xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 81de3bf3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 
25 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
26 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
27 
28 struct btrfs_trim_range {
29 	u64 start;
30 	u64 bytes;
31 	struct list_head list;
32 };
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
39 			     struct btrfs_trans_handle *trans,
40 			     struct btrfs_io_ctl *io_ctl,
41 			     struct btrfs_path *path);
42 
43 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
44 					       struct btrfs_path *path,
45 					       u64 offset)
46 {
47 	struct btrfs_fs_info *fs_info = root->fs_info;
48 	struct btrfs_key key;
49 	struct btrfs_key location;
50 	struct btrfs_disk_key disk_key;
51 	struct btrfs_free_space_header *header;
52 	struct extent_buffer *leaf;
53 	struct inode *inode = NULL;
54 	unsigned nofs_flag;
55 	int ret;
56 
57 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
58 	key.offset = offset;
59 	key.type = 0;
60 
61 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
62 	if (ret < 0)
63 		return ERR_PTR(ret);
64 	if (ret > 0) {
65 		btrfs_release_path(path);
66 		return ERR_PTR(-ENOENT);
67 	}
68 
69 	leaf = path->nodes[0];
70 	header = btrfs_item_ptr(leaf, path->slots[0],
71 				struct btrfs_free_space_header);
72 	btrfs_free_space_key(leaf, header, &disk_key);
73 	btrfs_disk_key_to_cpu(&location, &disk_key);
74 	btrfs_release_path(path);
75 
76 	/*
77 	 * We are often under a trans handle at this point, so we need to make
78 	 * sure NOFS is set to keep us from deadlocking.
79 	 */
80 	nofs_flag = memalloc_nofs_save();
81 	inode = btrfs_iget_path(fs_info->sb, &location, root, path);
82 	btrfs_release_path(path);
83 	memalloc_nofs_restore(nofs_flag);
84 	if (IS_ERR(inode))
85 		return inode;
86 
87 	mapping_set_gfp_mask(inode->i_mapping,
88 			mapping_gfp_constraint(inode->i_mapping,
89 			~(__GFP_FS | __GFP_HIGHMEM)));
90 
91 	return inode;
92 }
93 
94 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
95 		struct btrfs_path *path)
96 {
97 	struct btrfs_fs_info *fs_info = block_group->fs_info;
98 	struct inode *inode = NULL;
99 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 
101 	spin_lock(&block_group->lock);
102 	if (block_group->inode)
103 		inode = igrab(block_group->inode);
104 	spin_unlock(&block_group->lock);
105 	if (inode)
106 		return inode;
107 
108 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
109 					  block_group->start);
110 	if (IS_ERR(inode))
111 		return inode;
112 
113 	spin_lock(&block_group->lock);
114 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 		btrfs_info(fs_info, "Old style space inode found, converting.");
116 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
117 			BTRFS_INODE_NODATACOW;
118 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
119 	}
120 
121 	if (!block_group->iref) {
122 		block_group->inode = igrab(inode);
123 		block_group->iref = 1;
124 	}
125 	spin_unlock(&block_group->lock);
126 
127 	return inode;
128 }
129 
130 static int __create_free_space_inode(struct btrfs_root *root,
131 				     struct btrfs_trans_handle *trans,
132 				     struct btrfs_path *path,
133 				     u64 ino, u64 offset)
134 {
135 	struct btrfs_key key;
136 	struct btrfs_disk_key disk_key;
137 	struct btrfs_free_space_header *header;
138 	struct btrfs_inode_item *inode_item;
139 	struct extent_buffer *leaf;
140 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
141 	int ret;
142 
143 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
144 	if (ret)
145 		return ret;
146 
147 	/* We inline crc's for the free disk space cache */
148 	if (ino != BTRFS_FREE_INO_OBJECTID)
149 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
150 
151 	leaf = path->nodes[0];
152 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
153 				    struct btrfs_inode_item);
154 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
155 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
156 			     sizeof(*inode_item));
157 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
158 	btrfs_set_inode_size(leaf, inode_item, 0);
159 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
160 	btrfs_set_inode_uid(leaf, inode_item, 0);
161 	btrfs_set_inode_gid(leaf, inode_item, 0);
162 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
163 	btrfs_set_inode_flags(leaf, inode_item, flags);
164 	btrfs_set_inode_nlink(leaf, inode_item, 1);
165 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
166 	btrfs_set_inode_block_group(leaf, inode_item, offset);
167 	btrfs_mark_buffer_dirty(leaf);
168 	btrfs_release_path(path);
169 
170 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
171 	key.offset = offset;
172 	key.type = 0;
173 	ret = btrfs_insert_empty_item(trans, root, path, &key,
174 				      sizeof(struct btrfs_free_space_header));
175 	if (ret < 0) {
176 		btrfs_release_path(path);
177 		return ret;
178 	}
179 
180 	leaf = path->nodes[0];
181 	header = btrfs_item_ptr(leaf, path->slots[0],
182 				struct btrfs_free_space_header);
183 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
184 	btrfs_set_free_space_key(leaf, header, &disk_key);
185 	btrfs_mark_buffer_dirty(leaf);
186 	btrfs_release_path(path);
187 
188 	return 0;
189 }
190 
191 int create_free_space_inode(struct btrfs_trans_handle *trans,
192 			    struct btrfs_block_group *block_group,
193 			    struct btrfs_path *path)
194 {
195 	int ret;
196 	u64 ino;
197 
198 	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
199 	if (ret < 0)
200 		return ret;
201 
202 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
203 					 ino, block_group->start);
204 }
205 
206 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
207 				       struct btrfs_block_rsv *rsv)
208 {
209 	u64 needed_bytes;
210 	int ret;
211 
212 	/* 1 for slack space, 1 for updating the inode */
213 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
214 		btrfs_calc_metadata_size(fs_info, 1);
215 
216 	spin_lock(&rsv->lock);
217 	if (rsv->reserved < needed_bytes)
218 		ret = -ENOSPC;
219 	else
220 		ret = 0;
221 	spin_unlock(&rsv->lock);
222 	return ret;
223 }
224 
225 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
226 				    struct btrfs_block_group *block_group,
227 				    struct inode *inode)
228 {
229 	struct btrfs_root *root = BTRFS_I(inode)->root;
230 	int ret = 0;
231 	bool locked = false;
232 
233 	if (block_group) {
234 		struct btrfs_path *path = btrfs_alloc_path();
235 
236 		if (!path) {
237 			ret = -ENOMEM;
238 			goto fail;
239 		}
240 		locked = true;
241 		mutex_lock(&trans->transaction->cache_write_mutex);
242 		if (!list_empty(&block_group->io_list)) {
243 			list_del_init(&block_group->io_list);
244 
245 			btrfs_wait_cache_io(trans, block_group, path);
246 			btrfs_put_block_group(block_group);
247 		}
248 
249 		/*
250 		 * now that we've truncated the cache away, its no longer
251 		 * setup or written
252 		 */
253 		spin_lock(&block_group->lock);
254 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
255 		spin_unlock(&block_group->lock);
256 		btrfs_free_path(path);
257 	}
258 
259 	btrfs_i_size_write(BTRFS_I(inode), 0);
260 	truncate_pagecache(inode, 0);
261 
262 	/*
263 	 * We skip the throttling logic for free space cache inodes, so we don't
264 	 * need to check for -EAGAIN.
265 	 */
266 	ret = btrfs_truncate_inode_items(trans, root, inode,
267 					 0, BTRFS_EXTENT_DATA_KEY);
268 	if (ret)
269 		goto fail;
270 
271 	ret = btrfs_update_inode(trans, root, inode);
272 
273 fail:
274 	if (locked)
275 		mutex_unlock(&trans->transaction->cache_write_mutex);
276 	if (ret)
277 		btrfs_abort_transaction(trans, ret);
278 
279 	return ret;
280 }
281 
282 static void readahead_cache(struct inode *inode)
283 {
284 	struct file_ra_state *ra;
285 	unsigned long last_index;
286 
287 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
288 	if (!ra)
289 		return;
290 
291 	file_ra_state_init(ra, inode->i_mapping);
292 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
293 
294 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
295 
296 	kfree(ra);
297 }
298 
299 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
300 		       int write)
301 {
302 	int num_pages;
303 	int check_crcs = 0;
304 
305 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
306 
307 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
308 		check_crcs = 1;
309 
310 	/* Make sure we can fit our crcs and generation into the first page */
311 	if (write && check_crcs &&
312 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
313 		return -ENOSPC;
314 
315 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
316 
317 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
318 	if (!io_ctl->pages)
319 		return -ENOMEM;
320 
321 	io_ctl->num_pages = num_pages;
322 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
323 	io_ctl->check_crcs = check_crcs;
324 	io_ctl->inode = inode;
325 
326 	return 0;
327 }
328 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
329 
330 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
331 {
332 	kfree(io_ctl->pages);
333 	io_ctl->pages = NULL;
334 }
335 
336 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
337 {
338 	if (io_ctl->cur) {
339 		io_ctl->cur = NULL;
340 		io_ctl->orig = NULL;
341 	}
342 }
343 
344 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
345 {
346 	ASSERT(io_ctl->index < io_ctl->num_pages);
347 	io_ctl->page = io_ctl->pages[io_ctl->index++];
348 	io_ctl->cur = page_address(io_ctl->page);
349 	io_ctl->orig = io_ctl->cur;
350 	io_ctl->size = PAGE_SIZE;
351 	if (clear)
352 		clear_page(io_ctl->cur);
353 }
354 
355 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
356 {
357 	int i;
358 
359 	io_ctl_unmap_page(io_ctl);
360 
361 	for (i = 0; i < io_ctl->num_pages; i++) {
362 		if (io_ctl->pages[i]) {
363 			ClearPageChecked(io_ctl->pages[i]);
364 			unlock_page(io_ctl->pages[i]);
365 			put_page(io_ctl->pages[i]);
366 		}
367 	}
368 }
369 
370 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
371 				int uptodate)
372 {
373 	struct page *page;
374 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
375 	int i;
376 
377 	for (i = 0; i < io_ctl->num_pages; i++) {
378 		page = find_or_create_page(inode->i_mapping, i, mask);
379 		if (!page) {
380 			io_ctl_drop_pages(io_ctl);
381 			return -ENOMEM;
382 		}
383 		io_ctl->pages[i] = page;
384 		if (uptodate && !PageUptodate(page)) {
385 			btrfs_readpage(NULL, page);
386 			lock_page(page);
387 			if (page->mapping != inode->i_mapping) {
388 				btrfs_err(BTRFS_I(inode)->root->fs_info,
389 					  "free space cache page truncated");
390 				io_ctl_drop_pages(io_ctl);
391 				return -EIO;
392 			}
393 			if (!PageUptodate(page)) {
394 				btrfs_err(BTRFS_I(inode)->root->fs_info,
395 					   "error reading free space cache");
396 				io_ctl_drop_pages(io_ctl);
397 				return -EIO;
398 			}
399 		}
400 	}
401 
402 	for (i = 0; i < io_ctl->num_pages; i++) {
403 		clear_page_dirty_for_io(io_ctl->pages[i]);
404 		set_page_extent_mapped(io_ctl->pages[i]);
405 	}
406 
407 	return 0;
408 }
409 
410 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
411 {
412 	__le64 *val;
413 
414 	io_ctl_map_page(io_ctl, 1);
415 
416 	/*
417 	 * Skip the csum areas.  If we don't check crcs then we just have a
418 	 * 64bit chunk at the front of the first page.
419 	 */
420 	if (io_ctl->check_crcs) {
421 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
422 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
423 	} else {
424 		io_ctl->cur += sizeof(u64);
425 		io_ctl->size -= sizeof(u64) * 2;
426 	}
427 
428 	val = io_ctl->cur;
429 	*val = cpu_to_le64(generation);
430 	io_ctl->cur += sizeof(u64);
431 }
432 
433 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
434 {
435 	__le64 *gen;
436 
437 	/*
438 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
439 	 * chunk at the front of the first page.
440 	 */
441 	if (io_ctl->check_crcs) {
442 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
443 		io_ctl->size -= sizeof(u64) +
444 			(sizeof(u32) * io_ctl->num_pages);
445 	} else {
446 		io_ctl->cur += sizeof(u64);
447 		io_ctl->size -= sizeof(u64) * 2;
448 	}
449 
450 	gen = io_ctl->cur;
451 	if (le64_to_cpu(*gen) != generation) {
452 		btrfs_err_rl(io_ctl->fs_info,
453 			"space cache generation (%llu) does not match inode (%llu)",
454 				*gen, generation);
455 		io_ctl_unmap_page(io_ctl);
456 		return -EIO;
457 	}
458 	io_ctl->cur += sizeof(u64);
459 	return 0;
460 }
461 
462 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
463 {
464 	u32 *tmp;
465 	u32 crc = ~(u32)0;
466 	unsigned offset = 0;
467 
468 	if (!io_ctl->check_crcs) {
469 		io_ctl_unmap_page(io_ctl);
470 		return;
471 	}
472 
473 	if (index == 0)
474 		offset = sizeof(u32) * io_ctl->num_pages;
475 
476 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
477 	btrfs_crc32c_final(crc, (u8 *)&crc);
478 	io_ctl_unmap_page(io_ctl);
479 	tmp = page_address(io_ctl->pages[0]);
480 	tmp += index;
481 	*tmp = crc;
482 }
483 
484 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
485 {
486 	u32 *tmp, val;
487 	u32 crc = ~(u32)0;
488 	unsigned offset = 0;
489 
490 	if (!io_ctl->check_crcs) {
491 		io_ctl_map_page(io_ctl, 0);
492 		return 0;
493 	}
494 
495 	if (index == 0)
496 		offset = sizeof(u32) * io_ctl->num_pages;
497 
498 	tmp = page_address(io_ctl->pages[0]);
499 	tmp += index;
500 	val = *tmp;
501 
502 	io_ctl_map_page(io_ctl, 0);
503 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
504 	btrfs_crc32c_final(crc, (u8 *)&crc);
505 	if (val != crc) {
506 		btrfs_err_rl(io_ctl->fs_info,
507 			"csum mismatch on free space cache");
508 		io_ctl_unmap_page(io_ctl);
509 		return -EIO;
510 	}
511 
512 	return 0;
513 }
514 
515 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
516 			    void *bitmap)
517 {
518 	struct btrfs_free_space_entry *entry;
519 
520 	if (!io_ctl->cur)
521 		return -ENOSPC;
522 
523 	entry = io_ctl->cur;
524 	entry->offset = cpu_to_le64(offset);
525 	entry->bytes = cpu_to_le64(bytes);
526 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
527 		BTRFS_FREE_SPACE_EXTENT;
528 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
529 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
530 
531 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
532 		return 0;
533 
534 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
535 
536 	/* No more pages to map */
537 	if (io_ctl->index >= io_ctl->num_pages)
538 		return 0;
539 
540 	/* map the next page */
541 	io_ctl_map_page(io_ctl, 1);
542 	return 0;
543 }
544 
545 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
546 {
547 	if (!io_ctl->cur)
548 		return -ENOSPC;
549 
550 	/*
551 	 * If we aren't at the start of the current page, unmap this one and
552 	 * map the next one if there is any left.
