xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 7fe2f639)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include "ctree.h"
24 #include "free-space-cache.h"
25 #include "transaction.h"
26 #include "disk-io.h"
27 #include "extent_io.h"
28 #include "inode-map.h"
29 
30 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
31 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
32 
33 static int link_free_space(struct btrfs_free_space_ctl *ctl,
34 			   struct btrfs_free_space *info);
35 
36 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
37 					       struct btrfs_path *path,
38 					       u64 offset)
39 {
40 	struct btrfs_key key;
41 	struct btrfs_key location;
42 	struct btrfs_disk_key disk_key;
43 	struct btrfs_free_space_header *header;
44 	struct extent_buffer *leaf;
45 	struct inode *inode = NULL;
46 	int ret;
47 
48 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
49 	key.offset = offset;
50 	key.type = 0;
51 
52 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
53 	if (ret < 0)
54 		return ERR_PTR(ret);
55 	if (ret > 0) {
56 		btrfs_release_path(path);
57 		return ERR_PTR(-ENOENT);
58 	}
59 
60 	leaf = path->nodes[0];
61 	header = btrfs_item_ptr(leaf, path->slots[0],
62 				struct btrfs_free_space_header);
63 	btrfs_free_space_key(leaf, header, &disk_key);
64 	btrfs_disk_key_to_cpu(&location, &disk_key);
65 	btrfs_release_path(path);
66 
67 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
68 	if (!inode)
69 		return ERR_PTR(-ENOENT);
70 	if (IS_ERR(inode))
71 		return inode;
72 	if (is_bad_inode(inode)) {
73 		iput(inode);
74 		return ERR_PTR(-ENOENT);
75 	}
76 
77 	inode->i_mapping->flags &= ~__GFP_FS;
78 
79 	return inode;
80 }
81 
82 struct inode *lookup_free_space_inode(struct btrfs_root *root,
83 				      struct btrfs_block_group_cache
84 				      *block_group, struct btrfs_path *path)
85 {
86 	struct inode *inode = NULL;
87 
88 	spin_lock(&block_group->lock);
89 	if (block_group->inode)
90 		inode = igrab(block_group->inode);
91 	spin_unlock(&block_group->lock);
92 	if (inode)
93 		return inode;
94 
95 	inode = __lookup_free_space_inode(root, path,
96 					  block_group->key.objectid);
97 	if (IS_ERR(inode))
98 		return inode;
99 
100 	spin_lock(&block_group->lock);
101 	if (!btrfs_fs_closing(root->fs_info)) {
102 		block_group->inode = igrab(inode);
103 		block_group->iref = 1;
104 	}
105 	spin_unlock(&block_group->lock);
106 
107 	return inode;
108 }
109 
110 int __create_free_space_inode(struct btrfs_root *root,
111 			      struct btrfs_trans_handle *trans,
112 			      struct btrfs_path *path, u64 ino, u64 offset)
113 {
114 	struct btrfs_key key;
115 	struct btrfs_disk_key disk_key;
116 	struct btrfs_free_space_header *header;
117 	struct btrfs_inode_item *inode_item;
118 	struct extent_buffer *leaf;
119 	int ret;
120 
121 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
122 	if (ret)
123 		return ret;
124 
125 	leaf = path->nodes[0];
126 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
127 				    struct btrfs_inode_item);
128 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
129 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
130 			     sizeof(*inode_item));
131 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
132 	btrfs_set_inode_size(leaf, inode_item, 0);
133 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
134 	btrfs_set_inode_uid(leaf, inode_item, 0);
135 	btrfs_set_inode_gid(leaf, inode_item, 0);
136 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
137 	btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
138 			      BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
139 	btrfs_set_inode_nlink(leaf, inode_item, 1);
140 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
141 	btrfs_set_inode_block_group(leaf, inode_item, offset);
142 	btrfs_mark_buffer_dirty(leaf);
143 	btrfs_release_path(path);
144 
145 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
146 	key.offset = offset;
147 	key.type = 0;
148 
149 	ret = btrfs_insert_empty_item(trans, root, path, &key,
150 				      sizeof(struct btrfs_free_space_header));
151 	if (ret < 0) {
152 		btrfs_release_path(path);
153 		return ret;
154 	}
155 	leaf = path->nodes[0];
156 	header = btrfs_item_ptr(leaf, path->slots[0],
157 				struct btrfs_free_space_header);
158 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
159 	btrfs_set_free_space_key(leaf, header, &disk_key);
160 	btrfs_mark_buffer_dirty(leaf);
161 	btrfs_release_path(path);
162 
163 	return 0;
164 }
165 
166 int create_free_space_inode(struct btrfs_root *root,
167 			    struct btrfs_trans_handle *trans,
168 			    struct btrfs_block_group_cache *block_group,
169 			    struct btrfs_path *path)
170 {
171 	int ret;
172 	u64 ino;
173 
174 	ret = btrfs_find_free_objectid(root, &ino);
175 	if (ret < 0)
176 		return ret;
177 
178 	return __create_free_space_inode(root, trans, path, ino,
179 					 block_group->key.objectid);
180 }
181 
182 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
183 				    struct btrfs_trans_handle *trans,
184 				    struct btrfs_path *path,
185 				    struct inode *inode)
186 {
187 	loff_t oldsize;
188 	int ret = 0;
189 
190 	trans->block_rsv = root->orphan_block_rsv;
191 	ret = btrfs_block_rsv_check(trans, root,
192 				    root->orphan_block_rsv,
193 				    0, 5);
194 	if (ret)
195 		return ret;
196 
197 	oldsize = i_size_read(inode);
198 	btrfs_i_size_write(inode, 0);
199 	truncate_pagecache(inode, oldsize, 0);
200 
201 	/*
202 	 * We don't need an orphan item because truncating the free space cache
203 	 * will never be split across transactions.
204 	 */
205 	ret = btrfs_truncate_inode_items(trans, root, inode,
206 					 0, BTRFS_EXTENT_DATA_KEY);
207 	if (ret) {
208 		WARN_ON(1);
209 		return ret;
210 	}
211 
212 	ret = btrfs_update_inode(trans, root, inode);
213 	return ret;
214 }
215 
216 static int readahead_cache(struct inode *inode)
217 {
218 	struct file_ra_state *ra;
219 	unsigned long last_index;
220 
221 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
222 	if (!ra)
223 		return -ENOMEM;
224 
225 	file_ra_state_init(ra, inode->i_mapping);
226 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
227 
228 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
229 
230 	kfree(ra);
231 
232 	return 0;
233 }
234 
235 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
236 			    struct btrfs_free_space_ctl *ctl,
237 			    struct btrfs_path *path, u64 offset)
238 {
239 	struct btrfs_free_space_header *header;
240 	struct extent_buffer *leaf;
241 	struct page *page;
242 	u32 *checksums = NULL, *crc;
243 	char *disk_crcs = NULL;
244 	struct btrfs_key key;
245 	struct list_head bitmaps;
246 	u64 num_entries;
247 	u64 num_bitmaps;
248 	u64 generation;
249 	u32 cur_crc = ~(u32)0;
250 	pgoff_t index = 0;
251 	unsigned long first_page_offset;
252 	int num_checksums;
253 	int ret = 0;
254 
255 	INIT_LIST_HEAD(&bitmaps);
256 
257 	/* Nothing in the space cache, goodbye */
258 	if (!i_size_read(inode))
259 		goto out;
260 
261 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
262 	key.offset = offset;
263 	key.type = 0;
264 
265 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
266 	if (ret < 0)
267 		goto out;
268 	else if (ret > 0) {
269 		btrfs_release_path(path);
270 		ret = 0;
271 		goto out;
272 	}
273 
274 	ret = -1;
275 
276 	leaf = path->nodes[0];
277 	header = btrfs_item_ptr(leaf, path->slots[0],
278 				struct btrfs_free_space_header);
279 	num_entries = btrfs_free_space_entries(leaf, header);
280 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
281 	generation = btrfs_free_space_generation(leaf, header);
282 	btrfs_release_path(path);
283 
284 	if (BTRFS_I(inode)->generation != generation) {
285 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
286 		       " not match free space cache generation (%llu)\n",
287 		       (unsigned long long)BTRFS_I(inode)->generation,
288 		       (unsigned long long)generation);
289 		goto out;
290 	}
291 
292 	if (!num_entries)
293 		goto out;
294 
295 	/* Setup everything for doing checksumming */
296 	num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
297 	checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
298 	if (!checksums)
299 		goto out;
300 	first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
301 	disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
302 	if (!disk_crcs)
303 		goto out;
304 
305 	ret = readahead_cache(inode);
306 	if (ret)
307 		goto out;
308 
309 	while (1) {
310 		struct btrfs_free_space_entry *entry;
311 		struct btrfs_free_space *e;
312 		void *addr;
313 		unsigned long offset = 0;
314 		unsigned long start_offset = 0;
315 		int need_loop = 0;
316 
317 		if (!num_entries && !num_bitmaps)
318 			break;
319 
320 		if (index == 0) {
321 			start_offset = first_page_offset;
322 			offset = start_offset;
323 		}
324 
325 		page = grab_cache_page(inode->i_mapping, index);
326 		if (!page)
327 			goto free_cache;
328 
329 		if (!PageUptodate(page)) {
330 			btrfs_readpage(NULL, page);
331 			lock_page(page);
332 			if (!PageUptodate(page)) {
333 				unlock_page(page);
334 				page_cache_release(page);
335 				printk(KERN_ERR "btrfs: error reading free "
336 				       "space cache\n");
337 				goto free_cache;
338 			}
339 		}
340 		addr = kmap(page);
341 
342 		if (index == 0) {
343 			u64 *gen;
344 
345 			memcpy(disk_crcs, addr, first_page_offset);
346 			gen = addr + (sizeof(u32) * num_checksums);
347 			if (*gen != BTRFS_I(inode)->generation) {
348 				printk(KERN_ERR "btrfs: space cache generation"
349 				       " (%llu) does not match inode (%llu)\n",
350 				       (unsigned long long)*gen,
351 				       (unsigned long long)
352 				       BTRFS_I(inode)->generation);
353 				kunmap(page);
354 				unlock_page(page);
355 				page_cache_release(page);
356 				goto free_cache;
357 			}
358 			crc = (u32 *)disk_crcs;
359 		}
360 		entry = addr + start_offset;
361 
362 		/* First lets check our crc before we do anything fun */
363 		cur_crc = ~(u32)0;
364 		cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
365 					  PAGE_CACHE_SIZE - start_offset);
366 		btrfs_csum_final(cur_crc, (char *)&cur_crc);
367 		if (cur_crc != *crc) {
368 			printk(KERN_ERR "btrfs: crc mismatch for page %lu\n",
369 			       index);
370 			kunmap(page);
371 			unlock_page(page);
372 			page_cache_release(page);
373 			goto free_cache;
374 		}
375 		crc++;
376 
377 		while (1) {
378 			if (!num_entries)
379 				break;
380 
381 			need_loop = 1;
382 			e = kmem_cache_zalloc(btrfs_free_space_cachep,
383 					      GFP_NOFS);
384 			if (!e) {
385 				kunmap(page);
386 				unlock_page(page);
387 				page_cache_release(page);
388 				goto free_cache;
389 			}
390 
391 			e->offset = le64_to_cpu(entry->offset);
392 			e->bytes = le64_to_cpu(entry->bytes);
393 			if (!e->bytes) {
394 				kunmap(page);
395 				kmem_cache_free(btrfs_free_space_cachep, e);
396 				unlock_page(page);
397 				page_cache_release(page);
398 				goto free_cache;
399 			}
400 
401 			if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
402 				spin_lock(&ctl->tree_lock);
403 				ret = link_free_space(ctl, e);
404 				spin_unlock(&ctl->tree_lock);
405 				if (ret) {
406 					printk(KERN_ERR "Duplicate entries in "
407 					       "free space cache, dumping\n");
408 					kunmap(page);
409 					unlock_page(page);
410 					page_cache_release(page);
411 					goto free_cache;
412 				}
413 			} else {
414 				e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
415 				if (!e->bitmap) {
416 					kunmap(page);
417 					kmem_cache_free(
418 						btrfs_free_space_cachep, e);
419 					unlock_page(page);
420 					page_cache_release(page);
421 					goto free_cache;
422 				}
423 				spin_lock(&ctl->tree_lock);
424 				ret = link_free_space(ctl, e);
425 				ctl->total_bitmaps++;
426 				ctl->op->recalc_thresholds(ctl);
427 				spin_unlock(&ctl->tree_lock);
428 				if (ret) {
429 					printk(KERN_ERR "Duplicate entries in "
430 					       "free space cache, dumping\n");
431 					kunmap(page);
432 					unlock_page(page);
433 					page_cache_release(page);
434 					goto free_cache;
435 				}
436 				list_add_tail(&e->list, &bitmaps);
437 			}
438 
439 			num_entries--;
440 			offset += sizeof(struct btrfs_free_space_entry);
441 			if (offset + sizeof(struct btrfs_free_space_entry) >=
442 			    PAGE_CACHE_SIZE)
443 				break;
444 			entry++;
445 		}
446 
447 		/*
448 		 * We read an entry out of this page, we need to move on to the
449 		 * next page.
