1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "ctree.h" 15 #include "fs.h" 16 #include "messages.h" 17 #include "misc.h" 18 #include "free-space-cache.h" 19 #include "transaction.h" 20 #include "disk-io.h" 21 #include "extent_io.h" 22 #include "volumes.h" 23 #include "space-info.h" 24 #include "delalloc-space.h" 25 #include "block-group.h" 26 #include "discard.h" 27 #include "subpage.h" 28 #include "inode-item.h" 29 #include "accessors.h" 30 #include "file-item.h" 31 #include "file.h" 32 #include "super.h" 33 34 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 35 #define MAX_CACHE_BYTES_PER_GIG SZ_64K 36 #define FORCE_EXTENT_THRESHOLD SZ_1M 37 38 static struct kmem_cache *btrfs_free_space_cachep; 39 static struct kmem_cache *btrfs_free_space_bitmap_cachep; 40 41 struct btrfs_trim_range { 42 u64 start; 43 u64 bytes; 44 struct list_head list; 45 }; 46 47 static int link_free_space(struct btrfs_free_space_ctl *ctl, 48 struct btrfs_free_space *info); 49 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 50 struct btrfs_free_space *info, bool update_stat); 51 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 52 struct btrfs_free_space *bitmap_info, u64 *offset, 53 u64 *bytes, bool for_alloc); 54 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 55 struct btrfs_free_space *bitmap_info); 56 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 57 struct btrfs_free_space *info, u64 offset, 58 u64 bytes, bool update_stats); 59 60 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 61 { 62 struct btrfs_free_space *info; 63 struct rb_node *node; 64 65 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 66 info = rb_entry(node, struct btrfs_free_space, offset_index); 67 if (!info->bitmap) { 68 unlink_free_space(ctl, info, true); 69 kmem_cache_free(btrfs_free_space_cachep, info); 70 } else { 71 free_bitmap(ctl, info); 72 } 73 74 cond_resched_lock(&ctl->tree_lock); 75 } 76 } 77 78 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 79 struct btrfs_path *path, 80 u64 offset) 81 { 82 struct btrfs_fs_info *fs_info = root->fs_info; 83 struct btrfs_key key; 84 struct btrfs_key location; 85 struct btrfs_disk_key disk_key; 86 struct btrfs_free_space_header *header; 87 struct extent_buffer *leaf; 88 struct inode *inode = NULL; 89 unsigned nofs_flag; 90 int ret; 91 92 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 93 key.offset = offset; 94 key.type = 0; 95 96 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 97 if (ret < 0) 98 return ERR_PTR(ret); 99 if (ret > 0) { 100 btrfs_release_path(path); 101 return ERR_PTR(-ENOENT); 102 } 103 104 leaf = path->nodes[0]; 105 header = btrfs_item_ptr(leaf, path->slots[0], 106 struct btrfs_free_space_header); 107 btrfs_free_space_key(leaf, header, &disk_key); 108 btrfs_disk_key_to_cpu(&location, &disk_key); 109 btrfs_release_path(path); 110 111 /* 112 * We are often under a trans handle at this point, so we need to make 113 * sure NOFS is set to keep us from deadlocking. 114 */ 115 nofs_flag = memalloc_nofs_save(); 116 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path); 117 btrfs_release_path(path); 118 memalloc_nofs_restore(nofs_flag); 119 if (IS_ERR(inode)) 120 return inode; 121 122 mapping_set_gfp_mask(inode->i_mapping, 123 mapping_gfp_constraint(inode->i_mapping, 124 ~(__GFP_FS | __GFP_HIGHMEM))); 125 126 return inode; 127 } 128 129 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 130 struct btrfs_path *path) 131 { 132 struct btrfs_fs_info *fs_info = block_group->fs_info; 133 struct inode *inode = NULL; 134 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 135 136 spin_lock(&block_group->lock); 137 if (block_group->inode) 138 inode = igrab(block_group->inode); 139 spin_unlock(&block_group->lock); 140 if (inode) 141 return inode; 142 143 inode = __lookup_free_space_inode(fs_info->tree_root, path, 144 block_group->start); 145 if (IS_ERR(inode)) 146 return inode; 147 148 spin_lock(&block_group->lock); 149 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 150 btrfs_info(fs_info, "Old style space inode found, converting."); 151 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 152 BTRFS_INODE_NODATACOW; 153 block_group->disk_cache_state = BTRFS_DC_CLEAR; 154 } 155 156 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) 157 block_group->inode = igrab(inode); 158 spin_unlock(&block_group->lock); 159 160 return inode; 161 } 162 163 static int __create_free_space_inode(struct btrfs_root *root, 164 struct btrfs_trans_handle *trans, 165 struct btrfs_path *path, 166 u64 ino, u64 offset) 167 { 168 struct btrfs_key key; 169 struct btrfs_disk_key disk_key; 170 struct btrfs_free_space_header *header; 171 struct btrfs_inode_item *inode_item; 172 struct extent_buffer *leaf; 173 /* We inline CRCs for the free disk space cache */ 174 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC | 175 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 176 int ret; 177 178 ret = btrfs_insert_empty_inode(trans, root, path, ino); 179 if (ret) 180 return ret; 181 182 leaf = path->nodes[0]; 183 inode_item = btrfs_item_ptr(leaf, path->slots[0], 184 struct btrfs_inode_item); 185 btrfs_item_key(leaf, &disk_key, path->slots[0]); 186 memzero_extent_buffer(leaf, (unsigned long)inode_item, 187 sizeof(*inode_item)); 188 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 189 btrfs_set_inode_size(leaf, inode_item, 0); 190 btrfs_set_inode_nbytes(leaf, inode_item, 0); 191 btrfs_set_inode_uid(leaf, inode_item, 0); 192 btrfs_set_inode_gid(leaf, inode_item, 0); 193 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 194 btrfs_set_inode_flags(leaf, inode_item, flags); 195 btrfs_set_inode_nlink(leaf, inode_item, 1); 196 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 197 btrfs_set_inode_block_group(leaf, inode_item, offset); 198 btrfs_mark_buffer_dirty(leaf); 199 btrfs_release_path(path); 200 201 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 202 key.offset = offset; 203 key.type = 0; 204 ret = btrfs_insert_empty_item(trans, root, path, &key, 205 sizeof(struct btrfs_free_space_header)); 206 if (ret < 0) { 207 btrfs_release_path(path); 208 return ret; 209 } 210 211 leaf = path->nodes[0]; 212 header = btrfs_item_ptr(leaf, path->slots[0], 213 struct btrfs_free_space_header); 214 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 215 btrfs_set_free_space_key(leaf, header, &disk_key); 216 btrfs_mark_buffer_dirty(leaf); 217 btrfs_release_path(path); 218 219 return 0; 220 } 221 222 int create_free_space_inode(struct btrfs_trans_handle *trans, 223 struct btrfs_block_group *block_group, 224 struct btrfs_path *path) 225 { 226 int ret; 227 u64 ino; 228 229 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino); 230 if (ret < 0) 231 return ret; 232 233 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 234 ino, block_group->start); 235 } 236 237 /* 238 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode 239 * handles lookup, otherwise it takes ownership and iputs the inode. 240 * Don't reuse an inode pointer after passing it into this function. 241 */ 242 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans, 243 struct inode *inode, 244 struct btrfs_block_group *block_group) 245 { 246 struct btrfs_path *path; 247 struct btrfs_key key; 248 int ret = 0; 249 250 path = btrfs_alloc_path(); 251 if (!path) 252 return -ENOMEM; 253 254 if (!inode) 255 inode = lookup_free_space_inode(block_group, path); 256 if (IS_ERR(inode)) { 257 if (PTR_ERR(inode) != -ENOENT) 258 ret = PTR_ERR(inode); 259 goto out; 260 } 261 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 262 if (ret) { 263 btrfs_add_delayed_iput(BTRFS_I(inode)); 264 goto out; 265 } 266 clear_nlink(inode); 267 /* One for the block groups ref */ 268 spin_lock(&block_group->lock); 269 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) { 270 block_group->inode = NULL; 271 spin_unlock(&block_group->lock); 272 iput(inode); 273 } else { 274 spin_unlock(&block_group->lock); 275 } 276 /* One for the lookup ref */ 277 btrfs_add_delayed_iput(BTRFS_I(inode)); 278 279 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 280 key.type = 0; 281 key.offset = block_group->start; 282 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path, 283 -1, 1); 284 if (ret) { 285 if (ret > 0) 286 ret = 0; 287 goto out; 288 } 289 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path); 290 out: 291 btrfs_free_path(path); 292 return ret; 293 } 294 295 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 296 struct btrfs_block_group *block_group, 297 struct inode *vfs_inode) 298 { 299 struct btrfs_truncate_control control = { 300 .inode = BTRFS_I(vfs_inode), 301 .new_size = 0, 302 .ino = btrfs_ino(BTRFS_I(vfs_inode)), 303 .min_type = BTRFS_EXTENT_DATA_KEY, 304 .clear_extent_range = true, 305 }; 306 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 307 struct btrfs_root *root = inode->root; 308 struct extent_state *cached_state = NULL; 309 int ret = 0; 310 bool locked = false; 311 312 if (block_group) { 313 struct btrfs_path *path = btrfs_alloc_path(); 314 315 if (!path) { 316 ret = -ENOMEM; 317 goto fail; 318 } 319 locked = true; 320 mutex_lock(&trans->transaction->cache_write_mutex); 321 if (!list_empty(&block_group->io_list)) { 322 list_del_init(&block_group->io_list); 323 324 btrfs_wait_cache_io(trans, block_group, path); 325 btrfs_put_block_group(block_group); 326 } 327 328 /* 329 * now that we've truncated the cache away, its no longer 330 * setup or written 331 */ 332 spin_lock(&block_group->lock); 333 block_group->disk_cache_state = BTRFS_DC_CLEAR; 334 spin_unlock(&block_group->lock); 335 btrfs_free_path(path); 336 } 337 338 btrfs_i_size_write(inode, 0); 339 truncate_pagecache(vfs_inode, 0); 340 341 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state); 342 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 343 344 /* 345 * We skip the throttling logic for free space cache inodes, so we don't 346 * need to check for -EAGAIN. 347 */ 348 ret = btrfs_truncate_inode_items(trans, root, &control); 349 350 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 351 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 352 353 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state); 354 if (ret) 355 goto fail; 356 357 ret = btrfs_update_inode(trans, root, inode); 358 359 fail: 360 if (locked) 361 mutex_unlock(&trans->transaction->cache_write_mutex); 362 if (ret) 363 btrfs_abort_transaction(trans, ret); 364 365 return ret; 366 } 367 368 static void readahead_cache(struct inode *inode) 369 { 370 struct file_ra_state ra; 371 unsigned long last_index; 372 373 file_ra_state_init(&ra, inode->i_mapping); 374 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 375 376 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index); 377 } 378 379 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 380 int write) 381 { 382 int num_pages; 383 384 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 385 386 /* Make sure we can fit our crcs and generation into the first page */ 387 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 388 return -ENOSPC; 389 390 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 391 392 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 393 if (!io_ctl->pages) 394 return -ENOMEM; 395 396 io_ctl->num_pages = num_pages; 397 io_ctl->fs_info = btrfs_sb(inode->i_sb); 398 io_ctl->inode = inode; 399 400 return 0; 401 } 402 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 403 404 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 405 { 406 kfree(io_ctl->pages); 407 io_ctl->pages = NULL; 408 } 409 410 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 411 { 412 if (io_ctl->cur) { 413 io_ctl->cur = NULL; 414 io_ctl->orig = NULL; 415 } 416 } 417 418 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 419 { 420 ASSERT(io_ctl->index < io_ctl->num_pages); 421 io_ctl->page = io_ctl->pages[io_ctl->index++]; 422 io_ctl->cur = page_address(io_ctl->page); 423 io_ctl->orig = io_ctl->cur; 424 io_ctl->size = PAGE_SIZE; 425 if (clear) 426 clear_page(io_ctl->cur); 427 } 428 429 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 430 { 431 int i; 432 433 io_ctl_unmap_page(io_ctl); 434 435 for (i = 0; i < io_ctl->num_pages; i++) { 436 if (io_ctl->pages[i]) { 437 btrfs_page_clear_checked(io_ctl->fs_info, 438 io_ctl->pages[i], 439 page_offset(io_ctl->pages[i]), 440 PAGE_SIZE); 441 unlock_page(io_ctl->pages[i]); 442 put_page(io_ctl->pages[i]); 443 } 444 } 445 } 446 447 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate) 448 { 449 struct page *page; 450 struct inode *inode = io_ctl->inode; 451 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 452 int i; 453 454 for (i = 0; i < io_ctl->num_pages; i++) { 455 int ret; 456 457 page = find_or_create_page(inode->i_mapping, i, mask); 458 if (!page) { 459 io_ctl_drop_pages(io_ctl); 460 return -ENOMEM; 461 } 462 463 ret = set_page_extent_mapped(page); 464 if (ret < 0) { 465 unlock_page(page); 466 put_page(page); 467 io_ctl_drop_pages(io_ctl); 468 return ret; 469 } 470 471 io_ctl->pages[i] = page; 472 if (uptodate && !PageUptodate(page)) { 473 btrfs_read_folio(NULL, page_folio(page)); 474 lock_page(page); 475 if (page->mapping != inode->i_mapping) { 476 btrfs_err(BTRFS_I(inode)->root->fs_info, 477 "free space cache page truncated"); 478 io_ctl_drop_pages(io_ctl); 479 return -EIO; 480 } 481 if (!PageUptodate(page)) { 482 btrfs_err(BTRFS_I(inode)->root->fs_info, 483 "error reading free space cache"); 484 io_ctl_drop_pages(io_ctl); 485 return -EIO; 486 } 487 } 488 } 489 490 for (i = 0; i < io_ctl->num_pages; i++) 491 clear_page_dirty_for_io(io_ctl->pages[i]); 492 493 return 0; 494 } 495 496 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 497 { 498 io_ctl_map_page(io_ctl, 1); 499 500 /* 501 * Skip the csum areas. If we don't check crcs then we just have a 502 * 64bit chunk at the front of the first page. 503 */ 504 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 505 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 506 507 put_unaligned_le64(generation, io_ctl->cur); 508 io_ctl->cur += sizeof(u64); 509 } 510 511 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 512 { 513 u64 cache_gen; 514 515 /* 516 * Skip the crc area. If we don't check crcs then we just have a 64bit 517 * chunk at the front of the first page. 518 */ 519 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 520 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 521 522 cache_gen = get_unaligned_le64(io_ctl->cur); 523 if (cache_gen != generation) { 524 btrfs_err_rl(io_ctl->fs_info, 525 "space cache generation (%llu) does not match inode (%llu)", 526 cache_gen, generation); 527 io_ctl_unmap_page(io_ctl); 528 return -EIO; 529 } 530 io_ctl->cur += sizeof(u64); 531 return 0; 532 } 533 534 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 535 { 536 u32 *tmp; 537 u32 crc = ~(u32)0; 538 unsigned offset = 0; 539 540 if (index == 0) 541 offset = sizeof(u32) * io_ctl->num_pages; 542 543 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 544 btrfs_crc32c_final(crc, (u8 *)&crc); 545 io_ctl_unmap_page(io_ctl); 546 tmp = page_address(io_ctl->pages[0]); 547 tmp += index; 548 *tmp = crc; 549 } 550 551 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 552 { 553 u32 *tmp, val; 554 u32 crc = ~(u32)0; 555 unsigned offset = 0; 556 557 if (index == 0) 558 offset = sizeof(u32) * io_ctl->num_pages; 559 560 tmp = page_address(io_ctl->pages[0]); 561 tmp += index; 562 val = *tmp; 563 564 io_ctl_map_page(io_ctl, 0); 565 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 566 btrfs_crc32c_final(crc, (u8 *)&crc); 567 if (val != crc) { 568 btrfs_err_rl(io_ctl->fs_info, 569 "csum mismatch on free space cache"); 570 io_ctl_unmap_page(io_ctl); 571 return -EIO; 572 } 573 574 return 0; 575 } 576 577 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 578 void *bitmap) 579 { 580 struct btrfs_free_space_entry *entry; 581 582 if (!io_ctl->cur) 583 return -ENOSPC; 584 585 entry = io_ctl->cur; 586 put_unaligned_le64(offset, &entry->offset); 587 put_unaligned_le64(bytes, &entry->bytes); 588 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 589 BTRFS_FREE_SPACE_EXTENT; 590 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 591 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 592 593 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 594 return 0; 595 596 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 597 598 /* No more pages to map */ 599 if (io_ctl->index >= io_ctl->num_pages) 600 return 0; 601 602 /* map the next page */ 603 io_ctl_map_page(io_ctl, 1); 604 return 0; 605 } 606 607 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 608 { 609 if (!io_ctl->cur) 610 return -ENOSPC; 611 612 /* 613 * If we aren't at the start of the current page, unmap this one and 614 * map the next one if there is any left. 615 */ 616 if (io_ctl->cur != io_ctl->orig) { 617 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 618 if (io_ctl->index >= io_ctl->num_pages) 619 return -ENOSPC; 620 io_ctl_map_page(io_ctl, 0); 621 } 622 623 copy_page(io_ctl->cur, bitmap); 624 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 625 if (io_ctl->index < io_ctl->num_pages) 626 io_ctl_map_page(io_ctl, 0); 627 return 0; 628 } 629 630 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 631 { 632 /* 633 * If we're not on the boundary we know we've modified the page and we 634 * need to crc the page. 635 */ 636 if (io_ctl->cur != io_ctl->orig) 637 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 638 else 639 io_ctl_unmap_page(io_ctl); 640 641 while (io_ctl->index < io_ctl->num_pages) { 642 io_ctl_map_page(io_ctl, 1); 643 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 644 } 645 } 646 647 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 648 struct btrfs_free_space *entry, u8 *type) 649 { 650 struct btrfs_free_space_entry *e; 651 int ret; 652 653 if (!io_ctl->cur) { 654 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 655 if (ret) 656 return ret; 657 } 658 659 e = io_ctl->cur; 660 entry->offset = get_unaligned_le64(&e->offset); 661 entry->bytes = get_unaligned_le64(&e->bytes); 662 *type = e->type; 663 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 664 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 665 666 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 667 return 0; 668 669 io_ctl_unmap_page(io_ctl); 670 671 return 0; 672 } 673 674 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 675 struct btrfs_free_space *entry) 676 { 677 int ret; 678 679 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 680 if (ret) 681 return ret; 682 683 copy_page(entry->bitmap, io_ctl->cur); 684 io_ctl_unmap_page(io_ctl); 685 686 return 0; 687 } 688 689 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 690 { 691 struct btrfs_block_group *block_group = ctl->block_group; 692 u64 max_bytes; 693 u64 bitmap_bytes; 694 u64 extent_bytes; 695 u64 size = block_group->length; 696 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 697 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 698 699 max_bitmaps = max_t(u64, max_bitmaps, 1); 700 701 if (ctl->total_bitmaps > max_bitmaps) 702 btrfs_err(block_group->fs_info, 703 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu", 704 block_group->start, block_group->length, 705 ctl->total_bitmaps, ctl->unit, max_bitmaps, 706 bytes_per_bg); 707 ASSERT(ctl->total_bitmaps <= max_bitmaps); 708 709 /* 710 * We are trying to keep the total amount of memory used per 1GiB of 711 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation 712 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of 713 * bitmaps, we may end up using more memory than this. 714 */ 715 if (size < SZ_1G) 716 max_bytes = MAX_CACHE_BYTES_PER_GIG; 717 else 718 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 719 720 bitmap_bytes = ctl->total_bitmaps * ctl->unit; 721 722 /* 723 * we want the extent entry threshold to always be at most 1/2 the max 724 * bytes we can have, or whatever is less than that. 725 */ 726 extent_bytes = max_bytes - bitmap_bytes; 727 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 728 729 ctl->extents_thresh = 730 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 731 } 732 733 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 734 struct btrfs_free_space_ctl *ctl, 735 struct btrfs_path *path, u64 offset) 736 { 737 struct btrfs_fs_info *fs_info = root->fs_info; 738 struct btrfs_free_space_header *header; 739 struct extent_buffer *leaf; 740 struct btrfs_io_ctl io_ctl; 741 struct btrfs_key key; 742 struct btrfs_free_space *e, *n; 743 LIST_HEAD(bitmaps); 744 u64 num_entries; 745 u64 num_bitmaps; 746 u64 generation; 747 u8 type; 748 int ret = 0; 749 750 /* Nothing in the space cache, goodbye */ 751 if (!i_size_read(inode)) 752 return 0; 753 754 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 755 key.offset = offset; 756 key.type = 0; 757 758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 759 if (ret < 0) 760 return 0; 761 else if (ret > 0) { 762 btrfs_release_path(path); 763 return 0; 764 } 765 766 ret = -1; 767 768 leaf = path->nodes[0]; 769 header = btrfs_item_ptr(leaf, path->slots[0], 770 struct btrfs_free_space_header); 771 num_entries = btrfs_free_space_entries(leaf, header); 772 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 773 generation = btrfs_free_space_generation(leaf, header); 774 btrfs_release_path(path); 775 776 if (!BTRFS_I(inode)->generation) { 777 btrfs_info(fs_info, 778 "the free space cache file (%llu) is invalid, skip it", 779 offset); 780 return 0; 781 } 782 783 if (BTRFS_I(inode)->generation != generation) { 784 btrfs_err(fs_info, 785 "free space inode generation (%llu) did not match free space cache generation (%llu)", 786 BTRFS_I(inode)->generation, generation); 787 return 0; 788 } 789 790 if (!num_entries) 791 return 0; 792 793 ret = io_ctl_init(&io_ctl, inode, 0); 794 if (ret) 795 return ret; 796 797 readahead_cache(inode); 798 799 ret = io_ctl_prepare_pages(&io_ctl, true); 800 if (ret) 801 goto out; 802 803 ret = io_ctl_check_crc(&io_ctl, 0); 804 if (ret) 805 goto free_cache; 806 807 ret = io_ctl_check_generation(&io_ctl, generation); 808 if (ret) 809 goto free_cache; 810 811 while (num_entries) { 812 e = kmem_cache_zalloc(btrfs_free_space_cachep, 813 GFP_NOFS); 814 if (!e) { 815 ret = -ENOMEM; 816 goto free_cache; 817 } 818 819 ret = io_ctl_read_entry(&io_ctl, e, &type); 820 if (ret) { 821 kmem_cache_free(btrfs_free_space_cachep, e); 822 goto free_cache; 823 } 824 825 if (!e->bytes) { 826 ret = -1; 827 kmem_cache_free(btrfs_free_space_cachep, e); 828 goto free_cache; 829 } 830 831 if (type == BTRFS_FREE_SPACE_EXTENT) { 832 spin_lock(&ctl->tree_lock); 833 ret = link_free_space(ctl, e); 834 spin_unlock(&ctl->tree_lock); 835 if (ret) { 836 btrfs_err(fs_info, 837 "Duplicate entries in free space cache, dumping"); 838 kmem_cache_free(btrfs_free_space_cachep, e); 839 goto free_cache; 840 } 841 } else { 842 ASSERT(num_bitmaps); 843 num_bitmaps--; 844 e->bitmap = kmem_cache_zalloc( 845 btrfs_free_space_bitmap_cachep, GFP_NOFS); 846 if (!e->bitmap) { 847 ret = -ENOMEM; 848 kmem_cache_free( 849 btrfs_free_space_cachep, e); 850 goto free_cache; 851 } 852 spin_lock(&ctl->tree_lock); 853 ret = link_free_space(ctl, e); 854 if (ret) { 855 spin_unlock(&ctl->tree_lock); 856 btrfs_err(fs_info, 857 "Duplicate entries in free space cache, dumping"); 858 kmem_cache_free(btrfs_free_space_cachep, e); 859 goto free_cache; 860 } 861 ctl->total_bitmaps++; 862 recalculate_thresholds(ctl); 863 spin_unlock(&ctl->tree_lock); 864 list_add_tail(&e->list, &bitmaps); 865 } 866 867 num_entries--; 868 } 869 870 io_ctl_unmap_page(&io_ctl); 871 872 /* 873 * We add the bitmaps at the end of the entries in order that 874 * the bitmap entries are added to the cache. 875 */ 876 list_for_each_entry_safe(e, n, &bitmaps, list) { 877 list_del_init(&e->list); 878 ret = io_ctl_read_bitmap(&io_ctl, e); 879 if (ret) 880 goto free_cache; 881 } 882 883 io_ctl_drop_pages(&io_ctl); 884 ret = 1; 885 out: 886 io_ctl_free(&io_ctl); 887 return ret; 888 free_cache: 889 io_ctl_drop_pages(&io_ctl); 890 891 spin_lock(&ctl->tree_lock); 892 __btrfs_remove_free_space_cache(ctl); 893 spin_unlock(&ctl->tree_lock); 894 goto out; 895 } 896 897 static int copy_free_space_cache(struct btrfs_block_group *block_group, 898 struct btrfs_free_space_ctl *ctl) 899 { 900 struct btrfs_free_space *info; 901 struct rb_node *n; 902 int ret = 0; 903 904 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) { 905 info = rb_entry(n, struct btrfs_free_space, offset_index); 906 if (!info->bitmap) { 907 const u64 offset = info->offset; 908 const u64 bytes = info->bytes; 909 910 unlink_free_space(ctl, info, true); 911 spin_unlock(&ctl->tree_lock); 912 kmem_cache_free(btrfs_free_space_cachep, info); 913 ret = btrfs_add_free_space(block_group, offset, bytes); 914 spin_lock(&ctl->tree_lock); 915 } else { 916 u64 offset = info->offset; 917 u64 bytes = ctl->unit; 918 919 ret = search_bitmap(ctl, info, &offset, &bytes, false); 920 if (ret == 0) { 921 bitmap_clear_bits(ctl, info, offset, bytes, true); 922 spin_unlock(&ctl->tree_lock); 923 ret = btrfs_add_free_space(block_group, offset, 924 bytes); 925 spin_lock(&ctl->tree_lock); 926 } else { 927 free_bitmap(ctl, info); 928 ret = 0; 929 } 930 } 931 cond_resched_lock(&ctl->tree_lock); 932 } 933 return ret; 934 } 935 936 static struct lock_class_key btrfs_free_space_inode_key; 937 938 int load_free_space_cache(struct btrfs_block_group *block_group) 939 { 940 struct btrfs_fs_info *fs_info = block_group->fs_info; 941 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 942 struct btrfs_free_space_ctl tmp_ctl = {}; 943 struct inode *inode; 944 struct btrfs_path *path; 945 int ret = 0; 946 bool matched; 947 u64 used = block_group->used; 948 949 /* 950 * Because we could potentially discard our loaded free space, we want 951 * to load everything into a temporary structure first, and then if it's 952 * valid copy it all into the actual free space ctl. 953 */ 954 btrfs_init_free_space_ctl(block_group, &tmp_ctl); 955 956 /* 957 * If this block group has been marked to be cleared for one reason or 958 * another then we can't trust the on disk cache, so just return. 959 */ 960 spin_lock(&block_group->lock); 961 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 962 spin_unlock(&block_group->lock); 963 return 0; 964 } 965 spin_unlock(&block_group->lock); 966 967 path = btrfs_alloc_path(); 968 if (!path) 969 return 0; 970 path->search_commit_root = 1; 971 path->skip_locking = 1; 972 973 /* 974 * We must pass a path with search_commit_root set to btrfs_iget in 975 * order to avoid a deadlock when allocating extents for the tree root. 976 * 977 * When we are COWing an extent buffer from the tree root, when looking 978 * for a free extent, at extent-tree.c:find_free_extent(), we can find 979 * block group without its free space cache loaded. When we find one 980 * we must load its space cache which requires reading its free space 981 * cache's inode item from the root tree. If this inode item is located 982 * in the same leaf that we started COWing before, then we end up in 983 * deadlock on the extent buffer (trying to read lock it when we 984 * previously write locked it). 985 * 986 * It's safe to read the inode item using the commit root because 987 * block groups, once loaded, stay in memory forever (until they are 988 * removed) as well as their space caches once loaded. New block groups 989 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 990 * we will never try to read their inode item while the fs is mounted. 991 */ 992 inode = lookup_free_space_inode(block_group, path); 993 if (IS_ERR(inode)) { 994 btrfs_free_path(path); 995 return 0; 996 } 997 998 /* We may have converted the inode and made the cache invalid. */ 999 spin_lock(&block_group->lock); 1000 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 1001 spin_unlock(&block_group->lock); 1002 btrfs_free_path(path); 1003 goto out; 1004 } 1005 spin_unlock(&block_group->lock); 1006 1007 /* 1008 * Reinitialize the class of struct inode's mapping->invalidate_lock for 1009 * free space inodes to prevent false positives related to locks for normal 1010 * inodes. 1011 */ 1012 lockdep_set_class(&(&inode->i_data)->invalidate_lock, 1013 &btrfs_free_space_inode_key); 1014 1015 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl, 1016 path, block_group->start); 1017 btrfs_free_path(path); 1018 if (ret <= 0) 1019 goto out; 1020 1021 matched = (tmp_ctl.free_space == (block_group->length - used - 1022 block_group->bytes_super)); 1023 1024 if (matched) { 1025 spin_lock(&tmp_ctl.tree_lock); 1026 ret = copy_free_space_cache(block_group, &tmp_ctl); 1027 spin_unlock(&tmp_ctl.tree_lock); 1028 /* 1029 * ret == 1 means we successfully loaded the free space cache, 1030 * so we need to re-set it here. 1031 */ 1032 if (ret == 0) 1033 ret = 1; 1034 } else { 1035 /* 1036 * We need to call the _locked variant so we don't try to update 1037 * the discard counters. 1038 */ 1039 spin_lock(&tmp_ctl.tree_lock); 1040 __btrfs_remove_free_space_cache(&tmp_ctl); 1041 spin_unlock(&tmp_ctl.tree_lock); 1042 btrfs_warn(fs_info, 1043 "block group %llu has wrong amount of free space", 1044 block_group->start); 1045 ret = -1; 1046 } 1047 out: 1048 if (ret < 0) { 1049 /* This cache is bogus, make sure it gets cleared */ 1050 spin_lock(&block_group->lock); 1051 block_group->disk_cache_state = BTRFS_DC_CLEAR; 1052 spin_unlock(&block_group->lock); 1053 ret = 0; 1054 1055 btrfs_warn(fs_info, 1056 "failed to load free space cache for block group %llu, rebuilding it now", 1057 block_group->start); 1058 } 1059 1060 spin_lock(&ctl->tree_lock); 1061 btrfs_discard_update_discardable(block_group); 1062 spin_unlock(&ctl->tree_lock); 1063 iput(inode); 1064 return ret; 1065 } 1066 1067 static noinline_for_stack 1068 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 1069 struct btrfs_free_space_ctl *ctl, 1070 struct btrfs_block_group *block_group, 1071 int *entries, int *bitmaps, 1072 struct list_head *bitmap_list) 1073 { 1074 int ret; 1075 struct btrfs_free_cluster *cluster = NULL; 1076 struct btrfs_free_cluster *cluster_locked = NULL; 1077 struct rb_node *node = rb_first(&ctl->free_space_offset); 1078 struct btrfs_trim_range *trim_entry; 1079 1080 /* Get the cluster for this block_group if it exists */ 1081 if (block_group && !list_empty(&block_group->cluster_list)) { 1082 cluster = list_entry(block_group->cluster_list.next, 1083 struct btrfs_free_cluster, 1084 block_group_list); 1085 } 1086 1087 if (!node && cluster) { 1088 cluster_locked = cluster; 1089 spin_lock(&cluster_locked->lock); 1090 node = rb_first(&cluster->root); 1091 cluster = NULL; 1092 } 1093 1094 /* Write out the extent entries */ 1095 while (node) { 1096 struct btrfs_free_space *e; 1097 1098 e = rb_entry(node, struct btrfs_free_space, offset_index); 1099 *entries += 1; 1100 1101 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 1102 e->bitmap); 1103 if (ret) 1104 goto fail; 1105 1106 if (e->bitmap) { 1107 list_add_tail(&e->list, bitmap_list); 1108 *bitmaps += 1; 1109 } 1110 node = rb_next(node); 1111 if (!node && cluster) { 1112 node = rb_first(&cluster->root); 1113 cluster_locked = cluster; 1114 spin_lock(&cluster_locked->lock); 1115 cluster = NULL; 1116 } 1117 } 1118 if (cluster_locked) { 1119 spin_unlock(&cluster_locked->lock); 1120 cluster_locked = NULL; 1121 } 1122 1123 /* 1124 * Make sure we don't miss any range that was removed from our rbtree 1125 * because trimming is running. Otherwise after a umount+mount (or crash 1126 * after committing the transaction) we would leak free space and get 1127 * an inconsistent free space cache report from fsck. 1128 */ 1129 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 1130 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 