(io_ctl->index < io_ctl->num_pages); 347 io_ctl->page = io_ctl->pages[io_ctl->index++]; 348 io_ctl->cur = page_address(io_ctl->page); 349 io_ctl->orig = io_ctl->cur; 350 io_ctl->size = PAGE_SIZE; 351 if (clear) 352 clear_page(io_ctl->cur); 353 } 354 355 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 356 { 357 int i; 358 359 io_ctl_unmap_page(io_ctl); 360 361 for (i = 0; i < io_ctl->num_pages; i++) { 362 if (io_ctl->pages[i]) { 363 ClearPageChecked(io_ctl->pages[i]); 364 unlock_page(io_ctl->pages[i]); 365 put_page(io_ctl->pages[i]); 366 } 367 } 368 } 369 370 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, 371 int uptodate) 372 { 373 struct page *page; 374 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 375 int i; 376 377 for (i = 0; i < io_ctl->num_pages; i++) { 378 page = find_or_create_page(inode->i_mapping, i, mask); 379 if (!page) { 380 io_ctl_drop_pages(io_ctl); 381 return -ENOMEM; 382 } 383 io_ctl->pages[i] = page; 384 if (uptodate && !PageUptodate(page)) { 385 btrfs_readpage(NULL, page); 386 lock_page(page); 387 if (page->mapping != inode->i_mapping) { 388 btrfs_err(BTRFS_I(inode)->root->fs_info, 389 "free space cache page truncated"); 390 io_ctl_drop_pages(io_ctl); 391 return -EIO; 392 } 393 if (!PageUptodate(page)) { 394 btrfs_err(BTRFS_I(inode)->root->fs_info, 395 "error reading free space cache"); 396 io_ctl_drop_pages(io_ctl); 397 return -EIO; 398 } 399 } 400 } 401 402 for (i = 0; i < io_ctl->num_pages; i++) { 403 clear_page_dirty_for_io(io_ctl->pages[i]); 404 set_page_extent_mapped(io_ctl->pages[i]); 405 } 406 407 return 0; 408 } 409 410 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 411 { 412 __le64 *val; 413 414 io_ctl_map_page(io_ctl, 1); 415 416 /* 417 * Skip the csum areas. If we don't check crcs then we just have a 418 * 64bit chunk at the front of the first page. 419 */ 420 if (io_ctl->check_crcs) { 421 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 422 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 423 } else { 424 io_ctl->cur += sizeof(u64); 425 io_ctl->size -= sizeof(u64) * 2; 426 } 427 428 val = io_ctl->cur; 429 *val = cpu_to_le64(generation); 430 io_ctl->cur += sizeof(u64); 431 } 432 433 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 434 { 435 __le64 *gen; 436 437 /* 438 * Skip the crc area. If we don't check crcs then we just have a 64bit 439 * chunk at the front of the first page. 440 */ 441 if (io_ctl->check_crcs) { 442 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 443 io_ctl->size -= sizeof(u64) + 444 (sizeof(u32) * io_ctl->num_pages); 445 } else { 446 io_ctl->cur += sizeof(u64); 447 io_ctl->size -= sizeof(u64) * 2; 448 } 449 450 gen = io_ctl->cur; 451 if (le64_to_cpu(*gen) != generation) { 452 btrfs_err_rl(io_ctl->fs_info, 453 "space cache generation (%llu) does not match inode (%llu)", 454 *gen, generation); 455 io_ctl_unmap_page(io_ctl); 456 return -EIO; 457 } 458 io_ctl->cur += sizeof(u64); 459 return 0; 460 } 461 462 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 463 { 464 u32 *tmp; 465 u32 crc = ~(u32)0; 466 unsigned offset = 0; 467 468 if (!io_ctl->check_crcs) { 469 io_ctl_unmap_page(io_ctl); 470 return; 471 } 472 473 if (index == 0) 474 offset = sizeof(u32) * io_ctl->num_pages; 475 476 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 477 btrfs_crc32c_final(crc, (u8 *)&crc); 478 io_ctl_unmap_page(io_ctl); 479 tmp = page_address(io_ctl->pages[0]); 480 tmp += index; 481 *tmp = crc; 482 } 483 484 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 485 { 486 u32 *tmp, val; 487 u32 crc = ~(u32)0; 488 unsigned offset = 0; 489 490 if (!io_ctl->check_crcs) { 491 io_ctl_map_page(io_ctl, 0); 492 return 0; 493 } 494 495 if (index == 0) 496 offset = sizeof(u32) * io_ctl->num_pages; 497 498 tmp = page_address(io_ctl->pages[0]); 499 tmp += index; 500 val = *tmp; 501 502 io_ctl_map_page(io_ctl, 0); 503 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 504 btrfs_crc32c_final(crc, (u8 *)&crc); 505 if (val != crc) { 506 btrfs_err_rl(io_ctl->fs_info, 507 "csum mismatch on free space cache"); 508 io_ctl_unmap_page(io_ctl); 509 return -EIO; 510 } 511 512 return 0; 513 } 514 515 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 516 void *bitmap) 517 { 518 struct btrfs_free_space_entry *entry; 519 520 if (!io_ctl->cur) 521 return -ENOSPC; 522 523 entry = io_ctl->cur; 524 entry->offset = cpu_to_le64(offset); 525 entry->bytes = cpu_to_le64(bytes); 526 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 527 BTRFS_FREE_SPACE_EXTENT; 528 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 529 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 530 531 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 532 return 0; 533 534 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 535 536 /* No more pages to map */ 537 if (io_ctl->index >= io_ctl->num_pages) 538 return 0; 539 540 /* map the next page */ 541 io_ctl_map_page(io_ctl, 1); 542 return 0; 543 } 544 545 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 546 { 547 if (!io_ctl->cur) 548 return -ENOSPC; 549 550 /* 551 * If we aren't at the start of the current page, unmap this one and 552 * map the next one if there is any left. 553 */ 554 if (io_ctl->cur != io_ctl->orig) { 555 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 556 if (io_ctl->index >= io_ctl->num_pages) 557 return -ENOSPC; 558 io_ctl_map_page(io_ctl, 0); 559 } 560 561 copy_page(io_ctl->cur, bitmap); 562 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 563 if (io_ctl->index < io_ctl->num_pages) 564 io_ctl_map_page(io_ctl, 0); 565 return 0; 566 } 567 568 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 569 { 570 /* 571 * If we're not on the boundary we know we've modified the page and we 572 * need to crc the page. 573 */ 574 if (io_ctl->cur != io_ctl->orig) 575 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 576 else 577 io_ctl_unmap_page(io_ctl); 578 579 while (io_ctl->index < io_ctl->num_pages) { 580 io_ctl_map_page(io_ctl, 1); 581 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 582 } 583 } 584 585 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 586 struct btrfs_free_space *entry, u8 *type) 587 { 588 struct btrfs_free_space_entry *e; 589 int ret; 590 591 if (!io_ctl->cur) { 592 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 593 if (ret) 594 return ret; 595 } 596 597 e = io_ctl->cur; 598 entry->offset = le64_to_cpu(e->offset); 599 entry->bytes = le64_to_cpu(e->bytes); 600 *type = e->type; 601 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 602 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 603 604 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 605 return 0; 606 607 io_ctl_unmap_page(io_ctl); 608 609 return 0; 610 } 611 612 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 613 struct btrfs_free_space *entry) 614 { 615 int ret; 616 617 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 618 if (ret) 619 return ret; 620 621 copy_page(entry->bitmap, io_ctl->cur); 622 io_ctl_unmap_page(io_ctl); 623 624 return 0; 625 } 626 627 /* 628 * Since we attach pinned extents after the fact we can have contiguous sections 629 * of free space that are split up in entries. This poses a problem with the 630 * tree logging stuff since it could have allocated across what appears to be 2 631 * entries since we would have merged the entries when adding the pinned extents 632 * back to the free space cache. So run through the space cache that we just 633 * loaded and merge contiguous entries. This will make the log replay stuff not 634 * blow up and it will make for nicer allocator behavior. 635 */ 636 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 637 { 638 struct btrfs_free_space *e, *prev = NULL; 639 struct rb_node *n; 640 641 again: 642 spin_lock(&ctl->tree_lock); 643 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 644 e = rb_entry(n, struct btrfs_free_space, offset_index); 645 if (!prev) 646 goto next; 647 if (e->bitmap || prev->bitmap) 648 goto next; 649 if (prev->offset + prev->bytes == e->offset) { 650 unlink_free_space(ctl, prev); 651 unlink_free_space(ctl, e); 652 prev->bytes += e->bytes; 653 kmem_cache_free(btrfs_free_space_cachep, e); 654 link_free_space(ctl, prev); 655 prev = NULL; 656 spin_unlock(&ctl->tree_lock); 657 goto again; 658 } 659 next: 660 prev = e; 661 } 662 spin_unlock(&ctl->tree_lock); 663 } 664 665 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 666 struct btrfs_free_space_ctl *ctl, 667 struct btrfs_path *path, u64 offset) 668 { 669 struct btrfs_fs_info *fs_info = root->fs_info; 670 struct btrfs_free_space_header *header; 671 struct extent_buffer *leaf; 672 struct btrfs_io_ctl io_ctl; 673 struct btrfs_key key; 674 struct btrfs_free_space *e, *n; 675 LIST_HEAD(bitmaps); 676 u64 num_entries; 677 u64 num_bitmaps; 678 u64 generation; 679 u8 type; 680 int ret = 0; 681 682 /* Nothing in the space cache, goodbye */ 683 if (!i_size_read(inode)) 684 return 0; 685 686 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 687 key.offset = offset; 688 key.type = 0; 689 690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 691 if (ret < 0) 692 return 0; 693 else if (ret > 0) { 694 btrfs_release_path(path); 695 return 0; 696 } 697 698 ret = -1; 699 700 leaf = path->nodes[0]; 701 header = btrfs_item_ptr(leaf, path->slots[0], 702 struct btrfs_free_space_header); 703 num_entries = btrfs_free_space_entries(leaf, header); 704 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 705 generation = btrfs_free_space_generation(leaf, header); 706 btrfs_release_path(path); 707 708 if (!BTRFS_I(inode)->generation) { 709 btrfs_info(fs_info, 710 "the free space cache file (%llu) is invalid, skip it", 711 offset); 712 return 0; 713 } 714 715 if (BTRFS_I(inode)->generation != generation) { 716 btrfs_err(fs_info, 717 "free space inode generation (%llu) did not match free space cache generation (%llu)", 718 BTRFS_I(inode)->generation, generation); 719 return 0; 720 } 721 722 if (!num_entries) 723 return 0; 724 725 ret = io_ctl_init(&io_ctl, inode, 0); 726 if (ret) 727 return ret; 728 729 readahead_cache(inode); 730 731 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 732 if (ret) 733 goto out; 734 735 ret = io_ctl_check_crc(&io_ctl, 0); 736 if (ret) 737 goto free_cache; 738 739 ret = io_ctl_check_generation(&io_ctl, generation); 740 if (ret) 741 goto free_cache; 742 743 while (num_entries) { 744 e = kmem_cache_zalloc(btrfs_free_space_cachep, 745 GFP_NOFS); 746 if (!e) 747 goto free_cache; 748 749 ret = io_ctl_read_entry(&io_ctl, e, &type); 750 if (ret) { 751 kmem_cache_free(btrfs_free_space_cachep, e); 752 goto free_cache; 753 } 754 755 if (!e->bytes) { 756 kmem_cache_free(btrfs_free_space_cachep, e); 757 goto free_cache; 758 } 759 760 if (type == BTRFS_FREE_SPACE_EXTENT) { 761 spin_lock(&ctl->tree_lock); 762 ret = link_free_space(ctl, e); 763 spin_unlock(&ctl->tree_lock); 764 if (ret) { 765 btrfs_err(fs_info, 766 "Duplicate entries in free space cache, dumping"); 767 kmem_cache_free(btrfs_free_space_cachep, e); 768 goto free_cache; 769 } 770 } else { 771 ASSERT(num_bitmaps); 772 num_bitmaps--; 773 e->bitmap = kmem_cache_zalloc( 774 btrfs_free_space_bitmap_cachep, GFP_NOFS); 775 if (!e->bitmap) { 776 kmem_cache_free( 777 btrfs_free_space_cachep, e); 778 goto free_cache; 779 } 780 spin_lock(&ctl->tree_lock); 781 ret = link_free_space(ctl, e); 782 ctl->total_bitmaps++; 783 ctl->op->recalc_thresholds(ctl); 784 spin_unlock(&ctl->tree_lock); 785 if (ret) { 786 btrfs_err(fs_info, 787 "Duplicate entries in free space cache, dumping"); 788 kmem_cache_free(btrfs_free_space_cachep, e); 789 goto free_cache; 790 } 791 list_add_tail(&e->list, &bitmaps); 792 } 793 794 num_entries--; 795 } 796 797 io_ctl_unmap_page(&io_ctl); 798 799 /* 800 * We add the bitmaps at the end of the entries in order that 801 * the bitmap entries are added to the cache. 