xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 6774def6)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_key key;
44 	struct btrfs_key location;
45 	struct btrfs_disk_key disk_key;
46 	struct btrfs_free_space_header *header;
47 	struct extent_buffer *leaf;
48 	struct inode *inode = NULL;
49 	int ret;
50 
51 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 	key.offset = offset;
53 	key.type = 0;
54 
55 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 	if (ret < 0)
57 		return ERR_PTR(ret);
58 	if (ret > 0) {
59 		btrfs_release_path(path);
60 		return ERR_PTR(-ENOENT);
61 	}
62 
63 	leaf = path->nodes[0];
64 	header = btrfs_item_ptr(leaf, path->slots[0],
65 				struct btrfs_free_space_header);
66 	btrfs_free_space_key(leaf, header, &disk_key);
67 	btrfs_disk_key_to_cpu(&location, &disk_key);
68 	btrfs_release_path(path);
69 
70 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 	if (!inode)
72 		return ERR_PTR(-ENOENT);
73 	if (IS_ERR(inode))
74 		return inode;
75 	if (is_bad_inode(inode)) {
76 		iput(inode);
77 		return ERR_PTR(-ENOENT);
78 	}
79 
80 	mapping_set_gfp_mask(inode->i_mapping,
81 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		btrfs_info(root->fs_info,
108 			"Old style space inode found, converting.");
109 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
110 			BTRFS_INODE_NODATACOW;
111 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
112 	}
113 
114 	if (!block_group->iref) {
115 		block_group->inode = igrab(inode);
116 		block_group->iref = 1;
117 	}
118 	spin_unlock(&block_group->lock);
119 
120 	return inode;
121 }
122 
123 static int __create_free_space_inode(struct btrfs_root *root,
124 				     struct btrfs_trans_handle *trans,
125 				     struct btrfs_path *path,
126 				     u64 ino, u64 offset)
127 {
128 	struct btrfs_key key;
129 	struct btrfs_disk_key disk_key;
130 	struct btrfs_free_space_header *header;
131 	struct btrfs_inode_item *inode_item;
132 	struct extent_buffer *leaf;
133 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
134 	int ret;
135 
136 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
137 	if (ret)
138 		return ret;
139 
140 	/* We inline crc's for the free disk space cache */
141 	if (ino != BTRFS_FREE_INO_OBJECTID)
142 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
143 
144 	leaf = path->nodes[0];
145 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
146 				    struct btrfs_inode_item);
147 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
148 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
149 			     sizeof(*inode_item));
150 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
151 	btrfs_set_inode_size(leaf, inode_item, 0);
152 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
153 	btrfs_set_inode_uid(leaf, inode_item, 0);
154 	btrfs_set_inode_gid(leaf, inode_item, 0);
155 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
156 	btrfs_set_inode_flags(leaf, inode_item, flags);
157 	btrfs_set_inode_nlink(leaf, inode_item, 1);
158 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_block_group(leaf, inode_item, offset);
160 	btrfs_mark_buffer_dirty(leaf);
161 	btrfs_release_path(path);
162 
163 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
164 	key.offset = offset;
165 	key.type = 0;
166 
167 	ret = btrfs_insert_empty_item(trans, root, path, &key,
168 				      sizeof(struct btrfs_free_space_header));
169 	if (ret < 0) {
170 		btrfs_release_path(path);
171 		return ret;
172 	}
173 	leaf = path->nodes[0];
174 	header = btrfs_item_ptr(leaf, path->slots[0],
175 				struct btrfs_free_space_header);
176 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
177 	btrfs_set_free_space_key(leaf, header, &disk_key);
178 	btrfs_mark_buffer_dirty(leaf);
179 	btrfs_release_path(path);
180 
181 	return 0;
182 }
183 
184 int create_free_space_inode(struct btrfs_root *root,
185 			    struct btrfs_trans_handle *trans,
186 			    struct btrfs_block_group_cache *block_group,
187 			    struct btrfs_path *path)
188 {
189 	int ret;
190 	u64 ino;
191 
192 	ret = btrfs_find_free_objectid(root, &ino);
193 	if (ret < 0)
194 		return ret;
195 
196 	return __create_free_space_inode(root, trans, path, ino,
197 					 block_group->key.objectid);
198 }
199 
200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
201 				       struct btrfs_block_rsv *rsv)
202 {
203 	u64 needed_bytes;
204 	int ret;
205 
206 	/* 1 for slack space, 1 for updating the inode */
207 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
208 		btrfs_calc_trans_metadata_size(root, 1);
209 
210 	spin_lock(&rsv->lock);
211 	if (rsv->reserved < needed_bytes)
212 		ret = -ENOSPC;
213 	else
214 		ret = 0;
215 	spin_unlock(&rsv->lock);
216 	return ret;
217 }
218 
219 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
220 				    struct btrfs_trans_handle *trans,
221 				    struct inode *inode)
222 {
223 	int ret = 0;
224 
225 	btrfs_i_size_write(inode, 0);
226 	truncate_pagecache(inode, 0);
227 
228 	/*
229 	 * We don't need an orphan item because truncating the free space cache
230 	 * will never be split across transactions.
231 	 */
232 	ret = btrfs_truncate_inode_items(trans, root, inode,
233 					 0, BTRFS_EXTENT_DATA_KEY);
234 	if (ret) {
235 		btrfs_abort_transaction(trans, root, ret);
236 		return ret;
237 	}
238 
239 	ret = btrfs_update_inode(trans, root, inode);
240 	if (ret)
241 		btrfs_abort_transaction(trans, root, ret);
242 
243 	return ret;
244 }
245 
246 static int readahead_cache(struct inode *inode)
247 {
248 	struct file_ra_state *ra;
249 	unsigned long last_index;
250 
251 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
252 	if (!ra)
253 		return -ENOMEM;
254 
255 	file_ra_state_init(ra, inode->i_mapping);
256 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
257 
258 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
259 
260 	kfree(ra);
261 
262 	return 0;
263 }
264 
265 struct io_ctl {
266 	void *cur, *orig;
267 	struct page *page;
268 	struct page **pages;
269 	struct btrfs_root *root;
270 	unsigned long size;
271 	int index;
272 	int num_pages;
273 	unsigned check_crcs:1;
274 };
275 
276 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
277 		       struct btrfs_root *root, int write)
278 {
279 	int num_pages;
280 	int check_crcs = 0;
281 
282 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
283 
284 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
285 		check_crcs = 1;
286 
287 	/* Make sure we can fit our crcs into the first page */
288 	if (write && check_crcs &&
289 	    (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
290 		return -ENOSPC;
291 
292 	memset(io_ctl, 0, sizeof(struct io_ctl));
293 
294 	io_ctl->pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
295 	if (!io_ctl->pages)
296 		return -ENOMEM;
297 
298 	io_ctl->num_pages = num_pages;
299 	io_ctl->root = root;
300 	io_ctl->check_crcs = check_crcs;
301 
302 	return 0;
303 }
304 
305 static void io_ctl_free(struct io_ctl *io_ctl)
306 {
307 	kfree(io_ctl->pages);
308 }
309 
310 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
311 {
312 	if (io_ctl->cur) {
313 		kunmap(io_ctl->page);
314 		io_ctl->cur = NULL;
315 		io_ctl->orig = NULL;
316 	}
317 }
318 
319 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
320 {
321 	ASSERT(io_ctl->index < io_ctl->num_pages);
322 	io_ctl->page = io_ctl->pages[io_ctl->index++];
323 	io_ctl->cur = kmap(io_ctl->page);
324 	io_ctl->orig = io_ctl->cur;
325 	io_ctl->size = PAGE_CACHE_SIZE;
326 	if (clear)
327 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
328 }
329 
330 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
331 {
332 	int i;
333 
334 	io_ctl_unmap_page(io_ctl);
335 
336 	for (i = 0; i < io_ctl->num_pages; i++) {
337 		if (io_ctl->pages[i]) {
338 			ClearPageChecked(io_ctl->pages[i]);
339 			unlock_page(io_ctl->pages[i]);
340 			page_cache_release(io_ctl->pages[i]);
341 		}
342 	}
343 }
344 
345 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
346 				int uptodate)
347 {
348 	struct page *page;
349 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
350 	int i;
351 
352 	for (i = 0; i < io_ctl->num_pages; i++) {
353 		page = find_or_create_page(inode->i_mapping, i, mask);
354 		if (!page) {
355 			io_ctl_drop_pages(io_ctl);
356 			return -ENOMEM;
357 		}
358 		io_ctl->pages[i] = page;
359 		if (uptodate && !PageUptodate(page)) {
360 			btrfs_readpage(NULL, page);
361 			lock_page(page);
362 			if (!PageUptodate(page)) {
363 				btrfs_err(BTRFS_I(inode)->root->fs_info,
364 					   "error reading free space cache");
365 				io_ctl_drop_pages(io_ctl);
366 				return -EIO;
367 			}
368 		}
369 	}
370 
371 	for (i = 0; i < io_ctl->num_pages; i++) {
372 		clear_page_dirty_for_io(io_ctl->pages[i]);
373 		set_page_extent_mapped(io_ctl->pages[i]);
374 	}
375 
376 	return 0;
377 }
378 
379 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
380 {
381 	__le64 *val;
382 
383 	io_ctl_map_page(io_ctl, 1);
384 
385 	/*
386 	 * Skip the csum areas.  If we don't check crcs then we just have a
387 	 * 64bit chunk at the front of the first page.
388 	 */
389 	if (io_ctl->check_crcs) {
390 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
391 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
392 	} else {
393 		io_ctl->cur += sizeof(u64);
394 		io_ctl->size -= sizeof(u64) * 2;
395 	}
396 
397 	val = io_ctl->cur;
398 	*val = cpu_to_le64(generation);
399 	io_ctl->cur += sizeof(u64);
400 }
401 
402 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
403 {
404 	__le64 *gen;
405 
406 	/*
407 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
408 	 * chunk at the front of the first page.
409 	 */
410 	if (io_ctl->check_crcs) {
411 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
412 		io_ctl->size -= sizeof(u64) +
413 			(sizeof(u32) * io_ctl->num_pages);
414 	} else {
415 		io_ctl->cur += sizeof(u64);
416 		io_ctl->size -= sizeof(u64) * 2;
417 	}
418 
419 	gen = io_ctl->cur;
420 	if (le64_to_cpu(*gen) != generation) {
421 		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
422 				   "(%Lu) does not match inode (%Lu)\n", *gen,
423 				   generation);
424 		io_ctl_unmap_page(io_ctl);
425 		return -EIO;
426 	}
427 	io_ctl->cur += sizeof(u64);
428 	return 0;
429 }
430 
431 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
432 {
433 	u32 *tmp;
434 	u32 crc = ~(u32)0;
435 	unsigned offset = 0;
436 
437 	if (!io_ctl->check_crcs) {
438 		io_ctl_unmap_page(io_ctl);
439 		return;
440 	}
441 
442 	if (index == 0)
443 		offset = sizeof(u32) * io_ctl->num_pages;
444 
445 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
446 			      PAGE_CACHE_SIZE - offset);
447 	btrfs_csum_final(crc, (char *)&crc);
448 	io_ctl_unmap_page(io_ctl);
449 	tmp = kmap(io_ctl->pages[0]);
450 	tmp += index;
451 	*tmp = crc;
452 	kunmap(io_ctl->pages[0]);
453 }
454 
455 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
456 {
457 	u32 *tmp, val;
458 	u32 crc = ~(u32)0;
459 	unsigned offset = 0;
460 
461 	if (!io_ctl->check_crcs) {
462 		io_ctl_map_page(io_ctl, 0);
463 		return 0;
464 	}
465 
466 	if (index == 0)
467 		offset = sizeof(u32) * io_ctl->num_pages;
468 
469 	tmp = kmap(io_ctl->pages[0]);
470 	tmp += index;
471 	val = *tmp;
472 	kunmap(io_ctl->pages[0]);
473 
474 	io_ctl_map_page(io_ctl, 0);
475 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
476 			      PAGE_CACHE_SIZE - offset);
477 	btrfs_csum_final(crc, (char *)&crc);
478 	if (val != crc) {
479 		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
480 				   "space cache\n");
481 		io_ctl_unmap_page(io_ctl);
482 		return -EIO;
483 	}
484 
485 	return 0;
486 }
487 
488 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
489 			    void *bitmap)
490 {
491 	struct btrfs_free_space_entry *entry;
492 
493 	if (!io_ctl->cur)
494 		return -ENOSPC;
495 
496 	entry = io_ctl->cur;
497 	entry->offset = cpu_to_le64(offset);
498 	entry->bytes = cpu_to_le64(bytes);
499 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
500 		BTRFS_FREE_SPACE_EXTENT;
501 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
502 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
503 
504 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
505 		return 0;
506 
507 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
508 
509 	/* No more pages to map */
510 	if (io_ctl->index >= io_ctl->num_pages)
511 		return 0;
512 
513 	/* map the next page */
514 	io_ctl_map_page(io_ctl, 1);
515 	return 0;
516 }
517 
518 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
519 {
520 	if (!io_ctl->cur)
521 		return -ENOSPC;
522 
523 	/*
524 	 * If we aren't at the start of the current page, unmap this one and
525 	 * map the next one if there is any left.