553 	 */
554 	if (io_ctl->cur != io_ctl->orig) {
555 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 		if (io_ctl->index >= io_ctl->num_pages)
557 			return -ENOSPC;
558 		io_ctl_map_page(io_ctl, 0);
559 	}
560 
561 	copy_page(io_ctl->cur, bitmap);
562 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
563 	if (io_ctl->index < io_ctl->num_pages)
564 		io_ctl_map_page(io_ctl, 0);
565 	return 0;
566 }
567 
568 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
569 {
570 	/*
571 	 * If we're not on the boundary we know we've modified the page and we
572 	 * need to crc the page.
573 	 */
574 	if (io_ctl->cur != io_ctl->orig)
575 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
576 	else
577 		io_ctl_unmap_page(io_ctl);
578 
579 	while (io_ctl->index < io_ctl->num_pages) {
580 		io_ctl_map_page(io_ctl, 1);
581 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
582 	}
583 }
584 
585 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
586 			    struct btrfs_free_space *entry, u8 *type)
587 {
588 	struct btrfs_free_space_entry *e;
589 	int ret;
590 
591 	if (!io_ctl->cur) {
592 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
593 		if (ret)
594 			return ret;
595 	}
596 
597 	e = io_ctl->cur;
598 	entry->offset = le64_to_cpu(e->offset);
599 	entry->bytes = le64_to_cpu(e->bytes);
600 	*type = e->type;
601 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
602 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
603 
604 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
605 		return 0;
606 
607 	io_ctl_unmap_page(io_ctl);
608 
609 	return 0;
610 }
611 
612 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
613 			      struct btrfs_free_space *entry)
614 {
615 	int ret;
616 
617 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
618 	if (ret)
619 		return ret;
620 
621 	copy_page(entry->bitmap, io_ctl->cur);
622 	io_ctl_unmap_page(io_ctl);
623 
624 	return 0;
625 }
626 
627 /*
628  * Since we attach pinned extents after the fact we can have contiguous sections
629  * of free space that are split up in entries.  This poses a problem with the
630  * tree logging stuff since it could have allocated across what appears to be 2
631  * entries since we would have merged the entries when adding the pinned extents
632  * back to the free space cache.  So run through the space cache that we just
633  * loaded and merge contiguous entries.  This will make the log replay stuff not
634  * blow up and it will make for nicer allocator behavior.
635  */
636 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
637 {
638 	struct btrfs_free_space *e, *prev = NULL;
639 	struct rb_node *n;
640 
641 again:
642 	spin_lock(&ctl->tree_lock);
643 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
644 		e = rb_entry(n, struct btrfs_free_space, offset_index);
645 		if (!prev)
646 			goto next;
647 		if (e->bitmap || prev->bitmap)
648 			goto next;
649 		if (prev->offset + prev->bytes == e->offset) {
650 			unlink_free_space(ctl, prev);
651 			unlink_free_space(ctl, e);
652 			prev->bytes += e->bytes;
653 			kmem_cache_free(btrfs_free_space_cachep, e);
654 			link_free_space(ctl, prev);
655 			prev = NULL;
656 			spin_unlock(&ctl->tree_lock);
657 			goto again;
658 		}
659 next:
660 		prev = e;
661 	}
662 	spin_unlock(&ctl->tree_lock);
663 }
664 
665 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
666 				   struct btrfs_free_space_ctl *ctl,
667 				   struct btrfs_path *path, u64 offset)
668 {
669 	struct btrfs_fs_info *fs_info = root->fs_info;
670 	struct btrfs_free_space_header *header;
671 	struct extent_buffer *leaf;
672 	struct btrfs_io_ctl io_ctl;
673 	struct btrfs_key key;
674 	struct btrfs_free_space *e, *n;
675 	LIST_HEAD(bitmaps);
676 	u64 num_entries;
677 	u64 num_bitmaps;
678 	u64 generation;
679 	u8 type;
680 	int ret = 0;
681 
682 	/* Nothing in the space cache, goodbye */
683 	if (!i_size_read(inode))
684 		return 0;
685 
686 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
687 	key.offset = offset;
688 	key.type = 0;
689 
690 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
691 	if (ret < 0)
692 		return 0;
693 	else if (ret > 0) {
694 		btrfs_release_path(path);
695 		return 0;
696 	}
697 
698 	ret = -1;
699 
700 	leaf = path->nodes[0];
701 	header = btrfs_item_ptr(leaf, path->slots[0],
702 				struct btrfs_free_space_header);
703 	num_entries = btrfs_free_space_entries(leaf, header);
704 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
705 	generation = btrfs_free_space_generation(leaf, header);
706 	btrfs_release_path(path);
707 
708 	if (!BTRFS_I(inode)->generation) {
709 		btrfs_info(fs_info,
710 			   "the free space cache file (%llu) is invalid, skip it",
711 			   offset);
712 		return 0;
713 	}
714 
715 	if (BTRFS_I(inode)->generation != generation) {
716 		btrfs_err(fs_info,
717 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
718 			  BTRFS_I(inode)->generation, generation);
719 		return 0;
720 	}
721 
722 	if (!num_entries)
723 		return 0;
724 
725 	ret = io_ctl_init(&io_ctl, inode, 0);
726 	if (ret)
727 		return ret;
728 
729 	readahead_cache(inode);
730 
731 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
732 	if (ret)
733 		goto out;
734 
735 	ret = io_ctl_check_crc(&io_ctl, 0);
736 	if (ret)
737 		goto free_cache;
738 
739 	ret = io_ctl_check_generation(&io_ctl, generation);
740 	if (ret)
741 		goto free_cache;
742 
743 	while (num_entries) {
744 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
745 				      GFP_NOFS);
746 		if (!e)
747 			goto free_cache;
748 
749 		ret = io_ctl_read_entry(&io_ctl, e, &type);
750 		if (ret) {
751 			kmem_cache_free(btrfs_free_space_cachep, e);
752 			goto free_cache;
753 		}
754 
755 		if (!e->bytes) {
756 			kmem_cache_free(btrfs_free_space_cachep, e);
757 			goto free_cache;
758 		}
759 
760 		if (type == BTRFS_FREE_SPACE_EXTENT) {
761 			spin_lock(&ctl->tree_lock);
762 			ret = link_free_space(ctl, e);
763 			spin_unlock(&ctl->tree_lock);
764 			if (ret) {
765 				btrfs_err(fs_info,
766 					"Duplicate entries in free space cache, dumping");
767 				kmem_cache_free(btrfs_free_space_cachep, e);
768 				goto free_cache;
769 			}
770 		} else {
771 			ASSERT(num_bitmaps);
772 			num_bitmaps--;
773 			e->bitmap = kmem_cache_zalloc(
774 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
775 			if (!e->bitmap) {
776 				kmem_cache_free(
777 					btrfs_free_space_cachep, e);
778 				goto free_cache;
779 			}
780 			spin_lock(&ctl->tree_lock);
781 			ret = link_free_space(ctl, e);
782 			ctl->total_bitmaps++;
783 			ctl->op->recalc_thresholds(ctl);
784 			spin_unlock(&ctl->tree_lock);
785 			if (ret) {
786 				btrfs_err(fs_info,
787 					"Duplicate entries in free space cache, dumping");
788 				kmem_cache_free(btrfs_free_space_cachep, e);
789 				goto free_cache;
790 			}
791 			list_add_tail(&e->list, &bitmaps);
792 		}
793 
794 		num_entries--;
795 	}
796 
797 	io_ctl_unmap_page(&io_ctl);
798 
799 	/*
800 	 * We add the bitmaps at the end of the entries in order that
801 	 * the bitmap entries are added to the cache.
802 	 */
803 	list_for_each_entry_safe(e, n, &bitmaps, list) {
804 		list_del_init(&e->list);
805 		ret = io_ctl_read_bitmap(&io_ctl, e);
806 		if (ret)
807 			goto free_cache;
808 	}
809 
810 	io_ctl_drop_pages(&io_ctl);
811 	merge_space_tree(ctl);
812 	ret = 1;
813 out:
814 	io_ctl_free(&io_ctl);
815 	return ret;
816 free_cache:
817 	io_ctl_drop_pages(&io_ctl);
818 	__btrfs_remove_free_space_cache(ctl);
819 	goto out;
820 }
821 
822 int load_free_space_cache(struct btrfs_block_group *block_group)
823 {
824 	struct btrfs_fs_info *fs_info = block_group->fs_info;
825 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
826 	struct inode *inode;
827 	struct btrfs_path *path;
828 	int ret = 0;
829 	bool matched;
830 	u64 used = block_group->used;
831 
832 	/*
833 	 * If this block group has been marked to be cleared for one reason or
834 	 * another then we can't trust the on disk cache, so just return.
835 	 */
836 	spin_lock(&block_group->lock);
837 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
838 		spin_unlock(&block_group->lock);
839 		return 0;
840 	}
841 	spin_unlock(&block_group->lock);
842 
843 	path = btrfs_alloc_path();
844 	if (!path)
845 		return 0;
846 	path->search_commit_root = 1;
847 	path->skip_locking = 1;
848 
849 	/*
850 	 * We must pass a path with search_commit_root set to btrfs_iget in
851 	 * order to avoid a deadlock when allocating extents for the tree root.
852 	 *
853 	 * When we are COWing an extent buffer from the tree root, when looking
854 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
855 	 * block group without its free space cache loaded. When we find one
856 	 * we must load its space cache which requires reading its free space
857 	 * cache's inode item from the root tree. If this inode item is located
858 	 * in the same leaf that we started COWing before, then we end up in
859 	 * deadlock on the extent buffer (trying to read lock it when we
860 	 * previously write locked it).
861 	 *
862 	 * It's safe to read the inode item using the commit root because
863 	 * block groups, once loaded, stay in memory forever (until they are
864 	 * removed) as well as their space caches once loaded. New block groups
865 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
866 	 * we will never try to read their inode item while the fs is mounted.
867 	 */
868 	inode = lookup_free_space_inode(block_group, path);
869 	if (IS_ERR(inode)) {
870 		btrfs_free_path(path);
871 		return 0;
872 	}
873 
874 	/* We may have converted the inode and made the cache invalid. */
875 	spin_lock(&block_group->lock);
876 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
877 		spin_unlock(&block_group->lock);
878 		btrfs_free_path(path);
879 		goto out;
880 	}
881 	spin_unlock(&block_group->lock);
882 
883 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
884 				      path, block_group->start);
885 	btrfs_free_path(path);
886 	if (ret <= 0)
887 		goto out;
888 
889 	spin_lock(&ctl->tree_lock);
890 	matched = (ctl->free_space == (block_group->length - used -
891 				       block_group->bytes_super));
892 	spin_unlock(&ctl->tree_lock);
893 
894 	if (!matched) {
895 		__btrfs_remove_free_space_cache(ctl);
896 		btrfs_warn(fs_info,
897 			   "block group %llu has wrong amount of free space",
898 			   block_group->start);
899 		ret = -1;
900 	}
901 out:
902 	if (ret < 0) {
903 		/* This cache is bogus, make sure it gets cleared */
904 		spin_lock(&block_group->lock);
905 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
906 		spin_unlock(&block_group->lock);
907 		ret = 0;
908 
909 		btrfs_warn(fs_info,
910 			   "failed to load free space cache for block group %llu, rebuilding it now",
911 			   block_group->start);
912 	}
913 
914 	iput(inode);
915 	return ret;
916 }
917 
918 static noinline_for_stack
919 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
920 			      struct btrfs_free_space_ctl *ctl,
921 			      struct btrfs_block_group *block_group,
922 			      int *entries, int *bitmaps,
923 			      struct list_head *bitmap_list)
924 {
925 	int ret;
926 	struct btrfs_free_cluster *cluster = NULL;
927 	struct btrfs_free_cluster *cluster_locked = NULL;
928 	struct rb_node *node = rb_first(&ctl->free_space_offset);
929 	struct btrfs_trim_range *trim_entry;
930 
931 	/* Get the cluster for this block_group if it exists */
932 	if (block_group && !list_empty(&block_group->cluster_list)) {
933 		cluster = list_entry(block_group->cluster_list.next,
934 				     struct btrfs_free_cluster,
935 				     block_group_list);
936 	}
937 
938 	if (!node && cluster) {
939 		cluster_locked = cluster;
940 		spin_lock(&cluster_locked->lock);
941 		node = rb_first(&cluster->root);
942 		cluster = NULL;
943 	}
944 
945 	/* Write out the extent entries */
946 	while (node) {
947 		struct btrfs_free_space *e;
948 
949 		e = rb_entry(node, struct btrfs_free_space, offset_index);
950 		*entries += 1;
951 
952 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
953 				       e->bitmap);
954 		if (ret)
955 			goto fail;
956 
957 		if (e->bitmap) {
958 			list_add_tail(&e->list, bitmap_list);
959 			*bitmaps += 1;
960 		}
961 		node = rb_next(node);
962 		if (!node && cluster) {
963 			node = rb_first(&cluster->root);
964 			cluster_locked = cluster;
965 			spin_lock(&cluster_locked->lock);
966 			cluster = NULL;
967 		}
968 	}
969 	if (cluster_locked) {
970 		spin_unlock(&cluster_locked->lock);
971 		cluster_locked = NULL;
972 	}
973 
974 	/*
975 	 * Make sure we don't miss any range that was removed from our rbtree
976 	 * because trimming is running. Otherwise after a umount+mount (or crash
977 	 * after committing the transaction) we would leak free space and get
978 	 * an inconsistent free space cache report from fsck.