802 */ 803 list_for_each_entry_safe(e, n, &bitmaps, list) { 804 list_del_init(&e->list); 805 ret = io_ctl_read_bitmap(&io_ctl, e); 806 if (ret) 807 goto free_cache; 808 } 809 810 io_ctl_drop_pages(&io_ctl); 811 merge_space_tree(ctl); 812 ret = 1; 813 out: 814 io_ctl_free(&io_ctl); 815 return ret; 816 free_cache: 817 io_ctl_drop_pages(&io_ctl); 818 __btrfs_remove_free_space_cache(ctl); 819 goto out; 820 } 821 822 int load_free_space_cache(struct btrfs_block_group *block_group) 823 { 824 struct btrfs_fs_info *fs_info = block_group->fs_info; 825 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 826 struct inode *inode; 827 struct btrfs_path *path; 828 int ret = 0; 829 bool matched; 830 u64 used = block_group->used; 831 832 /* 833 * If this block group has been marked to be cleared for one reason or 834 * another then we can't trust the on disk cache, so just return. 835 */ 836 spin_lock(&block_group->lock); 837 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 838 spin_unlock(&block_group->lock); 839 return 0; 840 } 841 spin_unlock(&block_group->lock); 842 843 path = btrfs_alloc_path(); 844 if (!path) 845 return 0; 846 path->search_commit_root = 1; 847 path->skip_locking = 1; 848 849 /* 850 * We must pass a path with search_commit_root set to btrfs_iget in 851 * order to avoid a deadlock when allocating extents for the tree root. 852 * 853 * When we are COWing an extent buffer from the tree root, when looking 854 * for a free extent, at extent-tree.c:find_free_extent(), we can find 855 * block group without its free space cache loaded. When we find one 856 * we must load its space cache which requires reading its free space 857 * cache's inode item from the root tree. If this inode item is located 858 * in the same leaf that we started COWing before, then we end up in 859 * deadlock on the extent buffer (trying to read lock it when we 860 * previously write locked it). 861 * 862 * It's safe to read the inode item using the commit root because 863 * block groups, once loaded, stay in memory forever (until they are 864 * removed) as well as their space caches once loaded. New block groups 865 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 866 * we will never try to read their inode item while the fs is mounted. 867 */ 868 inode = lookup_free_space_inode(block_group, path); 869 if (IS_ERR(inode)) { 870 btrfs_free_path(path); 871 return 0; 872 } 873 874 /* We may have converted the inode and made the cache invalid. */ 875 spin_lock(&block_group->lock); 876 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 877 spin_unlock(&block_group->lock); 878 btrfs_free_path(path); 879 goto out; 880 } 881 spin_unlock(&block_group->lock); 882 883 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 884 path, block_group->start); 885 btrfs_free_path(path); 886 if (ret <= 0) 887 goto out; 888 889 spin_lock(&ctl->tree_lock); 890 matched = (ctl->free_space == (block_group->length - used - 891 block_group->bytes_super)); 892 spin_unlock(&ctl->tree_lock); 893 894 if (!matched) { 895 __btrfs_remove_free_space_cache(ctl); 896 btrfs_warn(fs_info, 897 "block group %llu has wrong amount of free space", 898 block_group->start); 899 ret = -1; 900 } 901 out: 902 if (ret < 0) { 903 /* This cache is bogus, make sure it gets cleared */ 904 spin_lock(&block_group->lock); 905 block_group->disk_cache_state = BTRFS_DC_CLEAR; 906 spin_unlock(&block_group->lock); 907 ret = 0; 908 909 btrfs_warn(fs_info, 910 "failed to load free space cache for block group %llu, rebuilding it now", 911 block_group->start); 912 } 913 914 iput(inode); 915 return ret; 916 } 917 918 static noinline_for_stack 919 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 920 struct btrfs_free_space_ctl *ctl, 921 struct btrfs_block_group *block_group, 922 int *entries, int *bitmaps, 923 struct list_head *bitmap_list) 924 { 925 int ret; 926 struct btrfs_free_cluster *cluster = NULL; 927 struct btrfs_free_cluster *cluster_locked = NULL; 928 struct rb_node *node = rb_first(&ctl->free_space_offset); 929 struct btrfs_trim_range *trim_entry; 930 931 /* Get the cluster for this block_group if it exists */ 932 if (block_group && !list_empty(&block_group->cluster_list)) { 933 cluster = list_entry(block_group->cluster_list.next, 934 struct btrfs_free_cluster, 935 block_group_list); 936 } 937 938 if (!node && cluster) { 939 cluster_locked = cluster; 940 spin_lock(&cluster_locked->lock); 941 node = rb_first(&cluster->root); 942 cluster = NULL; 943 } 944 945 /* Write out the extent entries */ 946 while (node) { 947 struct btrfs_free_space *e; 948 949 e = rb_entry(node, struct btrfs_free_space, offset_index); 950 *entries += 1; 951 952 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 953 e->bitmap); 954 if (ret) 955 goto fail; 956 957 if (e->bitmap) { 958 list_add_tail(&e->list, bitmap_list); 959 *bitmaps += 1; 960 } 961 node = rb_next(node); 962 if (!node && cluster) { 963 node = rb_first(&cluster->root); 964 cluster_locked = cluster; 965 spin_lock(&cluster_locked->lock); 966 cluster = NULL; 967 } 968 } 969 if (cluster_locked) { 970 spin_unlock(&cluster_locked->lock); 971 cluster_locked = NULL; 972 } 973 974 /* 975 * Make sure we don't miss any range that was removed from our rbtree 976 * because trimming is running. Otherwise after a umount+mount (or crash 977 * after committing the transaction) we would leak free space and get 978 * an inconsistent free space cache report from fsck. 979 */ 980 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 981 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 982 trim_entry->bytes, NULL); 983 if (ret) 984 goto fail; 985 *entries += 1; 986 } 987 988 return 0; 989 fail: 990 if (cluster_locked) 991 spin_unlock(&cluster_locked->lock); 992 return -ENOSPC; 993 } 994 995 static noinline_for_stack int 996 update_cache_item(struct btrfs_trans_handle *trans, 997 struct btrfs_root *root, 998 struct inode *inode, 999 struct btrfs_path *path, u64 offset, 1000 int entries, int bitmaps) 1001 { 1002 struct btrfs_key key; 1003 struct btrfs_free_space_header *header; 1004 struct extent_buffer *leaf; 1005 int ret; 1006 1007 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1008 key.offset = offset; 1009 key.type = 0; 1010 1011 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1012 if (ret < 0) { 1013 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1014 EXTENT_DELALLOC, 0, 0, NULL); 1015 goto fail; 1016 } 1017 leaf = path->nodes[0]; 1018 if (ret > 0) { 1019 struct btrfs_key found_key; 1020 ASSERT(path->slots[0]); 1021 path->slots[0]--; 1022 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1023 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1024 found_key.offset != offset) { 1025 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1026 inode->i_size - 1, EXTENT_DELALLOC, 0, 1027 0, NULL); 1028 btrfs_release_path(path); 1029 goto fail; 1030 } 1031 } 1032 1033 BTRFS_I(inode)->generation = trans->transid; 1034 header = btrfs_item_ptr(leaf, path->slots[0], 1035 struct btrfs_free_space_header); 1036 btrfs_set_free_space_entries(leaf, header, entries); 1037 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1038 btrfs_set_free_space_generation(leaf, header, trans->transid); 1039 btrfs_mark_buffer_dirty(leaf); 1040 btrfs_release_path(path); 1041 1042 return 0; 1043 1044 fail: 1045 return -1; 1046 } 1047 1048 static noinline_for_stack int write_pinned_extent_entries( 1049 struct btrfs_block_group *block_group, 1050 struct btrfs_io_ctl *io_ctl, 1051 int *entries) 1052 { 1053 u64 start, extent_start, extent_end, len; 1054 struct extent_io_tree *unpin = NULL; 1055 int ret; 1056 1057 if (!block_group) 1058 return 0; 1059 1060 /* 1061 * We want to add any pinned extents to our free space cache 1062 * so we don't leak the space 1063 * 1064 * We shouldn't have switched the pinned extents yet so this is the 1065 * right one 1066 */ 1067 unpin = block_group->fs_info->pinned_extents; 1068 1069 start = block_group->start; 1070 1071 while (start < block_group->start + block_group->length) { 1072 ret = find_first_extent_bit(unpin, start, 1073 &extent_start, &extent_end, 1074 EXTENT_DIRTY, NULL); 1075 if (ret) 1076 return 0; 1077 1078 /* This pinned extent is out of our range */ 1079 if (extent_start >= block_group->start + block_group->length) 1080 return 0; 1081 1082 extent_start = max(extent_start, start); 1083 extent_end = min(block_group->start + block_group->length, 1084 extent_end + 1); 1085 len = extent_end - extent_start; 1086 1087 *entries += 1; 1088 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1089 if (ret) 1090 return -ENOSPC; 1091 1092 start = extent_end; 1093 } 1094 1095 return 0; 1096 } 1097 1098 static noinline_for_stack int 1099 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1100 { 1101 struct btrfs_free_space *entry, *next; 1102 int ret; 1103 1104 /* Write out the bitmaps */ 1105 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1106 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1107 if (ret) 1108 return -ENOSPC; 1109 list_del_init(&entry->list); 1110 } 1111 1112 return 0; 1113 } 1114 1115 static int flush_dirty_cache(struct inode *inode) 1116 { 1117 int ret; 1118 1119 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1120 if (ret) 1121 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1122 EXTENT_DELALLOC, 0, 0, NULL); 1123 1124 return ret; 1125 } 1126 1127 static void noinline_for_stack 1128 cleanup_bitmap_list(struct list_head *bitmap_list) 1129 { 1130 struct btrfs_free_space *entry, *next; 1131 1132 list_for_each_entry_safe(entry, next, bitmap_list, list) 1133 list_del_init(&entry->list); 1134 } 1135 1136 static void noinline_for_stack 1137 cleanup_write_cache_enospc(struct inode *inode, 1138 struct btrfs_io_ctl *io_ctl, 1139 struct extent_state **cached_state) 1140 { 1141 io_ctl_drop_pages(io_ctl); 1142 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1143 i_size_read(inode) - 1, cached_state); 1144 } 1145 1146 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1147 struct btrfs_trans_handle *trans, 1148 struct btrfs_block_group *block_group, 1149 struct btrfs_io_ctl *io_ctl, 1150 struct btrfs_path *path, u64 offset) 1151 { 1152 int ret; 1153 struct inode *inode = io_ctl->inode; 1154 1155 if (!inode) 1156 return 0; 1157 1158 /* Flush the dirty pages in the cache file. */ 1159 ret = flush_dirty_cache(inode); 1160 if (ret) 1161 goto out; 1162 1163 /* Update the cache item to tell everyone this cache file is valid. */ 1164 ret = update_cache_item(trans, root, inode, path, offset, 1165 io_ctl->entries, io_ctl->bitmaps); 1166 out: 1167 io_ctl_free(io_ctl); 1168 if (ret) { 1169 invalidate_inode_pages2(inode->i_mapping); 1170 BTRFS_I(inode)->generation = 0; 1171 if (block_group) { 1172 #ifdef DEBUG 1173 btrfs_err(root->fs_info, 1174 "failed to write free space cache for block group %llu", 1175 block_group->start); 1176 #endif 1177 } 1178 } 1179 btrfs_update_inode(trans, root, inode); 1180 1181 if (block_group) { 1182 /* the dirty list is protected by the dirty_bgs_lock */ 1183 spin_lock(&trans->transaction->dirty_bgs_lock); 1184 1185 /* the disk_cache_state is protected by the block group lock */ 1186 spin_lock(&block_group->lock); 1187 1188 /* 1189 * only mark this as written if we didn't get put back on 1190 * the dirty list while waiting for IO. Otherwise our 1191 * cache state won't be right, and we won't get written again 1192 */ 1193 if (!ret && list_empty(&block_group->dirty_list)) 1194 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1195 else if (ret) 1196 block_group->disk_cache_state = BTRFS_DC_ERROR; 1197 1198 spin_unlock(&block_group->lock); 1199 spin_unlock(&trans->transaction->dirty_bgs_lock); 1200 io_ctl->inode = NULL; 1201 iput(inode); 1202 } 1203 1204 return ret; 1205 1206 } 1207 1208 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 1209 struct btrfs_trans_handle *trans, 1210 struct btrfs_io_ctl *io_ctl, 1211 