1131 trim_entry->bytes, NULL); 1132 if (ret) 1133 goto fail; 1134 *entries += 1; 1135 } 1136 1137 return 0; 1138 fail: 1139 if (cluster_locked) 1140 spin_unlock(&cluster_locked->lock); 1141 return -ENOSPC; 1142 } 1143 1144 static noinline_for_stack int 1145 update_cache_item(struct btrfs_trans_handle *trans, 1146 struct btrfs_root *root, 1147 struct inode *inode, 1148 struct btrfs_path *path, u64 offset, 1149 int entries, int bitmaps) 1150 { 1151 struct btrfs_key key; 1152 struct btrfs_free_space_header *header; 1153 struct extent_buffer *leaf; 1154 int ret; 1155 1156 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1157 key.offset = offset; 1158 key.type = 0; 1159 1160 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1161 if (ret < 0) { 1162 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1163 EXTENT_DELALLOC, NULL); 1164 goto fail; 1165 } 1166 leaf = path->nodes[0]; 1167 if (ret > 0) { 1168 struct btrfs_key found_key; 1169 ASSERT(path->slots[0]); 1170 path->slots[0]--; 1171 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1172 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1173 found_key.offset != offset) { 1174 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1175 inode->i_size - 1, EXTENT_DELALLOC, 1176 NULL); 1177 btrfs_release_path(path); 1178 goto fail; 1179 } 1180 } 1181 1182 BTRFS_I(inode)->generation = trans->transid; 1183 header = btrfs_item_ptr(leaf, path->slots[0], 1184 struct btrfs_free_space_header); 1185 btrfs_set_free_space_entries(leaf, header, entries); 1186 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1187 btrfs_set_free_space_generation(leaf, header, trans->transid); 1188 btrfs_mark_buffer_dirty(leaf); 1189 btrfs_release_path(path); 1190 1191 return 0; 1192 1193 fail: 1194 return -1; 1195 } 1196 1197 static noinline_for_stack int write_pinned_extent_entries( 1198 struct btrfs_trans_handle *trans, 1199 struct btrfs_block_group *block_group, 1200 struct btrfs_io_ctl *io_ctl, 1201 int *entries) 1202 { 1203 u64 start, extent_start, extent_end, len; 1204 struct extent_io_tree *unpin = NULL; 1205 int ret; 1206 1207 if (!block_group) 1208 return 0; 1209 1210 /* 1211 * We want to add any pinned extents to our free space cache 1212 * so we don't leak the space 1213 * 1214 * We shouldn't have switched the pinned extents yet so this is the 1215 * right one 1216 */ 1217 unpin = &trans->transaction->pinned_extents; 1218 1219 start = block_group->start; 1220 1221 while (start < block_group->start + block_group->length) { 1222 ret = find_first_extent_bit(unpin, start, 1223 &extent_start, &extent_end, 1224 EXTENT_DIRTY, NULL); 1225 if (ret) 1226 return 0; 1227 1228 /* This pinned extent is out of our range */ 1229 if (extent_start >= block_group->start + block_group->length) 1230 return 0; 1231 1232 extent_start = max(extent_start, start); 1233 extent_end = min(block_group->start + block_group->length, 1234 extent_end + 1); 1235 len = extent_end - extent_start; 1236 1237 *entries += 1; 1238 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1239 if (ret) 1240 return -ENOSPC; 1241 1242 start = extent_end; 1243 } 1244 1245 return 0; 1246 } 1247 1248 static noinline_for_stack int 1249 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1250 { 1251 struct btrfs_free_space *entry, *next; 1252 int ret; 1253 1254 /* Write out the bitmaps */ 1255 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1256 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1257 if (ret) 1258 return -ENOSPC; 1259 list_del_init(&entry->list); 1260 } 1261 1262 return 0; 1263 } 1264 1265 static int flush_dirty_cache(struct inode *inode) 1266 { 1267 int ret; 1268 1269 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1270 if (ret) 1271 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1272 EXTENT_DELALLOC, NULL); 1273 1274 return ret; 1275 } 1276 1277 static void noinline_for_stack 1278 cleanup_bitmap_list(struct list_head *bitmap_list) 1279 { 1280 struct btrfs_free_space *entry, *next; 1281 1282 list_for_each_entry_safe(entry, next, bitmap_list, list) 1283 list_del_init(&entry->list); 1284 } 1285 1286 static void noinline_for_stack 1287 cleanup_write_cache_enospc(struct inode *inode, 1288 struct btrfs_io_ctl *io_ctl, 1289 struct extent_state **cached_state) 1290 { 1291 io_ctl_drop_pages(io_ctl); 1292 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1293 cached_state); 1294 } 1295 1296 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1297 struct btrfs_trans_handle *trans, 1298 struct btrfs_block_group *block_group, 1299 struct btrfs_io_ctl *io_ctl, 1300 struct btrfs_path *path, u64 offset) 1301 { 1302 int ret; 1303 struct inode *inode = io_ctl->inode; 1304 1305 if (!inode) 1306 return 0; 1307 1308 /* Flush the dirty pages in the cache file. */ 1309 ret = flush_dirty_cache(inode); 1310 if (ret) 1311 goto out; 1312 1313 /* Update the cache item to tell everyone this cache file is valid. */ 1314 ret = update_cache_item(trans, root, inode, path, offset, 1315 io_ctl->entries, io_ctl->bitmaps); 1316 out: 1317 if (ret) { 1318 invalidate_inode_pages2(inode->i_mapping); 1319 BTRFS_I(inode)->generation = 0; 1320 if (block_group) 1321 btrfs_debug(root->fs_info, 1322 "failed to write free space cache for block group %llu error %d", 1323 block_group->start, ret); 1324 } 1325 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1326 1327 if (block_group) { 1328 /* the dirty list is protected by the dirty_bgs_lock */ 1329 spin_lock(&trans->transaction->dirty_bgs_lock); 1330 1331 /* the disk_cache_state is protected by the block group lock */ 1332 spin_lock(&block_group->lock); 1333 1334 /* 1335 * only mark this as written if we didn't get put back on 1336 * the dirty list while waiting for IO. Otherwise our 1337 * cache state won't be right, and we won't get written again 1338 */ 1339 if (!ret && list_empty(&block_group->dirty_list)) 1340 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1341 else if (ret) 1342 block_group->disk_cache_state = BTRFS_DC_ERROR; 1343 1344 spin_unlock(&block_group->lock); 1345 spin_unlock(&trans->transaction->dirty_bgs_lock); 1346 io_ctl->inode = NULL; 1347 iput(inode); 1348 } 1349 1350 return ret; 1351 1352 } 1353 1354 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1355 struct btrfs_block_group *block_group, 1356 struct btrfs_path *path) 1357 { 1358 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1359 block_group, &block_group->io_ctl, 1360 path, block_group->start); 1361 } 1362 1363 /* 1364 * Write out cached info to an inode. 1365 * 1366 * @root: root the inode belongs to 1367 * @inode: freespace inode we are writing out 1368 * @ctl: free space cache we are going to write out 1369 * @block_group: block_group for this cache if it belongs to a block_group 1370 * @io_ctl: holds context for the io 1371 * @trans: the trans handle 1372 * 1373 * This function writes out a free space cache struct to disk for quick recovery 1374 * on mount. This will return 0 if it was successful in writing the cache out, 1375 * or an errno if it was not. 1376 */ 1377 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1378 struct btrfs_free_space_ctl *ctl, 1379 struct btrfs_block_group *block_group, 1380 struct btrfs_io_ctl *io_ctl, 1381 struct btrfs_trans_handle *trans) 1382 { 1383 struct extent_state *cached_state = NULL; 1384 LIST_HEAD(bitmap_list); 1385 int entries = 0; 1386 int bitmaps = 0; 1387 int ret; 1388 int must_iput = 0; 1389 1390 if (!i_size_read(inode)) 1391 return -EIO; 1392 1393 WARN_ON(io_ctl->pages); 1394 ret = io_ctl_init(io_ctl, inode, 1); 1395 if (ret) 1396 return ret; 1397 1398 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1399 down_write(&block_group->data_rwsem); 1400 spin_lock(&block_group->lock); 1401 if (block_group->delalloc_bytes) { 1402 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1403 spin_unlock(&block_group->lock); 1404 up_write(&block_group->data_rwsem); 1405 BTRFS_I(inode)->generation = 0; 1406 ret = 0; 1407 must_iput = 1; 1408 goto out; 1409 } 1410 spin_unlock(&block_group->lock); 1411 } 1412 1413 /* Lock all pages first so we can lock the extent safely. */ 1414 ret = io_ctl_prepare_pages(io_ctl, false); 1415 if (ret) 1416 goto out_unlock; 1417 1418 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1419 &cached_state); 1420 1421 io_ctl_set_generation(io_ctl, trans->transid); 1422 1423 mutex_lock(&ctl->cache_writeout_mutex); 1424 /* Write out the extent entries in the free space cache */ 1425 spin_lock(&ctl->tree_lock); 1426 ret = write_cache_extent_entries(io_ctl, ctl, 1427 block_group, &entries, &bitmaps, 1428 &bitmap_list); 1429 if (ret) 1430 goto out_nospc_locked; 1431 1432 /* 1433 * Some spaces that are freed in the current transaction are pinned, 1434 * they will be added into free space cache after the transaction is 1435 * committed, we shouldn't lose them. 1436 * 1437 * If this changes while we are working we'll get added back to 1438 * the dirty list and redo it. No locking needed 1439 */ 1440 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries); 1441 if (ret) 1442 goto out_nospc_locked; 1443 1444 /* 1445 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1446 * locked while doing it because a concurrent trim can be manipulating 1447 * or freeing the bitmap. 1448 */ 1449 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1450 spin_unlock(&ctl->tree_lock); 1451 mutex_unlock(&ctl->cache_writeout_mutex); 1452 if (ret) 1453 goto out_nospc; 1454 1455 /* Zero out the rest of the pages just to make sure */ 1456 io_ctl_zero_remaining_pages(io_ctl); 1457 1458 /* Everything is written out, now we dirty the pages in the file. */ 1459 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages, 1460 io_ctl->num_pages, 0, i_size_read(inode), 1461 &cached_state, false); 1462 if (ret) 1463 goto out_nospc; 1464 1465 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1466 up_write(&block_group->data_rwsem); 1467 /* 1468 * Release the pages and unlock the extent, we will flush 1469 * them out later 1470 */ 1471 io_ctl_drop_pages(io_ctl); 1472 io_ctl_free(io_ctl); 1473 1474 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1475 &cached_state); 1476 1477 /* 1478 * at this point the pages are under IO and we're happy, 1479 * The caller is responsible for waiting on them and updating 1480 * the cache and the inode 1481 */ 1482 io_ctl->entries = entries; 1483 io_ctl->bitmaps = bitmaps; 1484 1485 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1486 if (ret) 1487 goto out; 1488 1489 return 0; 1490 1491 out_nospc_locked: 1492 cleanup_bitmap_list(&bitmap_list); 1493 spin_unlock(&ctl->tree_lock); 1494 mutex_unlock(&ctl->cache_writeout_mutex); 1495 1496 out_nospc: 1497 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1498 1499 out_unlock: 1500 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1501 up_write(&block_group->data_rwsem); 1502 1503 out: 1504 io_ctl->inode = NULL; 1505 io_ctl_free(io_ctl); 1506 if (ret) { 1507 invalidate_inode_pages2(inode->i_mapping); 1508 BTRFS_I(inode)->generation = 0; 1509 } 1510 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1511 if (must_iput) 1512 iput(inode); 1513 return ret; 1514 } 1515 1516 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1517 struct btrfs_block_group *block_group, 1518 struct btrfs_path *path) 1519 { 1520 struct btrfs_fs_info *fs_info = trans->fs_info; 1521 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1522 struct inode *inode; 1523 int ret = 0; 1524 1525 spin_lock(&block_group->lock); 1526 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1527 spin_unlock(&block_group->lock); 1528 return 0; 1529 } 1530 spin_unlock(&block_group->lock); 1531 1532 inode = lookup_free_space_inode(block_group, path); 1533 if (IS_ERR(inode)) 1534 return 0; 1535 1536 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1537 block_group, &block_group->io_ctl, trans); 1538 if (ret) { 1539 btrfs_debug(fs_info, 1540 "failed to write free space cache for block group %llu error %d", 1541 block_group->start, ret); 1542 spin_lock(&block_group->lock); 1543 block_group->disk_cache_state = BTRFS_DC_ERROR; 1544 spin_unlock(&block_group->lock); 1545 1546 block_group->io_ctl.inode = NULL; 1547 iput(inode); 1548 } 1549 1550 /* 1551 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1552 * to wait for IO and put the inode 1553 */ 1554 1555 return ret; 1556 } 1557 1558 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1559 u64 offset) 1560 { 1561 ASSERT(offset >= bitmap_start); 1562 offset -= bitmap_start; 1563 return (unsigned long)(div_u64(offset, unit)); 1564 } 1565 1566 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1567 { 1568 return (unsigned long)(div_u64(bytes, unit)); 1569 } 1570 1571 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1572 u64 offset) 1573 { 1574 u64 bitmap_start; 1575 u64 bytes_per_bitmap; 1576 1577 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1578 bitmap_start = offset - ctl->start; 1579 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1580 bitmap_start *= bytes_per_bitmap; 1581 bitmap_start += ctl->start; 1582 1583 return bitmap_start; 1584 } 1585 1586 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl, 1587 struct btrfs_free_cluster *cluster, 1588 struct btrfs_free_space *new_entry) 1589 { 1590 struct rb_root *root; 1591 struct rb_node **p; 1592 struct rb_node *parent = NULL; 1593 1594 lockdep_assert_held(&ctl->tree_lock); 1595 1596 if (cluster) { 1597 lockdep_assert_held(&cluster->lock); 1598 root = &cluster->root; 1599 } else { 1600 root = &ctl->free_space_offset; 1601 } 1602 1603 p = &root->rb_node; 1604 1605 while (*p) { 1606 struct btrfs_free_space *info; 1607 1608 parent = *p; 1609 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1610 1611 if (new_entry->offset < info->offset) { 1612 p = &(*p)->rb_left; 1613 } else if (new_entry->offset > info->offset) { 1614 p = &(*p)->rb_right; 1615 } else { 1616 /* 1617 * we could have a bitmap entry and an extent entry 1618 * share the same offset. If this is the case, we want 1619 * the extent entry to always be found first if we do a 1620 * linear search through the tree, since we want to have 1621 * the quickest allocation time, and allocating from an 1622 * extent is faster than allocating from a bitmap. So 1623 * if we're inserting a bitmap and we find an entry at 1624 * this offset, we want to go right, or after this entry 1625 * logically. If we are inserting an extent and we've 1626 * found a bitmap, we want to go left, or before 1627 * logically. 1628 */ 1629 if (new_entry->bitmap) { 1630 if (info->bitmap) { 1631 WARN_ON_ONCE(1); 1632 return -EEXIST; 1633 } 1634 p = &(*p)->rb_right; 1635 } else { 1636 if (!info->bitmap) { 1637 WARN_ON_ONCE(1); 1638 return -EEXIST; 1639 } 1640 p = &(*p)->rb_left; 1641 } 1642 } 1643 } 1644 1645 rb_link_node(&new_entry->offset_index, parent, p); 1646 rb_insert_color(&new_entry->offset_index, root); 1647 1648 return 0; 1649 } 1650 1651 /* 1652 * This is a little subtle. We *only* have ->max_extent_size set if we actually 1653 * searched through the bitmap and figured out the largest ->max_extent_size, 1654 * otherwise it's 0. In the case that it's 0 we don't want to tell the 1655 * allocator the wrong thing, we want to use the actual real max_extent_size 1656 * we've found already if it's larger, or we want to use ->bytes. 1657 * 1658 * This matters because find_free_space() will skip entries who's ->bytes is 1659 * less than the required bytes. So if we didn't search down this bitmap, we 1660 * may pick some previous entry that has a smaller ->max_extent_size than we 1661 * have. For example, assume we have two entries, one that has 1662 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set 1663 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will 1664 * call into find_free_space(), and return with max_extent_size == 4K, because 1665 * that first bitmap entry had ->max_extent_size set, but the second one did 1666 * not. If instead we returned 8K we'd come in searching for 8K, and find the 1667 * 8K contiguous range. 