450 		 */
451 		if (need_loop) {
452 			kunmap(page);
453 			goto next;
454 		}
455 
456 		/*
457 		 * We add the bitmaps at the end of the entries in order that
458 		 * the bitmap entries are added to the cache.
459 		 */
460 		e = list_entry(bitmaps.next, struct btrfs_free_space, list);
461 		list_del_init(&e->list);
462 		memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
463 		kunmap(page);
464 		num_bitmaps--;
465 next:
466 		unlock_page(page);
467 		page_cache_release(page);
468 		index++;
469 	}
470 
471 	ret = 1;
472 out:
473 	kfree(checksums);
474 	kfree(disk_crcs);
475 	return ret;
476 free_cache:
477 	__btrfs_remove_free_space_cache(ctl);
478 	goto out;
479 }
480 
481 int load_free_space_cache(struct btrfs_fs_info *fs_info,
482 			  struct btrfs_block_group_cache *block_group)
483 {
484 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
485 	struct btrfs_root *root = fs_info->tree_root;
486 	struct inode *inode;
487 	struct btrfs_path *path;
488 	int ret;
489 	bool matched;
490 	u64 used = btrfs_block_group_used(&block_group->item);
491 
492 	/*
493 	 * If we're unmounting then just return, since this does a search on the
494 	 * normal root and not the commit root and we could deadlock.
495 	 */
496 	if (btrfs_fs_closing(fs_info))
497 		return 0;
498 
499 	/*
500 	 * If this block group has been marked to be cleared for one reason or
501 	 * another then we can't trust the on disk cache, so just return.
502 	 */
503 	spin_lock(&block_group->lock);
504 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
505 		spin_unlock(&block_group->lock);
506 		return 0;
507 	}
508 	spin_unlock(&block_group->lock);
509 
510 	path = btrfs_alloc_path();
511 	if (!path)
512 		return 0;
513 
514 	inode = lookup_free_space_inode(root, block_group, path);
515 	if (IS_ERR(inode)) {
516 		btrfs_free_path(path);
517 		return 0;
518 	}
519 
520 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
521 				      path, block_group->key.objectid);
522 	btrfs_free_path(path);
523 	if (ret <= 0)
524 		goto out;
525 
526 	spin_lock(&ctl->tree_lock);
527 	matched = (ctl->free_space == (block_group->key.offset - used -
528 				       block_group->bytes_super));
529 	spin_unlock(&ctl->tree_lock);
530 
531 	if (!matched) {
532 		__btrfs_remove_free_space_cache(ctl);
533 		printk(KERN_ERR "block group %llu has an wrong amount of free "
534 		       "space\n", block_group->key.objectid);
535 		ret = -1;
536 	}
537 out:
538 	if (ret < 0) {
539 		/* This cache is bogus, make sure it gets cleared */
540 		spin_lock(&block_group->lock);
541 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
542 		spin_unlock(&block_group->lock);
543 		ret = 0;
544 
545 		printk(KERN_ERR "btrfs: failed to load free space cache "
546 		       "for block group %llu\n", block_group->key.objectid);
547 	}
548 
549 	iput(inode);
550 	return ret;
551 }
552 
553 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
554 			    struct btrfs_free_space_ctl *ctl,
555 			    struct btrfs_block_group_cache *block_group,
556 			    struct btrfs_trans_handle *trans,
557 			    struct btrfs_path *path, u64 offset)
558 {
559 	struct btrfs_free_space_header *header;
560 	struct extent_buffer *leaf;
561 	struct rb_node *node;
562 	struct list_head *pos, *n;
563 	struct page **pages;
564 	struct page *page;
565 	struct extent_state *cached_state = NULL;
566 	struct btrfs_free_cluster *cluster = NULL;
567 	struct extent_io_tree *unpin = NULL;
568 	struct list_head bitmap_list;
569 	struct btrfs_key key;
570 	u64 start, end, len;
571 	u64 bytes = 0;
572 	u32 *crc, *checksums;
573 	unsigned long first_page_offset;
574 	int index = 0, num_pages = 0;
575 	int entries = 0;
576 	int bitmaps = 0;
577 	int ret = -1;
578 	bool next_page = false;
579 	bool out_of_space = false;
580 
581 	INIT_LIST_HEAD(&bitmap_list);
582 
583 	node = rb_first(&ctl->free_space_offset);
584 	if (!node)
585 		return 0;
586 
587 	if (!i_size_read(inode))
588 		return -1;
589 
590 	num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
591 		PAGE_CACHE_SHIFT;
592 
593 	/* Since the first page has all of our checksums and our generation we
594 	 * need to calculate the offset into the page that we can start writing
595 	 * our entries.
596 	 */
597 	first_page_offset = (sizeof(u32) * num_pages) + sizeof(u64);
598 
599 	filemap_write_and_wait(inode->i_mapping);
600 	btrfs_wait_ordered_range(inode, inode->i_size &
601 				 ~(root->sectorsize - 1), (u64)-1);
602 
603 	/* make sure we don't overflow that first page */
604 	if (first_page_offset + sizeof(struct btrfs_free_space_entry) >= PAGE_CACHE_SIZE) {
605 		/* this is really the same as running out of space, where we also return 0 */
606 		printk(KERN_CRIT "Btrfs: free space cache was too big for the crc page\n");
607 		ret = 0;
608 		goto out_update;
609 	}
610 
611 	/* We need a checksum per page. */
612 	crc = checksums = kzalloc(sizeof(u32) * num_pages, GFP_NOFS);
613 	if (!crc)
614 		return -1;
615 
616 	pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
617 	if (!pages) {
618 		kfree(crc);
619 		return -1;
620 	}
621 
622 	/* Get the cluster for this block_group if it exists */
623 	if (block_group && !list_empty(&block_group->cluster_list))
624 		cluster = list_entry(block_group->cluster_list.next,
625 				     struct btrfs_free_cluster,
626 				     block_group_list);
627 
628 	/*
629 	 * We shouldn't have switched the pinned extents yet so this is the
630 	 * right one
631 	 */
632 	unpin = root->fs_info->pinned_extents;
633 
634 	/*
635 	 * Lock all pages first so we can lock the extent safely.
636 	 *
637 	 * NOTE: Because we hold the ref the entire time we're going to write to
638 	 * the page find_get_page should never fail, so we don't do a check
639 	 * after find_get_page at this point.  Just putting this here so people
640 	 * know and don't freak out.
641 	 */
642 	while (index < num_pages) {
643 		page = grab_cache_page(inode->i_mapping, index);
644 		if (!page) {
645 			int i;
646 
647 			for (i = 0; i < num_pages; i++) {
648 				unlock_page(pages[i]);
649 				page_cache_release(pages[i]);
650 			}
651 			goto out_free;
652 		}
653 		pages[index] = page;
654 		index++;
655 	}
656 
657 	index = 0;
658 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
659 			 0, &cached_state, GFP_NOFS);
660 
661 	/*
662 	 * When searching for pinned extents, we need to start at our start
663 	 * offset.