struct btrfs_path *path) 1212 { 1213 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); 1214 } 1215 1216 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1217 struct btrfs_block_group *block_group, 1218 struct btrfs_path *path) 1219 { 1220 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1221 block_group, &block_group->io_ctl, 1222 path, block_group->start); 1223 } 1224 1225 /** 1226 * __btrfs_write_out_cache - write out cached info to an inode 1227 * @root - the root the inode belongs to 1228 * @ctl - the free space cache we are going to write out 1229 * @block_group - the block_group for this cache if it belongs to a block_group 1230 * @trans - the trans handle 1231 * 1232 * This function writes out a free space cache struct to disk for quick recovery 1233 * on mount. This will return 0 if it was successful in writing the cache out, 1234 * or an errno if it was not. 1235 */ 1236 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1237 struct btrfs_free_space_ctl *ctl, 1238 struct btrfs_block_group *block_group, 1239 struct btrfs_io_ctl *io_ctl, 1240 struct btrfs_trans_handle *trans) 1241 { 1242 struct extent_state *cached_state = NULL; 1243 LIST_HEAD(bitmap_list); 1244 int entries = 0; 1245 int bitmaps = 0; 1246 int ret; 1247 int must_iput = 0; 1248 1249 if (!i_size_read(inode)) 1250 return -EIO; 1251 1252 WARN_ON(io_ctl->pages); 1253 ret = io_ctl_init(io_ctl, inode, 1); 1254 if (ret) 1255 return ret; 1256 1257 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1258 down_write(&block_group->data_rwsem); 1259 spin_lock(&block_group->lock); 1260 if (block_group->delalloc_bytes) { 1261 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1262 spin_unlock(&block_group->lock); 1263 up_write(&block_group->data_rwsem); 1264 BTRFS_I(inode)->generation = 0; 1265 ret = 0; 1266 must_iput = 1; 1267 goto out; 1268 } 1269 spin_unlock(&block_group->lock); 1270 } 1271 1272 /* Lock all pages first so we can lock the extent safely. */ 1273 ret = io_ctl_prepare_pages(io_ctl, inode, 0); 1274 if (ret) 1275 goto out_unlock; 1276 1277 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1278 &cached_state); 1279 1280 io_ctl_set_generation(io_ctl, trans->transid); 1281 1282 mutex_lock(&ctl->cache_writeout_mutex); 1283 /* Write out the extent entries in the free space cache */ 1284 spin_lock(&ctl->tree_lock); 1285 ret = write_cache_extent_entries(io_ctl, ctl, 1286 block_group, &entries, &bitmaps, 1287 &bitmap_list); 1288 if (ret) 1289 goto out_nospc_locked; 1290 1291 /* 1292 * Some spaces that are freed in the current transaction are pinned, 1293 * they will be added into free space cache after the transaction is 1294 * committed, we shouldn't lose them. 1295 * 1296 * If this changes while we are working we'll get added back to 1297 * the dirty list and redo it. No locking needed 1298 */ 1299 ret = write_pinned_extent_entries(block_group, io_ctl, &entries); 1300 if (ret) 1301 goto out_nospc_locked; 1302 1303 /* 1304 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1305 * locked while doing it because a concurrent trim can be manipulating 1306 * or freeing the bitmap. 1307 */ 1308 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1309 spin_unlock(&ctl->tree_lock); 1310 mutex_unlock(&ctl->cache_writeout_mutex); 1311 if (ret) 1312 goto out_nospc; 1313 1314 /* Zero out the rest of the pages just to make sure */ 1315 io_ctl_zero_remaining_pages(io_ctl); 1316 1317 /* Everything is written out, now we dirty the pages in the file. */ 1318 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, 1319 i_size_read(inode), &cached_state); 1320 if (ret) 1321 goto out_nospc; 1322 1323 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1324 up_write(&block_group->data_rwsem); 1325 /* 1326 * Release the pages and unlock the extent, we will flush 1327 * them out later 1328 */ 1329 io_ctl_drop_pages(io_ctl); 1330 1331 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1332 i_size_read(inode) - 1, &cached_state); 1333 1334 /* 1335 * at this point the pages are under IO and we're happy, 1336 * The caller is responsible for waiting on them and updating the 1337 * the cache and the inode 1338 */ 1339 io_ctl->entries = entries; 1340 io_ctl->bitmaps = bitmaps; 1341 1342 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1343 if (ret) 1344 goto out; 1345 1346 return 0; 1347 1348 out: 1349 io_ctl->inode = NULL; 1350 io_ctl_free(io_ctl); 1351 if (ret) { 1352 invalidate_inode_pages2(inode->i_mapping); 1353 BTRFS_I(inode)->generation = 0; 1354 } 1355 btrfs_update_inode(trans, root, inode); 1356 if (must_iput) 1357 iput(inode); 1358 return ret; 1359 1360 out_nospc_locked: 1361 cleanup_bitmap_list(&bitmap_list); 1362 spin_unlock(&ctl->tree_lock); 1363 mutex_unlock(&ctl->cache_writeout_mutex); 1364 1365 out_nospc: 1366 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1367 1368 out_unlock: 1369 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1370 up_write(&block_group->data_rwsem); 1371 1372 goto out; 1373 } 1374 1375 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1376 struct btrfs_block_group *block_group, 1377 struct btrfs_path *path) 1378 { 1379 struct btrfs_fs_info *fs_info = trans->fs_info; 1380 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1381 struct inode *inode; 1382 int ret = 0; 1383 1384 spin_lock(&block_group->lock); 1385 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1386 spin_unlock(&block_group->lock); 1387 return 0; 1388 } 1389 spin_unlock(&block_group->lock); 1390 1391 inode = lookup_free_space_inode(block_group, path); 1392 if (IS_ERR(inode)) 1393 return 0; 1394 1395 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1396 block_group, &block_group->io_ctl, trans); 1397 if (ret) { 1398 #ifdef DEBUG 1399 btrfs_err(fs_info, 1400 "failed to write free space cache for block group %llu", 1401 block_group->start); 1402 #endif 1403 spin_lock(&block_group->lock); 1404 block_group->disk_cache_state = BTRFS_DC_ERROR; 1405 spin_unlock(&block_group->lock); 1406 1407 block_group->io_ctl.inode = NULL; 1408 iput(inode); 1409 } 1410 1411 /* 1412 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1413 * to wait for IO and put the inode 1414 */ 1415 1416 return ret; 1417 } 1418 1419 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1420 u64 offset) 1421 { 1422 ASSERT(offset >= bitmap_start); 1423 offset -= bitmap_start; 1424 return (unsigned long)(div_u64(offset, unit)); 1425 } 1426 1427 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1428 { 1429 return (unsigned long)(div_u64(bytes, unit)); 1430 } 1431 1432 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1433 u64 offset) 1434 { 1435 u64 bitmap_start; 1436 u64 bytes_per_bitmap; 1437 1438 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1439 bitmap_start = offset - ctl->start; 1440 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1441 bitmap_start *= bytes_per_bitmap; 1442 bitmap_start += ctl->start; 1443 1444 return bitmap_start; 1445 } 1446 1447 static int tree_insert_offset(struct rb_root *root, u64 offset, 1448 struct rb_node *node, int bitmap) 1449 { 1450 struct rb_node **p = &root->rb_node; 1451 struct rb_node *parent = NULL; 1452 struct btrfs_free_space *info; 1453 1454 while (*p) { 1455 parent = *p; 1456 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1457 1458 if (offset < info->offset) { 1459 p = &(*p)->rb_left; 1460 } else if (offset > info->offset) { 1461 p = &(*p)->rb_right; 1462 } else { 1463 /* 1464 * we could have a bitmap entry and an extent entry 1465 * share the same offset. If this is the case, we want 1466 * the extent entry to always be found first if we do a 1467 * linear search through the tree, since we want to have 1468 * the quickest allocation time, and allocating from an 1469 * extent is faster than allocating from a bitmap. So 1470 * if we're inserting a bitmap and we find an entry at 1471 * this offset, we want to go right, or after this entry 1472 * logically. If we are inserting an extent and we've 1473 * found a bitmap, we want to go left, or before 1474 * logically. 1475 */ 1476 if (bitmap) { 1477 if (info->bitmap) { 1478 WARN_ON_ONCE(1); 1479 return -EEXIST; 1480 } 1481 p = &(*p)->rb_right; 1482 } else { 1483 if (!info->bitmap) { 1484 WARN_ON_ONCE(1); 1485 return -EEXIST; 1486 } 1487 p = &(*p)->rb_left; 1488 } 1489 } 1490 } 1491 1492 rb_link_node(node, parent, p); 1493 rb_insert_color(node, root); 1494 1495 return 0; 1496 } 1497 1498 /* 1499 * searches the tree for the given offset. 1500 * 1501 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1502 * want a section that has at least bytes size and comes at or after the given 1503 * offset. 1504 */ 1505 static struct btrfs_free_space * 1506 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1507 u64 offset, int bitmap_only, int fuzzy) 1508 { 1509 struct rb_node *n = ctl->free_space_offset.rb_node; 1510 struct btrfs_free_space *entry, *prev = NULL; 1511 1512 /* find entry that is closest to the 'offset' */ 1513 while (1) { 1514 if (!n) { 1515 entry = NULL; 1516 break; 1517 } 1518 1519 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1520 prev = entry; 1521 1522 if (offset < entry->offset) 1523 n = n->rb_left; 1524 else if (offset > entry->offset) 1525 n = n->rb_right; 1526 else 1527 break; 1528 } 1529 1530 if (bitmap_only) { 1531 if (!entry) 1532 return NULL; 1533 if (entry->bitmap) 1534 return entry; 1535 1536 /* 1537 * bitmap entry and extent entry may share same offset, 1538 * in that case, bitmap entry comes after extent entry. 1539 */ 1540 n = rb_next(n); 1541 if (!n) 1542 return NULL; 1543 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1544 if (entry->offset != offset) 1545 return NULL; 1546 1547 WARN_ON(!entry->bitmap); 1548 return entry; 1549 } else if (entry) { 1550 if (entry->bitmap) { 1551 /* 1552 * if previous extent entry covers the offset, 1553 * we should return it instead of the bitmap entry 1554 */ 1555 n = rb_prev(&entry->offset_index); 1556 if (n) { 1557 prev = rb_entry(n, struct btrfs_free_space, 1558 offset_index); 1559 if (!prev->bitmap && 1560 prev->offset + prev->bytes > offset) 1561 entry = prev; 1562 } 1563 } 1564 return entry; 1565 } 1566 1567 if (!prev) 1568 return NULL; 1569 1570 /* find last entry before the 'offset' */ 1571 entry = prev; 1572 if (entry->offset > offset) { 1573 n = rb_prev(&entry->offset_index); 1574 if (n) { 1575 entry = rb_entry(n, struct btrfs_free_space, 1576 offset_index); 1577 ASSERT(entry->offset <= offset); 1578 } else { 1579 if (fuzzy) 1580 return entry; 1581 else 1582 return NULL; 1583 } 1584 } 1585 1586 if (entry->bitmap) { 1587 n = rb_prev(&entry->offset_index); 1588 if (n) { 1589 prev = rb_entry(n, struct btrfs_free_space, 1590 offset_index); 1591 if (!prev->bitmap && 1592 prev->offset + prev->bytes > offset) 1593 return prev; 1594 } 1595 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1596 return entry; 1597 } else if (entry->offset + entry->bytes > offset) 1598 return entry; 1599 1600 if (!fuzzy) 1601 return NULL; 1602 1603 while (1) { 1604 if (entry->bitmap) { 1605 if (entry->offset + BITS_PER_BITMAP * 1606 ctl->unit > offset) 1607 break; 1608 } else { 1609 if (entry->offset + entry->bytes > offset) 1610 break; 1611 } 1612 1613 n = rb_next(&entry->offset_index); 1614 if (!n) 1615 return NULL; 1616 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1617 } 1618 return entry; 1619 } 1620 1621 static inline void 1622 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1623 struct btrfs_free_space *info) 1624 { 1625 rb_erase(&info->offset_index, &ctl->free_space_offset); 1626 ctl->free_extents--; 1627 } 1628 1629 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1630 struct btrfs_free_space *info) 1631 { 1632 __unlink_free_space(ctl, info); 1633 ctl->free_space -= info->bytes; 1634 } 1635 1636 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1637 struct btrfs_free_space *info) 1638 { 1639 int ret = 0; 1640 1641 ASSERT(info->bytes || info->bitmap); 1642 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1643 &info->offset_index, (info->bitmap != NULL)); 1644 if (ret) 1645 return ret; 1646 1647 ctl->free_space += info->bytes; 1648 ctl->free_extents++; 1649 return ret; 1650 } 1651 1652 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1653 { 1654 struct btrfs_block_group *block_group = ctl->private; 1655 u64 max_bytes; 1656 u64 bitmap_bytes; 1657 u64 extent_bytes; 1658 u64 size = block_group->length; 1659 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1660 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1661 1662 max_bitmaps = max_t(u64, max_bitmaps, 1); 1663 1664 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1665 1666 /* 1667 * The goal is to keep the total amount of memory used per 1gb of space 1668 * at or below 32k, so we need to adjust how much memory we allow to be 1669 * used by extent based free space tracking 1670 */ 1671 if (size < SZ_1G) 1672 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1673 else 1674 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1675 1676 /* 1677 * we want to account for 1 more bitmap than what we have so we can make 1678 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1679 * we add more bitmaps. 