1668 * 1669 * Consider the other case, we have 2 8K chunks in that second entry and still 1670 * don't have ->max_extent_size set. We'll return 16K, and the next time the 1671 * allocator comes in it'll fully search our second bitmap, and this time it'll 1672 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the 1673 * right allocation the next loop through. 1674 */ 1675 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry) 1676 { 1677 if (entry->bitmap && entry->max_extent_size) 1678 return entry->max_extent_size; 1679 return entry->bytes; 1680 } 1681 1682 /* 1683 * We want the largest entry to be leftmost, so this is inverted from what you'd 1684 * normally expect. 1685 */ 1686 static bool entry_less(struct rb_node *node, const struct rb_node *parent) 1687 { 1688 const struct btrfs_free_space *entry, *exist; 1689 1690 entry = rb_entry(node, struct btrfs_free_space, bytes_index); 1691 exist = rb_entry(parent, struct btrfs_free_space, bytes_index); 1692 return get_max_extent_size(exist) < get_max_extent_size(entry); 1693 } 1694 1695 /* 1696 * searches the tree for the given offset. 1697 * 1698 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1699 * want a section that has at least bytes size and comes at or after the given 1700 * offset. 1701 */ 1702 static struct btrfs_free_space * 1703 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1704 u64 offset, int bitmap_only, int fuzzy) 1705 { 1706 struct rb_node *n = ctl->free_space_offset.rb_node; 1707 struct btrfs_free_space *entry = NULL, *prev = NULL; 1708 1709 lockdep_assert_held(&ctl->tree_lock); 1710 1711 /* find entry that is closest to the 'offset' */ 1712 while (n) { 1713 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1714 prev = entry; 1715 1716 if (offset < entry->offset) 1717 n = n->rb_left; 1718 else if (offset > entry->offset) 1719 n = n->rb_right; 1720 else 1721 break; 1722 1723 entry = NULL; 1724 } 1725 1726 if (bitmap_only) { 1727 if (!entry) 1728 return NULL; 1729 if (entry->bitmap) 1730 return entry; 1731 1732 /* 1733 * bitmap entry and extent entry may share same offset, 1734 * in that case, bitmap entry comes after extent entry. 1735 */ 1736 n = rb_next(n); 1737 if (!n) 1738 return NULL; 1739 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1740 if (entry->offset != offset) 1741 return NULL; 1742 1743 WARN_ON(!entry->bitmap); 1744 return entry; 1745 } else if (entry) { 1746 if (entry->bitmap) { 1747 /* 1748 * if previous extent entry covers the offset, 1749 * we should return it instead of the bitmap entry 1750 */ 1751 n = rb_prev(&entry->offset_index); 1752 if (n) { 1753 prev = rb_entry(n, struct btrfs_free_space, 1754 offset_index); 1755 if (!prev->bitmap && 1756 prev->offset + prev->bytes > offset) 1757 entry = prev; 1758 } 1759 } 1760 return entry; 1761 } 1762 1763 if (!prev) 1764 return NULL; 1765 1766 /* find last entry before the 'offset' */ 1767 entry = prev; 1768 if (entry->offset > offset) { 1769 n = rb_prev(&entry->offset_index); 1770 if (n) { 1771 entry = rb_entry(n, struct btrfs_free_space, 1772 offset_index); 1773 ASSERT(entry->offset <= offset); 1774 } else { 1775 if (fuzzy) 1776 return entry; 1777 else 1778 return NULL; 1779 } 1780 } 1781 1782 if (entry->bitmap) { 1783 n = rb_prev(&entry->offset_index); 1784 if (n) { 1785 prev = rb_entry(n, struct btrfs_free_space, 1786 offset_index); 1787 if (!prev->bitmap && 1788 prev->offset + prev->bytes > offset) 1789 return prev; 1790 } 1791 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1792 return entry; 1793 } else if (entry->offset + entry->bytes > offset) 1794 return entry; 1795 1796 if (!fuzzy) 1797 return NULL; 1798 1799 while (1) { 1800 n = rb_next(&entry->offset_index); 1801 if (!n) 1802 return NULL; 1803 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1804 if (entry->bitmap) { 1805 if (entry->offset + BITS_PER_BITMAP * 1806 ctl->unit > offset) 1807 break; 1808 } else { 1809 if (entry->offset + entry->bytes > offset) 1810 break; 1811 } 1812 } 1813 return entry; 1814 } 1815 1816 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1817 struct btrfs_free_space *info, 1818 bool update_stat) 1819 { 1820 lockdep_assert_held(&ctl->tree_lock); 1821 1822 rb_erase(&info->offset_index, &ctl->free_space_offset); 1823 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); 1824 ctl->free_extents--; 1825 1826 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1827 ctl->discardable_extents[BTRFS_STAT_CURR]--; 1828 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; 1829 } 1830 1831 if (update_stat) 1832 ctl->free_space -= info->bytes; 1833 } 1834 1835 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1836 struct btrfs_free_space *info) 1837 { 1838 int ret = 0; 1839 1840 lockdep_assert_held(&ctl->tree_lock); 1841 1842 ASSERT(info->bytes || info->bitmap); 1843 ret = tree_insert_offset(ctl, NULL, info); 1844 if (ret) 1845 return ret; 1846 1847 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); 1848 1849 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1850 ctl->discardable_extents[BTRFS_STAT_CURR]++; 1851 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 1852 } 1853 1854 ctl->free_space += info->bytes; 1855 ctl->free_extents++; 1856 return ret; 1857 } 1858 1859 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl, 1860 struct btrfs_free_space *info) 1861 { 1862 ASSERT(info->bitmap); 1863 1864 /* 1865 * If our entry is empty it's because we're on a cluster and we don't 1866 * want to re-link it into our ctl bytes index. 1867 */ 1868 if (RB_EMPTY_NODE(&info->bytes_index)) 1869 return; 1870 1871 lockdep_assert_held(&ctl->tree_lock); 1872 1873 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); 1874 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); 1875 } 1876 1877 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1878 struct btrfs_free_space *info, 1879 u64 offset, u64 bytes, bool update_stat) 1880 { 1881 unsigned long start, count, end; 1882 int extent_delta = -1; 1883 1884 start = offset_to_bit(info->offset, ctl->unit, offset); 1885 count = bytes_to_bits(bytes, ctl->unit); 1886 end = start + count; 1887 ASSERT(end <= BITS_PER_BITMAP); 1888 1889 bitmap_clear(info->bitmap, start, count); 1890 1891 info->bytes -= bytes; 1892 if (info->max_extent_size > ctl->unit) 1893 info->max_extent_size = 0; 1894 1895 relink_bitmap_entry(ctl, info); 1896 1897 if (start && test_bit(start - 1, info->bitmap)) 1898 extent_delta++; 1899 1900 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1901 extent_delta++; 1902 1903 info->bitmap_extents += extent_delta; 1904 if (!btrfs_free_space_trimmed(info)) { 1905 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1906 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 1907 } 1908 1909 if (update_stat) 1910 ctl->free_space -= bytes; 1911 } 1912 1913 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1914 struct btrfs_free_space *info, u64 offset, 1915 u64 bytes) 1916 { 1917 unsigned long start, count, end; 1918 int extent_delta = 1; 1919 1920 start = offset_to_bit(info->offset, ctl->unit, offset); 1921 count = bytes_to_bits(bytes, ctl->unit); 1922 end = start + count; 1923 ASSERT(end <= BITS_PER_BITMAP); 1924 1925 bitmap_set(info->bitmap, start, count); 1926 1927 /* 1928 * We set some bytes, we have no idea what the max extent size is 1929 * anymore. 1930 */ 1931 info->max_extent_size = 0; 1932 info->bytes += bytes; 1933 ctl->free_space += bytes; 1934 1935 relink_bitmap_entry(ctl, info); 1936 1937 if (start && test_bit(start - 1, info->bitmap)) 1938 extent_delta--; 1939 1940 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1941 extent_delta--; 1942 1943 info->bitmap_extents += extent_delta; 1944 if (!btrfs_free_space_trimmed(info)) { 1945 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1946 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; 1947 } 1948 } 1949 1950 /* 1951 * If we can not find suitable extent, we will use bytes to record 1952 * the size of the max extent. 1953 */ 1954 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1955 struct btrfs_free_space *bitmap_info, u64 *offset, 1956 u64 *bytes, bool for_alloc) 1957 { 1958 unsigned long found_bits = 0; 1959 unsigned long max_bits = 0; 1960 unsigned long bits, i; 1961 unsigned long next_zero; 1962 unsigned long extent_bits; 1963 1964 /* 1965 * Skip searching the bitmap if we don't have a contiguous section that 1966 * is large enough for this allocation. 1967 */ 1968 if (for_alloc && 1969 bitmap_info->max_extent_size && 1970 bitmap_info->max_extent_size < *bytes) { 1971 *bytes = bitmap_info->max_extent_size; 1972 return -1; 1973 } 1974 1975 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1976 max_t(u64, *offset, bitmap_info->offset)); 1977 bits = bytes_to_bits(*bytes, ctl->unit); 1978 1979 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1980 if (for_alloc && bits == 1) { 1981 found_bits = 1; 1982 break; 1983 } 1984 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1985 BITS_PER_BITMAP, i); 1986 extent_bits = next_zero - i; 1987 if (extent_bits >= bits) { 1988 found_bits = extent_bits; 1989 break; 1990 } else if (extent_bits > max_bits) { 1991 max_bits = extent_bits; 1992 } 1993 i = next_zero; 1994 } 1995 1996 if (found_bits) { 1997 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1998 *bytes = (u64)(found_bits) * ctl->unit; 1999 return 0; 2000 } 2001 2002 *bytes = (u64)(max_bits) * ctl->unit; 2003 bitmap_info->max_extent_size = *bytes; 2004 relink_bitmap_entry(ctl, bitmap_info); 2005 return -1; 2006 } 2007 2008 /* Cache the size of the max extent in bytes */ 2009 static struct btrfs_free_space * 2010 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 2011 unsigned long align, u64 *max_extent_size, bool use_bytes_index) 2012 { 2013 struct btrfs_free_space *entry; 2014 struct rb_node *node; 2015 u64 tmp; 2016 u64 align_off; 2017 int ret; 2018 2019 if (!ctl->free_space_offset.rb_node) 2020 goto out; 2021 again: 2022 if (use_bytes_index) { 2023 node = rb_first_cached(&ctl->free_space_bytes); 2024 } else { 2025 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 2026 0, 1); 2027 if (!entry) 2028 goto out; 2029 node = &entry->offset_index; 2030 } 2031 2032 for (; node; node = rb_next(node)) { 2033 if (use_bytes_index) 2034 entry = rb_entry(node, struct btrfs_free_space, 2035 bytes_index); 2036 else 2037 entry = rb_entry(node, struct btrfs_free_space, 2038 offset_index); 2039 2040 /* 2041 * If we are using the bytes index then all subsequent entries 2042 * in this tree are going to be < bytes, so simply set the max 2043 * extent size and exit the loop. 2044 * 2045 * If we're using the offset index then we need to keep going 2046 * through the rest of the tree. 2047 */ 2048 if (entry->bytes < *bytes) { 2049 *max_extent_size = max(get_max_extent_size(entry), 2050 *max_extent_size); 2051 if (use_bytes_index) 2052 break; 2053 continue; 2054 } 2055 2056 /* make sure the space returned is big enough 2057 * to match our requested alignment 2058 */ 2059 if (*bytes >= align) { 2060 tmp = entry->offset - ctl->start + align - 1; 2061 tmp = div64_u64(tmp, align); 2062 tmp = tmp * align + ctl->start; 2063 align_off = tmp - entry->offset; 2064 } else { 2065 align_off = 0; 2066 tmp = entry->offset; 2067 } 2068 2069 /* 2070 * We don't break here if we're using the bytes index because we 2071 * may have another entry that has the correct alignment that is 2072 * the right size, so we don't want to miss that possibility. 2073 * At worst this adds another loop through the logic, but if we 2074 * broke here we could prematurely ENOSPC. 2075 */ 2076 if (entry->bytes < *bytes + align_off) { 2077 *max_extent_size = max(get_max_extent_size(entry), 2078 *max_extent_size); 2079 continue; 2080 } 2081 2082 if (entry->bitmap) { 2083 struct rb_node *old_next = rb_next(node); 2084 u64 size = *bytes; 2085 2086 ret = search_bitmap(ctl, entry, &tmp, &size, true); 2087 if (!ret) { 2088 *offset = tmp; 2089 *bytes = size; 2090 return entry; 2091 } else { 2092 *max_extent_size = 2093 max(get_max_extent_size(entry), 2094 *max_extent_size); 2095 } 2096 2097 /* 2098 * The bitmap may have gotten re-arranged in the space 2099 * index here because the max_extent_size may have been 2100 * updated. Start from the beginning again if this 2101 * happened. 2102 */ 2103 if (use_bytes_index && old_next != rb_next(node)) 2104 goto again; 2105 continue; 2106 } 2107 2108 *offset = tmp; 2109 *bytes = entry->bytes - align_off; 2110 return entry; 2111 } 2112 out: 2113 return NULL; 2114 } 2115 2116 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 2117 struct btrfs_free_space *info, u64 offset) 2118 { 2119 info->offset = offset_to_bitmap(ctl, offset); 2120 info->bytes = 0; 2121 info->bitmap_extents = 0; 2122 INIT_LIST_HEAD(&info->list); 2123 link_free_space(ctl, info); 2124 ctl->total_bitmaps++; 2125 recalculate_thresholds(ctl); 2126 } 2127 2128 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 2129 struct btrfs_free_space *bitmap_info) 2130 { 2131 /* 2132 * Normally when this is called, the bitmap is completely empty. However, 2133 * if we are blowing up the free space cache for one reason or another 2134 * via __btrfs_remove_free_space_cache(), then it may not be freed and 2135 * we may leave stats on the table. 2136 */ 2137 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { 2138 ctl->discardable_extents[BTRFS_STAT_CURR] -= 2139 bitmap_info->bitmap_extents; 2140 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; 2141 2142 } 2143 unlink_free_space(ctl, bitmap_info, true); 2144 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 2145 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 2146 ctl->total_bitmaps--; 2147 recalculate_thresholds(ctl); 2148 } 2149 2150 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 2151 struct btrfs_free_space *bitmap_info, 2152 u64 *offset, u64 *bytes) 2153 { 2154 u64 end; 2155 u64 search_start, search_bytes; 2156 int ret; 2157 2158 again: 2159 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 2160 2161 /* 2162 * We need to search for bits in this bitmap. We could only cover some 2163 * of the extent in this bitmap thanks to how we add space, so we need 2164 * to search for as much as it as we can and clear that amount, and then 2165 * go searching for the next bit. 2166 */ 2167 search_start = *offset; 2168 search_bytes = ctl->unit; 2169 search_bytes = min(search_bytes, end - search_start + 1); 2170 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 2171 false); 2172 if (ret < 0 || search_start != *offset) 2173 return -EINVAL; 2174 2175 /* We may have found more bits than what we need */ 2176 search_bytes = min(search_bytes, *bytes); 2177 2178 /* Cannot clear past the end of the bitmap */ 2179 search_bytes = min(search_bytes, end - search_start + 1); 2180 2181 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true); 2182 *offset += search_bytes; 2183 *bytes -= search_bytes; 2184 2185 if (*bytes) { 2186 struct rb_node *next = rb_next(&bitmap_info->offset_index); 2187 if (!bitmap_info->bytes) 2188 free_bitmap(ctl, bitmap_info); 2189 2190 /* 2191 * no entry after this bitmap, but we still have bytes to 2192 * remove, so something has gone wrong. 2193 */ 2194 if (!next) 2195 return -EINVAL; 2196 2197 bitmap_info = rb_entry(next, struct btrfs_free_space, 2198 offset_index); 2199 2200 /* 2201 * if the next entry isn't a bitmap we need to return to let the 2202 * extent stuff do its work. 2203 */ 2204 if (!bitmap_info->bitmap) 2205 return -EAGAIN; 2206 2207 /* 2208 * Ok the next item is a bitmap, but it may not actually hold 2209 * the information for the rest of this free space stuff, so 2210 * look for it, and if we don't find it return so we can try 2211 * everything over again. 