664 	 */
665 	if (block_group)
666 		start = block_group->key.objectid;
667 
668 	/* Write out the extent entries */
669 	do {
670 		struct btrfs_free_space_entry *entry;
671 		void *addr;
672 		unsigned long offset = 0;
673 		unsigned long start_offset = 0;
674 
675 		next_page = false;
676 
677 		if (index == 0) {
678 			start_offset = first_page_offset;
679 			offset = start_offset;
680 		}
681 
682 		if (index >= num_pages) {
683 			out_of_space = true;
684 			break;
685 		}
686 
687 		page = pages[index];
688 
689 		addr = kmap(page);
690 		entry = addr + start_offset;
691 
692 		memset(addr, 0, PAGE_CACHE_SIZE);
693 		while (node && !next_page) {
694 			struct btrfs_free_space *e;
695 
696 			e = rb_entry(node, struct btrfs_free_space, offset_index);
697 			entries++;
698 
699 			entry->offset = cpu_to_le64(e->offset);
700 			entry->bytes = cpu_to_le64(e->bytes);
701 			if (e->bitmap) {
702 				entry->type = BTRFS_FREE_SPACE_BITMAP;
703 				list_add_tail(&e->list, &bitmap_list);
704 				bitmaps++;
705 			} else {
706 				entry->type = BTRFS_FREE_SPACE_EXTENT;
707 			}
708 			node = rb_next(node);
709 			if (!node && cluster) {
710 				node = rb_first(&cluster->root);
711 				cluster = NULL;
712 			}
713 			offset += sizeof(struct btrfs_free_space_entry);
714 			if (offset + sizeof(struct btrfs_free_space_entry) >=
715 			    PAGE_CACHE_SIZE)
716 				next_page = true;
717 			entry++;
718 		}
719 
720 		/*
721 		 * We want to add any pinned extents to our free space cache
722 		 * so we don't leak the space
723 		 */
724 		while (block_group && !next_page &&
725 		       (start < block_group->key.objectid +
726 			block_group->key.offset)) {
727 			ret = find_first_extent_bit(unpin, start, &start, &end,
728 						    EXTENT_DIRTY);
729 			if (ret) {
730 				ret = 0;
731 				break;
732 			}
733 
734 			/* This pinned extent is out of our range */
735 			if (start >= block_group->key.objectid +
736 			    block_group->key.offset)
737 				break;
738 
739 			len = block_group->key.objectid +
740 				block_group->key.offset - start;
741 			len = min(len, end + 1 - start);
742 
743 			entries++;
744 			entry->offset = cpu_to_le64(start);
745 			entry->bytes = cpu_to_le64(len);
746 			entry->type = BTRFS_FREE_SPACE_EXTENT;
747 
748 			start = end + 1;
749 			offset += sizeof(struct btrfs_free_space_entry);
750 			if (offset + sizeof(struct btrfs_free_space_entry) >=
751 			    PAGE_CACHE_SIZE)
752 				next_page = true;
753 			entry++;
754 		}
755 		*crc = ~(u32)0;
756 		*crc = btrfs_csum_data(root, addr + start_offset, *crc,
757 				       PAGE_CACHE_SIZE - start_offset);
758 		kunmap(page);
759 
760 		btrfs_csum_final(*crc, (char *)crc);
761 		crc++;
762 
763 		bytes += PAGE_CACHE_SIZE;
764 
765 		index++;
766 	} while (node || next_page);
767 
768 	/* Write out the bitmaps */
769 	list_for_each_safe(pos, n, &bitmap_list) {
770 		void *addr;
771 		struct btrfs_free_space *entry =
772 			list_entry(pos, struct btrfs_free_space, list);
773 
774 		if (index >= num_pages) {
775 			out_of_space = true;
776 			break;
777 		}
778 		page = pages[index];
779 
780 		addr = kmap(page);
781 		memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
782 		*crc = ~(u32)0;
783 		*crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
784 		kunmap(page);
785 		btrfs_csum_final(*crc, (char *)crc);
786 		crc++;
787 		bytes += PAGE_CACHE_SIZE;
788 
789 		list_del_init(&entry->list);
790 		index++;
791 	}
792 
793 	if (out_of_space) {
794 		btrfs_drop_pages(pages, num_pages);
795 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
796 				     i_size_read(inode) - 1, &cached_state,
797 				     GFP_NOFS);
798 		ret = 0;
799 		goto out_free;
800 	}
801 
802 	/* Zero out the rest of the pages just to make sure */
803 	while (index < num_pages) {
804 		void *addr;
805 
806 		page = pages[index];
807 		addr = kmap(page);
808 		memset(addr, 0, PAGE_CACHE_SIZE);
809 		kunmap(page);
810 		bytes += PAGE_CACHE_SIZE;
811 		index++;
812 	}
813 
814 	/* Write the checksums and trans id to the first page */
815 	{
816 		void *addr;
817 		u64 *gen;
818 
819 		page = pages[0];
820 
821 		addr = kmap(page);
822 		memcpy(addr, checksums, sizeof(u32) * num_pages);
823 		gen = addr + (sizeof(u32) * num_pages);
824 		*gen = trans->transid;
825 		kunmap(page);
826 	}
827 
828 	ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
829 					    bytes, &cached_state);
830 	btrfs_drop_pages(pages, num_pages);
831 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
832 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
833 
834 	if (ret) {
835 		ret = 0;
836 		goto out_free;
837 	}
838 
839 	BTRFS_I(inode)->generation = trans->transid;
840 
841 	filemap_write_and_wait(inode->i_mapping);
842 
843 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
844 	key.offset = offset;
845 	key.type = 0;
846 
847 	ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
848 	if (ret < 0) {
849 		ret = -1;
850 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
851 				 EXTENT_DIRTY | EXTENT_DELALLOC |
852 				 EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
853 		goto out_free;
854 	}
855 	leaf = path->nodes[0];
856 	if (ret > 0) {
857 		struct btrfs_key found_key;
858 		BUG_ON(!path->slots[0]);
859 		path->slots[0]--;
860 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
861 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
862 		    found_key.offset != offset) {
863 			ret = -1;
864 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
865 					 EXTENT_DIRTY | EXTENT_DELALLOC |
866 					 EXTENT_DO_ACCOUNTING, 0, 0, NULL,
867 					 GFP_NOFS);
868 			btrfs_release_path(path);
869 			goto out_free;
870 		}
871 	}
872 	header = btrfs_item_ptr(leaf, path->slots[0],
873 				struct btrfs_free_space_header);
874 	btrfs_set_free_space_entries(leaf, header, entries);
875 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
876 	btrfs_set_free_space_generation(leaf, header, trans->transid);
877 	btrfs_mark_buffer_dirty(leaf);
878 	btrfs_release_path(path);
879 
880 	ret = 1;
881 
882 out_free:
883 	kfree(checksums);
884 	kfree(pages);
885 
886 out_update:
887 	if (ret != 1) {
888 		invalidate_inode_pages2_range(inode->i_mapping, 0, index);
889 		BTRFS_I(inode)->generation = 0;
890 	}
891 	btrfs_update_inode(trans, root, inode);
892 	return ret;
893 }
894 
895 int btrfs_write_out_cache(struct btrfs_root *root,
896 			  struct btrfs_trans_handle *trans,
897 			  struct btrfs_block_group_cache *block_group,
898 			  struct btrfs_path *path)
899 {
900 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
901 	struct inode *inode;
902 	int ret = 0;
903 
904 	root = root->fs_info->tree_root;
905 
906 	spin_lock(&block_group->lock);
907 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
908 		spin_unlock(&block_group->lock);
909 		return 0;
910 	}
911 	spin_unlock(&block_group->lock);
912 
913 	inode = lookup_free_space_inode(root, block_group, path);
914 	if (IS_ERR(inode))
915 		return 0;
916 
917 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
918 				      path, block_group->key.objectid);
919 	if (ret < 0) {
920 		spin_lock(&block_group->lock);
921 		block_group->disk_cache_state = BTRFS_DC_ERROR;
922 		spin_unlock(&block_group->lock);
923 		ret = 0;
924 
925 		printk(KERN_ERR "btrfs: failed to write free space cace "
926 		       "for block group %llu\n", block_group->key.objectid);
927 	}
928 
929 	iput(inode);
930 	return ret;
931 }
932 
933 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
934 					  u64 offset)
935 {
936 	BUG_ON(offset < bitmap_start);
937 	offset -= bitmap_start;
938 	return (unsigned long)(div_u64(offset, unit));
939 }
940 
941 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
942 {
943 	return (unsigned long)(div_u64(bytes, unit));
944 }
945 
946 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
947 				   u64 offset)
948 {
949 	u64 bitmap_start;
950 	u64 bytes_per_bitmap;
951 
952 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
953 	bitmap_start = offset - ctl->start;
954 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
955 	bitmap_start *= bytes_per_bitmap;
956 	bitmap_start += ctl->start;
957 
958 	return bitmap_start;
959 }
960 
961 static int tree_insert_offset(struct rb_root *root, u64 offset,
962 			      struct rb_node *node, int bitmap)
963 {
964 	struct rb_node **p = &root->rb_node;
965 	struct rb_node *parent = NULL;
966 	struct btrfs_free_space *info;
967 
968 	while (*p) {
969 		parent = *p;
970 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
971 
972 		if (offset < info->offset) {
973 			p = &(*p)->rb_left;
974 		} else if (offset > info->offset) {
975 			p = &(*p)->rb_right;
976 		} else {
977 			/*
978 			 * we could have a bitmap entry and an extent entry
979 			 * share the same offset.  If this is the case, we want
980 			 * the extent entry to always be found first if we do a
981 			 * linear search through the tree, since we want to have
982 			 * the quickest allocation time, and allocating from an
983 			 * extent is faster than allocating from a bitmap.  So
984 			 * if we're inserting a bitmap and we find an entry at
985 			 * this offset, we want to go right, or after this entry
986 			 * logically.  If we are inserting an extent and we've
987 			 * found a bitmap, we want to go left, or before
988 			 * logically.
989 			 */
990 			if (bitmap) {
991 				if (info->bitmap) {
992 					WARN_ON_ONCE(1);
993 					return -EEXIST;
994 				}
995 				p = &(*p)->rb_right;
996 			} else {
997 				if (!info->bitmap) {
998 					WARN_ON_ONCE(1);
999 					return -EEXIST;
1000 				}
1001 				p = &(*p)->rb_left;
1002 			}
1003 		}
1004 	}
1005 
1006 	rb_link_node(node, parent, p);
1007 	rb_insert_color(node, root);
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * searches the tree for the given offset.
1014  *
1015  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1016  * want a section that has at least bytes size and comes at or after the given
1017  * offset.