1680 */ 1681 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit; 1682 1683 if (bitmap_bytes >= max_bytes) { 1684 ctl->extents_thresh = 0; 1685 return; 1686 } 1687 1688 /* 1689 * we want the extent entry threshold to always be at most 1/2 the max 1690 * bytes we can have, or whatever is less than that. 1691 */ 1692 extent_bytes = max_bytes - bitmap_bytes; 1693 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1694 1695 ctl->extents_thresh = 1696 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1697 } 1698 1699 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1700 struct btrfs_free_space *info, 1701 u64 offset, u64 bytes) 1702 { 1703 unsigned long start, count; 1704 1705 start = offset_to_bit(info->offset, ctl->unit, offset); 1706 count = bytes_to_bits(bytes, ctl->unit); 1707 ASSERT(start + count <= BITS_PER_BITMAP); 1708 1709 bitmap_clear(info->bitmap, start, count); 1710 1711 info->bytes -= bytes; 1712 if (info->max_extent_size > ctl->unit) 1713 info->max_extent_size = 0; 1714 } 1715 1716 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1717 struct btrfs_free_space *info, u64 offset, 1718 u64 bytes) 1719 { 1720 __bitmap_clear_bits(ctl, info, offset, bytes); 1721 ctl->free_space -= bytes; 1722 } 1723 1724 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1725 struct btrfs_free_space *info, u64 offset, 1726 u64 bytes) 1727 { 1728 unsigned long start, count; 1729 1730 start = offset_to_bit(info->offset, ctl->unit, offset); 1731 count = bytes_to_bits(bytes, ctl->unit); 1732 ASSERT(start + count <= BITS_PER_BITMAP); 1733 1734 bitmap_set(info->bitmap, start, count); 1735 1736 info->bytes += bytes; 1737 ctl->free_space += bytes; 1738 } 1739 1740 /* 1741 * If we can not find suitable extent, we will use bytes to record 1742 * the size of the max extent. 1743 */ 1744 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1745 struct btrfs_free_space *bitmap_info, u64 *offset, 1746 u64 *bytes, bool for_alloc) 1747 { 1748 unsigned long found_bits = 0; 1749 unsigned long max_bits = 0; 1750 unsigned long bits, i; 1751 unsigned long next_zero; 1752 unsigned long extent_bits; 1753 1754 /* 1755 * Skip searching the bitmap if we don't have a contiguous section that 1756 * is large enough for this allocation. 1757 */ 1758 if (for_alloc && 1759 bitmap_info->max_extent_size && 1760 bitmap_info->max_extent_size < *bytes) { 1761 *bytes = bitmap_info->max_extent_size; 1762 return -1; 1763 } 1764 1765 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1766 max_t(u64, *offset, bitmap_info->offset)); 1767 bits = bytes_to_bits(*bytes, ctl->unit); 1768 1769 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1770 if (for_alloc && bits == 1) { 1771 found_bits = 1; 1772 break; 1773 } 1774 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1775 BITS_PER_BITMAP, i); 1776 extent_bits = next_zero - i; 1777 if (extent_bits >= bits) { 1778 found_bits = extent_bits; 1779 break; 1780 } else if (extent_bits > max_bits) { 1781 max_bits = extent_bits; 1782 } 1783 i = next_zero; 1784 } 1785 1786 if (found_bits) { 1787 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1788 *bytes = (u64)(found_bits) * ctl->unit; 1789 return 0; 1790 } 1791 1792 *bytes = (u64)(max_bits) * ctl->unit; 1793 bitmap_info->max_extent_size = *bytes; 1794 return -1; 1795 } 1796 1797 static inline u64 get_max_extent_size(struct btrfs_free_space *entry) 1798 { 1799 if (entry->bitmap) 1800 return entry->max_extent_size; 1801 return entry->bytes; 1802 } 1803 1804 /* Cache the size of the max extent in bytes */ 1805 static struct btrfs_free_space * 1806 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1807 unsigned long align, u64 *max_extent_size) 1808 { 1809 struct btrfs_free_space *entry; 1810 struct rb_node *node; 1811 u64 tmp; 1812 u64 align_off; 1813 int ret; 1814 1815 if (!ctl->free_space_offset.rb_node) 1816 goto out; 1817 1818 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1819 if (!entry) 1820 goto out; 1821 1822 for (node = &entry->offset_index; node; node = rb_next(node)) { 1823 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1824 if (entry->bytes < *bytes) { 1825 *max_extent_size = max(get_max_extent_size(entry), 1826 *max_extent_size); 1827 continue; 1828 } 1829 1830 /* make sure the space returned is big enough 1831 * to match our requested alignment 1832 */ 1833 if (*bytes >= align) { 1834 tmp = entry->offset - ctl->start + align - 1; 1835 tmp = div64_u64(tmp, align); 1836 tmp = tmp * align + ctl->start; 1837 align_off = tmp - entry->offset; 1838 } else { 1839 align_off = 0; 1840 tmp = entry->offset; 1841 } 1842 1843 if (entry->bytes < *bytes + align_off) { 1844 *max_extent_size = max(get_max_extent_size(entry), 1845 *max_extent_size); 1846 continue; 1847 } 1848 1849 if (entry->bitmap) { 1850 u64 size = *bytes; 1851 1852 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1853 if (!ret) { 1854 *offset = tmp; 1855 *bytes = size; 1856 return entry; 1857 } else { 1858 *max_extent_size = 1859 max(get_max_extent_size(entry), 1860 *max_extent_size); 1861 } 1862 continue; 1863 } 1864 1865 *offset = tmp; 1866 *bytes = entry->bytes - align_off; 1867 return entry; 1868 } 1869 out: 1870 return NULL; 1871 } 1872 1873 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1874 struct btrfs_free_space *info, u64 offset) 1875 { 1876 info->offset = offset_to_bitmap(ctl, offset); 1877 info->bytes = 0; 1878 INIT_LIST_HEAD(&info->list); 1879 link_free_space(ctl, info); 1880 ctl->total_bitmaps++; 1881 1882 ctl->op->recalc_thresholds(ctl); 1883 } 1884 1885 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1886 struct btrfs_free_space *bitmap_info) 1887 { 1888 unlink_free_space(ctl, bitmap_info); 1889 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 1890 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1891 ctl->total_bitmaps--; 1892 ctl->op->recalc_thresholds(ctl); 1893 } 1894 1895 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1896 struct btrfs_free_space *bitmap_info, 1897 u64 *offset, u64 *bytes) 1898 { 1899 u64 end; 1900 u64 search_start, search_bytes; 1901 int ret; 1902 1903 again: 1904 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1905 1906 /* 1907 * We need to search for bits in this bitmap. We could only cover some 1908 * of the extent in this bitmap thanks to how we add space, so we need 1909 * to search for as much as it as we can and clear that amount, and then 1910 * go searching for the next bit. 1911 */ 1912 search_start = *offset; 1913 search_bytes = ctl->unit; 1914 search_bytes = min(search_bytes, end - search_start + 1); 1915 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 1916 false); 1917 if (ret < 0 || search_start != *offset) 1918 return -EINVAL; 1919 1920 /* We may have found more bits than what we need */ 1921 search_bytes = min(search_bytes, *bytes); 1922 1923 /* Cannot clear past the end of the bitmap */ 1924 search_bytes = min(search_bytes, end - search_start + 1); 1925 1926 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1927 *offset += search_bytes; 1928 *bytes -= search_bytes; 1929 1930 if (*bytes) { 1931 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1932 if (!bitmap_info->bytes) 1933 free_bitmap(ctl, bitmap_info); 1934 1935 /* 1936 * no entry after this bitmap, but we still have bytes to 1937 * remove, so something has gone wrong. 1938 */ 1939 if (!next) 1940 return -EINVAL; 1941 1942 bitmap_info = rb_entry(next, struct btrfs_free_space, 1943 offset_index); 1944 1945 /* 1946 * if the next entry isn't a bitmap we need to return to let the 1947 * extent stuff do its work. 1948 */ 1949 if (!bitmap_info->bitmap) 1950 return -EAGAIN; 1951 1952 /* 1953 * Ok the next item is a bitmap, but it may not actually hold 1954 * the information for the rest of this free space stuff, so 1955 * look for it, and if we don't find it return so we can try 1956 * everything over again. 1957 */ 1958 search_start = *offset; 1959 search_bytes = ctl->unit; 1960 ret = search_bitmap(ctl, bitmap_info, &search_start, 1961 &search_bytes, false); 1962 if (ret < 0 || search_start != *offset) 1963 return -EAGAIN; 1964 1965 goto again; 1966 } else if (!bitmap_info->bytes) 1967 free_bitmap(ctl, bitmap_info); 1968 1969 return 0; 1970 } 1971 1972 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1973 struct btrfs_free_space *info, u64 offset, 1974 u64 bytes) 1975 { 1976 u64 bytes_to_set = 0; 1977 u64 end; 1978 1979 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1980 1981 bytes_to_set = min(end - offset, bytes); 1982 1983 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1984 1985 /* 1986 * We set some bytes, we have no idea what the max extent size is 1987 * anymore. 1988 */ 1989 info->max_extent_size = 0; 1990 1991 return bytes_to_set; 1992 1993 } 1994 1995 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1996 struct btrfs_free_space *info) 1997 { 1998 struct btrfs_block_group *block_group = ctl->private; 1999 struct btrfs_fs_info *fs_info = block_group->fs_info; 2000 bool forced = false; 2001 2002 #ifdef CONFIG_BTRFS_DEBUG 2003 if (btrfs_should_fragment_free_space(block_group)) 2004 forced = true; 2005 #endif 2006 2007 /* 2008 * If we are below the extents threshold then we can add this as an 2009 * extent, and don't have to deal with the bitmap 2010 */ 2011 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2012 /* 2013 * If this block group has some small extents we don't want to 2014 * use up all of our free slots in the cache with them, we want 2015 * to reserve them to larger extents, however if we have plenty 2016 * of cache left then go ahead an dadd them, no sense in adding 2017 * the overhead of a bitmap if we don't have to. 2018 */ 2019 if (info->bytes <= fs_info->sectorsize * 4) { 2020 if (ctl->free_extents * 2 <= ctl->extents_thresh) 2021 return false; 2022 } else { 2023 return false; 2024 } 2025 } 2026 2027 /* 2028 * The original block groups from mkfs can be really small, like 8 2029 * megabytes, so don't bother with a bitmap for those entries. However 2030 * some block groups can be smaller than what a bitmap would cover but 2031 * are still large enough that they could overflow the 32k memory limit, 2032 * so allow those block groups to still be allowed to have a bitmap 2033 * entry. 