2212 */ 2213 search_start = *offset; 2214 search_bytes = ctl->unit; 2215 ret = search_bitmap(ctl, bitmap_info, &search_start, 2216 &search_bytes, false); 2217 if (ret < 0 || search_start != *offset) 2218 return -EAGAIN; 2219 2220 goto again; 2221 } else if (!bitmap_info->bytes) 2222 free_bitmap(ctl, bitmap_info); 2223 2224 return 0; 2225 } 2226 2227 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 2228 struct btrfs_free_space *info, u64 offset, 2229 u64 bytes, enum btrfs_trim_state trim_state) 2230 { 2231 u64 bytes_to_set = 0; 2232 u64 end; 2233 2234 /* 2235 * This is a tradeoff to make bitmap trim state minimal. We mark the 2236 * whole bitmap untrimmed if at any point we add untrimmed regions. 2237 */ 2238 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { 2239 if (btrfs_free_space_trimmed(info)) { 2240 ctl->discardable_extents[BTRFS_STAT_CURR] += 2241 info->bitmap_extents; 2242 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 2243 } 2244 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2245 } 2246 2247 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 2248 2249 bytes_to_set = min(end - offset, bytes); 2250 2251 bitmap_set_bits(ctl, info, offset, bytes_to_set); 2252 2253 return bytes_to_set; 2254 2255 } 2256 2257 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 2258 struct btrfs_free_space *info) 2259 { 2260 struct btrfs_block_group *block_group = ctl->block_group; 2261 struct btrfs_fs_info *fs_info = block_group->fs_info; 2262 bool forced = false; 2263 2264 #ifdef CONFIG_BTRFS_DEBUG 2265 if (btrfs_should_fragment_free_space(block_group)) 2266 forced = true; 2267 #endif 2268 2269 /* This is a way to reclaim large regions from the bitmaps. */ 2270 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) 2271 return false; 2272 2273 /* 2274 * If we are below the extents threshold then we can add this as an 2275 * extent, and don't have to deal with the bitmap 2276 */ 2277 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2278 /* 2279 * If this block group has some small extents we don't want to 2280 * use up all of our free slots in the cache with them, we want 2281 * to reserve them to larger extents, however if we have plenty 2282 * of cache left then go ahead an dadd them, no sense in adding 2283 * the overhead of a bitmap if we don't have to. 2284 */ 2285 if (info->bytes <= fs_info->sectorsize * 8) { 2286 if (ctl->free_extents * 3 <= ctl->extents_thresh) 2287 return false; 2288 } else { 2289 return false; 2290 } 2291 } 2292 2293 /* 2294 * The original block groups from mkfs can be really small, like 8 2295 * megabytes, so don't bother with a bitmap for those entries. However 2296 * some block groups can be smaller than what a bitmap would cover but 2297 * are still large enough that they could overflow the 32k memory limit, 2298 * so allow those block groups to still be allowed to have a bitmap 2299 * entry. 2300 */ 2301 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2302 return false; 2303 2304 return true; 2305 } 2306 2307 static const struct btrfs_free_space_op free_space_op = { 2308 .use_bitmap = use_bitmap, 2309 }; 2310 2311 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2312 struct btrfs_free_space *info) 2313 { 2314 struct btrfs_free_space *bitmap_info; 2315 struct btrfs_block_group *block_group = NULL; 2316 int added = 0; 2317 u64 bytes, offset, bytes_added; 2318 enum btrfs_trim_state trim_state; 2319 int ret; 2320 2321 bytes = info->bytes; 2322 offset = info->offset; 2323 trim_state = info->trim_state; 2324 2325 if (!ctl->op->use_bitmap(ctl, info)) 2326 return 0; 2327 2328 if (ctl->op == &free_space_op) 2329 block_group = ctl->block_group; 2330 again: 2331 /* 2332 * Since we link bitmaps right into the cluster we need to see if we 2333 * have a cluster here, and if so and it has our bitmap we need to add 2334 * the free space to that bitmap. 2335 */ 2336 if (block_group && !list_empty(&block_group->cluster_list)) { 2337 struct btrfs_free_cluster *cluster; 2338 struct rb_node *node; 2339 struct btrfs_free_space *entry; 2340 2341 cluster = list_entry(block_group->cluster_list.next, 2342 struct btrfs_free_cluster, 2343 block_group_list); 2344 spin_lock(&cluster->lock); 2345 node = rb_first(&cluster->root); 2346 if (!node) { 2347 spin_unlock(&cluster->lock); 2348 goto no_cluster_bitmap; 2349 } 2350 2351 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2352 if (!entry->bitmap) { 2353 spin_unlock(&cluster->lock); 2354 goto no_cluster_bitmap; 2355 } 2356 2357 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2358 bytes_added = add_bytes_to_bitmap(ctl, entry, offset, 2359 bytes, trim_state); 2360 bytes -= bytes_added; 2361 offset += bytes_added; 2362 } 2363 spin_unlock(&cluster->lock); 2364 if (!bytes) { 2365 ret = 1; 2366 goto out; 2367 } 2368 } 2369 2370 no_cluster_bitmap: 2371 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2372 1, 0); 2373 if (!bitmap_info) { 2374 ASSERT(added == 0); 2375 goto new_bitmap; 2376 } 2377 2378 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 2379 trim_state); 2380 bytes -= bytes_added; 2381 offset += bytes_added; 2382 added = 0; 2383 2384 if (!bytes) { 2385 ret = 1; 2386 goto out; 2387 } else 2388 goto again; 2389 2390 new_bitmap: 2391 if (info && info->bitmap) { 2392 add_new_bitmap(ctl, info, offset); 2393 added = 1; 2394 info = NULL; 2395 goto again; 2396 } else { 2397 spin_unlock(&ctl->tree_lock); 2398 2399 /* no pre-allocated info, allocate a new one */ 2400 if (!info) { 2401 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2402 GFP_NOFS); 2403 if (!info) { 2404 spin_lock(&ctl->tree_lock); 2405 ret = -ENOMEM; 2406 goto out; 2407 } 2408 } 2409 2410 /* allocate the bitmap */ 2411 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2412 GFP_NOFS); 2413 info->trim_state = BTRFS_TRIM_STATE_TRIMMED; 2414 spin_lock(&ctl->tree_lock); 2415 if (!info->bitmap) { 2416 ret = -ENOMEM; 2417 goto out; 2418 } 2419 goto again; 2420 } 2421 2422 out: 2423 if (info) { 2424 if (info->bitmap) 2425 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2426 info->bitmap); 2427 kmem_cache_free(btrfs_free_space_cachep, info); 2428 } 2429 2430 return ret; 2431 } 2432 2433 /* 2434 * Free space merging rules: 2435 * 1) Merge trimmed areas together 2436 * 2) Let untrimmed areas coalesce with trimmed areas 2437 * 3) Always pull neighboring regions from bitmaps 2438 * 2439 * The above rules are for when we merge free space based on btrfs_trim_state. 2440 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the 2441 * same reason: to promote larger extent regions which makes life easier for 2442 * find_free_extent(). Rule 2 enables coalescing based on the common path 2443 * being returning free space from btrfs_finish_extent_commit(). So when free 2444 * space is trimmed, it will prevent aggregating trimmed new region and 2445 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents 2446 * and provide find_free_extent() with the largest extents possible hoping for 2447 * the reuse path. 2448 */ 2449 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2450 struct btrfs_free_space *info, bool update_stat) 2451 { 2452 struct btrfs_free_space *left_info = NULL; 2453 struct btrfs_free_space *right_info; 2454 bool merged = false; 2455 u64 offset = info->offset; 2456 u64 bytes = info->bytes; 2457 const bool is_trimmed = btrfs_free_space_trimmed(info); 2458 struct rb_node *right_prev = NULL; 2459 2460 /* 2461 * first we want to see if there is free space adjacent to the range we 2462 * are adding, if there is remove that struct and add a new one to 2463 * cover the entire range 2464 */ 2465 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2466 if (right_info) 2467 right_prev = rb_prev(&right_info->offset_index); 2468 2469 if (right_prev) 2470 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index); 2471 else if (!right_info) 2472 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2473 2474 /* See try_merge_free_space() comment. */ 2475 if (right_info && !right_info->bitmap && 2476 (!is_trimmed || btrfs_free_space_trimmed(right_info))) { 2477 unlink_free_space(ctl, right_info, update_stat); 2478 info->bytes += right_info->bytes; 2479 kmem_cache_free(btrfs_free_space_cachep, right_info); 2480 merged = true; 2481 } 2482 2483 /* See try_merge_free_space() comment. */ 2484 if (left_info && !left_info->bitmap && 2485 left_info->offset + left_info->bytes == offset && 2486 (!is_trimmed || btrfs_free_space_trimmed(left_info))) { 2487 unlink_free_space(ctl, left_info, update_stat); 2488 info->offset = left_info->offset; 2489 info->bytes += left_info->bytes; 2490 kmem_cache_free(btrfs_free_space_cachep, left_info); 2491 merged = true; 2492 } 2493 2494 return merged; 2495 } 2496 2497 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2498 struct btrfs_free_space *info, 2499 bool update_stat) 2500 { 2501 struct btrfs_free_space *bitmap; 2502 unsigned long i; 2503 unsigned long j; 2504 const u64 end = info->offset + info->bytes; 2505 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2506 u64 bytes; 2507 2508 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2509 if (!bitmap) 2510 return false; 2511 2512 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2513 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2514 if (j == i) 2515 return false; 2516 bytes = (j - i) * ctl->unit; 2517 info->bytes += bytes; 2518 2519 /* See try_merge_free_space() comment. */ 2520 if (!btrfs_free_space_trimmed(bitmap)) 2521 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2522 2523 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat); 2524 2525 if (!bitmap->bytes) 2526 free_bitmap(ctl, bitmap); 2527 2528 return true; 2529 } 2530 2531 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2532 struct btrfs_free_space *info, 2533 bool update_stat) 2534 { 2535 struct btrfs_free_space *bitmap; 2536 u64 bitmap_offset; 2537 unsigned long i; 2538 unsigned long j; 2539 unsigned long prev_j; 2540 u64 bytes; 2541 2542 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2543 /* If we're on a boundary, try the previous logical bitmap. */ 2544 if (bitmap_offset == info->offset) { 2545 if (info->offset == 0) 2546 return false; 2547 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2548 } 2549 2550 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2551 if (!bitmap) 2552 return false; 2553 2554 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2555 j = 0; 2556 prev_j = (unsigned long)-1; 2557 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2558 if (j > i) 2559 break; 2560 prev_j = j; 2561 } 2562 if (prev_j == i) 2563 return false; 2564 2565 if (prev_j == (unsigned long)-1) 2566 bytes = (i + 1) * ctl->unit; 2567 else 2568 bytes = (i - prev_j) * ctl->unit; 2569 2570 info->offset -= bytes; 2571 info->bytes += bytes; 2572 2573 /* See try_merge_free_space() comment. */ 2574 if (!btrfs_free_space_trimmed(bitmap)) 2575 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2576 2577 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat); 2578 2579 if (!bitmap->bytes) 2580 free_bitmap(ctl, bitmap); 2581 2582 return true; 2583 } 2584 2585 /* 2586 * We prefer always to allocate from extent entries, both for clustered and 2587 * non-clustered allocation requests. So when attempting to add a new extent 2588 * entry, try to see if there's adjacent free space in bitmap entries, and if 2589 * there is, migrate that space from the bitmaps to the extent. 2590 * Like this we get better chances of satisfying space allocation requests 2591 * because we attempt to satisfy them based on a single cache entry, and never 2592 * on 2 or more entries - even if the entries represent a contiguous free space 2593 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2594 * ends). 2595 */ 2596 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2597 struct btrfs_free_space *info, 2598 bool update_stat) 2599 { 2600 /* 2601 * Only work with disconnected entries, as we can change their offset, 2602 * and must be extent entries. 2603 */ 2604 ASSERT(!info->bitmap); 2605 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2606 2607 if (ctl->total_bitmaps > 0) { 2608 bool stole_end; 2609 bool stole_front = false; 2610 2611 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2612 if (ctl->total_bitmaps > 0) 2613 stole_front = steal_from_bitmap_to_front(ctl, info, 2614 update_stat); 2615 2616 if (stole_end || stole_front) 2617 try_merge_free_space(ctl, info, update_stat); 2618 } 2619 } 2620 2621 int __btrfs_add_free_space(struct btrfs_block_group *block_group, 2622 u64 offset, u64 bytes, 2623 enum btrfs_trim_state trim_state) 2624 { 2625 struct btrfs_fs_info *fs_info = block_group->fs_info; 2626 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2627 struct btrfs_free_space *info; 2628 int ret = 0; 2629 u64 filter_bytes = bytes; 2630 2631 ASSERT(!btrfs_is_zoned(fs_info)); 2632 2633 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2634 if (!info) 2635 return -ENOMEM; 2636 2637 info->offset = offset; 2638 info->bytes = bytes; 2639 info->trim_state = trim_state; 2640 RB_CLEAR_NODE(&info->offset_index); 2641 RB_CLEAR_NODE(&info->bytes_index); 2642 2643 spin_lock(&ctl->tree_lock); 2644 2645 if (try_merge_free_space(ctl, info, true)) 2646 goto link; 2647 2648 /* 2649 * There was no extent directly to the left or right of this new 2650 * extent then we know we're going to have to allocate a new extent, so 2651 * before we do that see if we need to drop this into a bitmap 2652 */ 2653 ret = insert_into_bitmap(ctl, info); 2654 if (ret < 0) { 2655 goto out; 2656 } else if (ret) { 2657 ret = 0; 2658 goto out; 2659 } 2660 link: 2661 /* 2662 * Only steal free space from adjacent bitmaps if we're sure we're not 2663 * going to add the new free space to existing bitmap entries - because 2664 * that would mean unnecessary work that would be reverted. Therefore 2665 * attempt to steal space from bitmaps if we're adding an extent entry. 2666 */ 2667 steal_from_bitmap(ctl, info, true); 2668 2669 filter_bytes = max(filter_bytes, info->bytes); 2670 2671 ret = link_free_space(ctl, info); 2672 if (ret) 2673 kmem_cache_free(btrfs_free_space_cachep, info); 2674 out: 2675 btrfs_discard_update_discardable(block_group); 2676 spin_unlock(&ctl->tree_lock); 2677 2678 if (ret) { 2679 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2680 ASSERT(ret != -EEXIST); 2681 } 2682 2683 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { 2684 btrfs_discard_check_filter(block_group, filter_bytes); 2685 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 2686 } 2687 2688 return ret; 2689 } 2690 2691 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group, 2692 u64 bytenr, u64 size, bool used) 2693 { 2694 struct btrfs_space_info *sinfo = block_group->space_info; 2695 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2696 u64 offset = bytenr - block_group->start; 2697 u64 to_free, to_unusable; 2698 int bg_reclaim_threshold = 0; 2699 bool initial = (size == block_group->length); 2700 u64 reclaimable_unusable; 2701 2702 WARN_ON(!initial && offset + size > block_group->zone_capacity); 2703 2704 if (!initial) 2705 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold); 2706 2707 spin_lock(&ctl->tree_lock); 2708 /* Count initial region as zone_unusable until it gets activated. */ 2709 if (!used) 2710 to_free = size; 2711 else if (initial && 2712 test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &block_group->fs_info->flags) && 2713 (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2714 to_free = 0; 2715 else if (initial) 2716 to_free = block_group->zone_capacity; 2717 else if (offset >= block_group->alloc_offset) 2718 to_free = size; 2719 else if (offset + size <= block_group->alloc_offset) 2720 to_free = 0; 2721 else 2722 to_free = offset + size - block_group->alloc_offset; 2723 to_unusable = size - to_free; 2724 2725 ctl->free_space += to_free; 2726 /* 2727 * If the block group is read-only, we should account freed space into 2728 * bytes_readonly. 