526 	 */
527 	if (io_ctl->cur != io_ctl->orig) {
528 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
529 		if (io_ctl->index >= io_ctl->num_pages)
530 			return -ENOSPC;
531 		io_ctl_map_page(io_ctl, 0);
532 	}
533 
534 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
535 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 	if (io_ctl->index < io_ctl->num_pages)
537 		io_ctl_map_page(io_ctl, 0);
538 	return 0;
539 }
540 
541 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
542 {
543 	/*
544 	 * If we're not on the boundary we know we've modified the page and we
545 	 * need to crc the page.
546 	 */
547 	if (io_ctl->cur != io_ctl->orig)
548 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
549 	else
550 		io_ctl_unmap_page(io_ctl);
551 
552 	while (io_ctl->index < io_ctl->num_pages) {
553 		io_ctl_map_page(io_ctl, 1);
554 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
555 	}
556 }
557 
558 static int io_ctl_read_entry(struct io_ctl *io_ctl,
559 			    struct btrfs_free_space *entry, u8 *type)
560 {
561 	struct btrfs_free_space_entry *e;
562 	int ret;
563 
564 	if (!io_ctl->cur) {
565 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
566 		if (ret)
567 			return ret;
568 	}
569 
570 	e = io_ctl->cur;
571 	entry->offset = le64_to_cpu(e->offset);
572 	entry->bytes = le64_to_cpu(e->bytes);
573 	*type = e->type;
574 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
575 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
576 
577 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
578 		return 0;
579 
580 	io_ctl_unmap_page(io_ctl);
581 
582 	return 0;
583 }
584 
585 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
586 			      struct btrfs_free_space *entry)
587 {
588 	int ret;
589 
590 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
591 	if (ret)
592 		return ret;
593 
594 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
595 	io_ctl_unmap_page(io_ctl);
596 
597 	return 0;
598 }
599 
600 /*
601  * Since we attach pinned extents after the fact we can have contiguous sections
602  * of free space that are split up in entries.  This poses a problem with the
603  * tree logging stuff since it could have allocated across what appears to be 2
604  * entries since we would have merged the entries when adding the pinned extents
605  * back to the free space cache.  So run through the space cache that we just
606  * loaded and merge contiguous entries.  This will make the log replay stuff not
607  * blow up and it will make for nicer allocator behavior.
608  */
609 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
610 {
611 	struct btrfs_free_space *e, *prev = NULL;
612 	struct rb_node *n;
613 
614 again:
615 	spin_lock(&ctl->tree_lock);
616 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
617 		e = rb_entry(n, struct btrfs_free_space, offset_index);
618 		if (!prev)
619 			goto next;
620 		if (e->bitmap || prev->bitmap)
621 			goto next;
622 		if (prev->offset + prev->bytes == e->offset) {
623 			unlink_free_space(ctl, prev);
624 			unlink_free_space(ctl, e);
625 			prev->bytes += e->bytes;
626 			kmem_cache_free(btrfs_free_space_cachep, e);
627 			link_free_space(ctl, prev);
628 			prev = NULL;
629 			spin_unlock(&ctl->tree_lock);
630 			goto again;
631 		}
632 next:
633 		prev = e;
634 	}
635 	spin_unlock(&ctl->tree_lock);
636 }
637 
638 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
639 				   struct btrfs_free_space_ctl *ctl,
640 				   struct btrfs_path *path, u64 offset)
641 {
642 	struct btrfs_free_space_header *header;
643 	struct extent_buffer *leaf;
644 	struct io_ctl io_ctl;
645 	struct btrfs_key key;
646 	struct btrfs_free_space *e, *n;
647 	struct list_head bitmaps;
648 	u64 num_entries;
649 	u64 num_bitmaps;
650 	u64 generation;
651 	u8 type;
652 	int ret = 0;
653 
654 	INIT_LIST_HEAD(&bitmaps);
655 
656 	/* Nothing in the space cache, goodbye */
657 	if (!i_size_read(inode))
658 		return 0;
659 
660 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
661 	key.offset = offset;
662 	key.type = 0;
663 
664 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
665 	if (ret < 0)
666 		return 0;
667 	else if (ret > 0) {
668 		btrfs_release_path(path);
669 		return 0;
670 	}
671 
672 	ret = -1;
673 
674 	leaf = path->nodes[0];
675 	header = btrfs_item_ptr(leaf, path->slots[0],
676 				struct btrfs_free_space_header);
677 	num_entries = btrfs_free_space_entries(leaf, header);
678 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
679 	generation = btrfs_free_space_generation(leaf, header);
680 	btrfs_release_path(path);
681 
682 	if (!BTRFS_I(inode)->generation) {
683 		btrfs_info(root->fs_info,
684 			   "The free space cache file (%llu) is invalid. skip it\n",
685 			   offset);
686 		return 0;
687 	}
688 
689 	if (BTRFS_I(inode)->generation != generation) {
690 		btrfs_err(root->fs_info,
691 			"free space inode generation (%llu) "
692 			"did not match free space cache generation (%llu)",
693 			BTRFS_I(inode)->generation, generation);
694 		return 0;
695 	}
696 
697 	if (!num_entries)
698 		return 0;
699 
700 	ret = io_ctl_init(&io_ctl, inode, root, 0);
701 	if (ret)
702 		return ret;
703 
704 	ret = readahead_cache(inode);
705 	if (ret)
706 		goto out;
707 
708 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
709 	if (ret)
710 		goto out;
711 
712 	ret = io_ctl_check_crc(&io_ctl, 0);
713 	if (ret)
714 		goto free_cache;
715 
716 	ret = io_ctl_check_generation(&io_ctl, generation);
717 	if (ret)
718 		goto free_cache;
719 
720 	while (num_entries) {
721 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
722 				      GFP_NOFS);
723 		if (!e)
724 			goto free_cache;
725 
726 		ret = io_ctl_read_entry(&io_ctl, e, &type);
727 		if (ret) {
728 			kmem_cache_free(btrfs_free_space_cachep, e);
729 			goto free_cache;
730 		}
731 
732 		if (!e->bytes) {
733 			kmem_cache_free(btrfs_free_space_cachep, e);
734 			goto free_cache;
735 		}
736 
737 		if (type == BTRFS_FREE_SPACE_EXTENT) {
738 			spin_lock(&ctl->tree_lock);
739 			ret = link_free_space(ctl, e);
740 			spin_unlock(&ctl->tree_lock);
741 			if (ret) {
742 				btrfs_err(root->fs_info,
743 					"Duplicate entries in free space cache, dumping");
744 				kmem_cache_free(btrfs_free_space_cachep, e);
745 				goto free_cache;
746 			}
747 		} else {
748 			ASSERT(num_bitmaps);
749 			num_bitmaps--;
750 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
751 			if (!e->bitmap) {
752 				kmem_cache_free(
753 					btrfs_free_space_cachep, e);
754 				goto free_cache;
755 			}
756 			spin_lock(&ctl->tree_lock);
757 			ret = link_free_space(ctl, e);
758 			ctl->total_bitmaps++;
759 			ctl->op->recalc_thresholds(ctl);
760 			spin_unlock(&ctl->tree_lock);
761 			if (ret) {
762 				btrfs_err(root->fs_info,
763 					"Duplicate entries in free space cache, dumping");
764 				kmem_cache_free(btrfs_free_space_cachep, e);
765 				goto free_cache;
766 			}
767 			list_add_tail(&e->list, &bitmaps);
768 		}
769 
770 		num_entries--;
771 	}
772 
773 	io_ctl_unmap_page(&io_ctl);
774 
775 	/*
776 	 * We add the bitmaps at the end of the entries in order that
777 	 * the bitmap entries are added to the cache.
778 	 */
779 	list_for_each_entry_safe(e, n, &bitmaps, list) {
780 		list_del_init(&e->list);
781 		ret = io_ctl_read_bitmap(&io_ctl, e);
782 		if (ret)
783 			goto free_cache;
784 	}
785 
786 	io_ctl_drop_pages(&io_ctl);
787 	merge_space_tree(ctl);
788 	ret = 1;
789 out:
790 	io_ctl_free(&io_ctl);
791 	return ret;
792 free_cache:
793 	io_ctl_drop_pages(&io_ctl);
794 	__btrfs_remove_free_space_cache(ctl);
795 	goto out;
796 }
797 
798 int load_free_space_cache(struct btrfs_fs_info *fs_info,
799 			  struct btrfs_block_group_cache *block_group)
800 {
801 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
802 	struct btrfs_root *root = fs_info->tree_root;
803 	struct inode *inode;
804 	struct btrfs_path *path;
805 	int ret = 0;
806 	bool matched;
807 	u64 used = btrfs_block_group_used(&block_group->item);
808 
809 	/*
810 	 * If this block group has been marked to be cleared for one reason or
811 	 * another then we can't trust the on disk cache, so just return.