1018  */
1019 static struct btrfs_free_space *
1020 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1021 		   u64 offset, int bitmap_only, int fuzzy)
1022 {
1023 	struct rb_node *n = ctl->free_space_offset.rb_node;
1024 	struct btrfs_free_space *entry, *prev = NULL;
1025 
1026 	/* find entry that is closest to the 'offset' */
1027 	while (1) {
1028 		if (!n) {
1029 			entry = NULL;
1030 			break;
1031 		}
1032 
1033 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1034 		prev = entry;
1035 
1036 		if (offset < entry->offset)
1037 			n = n->rb_left;
1038 		else if (offset > entry->offset)
1039 			n = n->rb_right;
1040 		else
1041 			break;
1042 	}
1043 
1044 	if (bitmap_only) {
1045 		if (!entry)
1046 			return NULL;
1047 		if (entry->bitmap)
1048 			return entry;
1049 
1050 		/*
1051 		 * bitmap entry and extent entry may share same offset,
1052 		 * in that case, bitmap entry comes after extent entry.
1053 		 */
1054 		n = rb_next(n);
1055 		if (!n)
1056 			return NULL;
1057 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1058 		if (entry->offset != offset)
1059 			return NULL;
1060 
1061 		WARN_ON(!entry->bitmap);
1062 		return entry;
1063 	} else if (entry) {
1064 		if (entry->bitmap) {
1065 			/*
1066 			 * if previous extent entry covers the offset,
1067 			 * we should return it instead of the bitmap entry
1068 			 */
1069 			n = &entry->offset_index;
1070 			while (1) {
1071 				n = rb_prev(n);
1072 				if (!n)
1073 					break;
1074 				prev = rb_entry(n, struct btrfs_free_space,
1075 						offset_index);
1076 				if (!prev->bitmap) {
1077 					if (prev->offset + prev->bytes > offset)
1078 						entry = prev;
1079 					break;
1080 				}
1081 			}
1082 		}
1083 		return entry;
1084 	}
1085 
1086 	if (!prev)
1087 		return NULL;
1088 
1089 	/* find last entry before the 'offset' */
1090 	entry = prev;
1091 	if (entry->offset > offset) {
1092 		n = rb_prev(&entry->offset_index);
1093 		if (n) {
1094 			entry = rb_entry(n, struct btrfs_free_space,
1095 					offset_index);
1096 			BUG_ON(entry->offset > offset);
1097 		} else {
1098 			if (fuzzy)
1099 				return entry;
1100 			else
1101 				return NULL;
1102 		}
1103 	}
1104 
1105 	if (entry->bitmap) {
1106 		n = &entry->offset_index;
1107 		while (1) {
1108 			n = rb_prev(n);
1109 			if (!n)
1110 				break;
1111 			prev = rb_entry(n, struct btrfs_free_space,
1112 					offset_index);
1113 			if (!prev->bitmap) {
1114 				if (prev->offset + prev->bytes > offset)
1115 					return prev;
1116 				break;
1117 			}
1118 		}
1119 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1120 			return entry;
1121 	} else if (entry->offset + entry->bytes > offset)
1122 		return entry;
1123 
1124 	if (!fuzzy)
1125 		return NULL;
1126 
1127 	while (1) {
1128 		if (entry->bitmap) {
1129 			if (entry->offset + BITS_PER_BITMAP *
1130 			    ctl->unit > offset)
1131 				break;
1132 		} else {
1133 			if (entry->offset + entry->bytes > offset)
1134 				break;
1135 		}
1136 
1137 		n = rb_next(&entry->offset_index);
1138 		if (!n)
1139 			return NULL;
1140 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1141 	}
1142 	return entry;
1143 }
1144 
1145 static inline void
1146 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1147 		    struct btrfs_free_space *info)
1148 {
1149 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1150 	ctl->free_extents--;
1151 }
1152 
1153 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1154 			      struct btrfs_free_space *info)
1155 {
1156 	__unlink_free_space(ctl, info);
1157 	ctl->free_space -= info->bytes;
1158 }
1159 
1160 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1161 			   struct btrfs_free_space *info)
1162 {
1163 	int ret = 0;
1164 
1165 	BUG_ON(!info->bitmap && !info->bytes);
1166 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1167 				 &info->offset_index, (info->bitmap != NULL));
1168 	if (ret)
1169 		return ret;
1170 
1171 	ctl->free_space += info->bytes;
1172 	ctl->free_extents++;
1173 	return ret;
1174 }
1175 
1176 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1177 {
1178 	struct btrfs_block_group_cache *block_group = ctl->private;
1179 	u64 max_bytes;
1180 	u64 bitmap_bytes;
1181 	u64 extent_bytes;
1182 	u64 size = block_group->key.offset;
1183 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1184 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1185 
1186 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1187 
1188 	/*
1189 	 * The goal is to keep the total amount of memory used per 1gb of space
1190 	 * at or below 32k, so we need to adjust how much memory we allow to be
1191 	 * used by extent based free space tracking
1192 	 */
1193 	if (size < 1024 * 1024 * 1024)
1194 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1195 	else
1196 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1197 			div64_u64(size, 1024 * 1024 * 1024);
1198 
1199 	/*
1200 	 * we want to account for 1 more bitmap than what we have so we can make
1201 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1202 	 * we add more bitmaps.
1203 	 */
1204 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1205 
1206 	if (bitmap_bytes >= max_bytes) {
1207 		ctl->extents_thresh = 0;
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1213 	 * bytes we can have, or whatever is less than that.
1214 	 */
1215 	extent_bytes = max_bytes - bitmap_bytes;
1216 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1217 
1218 	ctl->extents_thresh =
1219 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1220 }
1221 
1222 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1223 			      struct btrfs_free_space *info, u64 offset,
1224 			      u64 bytes)
1225 {
1226 	unsigned long start, count;
1227 
1228 	start = offset_to_bit(info->offset, ctl->unit, offset);
1229 	count = bytes_to_bits(bytes, ctl->unit);
1230 	BUG_ON(start + count > BITS_PER_BITMAP);
1231 
1232 	bitmap_clear(info->bitmap, start, count);
1233 
1234 	info->bytes -= bytes;
1235 	ctl->free_space -= bytes;
1236 }
1237 
1238 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1239 			    struct btrfs_free_space *info, u64 offset,
1240 			    u64 bytes)
1241 {
1242 	unsigned long start, count;
1243 
1244 	start = offset_to_bit(info->offset, ctl->unit, offset);
1245 	count = bytes_to_bits(bytes, ctl->unit);
1246 	BUG_ON(start + count > BITS_PER_BITMAP);
1247 
1248 	bitmap_set(info->bitmap, start, count);
1249 
1250 	info->bytes += bytes;
1251 	ctl->free_space += bytes;
1252 }
1253 
1254 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1255 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1256 			 u64 *bytes)
1257 {
1258 	unsigned long found_bits = 0;
1259 	unsigned long bits, i;
1260 	unsigned long next_zero;
1261 
1262 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1263 			  max_t(u64, *offset, bitmap_info->offset));
1264 	bits = bytes_to_bits(*bytes, ctl->unit);
1265 
1266 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1267 	     i < BITS_PER_BITMAP;
1268 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1269 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1270 					       BITS_PER_BITMAP, i);
1271 		if ((next_zero - i) >= bits) {
1272 			found_bits = next_zero - i;
1273 			break;
1274 		}
1275 		i = next_zero;
1276 	}
1277 
1278 	if (found_bits) {
1279 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1280 		*bytes = (u64)(found_bits) * ctl->unit;
1281 		return 0;
1282 	}
1283 
1284 	return -1;
1285 }
1286 
1287 static struct btrfs_free_space *
1288 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1289 {
1290 	struct btrfs_free_space *entry;
1291 	struct rb_node *node;
1292 	int ret;
1293 
1294 	if (!ctl->free_space_offset.rb_node)
1295 		return NULL;
1296 
1297 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1298 	if (!entry)
1299 		return NULL;
1300 
1301 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1302 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1303 		if (entry->bytes < *bytes)
1304 			continue;
1305 
1306 		if (entry->bitmap) {
1307 			ret = search_bitmap(ctl, entry, offset, bytes);
1308 			if (!ret)
1309 				return entry;
1310 			continue;
1311 		}
1312 
1313 		*offset = entry->offset;
1314 		*bytes = entry->bytes;
1315 		return entry;
1316 	}
1317 
1318 	return NULL;
1319 }
1320 
1321 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1322 			   struct btrfs_free_space *info, u64 offset)
1323 {
1324 	info->offset = offset_to_bitmap(ctl, offset);
1325 	info->bytes = 0;
1326 	link_free_space(ctl, info);
1327 	ctl->total_bitmaps++;
1328 
1329 	ctl->op->recalc_thresholds(ctl);
1330 }
1331 
1332 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1333 			struct btrfs_free_space *bitmap_info)
1334 {
1335 	unlink_free_space(ctl, bitmap_info);
1336 	kfree(bitmap_info->bitmap);
1337 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1338 	ctl->total_bitmaps--;
1339 	ctl->op->recalc_thresholds(ctl);
1340 }
1341 
1342 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1343 			      struct btrfs_free_space *bitmap_info,
1344 			      u64 *offset, u64 *bytes)
1345 {
1346 	u64 end;
1347 	u64 search_start, search_bytes;
1348 	int ret;
1349 
1350 again:
1351 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1352 
1353 	/*
1354 	 * XXX - this can go away after a few releases.
1355 	 *
1356 	 * since the only user of btrfs_remove_free_space is the tree logging
1357 	 * stuff, and the only way to test that is under crash conditions, we
1358 	 * want to have this debug stuff here just in case somethings not
1359 	 * working.  Search the bitmap for the space we are trying to use to
1360 	 * make sure its actually there.  If its not there then we need to stop
1361 	 * because something has gone wrong.
1362 	 */
1363 	search_start = *offset;
1364 	search_bytes = *bytes;
1365 	search_bytes = min(search_bytes, end - search_start + 1);
1366 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1367 	BUG_ON(ret < 0 || search_start != *offset);
1368 
1369 	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1370 		bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1371 		*bytes -= end - *offset + 1;
1372 		*offset = end + 1;
1373 	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1374 		bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1375 		*bytes = 0;
1376 	}
1377 
1378 	if (*bytes) {
1379 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1380 		if (!bitmap_info->bytes)
1381 			free_bitmap(ctl, bitmap_info);
1382 
1383 		/*
1384 		 * no entry after this bitmap, but we still have bytes to
1385 		 * remove, so something has gone wrong.