979 	 */
980 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
981 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
982 				       trim_entry->bytes, NULL);
983 		if (ret)
984 			goto fail;
985 		*entries += 1;
986 	}
987 
988 	return 0;
989 fail:
990 	if (cluster_locked)
991 		spin_unlock(&cluster_locked->lock);
992 	return -ENOSPC;
993 }
994 
995 static noinline_for_stack int
996 update_cache_item(struct btrfs_trans_handle *trans,
997 		  struct btrfs_root *root,
998 		  struct inode *inode,
999 		  struct btrfs_path *path, u64 offset,
1000 		  int entries, int bitmaps)
1001 {
1002 	struct btrfs_key key;
1003 	struct btrfs_free_space_header *header;
1004 	struct extent_buffer *leaf;
1005 	int ret;
1006 
1007 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1008 	key.offset = offset;
1009 	key.type = 0;
1010 
1011 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1012 	if (ret < 0) {
1013 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1014 				 EXTENT_DELALLOC, 0, 0, NULL);
1015 		goto fail;
1016 	}
1017 	leaf = path->nodes[0];
1018 	if (ret > 0) {
1019 		struct btrfs_key found_key;
1020 		ASSERT(path->slots[0]);
1021 		path->slots[0]--;
1022 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1023 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1024 		    found_key.offset != offset) {
1025 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1026 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1027 					 0, NULL);
1028 			btrfs_release_path(path);
1029 			goto fail;
1030 		}
1031 	}
1032 
1033 	BTRFS_I(inode)->generation = trans->transid;
1034 	header = btrfs_item_ptr(leaf, path->slots[0],
1035 				struct btrfs_free_space_header);
1036 	btrfs_set_free_space_entries(leaf, header, entries);
1037 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1038 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1039 	btrfs_mark_buffer_dirty(leaf);
1040 	btrfs_release_path(path);
1041 
1042 	return 0;
1043 
1044 fail:
1045 	return -1;
1046 }
1047 
1048 static noinline_for_stack int write_pinned_extent_entries(
1049 			    struct btrfs_block_group *block_group,
1050 			    struct btrfs_io_ctl *io_ctl,
1051 			    int *entries)
1052 {
1053 	u64 start, extent_start, extent_end, len;
1054 	struct extent_io_tree *unpin = NULL;
1055 	int ret;
1056 
1057 	if (!block_group)
1058 		return 0;
1059 
1060 	/*
1061 	 * We want to add any pinned extents to our free space cache
1062 	 * so we don't leak the space
1063 	 *
1064 	 * We shouldn't have switched the pinned extents yet so this is the
1065 	 * right one
1066 	 */
1067 	unpin = block_group->fs_info->pinned_extents;
1068 
1069 	start = block_group->start;
1070 
1071 	while (start < block_group->start + block_group->length) {
1072 		ret = find_first_extent_bit(unpin, start,
1073 					    &extent_start, &extent_end,
1074 					    EXTENT_DIRTY, NULL);
1075 		if (ret)
1076 			return 0;
1077 
1078 		/* This pinned extent is out of our range */
1079 		if (extent_start >= block_group->start + block_group->length)
1080 			return 0;
1081 
1082 		extent_start = max(extent_start, start);
1083 		extent_end = min(block_group->start + block_group->length,
1084 				 extent_end + 1);
1085 		len = extent_end - extent_start;
1086 
1087 		*entries += 1;
1088 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1089 		if (ret)
1090 			return -ENOSPC;
1091 
1092 		start = extent_end;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 static noinline_for_stack int
1099 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1100 {
1101 	struct btrfs_free_space *entry, *next;
1102 	int ret;
1103 
1104 	/* Write out the bitmaps */
1105 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1106 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1107 		if (ret)
1108 			return -ENOSPC;
1109 		list_del_init(&entry->list);
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static int flush_dirty_cache(struct inode *inode)
1116 {
1117 	int ret;
1118 
1119 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1120 	if (ret)
1121 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1122 				 EXTENT_DELALLOC, 0, 0, NULL);
1123 
1124 	return ret;
1125 }
1126 
1127 static void noinline_for_stack
1128 cleanup_bitmap_list(struct list_head *bitmap_list)
1129 {
1130 	struct btrfs_free_space *entry, *next;
1131 
1132 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1133 		list_del_init(&entry->list);
1134 }
1135 
1136 static void noinline_for_stack
1137 cleanup_write_cache_enospc(struct inode *inode,
1138 			   struct btrfs_io_ctl *io_ctl,
1139 			   struct extent_state **cached_state)
1140 {
1141 	io_ctl_drop_pages(io_ctl);
1142 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1143 			     i_size_read(inode) - 1, cached_state);
1144 }
1145 
1146 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1147 				 struct btrfs_trans_handle *trans,
1148 				 struct btrfs_block_group *block_group,
1149 				 struct btrfs_io_ctl *io_ctl,
1150 				 struct btrfs_path *path, u64 offset)
1151 {
1152 	int ret;
1153 	struct inode *inode = io_ctl->inode;
1154 
1155 	if (!inode)
1156 		return 0;
1157 
1158 	/* Flush the dirty pages in the cache file. */
1159 	ret = flush_dirty_cache(inode);
1160 	if (ret)
1161 		goto out;
1162 
1163 	/* Update the cache item to tell everyone this cache file is valid. */
1164 	ret = update_cache_item(trans, root, inode, path, offset,
1165 				io_ctl->entries, io_ctl->bitmaps);
1166 out:
1167 	io_ctl_free(io_ctl);
1168 	if (ret) {
1169 		invalidate_inode_pages2(inode->i_mapping);
1170 		BTRFS_I(inode)->generation = 0;
1171 		if (block_group) {
1172 #ifdef DEBUG
1173 			btrfs_err(root->fs_info,
1174 				  "failed to write free space cache for block group %llu",
1175 				  block_group->start);
1176 #endif
1177 		}
1178 	}
1179 	btrfs_update_inode(trans, root, inode);
1180 
1181 	if (block_group) {
1182 		/* the dirty list is protected by the dirty_bgs_lock */
1183 		spin_lock(&trans->transaction->dirty_bgs_lock);
1184 
1185 		/* the disk_cache_state is protected by the block group lock */
1186 		spin_lock(&block_group->lock);
1187 
1188 		/*
1189 		 * only mark this as written if we didn't get put back on
1190 		 * the dirty list while waiting for IO.   Otherwise our
1191 		 * cache state won't be right, and we won't get written again
1192 		 */
1193 		if (!ret && list_empty(&block_group->dirty_list))
1194 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1195 		else if (ret)
1196 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1197 
1198 		spin_unlock(&block_group->lock);
1199 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1200 		io_ctl->inode = NULL;
1201 		iput(inode);
1202 	}
1203 
1204 	return ret;
1205 
1206 }
1207 
1208 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1209 				    struct btrfs_trans_handle *trans,
1210 				    struct btrfs_io_ctl *io_ctl,
1211 				    struct btrfs_path *path)
1212 {
1213 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1214 }
1215 
1216 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1217 			struct btrfs_block_group *block_group,
1218 			struct btrfs_path *path)
1219 {
1220 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1221 				     block_group, &block_group->io_ctl,
1222 				     path, block_group->start);
1223 }
1224 
1225 /**
1226  * __btrfs_write_out_cache - write out cached info to an inode
1227  * @root - the root the inode belongs to
1228  * @ctl - the free space cache we are going to write out
1229  * @block_group - the block_group for this cache if it belongs to a block_group
1230  * @trans - the trans handle
1231  *
1232  * This function writes out a free space cache struct to disk for quick recovery
1233  * on mount.  This will return 0 if it was successful in writing the cache out,
1234  * or an errno if it was not.
1235  */
1236 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1237 				   struct btrfs_free_space_ctl *ctl,
1238 				   struct btrfs_block_group *block_group,
1239 				   struct btrfs_io_ctl *io_ctl,
1240 				   struct btrfs_trans_handle *trans)
1241 {
1242 	struct extent_state *cached_state = NULL;
1243 	LIST_HEAD(bitmap_list);
1244 	int entries = 0;
1245 	int bitmaps = 0;
1246 	int ret;
1247 	int must_iput = 0;
1248 
1249 	if (!i_size_read(inode))
1250 		return -EIO;
1251 
1252 	WARN_ON(io_ctl->pages);
1253 	ret = io_ctl_init(io_ctl, inode, 1);
1254 	if (ret)
1255 		return ret;
1256 
1257 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1258 		down_write(&block_group->data_rwsem);
1259 		spin_lock(&block_group->lock);
1260 		if (block_group->delalloc_bytes) {
1261 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1262 			spin_unlock(&block_group->lock);
1263 			up_write(&block_group->data_rwsem);
1264 			BTRFS_I(inode)->generation = 0;
1265 			ret = 0;
1266 			must_iput = 1;
1267 			goto out;
1268 		}
1269 		spin_unlock(&block_group->lock);
1270 	}
1271 
1272 	/* Lock all pages first so we can lock the extent safely. */
1273 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1274 	if (ret)
1275 		goto out_unlock;
1276 
1277 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1278 			 &cached_state);
1279 
1280 	io_ctl_set_generation(io_ctl, trans->transid);
1281 
1282 	mutex_lock(&ctl->cache_writeout_mutex);
1283 	/* Write out the extent entries in the free space cache */
1284 	spin_lock(&ctl->tree_lock);
1285 	ret = write_cache_extent_entries(io_ctl, ctl,
1286 					 block_group, &entries, &bitmaps,
1287 					 &bitmap_list);
1288 	if (ret)
1289 		goto out_nospc_locked;
1290 
1291 	/*
1292 	 * Some spaces that are freed in the current transaction are pinned,
1293 	 * they will be added into free space cache after the transaction is
1294 	 * committed, we shouldn't lose them.
1295 	 *
1296 	 * If this changes while we are working we'll get added back to
1297 	 * the dirty list and redo it.  No locking needed
1298 	 */
1299 	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1300 	if (ret)
1301 		goto out_nospc_locked;
1302 
1303 	/*
1304 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1305 	 * locked while doing it because a concurrent trim can be manipulating
1306 	 * or freeing the bitmap.
1307 	 */
1308 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1309 	spin_unlock(&ctl->tree_lock);
1310 	mutex_unlock(&ctl->cache_writeout_mutex);
1311 	if (ret)
1312 		goto out_nospc;
1313 
1314 	/* Zero out the rest of the pages just to make sure */
1315 	io_ctl_zero_remaining_pages(io_ctl);
1316 
1317 	/* Everything is written out, now we dirty the pages in the file. */
1318 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1319 				i_size_read(inode), &cached_state);
1320 	if (ret)
1321 		goto out_nospc;
1322 
1323 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1324 		up_write(&block_group->data_rwsem);
1325 	/*
1326 	 * Release the pages and unlock the extent, we will flush
1327 	 * them out later
1328 	 */
1329 	io_ctl_drop_pages(io_ctl);
1330 
1331 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1332 			     i_size_read(inode) - 1, &cached_state);
1333 
1334 	/*
1335 	 * at this point the pages are under IO and we're happy,
1336 	 * The caller is responsible for waiting on them and updating the
1337 	 * the cache and the inode
1338 	 */
1339 	io_ctl->entries = entries;
1340 	io_ctl->bitmaps = bitmaps;
1341 
1342 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1343 	if (ret)
1344 		goto out;
1345 
1346 	return 0;
1347 
1348 out:
1349 	io_ctl->inode = NULL;
1350 	io_ctl_free(io_ctl);
1351 	if (ret) {
1352 		invalidate_inode_pages2(inode->i_mapping);
1353 		BTRFS_I(inode)->generation = 0;
1354 	}
1355 	btrfs_update_inode(trans, root, inode);
1356 	if (must_iput)
1357 		iput(inode);
1358 	return ret;
1359 
1360 out_nospc_locked:
1361 	cleanup_bitmap_list(&bitmap_list);
1362 	spin_unlock(&ctl->tree_lock);
1363 	mutex_unlock(&ctl->cache_writeout_mutex);
1364 
1365 out_nospc:
1366 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1367 
1368 out_unlock:
1369 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1370 		up_write(&block_group->data_rwsem);
1371 
1372 	goto out;
1373 }
1374 
1375 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1376 			  struct btrfs_block_group *block_group,
1377 			  struct btrfs_path *path)
1378 {
1379 	struct btrfs_fs_info *fs_info = trans->fs_info;
1380 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1381 	struct inode *inode;
1382 	int ret = 0;
1383 
1384 	spin_lock(&block_group->lock);
1385 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1386 		spin_unlock(&block_group->lock);
1387 		return 0;
1388 	}
1389 	spin_unlock(&block_group->lock);
1390 
1391 	inode = lookup_free_space_inode(block_group, path);
1392 	if (IS_ERR(inode))
1393 		return 0;
1394 
1395 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1396 				block_group, &block_group->io_ctl, trans);
1397 	if (ret) {
1398 #ifdef DEBUG
1399 		btrfs_err(fs_info,
1400 			  "failed to write free space cache for block group %llu",
1401 			  block_group->start);
1402 #endif
1403 		spin_lock(&block_group->lock);
1404 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1405 		spin_unlock(&block_group->lock);
1406 
1407 		block_group->io_ctl.inode = NULL;
1408 		iput(inode);
1409 	}
1410 
1411 	/*
1412 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1413 	 * to wait for IO and put the inode
1414 	 */
1415 
1416 	return ret;
1417 }
1418 
1419 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1420 					  u64 offset)
1421 {
1422 	ASSERT(offset >= bitmap_start);
1423 	offset -= bitmap_start;
1424 	return (unsigned long)(div_u64(offset, unit));
1425 }
1426 
1427 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1428 {
1429 	return (unsigned long)(div_u64(bytes, unit));
1430 }
1431 
1432 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1433 				   u64 offset)
1434 {
1435 	u64 bitmap_start;
1436 	u64 bytes_per_bitmap;
1437 
1438 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1439 	bitmap_start = offset - ctl->start;
1440 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1441 	bitmap_start *= bytes_per_bitmap;
1442 	bitmap_start += ctl->start;
1443 
1444 	return bitmap_start;
1445 }
1446 
1447 static int tree_insert_offset(struct rb_root *root, u64 offset,
1448 			      struct rb_node *node, int bitmap)
1449 {
1450 	struct rb_node **p = &root->rb_node;
1451 	struct rb_node *parent = NULL;
1452 	struct btrfs_free_space *info;
1453 
1454 	while (*p) {
1455 		parent = *p;
1456 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1457 
1458 		if (offset < info->offset) {
1459 			p = &(*p)->rb_left;
1460 		} else if (offset > info->offset) {
1461 			p = &(*p)->rb_right;
1462 		} else {
1463 			/*
1464 			 * we could have a bitmap entry and an extent entry
1465 			 * share the same offset.  If this is the case, we want
1466 			 * the extent entry to always be found first if we do a
1467 			 * linear search through the tree, since we want to have
1468 			 * the quickest allocation time, and allocating from an
1469 			 * extent is faster than allocating from a bitmap.  So
1470 			 * if we're inserting a bitmap and we find an entry at
1471 			 * this offset, we want to go right, or after this entry
1472 			 * logically.  If we are inserting an extent and we've
1473 			 * found a bitmap, we want to go left, or before
1474 			 * logically.