812 	 */
813 	spin_lock(&block_group->lock);
814 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
815 		spin_unlock(&block_group->lock);
816 		return 0;
817 	}
818 	spin_unlock(&block_group->lock);
819 
820 	path = btrfs_alloc_path();
821 	if (!path)
822 		return 0;
823 	path->search_commit_root = 1;
824 	path->skip_locking = 1;
825 
826 	inode = lookup_free_space_inode(root, block_group, path);
827 	if (IS_ERR(inode)) {
828 		btrfs_free_path(path);
829 		return 0;
830 	}
831 
832 	/* We may have converted the inode and made the cache invalid. */
833 	spin_lock(&block_group->lock);
834 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
835 		spin_unlock(&block_group->lock);
836 		btrfs_free_path(path);
837 		goto out;
838 	}
839 	spin_unlock(&block_group->lock);
840 
841 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
842 				      path, block_group->key.objectid);
843 	btrfs_free_path(path);
844 	if (ret <= 0)
845 		goto out;
846 
847 	spin_lock(&ctl->tree_lock);
848 	matched = (ctl->free_space == (block_group->key.offset - used -
849 				       block_group->bytes_super));
850 	spin_unlock(&ctl->tree_lock);
851 
852 	if (!matched) {
853 		__btrfs_remove_free_space_cache(ctl);
854 		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
855 			block_group->key.objectid);
856 		ret = -1;
857 	}
858 out:
859 	if (ret < 0) {
860 		/* This cache is bogus, make sure it gets cleared */
861 		spin_lock(&block_group->lock);
862 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
863 		spin_unlock(&block_group->lock);
864 		ret = 0;
865 
866 		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
867 			block_group->key.objectid);
868 	}
869 
870 	iput(inode);
871 	return ret;
872 }
873 
874 static noinline_for_stack
875 int write_cache_extent_entries(struct io_ctl *io_ctl,
876 			      struct btrfs_free_space_ctl *ctl,
877 			      struct btrfs_block_group_cache *block_group,
878 			      int *entries, int *bitmaps,
879 			      struct list_head *bitmap_list)
880 {
881 	int ret;
882 	struct btrfs_free_cluster *cluster = NULL;
883 	struct rb_node *node = rb_first(&ctl->free_space_offset);
884 
885 	/* Get the cluster for this block_group if it exists */
886 	if (block_group && !list_empty(&block_group->cluster_list)) {
887 		cluster = list_entry(block_group->cluster_list.next,
888 				     struct btrfs_free_cluster,
889 				     block_group_list);
890 	}
891 
892 	if (!node && cluster) {
893 		node = rb_first(&cluster->root);
894 		cluster = NULL;
895 	}
896 
897 	/* Write out the extent entries */
898 	while (node) {
899 		struct btrfs_free_space *e;
900 
901 		e = rb_entry(node, struct btrfs_free_space, offset_index);
902 		*entries += 1;
903 
904 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
905 				       e->bitmap);
906 		if (ret)
907 			goto fail;
908 
909 		if (e->bitmap) {
910 			list_add_tail(&e->list, bitmap_list);
911 			*bitmaps += 1;
912 		}
913 		node = rb_next(node);
914 		if (!node && cluster) {
915 			node = rb_first(&cluster->root);
916 			cluster = NULL;
917 		}
918 	}
919 	return 0;
920 fail:
921 	return -ENOSPC;
922 }
923 
924 static noinline_for_stack int
925 update_cache_item(struct btrfs_trans_handle *trans,
926 		  struct btrfs_root *root,
927 		  struct inode *inode,
928 		  struct btrfs_path *path, u64 offset,
929 		  int entries, int bitmaps)
930 {
931 	struct btrfs_key key;
932 	struct btrfs_free_space_header *header;
933 	struct extent_buffer *leaf;
934 	int ret;
935 
936 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
937 	key.offset = offset;
938 	key.type = 0;
939 
940 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
941 	if (ret < 0) {
942 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
943 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
944 				 GFP_NOFS);
945 		goto fail;
946 	}
947 	leaf = path->nodes[0];
948 	if (ret > 0) {
949 		struct btrfs_key found_key;
950 		ASSERT(path->slots[0]);
951 		path->slots[0]--;
952 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
953 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
954 		    found_key.offset != offset) {
955 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
956 					 inode->i_size - 1,
957 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
958 					 NULL, GFP_NOFS);
959 			btrfs_release_path(path);
960 			goto fail;
961 		}
962 	}
963 
964 	BTRFS_I(inode)->generation = trans->transid;
965 	header = btrfs_item_ptr(leaf, path->slots[0],
966 				struct btrfs_free_space_header);
967 	btrfs_set_free_space_entries(leaf, header, entries);
968 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
969 	btrfs_set_free_space_generation(leaf, header, trans->transid);
970 	btrfs_mark_buffer_dirty(leaf);
971 	btrfs_release_path(path);
972 
973 	return 0;
974 
975 fail:
976 	return -1;
977 }
978 
979 static noinline_for_stack int
980 write_pinned_extent_entries(struct btrfs_root *root,
981 			    struct btrfs_block_group_cache *block_group,
982 			    struct io_ctl *io_ctl,
983 			    int *entries)
984 {
985 	u64 start, extent_start, extent_end, len;
986 	struct extent_io_tree *unpin = NULL;
987 	int ret;
988 
989 	if (!block_group)
990 		return 0;
991 
992 	/*
993 	 * We want to add any pinned extents to our free space cache
994 	 * so we don't leak the space
995 	 *
996 	 * We shouldn't have switched the pinned extents yet so this is the
997 	 * right one
998 	 */
999 	unpin = root->fs_info->pinned_extents;
1000 
1001 	start = block_group->key.objectid;
1002 
1003 	while (start < block_group->key.objectid + block_group->key.offset) {
1004 		ret = find_first_extent_bit(unpin, start,
1005 					    &extent_start, &extent_end,
1006 					    EXTENT_DIRTY, NULL);
1007 		if (ret)
1008 			return 0;
1009 
1010 		/* This pinned extent is out of our range */
1011 		if (extent_start >= block_group->key.objectid +
1012 		    block_group->key.offset)
1013 			return 0;
1014 
1015 		extent_start = max(extent_start, start);
1016 		extent_end = min(block_group->key.objectid +
1017 				 block_group->key.offset, extent_end + 1);
1018 		len = extent_end - extent_start;
1019 
1020 		*entries += 1;
1021 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1022 		if (ret)
1023 			return -ENOSPC;
1024 
1025 		start = extent_end;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 static noinline_for_stack int
1032 write_bitmap_entries(struct io_ctl *io_ctl, struct list_head *bitmap_list)
1033 {
1034 	struct list_head *pos, *n;
1035 	int ret;
1036 
1037 	/* Write out the bitmaps */
1038 	list_for_each_safe(pos, n, bitmap_list) {
1039 		struct btrfs_free_space *entry =
1040 			list_entry(pos, struct btrfs_free_space, list);
1041 
1042 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1043 		if (ret)
1044 			return -ENOSPC;
1045 		list_del_init(&entry->list);
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 static int flush_dirty_cache(struct inode *inode)
1052 {
1053 	int ret;
1054 
1055 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1056 	if (ret)
1057 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1058 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1059 				 GFP_NOFS);
1060 
1061 	return ret;
1062 }
1063 
1064 static void noinline_for_stack
1065 cleanup_write_cache_enospc(struct inode *inode,
1066 			   struct io_ctl *io_ctl,
1067 			   struct extent_state **cached_state,
1068 			   struct list_head *bitmap_list)
1069 {
1070 	struct list_head *pos, *n;
1071 
1072 	list_for_each_safe(pos, n, bitmap_list) {
1073 		struct btrfs_free_space *entry =
1074 			list_entry(pos, struct btrfs_free_space, list);
1075 		list_del_init(&entry->list);
1076 	}
1077 	io_ctl_drop_pages(io_ctl);
1078 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1079 			     i_size_read(inode) - 1, cached_state,
1080 			     GFP_NOFS);
1081 }
1082 
1083 /**
1084  * __btrfs_write_out_cache - write out cached info to an inode
1085  * @root - the root the inode belongs to
1086  * @ctl - the free space cache we are going to write out
1087  * @block_group - the block_group for this cache if it belongs to a block_group
1088  * @trans - the trans handle
1089  * @path - the path to use
1090  * @offset - the offset for the key we'll insert
1091  *
1092  * This function writes out a free space cache struct to disk for quick recovery
1093  * on mount.  This will return 0 if it was successfull in writing the cache out,
1094  * and -1 if it was not.
1095  */
1096 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1097 				   struct btrfs_free_space_ctl *ctl,
1098 				   struct btrfs_block_group_cache *block_group,
1099 				   struct btrfs_trans_handle *trans,
1100 				   struct btrfs_path *path, u64 offset)
1101 {
1102 	struct extent_state *cached_state = NULL;
1103 	struct io_ctl io_ctl;
1104 	LIST_HEAD(bitmap_list);
1105 	int entries = 0;
1106 	int bitmaps = 0;
1107 	int ret;
1108 
1109 	if (!i_size_read(inode))
1110 		return -1;
1111 
1112 	ret = io_ctl_init(&io_ctl, inode, root, 1);
1113 	if (ret)
1114 		return -1;
1115 
1116 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1117 		down_write(&block_group->data_rwsem);
1118 		spin_lock(&block_group->lock);
1119 		if (block_group->delalloc_bytes) {
1120 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1121 			spin_unlock(&block_group->lock);
1122 			up_write(&block_group->data_rwsem);
1123 			BTRFS_I(inode)->generation = 0;
1124 			ret = 0;
1125 			goto out;
1126 		}
1127 		spin_unlock(&block_group->lock);
1128 	}
1129 
1130 	/* Lock all pages first so we can lock the extent safely. */
1131 	io_ctl_prepare_pages(&io_ctl, inode, 0);
1132 
1133 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1134 			 0, &cached_state);
1135 
1136 	io_ctl_set_generation(&io_ctl, trans->transid);
1137 
1138 	/* Write out the extent entries in the free space cache */
1139 	ret = write_cache_extent_entries(&io_ctl, ctl,
1140 					 block_group, &entries, &bitmaps,
1141 					 &bitmap_list);
1142 	if (ret)
1143 		goto out_nospc;
1144 
1145 	/*
1146 	 * Some spaces that are freed in the current transaction are pinned,
1147 	 * they will be added into free space cache after the transaction is
1148 	 * committed, we shouldn't lose them.
1149 	 */
1150 	ret = write_pinned_extent_entries(root, block_group, &io_ctl, &entries);
1151 	if (ret)
1152 		goto out_nospc;
1153 
1154 	/* At last, we write out all the bitmaps. */
1155 	ret = write_bitmap_entries(&io_ctl, &bitmap_list);
1156 	if (ret)
1157 		goto out_nospc;
1158 
1159 	/* Zero out the rest of the pages just to make sure */
1160 	io_ctl_zero_remaining_pages(&io_ctl);
1161 
1162 	/* Everything is written out, now we dirty the pages in the file. */
1163 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1164 				0, i_size_read(inode), &cached_state);
1165 	if (ret)
1166 		goto out_nospc;
1167 
1168 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1169 		up_write(&block_group->data_rwsem);
1170 	/*
1171 	 * Release the pages and unlock the extent, we will flush
1172 	 * them out later
1173 	 */
1174 	io_ctl_drop_pages(&io_ctl);
1175 
1176 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1177 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1178 
1179 	/* Flush the dirty pages in the cache file. */
1180 	ret = flush_dirty_cache(inode);
1181 	if (ret)
1182 		goto out;
1183 
1184 	/* Update the cache item to tell everyone this cache file is valid. */
1185 	ret = update_cache_item(trans, root, inode, path, offset,
1186 				entries, bitmaps);
1187 out:
1188 	io_ctl_free(&io_ctl);
1189 	if (ret) {
1190 		invalidate_inode_pages2(inode->i_mapping);
1191 		BTRFS_I(inode)->generation = 0;
1192 	}
1193 	btrfs_update_inode(trans, root, inode);
1194 	return ret;
1195 
1196 out_nospc:
1197 	cleanup_write_cache_enospc(inode, &io_ctl, &cached_state, &bitmap_list);
1198 
1199 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1200 		up_write(&block_group->data_rwsem);
1201 
1202 	goto out;
1203 }
1204 
1205 int btrfs_write_out_cache(struct btrfs_root *root,
1206 			  struct btrfs_trans_handle *trans,
1207 			  struct btrfs_block_group_cache *block_group,
1208 			  struct btrfs_path *path)
1209 {
1210 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1211 	struct inode *inode;
1212 	int ret = 0;
1213 
1214 	root = root->fs_info->tree_root;
1215 
1216 	spin_lock(&block_group->lock);
1217 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1218 		spin_unlock(&block_group->lock);
1219 		return 0;
1220 	}
1221 
1222 	if (block_group->delalloc_bytes) {
1223 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1224 		spin_unlock(&block_group->lock);
1225 		return 0;
1226 	}
1227 	spin_unlock(&block_group->lock);
1228 
1229 	inode = lookup_free_space_inode(root, block_group, path);
1230 	if (IS_ERR(inode))
1231 		return 0;
1232 
1233 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1234 				      path, block_group->key.objectid);
1235 	if (ret) {
1236 		spin_lock(&block_group->lock);
1237 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1238 		spin_unlock(&block_group->lock);
1239 		ret = 0;
1240 #ifdef DEBUG
1241 		btrfs_err(root->fs_info,
1242 			"failed to write free space cache for block group %llu",
1243 			block_group->key.objectid);
1244 #endif
1245 	}
1246 
1247 	iput(inode);
1248 	return ret;
1249 }
1250 
1251 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1252 					  u64 offset)
1253 {
1254 	ASSERT(offset >= bitmap_start);
1255 	offset -= bitmap_start;
1256 	return (unsigned long)(div_u64(offset, unit));
1257 }
1258 
1259 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1260 {
1261 	return (unsigned long)(div_u64(bytes, unit));
1262 }
1263 
1264 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1265 				   u64 offset)
1266 {
1267 	u64 bitmap_start;
1268 	u64 bytes_per_bitmap;
1269 
1270 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1271 	bitmap_start = offset - ctl->start;
1272 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1273 	bitmap_start *= bytes_per_bitmap;
1274 	bitmap_start += ctl->start;
1275 
1276 	return bitmap_start;
1277 }
1278 
1279 static int tree_insert_offset(struct rb_root *root, u64 offset,
1280 			      struct rb_node *node, int bitmap)
1281 {
1282 	struct rb_node **p = &root->rb_node;
1283 	struct rb_node *parent = NULL;
1284 	struct btrfs_free_space *info;
1285 
1286 	while (*p) {
1287 		parent = *p;
1288 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1289 
1290 		if (offset < info->offset) {
1291 			p = &(*p)->rb_left;
1292 		} else if (offset > info->offset) {
1293 			p = &(*p)->rb_right;
1294 		} else {
1295 			/*
1296 			 * we could have a bitmap entry and an extent entry
1297 			 * share the same offset.  If this is the case, we want
1298 			 * the extent entry to always be found first if we do a
1299 			 * linear search through the tree, since we want to have
1300 			 * the quickest allocation time, and allocating from an
1301 			 * extent is faster than allocating from a bitmap.  So
1302 			 * if we're inserting a bitmap and we find an entry at
1303 			 * this offset, we want to go right, or after this entry
1304 			 * logically.  If we are inserting an extent and we've
1305 			 * found a bitmap, we want to go left, or before
1306 			 * logically.
1307 			 */
1308 			if (bitmap) {
1309 				if (info->bitmap) {
1310 					WARN_ON_ONCE(1);
1311 					return -EEXIST;
1312 				}
1313 				p = &(*p)->rb_right;
1314 			} else {
1315 				if (!info->bitmap) {
1316 					WARN_ON_ONCE(1);
1317 					return -EEXIST;
1318 				}
1319 				p = &(*p)->rb_left;
1320 			}
1321 		}
1322 	}
1323 
1324 	rb_link_node(node, parent, p);
1325 	rb_insert_color(node, root);
1326 
1327 	return 0;
1328 }
1329 
1330 /*
1331  * searches the tree for the given offset.