1386 		 */
1387 		if (!next)
1388 			return -EINVAL;
1389 
1390 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1391 				       offset_index);
1392 
1393 		/*
1394 		 * if the next entry isn't a bitmap we need to return to let the
1395 		 * extent stuff do its work.
1396 		 */
1397 		if (!bitmap_info->bitmap)
1398 			return -EAGAIN;
1399 
1400 		/*
1401 		 * Ok the next item is a bitmap, but it may not actually hold
1402 		 * the information for the rest of this free space stuff, so
1403 		 * look for it, and if we don't find it return so we can try
1404 		 * everything over again.
1405 		 */
1406 		search_start = *offset;
1407 		search_bytes = *bytes;
1408 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1409 				    &search_bytes);
1410 		if (ret < 0 || search_start != *offset)
1411 			return -EAGAIN;
1412 
1413 		goto again;
1414 	} else if (!bitmap_info->bytes)
1415 		free_bitmap(ctl, bitmap_info);
1416 
1417 	return 0;
1418 }
1419 
1420 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1421 			       struct btrfs_free_space *info, u64 offset,
1422 			       u64 bytes)
1423 {
1424 	u64 bytes_to_set = 0;
1425 	u64 end;
1426 
1427 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1428 
1429 	bytes_to_set = min(end - offset, bytes);
1430 
1431 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1432 
1433 	return bytes_to_set;
1434 
1435 }
1436 
1437 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1438 		      struct btrfs_free_space *info)
1439 {
1440 	struct btrfs_block_group_cache *block_group = ctl->private;
1441 
1442 	/*
1443 	 * If we are below the extents threshold then we can add this as an
1444 	 * extent, and don't have to deal with the bitmap
1445 	 */
1446 	if (ctl->free_extents < ctl->extents_thresh) {
1447 		/*
1448 		 * If this block group has some small extents we don't want to
1449 		 * use up all of our free slots in the cache with them, we want
1450 		 * to reserve them to larger extents, however if we have plent
1451 		 * of cache left then go ahead an dadd them, no sense in adding
1452 		 * the overhead of a bitmap if we don't have to.
1453 		 */
1454 		if (info->bytes <= block_group->sectorsize * 4) {
1455 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1456 				return false;
1457 		} else {
1458 			return false;
1459 		}
1460 	}
1461 
1462 	/*
1463 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1464 	 * don't even bother to create a bitmap for this
1465 	 */
1466 	if (BITS_PER_BITMAP * block_group->sectorsize >
1467 	    block_group->key.offset)
1468 		return false;
1469 
1470 	return true;
1471 }
1472 
1473 static struct btrfs_free_space_op free_space_op = {
1474 	.recalc_thresholds	= recalculate_thresholds,
1475 	.use_bitmap		= use_bitmap,
1476 };
1477 
1478 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1479 			      struct btrfs_free_space *info)
1480 {
1481 	struct btrfs_free_space *bitmap_info;
1482 	struct btrfs_block_group_cache *block_group = NULL;
1483 	int added = 0;
1484 	u64 bytes, offset, bytes_added;
1485 	int ret;
1486 
1487 	bytes = info->bytes;
1488 	offset = info->offset;
1489 
1490 	if (!ctl->op->use_bitmap(ctl, info))
1491 		return 0;
1492 
1493 	if (ctl->op == &free_space_op)
1494 		block_group = ctl->private;
1495 again:
1496 	/*
1497 	 * Since we link bitmaps right into the cluster we need to see if we
1498 	 * have a cluster here, and if so and it has our bitmap we need to add
1499 	 * the free space to that bitmap.
1500 	 */
1501 	if (block_group && !list_empty(&block_group->cluster_list)) {
1502 		struct btrfs_free_cluster *cluster;
1503 		struct rb_node *node;
1504 		struct btrfs_free_space *entry;
1505 
1506 		cluster = list_entry(block_group->cluster_list.next,
1507 				     struct btrfs_free_cluster,
1508 				     block_group_list);
1509 		spin_lock(&cluster->lock);
1510 		node = rb_first(&cluster->root);
1511 		if (!node) {
1512 			spin_unlock(&cluster->lock);
1513 			goto no_cluster_bitmap;
1514 		}
1515 
1516 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1517 		if (!entry->bitmap) {
1518 			spin_unlock(&cluster->lock);
1519 			goto no_cluster_bitmap;
1520 		}
1521 
1522 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1523 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1524 							  offset, bytes);
1525 			bytes -= bytes_added;
1526 			offset += bytes_added;
1527 		}
1528 		spin_unlock(&cluster->lock);
1529 		if (!bytes) {
1530 			ret = 1;
1531 			goto out;
1532 		}
1533 	}
1534 
1535 no_cluster_bitmap:
1536 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1537 					 1, 0);
1538 	if (!bitmap_info) {
1539 		BUG_ON(added);
1540 		goto new_bitmap;
1541 	}
1542 
1543 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1544 	bytes -= bytes_added;
1545 	offset += bytes_added;
1546 	added = 0;
1547 
1548 	if (!bytes) {
1549 		ret = 1;
1550 		goto out;
1551 	} else
1552 		goto again;
1553 
1554 new_bitmap:
1555 	if (info && info->bitmap) {
1556 		add_new_bitmap(ctl, info, offset);
1557 		added = 1;
1558 		info = NULL;
1559 		goto again;
1560 	} else {
1561 		spin_unlock(&ctl->tree_lock);
1562 
1563 		/* no pre-allocated info, allocate a new one */
1564 		if (!info) {
1565 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1566 						 GFP_NOFS);
1567 			if (!info) {
1568 				spin_lock(&ctl->tree_lock);
1569 				ret = -ENOMEM;
1570 				goto out;
1571 			}
1572 		}
1573 
1574 		/* allocate the bitmap */
1575 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1576 		spin_lock(&ctl->tree_lock);
1577 		if (!info->bitmap) {
1578 			ret = -ENOMEM;
1579 			goto out;
1580 		}
1581 		goto again;
1582 	}
1583 
1584 out:
1585 	if (info) {
1586 		if (info->bitmap)
1587 			kfree(info->bitmap);
1588 		kmem_cache_free(btrfs_free_space_cachep, info);
1589 	}
1590 
1591 	return ret;
1592 }
1593 
1594 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1595 			  struct btrfs_free_space *info, bool update_stat)
1596 {
1597 	struct btrfs_free_space *left_info;
1598 	struct btrfs_free_space *right_info;
1599 	bool merged = false;
1600 	u64 offset = info->offset;
1601 	u64 bytes = info->bytes;
1602 
1603 	/*
1604 	 * first we want to see if there is free space adjacent to the range we
1605 	 * are adding, if there is remove that struct and add a new one to
1606 	 * cover the entire range
1607 	 */
1608 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1609 	if (right_info && rb_prev(&right_info->offset_index))
1610 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1611 				     struct btrfs_free_space, offset_index);
1612 	else
1613 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1614 
1615 	if (right_info && !right_info->bitmap) {
1616 		if (update_stat)
1617 			unlink_free_space(ctl, right_info);
1618 		else
1619 			__unlink_free_space(ctl, right_info);
1620 		info->bytes += right_info->bytes;
1621 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1622 		merged = true;
1623 	}
1624 
1625 	if (left_info && !left_info->bitmap &&
1626 	    left_info->offset + left_info->bytes == offset) {
1627 		if (update_stat)
1628 			unlink_free_space(ctl, left_info);
1629 		else
1630 			__unlink_free_space(ctl, left_info);
1631 		info->offset = left_info->offset;
1632 		info->bytes += left_info->bytes;
1633 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1634 		merged = true;
1635 	}
1636 
1637 	return merged;
1638 }
1639 
1640 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1641 			   u64 offset, u64 bytes)
1642 {
1643 	struct btrfs_free_space *info;
1644 	int ret = 0;
1645 
1646 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1647 	if (!info)
1648 		return -ENOMEM;
1649 
1650 	info->offset = offset;
1651 	info->bytes = bytes;
1652 
1653 	spin_lock(&ctl->tree_lock);
1654 
1655 	if (try_merge_free_space(ctl, info, true))
1656 		goto link;
1657 
1658 	/*
1659 	 * There was no extent directly to the left or right of this new
1660 	 * extent then we know we're going to have to allocate a new extent, so
1661 	 * before we do that see if we need to drop this into a bitmap
1662 	 */
1663 	ret = insert_into_bitmap(ctl, info);
1664 	if (ret < 0) {
1665 		goto out;
1666 	} else if (ret) {
1667 		ret = 0;
1668 		goto out;
1669 	}
1670 link:
1671 	ret = link_free_space(ctl, info);
1672 	if (ret)
1673 		kmem_cache_free(btrfs_free_space_cachep, info);
1674 out:
1675 	spin_unlock(&ctl->tree_lock);
1676 
1677 	if (ret) {
1678 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1679 		BUG_ON(ret == -EEXIST);
1680 	}
1681 
1682 	return ret;
1683 }
1684 
1685 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1686 			    u64 offset, u64 bytes)
1687 {
1688 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1689 	struct btrfs_free_space *info;
1690 	struct btrfs_free_space *next_info = NULL;
1691 	int ret = 0;
1692 
1693 	spin_lock(&ctl->tree_lock);
1694 
1695 again:
1696 	info = tree_search_offset(ctl, offset, 0, 0);