2034 */ 2035 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2036 return false; 2037 2038 return true; 2039 } 2040 2041 static const struct btrfs_free_space_op free_space_op = { 2042 .recalc_thresholds = recalculate_thresholds, 2043 .use_bitmap = use_bitmap, 2044 }; 2045 2046 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2047 struct btrfs_free_space *info) 2048 { 2049 struct btrfs_free_space *bitmap_info; 2050 struct btrfs_block_group *block_group = NULL; 2051 int added = 0; 2052 u64 bytes, offset, bytes_added; 2053 int ret; 2054 2055 bytes = info->bytes; 2056 offset = info->offset; 2057 2058 if (!ctl->op->use_bitmap(ctl, info)) 2059 return 0; 2060 2061 if (ctl->op == &free_space_op) 2062 block_group = ctl->private; 2063 again: 2064 /* 2065 * Since we link bitmaps right into the cluster we need to see if we 2066 * have a cluster here, and if so and it has our bitmap we need to add 2067 * the free space to that bitmap. 2068 */ 2069 if (block_group && !list_empty(&block_group->cluster_list)) { 2070 struct btrfs_free_cluster *cluster; 2071 struct rb_node *node; 2072 struct btrfs_free_space *entry; 2073 2074 cluster = list_entry(block_group->cluster_list.next, 2075 struct btrfs_free_cluster, 2076 block_group_list); 2077 spin_lock(&cluster->lock); 2078 node = rb_first(&cluster->root); 2079 if (!node) { 2080 spin_unlock(&cluster->lock); 2081 goto no_cluster_bitmap; 2082 } 2083 2084 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2085 if (!entry->bitmap) { 2086 spin_unlock(&cluster->lock); 2087 goto no_cluster_bitmap; 2088 } 2089 2090 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2091 bytes_added = add_bytes_to_bitmap(ctl, entry, 2092 offset, bytes); 2093 bytes -= bytes_added; 2094 offset += bytes_added; 2095 } 2096 spin_unlock(&cluster->lock); 2097 if (!bytes) { 2098 ret = 1; 2099 goto out; 2100 } 2101 } 2102 2103 no_cluster_bitmap: 2104 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2105 1, 0); 2106 if (!bitmap_info) { 2107 ASSERT(added == 0); 2108 goto new_bitmap; 2109 } 2110 2111 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 2112 bytes -= bytes_added; 2113 offset += bytes_added; 2114 added = 0; 2115 2116 if (!bytes) { 2117 ret = 1; 2118 goto out; 2119 } else 2120 goto again; 2121 2122 new_bitmap: 2123 if (info && info->bitmap) { 2124 add_new_bitmap(ctl, info, offset); 2125 added = 1; 2126 info = NULL; 2127 goto again; 2128 } else { 2129 spin_unlock(&ctl->tree_lock); 2130 2131 /* no pre-allocated info, allocate a new one */ 2132 if (!info) { 2133 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2134 GFP_NOFS); 2135 if (!info) { 2136 spin_lock(&ctl->tree_lock); 2137 ret = -ENOMEM; 2138 goto out; 2139 } 2140 } 2141 2142 /* allocate the bitmap */ 2143 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2144 GFP_NOFS); 2145 spin_lock(&ctl->tree_lock); 2146 if (!info->bitmap) { 2147 ret = -ENOMEM; 2148 goto out; 2149 } 2150 goto again; 2151 } 2152 2153 out: 2154 if (info) { 2155 if (info->bitmap) 2156 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2157 info->bitmap); 2158 kmem_cache_free(btrfs_free_space_cachep, info); 2159 } 2160 2161 return ret; 2162 } 2163 2164 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2165 struct btrfs_free_space *info, bool update_stat) 2166 { 2167 struct btrfs_free_space *left_info; 2168 struct btrfs_free_space *right_info; 2169 bool merged = false; 2170 u64 offset = info->offset; 2171 u64 bytes = info->bytes; 2172 2173 /* 2174 * first we want to see if there is free space adjacent to the range we 2175 * are adding, if there is remove that struct and add a new one to 2176 * cover the entire range 2177 */ 2178 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2179 if (right_info && rb_prev(&right_info->offset_index)) 2180 left_info = rb_entry(rb_prev(&right_info->offset_index), 2181 struct btrfs_free_space, offset_index); 2182 else 2183 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2184 2185 if (right_info && !right_info->bitmap) { 2186 if (update_stat) 2187 unlink_free_space(ctl, right_info); 2188 else 2189 __unlink_free_space(ctl, right_info); 2190 info->bytes += right_info->bytes; 2191 kmem_cache_free(btrfs_free_space_cachep, right_info); 2192 merged = true; 2193 } 2194 2195 if (left_info && !left_info->bitmap && 2196 left_info->offset + left_info->bytes == offset) { 2197 if (update_stat) 2198 unlink_free_space(ctl, left_info); 2199 else 2200 __unlink_free_space(ctl, left_info); 2201 info->offset = left_info->offset; 2202 info->bytes += left_info->bytes; 2203 kmem_cache_free(btrfs_free_space_cachep, left_info); 2204 merged = true; 2205 } 2206 2207 return merged; 2208 } 2209 2210 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2211 struct btrfs_free_space *info, 2212 bool update_stat) 2213 { 2214 struct btrfs_free_space *bitmap; 2215 unsigned long i; 2216 unsigned long j; 2217 const u64 end = info->offset + info->bytes; 2218 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2219 u64 bytes; 2220 2221 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2222 if (!bitmap) 2223 return false; 2224 2225 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2226 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2227 if (j == i) 2228 return false; 2229 bytes = (j - i) * ctl->unit; 2230 info->bytes += bytes; 2231 2232 if (update_stat) 2233 bitmap_clear_bits(ctl, bitmap, end, bytes); 2234 else 2235 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2236 2237 if (!bitmap->bytes) 2238 free_bitmap(ctl, bitmap); 2239 2240 return true; 2241 } 2242 2243 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2244 struct btrfs_free_space *info, 2245 bool update_stat) 2246 { 2247 struct btrfs_free_space *bitmap; 2248 u64 bitmap_offset; 2249 unsigned long i; 2250 unsigned long j; 2251 unsigned long prev_j; 2252 u64 bytes; 2253 2254 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2255 /* If we're on a boundary, try the previous logical bitmap. */ 2256 if (bitmap_offset == info->offset) { 2257 if (info->offset == 0) 2258 return false; 2259 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2260 } 2261 2262 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2263 if (!bitmap) 2264 return false; 2265 2266 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2267 j = 0; 2268 prev_j = (unsigned long)-1; 2269 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2270 if (j > i) 2271 break; 2272 prev_j = j; 2273 } 2274 if (prev_j == i) 2275 return false; 2276 2277 if (prev_j == (unsigned long)-1) 2278 bytes = (i + 1) * ctl->unit; 2279 else 2280 bytes = (i - prev_j) * ctl->unit; 2281 2282 info->offset -= bytes; 2283 info->bytes += bytes; 2284 2285 if (update_stat) 2286 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2287 else 2288 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2289 2290 if (!bitmap->bytes) 2291 free_bitmap(ctl, bitmap); 2292 2293 return true; 2294 } 2295 2296 /* 2297 * We prefer always to allocate from extent entries, both for clustered and 2298 * non-clustered allocation requests. So when attempting to add a new extent 2299 * entry, try to see if there's adjacent free space in bitmap entries, and if 2300 * there is, migrate that space from the bitmaps to the extent. 2301 * Like this we get better chances of satisfying space allocation requests 2302 * because we attempt to satisfy them based on a single cache entry, and never 2303 * on 2 or more entries - even if the entries represent a contiguous free space 2304 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2305 * ends). 2306 */ 2307 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2308 struct btrfs_free_space *info, 2309 bool update_stat) 2310 { 2311 /* 2312 * Only work with disconnected entries, as we can change their offset, 2313 * and must be extent entries. 2314 */ 2315 ASSERT(!info->bitmap); 2316 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2317 2318 if (ctl->total_bitmaps > 0) { 2319 bool stole_end; 2320 bool stole_front = false; 2321 2322 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2323 if (ctl->total_bitmaps > 0) 2324 stole_front = steal_from_bitmap_to_front(ctl, info, 2325 update_stat); 2326 2327 if (stole_end || stole_front) 2328 try_merge_free_space(ctl, info, update_stat); 2329 } 2330 } 2331 2332 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, 2333 struct btrfs_free_space_ctl *ctl, 2334 u64 offset, u64 bytes) 2335 { 2336 struct btrfs_free_space *info; 2337 int ret = 0; 2338 2339 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2340 if (!info) 2341 return -ENOMEM; 2342 2343 info->offset = offset; 2344 info->bytes = bytes; 2345 RB_CLEAR_NODE(&info->offset_index); 2346 2347 spin_lock(&ctl->tree_lock); 2348 2349 if (try_merge_free_space(ctl, info, true)) 2350 goto link; 2351 2352 /* 2353 * There was no extent directly to the left or right of this new 2354 * extent then we know we're going to have to allocate a new extent, so 2355 * before we do that see if we need to drop this into a bitmap 2356 */ 2357 ret = insert_into_bitmap(ctl, info); 2358 if (ret < 0) { 2359 goto out; 2360 } else if (ret) { 2361 ret = 0; 2362 goto out; 2363 } 2364 link: 2365 /* 2366 * Only steal free space from adjacent bitmaps if we're sure we're not 2367 * going to add the new free space to existing bitmap entries - because 2368 * that would mean unnecessary work that would be reverted. Therefore 2369 * attempt to steal space from bitmaps if we're adding an extent entry. 2370 */ 2371 steal_from_bitmap(ctl, info, true); 2372 2373 ret = link_free_space(ctl, info); 2374 if (ret) 2375 kmem_cache_free(btrfs_free_space_cachep, info); 2376 out: 2377 spin_unlock(&ctl->tree_lock); 2378 2379 if (ret) { 2380 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2381 ASSERT(ret != -EEXIST); 2382 } 2383 2384 return ret; 2385 } 2386 2387 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2388 u64 bytenr, u64 size) 2389 { 2390 return __btrfs_add_free_space(block_group->fs_info, 2391 block_group->free_space_ctl, 2392 bytenr, size); 2393 } 2394 2395 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2396 u64 offset, u64 bytes) 2397 { 2398 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2399 struct btrfs_free_space *info; 2400 int ret; 2401 bool re_search = false; 2402 2403 spin_lock(&ctl->tree_lock); 2404 2405 again: 2406 ret = 0; 2407 if (!bytes) 2408 goto out_lock; 2409 2410 info = tree_search_offset(ctl, offset, 0, 0); 2411 if (!info) { 2412 /* 2413 * oops didn't find an extent that matched the space we wanted 2414 * to remove, look for a bitmap instead 2415 */ 2416 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2417 1, 0); 2418 if (!info) { 2419 /* 2420 * If we found a partial bit of our free space in a 2421 * bitmap but then couldn't find the other part this may 2422 * be a problem, so WARN about it. 2423 */ 2424 WARN_ON(re_search); 2425 goto out_lock; 2426 } 2427 } 2428 2429 re_search = false; 2430 if (!info->bitmap) { 2431 unlink_free_space(ctl, info); 2432 if (offset == info->offset) { 2433 u64 to_free = min(bytes, info->bytes); 2434 2435 info->bytes -= to_free; 2436 info->offset += to_free; 2437 if (info->bytes) { 2438 ret = link_free_space(ctl, info); 2439 WARN_ON(ret); 2440 } else { 2441 kmem_cache_free(btrfs_free_space_cachep, info); 2442 } 2443 2444 offset += to_free; 2445 bytes -= to_free; 2446 goto again; 2447 } else { 2448 u64 old_end = info->bytes + info->offset; 2449 2450 info->bytes = offset - info->offset; 2451 ret = link_free_space(ctl, info); 2452 WARN_ON(ret); 2453 if (ret) 2454 goto out_lock; 2455 2456 /* Not enough bytes in this entry to satisfy us */ 2457 if (old_end < offset + bytes) { 2458 bytes -= old_end - offset; 2459 offset = old_end; 2460 goto again; 2461 } else if (old_end == offset + bytes) { 2462 /* all done */ 2463 goto out_lock; 2464 } 2465 spin_unlock(&ctl->tree_lock); 2466 2467 ret = btrfs_add_free_space(block_group, offset + bytes, 2468 old_end - (offset + bytes)); 2469 WARN_ON(ret); 2470 goto out; 2471 } 2472 } 2473 2474 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2475 if (ret == -EAGAIN) { 2476 re_search = true; 2477 goto again; 2478 } 2479 out_lock: 2480 spin_unlock(&ctl->tree_lock); 2481 out: 2482 return ret; 2483 } 2484 2485 