1475 			 */
1476 			if (bitmap) {
1477 				if (info->bitmap) {
1478 					WARN_ON_ONCE(1);
1479 					return -EEXIST;
1480 				}
1481 				p = &(*p)->rb_right;
1482 			} else {
1483 				if (!info->bitmap) {
1484 					WARN_ON_ONCE(1);
1485 					return -EEXIST;
1486 				}
1487 				p = &(*p)->rb_left;
1488 			}
1489 		}
1490 	}
1491 
1492 	rb_link_node(node, parent, p);
1493 	rb_insert_color(node, root);
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * searches the tree for the given offset.
1500  *
1501  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1502  * want a section that has at least bytes size and comes at or after the given
1503  * offset.
1504  */
1505 static struct btrfs_free_space *
1506 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1507 		   u64 offset, int bitmap_only, int fuzzy)
1508 {
1509 	struct rb_node *n = ctl->free_space_offset.rb_node;
1510 	struct btrfs_free_space *entry, *prev = NULL;
1511 
1512 	/* find entry that is closest to the 'offset' */
1513 	while (1) {
1514 		if (!n) {
1515 			entry = NULL;
1516 			break;
1517 		}
1518 
1519 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1520 		prev = entry;
1521 
1522 		if (offset < entry->offset)
1523 			n = n->rb_left;
1524 		else if (offset > entry->offset)
1525 			n = n->rb_right;
1526 		else
1527 			break;
1528 	}
1529 
1530 	if (bitmap_only) {
1531 		if (!entry)
1532 			return NULL;
1533 		if (entry->bitmap)
1534 			return entry;
1535 
1536 		/*
1537 		 * bitmap entry and extent entry may share same offset,
1538 		 * in that case, bitmap entry comes after extent entry.
1539 		 */
1540 		n = rb_next(n);
1541 		if (!n)
1542 			return NULL;
1543 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1544 		if (entry->offset != offset)
1545 			return NULL;
1546 
1547 		WARN_ON(!entry->bitmap);
1548 		return entry;
1549 	} else if (entry) {
1550 		if (entry->bitmap) {
1551 			/*
1552 			 * if previous extent entry covers the offset,
1553 			 * we should return it instead of the bitmap entry
1554 			 */
1555 			n = rb_prev(&entry->offset_index);
1556 			if (n) {
1557 				prev = rb_entry(n, struct btrfs_free_space,
1558 						offset_index);
1559 				if (!prev->bitmap &&
1560 				    prev->offset + prev->bytes > offset)
1561 					entry = prev;
1562 			}
1563 		}
1564 		return entry;
1565 	}
1566 
1567 	if (!prev)
1568 		return NULL;
1569 
1570 	/* find last entry before the 'offset' */
1571 	entry = prev;
1572 	if (entry->offset > offset) {
1573 		n = rb_prev(&entry->offset_index);
1574 		if (n) {
1575 			entry = rb_entry(n, struct btrfs_free_space,
1576 					offset_index);
1577 			ASSERT(entry->offset <= offset);
1578 		} else {
1579 			if (fuzzy)
1580 				return entry;
1581 			else
1582 				return NULL;
1583 		}
1584 	}
1585 
1586 	if (entry->bitmap) {
1587 		n = rb_prev(&entry->offset_index);
1588 		if (n) {
1589 			prev = rb_entry(n, struct btrfs_free_space,
1590 					offset_index);
1591 			if (!prev->bitmap &&
1592 			    prev->offset + prev->bytes > offset)
1593 				return prev;
1594 		}
1595 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1596 			return entry;
1597 	} else if (entry->offset + entry->bytes > offset)
1598 		return entry;
1599 
1600 	if (!fuzzy)
1601 		return NULL;
1602 
1603 	while (1) {
1604 		if (entry->bitmap) {
1605 			if (entry->offset + BITS_PER_BITMAP *
1606 			    ctl->unit > offset)
1607 				break;
1608 		} else {
1609 			if (entry->offset + entry->bytes > offset)
1610 				break;
1611 		}
1612 
1613 		n = rb_next(&entry->offset_index);
1614 		if (!n)
1615 			return NULL;
1616 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1617 	}
1618 	return entry;
1619 }
1620 
1621 static inline void
1622 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1623 		    struct btrfs_free_space *info)
1624 {
1625 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1626 	ctl->free_extents--;
1627 }
1628 
1629 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1630 			      struct btrfs_free_space *info)
1631 {
1632 	__unlink_free_space(ctl, info);
1633 	ctl->free_space -= info->bytes;
1634 }
1635 
1636 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1637 			   struct btrfs_free_space *info)
1638 {
1639 	int ret = 0;
1640 
1641 	ASSERT(info->bytes || info->bitmap);
1642 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1643 				 &info->offset_index, (info->bitmap != NULL));
1644 	if (ret)
1645 		return ret;
1646 
1647 	ctl->free_space += info->bytes;
1648 	ctl->free_extents++;
1649 	return ret;
1650 }
1651 
1652 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1653 {
1654 	struct btrfs_block_group *block_group = ctl->private;
1655 	u64 max_bytes;
1656 	u64 bitmap_bytes;
1657 	u64 extent_bytes;
1658 	u64 size = block_group->length;
1659 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1660 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1661 
1662 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1663 
1664 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1665 
1666 	/*
1667 	 * The goal is to keep the total amount of memory used per 1gb of space
1668 	 * at or below 32k, so we need to adjust how much memory we allow to be
1669 	 * used by extent based free space tracking
1670 	 */
1671 	if (size < SZ_1G)
1672 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1673 	else
1674 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1675 
1676 	/*
1677 	 * we want to account for 1 more bitmap than what we have so we can make
1678 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1679 	 * we add more bitmaps.
1680 	 */
1681 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1682 
1683 	if (bitmap_bytes >= max_bytes) {
1684 		ctl->extents_thresh = 0;
1685 		return;
1686 	}
1687 
1688 	/*
1689 	 * we want the extent entry threshold to always be at most 1/2 the max
1690 	 * bytes we can have, or whatever is less than that.
1691 	 */
1692 	extent_bytes = max_bytes - bitmap_bytes;
1693 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1694 
1695 	ctl->extents_thresh =
1696 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1697 }
1698 
1699 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1700 				       struct btrfs_free_space *info,
1701 				       u64 offset, u64 bytes)
1702 {
1703 	unsigned long start, count;
1704 
1705 	start = offset_to_bit(info->offset, ctl->unit, offset);
1706 	count = bytes_to_bits(bytes, ctl->unit);
1707 	ASSERT(start + count <= BITS_PER_BITMAP);
1708 
1709 	bitmap_clear(info->bitmap, start, count);
1710 
1711 	info->bytes -= bytes;
1712 	if (info->max_extent_size > ctl->unit)
1713 		info->max_extent_size = 0;
1714 }
1715 
1716 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1717 			      struct btrfs_free_space *info, u64 offset,
1718 			      u64 bytes)
1719 {
1720 	__bitmap_clear_bits(ctl, info, offset, bytes);
1721 	ctl->free_space -= bytes;
1722 }
1723 
1724 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1725 			    struct btrfs_free_space *info, u64 offset,
1726 			    u64 bytes)
1727 {
1728 	unsigned long start, count;
1729 
1730 	start = offset_to_bit(info->offset, ctl->unit, offset);
1731 	count = bytes_to_bits(bytes, ctl->unit);
1732 	ASSERT(start + count <= BITS_PER_BITMAP);
1733 
1734 	bitmap_set(info->bitmap, start, count);
1735 
1736 	info->bytes += bytes;
1737 	ctl->free_space += bytes;
1738 }
1739 
1740 /*
1741  * If we can not find suitable extent, we will use bytes to record
1742  * the size of the max extent.
1743  */
1744 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1745 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1746 			 u64 *bytes, bool for_alloc)
1747 {
1748 	unsigned long found_bits = 0;
1749 	unsigned long max_bits = 0;
1750 	unsigned long bits, i;
1751 	unsigned long next_zero;
1752 	unsigned long extent_bits;
1753 
1754 	/*
1755 	 * Skip searching the bitmap if we don't have a contiguous section that
1756 	 * is large enough for this allocation.
1757 	 */
1758 	if (for_alloc &&
1759 	    bitmap_info->max_extent_size &&
1760 	    bitmap_info->max_extent_size < *bytes) {
1761 		*bytes = bitmap_info->max_extent_size;
1762 		return -1;
1763 	}
1764 
1765 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1766 			  max_t(u64, *offset, bitmap_info->offset));
1767 	bits = bytes_to_bits(*bytes, ctl->unit);
1768 
1769 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1770 		if (for_alloc && bits == 1) {
1771 			found_bits = 1;
1772 			break;
1773 		}
1774 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1775 					       BITS_PER_BITMAP, i);
1776 		extent_bits = next_zero - i;
1777 		if (extent_bits >= bits) {
1778 			found_bits = extent_bits;
1779 			break;
1780 		} else if (extent_bits > max_bits) {
1781 			max_bits = extent_bits;
1782 		}
1783 		i = next_zero;
1784 	}
1785 
1786 	if (found_bits) {
1787 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1788 		*bytes = (u64)(found_bits) * ctl->unit;
1789 		return 0;
1790 	}
1791 
1792 	*bytes = (u64)(max_bits) * ctl->unit;
1793 	bitmap_info->max_extent_size = *bytes;
1794 	return -1;
1795 }
1796 
1797 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1798 {
1799 	if (entry->bitmap)
1800 		return entry->max_extent_size;
1801 	return entry->bytes;
1802 }
1803 
1804 /* Cache the size of the max extent in bytes */
1805 static struct btrfs_free_space *
1806 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1807 		unsigned long align, u64 *max_extent_size)
1808 {
1809 	struct btrfs_free_space *entry;
1810 	struct rb_node *node;
1811 	u64 tmp;
1812 	u64 align_off;
1813 	int ret;
1814 
1815 	if (!ctl->free_space_offset.rb_node)
1816 		goto out;
1817 
1818 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1819 	if (!entry)
1820 		goto out;
1821 
1822 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1823 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1824 		if (entry->bytes < *bytes) {
1825 			*max_extent_size = max(get_max_extent_size(entry),
1826 					       *max_extent_size);
1827 			continue;
1828 		}
1829 
1830 		/* make sure the space returned is big enough
1831 		 * to match our requested alignment
1832 		 */
1833 		if (*bytes >= align) {
1834 			tmp = entry->offset - ctl->start + align - 1;
1835 			tmp = div64_u64(tmp, align);
1836 			tmp = tmp * align + ctl->start;
1837 			align_off = tmp - entry->offset;
1838 		} else {
1839 			align_off = 0;
1840 			tmp = entry->offset;
1841 		}
1842 
1843 		if (entry->bytes < *bytes + align_off) {
1844 			*max_extent_size = max(get_max_extent_size(entry),
1845 					       *max_extent_size);
1846 			continue;
1847 		}
1848 
1849 		if (entry->bitmap) {
1850 			u64 size = *bytes;
1851 
1852 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1853 			if (!ret) {
1854 				*offset = tmp;
1855 				*bytes = size;
1856 				return entry;
1857 			} else {
1858 				*max_extent_size =
1859 					max(get_max_extent_size(entry),
1860 					    *max_extent_size);
1861 			}
1862 			continue;
1863 		}
1864 
1865 		*offset = tmp;
1866 		*bytes = entry->bytes - align_off;
1867 		return entry;
1868 	}
1869 out:
1870 	return NULL;
1871 }
1872 
1873 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1874 			   struct btrfs_free_space *info, u64 offset)
1875 {
1876 	info->offset = offset_to_bitmap(ctl, offset);
1877 	info->bytes = 0;
1878 	INIT_LIST_HEAD(&info->list);
1879 	link_free_space(ctl, info);
1880 	ctl->total_bitmaps++;
1881 
1882 	ctl->op->recalc_thresholds(ctl);
1883 }
1884 
1885 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1886 			struct btrfs_free_space *bitmap_info)
1887 {
1888 	unlink_free_space(ctl, bitmap_info);
1889 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1890 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1891 	ctl->total_bitmaps--;
1892 	ctl->op->recalc_thresholds(ctl);
1893 }
1894 
1895 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1896 			      struct btrfs_free_space *bitmap_info,
1897 			      u64 *offset, u64 *bytes)
1898 {
1899 	u64 end;
1900 	u64 search_start, search_bytes;
1901 	int ret;
1902 
1903 again:
1904 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1905 
1906 	/*
1907 	 * We need to search for bits in this bitmap.  We could only cover some
1908 	 * of the extent in this bitmap thanks to how we add space, so we need
1909 	 * to search for as much as it as we can and clear that amount, and then
1910 	 * go searching for the next bit.