1697 	if (!info) {
1698 		/*
1699 		 * oops didn't find an extent that matched the space we wanted
1700 		 * to remove, look for a bitmap instead
1701 		 */
1702 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1703 					  1, 0);
1704 		if (!info) {
1705 			WARN_ON(1);
1706 			goto out_lock;
1707 		}
1708 	}
1709 
1710 	if (info->bytes < bytes && rb_next(&info->offset_index)) {
1711 		u64 end;
1712 		next_info = rb_entry(rb_next(&info->offset_index),
1713 					     struct btrfs_free_space,
1714 					     offset_index);
1715 
1716 		if (next_info->bitmap)
1717 			end = next_info->offset +
1718 			      BITS_PER_BITMAP * ctl->unit - 1;
1719 		else
1720 			end = next_info->offset + next_info->bytes;
1721 
1722 		if (next_info->bytes < bytes ||
1723 		    next_info->offset > offset || offset > end) {
1724 			printk(KERN_CRIT "Found free space at %llu, size %llu,"
1725 			      " trying to use %llu\n",
1726 			      (unsigned long long)info->offset,
1727 			      (unsigned long long)info->bytes,
1728 			      (unsigned long long)bytes);
1729 			WARN_ON(1);
1730 			ret = -EINVAL;
1731 			goto out_lock;
1732 		}
1733 
1734 		info = next_info;
1735 	}
1736 
1737 	if (info->bytes == bytes) {
1738 		unlink_free_space(ctl, info);
1739 		if (info->bitmap) {
1740 			kfree(info->bitmap);
1741 			ctl->total_bitmaps--;
1742 		}
1743 		kmem_cache_free(btrfs_free_space_cachep, info);
1744 		goto out_lock;
1745 	}
1746 
1747 	if (!info->bitmap && info->offset == offset) {
1748 		unlink_free_space(ctl, info);
1749 		info->offset += bytes;
1750 		info->bytes -= bytes;
1751 		link_free_space(ctl, info);
1752 		goto out_lock;
1753 	}
1754 
1755 	if (!info->bitmap && info->offset <= offset &&
1756 	    info->offset + info->bytes >= offset + bytes) {
1757 		u64 old_start = info->offset;
1758 		/*
1759 		 * we're freeing space in the middle of the info,
1760 		 * this can happen during tree log replay
1761 		 *
1762 		 * first unlink the old info and then
1763 		 * insert it again after the hole we're creating
1764 		 */
1765 		unlink_free_space(ctl, info);
1766 		if (offset + bytes < info->offset + info->bytes) {
1767 			u64 old_end = info->offset + info->bytes;
1768 
1769 			info->offset = offset + bytes;
1770 			info->bytes = old_end - info->offset;
1771 			ret = link_free_space(ctl, info);
1772 			WARN_ON(ret);
1773 			if (ret)
1774 				goto out_lock;
1775 		} else {
1776 			/* the hole we're creating ends at the end
1777 			 * of the info struct, just free the info
1778 			 */
1779 			kmem_cache_free(btrfs_free_space_cachep, info);
1780 		}
1781 		spin_unlock(&ctl->tree_lock);
1782 
1783 		/* step two, insert a new info struct to cover
1784 		 * anything before the hole
1785 		 */
1786 		ret = btrfs_add_free_space(block_group, old_start,
1787 					   offset - old_start);
1788 		WARN_ON(ret);
1789 		goto out;
1790 	}
1791 
1792 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1793 	if (ret == -EAGAIN)
1794 		goto again;
1795 	BUG_ON(ret);
1796 out_lock:
1797 	spin_unlock(&ctl->tree_lock);
1798 out:
1799 	return ret;
1800 }
1801 
1802 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1803 			   u64 bytes)
1804 {
1805 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1806 	struct btrfs_free_space *info;
1807 	struct rb_node *n;
1808 	int count = 0;
1809 
1810 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1811 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1812 		if (info->bytes >= bytes)
1813 			count++;
1814 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1815 		       (unsigned long long)info->offset,
1816 		       (unsigned long long)info->bytes,
1817 		       (info->bitmap) ? "yes" : "no");
1818 	}
1819 	printk(KERN_INFO "block group has cluster?: %s\n",
1820 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1821 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1822 	       "\n", count);
1823 }
1824 
1825 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1826 {
1827 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1828 
1829 	spin_lock_init(&ctl->tree_lock);
1830 	ctl->unit = block_group->sectorsize;
1831 	ctl->start = block_group->key.objectid;
1832 	ctl->private = block_group;
1833 	ctl->op = &free_space_op;
1834 
1835 	/*
1836 	 * we only want to have 32k of ram per block group for keeping
1837 	 * track of free space, and if we pass 1/2 of that we want to
1838 	 * start converting things over to using bitmaps
1839 	 */
1840 	ctl->extents_thresh = ((1024 * 32) / 2) /
1841 				sizeof(struct btrfs_free_space);
1842 }
1843 
1844 /*
1845  * for a given cluster, put all of its extents back into the free
1846  * space cache.  If the block group passed doesn't match the block group
1847  * pointed to by the cluster, someone else raced in and freed the
1848  * cluster already.  In that case, we just return without changing anything
1849  */
1850 static int
1851 __btrfs_return_cluster_to_free_space(
1852 			     struct btrfs_block_group_cache *block_group,
1853 			     struct btrfs_free_cluster *cluster)
1854 {
1855 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1856 	struct btrfs_free_space *entry;
1857 	struct rb_node *node;
1858 
1859 	spin_lock(&cluster->lock);
1860 	if (cluster->block_group != block_group)
1861 		goto out;
1862 
1863 	cluster->block_group = NULL;
1864 	cluster->window_start = 0;
1865 	list_del_init(&cluster->block_group_list);
1866 
1867 	node = rb_first(&cluster->root);
1868 	while (node) {
1869 		bool bitmap;
1870 
1871 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1872 		node = rb_next(&entry->offset_index);
1873 		rb_erase(&entry->offset_index, &cluster->root);
1874 
1875 		bitmap = (entry->bitmap != NULL);
1876 		if (!bitmap)
1877 			try_merge_free_space(ctl, entry, false);
1878 		tree_insert_offset(&ctl->free_space_offset,
1879 				   entry->offset, &entry->offset_index, bitmap);
1880 	}
1881 	cluster->root = RB_ROOT;
1882 
1883 out:
1884 	spin_unlock(&cluster->lock);
1885 	btrfs_put_block_group(block_group);
1886 	return 0;
1887 }
1888 
1889 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
1890 {
1891 	struct btrfs_free_space *info;
1892 	struct rb_node *node;
1893 
1894 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
1895 		info = rb_entry(node, struct btrfs_free_space, offset_index);
1896 		if (!info->bitmap) {
1897 			unlink_free_space(ctl, info);
1898 			kmem_cache_free(btrfs_free_space_cachep, info);
1899 		} else {
1900 			free_bitmap(ctl, info);
1901 		}
1902 		if (need_resched()) {
1903 			spin_unlock(&ctl->tree_lock);
1904 			cond_resched();
1905 			spin_lock(&ctl->tree_lock);
1906 		}
1907 	}
1908 }
1909 
1910 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
1911 {
1912 	spin_lock(&ctl->tree_lock);
1913 	__btrfs_remove_free_space_cache_locked(ctl);
1914 	spin_unlock(&ctl->tree_lock);
1915 }
1916 
1917 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1918 {
1919 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1920 	struct btrfs_free_cluster *cluster;
1921 	struct list_head *head;
1922 
1923 	spin_lock(&ctl->tree_lock);
1924 	while ((head = block_group->cluster_list.next) !=
1925 	       &block_group->cluster_list) {
1926 		cluster = list_entry(head, struct btrfs_free_cluster,
1927 				     block_group_list);
1928 
1929 		WARN_ON(cluster->block_group != block_group);
1930 		__btrfs_return_cluster_to_free_space(block_group, cluster);
1931 		if (need_resched()) {
1932 			spin_unlock(&ctl->tree_lock);
1933 			cond_resched();
1934 			spin_lock(&ctl->tree_lock);
1935 		}
1936 	}
1937 	__btrfs_remove_free_space_cache_locked(ctl);
1938 	spin_unlock(&ctl->tree_lock);
1939 
1940 }
1941 
1942 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1943 			       u64 offset, u64 bytes, u64 empty_size)
1944 {
1945 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1946 	struct btrfs_free_space *entry = NULL;
1947 	u64 bytes_search = bytes + empty_size;
1948 	u64 ret = 0;
1949 
1950 	spin_lock(&ctl->tree_lock);
1951 	entry = find_free_space(ctl, &offset, &bytes_search);
1952 	if (!entry)
1953 		goto out;
1954 
1955 	ret = offset;
1956 	if (entry->bitmap) {
1957 		bitmap_clear_bits(ctl, entry, offset, bytes);
1958 		if (!entry->bytes)
1959 			free_bitmap(ctl, entry);
1960 	} else {
1961 		unlink_free_space(ctl, entry);
1962 		entry->offset += bytes;
1963 		entry->bytes -= bytes;
1964 		if (!entry->bytes)
1965 			kmem_cache_free(btrfs_free_space_cachep, entry);
1966 		else
1967 			link_free_space(ctl, entry);
1968 	}
1969 
1970 out:
1971 	spin_unlock(&ctl->tree_lock);
1972 
1973 	return ret;
1974 }
1975 
1976 /*
1977  * given a cluster, put all of its extents back into the free space
1978  * cache.  If a block group is passed, this function will only free
1979  * a cluster that belongs to the passed block group.
1980  *
1981  * Otherwise, it'll get a reference on the block group pointed to by the
1982  * cluster and remove the cluster from it.