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2486 u64 bytes) 2487 { 2488 struct btrfs_fs_info *fs_info = block_group->fs_info; 2489 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2490 struct btrfs_free_space *info; 2491 struct rb_node *n; 2492 int count = 0; 2493 2494 spin_lock(&ctl->tree_lock); 2495 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2496 info = rb_entry(n, struct btrfs_free_space, offset_index); 2497 if (info->bytes >= bytes && !block_group->ro) 2498 count++; 2499 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2500 info->offset, info->bytes, 2501 (info->bitmap) ? "yes" : "no"); 2502 } 2503 spin_unlock(&ctl->tree_lock); 2504 btrfs_info(fs_info, "block group has cluster?: %s", 2505 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2506 btrfs_info(fs_info, 2507 "%d blocks of free space at or bigger than bytes is", count); 2508 } 2509 2510 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group) 2511 { 2512 struct btrfs_fs_info *fs_info = block_group->fs_info; 2513 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2514 2515 spin_lock_init(&ctl->tree_lock); 2516 ctl->unit = fs_info->sectorsize; 2517 ctl->start = block_group->start; 2518 ctl->private = block_group; 2519 ctl->op = &free_space_op; 2520 INIT_LIST_HEAD(&ctl->trimming_ranges); 2521 mutex_init(&ctl->cache_writeout_mutex); 2522 2523 /* 2524 * we only want to have 32k of ram per block group for keeping 2525 * track of free space, and if we pass 1/2 of that we want to 2526 * start converting things over to using bitmaps 2527 */ 2528 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2529 } 2530 2531 /* 2532 * for a given cluster, put all of its extents back into the free 2533 * space cache. If the block group passed doesn't match the block group 2534 * pointed to by the cluster, someone else raced in and freed the 2535 * cluster already. In that case, we just return without changing anything 2536 */ 2537 static int 2538 __btrfs_return_cluster_to_free_space( 2539 struct btrfs_block_group *block_group, 2540 struct btrfs_free_cluster *cluster) 2541 { 2542 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2543 struct btrfs_free_space *entry; 2544 struct rb_node *node; 2545 2546 spin_lock(&cluster->lock); 2547 if (cluster->block_group != block_group) 2548 goto out; 2549 2550 cluster->block_group = NULL; 2551 cluster->window_start = 0; 2552 list_del_init(&cluster->block_group_list); 2553 2554 node = rb_first(&cluster->root); 2555 while (node) { 2556 bool bitmap; 2557 2558 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2559 node = rb_next(&entry->offset_index); 2560 rb_erase(&entry->offset_index, &cluster->root); 2561 RB_CLEAR_NODE(&entry->offset_index); 2562 2563 bitmap = (entry->bitmap != NULL); 2564 if (!bitmap) { 2565 try_merge_free_space(ctl, entry, false); 2566 steal_from_bitmap(ctl, entry, false); 2567 } 2568 tree_insert_offset(&ctl->free_space_offset, 2569 entry->offset, &entry->offset_index, bitmap); 2570 } 2571 cluster->root = RB_ROOT; 2572 2573 out: 2574 spin_unlock(&cluster->lock); 2575 btrfs_put_block_group(block_group); 2576 return 0; 2577 } 2578 2579 static void __btrfs_remove_free_space_cache_locked( 2580 struct btrfs_free_space_ctl *ctl) 2581 { 2582 struct btrfs_free_space *info; 2583 struct rb_node *node; 2584 2585 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2586 info = rb_entry(node, struct btrfs_free_space, offset_index); 2587 if (!info->bitmap) { 2588 unlink_free_space(ctl, info); 2589 kmem_cache_free(btrfs_free_space_cachep, info); 2590 } else { 2591 free_bitmap(ctl, info); 2592 } 2593 2594 cond_resched_lock(&ctl->tree_lock); 2595 } 2596 } 2597 2598 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2599 { 2600 spin_lock(&ctl->tree_lock); 2601 __btrfs_remove_free_space_cache_locked(ctl); 2602 spin_unlock(&ctl->tree_lock); 2603 } 2604 2605 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 2606 { 2607 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2608 struct btrfs_free_cluster *cluster; 2609 struct list_head *head; 2610 2611 spin_lock(&ctl->tree_lock); 2612 while ((head = block_group->cluster_list.next) != 2613 &block_group->cluster_list) { 2614 cluster = list_entry(head, struct btrfs_free_cluster, 2615 block_group_list); 2616 2617 WARN_ON(cluster->block_group != block_group); 2618 __btrfs_return_cluster_to_free_space(block_group, cluster); 2619 2620 cond_resched_lock(&ctl->tree_lock); 2621 } 2622 __btrfs_remove_free_space_cache_locked(ctl); 2623 spin_unlock(&ctl->tree_lock); 2624 2625 } 2626 2627 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 2628 u64 offset, u64 bytes, u64 empty_size, 2629 u64 *max_extent_size) 2630 { 2631 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2632 struct btrfs_free_space *entry = NULL; 2633 u64 bytes_search = bytes + empty_size; 2634 u64 ret = 0; 2635 u64 align_gap = 0; 2636 u64 align_gap_len = 0; 2637 2638 spin_lock(&ctl->tree_lock); 2639 entry = find_free_space(ctl, &offset, &bytes_search, 2640 block_group->full_stripe_len, max_extent_size); 2641 if (!entry) 2642 goto out; 2643 2644 ret = offset; 2645 if (entry->bitmap) { 2646 bitmap_clear_bits(ctl, entry, offset, bytes); 2647 if (!entry->bytes) 2648 free_bitmap(ctl, entry); 2649 } else { 2650 unlink_free_space(ctl, entry); 2651 align_gap_len = offset - entry->offset; 2652 align_gap = entry->offset; 2653 2654 entry->offset = offset + bytes; 2655 WARN_ON(entry->bytes < bytes + align_gap_len); 2656 2657 entry->bytes -= bytes + align_gap_len; 2658 if (!entry->bytes) 2659 kmem_cache_free(btrfs_free_space_cachep, entry); 2660 else 2661 link_free_space(ctl, entry); 2662 } 2663 out: 2664 spin_unlock(&ctl->tree_lock); 2665 2666 if (align_gap_len) 2667 __btrfs_add_free_space(block_group->fs_info, ctl, 2668 align_gap, align_gap_len); 2669 return ret; 2670 } 2671 2672 /* 2673 * given a cluster, put all of its extents back into the free space 2674 * cache. If a block group is passed, this function will only free 2675 * a cluster that belongs to the passed block group. 2676 * 2677 * Otherwise, it'll get a reference on the block group pointed to by the 2678 * cluster and remove the cluster from it. 2679 */ 2680 int btrfs_return_cluster_to_free_space( 2681 struct btrfs_block_group *block_group, 2682 struct btrfs_free_cluster *cluster) 2683 { 2684 struct btrfs_free_space_ctl *ctl; 2685 int ret; 2686 2687 /* first, get a safe pointer to the block group */ 2688 spin_lock(&cluster->lock); 2689 if (!block_group) { 2690 block_group = cluster->block_group; 2691 if (!block_group) { 2692 spin_unlock(&cluster->lock); 2693 return 0; 2694 } 2695 } else if (cluster->block_group != block_group) { 2696 /* someone else has already freed it don't redo their work */ 2697 spin_unlock(&cluster->lock); 2698 return 0; 2699 } 2700 atomic_inc(&block_group->count); 2701 spin_unlock(&cluster->lock); 2702 2703 ctl = block_group->free_space_ctl; 2704 2705 /* now return any extents the cluster had on it */ 2706 spin_lock(&ctl->tree_lock); 2707 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2708 spin_unlock(&ctl->tree_lock); 2709 2710 /* finally drop our ref */ 2711 btrfs_put_block_group(block_group); 2712 return ret; 2713 } 2714 2715 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 2716 struct btrfs_free_cluster *cluster, 2717 struct btrfs_free_space *entry, 2718 u64 bytes, u64 min_start, 2719 u64 *max_extent_size) 2720 { 2721 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2722 int err; 2723 u64 search_start = cluster->window_start; 2724 u64 search_bytes = bytes; 2725 u64 ret = 0; 2726 2727 search_start = min_start; 2728 search_bytes = bytes; 2729 2730 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2731 if (err) { 2732 *max_extent_size = max(get_max_extent_size(entry), 2733 *max_extent_size); 2734 return 0; 2735 } 2736 2737 ret = search_start; 2738 __bitmap_clear_bits(ctl, entry, ret, bytes); 2739 2740 return ret; 2741 } 2742 2743 /* 2744 * given a cluster, try to allocate 'bytes' from it, returns 0 2745 * if it couldn't find anything suitably large, or a logical disk offset 2746 * if things worked out 2747 */ 2748 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 2749 struct btrfs_free_cluster *cluster, u64 bytes, 2750 u64 min_start, u64 *max_extent_size) 2751 { 2752 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2753 struct btrfs_free_space *entry = NULL; 2754 struct rb_node *node; 2755 u64 ret = 0; 2756 2757 spin_lock(&cluster->lock); 2758 if (bytes > cluster->max_size) 2759 goto out; 2760 2761 if (cluster->block_group != block_group) 2762 goto out; 2763 2764 node = rb_first(&cluster->root); 2765 if (!node) 2766 goto out; 2767 2768 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2769 while (1) { 2770 if (entry->bytes < bytes) 2771 *max_extent_size = max(get_max_extent_size(entry), 2772 *max_extent_size); 2773 2774 if (entry->bytes < bytes || 2775 (!entry->bitmap && entry->offset < min_start)) { 2776 node = rb_next(&entry->offset_index); 2777 if (!node) 2778 break; 2779 entry = rb_entry(node, struct btrfs_free_space, 2780 offset_index); 2781 continue; 2782 } 2783 2784 if (entry->bitmap) { 2785 ret = btrfs_alloc_from_bitmap(block_group, 2786 cluster, entry, bytes, 2787 cluster->window_start, 2788 max_extent_size); 2789 if (ret == 0) { 2790 node = rb_next(&entry->offset_index); 2791 if (!node) 2792 break; 2793 entry = rb_entry(node, struct btrfs_free_space, 2794 offset_index); 2795 continue; 2796 } 2797 cluster->window_start += bytes; 2798 } else { 2799 ret = entry->offset; 2800 2801 entry->offset += bytes; 2802 entry->bytes -= bytes; 2803 } 2804 2805 if (entry->bytes == 0) 2806 rb_erase(&entry->offset_index, &cluster->root); 2807 break; 2808 } 2809 out: 2810 spin_unlock(&cluster->lock); 2811 2812 if (!ret) 2813 return 0; 2814 2815 spin_lock(&ctl->tree_lock); 2816 2817 ctl->free_space -= bytes; 2818 if (entry->bytes == 0) { 2819 ctl->free_extents--; 2820 if (entry->bitmap) { 2821 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2822 entry->bitmap); 2823 ctl->total_bitmaps--; 2824 ctl->op->recalc_thresholds(ctl); 2825 } 2826 kmem_cache_free(btrfs_free_space_cachep, entry); 2827 } 2828 2829 spin_unlock(&ctl->tree_lock); 2830 2831 return ret; 2832 } 2833 2834 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 2835 struct btrfs_free_space *entry, 2836 struct btrfs_free_cluster *cluster, 2837 u64 offset, u64 bytes, 2838 u64 cont1_bytes, u64 min_bytes) 2839 { 2840 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2841 unsigned long next_zero; 2842 unsigned long i; 2843 unsigned long want_bits; 2844 unsigned long min_bits; 2845 unsigned long found_bits; 2846 unsigned long max_bits = 0; 2847 unsigned long start = 0; 2848 unsigned long total_found = 0; 2849 int ret; 2850 2851 i = offset_to_bit(entry->offset, ctl->unit, 2852 max_t(u64, offset, entry->offset)); 2853 want_bits = bytes_to_bits(bytes, ctl->unit); 2854 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2855 2856 /* 2857 * Don't bother looking for a cluster in this bitmap if it's heavily 2858 * fragmented. 2859 */ 2860 if (entry->max_extent_size && 2861 entry->max_extent_size < cont1_bytes) 2862 return -ENOSPC; 2863 again: 2864 found_bits = 0; 2865 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2866 next_zero = find_next_zero_bit(entry->bitmap, 2867 BITS_PER_BITMAP, i); 2868 if (next_zero - i >= min_bits) { 2869 found_bits = next_zero - i; 2870 if (found_bits > max_bits) 2871 max_bits = found_bits; 2872 break; 2873 } 2874 if (next_zero - i > max_bits) 2875 max_bits = next_zero - i; 2876 i = next_zero; 2877 } 2878 2879 if (!found_bits) { 2880 entry->max_extent_size = (u64)max_bits * ctl->unit; 2881 return -ENOSPC; 2882 } 2883 2884 if (!total_found) { 2885 start = i; 2886 cluster->max_size = 0; 2887 } 2888 2889 total_found += found_bits; 2890 2891 if (cluster->max_size < found_bits * ctl->unit) 2892 cluster->max_size = found_bits * ctl->unit; 2893 2894 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2895 i = next_zero + 1; 2896 goto again; 2897 } 2898 2899 cluster->window_start = start * ctl->unit + entry->offset; 2900 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2901 ret = tree_insert_offset(&cluster->root, entry->offset, 2902 &entry->offset_index, 1); 2903 ASSERT(!ret); /* -EEXIST; Logic error */ 2904 2905 trace_btrfs_setup_cluster(block_group, cluster, 2906 total_found * ctl->unit, 1); 2907 return 0; 2908 } 2909 2910 /* 2911 * This searches the block group for just extents to fill the cluster with. 2912 * Try to find a cluster with at least bytes total bytes, at least one 2913 * extent of cont1_bytes, and other clusters of at least min_bytes. 