1911 	 */
1912 	search_start = *offset;
1913 	search_bytes = ctl->unit;
1914 	search_bytes = min(search_bytes, end - search_start + 1);
1915 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1916 			    false);
1917 	if (ret < 0 || search_start != *offset)
1918 		return -EINVAL;
1919 
1920 	/* We may have found more bits than what we need */
1921 	search_bytes = min(search_bytes, *bytes);
1922 
1923 	/* Cannot clear past the end of the bitmap */
1924 	search_bytes = min(search_bytes, end - search_start + 1);
1925 
1926 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1927 	*offset += search_bytes;
1928 	*bytes -= search_bytes;
1929 
1930 	if (*bytes) {
1931 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1932 		if (!bitmap_info->bytes)
1933 			free_bitmap(ctl, bitmap_info);
1934 
1935 		/*
1936 		 * no entry after this bitmap, but we still have bytes to
1937 		 * remove, so something has gone wrong.
1938 		 */
1939 		if (!next)
1940 			return -EINVAL;
1941 
1942 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1943 				       offset_index);
1944 
1945 		/*
1946 		 * if the next entry isn't a bitmap we need to return to let the
1947 		 * extent stuff do its work.
1948 		 */
1949 		if (!bitmap_info->bitmap)
1950 			return -EAGAIN;
1951 
1952 		/*
1953 		 * Ok the next item is a bitmap, but it may not actually hold
1954 		 * the information for the rest of this free space stuff, so
1955 		 * look for it, and if we don't find it return so we can try
1956 		 * everything over again.
1957 		 */
1958 		search_start = *offset;
1959 		search_bytes = ctl->unit;
1960 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1961 				    &search_bytes, false);
1962 		if (ret < 0 || search_start != *offset)
1963 			return -EAGAIN;
1964 
1965 		goto again;
1966 	} else if (!bitmap_info->bytes)
1967 		free_bitmap(ctl, bitmap_info);
1968 
1969 	return 0;
1970 }
1971 
1972 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1973 			       struct btrfs_free_space *info, u64 offset,
1974 			       u64 bytes)
1975 {
1976 	u64 bytes_to_set = 0;
1977 	u64 end;
1978 
1979 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1980 
1981 	bytes_to_set = min(end - offset, bytes);
1982 
1983 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1984 
1985 	/*
1986 	 * We set some bytes, we have no idea what the max extent size is
1987 	 * anymore.
1988 	 */
1989 	info->max_extent_size = 0;
1990 
1991 	return bytes_to_set;
1992 
1993 }
1994 
1995 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1996 		      struct btrfs_free_space *info)
1997 {
1998 	struct btrfs_block_group *block_group = ctl->private;
1999 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2000 	bool forced = false;
2001 
2002 #ifdef CONFIG_BTRFS_DEBUG
2003 	if (btrfs_should_fragment_free_space(block_group))
2004 		forced = true;
2005 #endif
2006 
2007 	/*
2008 	 * If we are below the extents threshold then we can add this as an
2009 	 * extent, and don't have to deal with the bitmap
2010 	 */
2011 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2012 		/*
2013 		 * If this block group has some small extents we don't want to
2014 		 * use up all of our free slots in the cache with them, we want
2015 		 * to reserve them to larger extents, however if we have plenty
2016 		 * of cache left then go ahead an dadd them, no sense in adding
2017 		 * the overhead of a bitmap if we don't have to.
2018 		 */
2019 		if (info->bytes <= fs_info->sectorsize * 4) {
2020 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2021 				return false;
2022 		} else {
2023 			return false;
2024 		}
2025 	}
2026 
2027 	/*
2028 	 * The original block groups from mkfs can be really small, like 8
2029 	 * megabytes, so don't bother with a bitmap for those entries.  However
2030 	 * some block groups can be smaller than what a bitmap would cover but
2031 	 * are still large enough that they could overflow the 32k memory limit,
2032 	 * so allow those block groups to still be allowed to have a bitmap
2033 	 * entry.
2034 	 */
2035 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2036 		return false;
2037 
2038 	return true;
2039 }
2040 
2041 static const struct btrfs_free_space_op free_space_op = {
2042 	.recalc_thresholds	= recalculate_thresholds,
2043 	.use_bitmap		= use_bitmap,
2044 };
2045 
2046 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2047 			      struct btrfs_free_space *info)
2048 {
2049 	struct btrfs_free_space *bitmap_info;
2050 	struct btrfs_block_group *block_group = NULL;
2051 	int added = 0;
2052 	u64 bytes, offset, bytes_added;
2053 	int ret;
2054 
2055 	bytes = info->bytes;
2056 	offset = info->offset;
2057 
2058 	if (!ctl->op->use_bitmap(ctl, info))
2059 		return 0;
2060 
2061 	if (ctl->op == &free_space_op)
2062 		block_group = ctl->private;
2063 again:
2064 	/*
2065 	 * Since we link bitmaps right into the cluster we need to see if we
2066 	 * have a cluster here, and if so and it has our bitmap we need to add
2067 	 * the free space to that bitmap.
2068 	 */
2069 	if (block_group && !list_empty(&block_group->cluster_list)) {
2070 		struct btrfs_free_cluster *cluster;
2071 		struct rb_node *node;
2072 		struct btrfs_free_space *entry;
2073 
2074 		cluster = list_entry(block_group->cluster_list.next,
2075 				     struct btrfs_free_cluster,
2076 				     block_group_list);
2077 		spin_lock(&cluster->lock);
2078 		node = rb_first(&cluster->root);
2079 		if (!node) {
2080 			spin_unlock(&cluster->lock);
2081 			goto no_cluster_bitmap;
2082 		}
2083 
2084 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2085 		if (!entry->bitmap) {
2086 			spin_unlock(&cluster->lock);
2087 			goto no_cluster_bitmap;
2088 		}
2089 
2090 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2091 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2092 							  offset, bytes);
2093 			bytes -= bytes_added;
2094 			offset += bytes_added;
2095 		}
2096 		spin_unlock(&cluster->lock);
2097 		if (!bytes) {
2098 			ret = 1;
2099 			goto out;
2100 		}
2101 	}
2102 
2103 no_cluster_bitmap:
2104 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2105 					 1, 0);
2106 	if (!bitmap_info) {
2107 		ASSERT(added == 0);
2108 		goto new_bitmap;
2109 	}
2110 
2111 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2112 	bytes -= bytes_added;
2113 	offset += bytes_added;
2114 	added = 0;
2115 
2116 	if (!bytes) {
2117 		ret = 1;
2118 		goto out;
2119 	} else
2120 		goto again;
2121 
2122 new_bitmap:
2123 	if (info && info->bitmap) {
2124 		add_new_bitmap(ctl, info, offset);
2125 		added = 1;
2126 		info = NULL;
2127 		goto again;
2128 	} else {
2129 		spin_unlock(&ctl->tree_lock);
2130 
2131 		/* no pre-allocated info, allocate a new one */
2132 		if (!info) {
2133 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2134 						 GFP_NOFS);
2135 			if (!info) {
2136 				spin_lock(&ctl->tree_lock);
2137 				ret = -ENOMEM;
2138 				goto out;
2139 			}
2140 		}
2141 
2142 		/* allocate the bitmap */
2143 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2144 						 GFP_NOFS);
2145 		spin_lock(&ctl->tree_lock);
2146 		if (!info->bitmap) {
2147 			ret = -ENOMEM;
2148 			goto out;
2149 		}
2150 		goto again;
2151 	}
2152 
2153 out:
2154 	if (info) {
2155 		if (info->bitmap)
2156 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2157 					info->bitmap);
2158 		kmem_cache_free(btrfs_free_space_cachep, info);
2159 	}
2160 
2161 	return ret;
2162 }
2163 
2164 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2165 			  struct btrfs_free_space *info, bool update_stat)
2166 {
2167 	struct btrfs_free_space *left_info;
2168 	struct btrfs_free_space *right_info;
2169 	bool merged = false;
2170 	u64 offset = info->offset;
2171 	u64 bytes = info->bytes;
2172 
2173 	/*
2174 	 * first we want to see if there is free space adjacent to the range we
2175 	 * are adding, if there is remove that struct and add a new one to
2176 	 * cover the entire range
2177 	 */
2178 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2179 	if (right_info && rb_prev(&right_info->offset_index))
2180 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2181 				     struct btrfs_free_space, offset_index);
2182 	else
2183 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2184 
2185 	if (right_info && !right_info->bitmap) {
2186 		if (update_stat)
2187 			unlink_free_space(ctl, right_info);
2188 		else
2189 			__unlink_free_space(ctl, right_info);
2190 		info->bytes += right_info->bytes;
2191 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2192 		merged = true;
2193 	}
2194 
2195 	if (left_info && !left_info->bitmap &&
2196 	    left_info->offset + left_info->bytes == offset) {
2197 		if (update_stat)
2198 			unlink_free_space(ctl, left_info);
2199 		else
2200 			__unlink_free_space(ctl, left_info);
2201 		info->offset = left_info->offset;
2202 		info->bytes += left_info->bytes;
2203 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2204 		merged = true;
2205 	}
2206 
2207 	return merged;
2208 }
2209 
2210 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2211 				     struct btrfs_free_space *info,
2212 				     bool update_stat)
2213 {
2214 	struct btrfs_free_space *bitmap;
2215 	unsigned long i;
2216 	unsigned long j;
2217 	const u64 end = info->offset + info->bytes;
2218 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2219 	u64 bytes;
2220 
2221 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2222 	if (!bitmap)
2223 		return false;
2224 
2225 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2226 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2227 	if (j == i)
2228 		return false;
2229 	bytes = (j - i) * ctl->unit;
2230 	info->bytes += bytes;
2231 
2232 	if (update_stat)
2233 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2234 	else
2235 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2236 
2237 	if (!bitmap->bytes)
2238 		free_bitmap(ctl, bitmap);
2239 
2240 	return true;
2241 }
2242 
2243 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2244 				       struct btrfs_free_space *info,
2245 				       bool update_stat)
2246 {
2247 	struct btrfs_free_space *bitmap;
2248 	u64 bitmap_offset;
2249 	unsigned long i;
2250 	unsigned long j;
2251 	unsigned long prev_j;
2252 	u64 bytes;
2253 
2254 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2255 	/* If we're on a boundary, try the previous logical bitmap. */
2256 	if (bitmap_offset == info->offset) {
2257 		if (info->offset == 0)
2258 			return false;
2259 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2260 	}
2261 
2262 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2263 	if (!bitmap)
2264 		return false;
2265 
2266 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2267 	j = 0;
2268 	prev_j = (unsigned long)-1;
2269 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2270 		if (j > i)
2271 			break;
2272 		prev_j = j;
2273 	}
2274 	if (prev_j == i)
2275 		return false;
2276 
2277 	if (prev_j == (unsigned long)-1)
2278 		bytes = (i + 1) * ctl->unit;
2279 	else
2280 		bytes = (i - prev_j) * ctl->unit;
2281 
2282 	info->offset -= bytes;
2283 	info->bytes += bytes;
2284 
2285 	if (update_stat)
2286 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2287 	else
2288 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2289 
2290 	if (!bitmap->bytes)
2291 		free_bitmap(ctl, bitmap);
2292 
2293 	return true;
2294 }
2295 
2296 /*
2297  * We prefer always to allocate from extent entries, both for clustered and
2298  * non-clustered allocation requests. So when attempting to add a new extent
2299  * entry, try to see if there's adjacent free space in bitmap entries, and if
2300  * there is, migrate that space from the bitmaps to the extent.
2301  * Like this we get better chances of satisfying space allocation requests
2302  * because we attempt to satisfy them based on a single cache entry, and never
2303  * on 2 or more entries - even if the entries represent a contiguous free space
2304  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2305  * ends).
2306  */
2307 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2308 			      struct btrfs_free_space *info,
2309 			      bool update_stat)
2310 {
2311 	/*
2312 	 * Only work with disconnected entries, as we can change their offset,
2313 	 * and must be extent entries.
2314 	 */
2315 	ASSERT(!info->bitmap);
2316 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2317 
2318 	if (ctl->total_bitmaps > 0) {
2319 		bool stole_end;
2320 		bool stole_front = false;
2321 
2322 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2323 		if (ctl->total_bitmaps > 0)
2324 			stole_front = steal_from_bitmap_to_front(ctl, info,
2325 								 update_stat);
2326 
2327 		if (stole_end || stole_front)
2328 			try_merge_free_space(ctl, info, update_stat);
2329 	}
2330 }
2331 
2332 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2333 			   struct btrfs_free_space_ctl *ctl,
2334 			   u64 offset, u64 bytes)
2335 {
2336 	struct btrfs_free_space *info;
2337 	int ret = 0;
2338 
2339 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2340 	if (!info)
2341 		return -ENOMEM;
2342 
2343 	info->offset = offset;
2344 	info->bytes = bytes;
2345 	RB_CLEAR_NODE(&info->offset_index);
2346 
2347 	spin_lock(&ctl->tree_lock);
2348 
2349 	if (try_merge_free_space(ctl, info, true))
2350 		goto link;
2351 
2352 	/*
2353 	 * There was no extent directly to the left or right of this new
2354 	 * extent then we know we're going to have to allocate a new extent, so
2355 	 * before we do that see if we need to drop this into a bitmap
2356 	 */
2357 	ret = insert_into_bitmap(ctl, info);
2358 	if (ret < 0) {
2359 		goto out;
2360 	} else if (ret) {
2361 		ret = 0;
2362 		goto out;
2363 	}
2364 link:
2365 	/*
2366 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2367 	 * going to add the new free space to existing bitmap entries - because
2368 	 * that would mean unnecessary work that would be reverted. Therefore
2369 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2370 	 */
2371 	steal_from_bitmap(ctl, info, true);
2372 
2373 	ret = link_free_space(ctl, info);
2374 	if (ret)
2375 		kmem_cache_free(btrfs_free_space_cachep, info);
2376 out:
2377 	spin_unlock(&ctl->tree_lock);
2378 
2379 	if (ret) {
2380 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2381 		ASSERT(ret != -EEXIST);
2382 	}
2383 
2384 	return ret;
2385 }
2386 
2387 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2388 			 u64 bytenr, u64 size)
2389 {
2390 	return __btrfs_add_free_space(block_group->fs_info,
2391 				      block_group->free_space_ctl,
2392 				      bytenr, size);
2393 }
2394 
2395 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2396 			    u64 offset, u64 bytes)
2397 {
2398 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2399 	struct btrfs_free_space *info;
2400 	int ret;
2401 	bool re_search = false;
2402 
2403 	spin_lock(&ctl->tree_lock);
2404 
2405 again:
2406 	ret = 0;
2407 	if (!bytes)
2408 		goto out_lock;
2409 
2410 	info = tree_search_offset(ctl, offset, 0, 0);
2411 	if (!info) {
2412 		/*
2413 		 * oops didn't find an extent that matched the space we wanted
2414 		 * to remove, look for a bitmap instead
2415 		 */
2416 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2417 					  1, 0);
2418 		if (!info) {
2419 			/*
2420 			 * If we found a partial bit of our free space in a
2421 			 * bitmap but then couldn't find the other part this may
2422 			 * be a problem, so WARN about it.