1332  *
1333  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1334  * want a section that has at least bytes size and comes at or after the given
1335  * offset.
1336  */
1337 static struct btrfs_free_space *
1338 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1339 		   u64 offset, int bitmap_only, int fuzzy)
1340 {
1341 	struct rb_node *n = ctl->free_space_offset.rb_node;
1342 	struct btrfs_free_space *entry, *prev = NULL;
1343 
1344 	/* find entry that is closest to the 'offset' */
1345 	while (1) {
1346 		if (!n) {
1347 			entry = NULL;
1348 			break;
1349 		}
1350 
1351 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1352 		prev = entry;
1353 
1354 		if (offset < entry->offset)
1355 			n = n->rb_left;
1356 		else if (offset > entry->offset)
1357 			n = n->rb_right;
1358 		else
1359 			break;
1360 	}
1361 
1362 	if (bitmap_only) {
1363 		if (!entry)
1364 			return NULL;
1365 		if (entry->bitmap)
1366 			return entry;
1367 
1368 		/*
1369 		 * bitmap entry and extent entry may share same offset,
1370 		 * in that case, bitmap entry comes after extent entry.
1371 		 */
1372 		n = rb_next(n);
1373 		if (!n)
1374 			return NULL;
1375 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1376 		if (entry->offset != offset)
1377 			return NULL;
1378 
1379 		WARN_ON(!entry->bitmap);
1380 		return entry;
1381 	} else if (entry) {
1382 		if (entry->bitmap) {
1383 			/*
1384 			 * if previous extent entry covers the offset,
1385 			 * we should return it instead of the bitmap entry
1386 			 */
1387 			n = rb_prev(&entry->offset_index);
1388 			if (n) {
1389 				prev = rb_entry(n, struct btrfs_free_space,
1390 						offset_index);
1391 				if (!prev->bitmap &&
1392 				    prev->offset + prev->bytes > offset)
1393 					entry = prev;
1394 			}
1395 		}
1396 		return entry;
1397 	}
1398 
1399 	if (!prev)
1400 		return NULL;
1401 
1402 	/* find last entry before the 'offset' */
1403 	entry = prev;
1404 	if (entry->offset > offset) {
1405 		n = rb_prev(&entry->offset_index);
1406 		if (n) {
1407 			entry = rb_entry(n, struct btrfs_free_space,
1408 					offset_index);
1409 			ASSERT(entry->offset <= offset);
1410 		} else {
1411 			if (fuzzy)
1412 				return entry;
1413 			else
1414 				return NULL;
1415 		}
1416 	}
1417 
1418 	if (entry->bitmap) {
1419 		n = rb_prev(&entry->offset_index);
1420 		if (n) {
1421 			prev = rb_entry(n, struct btrfs_free_space,
1422 					offset_index);
1423 			if (!prev->bitmap &&
1424 			    prev->offset + prev->bytes > offset)
1425 				return prev;
1426 		}
1427 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1428 			return entry;
1429 	} else if (entry->offset + entry->bytes > offset)
1430 		return entry;
1431 
1432 	if (!fuzzy)
1433 		return NULL;
1434 
1435 	while (1) {
1436 		if (entry->bitmap) {
1437 			if (entry->offset + BITS_PER_BITMAP *
1438 			    ctl->unit > offset)
1439 				break;
1440 		} else {
1441 			if (entry->offset + entry->bytes > offset)
1442 				break;
1443 		}
1444 
1445 		n = rb_next(&entry->offset_index);
1446 		if (!n)
1447 			return NULL;
1448 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1449 	}
1450 	return entry;
1451 }
1452 
1453 static inline void
1454 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1455 		    struct btrfs_free_space *info)
1456 {
1457 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1458 	ctl->free_extents--;
1459 }
1460 
1461 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1462 			      struct btrfs_free_space *info)
1463 {
1464 	__unlink_free_space(ctl, info);
1465 	ctl->free_space -= info->bytes;
1466 }
1467 
1468 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1469 			   struct btrfs_free_space *info)
1470 {
1471 	int ret = 0;
1472 
1473 	ASSERT(info->bytes || info->bitmap);
1474 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1475 				 &info->offset_index, (info->bitmap != NULL));
1476 	if (ret)
1477 		return ret;
1478 
1479 	ctl->free_space += info->bytes;
1480 	ctl->free_extents++;
1481 	return ret;
1482 }
1483 
1484 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1485 {
1486 	struct btrfs_block_group_cache *block_group = ctl->private;
1487 	u64 max_bytes;
1488 	u64 bitmap_bytes;
1489 	u64 extent_bytes;
1490 	u64 size = block_group->key.offset;
1491 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1492 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1493 
1494 	max_bitmaps = max(max_bitmaps, 1);
1495 
1496 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1497 
1498 	/*
1499 	 * The goal is to keep the total amount of memory used per 1gb of space
1500 	 * at or below 32k, so we need to adjust how much memory we allow to be
1501 	 * used by extent based free space tracking
1502 	 */
1503 	if (size < 1024 * 1024 * 1024)
1504 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1505 	else
1506 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1507 			div64_u64(size, 1024 * 1024 * 1024);
1508 
1509 	/*
1510 	 * we want to account for 1 more bitmap than what we have so we can make
1511 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1512 	 * we add more bitmaps.
1513 	 */
1514 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1515 
1516 	if (bitmap_bytes >= max_bytes) {
1517 		ctl->extents_thresh = 0;
1518 		return;
1519 	}
1520 
1521 	/*
1522 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1523 	 * bytes we can have, or whatever is less than that.
1524 	 */
1525 	extent_bytes = max_bytes - bitmap_bytes;
1526 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1527 
1528 	ctl->extents_thresh =
1529 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1530 }
1531 
1532 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1533 				       struct btrfs_free_space *info,
1534 				       u64 offset, u64 bytes)
1535 {
1536 	unsigned long start, count;
1537 
1538 	start = offset_to_bit(info->offset, ctl->unit, offset);
1539 	count = bytes_to_bits(bytes, ctl->unit);
1540 	ASSERT(start + count <= BITS_PER_BITMAP);
1541 
1542 	bitmap_clear(info->bitmap, start, count);
1543 
1544 	info->bytes -= bytes;
1545 }
1546 
1547 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1548 			      struct btrfs_free_space *info, u64 offset,
1549 			      u64 bytes)
1550 {
1551 	__bitmap_clear_bits(ctl, info, offset, bytes);
1552 	ctl->free_space -= bytes;
1553 }
1554 
1555 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1556 			    struct btrfs_free_space *info, u64 offset,
1557 			    u64 bytes)
1558 {
1559 	unsigned long start, count;
1560 
1561 	start = offset_to_bit(info->offset, ctl->unit, offset);
1562 	count = bytes_to_bits(bytes, ctl->unit);
1563 	ASSERT(start + count <= BITS_PER_BITMAP);
1564 
1565 	bitmap_set(info->bitmap, start, count);
1566 
1567 	info->bytes += bytes;
1568 	ctl->free_space += bytes;
1569 }
1570 
1571 /*
1572  * If we can not find suitable extent, we will use bytes to record
1573  * the size of the max extent.
1574  */
1575 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1576 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1577 			 u64 *bytes)
1578 {
1579 	unsigned long found_bits = 0;
1580 	unsigned long max_bits = 0;
1581 	unsigned long bits, i;
1582 	unsigned long next_zero;
1583 	unsigned long extent_bits;
1584 
1585 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1586 			  max_t(u64, *offset, bitmap_info->offset));
1587 	bits = bytes_to_bits(*bytes, ctl->unit);
1588 
1589 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1590 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1591 					       BITS_PER_BITMAP, i);
1592 		extent_bits = next_zero - i;
1593 		if (extent_bits >= bits) {
1594 			found_bits = extent_bits;
1595 			break;
1596 		} else if (extent_bits > max_bits) {
1597 			max_bits = extent_bits;
1598 		}
1599 		i = next_zero;
1600 	}
1601 
1602 	if (found_bits) {
1603 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1604 		*bytes = (u64)(found_bits) * ctl->unit;
1605 		return 0;
1606 	}
1607 
1608 	*bytes = (u64)(max_bits) * ctl->unit;
1609 	return -1;
1610 }
1611 
1612 /* Cache the size of the max extent in bytes */
1613 static struct btrfs_free_space *
1614 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1615 		unsigned long align, u64 *max_extent_size)
1616 {
1617 	struct btrfs_free_space *entry;
1618 	struct rb_node *node;
1619 	u64 tmp;
1620 	u64 align_off;
1621 	int ret;
1622 
1623 	if (!ctl->free_space_offset.rb_node)
1624 		goto out;
1625 
1626 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1627 	if (!entry)
1628 		goto out;
1629 
1630 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1631 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1632 		if (entry->bytes < *bytes) {
1633 			if (entry->bytes > *max_extent_size)
1634 				*max_extent_size = entry->bytes;
1635 			continue;
1636 		}
1637 
1638 		/* make sure the space returned is big enough
1639 		 * to match our requested alignment
1640 		 */
1641 		if (*bytes >= align) {
1642 			tmp = entry->offset - ctl->start + align - 1;
1643 			do_div(tmp, align);
1644 			tmp = tmp * align + ctl->start;
1645 			align_off = tmp - entry->offset;
1646 		} else {
1647 			align_off = 0;
1648 			tmp = entry->offset;
1649 		}
1650 
1651 		if (entry->bytes < *bytes + align_off) {
1652 			if (entry->bytes > *max_extent_size)
1653 				*max_extent_size = entry->bytes;
1654 			continue;
1655 		}
1656 
1657 		if (entry->bitmap) {
1658 			u64 size = *bytes;
1659 
1660 			ret = search_bitmap(ctl, entry, &tmp, &size);
1661 			if (!ret) {
1662 				*offset = tmp;
1663 				*bytes = size;
1664 				return entry;
1665 			} else if (size > *max_extent_size) {
1666 				*max_extent_size = size;
1667 			}
1668 			continue;
1669 		}
1670 
1671 		*offset = tmp;
1672 		*bytes = entry->bytes - align_off;
1673 		return entry;
1674 	}
1675 out:
1676 	return NULL;
1677 }
1678 
1679 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1680 			   struct btrfs_free_space *info, u64 offset)
1681 {
1682 	info->offset = offset_to_bitmap(ctl, offset);
1683 	info->bytes = 0;
1684 	INIT_LIST_HEAD(&info->list);
1685 	link_free_space(ctl, info);
1686 	ctl->total_bitmaps++;
1687 
1688 	ctl->op->recalc_thresholds(ctl);
1689 }
1690 
1691 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1692 			struct btrfs_free_space *bitmap_info)
1693 {
1694 	unlink_free_space(ctl, bitmap_info);
1695 	kfree(bitmap_info->bitmap);
1696 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1697 	ctl->total_bitmaps--;
1698 	ctl->op->recalc_thresholds(ctl);
1699 }
1700 
1701 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1702 			      struct btrfs_free_space *bitmap_info,
1703 			      u64 *offset, u64 *bytes)
1704 {
1705 	u64 end;
1706 	u64 search_start, search_bytes;
1707 	int ret;
1708 
1709 again:
1710 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1711 
1712 	/*
1713 	 * We need to search for bits in this bitmap.  We could only cover some
1714 	 * of the extent in this bitmap thanks to how we add space, so we need
1715 	 * to search for as much as it as we can and clear that amount, and then
1716 	 * go searching for the next bit.
1717 	 */
1718 	search_start = *offset;
1719 	search_bytes = ctl->unit;
1720 	search_bytes = min(search_bytes, end - search_start + 1);
1721 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1722 	if (ret < 0 || search_start != *offset)
1723 		return -EINVAL;
1724 
1725 	/* We may have found more bits than what we need */
1726 	search_bytes = min(search_bytes, *bytes);
1727 
1728 	/* Cannot clear past the end of the bitmap */
1729 	search_bytes = min(search_bytes, end - search_start + 1);
1730 
1731 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1732 	*offset += search_bytes;
1733 	*bytes -= search_bytes;
1734 
1735 	if (*bytes) {
1736 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1737 		if (!bitmap_info->bytes)
1738 			free_bitmap(ctl, bitmap_info);
1739 
1740 		/*
1741 		 * no entry after this bitmap, but we still have bytes to
1742 		 * remove, so something has gone wrong.
1743 		 */
1744 		if (!next)
1745 			return -EINVAL;
1746 
1747 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1748 				       offset_index);
1749 
1750 		/*
1751 		 * if the next entry isn't a bitmap we need to return to let the
1752 		 * extent stuff do its work.
1753 		 */
1754 		if (!bitmap_info->bitmap)
1755 			return -EAGAIN;
1756 
1757 		/*
1758 		 * Ok the next item is a bitmap, but it may not actually hold
1759 		 * the information for the rest of this free space stuff, so
1760 		 * look for it, and if we don't find it return so we can try
1761 		 * everything over again.