2729 */ 2730 if (!block_group->ro) 2731 block_group->zone_unusable += to_unusable; 2732 spin_unlock(&ctl->tree_lock); 2733 if (!used) { 2734 spin_lock(&block_group->lock); 2735 block_group->alloc_offset -= size; 2736 spin_unlock(&block_group->lock); 2737 } 2738 2739 reclaimable_unusable = block_group->zone_unusable - 2740 (block_group->length - block_group->zone_capacity); 2741 /* All the region is now unusable. Mark it as unused and reclaim */ 2742 if (block_group->zone_unusable == block_group->length && 2743 block_group->alloc_offset) { 2744 btrfs_mark_bg_unused(block_group); 2745 } else if (bg_reclaim_threshold && 2746 reclaimable_unusable >= 2747 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) { 2748 btrfs_mark_bg_to_reclaim(block_group); 2749 } 2750 2751 return 0; 2752 } 2753 2754 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2755 u64 bytenr, u64 size) 2756 { 2757 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2758 2759 if (btrfs_is_zoned(block_group->fs_info)) 2760 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2761 true); 2762 2763 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) 2764 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2765 2766 return __btrfs_add_free_space(block_group, bytenr, size, trim_state); 2767 } 2768 2769 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group, 2770 u64 bytenr, u64 size) 2771 { 2772 if (btrfs_is_zoned(block_group->fs_info)) 2773 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2774 false); 2775 2776 return btrfs_add_free_space(block_group, bytenr, size); 2777 } 2778 2779 /* 2780 * This is a subtle distinction because when adding free space back in general, 2781 * we want it to be added as untrimmed for async. But in the case where we add 2782 * it on loading of a block group, we want to consider it trimmed. 2783 */ 2784 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, 2785 u64 bytenr, u64 size) 2786 { 2787 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2788 2789 if (btrfs_is_zoned(block_group->fs_info)) 2790 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2791 true); 2792 2793 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || 2794 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 2795 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2796 2797 return __btrfs_add_free_space(block_group, bytenr, size, trim_state); 2798 } 2799 2800 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2801 u64 offset, u64 bytes) 2802 { 2803 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2804 struct btrfs_free_space *info; 2805 int ret; 2806 bool re_search = false; 2807 2808 if (btrfs_is_zoned(block_group->fs_info)) { 2809 /* 2810 * This can happen with conventional zones when replaying log. 2811 * Since the allocation info of tree-log nodes are not recorded 2812 * to the extent-tree, calculate_alloc_pointer() failed to 2813 * advance the allocation pointer after last allocated tree log 2814 * node blocks. 2815 * 2816 * This function is called from 2817 * btrfs_pin_extent_for_log_replay() when replaying the log. 2818 * Advance the pointer not to overwrite the tree-log nodes. 2819 */ 2820 if (block_group->start + block_group->alloc_offset < 2821 offset + bytes) { 2822 block_group->alloc_offset = 2823 offset + bytes - block_group->start; 2824 } 2825 return 0; 2826 } 2827 2828 spin_lock(&ctl->tree_lock); 2829 2830 again: 2831 ret = 0; 2832 if (!bytes) 2833 goto out_lock; 2834 2835 info = tree_search_offset(ctl, offset, 0, 0); 2836 if (!info) { 2837 /* 2838 * oops didn't find an extent that matched the space we wanted 2839 * to remove, look for a bitmap instead 2840 */ 2841 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2842 1, 0); 2843 if (!info) { 2844 /* 2845 * If we found a partial bit of our free space in a 2846 * bitmap but then couldn't find the other part this may 2847 * be a problem, so WARN about it. 2848 */ 2849 WARN_ON(re_search); 2850 goto out_lock; 2851 } 2852 } 2853 2854 re_search = false; 2855 if (!info->bitmap) { 2856 unlink_free_space(ctl, info, true); 2857 if (offset == info->offset) { 2858 u64 to_free = min(bytes, info->bytes); 2859 2860 info->bytes -= to_free; 2861 info->offset += to_free; 2862 if (info->bytes) { 2863 ret = link_free_space(ctl, info); 2864 WARN_ON(ret); 2865 } else { 2866 kmem_cache_free(btrfs_free_space_cachep, info); 2867 } 2868 2869 offset += to_free; 2870 bytes -= to_free; 2871 goto again; 2872 } else { 2873 u64 old_end = info->bytes + info->offset; 2874 2875 info->bytes = offset - info->offset; 2876 ret = link_free_space(ctl, info); 2877 WARN_ON(ret); 2878 if (ret) 2879 goto out_lock; 2880 2881 /* Not enough bytes in this entry to satisfy us */ 2882 if (old_end < offset + bytes) { 2883 bytes -= old_end - offset; 2884 offset = old_end; 2885 goto again; 2886 } else if (old_end == offset + bytes) { 2887 /* all done */ 2888 goto out_lock; 2889 } 2890 spin_unlock(&ctl->tree_lock); 2891 2892 ret = __btrfs_add_free_space(block_group, 2893 offset + bytes, 2894 old_end - (offset + bytes), 2895 info->trim_state); 2896 WARN_ON(ret); 2897 goto out; 2898 } 2899 } 2900 2901 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2902 if (ret == -EAGAIN) { 2903 re_search = true; 2904 goto again; 2905 } 2906 out_lock: 2907 btrfs_discard_update_discardable(block_group); 2908 spin_unlock(&ctl->tree_lock); 2909 out: 2910 return ret; 2911 } 2912 2913 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2914 u64 bytes) 2915 { 2916 struct btrfs_fs_info *fs_info = block_group->fs_info; 2917 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2918 struct btrfs_free_space *info; 2919 struct rb_node *n; 2920 int count = 0; 2921 2922 /* 2923 * Zoned btrfs does not use free space tree and cluster. Just print 2924 * out the free space after the allocation offset. 2925 */ 2926 if (btrfs_is_zoned(fs_info)) { 2927 btrfs_info(fs_info, "free space %llu active %d", 2928 block_group->zone_capacity - block_group->alloc_offset, 2929 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2930 &block_group->runtime_flags)); 2931 return; 2932 } 2933 2934 spin_lock(&ctl->tree_lock); 2935 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2936 info = rb_entry(n, struct btrfs_free_space, offset_index); 2937 if (info->bytes >= bytes && !block_group->ro) 2938 count++; 2939 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2940 info->offset, info->bytes, 2941 (info->bitmap) ? "yes" : "no"); 2942 } 2943 spin_unlock(&ctl->tree_lock); 2944 btrfs_info(fs_info, "block group has cluster?: %s", 2945 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2946 btrfs_info(fs_info, 2947 "%d blocks of free space at or bigger than bytes is", count); 2948 } 2949 2950 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group, 2951 struct btrfs_free_space_ctl *ctl) 2952 { 2953 struct btrfs_fs_info *fs_info = block_group->fs_info; 2954 2955 spin_lock_init(&ctl->tree_lock); 2956 ctl->unit = fs_info->sectorsize; 2957 ctl->start = block_group->start; 2958 ctl->block_group = block_group; 2959 ctl->op = &free_space_op; 2960 ctl->free_space_bytes = RB_ROOT_CACHED; 2961 INIT_LIST_HEAD(&ctl->trimming_ranges); 2962 mutex_init(&ctl->cache_writeout_mutex); 2963 2964 /* 2965 * we only want to have 32k of ram per block group for keeping 2966 * track of free space, and if we pass 1/2 of that we want to 2967 * start converting things over to using bitmaps 2968 */ 2969 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2970 } 2971 2972 /* 2973 * for a given cluster, put all of its extents back into the free 2974 * space cache. If the block group passed doesn't match the block group 2975 * pointed to by the cluster, someone else raced in and freed the 2976 * cluster already. In that case, we just return without changing anything 2977 */ 2978 static void __btrfs_return_cluster_to_free_space( 2979 struct btrfs_block_group *block_group, 2980 struct btrfs_free_cluster *cluster) 2981 { 2982 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2983 struct rb_node *node; 2984 2985 lockdep_assert_held(&ctl->tree_lock); 2986 2987 spin_lock(&cluster->lock); 2988 if (cluster->block_group != block_group) { 2989 spin_unlock(&cluster->lock); 2990 return; 2991 } 2992 2993 cluster->block_group = NULL; 2994 cluster->window_start = 0; 2995 list_del_init(&cluster->block_group_list); 2996 2997 node = rb_first(&cluster->root); 2998 while (node) { 2999 struct btrfs_free_space *entry; 3000 3001 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3002 node = rb_next(&entry->offset_index); 3003 rb_erase(&entry->offset_index, &cluster->root); 3004 RB_CLEAR_NODE(&entry->offset_index); 3005 3006 if (!entry->bitmap) { 3007 /* Merging treats extents as if they were new */ 3008 if (!btrfs_free_space_trimmed(entry)) { 3009 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3010 ctl->discardable_bytes[BTRFS_STAT_CURR] -= 3011 entry->bytes; 3012 } 3013 3014 try_merge_free_space(ctl, entry, false); 3015 steal_from_bitmap(ctl, entry, false); 3016 3017 /* As we insert directly, update these statistics */ 3018 if (!btrfs_free_space_trimmed(entry)) { 3019 ctl->discardable_extents[BTRFS_STAT_CURR]++; 3020 ctl->discardable_bytes[BTRFS_STAT_CURR] += 3021 entry->bytes; 3022 } 3023 } 3024 tree_insert_offset(ctl, NULL, entry); 3025 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes, 3026 entry_less); 3027 } 3028 cluster->root = RB_ROOT; 3029 spin_unlock(&cluster->lock); 3030 btrfs_put_block_group(block_group); 3031 } 3032 3033 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 3034 { 3035 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3036 struct btrfs_free_cluster *cluster; 3037 struct list_head *head; 3038 3039 spin_lock(&ctl->tree_lock); 3040 while ((head = block_group->cluster_list.next) != 3041 &block_group->cluster_list) { 3042 cluster = list_entry(head, struct btrfs_free_cluster, 3043 block_group_list); 3044 3045 WARN_ON(cluster->block_group != block_group); 3046 __btrfs_return_cluster_to_free_space(block_group, cluster); 3047 3048 cond_resched_lock(&ctl->tree_lock); 3049 } 3050 __btrfs_remove_free_space_cache(ctl); 3051 btrfs_discard_update_discardable(block_group); 3052 spin_unlock(&ctl->tree_lock); 3053 3054 } 3055 3056 /* 3057 * Walk @block_group's free space rb_tree to determine if everything is trimmed. 3058 */ 3059 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) 3060 { 3061 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3062 struct btrfs_free_space *info; 3063 struct rb_node *node; 3064 bool ret = true; 3065 3066 spin_lock(&ctl->tree_lock); 3067 node = rb_first(&ctl->free_space_offset); 3068 3069 while (node) { 3070 info = rb_entry(node, struct btrfs_free_space, offset_index); 3071 3072 if (!btrfs_free_space_trimmed(info)) { 3073 ret = false; 3074 break; 3075 } 3076 3077 node = rb_next(node); 3078 } 3079 3080 spin_unlock(&ctl->tree_lock); 3081 return ret; 3082 } 3083 3084 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 3085 u64 offset, u64 bytes, u64 empty_size, 3086 u64 *max_extent_size) 3087 { 3088 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3089 struct btrfs_discard_ctl *discard_ctl = 3090 &block_group->fs_info->discard_ctl; 3091 struct btrfs_free_space *entry = NULL; 3092 u64 bytes_search = bytes + empty_size; 3093 u64 ret = 0; 3094 u64 align_gap = 0; 3095 u64 align_gap_len = 0; 3096 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3097 bool use_bytes_index = (offset == block_group->start); 3098 3099 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3100 3101 spin_lock(&ctl->tree_lock); 3102 entry = find_free_space(ctl, &offset, &bytes_search, 3103 block_group->full_stripe_len, max_extent_size, 3104 use_bytes_index); 3105 if (!entry) 3106 goto out; 3107 3108 ret = offset; 3109 if (entry->bitmap) { 3110 bitmap_clear_bits(ctl, entry, offset, bytes, true); 3111 3112 if (!btrfs_free_space_trimmed(entry)) 3113 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3114 3115 if (!entry->bytes) 3116 free_bitmap(ctl, entry); 3117 } else { 3118 unlink_free_space(ctl, entry, true); 3119 align_gap_len = offset - entry->offset; 3120 align_gap = entry->offset; 3121 align_gap_trim_state = entry->trim_state; 3122 3123 if (!btrfs_free_space_trimmed(entry)) 3124 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3125 3126 entry->offset = offset + bytes; 3127 WARN_ON(entry->bytes < bytes + align_gap_len); 3128 3129 entry->bytes -= bytes + align_gap_len; 3130 if (!entry->bytes) 3131 kmem_cache_free(btrfs_free_space_cachep, entry); 3132 else 3133 link_free_space(ctl, entry); 3134 } 3135 out: 3136 btrfs_discard_update_discardable(block_group); 3137 spin_unlock(&ctl->tree_lock); 3138 3139 if (align_gap_len) 3140 __btrfs_add_free_space(block_group, align_gap, align_gap_len, 3141 align_gap_trim_state); 3142 return ret; 3143 } 3144 3145 /* 3146 * given a cluster, put all of its extents back into the free space 3147 * cache. If a block group is passed, this function will only free 3148 * a cluster that belongs to the passed block group. 3149 * 3150 * Otherwise, it'll get a reference on the block group pointed to by the 3151 * cluster and remove the cluster from it. 3152 */ 3153 void btrfs_return_cluster_to_free_space( 3154 struct btrfs_block_group *block_group, 3155 struct btrfs_free_cluster *cluster) 3156 { 3157 struct btrfs_free_space_ctl *ctl; 3158 3159 /* first, get a safe pointer to the block group */ 3160 spin_lock(&cluster->lock); 3161 if (!block_group) { 3162 block_group = cluster->block_group; 3163 if (!block_group) { 3164 spin_unlock(&cluster->lock); 3165 return; 3166 } 3167 } else if (cluster->block_group != block_group) { 3168 /* someone else has already freed it don't redo their work */ 3169 spin_unlock(&cluster->lock); 3170 return; 3171 } 3172 btrfs_get_block_group(block_group); 3173 spin_unlock(&cluster->lock); 3174 3175 ctl = block_group->free_space_ctl; 3176 3177 /* now return any extents the cluster had on it */ 3178 spin_lock(&ctl->tree_lock); 3179 __btrfs_return_cluster_to_free_space(block_group, cluster); 3180 spin_unlock(&ctl->tree_lock); 3181 3182 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); 3183 3184 /* finally drop our ref */ 3185 btrfs_put_block_group(block_group); 3186 } 3187 3188 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 3189 struct btrfs_free_cluster *cluster, 3190 struct btrfs_free_space *entry, 3191 u64 bytes, u64 min_start, 3192 u64 *max_extent_size) 3193 { 3194 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3195 int err; 3196 u64 search_start = cluster->window_start; 3197 u64 search_bytes = bytes; 3198 u64 ret = 0; 3199 3200 search_start = min_start; 3201 search_bytes = bytes; 3202 3203 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 3204 if (err) { 3205 *max_extent_size = max(get_max_extent_size(entry), 3206 *max_extent_size); 3207 return 0; 3208 } 3209 3210 ret = search_start; 3211 bitmap_clear_bits(ctl, entry, ret, bytes, false); 3212 3213 return ret; 3214 } 3215 3216 /* 3217 * given a cluster, try to allocate 'bytes' from it, returns 0 3218 * if it couldn't find anything suitably large, or a logical disk offset 3219 * if things worked out 3220 */ 3221 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 3222 struct btrfs_free_cluster *cluster, u64 bytes, 3223 u64 min_start, u64 *max_extent_size) 3224 { 3225 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3226 struct btrfs_discard_ctl *discard_ctl = 3227 &block_group->fs_info->discard_ctl; 3228 struct btrfs_free_space *entry = NULL; 3229 struct rb_node *node; 3230 u64 ret = 0; 3231 3232 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3233 3234 spin_lock(&cluster->lock); 3235 if (bytes > cluster->max_size) 3236 goto out; 3237 3238 if (cluster->block_group != block_group) 3239 goto out; 3240 3241 node = rb_first(&cluster->root); 3242 if (!node) 3243 goto out; 3244 3245 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3246 