2914 */ 2915 static noinline int 2916 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 2917 struct btrfs_free_cluster *cluster, 2918 struct list_head *bitmaps, u64 offset, u64 bytes, 2919 u64 cont1_bytes, u64 min_bytes) 2920 { 2921 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2922 struct btrfs_free_space *first = NULL; 2923 struct btrfs_free_space *entry = NULL; 2924 struct btrfs_free_space *last; 2925 struct rb_node *node; 2926 u64 window_free; 2927 u64 max_extent; 2928 u64 total_size = 0; 2929 2930 entry = tree_search_offset(ctl, offset, 0, 1); 2931 if (!entry) 2932 return -ENOSPC; 2933 2934 /* 2935 * We don't want bitmaps, so just move along until we find a normal 2936 * extent entry. 2937 */ 2938 while (entry->bitmap || entry->bytes < min_bytes) { 2939 if (entry->bitmap && list_empty(&entry->list)) 2940 list_add_tail(&entry->list, bitmaps); 2941 node = rb_next(&entry->offset_index); 2942 if (!node) 2943 return -ENOSPC; 2944 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2945 } 2946 2947 window_free = entry->bytes; 2948 max_extent = entry->bytes; 2949 first = entry; 2950 last = entry; 2951 2952 for (node = rb_next(&entry->offset_index); node; 2953 node = rb_next(&entry->offset_index)) { 2954 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2955 2956 if (entry->bitmap) { 2957 if (list_empty(&entry->list)) 2958 list_add_tail(&entry->list, bitmaps); 2959 continue; 2960 } 2961 2962 if (entry->bytes < min_bytes) 2963 continue; 2964 2965 last = entry; 2966 window_free += entry->bytes; 2967 if (entry->bytes > max_extent) 2968 max_extent = entry->bytes; 2969 } 2970 2971 if (window_free < bytes || max_extent < cont1_bytes) 2972 return -ENOSPC; 2973 2974 cluster->window_start = first->offset; 2975 2976 node = &first->offset_index; 2977 2978 /* 2979 * now we've found our entries, pull them out of the free space 2980 * cache and put them into the cluster rbtree 2981 */ 2982 do { 2983 int ret; 2984 2985 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2986 node = rb_next(&entry->offset_index); 2987 if (entry->bitmap || entry->bytes < min_bytes) 2988 continue; 2989 2990 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2991 ret = tree_insert_offset(&cluster->root, entry->offset, 2992 &entry->offset_index, 0); 2993 total_size += entry->bytes; 2994 ASSERT(!ret); /* -EEXIST; Logic error */ 2995 } while (node && entry != last); 2996 2997 cluster->max_size = max_extent; 2998 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2999 return 0; 3000 } 3001 3002 /* 3003 * This specifically looks for bitmaps that may work in the cluster, we assume 3004 * that we have already failed to find extents that will work. 3005 */ 3006 static noinline int 3007 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3008 struct btrfs_free_cluster *cluster, 3009 struct list_head *bitmaps, u64 offset, u64 bytes, 3010 u64 cont1_bytes, u64 min_bytes) 3011 { 3012 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3013 struct btrfs_free_space *entry = NULL; 3014 int ret = -ENOSPC; 3015 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3016 3017 if (ctl->total_bitmaps == 0) 3018 return -ENOSPC; 3019 3020 /* 3021 * The bitmap that covers offset won't be in the list unless offset 3022 * is just its start offset. 3023 */ 3024 if (!list_empty(bitmaps)) 3025 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3026 3027 if (!entry || entry->offset != bitmap_offset) { 3028 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3029 if (entry && list_empty(&entry->list)) 3030 list_add(&entry->list, bitmaps); 3031 } 3032 3033 list_for_each_entry(entry, bitmaps, list) { 3034 if (entry->bytes < bytes) 3035 continue; 3036 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3037 bytes, cont1_bytes, min_bytes); 3038 if (!ret) 3039 return 0; 3040 } 3041 3042 /* 3043 * The bitmaps list has all the bitmaps that record free space 3044 * starting after offset, so no more search is required. 3045 */ 3046 return -ENOSPC; 3047 } 3048 3049 /* 3050 * here we try to find a cluster of blocks in a block group. The goal 3051 * is to find at least bytes+empty_size. 3052 * We might not find them all in one contiguous area. 3053 * 3054 * returns zero and sets up cluster if things worked out, otherwise 3055 * it returns -enospc 3056 */ 3057 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3058 struct btrfs_free_cluster *cluster, 3059 u64 offset, u64 bytes, u64 empty_size) 3060 { 3061 struct btrfs_fs_info *fs_info = block_group->fs_info; 3062 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3063 struct btrfs_free_space *entry, *tmp; 3064 LIST_HEAD(bitmaps); 3065 u64 min_bytes; 3066 u64 cont1_bytes; 3067 int ret; 3068 3069 /* 3070 * Choose the minimum extent size we'll require for this 3071 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3072 * For metadata, allow allocates with smaller extents. For 3073 * data, keep it dense. 3074 */ 3075 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3076 cont1_bytes = min_bytes = bytes + empty_size; 3077 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3078 cont1_bytes = bytes; 3079 min_bytes = fs_info->sectorsize; 3080 } else { 3081 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3082 min_bytes = fs_info->sectorsize; 3083 } 3084 3085 spin_lock(&ctl->tree_lock); 3086 3087 /* 3088 * If we know we don't have enough space to make a cluster don't even 3089 * bother doing all the work to try and find one. 3090 */ 3091 if (ctl->free_space < bytes) { 3092 spin_unlock(&ctl->tree_lock); 3093 return -ENOSPC; 3094 } 3095 3096 spin_lock(&cluster->lock); 3097 3098 /* someone already found a cluster, hooray */ 3099 if (cluster->block_group) { 3100 ret = 0; 3101 goto out; 3102 } 3103 3104 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3105 min_bytes); 3106 3107 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3108 bytes + empty_size, 3109 cont1_bytes, min_bytes); 3110 if (ret) 3111 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3112 offset, bytes + empty_size, 3113 cont1_bytes, min_bytes); 3114 3115 /* Clear our temporary list */ 3116 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3117 list_del_init(&entry->list); 3118 3119 if (!ret) { 3120 atomic_inc(&block_group->count); 3121 list_add_tail(&cluster->block_group_list, 3122 &block_group->cluster_list); 3123 cluster->block_group = block_group; 3124 } else { 3125 trace_btrfs_failed_cluster_setup(block_group); 3126 } 3127 out: 3128 spin_unlock(&cluster->lock); 3129 spin_unlock(&ctl->tree_lock); 3130 3131 return ret; 3132 } 3133 3134 /* 3135 * simple code to zero out a cluster 3136 */ 3137 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3138 { 3139 spin_lock_init(&cluster->lock); 3140 spin_lock_init(&cluster->refill_lock); 3141 cluster->root = RB_ROOT; 3142 cluster->max_size = 0; 3143 cluster->fragmented = false; 3144 INIT_LIST_HEAD(&cluster->block_group_list); 3145 cluster->block_group = NULL; 3146 } 3147 3148 static int do_trimming(struct btrfs_block_group *block_group, 3149 u64 *total_trimmed, u64 start, u64 bytes, 3150 u64 reserved_start, u64 reserved_bytes, 3151 struct btrfs_trim_range *trim_entry) 3152 { 3153 struct btrfs_space_info *space_info = block_group->space_info; 3154 struct btrfs_fs_info *fs_info = block_group->fs_info; 3155 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3156 int ret; 3157 int update = 0; 3158 u64 trimmed = 0; 3159 3160 spin_lock(&space_info->lock); 3161 spin_lock(&block_group->lock); 3162 if (!block_group->ro) { 3163 block_group->reserved += reserved_bytes; 3164 space_info->bytes_reserved += reserved_bytes; 3165 update = 1; 3166 } 3167 spin_unlock(&block_group->lock); 3168 spin_unlock(&space_info->lock); 3169 3170 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3171 if (!ret) 3172 *total_trimmed += trimmed; 3173 3174 mutex_lock(&ctl->cache_writeout_mutex); 3175 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 3176 list_del(&trim_entry->list); 3177 mutex_unlock(&ctl->cache_writeout_mutex); 3178 3179 if (update) { 3180 spin_lock(&space_info->lock); 3181 spin_lock(&block_group->lock); 3182 if (block_group->ro) 3183 space_info->bytes_readonly += reserved_bytes; 3184 block_group->reserved -= reserved_bytes; 3185 space_info->bytes_reserved -= reserved_bytes; 3186 spin_unlock(&block_group->lock); 3187 spin_unlock(&space_info->lock); 3188 } 3189 3190 return ret; 3191 } 3192 3193 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3194 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3195 { 3196 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3197 struct btrfs_free_space *entry; 3198 struct rb_node *node; 3199 int ret = 0; 3200 u64 extent_start; 3201 u64 extent_bytes; 3202 u64 bytes; 3203 3204 while (start < end) { 3205 struct btrfs_trim_range trim_entry; 3206 3207 mutex_lock(&ctl->cache_writeout_mutex); 3208 spin_lock(&ctl->tree_lock); 3209 3210 if (ctl->free_space < minlen) { 3211 spin_unlock(&ctl->tree_lock); 3212 mutex_unlock(&ctl->cache_writeout_mutex); 3213 break; 3214 } 3215 3216 entry = tree_search_offset(ctl, start, 0, 1); 3217 if (!entry) { 3218 spin_unlock(&ctl->tree_lock); 3219 mutex_unlock(&ctl->cache_writeout_mutex); 3220 break; 3221 } 3222 3223 /* skip bitmaps */ 3224 while (entry->bitmap) { 3225 node = rb_next(&entry->offset_index); 3226 if (!node) { 3227 spin_unlock(&ctl->tree_lock); 3228 mutex_unlock(&ctl->cache_writeout_mutex); 3229 goto out; 3230 } 3231 entry = rb_entry(node, struct btrfs_free_space, 3232 offset_index); 3233 } 3234 3235 if (entry->offset >= end) { 3236 spin_unlock(&ctl->tree_lock); 3237 mutex_unlock(&ctl->cache_writeout_mutex); 3238 break; 3239 } 3240 3241 extent_start = entry->offset; 3242 extent_bytes = entry->bytes; 3243 start = max(start, extent_start); 3244 bytes = min(extent_start + extent_bytes, end) - start; 3245 if (bytes < minlen) { 3246 spin_unlock(&ctl->tree_lock); 3247 mutex_unlock(&ctl->cache_writeout_mutex); 3248 goto next; 3249 } 3250 3251 unlink_free_space(ctl, entry); 3252 kmem_cache_free(btrfs_free_space_cachep, entry); 3253 3254 spin_unlock(&ctl->tree_lock); 3255 trim_entry.start = extent_start; 3256 trim_entry.bytes = extent_bytes; 3257 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3258 mutex_unlock(&ctl->cache_writeout_mutex); 3259 3260 ret = do_trimming(block_group, total_trimmed, start, bytes, 3261 extent_start, extent_bytes, &trim_entry); 3262 if (ret) 3263 break; 3264 next: 3265 start += bytes; 3266 3267 if (fatal_signal_pending(current)) { 3268 ret = -ERESTARTSYS; 3269 break; 3270 } 3271 3272 cond_resched(); 3273 } 3274 out: 3275 return ret; 3276 } 3277 3278 static int trim_bitmaps(struct btrfs_block_group *block_group, 3279 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3280 { 3281 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3282 struct btrfs_free_space *entry; 3283 int ret = 0; 3284 int ret2; 3285 u64 bytes; 3286 u64 offset = offset_to_bitmap(ctl, start); 3287 3288 while (offset < end) { 3289 bool next_bitmap = false; 3290 struct btrfs_trim_range trim_entry; 3291 3292 mutex_lock(&ctl->cache_writeout_mutex); 3293 spin_lock(&ctl->tree_lock); 3294 3295 if (ctl->free_space < minlen) { 3296 spin_unlock(&ctl->tree_lock); 