1762 		 */
1763 		search_start = *offset;
1764 		search_bytes = ctl->unit;
1765 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1766 				    &search_bytes);
1767 		if (ret < 0 || search_start != *offset)
1768 			return -EAGAIN;
1769 
1770 		goto again;
1771 	} else if (!bitmap_info->bytes)
1772 		free_bitmap(ctl, bitmap_info);
1773 
1774 	return 0;
1775 }
1776 
1777 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1778 			       struct btrfs_free_space *info, u64 offset,
1779 			       u64 bytes)
1780 {
1781 	u64 bytes_to_set = 0;
1782 	u64 end;
1783 
1784 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1785 
1786 	bytes_to_set = min(end - offset, bytes);
1787 
1788 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1789 
1790 	return bytes_to_set;
1791 
1792 }
1793 
1794 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1795 		      struct btrfs_free_space *info)
1796 {
1797 	struct btrfs_block_group_cache *block_group = ctl->private;
1798 
1799 	/*
1800 	 * If we are below the extents threshold then we can add this as an
1801 	 * extent, and don't have to deal with the bitmap
1802 	 */
1803 	if (ctl->free_extents < ctl->extents_thresh) {
1804 		/*
1805 		 * If this block group has some small extents we don't want to
1806 		 * use up all of our free slots in the cache with them, we want
1807 		 * to reserve them to larger extents, however if we have plent
1808 		 * of cache left then go ahead an dadd them, no sense in adding
1809 		 * the overhead of a bitmap if we don't have to.
1810 		 */
1811 		if (info->bytes <= block_group->sectorsize * 4) {
1812 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1813 				return false;
1814 		} else {
1815 			return false;
1816 		}
1817 	}
1818 
1819 	/*
1820 	 * The original block groups from mkfs can be really small, like 8
1821 	 * megabytes, so don't bother with a bitmap for those entries.  However
1822 	 * some block groups can be smaller than what a bitmap would cover but
1823 	 * are still large enough that they could overflow the 32k memory limit,
1824 	 * so allow those block groups to still be allowed to have a bitmap
1825 	 * entry.
1826 	 */
1827 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1828 		return false;
1829 
1830 	return true;
1831 }
1832 
1833 static struct btrfs_free_space_op free_space_op = {
1834 	.recalc_thresholds	= recalculate_thresholds,
1835 	.use_bitmap		= use_bitmap,
1836 };
1837 
1838 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1839 			      struct btrfs_free_space *info)
1840 {
1841 	struct btrfs_free_space *bitmap_info;
1842 	struct btrfs_block_group_cache *block_group = NULL;
1843 	int added = 0;
1844 	u64 bytes, offset, bytes_added;
1845 	int ret;
1846 
1847 	bytes = info->bytes;
1848 	offset = info->offset;
1849 
1850 	if (!ctl->op->use_bitmap(ctl, info))
1851 		return 0;
1852 
1853 	if (ctl->op == &free_space_op)
1854 		block_group = ctl->private;
1855 again:
1856 	/*
1857 	 * Since we link bitmaps right into the cluster we need to see if we
1858 	 * have a cluster here, and if so and it has our bitmap we need to add
1859 	 * the free space to that bitmap.
1860 	 */
1861 	if (block_group && !list_empty(&block_group->cluster_list)) {
1862 		struct btrfs_free_cluster *cluster;
1863 		struct rb_node *node;
1864 		struct btrfs_free_space *entry;
1865 
1866 		cluster = list_entry(block_group->cluster_list.next,
1867 				     struct btrfs_free_cluster,
1868 				     block_group_list);
1869 		spin_lock(&cluster->lock);
1870 		node = rb_first(&cluster->root);
1871 		if (!node) {
1872 			spin_unlock(&cluster->lock);
1873 			goto no_cluster_bitmap;
1874 		}
1875 
1876 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1877 		if (!entry->bitmap) {
1878 			spin_unlock(&cluster->lock);
1879 			goto no_cluster_bitmap;
1880 		}
1881 
1882 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1883 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1884 							  offset, bytes);
1885 			bytes -= bytes_added;
1886 			offset += bytes_added;
1887 		}
1888 		spin_unlock(&cluster->lock);
1889 		if (!bytes) {
1890 			ret = 1;
1891 			goto out;
1892 		}
1893 	}
1894 
1895 no_cluster_bitmap:
1896 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1897 					 1, 0);
1898 	if (!bitmap_info) {
1899 		ASSERT(added == 0);
1900 		goto new_bitmap;
1901 	}
1902 
1903 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1904 	bytes -= bytes_added;
1905 	offset += bytes_added;
1906 	added = 0;
1907 
1908 	if (!bytes) {
1909 		ret = 1;
1910 		goto out;
1911 	} else
1912 		goto again;
1913 
1914 new_bitmap:
1915 	if (info && info->bitmap) {
1916 		add_new_bitmap(ctl, info, offset);
1917 		added = 1;
1918 		info = NULL;
1919 		goto again;
1920 	} else {
1921 		spin_unlock(&ctl->tree_lock);
1922 
1923 		/* no pre-allocated info, allocate a new one */
1924 		if (!info) {
1925 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1926 						 GFP_NOFS);
1927 			if (!info) {
1928 				spin_lock(&ctl->tree_lock);
1929 				ret = -ENOMEM;
1930 				goto out;
1931 			}
1932 		}
1933 
1934 		/* allocate the bitmap */
1935 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1936 		spin_lock(&ctl->tree_lock);
1937 		if (!info->bitmap) {
1938 			ret = -ENOMEM;
1939 			goto out;
1940 		}
1941 		goto again;
1942 	}
1943 
1944 out:
1945 	if (info) {
1946 		if (info->bitmap)
1947 			kfree(info->bitmap);
1948 		kmem_cache_free(btrfs_free_space_cachep, info);
1949 	}
1950 
1951 	return ret;
1952 }
1953 
1954 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1955 			  struct btrfs_free_space *info, bool update_stat)
1956 {
1957 	struct btrfs_free_space *left_info;
1958 	struct btrfs_free_space *right_info;
1959 	bool merged = false;
1960 	u64 offset = info->offset;
1961 	u64 bytes = info->bytes;
1962 
1963 	/*
1964 	 * first we want to see if there is free space adjacent to the range we
1965 	 * are adding, if there is remove that struct and add a new one to
1966 	 * cover the entire range
1967 	 */
1968 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1969 	if (right_info && rb_prev(&right_info->offset_index))
1970 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1971 				     struct btrfs_free_space, offset_index);
1972 	else
1973 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1974 
1975 	if (right_info && !right_info->bitmap) {
1976 		if (update_stat)
1977 			unlink_free_space(ctl, right_info);
1978 		else
1979 			__unlink_free_space(ctl, right_info);
1980 		info->bytes += right_info->bytes;
1981 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1982 		merged = true;
1983 	}
1984 
1985 	if (left_info && !left_info->bitmap &&
1986 	    left_info->offset + left_info->bytes == offset) {
1987 		if (update_stat)
1988 			unlink_free_space(ctl, left_info);
1989 		else
1990 			__unlink_free_space(ctl, left_info);
1991 		info->offset = left_info->offset;
1992 		info->bytes += left_info->bytes;
1993 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1994 		merged = true;
1995 	}
1996 
1997 	return merged;
1998 }
1999 
2000 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2001 				     struct btrfs_free_space *info,
2002 				     bool update_stat)
2003 {
2004 	struct btrfs_free_space *bitmap;
2005 	unsigned long i;
2006 	unsigned long j;
2007 	const u64 end = info->offset + info->bytes;
2008 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2009 	u64 bytes;
2010 
2011 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2012 	if (!bitmap)
2013 		return false;
2014 
2015 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2016 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2017 	if (j == i)
2018 		return false;
2019 	bytes = (j - i) * ctl->unit;
2020 	info->bytes += bytes;
2021 
2022 	if (update_stat)
2023 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2024 	else
2025 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2026 
2027 	if (!bitmap->bytes)
2028 		free_bitmap(ctl, bitmap);
2029 
2030 	return true;
2031 }
2032 
2033 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2034 				       struct btrfs_free_space *info,
2035 				       bool update_stat)
2036 {
2037 	struct btrfs_free_space *bitmap;
2038 	u64 bitmap_offset;
2039 	unsigned long i;
2040 	unsigned long j;
2041 	unsigned long prev_j;
2042 	u64 bytes;
2043 
2044 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2045 	/* If we're on a boundary, try the previous logical bitmap. */
2046 	if (bitmap_offset == info->offset) {
2047 		if (info->offset == 0)
2048 			return false;
2049 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2050 	}
2051 
2052 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2053 	if (!bitmap)
2054 		return false;
2055 
2056 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2057 	j = 0;
2058 	prev_j = (unsigned long)-1;
2059 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2060 		if (j > i)
2061 			break;
2062 		prev_j = j;
2063 	}
2064 	if (prev_j == i)
2065 		return false;
2066 
2067 	if (prev_j == (unsigned long)-1)
2068 		bytes = (i + 1) * ctl->unit;
2069 	else
2070 		bytes = (i - prev_j) * ctl->unit;
2071 
2072 	info->offset -= bytes;
2073 	info->bytes += bytes;
2074 
2075 	if (update_stat)
2076 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2077 	else
2078 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2079 
2080 	if (!bitmap->bytes)
2081 		free_bitmap(ctl, bitmap);
2082 
2083 	return true;
2084 }
2085 
2086 /*
2087  * We prefer always to allocate from extent entries, both for clustered and
2088  * non-clustered allocation requests. So when attempting to add a new extent
2089  * entry, try to see if there's adjacent free space in bitmap entries, and if
2090  * there is, migrate that space from the bitmaps to the extent.
2091  * Like this we get better chances of satisfying space allocation requests
2092  * because we attempt to satisfy them based on a single cache entry, and never
2093  * on 2 or more entries - even if the entries represent a contiguous free space
2094  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2095  * ends).
2096  */
2097 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2098 			      struct btrfs_free_space *info,
2099 			      bool update_stat)
2100 {
2101 	/*
2102 	 * Only work with disconnected entries, as we can change their offset,
2103 	 * and must be extent entries.
2104 	 */
2105 	ASSERT(!info->bitmap);
2106 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2107 
2108 	if (ctl->total_bitmaps > 0) {
2109 		bool stole_end;
2110 		bool stole_front = false;
2111 
2112 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2113 		if (ctl->total_bitmaps > 0)
2114 			stole_front = steal_from_bitmap_to_front(ctl, info,
2115 								 update_stat);
2116 
2117 		if (stole_end || stole_front)
2118 			try_merge_free_space(ctl, info, update_stat);
2119 	}
2120 }
2121 
2122 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2123 			   u64 offset, u64 bytes)
2124 {
2125 	struct btrfs_free_space *info;
2126 	int ret = 0;
2127 
2128 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2129 	if (!info)
2130 		return -ENOMEM;
2131 
2132 	info->offset = offset;
2133 	info->bytes = bytes;
2134 	RB_CLEAR_NODE(&info->offset_index);
2135 
2136 	spin_lock(&ctl->tree_lock);
2137 
2138 	if (try_merge_free_space(ctl, info, true))
2139 		goto link;
2140 
2141 	/*
2142 	 * There was no extent directly to the left or right of this new
2143 	 * extent then we know we're going to have to allocate a new extent, so
2144 	 * before we do that see if we need to drop this into a bitmap
2145 	 */
2146 	ret = insert_into_bitmap(ctl, info);
2147 	if (ret < 0) {
2148 		goto out;
2149 	} else if (ret) {
2150 		ret = 0;
2151 		goto out;
2152 	}
2153 link:
2154 	/*
2155 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2156 	 * going to add the new free space to existing bitmap entries - because
2157 	 * that would mean unnecessary work that would be reverted. Therefore
2158 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2159 	 */
2160 	steal_from_bitmap(ctl, info, true);
2161 
2162 	ret = link_free_space(ctl, info);
2163 	if (ret)
2164 		kmem_cache_free(btrfs_free_space_cachep, info);
2165 out:
2166 	spin_unlock(&ctl->tree_lock);
2167 
2168 	if (ret) {
2169 		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2170 		ASSERT(ret != -EEXIST);
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2177 			    u64 offset, u64 bytes)
2178 {
2179 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2180 	struct btrfs_free_space *info;
2181 	int ret;
2182 	bool re_search = false;
2183 
2184 	spin_lock(&ctl->tree_lock);
2185 
2186 again:
2187 	ret = 0;
2188 	if (!bytes)
2189 		goto out_lock;
2190 
2191 	info = tree_search_offset(ctl, offset, 0, 0);
2192 	if (!info) {
2193 		/*
2194 		 * oops didn't find an extent that matched the space we wanted
2195 		 * to remove, look for a bitmap instead
2196 		 */
2197 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2198 					  1, 0);
2199 		if (!info) {
2200 			/*
2201 			 * If we found a partial bit of our free space in a
2202 			 * bitmap but then couldn't find the other part this may
2203 			 * be a problem, so WARN about it.