while (1) { 3247 if (entry->bytes < bytes) 3248 *max_extent_size = max(get_max_extent_size(entry), 3249 *max_extent_size); 3250 3251 if (entry->bytes < bytes || 3252 (!entry->bitmap && entry->offset < min_start)) { 3253 node = rb_next(&entry->offset_index); 3254 if (!node) 3255 break; 3256 entry = rb_entry(node, struct btrfs_free_space, 3257 offset_index); 3258 continue; 3259 } 3260 3261 if (entry->bitmap) { 3262 ret = btrfs_alloc_from_bitmap(block_group, 3263 cluster, entry, bytes, 3264 cluster->window_start, 3265 max_extent_size); 3266 if (ret == 0) { 3267 node = rb_next(&entry->offset_index); 3268 if (!node) 3269 break; 3270 entry = rb_entry(node, struct btrfs_free_space, 3271 offset_index); 3272 continue; 3273 } 3274 cluster->window_start += bytes; 3275 } else { 3276 ret = entry->offset; 3277 3278 entry->offset += bytes; 3279 entry->bytes -= bytes; 3280 } 3281 3282 break; 3283 } 3284 out: 3285 spin_unlock(&cluster->lock); 3286 3287 if (!ret) 3288 return 0; 3289 3290 spin_lock(&ctl->tree_lock); 3291 3292 if (!btrfs_free_space_trimmed(entry)) 3293 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3294 3295 ctl->free_space -= bytes; 3296 if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) 3297 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 3298 3299 spin_lock(&cluster->lock); 3300 if (entry->bytes == 0) { 3301 rb_erase(&entry->offset_index, &cluster->root); 3302 ctl->free_extents--; 3303 if (entry->bitmap) { 3304 kmem_cache_free(btrfs_free_space_bitmap_cachep, 3305 entry->bitmap); 3306 ctl->total_bitmaps--; 3307 recalculate_thresholds(ctl); 3308 } else if (!btrfs_free_space_trimmed(entry)) { 3309 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3310 } 3311 kmem_cache_free(btrfs_free_space_cachep, entry); 3312 } 3313 3314 spin_unlock(&cluster->lock); 3315 spin_unlock(&ctl->tree_lock); 3316 3317 return ret; 3318 } 3319 3320 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 3321 struct btrfs_free_space *entry, 3322 struct btrfs_free_cluster *cluster, 3323 u64 offset, u64 bytes, 3324 u64 cont1_bytes, u64 min_bytes) 3325 { 3326 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3327 unsigned long next_zero; 3328 unsigned long i; 3329 unsigned long want_bits; 3330 unsigned long min_bits; 3331 unsigned long found_bits; 3332 unsigned long max_bits = 0; 3333 unsigned long start = 0; 3334 unsigned long total_found = 0; 3335 int ret; 3336 3337 lockdep_assert_held(&ctl->tree_lock); 3338 3339 i = offset_to_bit(entry->offset, ctl->unit, 3340 max_t(u64, offset, entry->offset)); 3341 want_bits = bytes_to_bits(bytes, ctl->unit); 3342 min_bits = bytes_to_bits(min_bytes, ctl->unit); 3343 3344 /* 3345 * Don't bother looking for a cluster in this bitmap if it's heavily 3346 * fragmented. 3347 */ 3348 if (entry->max_extent_size && 3349 entry->max_extent_size < cont1_bytes) 3350 return -ENOSPC; 3351 again: 3352 found_bits = 0; 3353 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 3354 next_zero = find_next_zero_bit(entry->bitmap, 3355 BITS_PER_BITMAP, i); 3356 if (next_zero - i >= min_bits) { 3357 found_bits = next_zero - i; 3358 if (found_bits > max_bits) 3359 max_bits = found_bits; 3360 break; 3361 } 3362 if (next_zero - i > max_bits) 3363 max_bits = next_zero - i; 3364 i = next_zero; 3365 } 3366 3367 if (!found_bits) { 3368 entry->max_extent_size = (u64)max_bits * ctl->unit; 3369 return -ENOSPC; 3370 } 3371 3372 if (!total_found) { 3373 start = i; 3374 cluster->max_size = 0; 3375 } 3376 3377 total_found += found_bits; 3378 3379 if (cluster->max_size < found_bits * ctl->unit) 3380 cluster->max_size = found_bits * ctl->unit; 3381 3382 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 3383 i = next_zero + 1; 3384 goto again; 3385 } 3386 3387 cluster->window_start = start * ctl->unit + entry->offset; 3388 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3389 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); 3390 3391 /* 3392 * We need to know if we're currently on the normal space index when we 3393 * manipulate the bitmap so that we know we need to remove and re-insert 3394 * it into the space_index tree. Clear the bytes_index node here so the 3395 * bitmap manipulation helpers know not to mess with the space_index 3396 * until this bitmap entry is added back into the normal cache. 3397 */ 3398 RB_CLEAR_NODE(&entry->bytes_index); 3399 3400 ret = tree_insert_offset(ctl, cluster, entry); 3401 ASSERT(!ret); /* -EEXIST; Logic error */ 3402 3403 trace_btrfs_setup_cluster(block_group, cluster, 3404 total_found * ctl->unit, 1); 3405 return 0; 3406 } 3407 3408 /* 3409 * This searches the block group for just extents to fill the cluster with. 3410 * Try to find a cluster with at least bytes total bytes, at least one 3411 * extent of cont1_bytes, and other clusters of at least min_bytes. 3412 */ 3413 static noinline int 3414 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 3415 struct btrfs_free_cluster *cluster, 3416 struct list_head *bitmaps, u64 offset, u64 bytes, 3417 u64 cont1_bytes, u64 min_bytes) 3418 { 3419 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3420 struct btrfs_free_space *first = NULL; 3421 struct btrfs_free_space *entry = NULL; 3422 struct btrfs_free_space *last; 3423 struct rb_node *node; 3424 u64 window_free; 3425 u64 max_extent; 3426 u64 total_size = 0; 3427 3428 lockdep_assert_held(&ctl->tree_lock); 3429 3430 entry = tree_search_offset(ctl, offset, 0, 1); 3431 if (!entry) 3432 return -ENOSPC; 3433 3434 /* 3435 * We don't want bitmaps, so just move along until we find a normal 3436 * extent entry. 3437 */ 3438 while (entry->bitmap || entry->bytes < min_bytes) { 3439 if (entry->bitmap && list_empty(&entry->list)) 3440 list_add_tail(&entry->list, bitmaps); 3441 node = rb_next(&entry->offset_index); 3442 if (!node) 3443 return -ENOSPC; 3444 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3445 } 3446 3447 window_free = entry->bytes; 3448 max_extent = entry->bytes; 3449 first = entry; 3450 last = entry; 3451 3452 for (node = rb_next(&entry->offset_index); node; 3453 node = rb_next(&entry->offset_index)) { 3454 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3455 3456 if (entry->bitmap) { 3457 if (list_empty(&entry->list)) 3458 list_add_tail(&entry->list, bitmaps); 3459 continue; 3460 } 3461 3462 if (entry->bytes < min_bytes) 3463 continue; 3464 3465 last = entry; 3466 window_free += entry->bytes; 3467 if (entry->bytes > max_extent) 3468 max_extent = entry->bytes; 3469 } 3470 3471 if (window_free < bytes || max_extent < cont1_bytes) 3472 return -ENOSPC; 3473 3474 cluster->window_start = first->offset; 3475 3476 node = &first->offset_index; 3477 3478 /* 3479 * now we've found our entries, pull them out of the free space 3480 * cache and put them into the cluster rbtree 3481 */ 3482 do { 3483 int ret; 3484 3485 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3486 node = rb_next(&entry->offset_index); 3487 if (entry->bitmap || entry->bytes < min_bytes) 3488 continue; 3489 3490 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3491 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); 3492 ret = tree_insert_offset(ctl, cluster, entry); 3493 total_size += entry->bytes; 3494 ASSERT(!ret); /* -EEXIST; Logic error */ 3495 } while (node && entry != last); 3496 3497 cluster->max_size = max_extent; 3498 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 3499 return 0; 3500 } 3501 3502 /* 3503 * This specifically looks for bitmaps that may work in the cluster, we assume 3504 * that we have already failed to find extents that will work. 3505 */ 3506 static noinline int 3507 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3508 struct btrfs_free_cluster *cluster, 3509 struct list_head *bitmaps, u64 offset, u64 bytes, 3510 u64 cont1_bytes, u64 min_bytes) 3511 { 3512 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3513 struct btrfs_free_space *entry = NULL; 3514 int ret = -ENOSPC; 3515 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3516 3517 if (ctl->total_bitmaps == 0) 3518 return -ENOSPC; 3519 3520 /* 3521 * The bitmap that covers offset won't be in the list unless offset 3522 * is just its start offset. 3523 */ 3524 if (!list_empty(bitmaps)) 3525 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3526 3527 if (!entry || entry->offset != bitmap_offset) { 3528 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3529 if (entry && list_empty(&entry->list)) 3530 list_add(&entry->list, bitmaps); 3531 } 3532 3533 list_for_each_entry(entry, bitmaps, list) { 3534 if (entry->bytes < bytes) 3535 continue; 3536 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3537 bytes, cont1_bytes, min_bytes); 3538 if (!ret) 3539 return 0; 3540 } 3541 3542 /* 3543 * The bitmaps list has all the bitmaps that record free space 3544 * starting after offset, so no more search is required. 3545 */ 3546 return -ENOSPC; 3547 } 3548 3549 /* 3550 * here we try to find a cluster of blocks in a block group. The goal 3551 * is to find at least bytes+empty_size. 3552 * We might not find them all in one contiguous area. 3553 * 3554 * returns zero and sets up cluster if things worked out, otherwise 3555 * it returns -enospc 3556 */ 3557 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3558 struct btrfs_free_cluster *cluster, 3559 u64 offset, u64 bytes, u64 empty_size) 3560 { 3561 struct btrfs_fs_info *fs_info = block_group->fs_info; 3562 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3563 struct btrfs_free_space *entry, *tmp; 3564 LIST_HEAD(bitmaps); 3565 u64 min_bytes; 3566 u64 cont1_bytes; 3567 int ret; 3568 3569 /* 3570 * Choose the minimum extent size we'll require for this 3571 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3572 * For metadata, allow allocates with smaller extents. For 3573 * data, keep it dense. 3574 */ 3575 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3576 cont1_bytes = bytes + empty_size; 3577 min_bytes = cont1_bytes; 3578 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3579 cont1_bytes = bytes; 3580 min_bytes = fs_info->sectorsize; 3581 } else { 3582 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3583 min_bytes = fs_info->sectorsize; 3584 } 3585 3586 spin_lock(&ctl->tree_lock); 3587 3588 /* 3589 * If we know we don't have enough space to make a cluster don't even 3590 * bother doing all the work to try and find one. 3591 */ 3592 if (ctl->free_space < bytes) { 3593 spin_unlock(&ctl->tree_lock); 3594 return -ENOSPC; 3595 } 3596 3597 spin_lock(&cluster->lock); 3598 3599 /* someone already found a cluster, hooray */ 3600 if (cluster->block_group) { 3601 ret = 0; 3602 goto out; 3603 } 3604 3605 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3606 min_bytes); 3607 3608 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3609 bytes + empty_size, 3610 cont1_bytes, min_bytes); 3611 if (ret) 3612 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3613 offset, bytes + empty_size, 3614 cont1_bytes, min_bytes); 3615 3616 /* Clear our temporary list */ 3617 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3618 list_del_init(&entry->list); 3619 3620 if (!ret) { 3621 btrfs_get_block_group(block_group); 3622 list_add_tail(&cluster->block_group_list, 3623 &block_group->cluster_list); 3624 cluster->block_group = block_group; 3625 } else { 3626 trace_btrfs_failed_cluster_setup(block_group); 3627 } 3628 out: 3629 spin_unlock(&cluster->lock); 3630 spin_unlock(&ctl->tree_lock); 3631 3632 return ret; 3633 } 3634 3635 /* 3636 * simple code to zero out a cluster 3637 */ 3638 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3639 { 3640 spin_lock_init(&cluster->lock); 3641 spin_lock_init(&cluster->refill_lock); 3642 cluster->root = RB_ROOT; 3643 cluster->max_size = 0; 3644 cluster->fragmented = false; 3645 INIT_LIST_HEAD(&cluster->block_group_list); 3646 cluster->block_group = NULL; 3647 } 3648 3649 static int do_trimming(struct btrfs_block_group *block_group, 3650 u64 *total_trimmed, u64 start, u64 bytes, 3651 u64 reserved_start, u64 reserved_bytes, 3652 enum btrfs_trim_state reserved_trim_state, 3653 struct btrfs_trim_range *trim_entry) 3654 { 3655 struct btrfs_space_info *space_info = block_group->space_info; 3656 struct btrfs_fs_info *fs_info = block_group->fs_info; 3657 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3658 int ret; 3659 int update = 0; 3660 const u64 end = start + bytes; 3661 const u64 reserved_end = reserved_start + reserved_bytes; 3662 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3663 u64 trimmed = 0; 3664 3665 spin_lock(&space_info->lock); 3666 spin_lock(&block_group->lock); 3667 if (!block_group->ro) { 3668 block_group->reserved += reserved_bytes; 3669 space_info->bytes_reserved += reserved_bytes; 3670 update = 1; 3671 } 3672 spin_unlock(&block_group->lock); 3673 spin_unlock(&space_info->lock); 3674 3675 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3676 if (!ret) { 3677 *total_trimmed += trimmed; 3678 trim_state = BTRFS_TRIM_STATE_TRIMMED; 3679 } 3680 3681 mutex_lock(&ctl->cache_writeout_mutex); 3682 if (reserved_start < start) 3683 __btrfs_add_free_space(block_group, reserved_start, 3684 start - reserved_start, 3685 reserved_trim_state); 3686 if (end < reserved_end) 3687 __btrfs_add_free_space(block_group, end, reserved_end - end, 3688 reserved_trim_state); 3689 __btrfs_add_free_space(block_group, start, bytes, trim_state); 3690 list_del(&trim_entry->list); 3691 mutex_unlock(&ctl->cache_writeout_mutex); 3692 3693 if (update) { 3694 spin_lock(&space_info->lock); 3695 spin_lock(&block_group->lock); 3696 if (block_group->ro) 3697 space_info->bytes_readonly += reserved_bytes; 3698 block_group->reserved -= reserved_bytes; 3699 space_info->bytes_reserved -= reserved_bytes; 3700 spin_unlock(&block_group->lock); 3701 spin_unlock(&space_info->lock); 3702 } 3703 3704 return ret; 3705 } 3706 3707 /* 3708 * If @async is set, then we will trim 1 region and return. 3709 */ 3710 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3711 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3712 bool async) 3713 { 3714 struct btrfs_discard_ctl *discard_ctl = 3715 &block_group->fs_info->discard_ctl; 3716 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3717 struct btrfs_free_space *entry; 3718 struct rb_node *node; 3719 int ret = 0; 3720 u64 extent_start; 3721 u64 extent_bytes; 3722 enum btrfs_trim_state extent_trim_state; 3723 u64 bytes; 3724 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3725 3726 while (start < end) { 3727 struct btrfs_trim_range trim_entry; 3728 3729 mutex_lock(&ctl->cache_writeout_mutex); 3730 spin_lock(&ctl->tree_lock); 3731 3732 if (ctl->free_space < minlen) 3733 goto out_unlock; 3734 3735 entry = tree_search_offset(ctl, start, 0, 1); 3736 if (!entry) 3737 goto out_unlock; 3738 3739 /* Skip bitmaps and if async, already trimmed entries */ 3740 while (entry->bitmap || 3741 (async && btrfs_free_space_trimmed(entry))) { 3742 node = rb_next(&entry->offset_index); 3743 if (!node) 3744 goto out_unlock; 3745 entry = rb_entry(node, struct btrfs_free_space, 3746 offset_index); 3747 } 3748 3749 if (entry->offset >= end) 3750 goto out_unlock; 3751 3752 extent_start = entry->offset; 3753 extent_bytes = entry->bytes; 3754 extent_trim_state = entry->trim_state; 3755 if (async) { 3756 start = entry->offset; 3757 bytes = entry->bytes; 3758 if (bytes < minlen) { 3759 spin_unlock(&ctl->tree_lock); 3760 mutex_unlock(&ctl->cache_writeout_mutex); 3761 goto next; 3762 } 3763 unlink_free_space(ctl, entry, true); 3764 /* 3765 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3766 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim 3767 * X when we come back around. So trim it now. 3768 */ 3769 if (max_discard_size && 3770 bytes >= (max_discard_size + 3771 BTRFS_ASYNC_DISCARD_MIN_FILTER)) { 3772 bytes = max_discard_size; 3773 extent_bytes = max_discard_size; 3774 entry->offset += max_discard_size; 3775 entry->bytes -= max_discard_size; 3776 link_free_space(ctl, entry); 3777 } else { 3778 kmem_cache_free(btrfs_free_space_cachep, entry); 3779 } 3780 } else { 3781 start = max(start, extent_start); 3782 bytes = min(extent_start + extent_bytes, end) - start; 3783 if (bytes < minlen) { 3784 spin_unlock(&ctl->tree_lock); 3785 mutex_unlock(&ctl->cache_writeout_mutex); 3786 goto next; 3787 } 3788 3789 unlink_free_space(ctl, entry, true); 3790 kmem_cache_free(btrfs_free_space_cachep, entry); 3791 } 3792 3793 spin_unlock(&ctl->tree_lock); 3794 trim_entry.start = extent_start; 3795 trim_entry.bytes = extent_bytes; 3796 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3797 mutex_unlock(&ctl->cache_writeout_mutex); 3798 3799 ret = do_trimming(block_group, total_trimmed, start, bytes, 3800 extent_start, extent_bytes, extent_trim_state, 3801 &trim_entry); 3802 if (ret) { 3803 block_group->discard_cursor = start + bytes; 3804 break; 3805 } 3806 next: 3807 start += bytes; 3808 block_group->discard_cursor = start; 3809 if (async && *total_trimmed) 3810 break; 3811 3812 if (fatal_signal_pending(current)) { 3813 ret = -ERESTARTSYS; 3814 break; 3815 } 3816 3817 cond_resched(); 3818 } 3819 3820 return ret; 3821 3822 out_unlock: 3823 block_group->discard_cursor = btrfs_block_group_end(block_group); 3824 spin_unlock(&ctl->tree_lock); 3825 mutex_unlock(&ctl->cache_writeout_mutex); 3826 3827 return ret; 3828 } 3829 3830 /* 3831 * If we break out of trimming a bitmap prematurely, we should reset the 3832 * trimming bit. In a rather contrieved case, it's possible to race here so 3833 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. 