1983  */
1984 int btrfs_return_cluster_to_free_space(
1985 			       struct btrfs_block_group_cache *block_group,
1986 			       struct btrfs_free_cluster *cluster)
1987 {
1988 	struct btrfs_free_space_ctl *ctl;
1989 	int ret;
1990 
1991 	/* first, get a safe pointer to the block group */
1992 	spin_lock(&cluster->lock);
1993 	if (!block_group) {
1994 		block_group = cluster->block_group;
1995 		if (!block_group) {
1996 			spin_unlock(&cluster->lock);
1997 			return 0;
1998 		}
1999 	} else if (cluster->block_group != block_group) {
2000 		/* someone else has already freed it don't redo their work */
2001 		spin_unlock(&cluster->lock);
2002 		return 0;
2003 	}
2004 	atomic_inc(&block_group->count);
2005 	spin_unlock(&cluster->lock);
2006 
2007 	ctl = block_group->free_space_ctl;
2008 
2009 	/* now return any extents the cluster had on it */
2010 	spin_lock(&ctl->tree_lock);
2011 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2012 	spin_unlock(&ctl->tree_lock);
2013 
2014 	/* finally drop our ref */
2015 	btrfs_put_block_group(block_group);
2016 	return ret;
2017 }
2018 
2019 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2020 				   struct btrfs_free_cluster *cluster,
2021 				   struct btrfs_free_space *entry,
2022 				   u64 bytes, u64 min_start)
2023 {
2024 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2025 	int err;
2026 	u64 search_start = cluster->window_start;
2027 	u64 search_bytes = bytes;
2028 	u64 ret = 0;
2029 
2030 	search_start = min_start;
2031 	search_bytes = bytes;
2032 
2033 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2034 	if (err)
2035 		return 0;
2036 
2037 	ret = search_start;
2038 	bitmap_clear_bits(ctl, entry, ret, bytes);
2039 
2040 	return ret;
2041 }
2042 
2043 /*
2044  * given a cluster, try to allocate 'bytes' from it, returns 0
2045  * if it couldn't find anything suitably large, or a logical disk offset
2046  * if things worked out
2047  */
2048 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2049 			     struct btrfs_free_cluster *cluster, u64 bytes,
2050 			     u64 min_start)
2051 {
2052 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2053 	struct btrfs_free_space *entry = NULL;
2054 	struct rb_node *node;
2055 	u64 ret = 0;
2056 
2057 	spin_lock(&cluster->lock);
2058 	if (bytes > cluster->max_size)
2059 		goto out;
2060 
2061 	if (cluster->block_group != block_group)
2062 		goto out;
2063 
2064 	node = rb_first(&cluster->root);
2065 	if (!node)
2066 		goto out;
2067 
2068 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2069 	while(1) {
2070 		if (entry->bytes < bytes ||
2071 		    (!entry->bitmap && entry->offset < min_start)) {
2072 			node = rb_next(&entry->offset_index);
2073 			if (!node)
2074 				break;
2075 			entry = rb_entry(node, struct btrfs_free_space,
2076 					 offset_index);
2077 			continue;
2078 		}
2079 
2080 		if (entry->bitmap) {
2081 			ret = btrfs_alloc_from_bitmap(block_group,
2082 						      cluster, entry, bytes,
2083 						      min_start);
2084 			if (ret == 0) {
2085 				node = rb_next(&entry->offset_index);
2086 				if (!node)
2087 					break;
2088 				entry = rb_entry(node, struct btrfs_free_space,
2089 						 offset_index);
2090 				continue;
2091 			}
2092 		} else {
2093 
2094 			ret = entry->offset;
2095 
2096 			entry->offset += bytes;
2097 			entry->bytes -= bytes;
2098 		}
2099 
2100 		if (entry->bytes == 0)
2101 			rb_erase(&entry->offset_index, &cluster->root);
2102 		break;
2103 	}
2104 out:
2105 	spin_unlock(&cluster->lock);
2106 
2107 	if (!ret)
2108 		return 0;
2109 
2110 	spin_lock(&ctl->tree_lock);
2111 
2112 	ctl->free_space -= bytes;
2113 	if (entry->bytes == 0) {
2114 		ctl->free_extents--;
2115 		if (entry->bitmap) {
2116 			kfree(entry->bitmap);
2117 			ctl->total_bitmaps--;
2118 			ctl->op->recalc_thresholds(ctl);
2119 		}
2120 		kmem_cache_free(btrfs_free_space_cachep, entry);
2121 	}
2122 
2123 	spin_unlock(&ctl->tree_lock);
2124 
2125 	return ret;
2126 }
2127 
2128 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2129 				struct btrfs_free_space *entry,
2130 				struct btrfs_free_cluster *cluster,
2131 				u64 offset, u64 bytes, u64 min_bytes)
2132 {
2133 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2134 	unsigned long next_zero;
2135 	unsigned long i;
2136 	unsigned long search_bits;
2137 	unsigned long total_bits;
2138 	unsigned long found_bits;
2139 	unsigned long start = 0;
2140 	unsigned long total_found = 0;
2141 	int ret;
2142 	bool found = false;
2143 
2144 	i = offset_to_bit(entry->offset, block_group->sectorsize,
2145 			  max_t(u64, offset, entry->offset));
2146 	search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2147 	total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2148 
2149 again:
2150 	found_bits = 0;
2151 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2152 	     i < BITS_PER_BITMAP;
2153 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2154 		next_zero = find_next_zero_bit(entry->bitmap,
2155 					       BITS_PER_BITMAP, i);
2156 		if (next_zero - i >= search_bits) {
2157 			found_bits = next_zero - i;
2158 			break;
2159 		}
2160 		i = next_zero;
2161 	}
2162 
2163 	if (!found_bits)
2164 		return -ENOSPC;
2165 
2166 	if (!found) {
2167 		start = i;
2168 		found = true;
2169 	}
2170 
2171 	total_found += found_bits;
2172 
2173 	if (cluster->max_size < found_bits * block_group->sectorsize)
2174 		cluster->max_size = found_bits * block_group->sectorsize;
2175 
2176 	if (total_found < total_bits) {
2177 		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2178 		if (i - start > total_bits * 2) {
2179 			total_found = 0;
2180 			cluster->max_size = 0;
2181 			found = false;
2182 		}
2183 		goto again;
2184 	}
2185 
2186 	cluster->window_start = start * block_group->sectorsize +
2187 		entry->offset;
2188 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2189 	ret = tree_insert_offset(&cluster->root, entry->offset,
2190 				 &entry->offset_index, 1);
2191 	BUG_ON(ret);
2192 
2193 	return 0;
2194 }
2195 
2196 /*
2197  * This searches the block group for just extents to fill the cluster with.
2198  */
2199 static noinline int
2200 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2201 			struct btrfs_free_cluster *cluster,
2202 			struct list_head *bitmaps, u64 offset, u64 bytes,
2203 			u64 min_bytes)
2204 {
2205 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2206 	struct btrfs_free_space *first = NULL;
2207 	struct btrfs_free_space *entry = NULL;
2208 	struct btrfs_free_space *prev = NULL;
2209 	struct btrfs_free_space *last;
2210 	struct rb_node *node;
2211 	u64 window_start;
2212 	u64 window_free;
2213 	u64 max_extent;
2214 	u64 max_gap = 128 * 1024;
2215 
2216 	entry = tree_search_offset(ctl, offset, 0, 1);
2217 	if (!entry)
2218 		return -ENOSPC;
2219 
2220 	/*
2221 	 * We don't want bitmaps, so just move along until we find a normal
2222 	 * extent entry.
2223 	 */
2224 	while (entry->bitmap) {
2225 		if (list_empty(&entry->list))
2226 			list_add_tail(&entry->list, bitmaps);
2227 		node = rb_next(&entry->offset_index);
2228 		if (!node)
2229 			return -ENOSPC;
2230 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2231 	}
2232 
2233 	window_start = entry->offset;
2234 	window_free = entry->bytes;
2235 	max_extent = entry->bytes;
2236 	first = entry;
2237 	last = entry;
2238 	prev = entry;
2239 
2240 	while (window_free <= min_bytes) {
2241 		node = rb_next(&entry->offset_index);
2242 		if (!node)
2243 			return -ENOSPC;
2244 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2245 
2246 		if (entry->bitmap) {
2247 			if (list_empty(&entry->list))
2248 				list_add_tail(&entry->list, bitmaps);
2249 			continue;
2250 		}
2251 
2252 		/*
2253 		 * we haven't filled the empty size and the window is
2254 		 * very large.  reset and try again
2255 		 */
2256 		if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2257 		    entry->offset - window_start > (min_bytes * 2)) {
2258 			first = entry;
2259 			window_start = entry->offset;
2260 			window_free = entry->bytes;
2261 			last = entry;
2262 			max_extent = entry->bytes;
2263 		} else {
2264 			last = entry;
2265 			window_free += entry->bytes;
2266 			if (entry->bytes > max_extent)
2267 				max_extent = entry->bytes;
2268 		}
2269 		prev = entry;
2270 	}
2271 
2272 	cluster->window_start = first->offset;
2273 
2274 	node = &first->offset_index;
2275 
2276 	/*
2277 	 * now we've found our entries, pull them out of the free space
2278 	 * cache and put them into the cluster rbtree
2279 	 */
2280 	do {
2281 		int ret;
2282 
2283 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2284 		node = rb_next(&entry->offset_index);
2285 		if (entry->bitmap)
2286 			continue;
2287 
2288 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2289 		ret = tree_insert_offset(&cluster->root, entry->offset,
2290 					 &entry->offset_index, 0);
2291 		BUG_ON(ret);
2292 	} while (node && entry != last);
2293 
2294 	cluster->max_size = max_extent;
2295 
2296 	return 0;
2297 }
2298 
2299 /*
2300  * This specifically looks for bitmaps that may work in the cluster, we assume
2301  * that we have already failed to find extents that will work.
2302  */
2303 static noinline int
2304 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2305 		     struct btrfs_free_cluster *cluster,
2306 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2307 		     u64 min_bytes)
2308 {
2309 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2310 	struct btrfs_free_space *entry;
2311 	struct rb_node *node;
2312 	int ret = -ENOSPC;
2313 
2314 	if (ctl->total_bitmaps == 0)
2315 		return -ENOSPC;
2316 
2317 	/*
2318 	 * First check our cached list of bitmaps and see if there is an entry
2319 	 * here that will work.
2320 	 */
2321 	list_for_each_entry(entry, bitmaps, list) {
2322 		if (entry->bytes < min_bytes)
2323 			continue;
2324 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2325 					   bytes, min_bytes);
2326 		if (!ret)
2327 			return 0;
2328 	}
2329 
2330 	/*
2331 	 * If we do have entries on our list and we are here then we didn't find
2332 	 * anything, so go ahead and get the next entry after the last entry in
2333 	 * this list and start the search from there.
2334 	 */
2335 	if (!list_empty(bitmaps)) {
2336 		entry = list_entry(bitmaps->prev, struct btrfs_free_space,
2337 				   list);
2338 		node = rb_next(&entry->offset_index);
2339 		if (!node)
2340 			return -ENOSPC;
2341 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2342 		goto search;
2343 	}
2344 
2345 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 0, 1);
2346 	if (!entry)
2347 		return -ENOSPC;
2348 
2349 search:
2350 	node = &entry->offset_index;
2351 	do {
2352 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2353 		node = rb_next(&entry->offset_index);
2354 		if (!entry->bitmap)
2355 			continue;
2356 		if (entry->bytes < min_bytes)
2357 			continue;
2358 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2359 					   bytes, min_bytes);
2360 	} while (ret && node);
2361 
2362 	return ret;
2363 }
2364 
2365 /*
2366  * here we try to find a cluster of blocks in a block group.  The goal
2367  * is to find at least bytes free and up to empty_size + bytes free.