2204 			 */
2205 			WARN_ON(re_search);
2206 			goto out_lock;
2207 		}
2208 	}
2209 
2210 	re_search = false;
2211 	if (!info->bitmap) {
2212 		unlink_free_space(ctl, info);
2213 		if (offset == info->offset) {
2214 			u64 to_free = min(bytes, info->bytes);
2215 
2216 			info->bytes -= to_free;
2217 			info->offset += to_free;
2218 			if (info->bytes) {
2219 				ret = link_free_space(ctl, info);
2220 				WARN_ON(ret);
2221 			} else {
2222 				kmem_cache_free(btrfs_free_space_cachep, info);
2223 			}
2224 
2225 			offset += to_free;
2226 			bytes -= to_free;
2227 			goto again;
2228 		} else {
2229 			u64 old_end = info->bytes + info->offset;
2230 
2231 			info->bytes = offset - info->offset;
2232 			ret = link_free_space(ctl, info);
2233 			WARN_ON(ret);
2234 			if (ret)
2235 				goto out_lock;
2236 
2237 			/* Not enough bytes in this entry to satisfy us */
2238 			if (old_end < offset + bytes) {
2239 				bytes -= old_end - offset;
2240 				offset = old_end;
2241 				goto again;
2242 			} else if (old_end == offset + bytes) {
2243 				/* all done */
2244 				goto out_lock;
2245 			}
2246 			spin_unlock(&ctl->tree_lock);
2247 
2248 			ret = btrfs_add_free_space(block_group, offset + bytes,
2249 						   old_end - (offset + bytes));
2250 			WARN_ON(ret);
2251 			goto out;
2252 		}
2253 	}
2254 
2255 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2256 	if (ret == -EAGAIN) {
2257 		re_search = true;
2258 		goto again;
2259 	}
2260 out_lock:
2261 	spin_unlock(&ctl->tree_lock);
2262 out:
2263 	return ret;
2264 }
2265 
2266 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2267 			   u64 bytes)
2268 {
2269 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2270 	struct btrfs_free_space *info;
2271 	struct rb_node *n;
2272 	int count = 0;
2273 
2274 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2275 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2276 		if (info->bytes >= bytes && !block_group->ro)
2277 			count++;
2278 		btrfs_crit(block_group->fs_info,
2279 			   "entry offset %llu, bytes %llu, bitmap %s",
2280 			   info->offset, info->bytes,
2281 		       (info->bitmap) ? "yes" : "no");
2282 	}
2283 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2284 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2285 	btrfs_info(block_group->fs_info,
2286 		   "%d blocks of free space at or bigger than bytes is", count);
2287 }
2288 
2289 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2290 {
2291 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2292 
2293 	spin_lock_init(&ctl->tree_lock);
2294 	ctl->unit = block_group->sectorsize;
2295 	ctl->start = block_group->key.objectid;
2296 	ctl->private = block_group;
2297 	ctl->op = &free_space_op;
2298 
2299 	/*
2300 	 * we only want to have 32k of ram per block group for keeping
2301 	 * track of free space, and if we pass 1/2 of that we want to
2302 	 * start converting things over to using bitmaps
2303 	 */
2304 	ctl->extents_thresh = ((1024 * 32) / 2) /
2305 				sizeof(struct btrfs_free_space);
2306 }
2307 
2308 /*
2309  * for a given cluster, put all of its extents back into the free
2310  * space cache.  If the block group passed doesn't match the block group
2311  * pointed to by the cluster, someone else raced in and freed the
2312  * cluster already.  In that case, we just return without changing anything
2313  */
2314 static int
2315 __btrfs_return_cluster_to_free_space(
2316 			     struct btrfs_block_group_cache *block_group,
2317 			     struct btrfs_free_cluster *cluster)
2318 {
2319 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2320 	struct btrfs_free_space *entry;
2321 	struct rb_node *node;
2322 
2323 	spin_lock(&cluster->lock);
2324 	if (cluster->block_group != block_group)
2325 		goto out;
2326 
2327 	cluster->block_group = NULL;
2328 	cluster->window_start = 0;
2329 	list_del_init(&cluster->block_group_list);
2330 
2331 	node = rb_first(&cluster->root);
2332 	while (node) {
2333 		bool bitmap;
2334 
2335 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2336 		node = rb_next(&entry->offset_index);
2337 		rb_erase(&entry->offset_index, &cluster->root);
2338 		RB_CLEAR_NODE(&entry->offset_index);
2339 
2340 		bitmap = (entry->bitmap != NULL);
2341 		if (!bitmap) {
2342 			try_merge_free_space(ctl, entry, false);
2343 			steal_from_bitmap(ctl, entry, false);
2344 		}
2345 		tree_insert_offset(&ctl->free_space_offset,
2346 				   entry->offset, &entry->offset_index, bitmap);
2347 	}
2348 	cluster->root = RB_ROOT;
2349 
2350 out:
2351 	spin_unlock(&cluster->lock);
2352 	btrfs_put_block_group(block_group);
2353 	return 0;
2354 }
2355 
2356 static void __btrfs_remove_free_space_cache_locked(
2357 				struct btrfs_free_space_ctl *ctl)
2358 {
2359 	struct btrfs_free_space *info;
2360 	struct rb_node *node;
2361 
2362 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2363 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2364 		if (!info->bitmap) {
2365 			unlink_free_space(ctl, info);
2366 			kmem_cache_free(btrfs_free_space_cachep, info);
2367 		} else {
2368 			free_bitmap(ctl, info);
2369 		}
2370 		if (need_resched()) {
2371 			spin_unlock(&ctl->tree_lock);
2372 			cond_resched();
2373 			spin_lock(&ctl->tree_lock);
2374 		}
2375 	}
2376 }
2377 
2378 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2379 {
2380 	spin_lock(&ctl->tree_lock);
2381 	__btrfs_remove_free_space_cache_locked(ctl);
2382 	spin_unlock(&ctl->tree_lock);
2383 }
2384 
2385 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2386 {
2387 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2388 	struct btrfs_free_cluster *cluster;
2389 	struct list_head *head;
2390 
2391 	spin_lock(&ctl->tree_lock);
2392 	while ((head = block_group->cluster_list.next) !=
2393 	       &block_group->cluster_list) {
2394 		cluster = list_entry(head, struct btrfs_free_cluster,
2395 				     block_group_list);
2396 
2397 		WARN_ON(cluster->block_group != block_group);
2398 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2399 		if (need_resched()) {
2400 			spin_unlock(&ctl->tree_lock);
2401 			cond_resched();
2402 			spin_lock(&ctl->tree_lock);
2403 		}
2404 	}
2405 	__btrfs_remove_free_space_cache_locked(ctl);
2406 	spin_unlock(&ctl->tree_lock);
2407 
2408 }
2409 
2410 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2411 			       u64 offset, u64 bytes, u64 empty_size,
2412 			       u64 *max_extent_size)
2413 {
2414 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2415 	struct btrfs_free_space *entry = NULL;
2416 	u64 bytes_search = bytes + empty_size;
2417 	u64 ret = 0;
2418 	u64 align_gap = 0;
2419 	u64 align_gap_len = 0;
2420 
2421 	spin_lock(&ctl->tree_lock);
2422 	entry = find_free_space(ctl, &offset, &bytes_search,
2423 				block_group->full_stripe_len, max_extent_size);
2424 	if (!entry)
2425 		goto out;
2426 
2427 	ret = offset;
2428 	if (entry->bitmap) {
2429 		bitmap_clear_bits(ctl, entry, offset, bytes);
2430 		if (!entry->bytes)
2431 			free_bitmap(ctl, entry);
2432 	} else {
2433 		unlink_free_space(ctl, entry);
2434 		align_gap_len = offset - entry->offset;
2435 		align_gap = entry->offset;
2436 
2437 		entry->offset = offset + bytes;
2438 		WARN_ON(entry->bytes < bytes + align_gap_len);
2439 
2440 		entry->bytes -= bytes + align_gap_len;
2441 		if (!entry->bytes)
2442 			kmem_cache_free(btrfs_free_space_cachep, entry);
2443 		else
2444 			link_free_space(ctl, entry);
2445 	}
2446 out:
2447 	spin_unlock(&ctl->tree_lock);
2448 
2449 	if (align_gap_len)
2450 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2451 	return ret;
2452 }
2453 
2454 /*
2455  * given a cluster, put all of its extents back into the free space
2456  * cache.  If a block group is passed, this function will only free
2457  * a cluster that belongs to the passed block group.
2458  *
2459  * Otherwise, it'll get a reference on the block group pointed to by the
2460  * cluster and remove the cluster from it.
2461  */
2462 int btrfs_return_cluster_to_free_space(
2463 			       struct btrfs_block_group_cache *block_group,
2464 			       struct btrfs_free_cluster *cluster)
2465 {
2466 	struct btrfs_free_space_ctl *ctl;
2467 	int ret;
2468 
2469 	/* first, get a safe pointer to the block group */
2470 	spin_lock(&cluster->lock);
2471 	if (!block_group) {
2472 		block_group = cluster->block_group;
2473 		if (!block_group) {
2474 			spin_unlock(&cluster->lock);
2475 			return 0;
2476 		}
2477 	} else if (cluster->block_group != block_group) {
2478 		/* someone else has already freed it don't redo their work */
2479 		spin_unlock(&cluster->lock);
2480 		return 0;
2481 	}
2482 	atomic_inc(&block_group->count);
2483 	spin_unlock(&cluster->lock);
2484 
2485 	ctl = block_group->free_space_ctl;
2486 
2487 	/* now return any extents the cluster had on it */
2488 	spin_lock(&ctl->tree_lock);
2489 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2490 	spin_unlock(&ctl->tree_lock);
2491 
2492 	/* finally drop our ref */
2493 	btrfs_put_block_group(block_group);
2494 	return ret;
2495 }
2496 
2497 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2498 				   struct btrfs_free_cluster *cluster,
2499 				   struct btrfs_free_space *entry,
2500 				   u64 bytes, u64 min_start,
2501 				   u64 *max_extent_size)
2502 {
2503 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2504 	int err;
2505 	u64 search_start = cluster->window_start;
2506 	u64 search_bytes = bytes;
2507 	u64 ret = 0;
2508 
2509 	search_start = min_start;
2510 	search_bytes = bytes;
2511 
2512 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2513 	if (err) {
2514 		if (search_bytes > *max_extent_size)
2515 			*max_extent_size = search_bytes;
2516 		return 0;
2517 	}
2518 
2519 	ret = search_start;
2520 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2521 
2522 	return ret;
2523 }
2524 
2525 /*
2526  * given a cluster, try to allocate 'bytes' from it, returns 0
2527  * if it couldn't find anything suitably large, or a logical disk offset
2528  * if things worked out
2529  */
2530 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2531 			     struct btrfs_free_cluster *cluster, u64 bytes,
2532 			     u64 min_start, u64 *max_extent_size)
2533 {
2534 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2535 	struct btrfs_free_space *entry = NULL;
2536 	struct rb_node *node;
2537 	u64 ret = 0;
2538 
2539 	spin_lock(&cluster->lock);
2540 	if (bytes > cluster->max_size)
2541 		goto out;
2542 
2543 	if (cluster->block_group != block_group)
2544 		goto out;
2545 
2546 	node = rb_first(&cluster->root);
2547 	if (!node)
2548 		goto out;
2549 
2550 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2551 	while (1) {
2552 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2553 			*max_extent_size = entry->bytes;
2554 
2555 		if (entry->bytes < bytes ||
2556 		    (!entry->bitmap && entry->offset < min_start)) {
2557 			node = rb_next(&entry->offset_index);
2558 			if (!node)
2559 				break;
2560 			entry = rb_entry(node, struct btrfs_free_space,
2561 					 offset_index);
2562 			continue;
2563 		}
2564 
2565 		if (entry->bitmap) {
2566 			ret = btrfs_alloc_from_bitmap(block_group,
2567 						      cluster, entry, bytes,
2568 						      cluster->window_start,
2569 						      max_extent_size);
2570 			if (ret == 0) {
2571 				node = rb_next(&entry->offset_index);
2572 				if (!node)
2573 					break;
2574 				entry = rb_entry(node, struct btrfs_free_space,
2575 						 offset_index);
2576 				continue;
2577 			}
2578 			cluster->window_start += bytes;
2579 		} else {
2580 			ret = entry->offset;
2581 
2582 			entry->offset += bytes;
2583 			entry->bytes -= bytes;
2584 		}
2585 
2586 		if (entry->bytes == 0)
2587 			rb_erase(&entry->offset_index, &cluster->root);
2588 		break;
2589 	}
2590 out:
2591 	spin_unlock(&cluster->lock);
2592 
2593 	if (!ret)
2594 		return 0;
2595 
2596 	spin_lock(&ctl->tree_lock);
2597 
2598 	ctl->free_space -= bytes;
2599 	if (entry->bytes == 0) {
2600 		ctl->free_extents--;
2601 		if (entry->bitmap) {
2602 			kfree(entry->bitmap);
2603 			ctl->total_bitmaps--;
2604 			ctl->op->recalc_thresholds(ctl);
2605 		}
2606 		kmem_cache_free(btrfs_free_space_cachep, entry);
2607 	}
2608 
2609 	spin_unlock(&ctl->tree_lock);
2610 
2611 	return ret;
2612 }
2613 
2614 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2615 				struct btrfs_free_space *entry,
2616 				struct btrfs_free_cluster *cluster,
2617 				u64 offset, u64 bytes,
2618 				u64 cont1_bytes, u64 min_bytes)
2619 {
2620 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2621 	unsigned long next_zero;
2622 	unsigned long i;
2623 	unsigned long want_bits;
2624 	unsigned long min_bits;
2625 	unsigned long found_bits;
2626 	unsigned long start = 0;
2627 	unsigned long total_found = 0;
2628 	int ret;
2629 
2630 	i = offset_to_bit(entry->offset, ctl->unit,
2631 			  max_t(u64, offset, entry->offset));
2632 	want_bits = bytes_to_bits(bytes, ctl->unit);
2633 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2634 
2635 again:
2636 	found_bits = 0;
2637 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2638 		next_zero = find_next_zero_bit(entry->bitmap,
2639 					       BITS_PER_BITMAP, i);
2640 		if (next_zero - i >= min_bits) {
2641 			found_bits = next_zero - i;
2642 			break;
2643 		}
2644 		i = next_zero;
2645 	}
2646 
2647 	if (!found_bits)
2648 		return -ENOSPC;
2649 
2650 	if (!total_found) {
2651 		start = i;
2652 		cluster->max_size = 0;
2653 	}
2654 
2655 	total_found += found_bits;
2656 
2657 	if (cluster->max_size < found_bits * ctl->unit)
2658 		cluster->max_size = found_bits * ctl->unit;
2659 
2660 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2661 		i = next_zero + 1;
2662 		goto again;
2663 	}
2664 
2665 	cluster->window_start = start * ctl->unit + entry->offset;
2666 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2667 	ret = tree_insert_offset(&cluster->root, entry->offset,
2668 				 &entry->offset_index, 1);
2669 	ASSERT(!ret); /* -EEXIST; Logic error */
2670 
2671 	trace_btrfs_setup_cluster(block_group, cluster,
2672 				  total_found * ctl->unit, 1);
2673 	return 0;
2674 }
2675 
2676 /*
2677  * This searches the block group for just extents to fill the cluster with.