2423 			 */
2424 			WARN_ON(re_search);
2425 			goto out_lock;
2426 		}
2427 	}
2428 
2429 	re_search = false;
2430 	if (!info->bitmap) {
2431 		unlink_free_space(ctl, info);
2432 		if (offset == info->offset) {
2433 			u64 to_free = min(bytes, info->bytes);
2434 
2435 			info->bytes -= to_free;
2436 			info->offset += to_free;
2437 			if (info->bytes) {
2438 				ret = link_free_space(ctl, info);
2439 				WARN_ON(ret);
2440 			} else {
2441 				kmem_cache_free(btrfs_free_space_cachep, info);
2442 			}
2443 
2444 			offset += to_free;
2445 			bytes -= to_free;
2446 			goto again;
2447 		} else {
2448 			u64 old_end = info->bytes + info->offset;
2449 
2450 			info->bytes = offset - info->offset;
2451 			ret = link_free_space(ctl, info);
2452 			WARN_ON(ret);
2453 			if (ret)
2454 				goto out_lock;
2455 
2456 			/* Not enough bytes in this entry to satisfy us */
2457 			if (old_end < offset + bytes) {
2458 				bytes -= old_end - offset;
2459 				offset = old_end;
2460 				goto again;
2461 			} else if (old_end == offset + bytes) {
2462 				/* all done */
2463 				goto out_lock;
2464 			}
2465 			spin_unlock(&ctl->tree_lock);
2466 
2467 			ret = btrfs_add_free_space(block_group, offset + bytes,
2468 						   old_end - (offset + bytes));
2469 			WARN_ON(ret);
2470 			goto out;
2471 		}
2472 	}
2473 
2474 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2475 	if (ret == -EAGAIN) {
2476 		re_search = true;
2477 		goto again;
2478 	}
2479 out_lock:
2480 	spin_unlock(&ctl->tree_lock);
2481 out:
2482 	return ret;
2483 }
2484 
2485 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2486 			   u64 bytes)
2487 {
2488 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2489 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2490 	struct btrfs_free_space *info;
2491 	struct rb_node *n;
2492 	int count = 0;
2493 
2494 	spin_lock(&ctl->tree_lock);
2495 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2496 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2497 		if (info->bytes >= bytes && !block_group->ro)
2498 			count++;
2499 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2500 			   info->offset, info->bytes,
2501 		       (info->bitmap) ? "yes" : "no");
2502 	}
2503 	spin_unlock(&ctl->tree_lock);
2504 	btrfs_info(fs_info, "block group has cluster?: %s",
2505 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2506 	btrfs_info(fs_info,
2507 		   "%d blocks of free space at or bigger than bytes is", count);
2508 }
2509 
2510 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2511 {
2512 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2513 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2514 
2515 	spin_lock_init(&ctl->tree_lock);
2516 	ctl->unit = fs_info->sectorsize;
2517 	ctl->start = block_group->start;
2518 	ctl->private = block_group;
2519 	ctl->op = &free_space_op;
2520 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2521 	mutex_init(&ctl->cache_writeout_mutex);
2522 
2523 	/*
2524 	 * we only want to have 32k of ram per block group for keeping
2525 	 * track of free space, and if we pass 1/2 of that we want to
2526 	 * start converting things over to using bitmaps
2527 	 */
2528 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2529 }
2530 
2531 /*
2532  * for a given cluster, put all of its extents back into the free
2533  * space cache.  If the block group passed doesn't match the block group
2534  * pointed to by the cluster, someone else raced in and freed the
2535  * cluster already.  In that case, we just return without changing anything
2536  */
2537 static int
2538 __btrfs_return_cluster_to_free_space(
2539 			     struct btrfs_block_group *block_group,
2540 			     struct btrfs_free_cluster *cluster)
2541 {
2542 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2543 	struct btrfs_free_space *entry;
2544 	struct rb_node *node;
2545 
2546 	spin_lock(&cluster->lock);
2547 	if (cluster->block_group != block_group)
2548 		goto out;
2549 
2550 	cluster->block_group = NULL;
2551 	cluster->window_start = 0;
2552 	list_del_init(&cluster->block_group_list);
2553 
2554 	node = rb_first(&cluster->root);
2555 	while (node) {
2556 		bool bitmap;
2557 
2558 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2559 		node = rb_next(&entry->offset_index);
2560 		rb_erase(&entry->offset_index, &cluster->root);
2561 		RB_CLEAR_NODE(&entry->offset_index);
2562 
2563 		bitmap = (entry->bitmap != NULL);
2564 		if (!bitmap) {
2565 			try_merge_free_space(ctl, entry, false);
2566 			steal_from_bitmap(ctl, entry, false);
2567 		}
2568 		tree_insert_offset(&ctl->free_space_offset,
2569 				   entry->offset, &entry->offset_index, bitmap);
2570 	}
2571 	cluster->root = RB_ROOT;
2572 
2573 out:
2574 	spin_unlock(&cluster->lock);
2575 	btrfs_put_block_group(block_group);
2576 	return 0;
2577 }
2578 
2579 static void __btrfs_remove_free_space_cache_locked(
2580 				struct btrfs_free_space_ctl *ctl)
2581 {
2582 	struct btrfs_free_space *info;
2583 	struct rb_node *node;
2584 
2585 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2586 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2587 		if (!info->bitmap) {
2588 			unlink_free_space(ctl, info);
2589 			kmem_cache_free(btrfs_free_space_cachep, info);
2590 		} else {
2591 			free_bitmap(ctl, info);
2592 		}
2593 
2594 		cond_resched_lock(&ctl->tree_lock);
2595 	}
2596 }
2597 
2598 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2599 {
2600 	spin_lock(&ctl->tree_lock);
2601 	__btrfs_remove_free_space_cache_locked(ctl);
2602 	spin_unlock(&ctl->tree_lock);
2603 }
2604 
2605 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2606 {
2607 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2608 	struct btrfs_free_cluster *cluster;
2609 	struct list_head *head;
2610 
2611 	spin_lock(&ctl->tree_lock);
2612 	while ((head = block_group->cluster_list.next) !=
2613 	       &block_group->cluster_list) {
2614 		cluster = list_entry(head, struct btrfs_free_cluster,
2615 				     block_group_list);
2616 
2617 		WARN_ON(cluster->block_group != block_group);
2618 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2619 
2620 		cond_resched_lock(&ctl->tree_lock);
2621 	}
2622 	__btrfs_remove_free_space_cache_locked(ctl);
2623 	spin_unlock(&ctl->tree_lock);
2624 
2625 }
2626 
2627 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2628 			       u64 offset, u64 bytes, u64 empty_size,
2629 			       u64 *max_extent_size)
2630 {
2631 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2632 	struct btrfs_free_space *entry = NULL;
2633 	u64 bytes_search = bytes + empty_size;
2634 	u64 ret = 0;
2635 	u64 align_gap = 0;
2636 	u64 align_gap_len = 0;
2637 
2638 	spin_lock(&ctl->tree_lock);
2639 	entry = find_free_space(ctl, &offset, &bytes_search,
2640 				block_group->full_stripe_len, max_extent_size);
2641 	if (!entry)
2642 		goto out;
2643 
2644 	ret = offset;
2645 	if (entry->bitmap) {
2646 		bitmap_clear_bits(ctl, entry, offset, bytes);
2647 		if (!entry->bytes)
2648 			free_bitmap(ctl, entry);
2649 	} else {
2650 		unlink_free_space(ctl, entry);
2651 		align_gap_len = offset - entry->offset;
2652 		align_gap = entry->offset;
2653 
2654 		entry->offset = offset + bytes;
2655 		WARN_ON(entry->bytes < bytes + align_gap_len);
2656 
2657 		entry->bytes -= bytes + align_gap_len;
2658 		if (!entry->bytes)
2659 			kmem_cache_free(btrfs_free_space_cachep, entry);
2660 		else
2661 			link_free_space(ctl, entry);
2662 	}
2663 out:
2664 	spin_unlock(&ctl->tree_lock);
2665 
2666 	if (align_gap_len)
2667 		__btrfs_add_free_space(block_group->fs_info, ctl,
2668 				       align_gap, align_gap_len);
2669 	return ret;
2670 }
2671 
2672 /*
2673  * given a cluster, put all of its extents back into the free space
2674  * cache.  If a block group is passed, this function will only free
2675  * a cluster that belongs to the passed block group.
2676  *
2677  * Otherwise, it'll get a reference on the block group pointed to by the
2678  * cluster and remove the cluster from it.
2679  */
2680 int btrfs_return_cluster_to_free_space(
2681 			       struct btrfs_block_group *block_group,
2682 			       struct btrfs_free_cluster *cluster)
2683 {
2684 	struct btrfs_free_space_ctl *ctl;
2685 	int ret;
2686 
2687 	/* first, get a safe pointer to the block group */
2688 	spin_lock(&cluster->lock);
2689 	if (!block_group) {
2690 		block_group = cluster->block_group;
2691 		if (!block_group) {
2692 			spin_unlock(&cluster->lock);
2693 			return 0;
2694 		}
2695 	} else if (cluster->block_group != block_group) {
2696 		/* someone else has already freed it don't redo their work */
2697 		spin_unlock(&cluster->lock);
2698 		return 0;
2699 	}
2700 	atomic_inc(&block_group->count);
2701 	spin_unlock(&cluster->lock);
2702 
2703 	ctl = block_group->free_space_ctl;
2704 
2705 	/* now return any extents the cluster had on it */
2706 	spin_lock(&ctl->tree_lock);
2707 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2708 	spin_unlock(&ctl->tree_lock);
2709 
2710 	/* finally drop our ref */
2711 	btrfs_put_block_group(block_group);
2712 	return ret;
2713 }
2714 
2715 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2716 				   struct btrfs_free_cluster *cluster,
2717 				   struct btrfs_free_space *entry,
2718 				   u64 bytes, u64 min_start,
2719 				   u64 *max_extent_size)
2720 {
2721 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2722 	int err;
2723 	u64 search_start = cluster->window_start;
2724 	u64 search_bytes = bytes;
2725 	u64 ret = 0;
2726 
2727 	search_start = min_start;
2728 	search_bytes = bytes;
2729 
2730 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2731 	if (err) {
2732 		*max_extent_size = max(get_max_extent_size(entry),
2733 				       *max_extent_size);
2734 		return 0;
2735 	}
2736 
2737 	ret = search_start;
2738 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2739 
2740 	return ret;
2741 }
2742 
2743 /*
2744  * given a cluster, try to allocate 'bytes' from it, returns 0
2745  * if it couldn't find anything suitably large, or a logical disk offset
2746  * if things worked out
2747  */
2748 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2749 			     struct btrfs_free_cluster *cluster, u64 bytes,
2750 			     u64 min_start, u64 *max_extent_size)
2751 {
2752 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2753 	struct btrfs_free_space *entry = NULL;
2754 	struct rb_node *node;
2755 	u64 ret = 0;
2756 
2757 	spin_lock(&cluster->lock);
2758 	if (bytes > cluster->max_size)
2759 		goto out;
2760 
2761 	if (cluster->block_group != block_group)
2762 		goto out;
2763 
2764 	node = rb_first(&cluster->root);
2765 	if (!node)
2766 		goto out;
2767 
2768 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2769 	while (1) {
2770 		if (entry->bytes < bytes)
2771 			*max_extent_size = max(get_max_extent_size(entry),
2772 					       *max_extent_size);
2773 
2774 		if (entry->bytes < bytes ||
2775 		    (!entry->bitmap && entry->offset < min_start)) {
2776 			node = rb_next(&entry->offset_index);
2777 			if (!node)
2778 				break;
2779 			entry = rb_entry(node, struct btrfs_free_space,
2780 					 offset_index);
2781 			continue;
2782 		}
2783 
2784 		if (entry->bitmap) {
2785 			ret = btrfs_alloc_from_bitmap(block_group,
2786 						      cluster, entry, bytes,
2787 						      cluster->window_start,
2788 						      max_extent_size);
2789 			if (ret == 0) {
2790 				node = rb_next(&entry->offset_index);
2791 				if (!node)
2792 					break;
2793 				entry = rb_entry(node, struct btrfs_free_space,
2794 						 offset_index);
2795 				continue;
2796 			}
2797 			cluster->window_start += bytes;
2798 		} else {
2799 			ret = entry->offset;
2800 
2801 			entry->offset += bytes;
2802 			entry->bytes -= bytes;
2803 		}
2804 
2805 		if (entry->bytes == 0)
2806 			rb_erase(&entry->offset_index, &cluster->root);
2807 		break;
2808 	}
2809 out:
2810 	spin_unlock(&cluster->lock);
2811 
2812 	if (!ret)
2813 		return 0;
2814 
2815 	spin_lock(&ctl->tree_lock);
2816 
2817 	ctl->free_space -= bytes;
2818 	if (entry->bytes == 0) {
2819 		ctl->free_extents--;
2820 		if (entry->bitmap) {
2821 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2822 					entry->bitmap);
2823 			ctl->total_bitmaps--;
2824 			ctl->op->recalc_thresholds(ctl);
2825 		}
2826 		kmem_cache_free(btrfs_free_space_cachep, entry);
2827 	}
2828 
2829 	spin_unlock(&ctl->tree_lock);
2830 
2831 	return ret;
2832 }
2833 
2834 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
2835 				struct btrfs_free_space *entry,
2836 				struct btrfs_free_cluster *cluster,
2837 				u64 offset, u64 bytes,
2838 				u64 cont1_bytes, u64 min_bytes)
2839 {
2840 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2841 	unsigned long next_zero;
2842 	unsigned long i;
2843 	unsigned long want_bits;
2844 	unsigned long min_bits;
2845 	unsigned long found_bits;
2846 	unsigned long max_bits = 0;
2847 	unsigned long start = 0;
2848 	unsigned long total_found = 0;
2849 	int ret;
2850 
2851 	i = offset_to_bit(entry->offset, ctl->unit,
2852 			  max_t(u64, offset, entry->offset));
2853 	want_bits = bytes_to_bits(bytes, ctl->unit);
2854 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2855 
2856 	/*
2857 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2858 	 * fragmented.