3834 * 3835 * start = start of bitmap 3836 * end = near end of bitmap 3837 * 3838 * Thread 1: Thread 2: 3839 * trim_bitmaps(start) 3840 * trim_bitmaps(end) 3841 * end_trimming_bitmap() 3842 * reset_trimming_bitmap() 3843 */ 3844 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) 3845 { 3846 struct btrfs_free_space *entry; 3847 3848 spin_lock(&ctl->tree_lock); 3849 entry = tree_search_offset(ctl, offset, 1, 0); 3850 if (entry) { 3851 if (btrfs_free_space_trimmed(entry)) { 3852 ctl->discardable_extents[BTRFS_STAT_CURR] += 3853 entry->bitmap_extents; 3854 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; 3855 } 3856 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3857 } 3858 3859 spin_unlock(&ctl->tree_lock); 3860 } 3861 3862 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, 3863 struct btrfs_free_space *entry) 3864 { 3865 if (btrfs_free_space_trimming_bitmap(entry)) { 3866 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; 3867 ctl->discardable_extents[BTRFS_STAT_CURR] -= 3868 entry->bitmap_extents; 3869 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; 3870 } 3871 } 3872 3873 /* 3874 * If @async is set, then we will trim 1 region and return. 3875 */ 3876 static int trim_bitmaps(struct btrfs_block_group *block_group, 3877 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3878 u64 maxlen, bool async) 3879 { 3880 struct btrfs_discard_ctl *discard_ctl = 3881 &block_group->fs_info->discard_ctl; 3882 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3883 struct btrfs_free_space *entry; 3884 int ret = 0; 3885 int ret2; 3886 u64 bytes; 3887 u64 offset = offset_to_bitmap(ctl, start); 3888 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3889 3890 while (offset < end) { 3891 bool next_bitmap = false; 3892 struct btrfs_trim_range trim_entry; 3893 3894 mutex_lock(&ctl->cache_writeout_mutex); 3895 spin_lock(&ctl->tree_lock); 3896 3897 if (ctl->free_space < minlen) { 3898 block_group->discard_cursor = 3899 btrfs_block_group_end(block_group); 3900 spin_unlock(&ctl->tree_lock); 3901 mutex_unlock(&ctl->cache_writeout_mutex); 3902 break; 3903 } 3904 3905 entry = tree_search_offset(ctl, offset, 1, 0); 3906 /* 3907 * Bitmaps are marked trimmed lossily now to prevent constant 3908 * discarding of the same bitmap (the reason why we are bound 3909 * by the filters). So, retrim the block group bitmaps when we 3910 * are preparing to punt to the unused_bgs list. This uses 3911 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED 3912 * which is the only discard index which sets minlen to 0. 3913 */ 3914 if (!entry || (async && minlen && start == offset && 3915 btrfs_free_space_trimmed(entry))) { 3916 spin_unlock(&ctl->tree_lock); 3917 mutex_unlock(&ctl->cache_writeout_mutex); 3918 next_bitmap = true; 3919 goto next; 3920 } 3921 3922 /* 3923 * Async discard bitmap trimming begins at by setting the start 3924 * to be key.objectid and the offset_to_bitmap() aligns to the 3925 * start of the bitmap. This lets us know we are fully 3926 * scanning the bitmap rather than only some portion of it. 3927 */ 3928 if (start == offset) 3929 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; 3930 3931 bytes = minlen; 3932 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3933 if (ret2 || start >= end) { 3934 /* 3935 * We lossily consider a bitmap trimmed if we only skip 3936 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. 3937 */ 3938 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) 3939 end_trimming_bitmap(ctl, entry); 3940 else 3941 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3942 spin_unlock(&ctl->tree_lock); 3943 mutex_unlock(&ctl->cache_writeout_mutex); 3944 next_bitmap = true; 3945 goto next; 3946 } 3947 3948 /* 3949 * We already trimmed a region, but are using the locking above 3950 * to reset the trim_state. 3951 */ 3952 if (async && *total_trimmed) { 3953 spin_unlock(&ctl->tree_lock); 3954 mutex_unlock(&ctl->cache_writeout_mutex); 3955 goto out; 3956 } 3957 3958 bytes = min(bytes, end - start); 3959 if (bytes < minlen || (async && maxlen && bytes > maxlen)) { 3960 spin_unlock(&ctl->tree_lock); 3961 mutex_unlock(&ctl->cache_writeout_mutex); 3962 goto next; 3963 } 3964 3965 /* 3966 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3967 * If X < @minlen, we won't trim X when we come back around. 3968 * So trim it now. We differ here from trimming extents as we 3969 * don't keep individual state per bit. 3970 */ 3971 if (async && 3972 max_discard_size && 3973 bytes > (max_discard_size + minlen)) 3974 bytes = max_discard_size; 3975 3976 bitmap_clear_bits(ctl, entry, start, bytes, true); 3977 if (entry->bytes == 0) 3978 free_bitmap(ctl, entry); 3979 3980 spin_unlock(&ctl->tree_lock); 3981 trim_entry.start = start; 3982 trim_entry.bytes = bytes; 3983 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3984 mutex_unlock(&ctl->cache_writeout_mutex); 3985 3986 ret = do_trimming(block_group, total_trimmed, start, bytes, 3987 start, bytes, 0, &trim_entry); 3988 if (ret) { 3989 reset_trimming_bitmap(ctl, offset); 3990 block_group->discard_cursor = 3991 btrfs_block_group_end(block_group); 3992 break; 3993 } 3994 next: 3995 if (next_bitmap) { 3996 offset += BITS_PER_BITMAP * ctl->unit; 3997 start = offset; 3998 } else { 3999 start += bytes; 4000 } 4001 block_group->discard_cursor = start; 4002 4003 if (fatal_signal_pending(current)) { 4004 if (start != offset) 4005 reset_trimming_bitmap(ctl, offset); 4006 ret = -ERESTARTSYS; 4007 break; 4008 } 4009 4010 cond_resched(); 4011 } 4012 4013 if (offset >= end) 4014 block_group->discard_cursor = end; 4015 4016 out: 4017 return ret; 4018 } 4019 4020 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 4021 u64 *trimmed, u64 start, u64 end, u64 minlen) 4022 { 4023 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 4024 int ret; 4025 u64 rem = 0; 4026 4027 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 4028 4029 *trimmed = 0; 4030 4031 spin_lock(&block_group->lock); 4032 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4033 spin_unlock(&block_group->lock); 4034 return 0; 4035 } 4036 btrfs_freeze_block_group(block_group); 4037 spin_unlock(&block_group->lock); 4038 4039 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); 4040 if (ret) 4041 goto out; 4042 4043 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); 4044 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); 4045 /* If we ended in the middle of a bitmap, reset the trimming flag */ 4046 if (rem) 4047 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); 4048 out: 4049 btrfs_unfreeze_block_group(block_group); 4050 return ret; 4051 } 4052 4053 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, 4054 u64 *trimmed, u64 start, u64 end, u64 minlen, 4055 bool async) 4056 { 4057 int ret; 4058 4059 *trimmed = 0; 4060 4061 spin_lock(&block_group->lock); 4062 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4063 spin_unlock(&block_group->lock); 4064 return 0; 4065 } 4066 btrfs_freeze_block_group(block_group); 4067 spin_unlock(&block_group->lock); 4068 4069 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); 4070 btrfs_unfreeze_block_group(block_group); 4071 4072 return ret; 4073 } 4074 4075 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, 4076 u64 *trimmed, u64 start, u64 end, u64 minlen, 4077 u64 maxlen, bool async) 4078 { 4079 int ret; 4080 4081 *trimmed = 0; 4082 4083 spin_lock(&block_group->lock); 4084 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4085 spin_unlock(&block_group->lock); 4086 return 0; 4087 } 4088 btrfs_freeze_block_group(block_group); 4089 spin_unlock(&block_group->lock); 4090 4091 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, 4092 async); 4093 4094 btrfs_unfreeze_block_group(block_group); 4095 4096 return ret; 4097 } 4098 4099 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info) 4100 { 4101 return btrfs_super_cache_generation(fs_info->super_copy); 4102 } 4103 4104 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info, 4105 struct btrfs_trans_handle *trans) 4106 { 4107 struct btrfs_block_group *block_group; 4108 struct rb_node *node; 4109 int ret = 0; 4110 4111 btrfs_info(fs_info, "cleaning free space cache v1"); 4112 4113 node = rb_first_cached(&fs_info->block_group_cache_tree); 4114 while (node) { 4115 block_group = rb_entry(node, struct btrfs_block_group, cache_node); 4116 ret = btrfs_remove_free_space_inode(trans, NULL, block_group); 4117 if (ret) 4118 goto out; 4119 node = rb_next(node); 4120 } 4121 out: 4122 return ret; 4123 } 4124 4125 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active) 4126 { 4127 struct btrfs_trans_handle *trans; 4128 int ret; 4129 4130 /* 4131 * update_super_roots will appropriately set or unset 4132 * super_copy->cache_generation based on SPACE_CACHE and 4133 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a 4134 * transaction commit whether we are enabling space cache v1 and don't 4135 * have any other work to do, or are disabling it and removing free 4136 * space inodes. 4137 */ 4138 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4139 if (IS_ERR(trans)) 4140 return PTR_ERR(trans); 4141 4142 if (!active) { 4143 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); 4144 ret = cleanup_free_space_cache_v1(fs_info, trans); 4145 if (ret) { 4146 btrfs_abort_transaction(trans, ret); 4147 btrfs_end_transaction(trans); 4148 goto out; 4149 } 4150 } 4151 4152 ret = btrfs_commit_transaction(trans); 4153 out: 4154 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); 4155 4156 return ret; 4157 } 4158 4159 int __init btrfs_free_space_init(void) 4160 { 4161 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 4162 sizeof(struct btrfs_free_space), 0, 4163 SLAB_MEM_SPREAD, NULL); 4164 if (!btrfs_free_space_cachep) 4165 return -ENOMEM; 4166 4167 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 4168 PAGE_SIZE, PAGE_SIZE, 4169 SLAB_MEM_SPREAD, NULL); 4170 if (!btrfs_free_space_bitmap_cachep) { 4171 kmem_cache_destroy(btrfs_free_space_cachep); 4172 return -ENOMEM; 4173 } 4174 4175 return 0; 4176 } 4177 4178 void __cold btrfs_free_space_exit(void) 4179 { 4180 kmem_cache_destroy(btrfs_free_space_cachep); 4181 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 4182 } 4183 4184 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4185 /* 4186 * Use this if you need to make a bitmap or extent entry specifically, it 4187 * doesn't do any of the merging that add_free_space does, this acts a lot like 4188 * how the free space cache loading stuff works, so you can get really weird 4189 * configurations. 4190 */ 4191 int test_add_free_space_entry(struct btrfs_block_group *cache, 4192 u64 offset, u64 bytes, bool bitmap) 4193 { 4194 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4195 struct btrfs_free_space *info = NULL, *bitmap_info; 4196 void *map = NULL; 4197 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; 4198 u64 bytes_added; 4199 int ret; 4200 4201 again: 4202 if (!info) { 4203 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 4204 if (!info) 4205 return -ENOMEM; 4206 } 4207 4208 if (!bitmap) { 4209 spin_lock(&ctl->tree_lock); 4210 info->offset = offset; 4211 info->bytes = bytes; 4212 info->max_extent_size = 0; 4213 ret = link_free_space(ctl, info); 4214 spin_unlock(&ctl->tree_lock); 4215 if (ret) 4216 kmem_cache_free(btrfs_free_space_cachep, info); 4217 return ret; 4218 } 4219 4220 if (!map) { 4221 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 4222 if (!map) { 4223 kmem_cache_free(btrfs_free_space_cachep, info); 4224 return -ENOMEM; 4225 } 4226 } 4227 4228 spin_lock(&ctl->tree_lock); 4229 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4230 1, 0); 4231 if (!bitmap_info) { 4232 info->bitmap = map; 4233 map = NULL; 4234 add_new_bitmap(ctl, info, offset); 4235 bitmap_info = info; 4236 info = NULL; 4237 } 4238 4239 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 4240 trim_state); 4241 4242 bytes -= bytes_added; 4243 offset += bytes_added; 4244 spin_unlock(&ctl->tree_lock); 4245 4246 if (bytes) 4247 goto again; 4248 4249 if (info) 4250 kmem_cache_free(btrfs_free_space_cachep, info); 4251 if (map) 4252 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 4253 return 0; 4254 } 4255 4256 /* 4257 * Checks to see if the given range is in the free space cache. This is really 4258 * just used to check the absence of space, so if there is free space in the 4259 * range at all we will return 1. 4260 */ 4261 int test_check_exists(struct btrfs_block_group *cache, 4262 u64 offset, u64 bytes) 4263 { 4264 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4265 struct btrfs_free_space *info; 4266 int ret = 0; 4267 4268 spin_lock(&ctl->tree_lock); 4269 info = tree_search_offset(ctl, offset, 0, 0); 4270 if (!info) { 4271 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4272 1, 0); 4273 if (!info) 4274 goto out; 4275 } 4276 4277 have_info: 4278 if (info->bitmap) { 4279 u64 bit_off, bit_bytes; 4280 struct rb_node *n; 4281 struct btrfs_free_space *tmp; 4282 4283 bit_off = offset; 4284 bit_bytes = ctl->unit; 4285 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 4286 if (!ret) { 4287 if (bit_off == offset) { 4288 ret = 1; 4289 goto out; 4290 } else if (bit_off > offset && 4291 offset + bytes > bit_off) { 4292 ret = 1; 4293 goto out; 4294 } 4295 } 4296 4297 n = rb_prev(&info->offset_index); 4298 while (n) { 4299 tmp = rb_entry(n, struct btrfs_free_space, 4300 offset_index); 4301 if (tmp->offset + tmp->bytes < offset) 4302 break; 4303 if (offset + bytes < tmp->offset) { 4304 n = rb_prev(&tmp->offset_index); 4305 continue; 4306 } 4307 info = tmp; 4308 goto have_info; 4309 } 4310 4311 n = rb_next(&info->offset_index); 4312 while (n) { 4313 tmp = rb_entry(n, struct btrfs_free_space, 4314 offset_index); 4315 if (offset + bytes < tmp->offset) 4316 break; 4317 if (tmp->offset + tmp->bytes < offset) { 4318 n = rb_next(&tmp->offset_index); 4319 continue; 4320 } 4321 info = tmp; 4322 goto have_info; 4323 } 4324 4325 ret = 0; 4326 goto out; 4327 } 4328 4329 if (info->offset == offset) { 4330 ret = 1; 4331 goto out; 4332 } 4333 4334 if (offset > info->offset && offset < info->offset + info->bytes) 4335 ret = 1; 4336 out: 4337 spin_unlock(&ctl->tree_lock); 4338 return ret; 4339 } 4340 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 4341