2678  * Try to find a cluster with at least bytes total bytes, at least one
2679  * extent of cont1_bytes, and other clusters of at least min_bytes.
2680  */
2681 static noinline int
2682 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2683 			struct btrfs_free_cluster *cluster,
2684 			struct list_head *bitmaps, u64 offset, u64 bytes,
2685 			u64 cont1_bytes, u64 min_bytes)
2686 {
2687 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2688 	struct btrfs_free_space *first = NULL;
2689 	struct btrfs_free_space *entry = NULL;
2690 	struct btrfs_free_space *last;
2691 	struct rb_node *node;
2692 	u64 window_free;
2693 	u64 max_extent;
2694 	u64 total_size = 0;
2695 
2696 	entry = tree_search_offset(ctl, offset, 0, 1);
2697 	if (!entry)
2698 		return -ENOSPC;
2699 
2700 	/*
2701 	 * We don't want bitmaps, so just move along until we find a normal
2702 	 * extent entry.
2703 	 */
2704 	while (entry->bitmap || entry->bytes < min_bytes) {
2705 		if (entry->bitmap && list_empty(&entry->list))
2706 			list_add_tail(&entry->list, bitmaps);
2707 		node = rb_next(&entry->offset_index);
2708 		if (!node)
2709 			return -ENOSPC;
2710 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2711 	}
2712 
2713 	window_free = entry->bytes;
2714 	max_extent = entry->bytes;
2715 	first = entry;
2716 	last = entry;
2717 
2718 	for (node = rb_next(&entry->offset_index); node;
2719 	     node = rb_next(&entry->offset_index)) {
2720 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2721 
2722 		if (entry->bitmap) {
2723 			if (list_empty(&entry->list))
2724 				list_add_tail(&entry->list, bitmaps);
2725 			continue;
2726 		}
2727 
2728 		if (entry->bytes < min_bytes)
2729 			continue;
2730 
2731 		last = entry;
2732 		window_free += entry->bytes;
2733 		if (entry->bytes > max_extent)
2734 			max_extent = entry->bytes;
2735 	}
2736 
2737 	if (window_free < bytes || max_extent < cont1_bytes)
2738 		return -ENOSPC;
2739 
2740 	cluster->window_start = first->offset;
2741 
2742 	node = &first->offset_index;
2743 
2744 	/*
2745 	 * now we've found our entries, pull them out of the free space
2746 	 * cache and put them into the cluster rbtree
2747 	 */
2748 	do {
2749 		int ret;
2750 
2751 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2752 		node = rb_next(&entry->offset_index);
2753 		if (entry->bitmap || entry->bytes < min_bytes)
2754 			continue;
2755 
2756 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2757 		ret = tree_insert_offset(&cluster->root, entry->offset,
2758 					 &entry->offset_index, 0);
2759 		total_size += entry->bytes;
2760 		ASSERT(!ret); /* -EEXIST; Logic error */
2761 	} while (node && entry != last);
2762 
2763 	cluster->max_size = max_extent;
2764 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2765 	return 0;
2766 }
2767 
2768 /*
2769  * This specifically looks for bitmaps that may work in the cluster, we assume
2770  * that we have already failed to find extents that will work.
2771  */
2772 static noinline int
2773 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2774 		     struct btrfs_free_cluster *cluster,
2775 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2776 		     u64 cont1_bytes, u64 min_bytes)
2777 {
2778 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2779 	struct btrfs_free_space *entry;
2780 	int ret = -ENOSPC;
2781 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2782 
2783 	if (ctl->total_bitmaps == 0)
2784 		return -ENOSPC;
2785 
2786 	/*
2787 	 * The bitmap that covers offset won't be in the list unless offset
2788 	 * is just its start offset.
2789 	 */
2790 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2791 	if (entry->offset != bitmap_offset) {
2792 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2793 		if (entry && list_empty(&entry->list))
2794 			list_add(&entry->list, bitmaps);
2795 	}
2796 
2797 	list_for_each_entry(entry, bitmaps, list) {
2798 		if (entry->bytes < bytes)
2799 			continue;
2800 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2801 					   bytes, cont1_bytes, min_bytes);
2802 		if (!ret)
2803 			return 0;
2804 	}
2805 
2806 	/*
2807 	 * The bitmaps list has all the bitmaps that record free space
2808 	 * starting after offset, so no more search is required.
2809 	 */
2810 	return -ENOSPC;
2811 }
2812 
2813 /*
2814  * here we try to find a cluster of blocks in a block group.  The goal
2815  * is to find at least bytes+empty_size.
2816  * We might not find them all in one contiguous area.
2817  *
2818  * returns zero and sets up cluster if things worked out, otherwise
2819  * it returns -enospc
2820  */
2821 int btrfs_find_space_cluster(struct btrfs_root *root,
2822 			     struct btrfs_block_group_cache *block_group,
2823 			     struct btrfs_free_cluster *cluster,
2824 			     u64 offset, u64 bytes, u64 empty_size)
2825 {
2826 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2827 	struct btrfs_free_space *entry, *tmp;
2828 	LIST_HEAD(bitmaps);
2829 	u64 min_bytes;
2830 	u64 cont1_bytes;
2831 	int ret;
2832 
2833 	/*
2834 	 * Choose the minimum extent size we'll require for this
2835 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2836 	 * For metadata, allow allocates with smaller extents.  For
2837 	 * data, keep it dense.
2838 	 */
2839 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2840 		cont1_bytes = min_bytes = bytes + empty_size;
2841 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2842 		cont1_bytes = bytes;
2843 		min_bytes = block_group->sectorsize;
2844 	} else {
2845 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2846 		min_bytes = block_group->sectorsize;
2847 	}
2848 
2849 	spin_lock(&ctl->tree_lock);
2850 
2851 	/*
2852 	 * If we know we don't have enough space to make a cluster don't even
2853 	 * bother doing all the work to try and find one.
2854 	 */
2855 	if (ctl->free_space < bytes) {
2856 		spin_unlock(&ctl->tree_lock);
2857 		return -ENOSPC;
2858 	}
2859 
2860 	spin_lock(&cluster->lock);
2861 
2862 	/* someone already found a cluster, hooray */
2863 	if (cluster->block_group) {
2864 		ret = 0;
2865 		goto out;
2866 	}
2867 
2868 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2869 				 min_bytes);
2870 
2871 	INIT_LIST_HEAD(&bitmaps);
2872 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2873 				      bytes + empty_size,
2874 				      cont1_bytes, min_bytes);
2875 	if (ret)
2876 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2877 					   offset, bytes + empty_size,
2878 					   cont1_bytes, min_bytes);
2879 
2880 	/* Clear our temporary list */
2881 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2882 		list_del_init(&entry->list);
2883 
2884 	if (!ret) {
2885 		atomic_inc(&block_group->count);
2886 		list_add_tail(&cluster->block_group_list,
2887 			      &block_group->cluster_list);
2888 		cluster->block_group = block_group;
2889 	} else {
2890 		trace_btrfs_failed_cluster_setup(block_group);
2891 	}
2892 out:
2893 	spin_unlock(&cluster->lock);
2894 	spin_unlock(&ctl->tree_lock);
2895 
2896 	return ret;
2897 }
2898 
2899 /*
2900  * simple code to zero out a cluster
2901  */
2902 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2903 {
2904 	spin_lock_init(&cluster->lock);
2905 	spin_lock_init(&cluster->refill_lock);
2906 	cluster->root = RB_ROOT;
2907 	cluster->max_size = 0;
2908 	INIT_LIST_HEAD(&cluster->block_group_list);
2909 	cluster->block_group = NULL;
2910 }
2911 
2912 static int do_trimming(struct btrfs_block_group_cache *block_group,
2913 		       u64 *total_trimmed, u64 start, u64 bytes,
2914 		       u64 reserved_start, u64 reserved_bytes)
2915 {
2916 	struct btrfs_space_info *space_info = block_group->space_info;
2917 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2918 	int ret;
2919 	int update = 0;
2920 	u64 trimmed = 0;
2921 
2922 	spin_lock(&space_info->lock);
2923 	spin_lock(&block_group->lock);
2924 	if (!block_group->ro) {
2925 		block_group->reserved += reserved_bytes;
2926 		space_info->bytes_reserved += reserved_bytes;
2927 		update = 1;
2928 	}
2929 	spin_unlock(&block_group->lock);
2930 	spin_unlock(&space_info->lock);
2931 
2932 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2933 					 start, bytes, &trimmed);
2934 	if (!ret)
2935 		*total_trimmed += trimmed;
2936 
2937 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2938 
2939 	if (update) {
2940 		spin_lock(&space_info->lock);
2941 		spin_lock(&block_group->lock);
2942 		if (block_group->ro)
2943 			space_info->bytes_readonly += reserved_bytes;
2944 		block_group->reserved -= reserved_bytes;
2945 		space_info->bytes_reserved -= reserved_bytes;
2946 		spin_unlock(&space_info->lock);
2947 		spin_unlock(&block_group->lock);
2948 	}
2949 
2950 	return ret;
2951 }
2952 
2953 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2954 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2955 {
2956 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2957 	struct btrfs_free_space *entry;
2958 	struct rb_node *node;
2959 	int ret = 0;
2960 	u64 extent_start;
2961 	u64 extent_bytes;
2962 	u64 bytes;
2963 
2964 	while (start < end) {
2965 		spin_lock(&ctl->tree_lock);
2966 
2967 		if (ctl->free_space < minlen) {
2968 			spin_unlock(&ctl->tree_lock);
2969 			break;
2970 		}
2971 
2972 		entry = tree_search_offset(ctl, start, 0, 1);
2973 		if (!entry) {
2974 			spin_unlock(&ctl->tree_lock);
2975 			break;
2976 		}
2977 
2978 		/* skip bitmaps */
2979 		while (entry->bitmap) {
2980 			node = rb_next(&entry->offset_index);
2981 			if (!node) {
2982 				spin_unlock(&ctl->tree_lock);
2983 				goto out;
2984 			}
2985 			entry = rb_entry(node, struct btrfs_free_space,
2986 					 offset_index);
2987 		}
2988 
2989 		if (entry->offset >= end) {
2990 			spin_unlock(&ctl->tree_lock);
2991 			break;
2992 		}
2993 
2994 		extent_start = entry->offset;
2995 		extent_bytes = entry->bytes;
2996 		start = max(start, extent_start);
2997 		bytes = min(extent_start + extent_bytes, end) - start;
2998 		if (bytes < minlen) {
2999 			spin_unlock(&ctl->tree_lock);
3000 			goto next;
3001 		}
3002 
3003 		unlink_free_space(ctl, entry);
3004 		kmem_cache_free(btrfs_free_space_cachep, entry);
3005 
3006 		spin_unlock(&ctl->tree_lock);
3007 
3008 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3009 				  extent_start, extent_bytes);
3010 		if (ret)
3011 			break;
3012 next:
3013 		start += bytes;
3014 
3015 		if (fatal_signal_pending(current)) {
3016 			ret = -ERESTARTSYS;
3017 			break;
3018 		}
3019 
3020 		cond_resched();
3021 	}
3022 out:
3023 	return ret;
3024 }
3025 
3026 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3027 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3028 {
3029 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3030 	struct btrfs_free_space *entry;
3031 	int ret = 0;
3032 	int ret2;
3033 	u64 bytes;
3034 	u64 offset = offset_to_bitmap(ctl, start);
3035 
3036 	while (offset < end) {
3037 		bool next_bitmap = false;
3038 
3039 		spin_lock(&ctl->tree_lock);
3040 
3041 		if (ctl->free_space < minlen) {
3042 			spin_unlock(&ctl->tree_lock);
3043 			break;
3044 		}
3045 
3046 		entry = tree_search_offset(ctl, offset, 1, 0);
3047 		if (!entry) {
3048 			spin_unlock(&ctl->tree_lock);
3049 			next_bitmap = true;
3050 			goto next;
3051 		}
3052 
3053 		bytes = minlen;
3054 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
3055 		if (ret2 || start >= end) {
3056 			spin_unlock(&ctl->tree_lock);
3057 			next_bitmap = true;
3058 			goto next;
3059 		}
3060 
3061 		bytes = min(bytes, end - start);
3062 		if (bytes < minlen) {
3063 			spin_unlock(&ctl->tree_lock);
3064 			goto next;
3065 		}
3066 
3067 		bitmap_clear_bits(ctl, entry, start, bytes);
3068 		if (entry->bytes == 0)
3069 			free_bitmap(ctl, entry);
3070 
3071 		spin_unlock(&ctl->tree_lock);
3072 
3073 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3074 				  start, bytes);
3075 		if (ret)
3076 			break;
3077 next:
3078 		if (next_bitmap) {
3079 			offset += BITS_PER_BITMAP * ctl->unit;
3080 		} else {
3081 			start += bytes;
3082 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3083 				offset += BITS_PER_BITMAP * ctl->unit;
3084 		}
3085 
3086 		if (fatal_signal_pending(current)) {
3087 			ret = -ERESTARTSYS;
3088 			break;
3089 		}
3090 
3091 		cond_resched();
3092 	}
3093 
3094 	return ret;
3095 }
3096 
3097 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3098 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3099 {
3100 	int ret;
3101 
3102 	*trimmed = 0;
3103 
3104 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3105 	if (ret)
3106 		return ret;
3107 
3108 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3109 
3110 	return ret;
3111 }
3112 
3113 /*
3114  * Find the left-most item in the cache tree, and then return the
3115  * smallest inode number in the item.