2859 	 */
2860 	if (entry->max_extent_size &&
2861 	    entry->max_extent_size < cont1_bytes)
2862 		return -ENOSPC;
2863 again:
2864 	found_bits = 0;
2865 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2866 		next_zero = find_next_zero_bit(entry->bitmap,
2867 					       BITS_PER_BITMAP, i);
2868 		if (next_zero - i >= min_bits) {
2869 			found_bits = next_zero - i;
2870 			if (found_bits > max_bits)
2871 				max_bits = found_bits;
2872 			break;
2873 		}
2874 		if (next_zero - i > max_bits)
2875 			max_bits = next_zero - i;
2876 		i = next_zero;
2877 	}
2878 
2879 	if (!found_bits) {
2880 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2881 		return -ENOSPC;
2882 	}
2883 
2884 	if (!total_found) {
2885 		start = i;
2886 		cluster->max_size = 0;
2887 	}
2888 
2889 	total_found += found_bits;
2890 
2891 	if (cluster->max_size < found_bits * ctl->unit)
2892 		cluster->max_size = found_bits * ctl->unit;
2893 
2894 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2895 		i = next_zero + 1;
2896 		goto again;
2897 	}
2898 
2899 	cluster->window_start = start * ctl->unit + entry->offset;
2900 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2901 	ret = tree_insert_offset(&cluster->root, entry->offset,
2902 				 &entry->offset_index, 1);
2903 	ASSERT(!ret); /* -EEXIST; Logic error */
2904 
2905 	trace_btrfs_setup_cluster(block_group, cluster,
2906 				  total_found * ctl->unit, 1);
2907 	return 0;
2908 }
2909 
2910 /*
2911  * This searches the block group for just extents to fill the cluster with.
2912  * Try to find a cluster with at least bytes total bytes, at least one
2913  * extent of cont1_bytes, and other clusters of at least min_bytes.
2914  */
2915 static noinline int
2916 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
2917 			struct btrfs_free_cluster *cluster,
2918 			struct list_head *bitmaps, u64 offset, u64 bytes,
2919 			u64 cont1_bytes, u64 min_bytes)
2920 {
2921 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2922 	struct btrfs_free_space *first = NULL;
2923 	struct btrfs_free_space *entry = NULL;
2924 	struct btrfs_free_space *last;
2925 	struct rb_node *node;
2926 	u64 window_free;
2927 	u64 max_extent;
2928 	u64 total_size = 0;
2929 
2930 	entry = tree_search_offset(ctl, offset, 0, 1);
2931 	if (!entry)
2932 		return -ENOSPC;
2933 
2934 	/*
2935 	 * We don't want bitmaps, so just move along until we find a normal
2936 	 * extent entry.
2937 	 */
2938 	while (entry->bitmap || entry->bytes < min_bytes) {
2939 		if (entry->bitmap && list_empty(&entry->list))
2940 			list_add_tail(&entry->list, bitmaps);
2941 		node = rb_next(&entry->offset_index);
2942 		if (!node)
2943 			return -ENOSPC;
2944 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2945 	}
2946 
2947 	window_free = entry->bytes;
2948 	max_extent = entry->bytes;
2949 	first = entry;
2950 	last = entry;
2951 
2952 	for (node = rb_next(&entry->offset_index); node;
2953 	     node = rb_next(&entry->offset_index)) {
2954 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2955 
2956 		if (entry->bitmap) {
2957 			if (list_empty(&entry->list))
2958 				list_add_tail(&entry->list, bitmaps);
2959 			continue;
2960 		}
2961 
2962 		if (entry->bytes < min_bytes)
2963 			continue;
2964 
2965 		last = entry;
2966 		window_free += entry->bytes;
2967 		if (entry->bytes > max_extent)
2968 			max_extent = entry->bytes;
2969 	}
2970 
2971 	if (window_free < bytes || max_extent < cont1_bytes)
2972 		return -ENOSPC;
2973 
2974 	cluster->window_start = first->offset;
2975 
2976 	node = &first->offset_index;
2977 
2978 	/*
2979 	 * now we've found our entries, pull them out of the free space
2980 	 * cache and put them into the cluster rbtree
2981 	 */
2982 	do {
2983 		int ret;
2984 
2985 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2986 		node = rb_next(&entry->offset_index);
2987 		if (entry->bitmap || entry->bytes < min_bytes)
2988 			continue;
2989 
2990 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2991 		ret = tree_insert_offset(&cluster->root, entry->offset,
2992 					 &entry->offset_index, 0);
2993 		total_size += entry->bytes;
2994 		ASSERT(!ret); /* -EEXIST; Logic error */
2995 	} while (node && entry != last);
2996 
2997 	cluster->max_size = max_extent;
2998 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2999 	return 0;
3000 }
3001 
3002 /*
3003  * This specifically looks for bitmaps that may work in the cluster, we assume
3004  * that we have already failed to find extents that will work.
3005  */
3006 static noinline int
3007 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3008 		     struct btrfs_free_cluster *cluster,
3009 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3010 		     u64 cont1_bytes, u64 min_bytes)
3011 {
3012 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3013 	struct btrfs_free_space *entry = NULL;
3014 	int ret = -ENOSPC;
3015 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3016 
3017 	if (ctl->total_bitmaps == 0)
3018 		return -ENOSPC;
3019 
3020 	/*
3021 	 * The bitmap that covers offset won't be in the list unless offset
3022 	 * is just its start offset.
3023 	 */
3024 	if (!list_empty(bitmaps))
3025 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3026 
3027 	if (!entry || entry->offset != bitmap_offset) {
3028 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3029 		if (entry && list_empty(&entry->list))
3030 			list_add(&entry->list, bitmaps);
3031 	}
3032 
3033 	list_for_each_entry(entry, bitmaps, list) {
3034 		if (entry->bytes < bytes)
3035 			continue;
3036 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3037 					   bytes, cont1_bytes, min_bytes);
3038 		if (!ret)
3039 			return 0;
3040 	}
3041 
3042 	/*
3043 	 * The bitmaps list has all the bitmaps that record free space
3044 	 * starting after offset, so no more search is required.
3045 	 */
3046 	return -ENOSPC;
3047 }
3048 
3049 /*
3050  * here we try to find a cluster of blocks in a block group.  The goal
3051  * is to find at least bytes+empty_size.
3052  * We might not find them all in one contiguous area.
3053  *
3054  * returns zero and sets up cluster if things worked out, otherwise
3055  * it returns -enospc
3056  */
3057 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3058 			     struct btrfs_free_cluster *cluster,
3059 			     u64 offset, u64 bytes, u64 empty_size)
3060 {
3061 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3062 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3063 	struct btrfs_free_space *entry, *tmp;
3064 	LIST_HEAD(bitmaps);
3065 	u64 min_bytes;
3066 	u64 cont1_bytes;
3067 	int ret;
3068 
3069 	/*
3070 	 * Choose the minimum extent size we'll require for this
3071 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3072 	 * For metadata, allow allocates with smaller extents.  For
3073 	 * data, keep it dense.
3074 	 */
3075 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3076 		cont1_bytes = min_bytes = bytes + empty_size;
3077 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3078 		cont1_bytes = bytes;
3079 		min_bytes = fs_info->sectorsize;
3080 	} else {
3081 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3082 		min_bytes = fs_info->sectorsize;
3083 	}
3084 
3085 	spin_lock(&ctl->tree_lock);
3086 
3087 	/*
3088 	 * If we know we don't have enough space to make a cluster don't even
3089 	 * bother doing all the work to try and find one.
3090 	 */
3091 	if (ctl->free_space < bytes) {
3092 		spin_unlock(&ctl->tree_lock);
3093 		return -ENOSPC;
3094 	}
3095 
3096 	spin_lock(&cluster->lock);
3097 
3098 	/* someone already found a cluster, hooray */
3099 	if (cluster->block_group) {
3100 		ret = 0;
3101 		goto out;
3102 	}
3103 
3104 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3105 				 min_bytes);
3106 
3107 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3108 				      bytes + empty_size,
3109 				      cont1_bytes, min_bytes);
3110 	if (ret)
3111 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3112 					   offset, bytes + empty_size,
3113 					   cont1_bytes, min_bytes);
3114 
3115 	/* Clear our temporary list */
3116 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3117 		list_del_init(&entry->list);
3118 
3119 	if (!ret) {
3120 		atomic_inc(&block_group->count);
3121 		list_add_tail(&cluster->block_group_list,
3122 			      &block_group->cluster_list);
3123 		cluster->block_group = block_group;
3124 	} else {
3125 		trace_btrfs_failed_cluster_setup(block_group);
3126 	}
3127 out:
3128 	spin_unlock(&cluster->lock);
3129 	spin_unlock(&ctl->tree_lock);
3130 
3131 	return ret;
3132 }
3133 
3134 /*
3135  * simple code to zero out a cluster
3136  */
3137 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3138 {
3139 	spin_lock_init(&cluster->lock);
3140 	spin_lock_init(&cluster->refill_lock);
3141 	cluster->root = RB_ROOT;
3142 	cluster->max_size = 0;
3143 	cluster->fragmented = false;
3144 	INIT_LIST_HEAD(&cluster->block_group_list);
3145 	cluster->block_group = NULL;
3146 }
3147 
3148 static int do_trimming(struct btrfs_block_group *block_group,
3149 		       u64 *total_trimmed, u64 start, u64 bytes,
3150 		       u64 reserved_start, u64 reserved_bytes,
3151 		       struct btrfs_trim_range *trim_entry)
3152 {
3153 	struct btrfs_space_info *space_info = block_group->space_info;
3154 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3155 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3156 	int ret;
3157 	int update = 0;
3158 	u64 trimmed = 0;
3159 
3160 	spin_lock(&space_info->lock);
3161 	spin_lock(&block_group->lock);
3162 	if (!block_group->ro) {
3163 		block_group->reserved += reserved_bytes;
3164 		space_info->bytes_reserved += reserved_bytes;
3165 		update = 1;
3166 	}
3167 	spin_unlock(&block_group->lock);
3168 	spin_unlock(&space_info->lock);
3169 
3170 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3171 	if (!ret)
3172 		*total_trimmed += trimmed;
3173 
3174 	mutex_lock(&ctl->cache_writeout_mutex);
3175 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3176 	list_del(&trim_entry->list);
3177 	mutex_unlock(&ctl->cache_writeout_mutex);
3178 
3179 	if (update) {
3180 		spin_lock(&space_info->lock);
3181 		spin_lock(&block_group->lock);
3182 		if (block_group->ro)
3183 			space_info->bytes_readonly += reserved_bytes;
3184 		block_group->reserved -= reserved_bytes;
3185 		space_info->bytes_reserved -= reserved_bytes;
3186 		spin_unlock(&block_group->lock);
3187 		spin_unlock(&space_info->lock);
3188 	}
3189 
3190 	return ret;
3191 }
3192 
3193 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3194 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3195 {
3196 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3197 	struct btrfs_free_space *entry;
3198 	struct rb_node *node;
3199 	int ret = 0;
3200 	u64 extent_start;
3201 	u64 extent_bytes;
3202 	u64 bytes;
3203 
3204 	while (start < end) {
3205 		struct btrfs_trim_range trim_entry;
3206 
3207 		mutex_lock(&ctl->cache_writeout_mutex);
3208 		spin_lock(&ctl->tree_lock);
3209 
3210 		if (ctl->free_space < minlen) {
3211 			spin_unlock(&ctl->tree_lock);
3212 			mutex_unlock(&ctl->cache_writeout_mutex);
3213 			break;
3214 		}
3215 
3216 		entry = tree_search_offset(ctl, start, 0, 1);
3217 		if (!entry) {
3218 			spin_unlock(&ctl->tree_lock);
3219 			mutex_unlock(&ctl->cache_writeout_mutex);
3220 			break;
3221 		}
3222 
3223 		/* skip bitmaps */
3224 		while (entry->bitmap) {
3225 			node = rb_next(&entry->offset_index);
3226 			if (!node) {
3227 				spin_unlock(&ctl->tree_lock);
3228 				mutex_unlock(&ctl->cache_writeout_mutex);
3229 				goto out;
3230 			}
3231 			entry = rb_entry(node, struct btrfs_free_space,
3232 					 offset_index);
3233 		}
3234 
3235 		if (entry->offset >= end) {
3236 			spin_unlock(&ctl->tree_lock);
3237 			mutex_unlock(&ctl->cache_writeout_mutex);
3238 			break;
3239 		}
3240 
3241 		extent_start = entry->offset;
3242 		extent_bytes = entry->bytes;
3243 		start = max(start, extent_start);
3244 		bytes = min(extent_start + extent_bytes, end) - start;
3245 		if (bytes < minlen) {
3246 			spin_unlock(&ctl->tree_lock);
3247 			mutex_unlock(&ctl->cache_writeout_mutex);
3248 			goto next;
3249 		}
3250 
3251 		unlink_free_space(ctl, entry);
3252 		kmem_cache_free(btrfs_free_space_cachep, entry);
3253 
3254 		spin_unlock(&ctl->tree_lock);
3255 		trim_entry.start = extent_start;
3256 		trim_entry.bytes = extent_bytes;
3257 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3258 		mutex_unlock(&ctl->cache_writeout_mutex);
3259 
3260 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3261 				  extent_start, extent_bytes, &trim_entry);
3262 		if (ret)
3263 			break;
3264 next:
3265 		start += bytes;
3266 
3267 		if (fatal_signal_pending(current)) {
3268 			ret = -ERESTARTSYS;
3269 			break;
3270 		}
3271 
3272 		cond_resched();
3273 	}
3274 out:
3275 	return ret;
3276 }
3277 
3278 static int trim_bitmaps(struct btrfs_block_group *block_group,
3279 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3280 {
3281 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3282 	struct btrfs_free_space *entry;
3283 	int ret = 0;
3284 	int ret2;
3285 	u64 bytes;
3286 	u64 offset = offset_to_bitmap(ctl, start);
3287 
3288 	while (offset < end) {
3289 		bool next_bitmap = false;
3290 		struct btrfs_trim_range trim_entry;
3291 
3292 		mutex_lock(&ctl->cache_writeout_mutex);
3293 		spin_lock(&ctl->tree_lock);
3294 
3295 		if (ctl->free_space < minlen) {
3296 			spin_unlock(&ctl->tree_lock);
3297 			mutex_unlock(&ctl->cache_writeout_mutex);
3298 			break;
3299 		}
3300 
3301 		entry = tree_search_offset(ctl, offset, 1, 0);
3302 		if (!entry) {
3303 			spin_unlock(&ctl->tree_lock);
3304 			mutex_unlock(&ctl->cache_writeout_mutex);
3305 			next_bitmap = true;
3306 			goto next;
3307 		}
3308 
3309 		bytes = minlen;
3310 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3311 		if (ret2 || start >= end) {
3312 			spin_unlock(&ctl->tree_lock);
3313 			mutex_unlock(&ctl->cache_writeout_mutex);
3314 			next_bitmap = true;
3315 			goto next;
3316 		}
3317 
3318 		bytes = min(bytes, end - start);
3319 		if (bytes < minlen) {
3320 			spin_unlock(&ctl->tree_lock);
3321 			mutex_unlock(&ctl->cache_writeout_mutex);
3322 			goto next;
3323 		}
3324 
3325 		bitmap_clear_bits(ctl, entry, start, bytes);
3326 		if (entry->bytes == 0)
3327 			free_bitmap(ctl, entry);
3328 
3329 		spin_unlock(&ctl->tree_lock);
3330 		trim_entry.start = start;
3331 		trim_entry.bytes = bytes;
3332 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3333 		mutex_unlock(&ctl->cache_writeout_mutex);
3334 
3335 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3336 				  start, bytes, &trim_entry);
3337 		if (ret)
3338 			break;
3339 next:
3340 		if (next_bitmap) {
3341 			offset += BITS_PER_BITMAP * ctl->unit;
3342 		} else {
3343 			start += bytes;
3344 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3345 				offset += BITS_PER_BITMAP * ctl->unit;
3346 		}
3347 
3348 		if (fatal_signal_pending(current)) {
3349 			ret = -ERESTARTSYS;
3350 			break;
3351 		}
3352 
3353 		cond_resched();
3354 	}
3355 
3356 	return ret;
3357 }
3358 
3359 void btrfs_get_block_group_trimming(struct btrfs_block_group *cache)
3360 {
3361 	atomic_inc(&cache->trimming);
3362 }
3363 
3364 void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group)
3365 {
3366 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3367 	struct extent_map_tree *em_tree;
3368 	struct extent_map *em;
3369 	bool cleanup;
3370 
3371 	spin_lock(&block_group->lock);
3372 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3373 		   block_group->removed);
3374 	spin_unlock(&block_group->lock);
3375 
3376 	if (cleanup) {
3377 		mutex_lock(&fs_info->chunk_mutex);
3378 		em_tree = &fs_info->mapping_tree;
3379 		write_lock(&em_tree->lock);
3380 		em = lookup_extent_mapping(em_tree, block_group->start,
3381 					   1);
3382 		BUG_ON(!em); /* logic error, can't happen */
3383 		remove_extent_mapping(em_tree, em);
3384 		write_unlock(&em_tree->lock);
3385 		mutex_unlock(&fs_info->chunk_mutex);
3386 
3387 		/* once for us and once for the tree */
3388 		free_extent_map(em);
3389 		free_extent_map(em);
3390 
3391 		/*
3392 		 * We've left one free space entry and other tasks trimming
3393 		 * this block group have left 1 entry each one. Free them.