2368  * We might not find them all in one contiguous area.
2369  *
2370  * returns zero and sets up cluster if things worked out, otherwise
2371  * it returns -enospc
2372  */
2373 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2374 			     struct btrfs_root *root,
2375 			     struct btrfs_block_group_cache *block_group,
2376 			     struct btrfs_free_cluster *cluster,
2377 			     u64 offset, u64 bytes, u64 empty_size)
2378 {
2379 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2380 	struct list_head bitmaps;
2381 	struct btrfs_free_space *entry, *tmp;
2382 	u64 min_bytes;
2383 	int ret;
2384 
2385 	/* for metadata, allow allocates with more holes */
2386 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2387 		min_bytes = bytes + empty_size;
2388 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2389 		/*
2390 		 * we want to do larger allocations when we are
2391 		 * flushing out the delayed refs, it helps prevent
2392 		 * making more work as we go along.
2393 		 */
2394 		if (trans->transaction->delayed_refs.flushing)
2395 			min_bytes = max(bytes, (bytes + empty_size) >> 1);
2396 		else
2397 			min_bytes = max(bytes, (bytes + empty_size) >> 4);
2398 	} else
2399 		min_bytes = max(bytes, (bytes + empty_size) >> 2);
2400 
2401 	spin_lock(&ctl->tree_lock);
2402 
2403 	/*
2404 	 * If we know we don't have enough space to make a cluster don't even
2405 	 * bother doing all the work to try and find one.
2406 	 */
2407 	if (ctl->free_space < min_bytes) {
2408 		spin_unlock(&ctl->tree_lock);
2409 		return -ENOSPC;
2410 	}
2411 
2412 	spin_lock(&cluster->lock);
2413 
2414 	/* someone already found a cluster, hooray */
2415 	if (cluster->block_group) {
2416 		ret = 0;
2417 		goto out;
2418 	}
2419 
2420 	INIT_LIST_HEAD(&bitmaps);
2421 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2422 				      bytes, min_bytes);
2423 	if (ret)
2424 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2425 					   offset, bytes, min_bytes);
2426 
2427 	/* Clear our temporary list */
2428 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2429 		list_del_init(&entry->list);
2430 
2431 	if (!ret) {
2432 		atomic_inc(&block_group->count);
2433 		list_add_tail(&cluster->block_group_list,
2434 			      &block_group->cluster_list);
2435 		cluster->block_group = block_group;
2436 	}
2437 out:
2438 	spin_unlock(&cluster->lock);
2439 	spin_unlock(&ctl->tree_lock);
2440 
2441 	return ret;
2442 }
2443 
2444 /*
2445  * simple code to zero out a cluster
2446  */
2447 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2448 {
2449 	spin_lock_init(&cluster->lock);
2450 	spin_lock_init(&cluster->refill_lock);
2451 	cluster->root = RB_ROOT;
2452 	cluster->max_size = 0;
2453 	INIT_LIST_HEAD(&cluster->block_group_list);
2454 	cluster->block_group = NULL;
2455 }
2456 
2457 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2458 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2459 {
2460 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2461 	struct btrfs_free_space *entry = NULL;
2462 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2463 	u64 bytes = 0;
2464 	u64 actually_trimmed;
2465 	int ret = 0;
2466 
2467 	*trimmed = 0;
2468 
2469 	while (start < end) {
2470 		spin_lock(&ctl->tree_lock);
2471 
2472 		if (ctl->free_space < minlen) {
2473 			spin_unlock(&ctl->tree_lock);
2474 			break;
2475 		}
2476 
2477 		entry = tree_search_offset(ctl, start, 0, 1);
2478 		if (!entry)
2479 			entry = tree_search_offset(ctl,
2480 						   offset_to_bitmap(ctl, start),
2481 						   1, 1);
2482 
2483 		if (!entry || entry->offset >= end) {
2484 			spin_unlock(&ctl->tree_lock);
2485 			break;
2486 		}
2487 
2488 		if (entry->bitmap) {
2489 			ret = search_bitmap(ctl, entry, &start, &bytes);
2490 			if (!ret) {
2491 				if (start >= end) {
2492 					spin_unlock(&ctl->tree_lock);
2493 					break;
2494 				}
2495 				bytes = min(bytes, end - start);
2496 				bitmap_clear_bits(ctl, entry, start, bytes);
2497 				if (entry->bytes == 0)
2498 					free_bitmap(ctl, entry);
2499 			} else {
2500 				start = entry->offset + BITS_PER_BITMAP *
2501 					block_group->sectorsize;
2502 				spin_unlock(&ctl->tree_lock);
2503 				ret = 0;
2504 				continue;
2505 			}
2506 		} else {
2507 			start = entry->offset;
2508 			bytes = min(entry->bytes, end - start);
2509 			unlink_free_space(ctl, entry);
2510 			kmem_cache_free(btrfs_free_space_cachep, entry);
2511 		}
2512 
2513 		spin_unlock(&ctl->tree_lock);
2514 
2515 		if (bytes >= minlen) {
2516 			int update_ret;
2517 			update_ret = btrfs_update_reserved_bytes(block_group,
2518 								 bytes, 1, 1);
2519 
2520 			ret = btrfs_error_discard_extent(fs_info->extent_root,
2521 							 start,
2522 							 bytes,
2523 							 &actually_trimmed);
2524 
2525 			btrfs_add_free_space(block_group, start, bytes);
2526 			if (!update_ret)
2527 				btrfs_update_reserved_bytes(block_group,
2528 							    bytes, 0, 1);
2529 
2530 			if (ret)
2531 				break;
2532 			*trimmed += actually_trimmed;
2533 		}
2534 		start += bytes;
2535 		bytes = 0;
2536 
2537 		if (fatal_signal_pending(current)) {
2538 			ret = -ERESTARTSYS;
2539 			break;
2540 		}
2541 
2542 		cond_resched();
2543 	}
2544 
2545 	return ret;
2546 }
2547 
2548 /*
2549  * Find the left-most item in the cache tree, and then return the
2550  * smallest inode number in the item.
2551  *
2552  * Note: the returned inode number may not be the smallest one in
2553  * the tree, if the left-most item is a bitmap.
2554  */
2555 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2556 {
2557 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2558 	struct btrfs_free_space *entry = NULL;
2559 	u64 ino = 0;
2560 
2561 	spin_lock(&ctl->tree_lock);
2562 
2563 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2564 		goto out;
2565 
2566 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2567 			 struct btrfs_free_space, offset_index);
2568 
2569 	if (!entry->bitmap) {
2570 		ino = entry->offset;
2571 
2572 		unlink_free_space(ctl, entry);
2573 		entry->offset++;
2574 		entry->bytes--;
2575 		if (!entry->bytes)
2576 			kmem_cache_free(btrfs_free_space_cachep, entry);
2577 		else
2578 			link_free_space(ctl, entry);
2579 	} else {
2580 		u64 offset = 0;
2581 		u64 count = 1;
2582 		int ret;
2583 
2584 		ret = search_bitmap(ctl, entry, &offset, &count);
2585 		BUG_ON(ret);
2586 
2587 		ino = offset;
2588 		bitmap_clear_bits(ctl, entry, offset, 1);
2589 		if (entry->bytes == 0)
2590 			free_bitmap(ctl, entry);
2591 	}
2592 out:
2593 	spin_unlock(&ctl->tree_lock);
2594 
2595 	return ino;
2596 }
2597 
2598 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2599 				    struct btrfs_path *path)
2600 {
2601 	struct inode *inode = NULL;
2602 
2603 	spin_lock(&root->cache_lock);
2604 	if (root->cache_inode)
2605 		inode = igrab(root->cache_inode);
2606 	spin_unlock(&root->cache_lock);
2607 	if (inode)
2608 		return inode;
2609 
2610 	inode = __lookup_free_space_inode(root, path, 0);
2611 	if (IS_ERR(inode))
2612 		return inode;
2613 
2614 	spin_lock(&root->cache_lock);
2615 	if (!btrfs_fs_closing(root->fs_info))
2616 		root->cache_inode = igrab(inode);
2617 	spin_unlock(&root->cache_lock);
2618 
2619 	return inode;
2620 }
2621 
2622 int create_free_ino_inode(struct btrfs_root *root,
2623 			  struct btrfs_trans_handle *trans,
2624 			  struct btrfs_path *path)
2625 {
2626 	return __create_free_space_inode(root, trans, path,
2627 					 BTRFS_FREE_INO_OBJECTID, 0);
2628 }
2629 
2630 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2631 {
2632 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2633 	struct btrfs_path *path;
2634 	struct inode *inode;
2635 	int ret = 0;
2636 	u64 root_gen = btrfs_root_generation(&root->root_item);
2637 
2638 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2639 		return 0;
2640 
2641 	/*
2642 	 * If we're unmounting then just return, since this does a search on the
2643 	 * normal root and not the commit root and we could deadlock.
2644 	 */
2645 	if (btrfs_fs_closing(fs_info))
2646 		return 0;
2647 
2648 	path = btrfs_alloc_path();
2649 	if (!path)
2650 		return 0;
2651 
2652 	inode = lookup_free_ino_inode(root, path);
2653 	if (IS_ERR(inode))
2654 		goto out;
2655 
2656 	if (root_gen != BTRFS_I(inode)->generation)
2657 		goto out_put;
2658 
2659 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2660 
2661 	if (ret < 0)
2662 		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2663 		       "root %llu\n", root->root_key.objectid);
2664 out_put:
2665 	iput(inode);
2666 out:
2667 	btrfs_free_path(path);
2668 	return ret;
2669 }
2670 
2671 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2672 			      struct btrfs_trans_handle *trans,
2673 			      struct btrfs_path *path)
2674 {
2675 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2676 	struct inode *inode;
2677 	int ret;
2678 
2679 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2680 		return 0;
2681 
2682 	inode = lookup_free_ino_inode(root, path);
2683 	if (IS_ERR(inode))
2684 		return 0;
2685 
2686 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2687 	if (ret < 0)
2688 		printk(KERN_ERR "btrfs: failed to write free ino cache "
2689 		       "for root %llu\n", root->root_key.objectid);
2690 
2691 	iput(inode);
2692 	return ret;
2693 }
2694