3116  *
3117  * Note: the returned inode number may not be the smallest one in
3118  * the tree, if the left-most item is a bitmap.
3119  */
3120 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3121 {
3122 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3123 	struct btrfs_free_space *entry = NULL;
3124 	u64 ino = 0;
3125 
3126 	spin_lock(&ctl->tree_lock);
3127 
3128 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3129 		goto out;
3130 
3131 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3132 			 struct btrfs_free_space, offset_index);
3133 
3134 	if (!entry->bitmap) {
3135 		ino = entry->offset;
3136 
3137 		unlink_free_space(ctl, entry);
3138 		entry->offset++;
3139 		entry->bytes--;
3140 		if (!entry->bytes)
3141 			kmem_cache_free(btrfs_free_space_cachep, entry);
3142 		else
3143 			link_free_space(ctl, entry);
3144 	} else {
3145 		u64 offset = 0;
3146 		u64 count = 1;
3147 		int ret;
3148 
3149 		ret = search_bitmap(ctl, entry, &offset, &count);
3150 		/* Logic error; Should be empty if it can't find anything */
3151 		ASSERT(!ret);
3152 
3153 		ino = offset;
3154 		bitmap_clear_bits(ctl, entry, offset, 1);
3155 		if (entry->bytes == 0)
3156 			free_bitmap(ctl, entry);
3157 	}
3158 out:
3159 	spin_unlock(&ctl->tree_lock);
3160 
3161 	return ino;
3162 }
3163 
3164 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3165 				    struct btrfs_path *path)
3166 {
3167 	struct inode *inode = NULL;
3168 
3169 	spin_lock(&root->ino_cache_lock);
3170 	if (root->ino_cache_inode)
3171 		inode = igrab(root->ino_cache_inode);
3172 	spin_unlock(&root->ino_cache_lock);
3173 	if (inode)
3174 		return inode;
3175 
3176 	inode = __lookup_free_space_inode(root, path, 0);
3177 	if (IS_ERR(inode))
3178 		return inode;
3179 
3180 	spin_lock(&root->ino_cache_lock);
3181 	if (!btrfs_fs_closing(root->fs_info))
3182 		root->ino_cache_inode = igrab(inode);
3183 	spin_unlock(&root->ino_cache_lock);
3184 
3185 	return inode;
3186 }
3187 
3188 int create_free_ino_inode(struct btrfs_root *root,
3189 			  struct btrfs_trans_handle *trans,
3190 			  struct btrfs_path *path)
3191 {
3192 	return __create_free_space_inode(root, trans, path,
3193 					 BTRFS_FREE_INO_OBJECTID, 0);
3194 }
3195 
3196 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3197 {
3198 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3199 	struct btrfs_path *path;
3200 	struct inode *inode;
3201 	int ret = 0;
3202 	u64 root_gen = btrfs_root_generation(&root->root_item);
3203 
3204 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3205 		return 0;
3206 
3207 	/*
3208 	 * If we're unmounting then just return, since this does a search on the
3209 	 * normal root and not the commit root and we could deadlock.
3210 	 */
3211 	if (btrfs_fs_closing(fs_info))
3212 		return 0;
3213 
3214 	path = btrfs_alloc_path();
3215 	if (!path)
3216 		return 0;
3217 
3218 	inode = lookup_free_ino_inode(root, path);
3219 	if (IS_ERR(inode))
3220 		goto out;
3221 
3222 	if (root_gen != BTRFS_I(inode)->generation)
3223 		goto out_put;
3224 
3225 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3226 
3227 	if (ret < 0)
3228 		btrfs_err(fs_info,
3229 			"failed to load free ino cache for root %llu",
3230 			root->root_key.objectid);
3231 out_put:
3232 	iput(inode);
3233 out:
3234 	btrfs_free_path(path);
3235 	return ret;
3236 }
3237 
3238 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3239 			      struct btrfs_trans_handle *trans,
3240 			      struct btrfs_path *path,
3241 			      struct inode *inode)
3242 {
3243 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3244 	int ret;
3245 
3246 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3247 		return 0;
3248 
3249 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
3250 	if (ret) {
3251 		btrfs_delalloc_release_metadata(inode, inode->i_size);
3252 #ifdef DEBUG
3253 		btrfs_err(root->fs_info,
3254 			"failed to write free ino cache for root %llu",
3255 			root->root_key.objectid);
3256 #endif
3257 	}
3258 
3259 	return ret;
3260 }
3261 
3262 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3263 /*
3264  * Use this if you need to make a bitmap or extent entry specifically, it
3265  * doesn't do any of the merging that add_free_space does, this acts a lot like
3266  * how the free space cache loading stuff works, so you can get really weird
3267  * configurations.
3268  */
3269 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3270 			      u64 offset, u64 bytes, bool bitmap)
3271 {
3272 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3273 	struct btrfs_free_space *info = NULL, *bitmap_info;
3274 	void *map = NULL;
3275 	u64 bytes_added;
3276 	int ret;
3277 
3278 again:
3279 	if (!info) {
3280 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3281 		if (!info)
3282 			return -ENOMEM;
3283 	}
3284 
3285 	if (!bitmap) {
3286 		spin_lock(&ctl->tree_lock);
3287 		info->offset = offset;
3288 		info->bytes = bytes;
3289 		ret = link_free_space(ctl, info);
3290 		spin_unlock(&ctl->tree_lock);
3291 		if (ret)
3292 			kmem_cache_free(btrfs_free_space_cachep, info);
3293 		return ret;
3294 	}
3295 
3296 	if (!map) {
3297 		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3298 		if (!map) {
3299 			kmem_cache_free(btrfs_free_space_cachep, info);
3300 			return -ENOMEM;
3301 		}
3302 	}
3303 
3304 	spin_lock(&ctl->tree_lock);
3305 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3306 					 1, 0);
3307 	if (!bitmap_info) {
3308 		info->bitmap = map;
3309 		map = NULL;
3310 		add_new_bitmap(ctl, info, offset);
3311 		bitmap_info = info;
3312 		info = NULL;
3313 	}
3314 
3315 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3316 	bytes -= bytes_added;
3317 	offset += bytes_added;
3318 	spin_unlock(&ctl->tree_lock);
3319 
3320 	if (bytes)
3321 		goto again;
3322 
3323 	if (info)
3324 		kmem_cache_free(btrfs_free_space_cachep, info);
3325 	if (map)
3326 		kfree(map);
3327 	return 0;
3328 }
3329 
3330 /*
3331  * Checks to see if the given range is in the free space cache.  This is really
3332  * just used to check the absence of space, so if there is free space in the
3333  * range at all we will return 1.
3334  */
3335 int test_check_exists(struct btrfs_block_group_cache *cache,
3336 		      u64 offset, u64 bytes)
3337 {
3338 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3339 	struct btrfs_free_space *info;
3340 	int ret = 0;
3341 
3342 	spin_lock(&ctl->tree_lock);
3343 	info = tree_search_offset(ctl, offset, 0, 0);
3344 	if (!info) {
3345 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3346 					  1, 0);
3347 		if (!info)
3348 			goto out;
3349 	}
3350 
3351 have_info:
3352 	if (info->bitmap) {
3353 		u64 bit_off, bit_bytes;
3354 		struct rb_node *n;
3355 		struct btrfs_free_space *tmp;
3356 
3357 		bit_off = offset;
3358 		bit_bytes = ctl->unit;
3359 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3360 		if (!ret) {
3361 			if (bit_off == offset) {
3362 				ret = 1;
3363 				goto out;
3364 			} else if (bit_off > offset &&
3365 				   offset + bytes > bit_off) {
3366 				ret = 1;
3367 				goto out;
3368 			}
3369 		}
3370 
3371 		n = rb_prev(&info->offset_index);
3372 		while (n) {
3373 			tmp = rb_entry(n, struct btrfs_free_space,
3374 				       offset_index);
3375 			if (tmp->offset + tmp->bytes < offset)
3376 				break;
3377 			if (offset + bytes < tmp->offset) {
3378 				n = rb_prev(&info->offset_index);
3379 				continue;
3380 			}
3381 			info = tmp;
3382 			goto have_info;
3383 		}
3384 
3385 		n = rb_next(&info->offset_index);
3386 		while (n) {
3387 			tmp = rb_entry(n, struct btrfs_free_space,
3388 				       offset_index);
3389 			if (offset + bytes < tmp->offset)
3390 				break;
3391 			if (tmp->offset + tmp->bytes < offset) {
3392 				n = rb_next(&info->offset_index);
3393 				continue;
3394 			}
3395 			info = tmp;
3396 			goto have_info;
3397 		}
3398 
3399 		ret = 0;
3400 		goto out;
3401 	}
3402 
3403 	if (info->offset == offset) {
3404 		ret = 1;
3405 		goto out;
3406 	}
3407 
3408 	if (offset > info->offset && offset < info->offset + info->bytes)
3409 		ret = 1;
3410 out:
3411 	spin_unlock(&ctl->tree_lock);
3412 	return ret;
3413 }
3414 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3415