3394 		 */
3395 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3396 	}
3397 }
3398 
3399 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3400 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3401 {
3402 	int ret;
3403 
3404 	*trimmed = 0;
3405 
3406 	spin_lock(&block_group->lock);
3407 	if (block_group->removed) {
3408 		spin_unlock(&block_group->lock);
3409 		return 0;
3410 	}
3411 	btrfs_get_block_group_trimming(block_group);
3412 	spin_unlock(&block_group->lock);
3413 
3414 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3415 	if (ret)
3416 		goto out;
3417 
3418 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3419 out:
3420 	btrfs_put_block_group_trimming(block_group);
3421 	return ret;
3422 }
3423 
3424 /*
3425  * Find the left-most item in the cache tree, and then return the
3426  * smallest inode number in the item.
3427  *
3428  * Note: the returned inode number may not be the smallest one in
3429  * the tree, if the left-most item is a bitmap.
3430  */
3431 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3432 {
3433 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3434 	struct btrfs_free_space *entry = NULL;
3435 	u64 ino = 0;
3436 
3437 	spin_lock(&ctl->tree_lock);
3438 
3439 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3440 		goto out;
3441 
3442 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3443 			 struct btrfs_free_space, offset_index);
3444 
3445 	if (!entry->bitmap) {
3446 		ino = entry->offset;
3447 
3448 		unlink_free_space(ctl, entry);
3449 		entry->offset++;
3450 		entry->bytes--;
3451 		if (!entry->bytes)
3452 			kmem_cache_free(btrfs_free_space_cachep, entry);
3453 		else
3454 			link_free_space(ctl, entry);
3455 	} else {
3456 		u64 offset = 0;
3457 		u64 count = 1;
3458 		int ret;
3459 
3460 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3461 		/* Logic error; Should be empty if it can't find anything */
3462 		ASSERT(!ret);
3463 
3464 		ino = offset;
3465 		bitmap_clear_bits(ctl, entry, offset, 1);
3466 		if (entry->bytes == 0)
3467 			free_bitmap(ctl, entry);
3468 	}
3469 out:
3470 	spin_unlock(&ctl->tree_lock);
3471 
3472 	return ino;
3473 }
3474 
3475 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3476 				    struct btrfs_path *path)
3477 {
3478 	struct inode *inode = NULL;
3479 
3480 	spin_lock(&root->ino_cache_lock);
3481 	if (root->ino_cache_inode)
3482 		inode = igrab(root->ino_cache_inode);
3483 	spin_unlock(&root->ino_cache_lock);
3484 	if (inode)
3485 		return inode;
3486 
3487 	inode = __lookup_free_space_inode(root, path, 0);
3488 	if (IS_ERR(inode))
3489 		return inode;
3490 
3491 	spin_lock(&root->ino_cache_lock);
3492 	if (!btrfs_fs_closing(root->fs_info))
3493 		root->ino_cache_inode = igrab(inode);
3494 	spin_unlock(&root->ino_cache_lock);
3495 
3496 	return inode;
3497 }
3498 
3499 int create_free_ino_inode(struct btrfs_root *root,
3500 			  struct btrfs_trans_handle *trans,
3501 			  struct btrfs_path *path)
3502 {
3503 	return __create_free_space_inode(root, trans, path,
3504 					 BTRFS_FREE_INO_OBJECTID, 0);
3505 }
3506 
3507 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3508 {
3509 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3510 	struct btrfs_path *path;
3511 	struct inode *inode;
3512 	int ret = 0;
3513 	u64 root_gen = btrfs_root_generation(&root->root_item);
3514 
3515 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3516 		return 0;
3517 
3518 	/*
3519 	 * If we're unmounting then just return, since this does a search on the
3520 	 * normal root and not the commit root and we could deadlock.
3521 	 */
3522 	if (btrfs_fs_closing(fs_info))
3523 		return 0;
3524 
3525 	path = btrfs_alloc_path();
3526 	if (!path)
3527 		return 0;
3528 
3529 	inode = lookup_free_ino_inode(root, path);
3530 	if (IS_ERR(inode))
3531 		goto out;
3532 
3533 	if (root_gen != BTRFS_I(inode)->generation)
3534 		goto out_put;
3535 
3536 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3537 
3538 	if (ret < 0)
3539 		btrfs_err(fs_info,
3540 			"failed to load free ino cache for root %llu",
3541 			root->root_key.objectid);
3542 out_put:
3543 	iput(inode);
3544 out:
3545 	btrfs_free_path(path);
3546 	return ret;
3547 }
3548 
3549 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3550 			      struct btrfs_trans_handle *trans,
3551 			      struct btrfs_path *path,
3552 			      struct inode *inode)
3553 {
3554 	struct btrfs_fs_info *fs_info = root->fs_info;
3555 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3556 	int ret;
3557 	struct btrfs_io_ctl io_ctl;
3558 	bool release_metadata = true;
3559 
3560 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3561 		return 0;
3562 
3563 	memset(&io_ctl, 0, sizeof(io_ctl));
3564 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3565 	if (!ret) {
3566 		/*
3567 		 * At this point writepages() didn't error out, so our metadata
3568 		 * reservation is released when the writeback finishes, at
3569 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3570 		 * with or without an error.
3571 		 */
3572 		release_metadata = false;
3573 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3574 	}
3575 
3576 	if (ret) {
3577 		if (release_metadata)
3578 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3579 					inode->i_size, true);
3580 #ifdef DEBUG
3581 		btrfs_err(fs_info,
3582 			  "failed to write free ino cache for root %llu",
3583 			  root->root_key.objectid);
3584 #endif
3585 	}
3586 
3587 	return ret;
3588 }
3589 
3590 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3591 /*
3592  * Use this if you need to make a bitmap or extent entry specifically, it
3593  * doesn't do any of the merging that add_free_space does, this acts a lot like
3594  * how the free space cache loading stuff works, so you can get really weird
3595  * configurations.
3596  */
3597 int test_add_free_space_entry(struct btrfs_block_group *cache,
3598 			      u64 offset, u64 bytes, bool bitmap)
3599 {
3600 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3601 	struct btrfs_free_space *info = NULL, *bitmap_info;
3602 	void *map = NULL;
3603 	u64 bytes_added;
3604 	int ret;
3605 
3606 again:
3607 	if (!info) {
3608 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3609 		if (!info)
3610 			return -ENOMEM;
3611 	}
3612 
3613 	if (!bitmap) {
3614 		spin_lock(&ctl->tree_lock);
3615 		info->offset = offset;
3616 		info->bytes = bytes;
3617 		info->max_extent_size = 0;
3618 		ret = link_free_space(ctl, info);
3619 		spin_unlock(&ctl->tree_lock);
3620 		if (ret)
3621 			kmem_cache_free(btrfs_free_space_cachep, info);
3622 		return ret;
3623 	}
3624 
3625 	if (!map) {
3626 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3627 		if (!map) {
3628 			kmem_cache_free(btrfs_free_space_cachep, info);
3629 			return -ENOMEM;
3630 		}
3631 	}
3632 
3633 	spin_lock(&ctl->tree_lock);
3634 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3635 					 1, 0);
3636 	if (!bitmap_info) {
3637 		info->bitmap = map;
3638 		map = NULL;
3639 		add_new_bitmap(ctl, info, offset);
3640 		bitmap_info = info;
3641 		info = NULL;
3642 	}
3643 
3644 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3645 
3646 	bytes -= bytes_added;
3647 	offset += bytes_added;
3648 	spin_unlock(&ctl->tree_lock);
3649 
3650 	if (bytes)
3651 		goto again;
3652 
3653 	if (info)
3654 		kmem_cache_free(btrfs_free_space_cachep, info);
3655 	if (map)
3656 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3657 	return 0;
3658 }
3659 
3660 /*
3661  * Checks to see if the given range is in the free space cache.  This is really
3662  * just used to check the absence of space, so if there is free space in the
3663  * range at all we will return 1.
3664  */
3665 int test_check_exists(struct btrfs_block_group *cache,
3666 		      u64 offset, u64 bytes)
3667 {
3668 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3669 	struct btrfs_free_space *info;
3670 	int ret = 0;
3671 
3672 	spin_lock(&ctl->tree_lock);
3673 	info = tree_search_offset(ctl, offset, 0, 0);
3674 	if (!info) {
3675 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3676 					  1, 0);
3677 		if (!info)
3678 			goto out;
3679 	}
3680 
3681 have_info:
3682 	if (info->bitmap) {
3683 		u64 bit_off, bit_bytes;
3684 		struct rb_node *n;
3685 		struct btrfs_free_space *tmp;
3686 
3687 		bit_off = offset;
3688 		bit_bytes = ctl->unit;
3689 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3690 		if (!ret) {
3691 			if (bit_off == offset) {
3692 				ret = 1;
3693 				goto out;
3694 			} else if (bit_off > offset &&
3695 				   offset + bytes > bit_off) {
3696 				ret = 1;
3697 				goto out;
3698 			}
3699 		}
3700 
3701 		n = rb_prev(&info->offset_index);
3702 		while (n) {
3703 			tmp = rb_entry(n, struct btrfs_free_space,
3704 				       offset_index);
3705 			if (tmp->offset + tmp->bytes < offset)
3706 				break;
3707 			if (offset + bytes < tmp->offset) {
3708 				n = rb_prev(&tmp->offset_index);
3709 				continue;
3710 			}
3711 			info = tmp;
3712 			goto have_info;
3713 		}
3714 
3715 		n = rb_next(&info->offset_index);
3716 		while (n) {
3717 			tmp = rb_entry(n, struct btrfs_free_space,
3718 				       offset_index);
3719 			if (offset + bytes < tmp->offset)
3720 				break;
3721 			if (tmp->offset + tmp->bytes < offset) {
3722 				n = rb_next(&tmp->offset_index);
3723 				continue;
3724 			}
3725 			info = tmp;
3726 			goto have_info;
3727 		}
3728 
3729 		ret = 0;
3730 		goto out;
3731 	}
3732 
3733 	if (info->offset == offset) {
3734 		ret = 1;
3735 		goto out;
3736 	}
3737 
3738 	if (offset > info->offset && offset < info->offset + info->bytes)
3739 		ret = 1;
3740 out:
3741 	spin_unlock(&ctl->tree_lock);
3742 	return ret;
3743 }
3744 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3745