3297 mutex_unlock(&ctl->cache_writeout_mutex); 3298 break; 3299 } 3300 3301 entry = tree_search_offset(ctl, offset, 1, 0); 3302 if (!entry) { 3303 spin_unlock(&ctl->tree_lock); 3304 mutex_unlock(&ctl->cache_writeout_mutex); 3305 next_bitmap = true; 3306 goto next; 3307 } 3308 3309 bytes = minlen; 3310 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3311 if (ret2 || start >= end) { 3312 spin_unlock(&ctl->tree_lock); 3313 mutex_unlock(&ctl->cache_writeout_mutex); 3314 next_bitmap = true; 3315 goto next; 3316 } 3317 3318 bytes = min(bytes, end - start); 3319 if (bytes < minlen) { 3320 spin_unlock(&ctl->tree_lock); 3321 mutex_unlock(&ctl->cache_writeout_mutex); 3322 goto next; 3323 } 3324 3325 bitmap_clear_bits(ctl, entry, start, bytes); 3326 if (entry->bytes == 0) 3327 free_bitmap(ctl, entry); 3328 3329 spin_unlock(&ctl->tree_lock); 3330 trim_entry.start = start; 3331 trim_entry.bytes = bytes; 3332 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3333 mutex_unlock(&ctl->cache_writeout_mutex); 3334 3335 ret = do_trimming(block_group, total_trimmed, start, bytes, 3336 start, bytes, &trim_entry); 3337 if (ret) 3338 break; 3339 next: 3340 if (next_bitmap) { 3341 offset += BITS_PER_BITMAP * ctl->unit; 3342 } else { 3343 start += bytes; 3344 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 3345 offset += BITS_PER_BITMAP * ctl->unit; 3346 } 3347 3348 if (fatal_signal_pending(current)) { 3349 ret = -ERESTARTSYS; 3350 break; 3351 } 3352 3353 cond_resched(); 3354 } 3355 3356 return ret; 3357 } 3358 3359 void btrfs_get_block_group_trimming(struct btrfs_block_group *cache) 3360 { 3361 atomic_inc(&cache->trimming); 3362 } 3363 3364 void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group) 3365 { 3366 struct btrfs_fs_info *fs_info = block_group->fs_info; 3367 struct extent_map_tree *em_tree; 3368 struct extent_map *em; 3369 bool cleanup; 3370 3371 spin_lock(&block_group->lock); 3372 cleanup = (atomic_dec_and_test(&block_group->trimming) && 3373 block_group->removed); 3374 spin_unlock(&block_group->lock); 3375 3376 if (cleanup) { 3377 mutex_lock(&fs_info->chunk_mutex); 3378 em_tree = &fs_info->mapping_tree; 3379 write_lock(&em_tree->lock); 3380 em = lookup_extent_mapping(em_tree, block_group->start, 3381 1); 3382 BUG_ON(!em); /* logic error, can't happen */ 3383 remove_extent_mapping(em_tree, em); 3384 write_unlock(&em_tree->lock); 3385 mutex_unlock(&fs_info->chunk_mutex); 3386 3387 /* once for us and once for the tree */ 3388 free_extent_map(em); 3389 free_extent_map(em); 3390 3391 /* 3392 * We've left one free space entry and other tasks trimming 3393 * this block group have left 1 entry each one. Free them. 3394 */ 3395 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3396 } 3397 } 3398 3399 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 3400 u64 *trimmed, u64 start, u64 end, u64 minlen) 3401 { 3402 int ret; 3403 3404 *trimmed = 0; 3405 3406 spin_lock(&block_group->lock); 3407 if (block_group->removed) { 3408 spin_unlock(&block_group->lock); 3409 return 0; 3410 } 3411 btrfs_get_block_group_trimming(block_group); 3412 spin_unlock(&block_group->lock); 3413 3414 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 3415 if (ret) 3416 goto out; 3417 3418 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 3419 out: 3420 btrfs_put_block_group_trimming(block_group); 3421 return ret; 3422 } 3423 3424 /* 3425 * Find the left-most item in the cache tree, and then return the 3426 * smallest inode number in the item. 3427 * 3428 * Note: the returned inode number may not be the smallest one in 3429 * the tree, if the left-most item is a bitmap. 3430 */ 3431 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3432 { 3433 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3434 struct btrfs_free_space *entry = NULL; 3435 u64 ino = 0; 3436 3437 spin_lock(&ctl->tree_lock); 3438 3439 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3440 goto out; 3441 3442 entry = rb_entry(rb_first(&ctl->free_space_offset), 3443 struct btrfs_free_space, offset_index); 3444 3445 if (!entry->bitmap) { 3446 ino = entry->offset; 3447 3448 unlink_free_space(ctl, entry); 3449 entry->offset++; 3450 entry->bytes--; 3451 if (!entry->bytes) 3452 kmem_cache_free(btrfs_free_space_cachep, entry); 3453 else 3454 link_free_space(ctl, entry); 3455 } else { 3456 u64 offset = 0; 3457 u64 count = 1; 3458 int ret; 3459 3460 ret = search_bitmap(ctl, entry, &offset, &count, true); 3461 /* Logic error; Should be empty if it can't find anything */ 3462 ASSERT(!ret); 3463 3464 ino = offset; 3465 bitmap_clear_bits(ctl, entry, offset, 1); 3466 if (entry->bytes == 0) 3467 free_bitmap(ctl, entry); 3468 } 3469 out: 3470 spin_unlock(&ctl->tree_lock); 3471 3472 return ino; 3473 } 3474 3475 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3476 struct btrfs_path *path) 3477 { 3478 struct inode *inode = NULL; 3479 3480 spin_lock(&root->ino_cache_lock); 3481 if (root->ino_cache_inode) 3482 inode = igrab(root->ino_cache_inode); 3483 spin_unlock(&root->ino_cache_lock); 3484 if (inode) 3485 return inode; 3486 3487 inode = __lookup_free_space_inode(root, path, 0); 3488 if (IS_ERR(inode)) 3489 return inode; 3490 3491 spin_lock(&root->ino_cache_lock); 3492 if (!btrfs_fs_closing(root->fs_info)) 3493 root->ino_cache_inode = igrab(inode); 3494 spin_unlock(&root->ino_cache_lock); 3495 3496 return inode; 3497 } 3498 3499 int create_free_ino_inode(struct btrfs_root *root, 3500 struct btrfs_trans_handle *trans, 3501 struct btrfs_path *path) 3502 { 3503 return __create_free_space_inode(root, trans, path, 3504 BTRFS_FREE_INO_OBJECTID, 0); 3505 } 3506 3507 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3508 { 3509 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3510 struct btrfs_path *path; 3511 struct inode *inode; 3512 int ret = 0; 3513 u64 root_gen = btrfs_root_generation(&root->root_item); 3514 3515 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3516 return 0; 3517 3518 /* 3519 * If we're unmounting then just return, since this does a search on the 3520 * normal root and not the commit root and we could deadlock. 3521 */ 3522 if (btrfs_fs_closing(fs_info)) 3523 return 0; 3524 3525 path = btrfs_alloc_path(); 3526 if (!path) 3527 return 0; 3528 3529 inode = lookup_free_ino_inode(root, path); 3530 if (IS_ERR(inode)) 3531 goto out; 3532 3533 if (root_gen != BTRFS_I(inode)->generation) 3534 goto out_put; 3535 3536 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3537 3538 if (ret < 0) 3539 btrfs_err(fs_info, 3540 "failed to load free ino cache for root %llu", 3541 root->root_key.objectid); 3542 out_put: 3543 iput(inode); 3544 out: 3545 btrfs_free_path(path); 3546 return ret; 3547 } 3548 3549 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3550 struct btrfs_trans_handle *trans, 3551 struct btrfs_path *path, 3552 struct inode *inode) 3553 { 3554 struct btrfs_fs_info *fs_info = root->fs_info; 3555 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3556 int ret; 3557 struct btrfs_io_ctl io_ctl; 3558 bool release_metadata = true; 3559 3560 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3561 return 0; 3562 3563 memset(&io_ctl, 0, sizeof(io_ctl)); 3564 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); 3565 if (!ret) { 3566 /* 3567 * At this point writepages() didn't error out, so our metadata 3568 * reservation is released when the writeback finishes, at 3569 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 3570 * with or without an error. 3571 */ 3572 release_metadata = false; 3573 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); 3574 } 3575 3576 if (ret) { 3577 if (release_metadata) 3578 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3579 inode->i_size, true); 3580 #ifdef DEBUG 3581 btrfs_err(fs_info, 3582 "failed to write free ino cache for root %llu", 3583 root->root_key.objectid); 3584 #endif 3585 } 3586 3587 return ret; 3588 } 3589 3590 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3591 /* 3592 * Use this if you need to make a bitmap or extent entry specifically, it 3593 * doesn't do any of the merging that add_free_space does, this acts a lot like 3594 * how the free space cache loading stuff works, so you can get really weird 3595 * configurations. 3596 */ 3597 int test_add_free_space_entry(struct btrfs_block_group *cache, 3598 u64 offset, u64 bytes, bool bitmap) 3599 { 3600 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3601 struct btrfs_free_space *info = NULL, *bitmap_info; 3602 void *map = NULL; 3603 u64 bytes_added; 3604 int ret; 3605 3606 again: 3607 if (!info) { 3608 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3609 if (!info) 3610 return -ENOMEM; 3611 } 3612 3613 if (!bitmap) { 3614 spin_lock(&ctl->tree_lock); 3615 info->offset = offset; 3616 info->bytes = bytes; 3617 info->max_extent_size = 0; 3618 ret = link_free_space(ctl, info); 3619 spin_unlock(&ctl->tree_lock); 3620 if (ret) 3621 kmem_cache_free(btrfs_free_space_cachep, info); 3622 return ret; 3623 } 3624 3625 if (!map) { 3626 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 3627 if (!map) { 3628 kmem_cache_free(btrfs_free_space_cachep, info); 3629 return -ENOMEM; 3630 } 3631 } 3632 3633 spin_lock(&ctl->tree_lock); 3634 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3635 1, 0); 3636 if (!bitmap_info) { 3637 info->bitmap = map; 3638 map = NULL; 3639 add_new_bitmap(ctl, info, offset); 3640 bitmap_info = info; 3641 info = NULL; 3642 } 3643 3644 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3645 3646 bytes -= bytes_added; 3647 offset += bytes_added; 3648 spin_unlock(&ctl->tree_lock); 3649 3650 if (bytes) 3651 goto again; 3652 3653 if (info) 3654 kmem_cache_free(btrfs_free_space_cachep, info); 3655 if (map) 3656 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 3657 return 0; 3658 } 3659 3660 /* 3661 * Checks to see if the given range is in the free space cache. This is really 3662 * just used to check the absence of space, so if there is free space in the 3663 * range at all we will return 1. 3664 */ 3665 int test_check_exists(struct btrfs_block_group *cache, 3666 u64 offset, u64 bytes) 3667 { 3668 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3669 struct btrfs_free_space *info; 3670 int ret = 0; 3671 3672 spin_lock(&ctl->tree_lock); 3673 info = tree_search_offset(ctl, offset, 0, 0); 3674 if (!info) { 3675 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3676 1, 0); 3677 if (!info) 3678 goto out; 3679 } 3680 3681 have_info: 3682 if (info->bitmap) { 3683 u64 bit_off, bit_bytes; 3684 struct rb_node *n; 3685 struct btrfs_free_space *tmp; 3686 3687 bit_off = offset; 3688 bit_bytes = ctl->unit; 3689 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 3690 if (!ret) { 3691 if (bit_off == offset) { 3692 ret = 1; 3693 goto out; 3694 } else if (bit_off > offset && 3695 offset + bytes > bit_off) { 3696 ret = 1; 3697 goto out; 3698 } 3699 } 3700 3701 n = rb_prev(&info->offset_index); 3702 while (n) { 3703 tmp = rb_entry(n, struct btrfs_free_space, 3704 offset_index); 3705 if (tmp->offset + tmp->bytes < offset) 3706 break; 3707 if (offset + bytes < tmp->offset) { 3708 n = rb_prev(&tmp->offset_index); 3709 continue; 3710 } 3711 info = tmp; 3712 goto have_info; 3713 } 3714 3715 n = rb_next(&info->offset_index); 3716 while (n) { 3717 tmp = rb_entry(n, struct btrfs_free_space, 3718 offset_index); 3719 if (offset + bytes < tmp->offset) 3720 break; 3721 if (tmp->offset + tmp->bytes < offset) { 3722 n = rb_next(&tmp->offset_index); 3723 continue; 3724 } 3725 info = tmp; 3726 goto have_info; 3727 } 3728 3729 ret = 0; 3730 goto out; 3731 } 3732 3733 if (info->offset == offset) { 3734 ret = 1; 3735 goto out; 3736 } 3737 3738 if (offset > info->offset && offset < info->offset + info->bytes) 3739 ret = 1; 3740 out: 3741 spin_unlock(&ctl->tree_lock); 3742 return ret; 3743 } 3744 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3745