1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "ctree.h" 15 #include "free-space-cache.h" 16 #include "transaction.h" 17 #include "disk-io.h" 18 #include "extent_io.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "space-info.h" 22 #include "delalloc-space.h" 23 #include "block-group.h" 24 #include "discard.h" 25 26 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 27 #define MAX_CACHE_BYTES_PER_GIG SZ_64K 28 #define FORCE_EXTENT_THRESHOLD SZ_1M 29 30 struct btrfs_trim_range { 31 u64 start; 32 u64 bytes; 33 struct list_head list; 34 }; 35 36 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *bitmap_info); 38 static int link_free_space(struct btrfs_free_space_ctl *ctl, 39 struct btrfs_free_space *info); 40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 41 struct btrfs_free_space *info); 42 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 43 struct btrfs_trans_handle *trans, 44 struct btrfs_io_ctl *io_ctl, 45 struct btrfs_path *path); 46 47 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 48 struct btrfs_path *path, 49 u64 offset) 50 { 51 struct btrfs_fs_info *fs_info = root->fs_info; 52 struct btrfs_key key; 53 struct btrfs_key location; 54 struct btrfs_disk_key disk_key; 55 struct btrfs_free_space_header *header; 56 struct extent_buffer *leaf; 57 struct inode *inode = NULL; 58 unsigned nofs_flag; 59 int ret; 60 61 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 62 key.offset = offset; 63 key.type = 0; 64 65 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 66 if (ret < 0) 67 return ERR_PTR(ret); 68 if (ret > 0) { 69 btrfs_release_path(path); 70 return ERR_PTR(-ENOENT); 71 } 72 73 leaf = path->nodes[0]; 74 header = btrfs_item_ptr(leaf, path->slots[0], 75 struct btrfs_free_space_header); 76 btrfs_free_space_key(leaf, header, &disk_key); 77 btrfs_disk_key_to_cpu(&location, &disk_key); 78 btrfs_release_path(path); 79 80 /* 81 * We are often under a trans handle at this point, so we need to make 82 * sure NOFS is set to keep us from deadlocking. 83 */ 84 nofs_flag = memalloc_nofs_save(); 85 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path); 86 btrfs_release_path(path); 87 memalloc_nofs_restore(nofs_flag); 88 if (IS_ERR(inode)) 89 return inode; 90 91 mapping_set_gfp_mask(inode->i_mapping, 92 mapping_gfp_constraint(inode->i_mapping, 93 ~(__GFP_FS | __GFP_HIGHMEM))); 94 95 return inode; 96 } 97 98 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 99 struct btrfs_path *path) 100 { 101 struct btrfs_fs_info *fs_info = block_group->fs_info; 102 struct inode *inode = NULL; 103 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 104 105 spin_lock(&block_group->lock); 106 if (block_group->inode) 107 inode = igrab(block_group->inode); 108 spin_unlock(&block_group->lock); 109 if (inode) 110 return inode; 111 112 inode = __lookup_free_space_inode(fs_info->tree_root, path, 113 block_group->start); 114 if (IS_ERR(inode)) 115 return inode; 116 117 spin_lock(&block_group->lock); 118 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 119 btrfs_info(fs_info, "Old style space inode found, converting."); 120 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 121 BTRFS_INODE_NODATACOW; 122 block_group->disk_cache_state = BTRFS_DC_CLEAR; 123 } 124 125 if (!block_group->iref) { 126 block_group->inode = igrab(inode); 127 block_group->iref = 1; 128 } 129 spin_unlock(&block_group->lock); 130 131 return inode; 132 } 133 134 static int __create_free_space_inode(struct btrfs_root *root, 135 struct btrfs_trans_handle *trans, 136 struct btrfs_path *path, 137 u64 ino, u64 offset) 138 { 139 struct btrfs_key key; 140 struct btrfs_disk_key disk_key; 141 struct btrfs_free_space_header *header; 142 struct btrfs_inode_item *inode_item; 143 struct extent_buffer *leaf; 144 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 145 int ret; 146 147 ret = btrfs_insert_empty_inode(trans, root, path, ino); 148 if (ret) 149 return ret; 150 151 /* We inline crc's for the free disk space cache */ 152 if (ino != BTRFS_FREE_INO_OBJECTID) 153 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 154 155 leaf = path->nodes[0]; 156 inode_item = btrfs_item_ptr(leaf, path->slots[0], 157 struct btrfs_inode_item); 158 btrfs_item_key(leaf, &disk_key, path->slots[0]); 159 memzero_extent_buffer(leaf, (unsigned long)inode_item, 160 sizeof(*inode_item)); 161 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 162 btrfs_set_inode_size(leaf, inode_item, 0); 163 btrfs_set_inode_nbytes(leaf, inode_item, 0); 164 btrfs_set_inode_uid(leaf, inode_item, 0); 165 btrfs_set_inode_gid(leaf, inode_item, 0); 166 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 167 btrfs_set_inode_flags(leaf, inode_item, flags); 168 btrfs_set_inode_nlink(leaf, inode_item, 1); 169 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 170 btrfs_set_inode_block_group(leaf, inode_item, offset); 171 btrfs_mark_buffer_dirty(leaf); 172 btrfs_release_path(path); 173 174 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 175 key.offset = offset; 176 key.type = 0; 177 ret = btrfs_insert_empty_item(trans, root, path, &key, 178 sizeof(struct btrfs_free_space_header)); 179 if (ret < 0) { 180 btrfs_release_path(path); 181 return ret; 182 } 183 184 leaf = path->nodes[0]; 185 header = btrfs_item_ptr(leaf, path->slots[0], 186 struct btrfs_free_space_header); 187 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 188 btrfs_set_free_space_key(leaf, header, &disk_key); 189 btrfs_mark_buffer_dirty(leaf); 190 btrfs_release_path(path); 191 192 return 0; 193 } 194 195 int create_free_space_inode(struct btrfs_trans_handle *trans, 196 struct btrfs_block_group *block_group, 197 struct btrfs_path *path) 198 { 199 int ret; 200 u64 ino; 201 202 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino); 203 if (ret < 0) 204 return ret; 205 206 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 207 ino, block_group->start); 208 } 209 210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 211 struct btrfs_block_rsv *rsv) 212 { 213 u64 needed_bytes; 214 int ret; 215 216 /* 1 for slack space, 1 for updating the inode */ 217 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 218 btrfs_calc_metadata_size(fs_info, 1); 219 220 spin_lock(&rsv->lock); 221 if (rsv->reserved < needed_bytes) 222 ret = -ENOSPC; 223 else 224 ret = 0; 225 spin_unlock(&rsv->lock); 226 return ret; 227 } 228 229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 230 struct btrfs_block_group *block_group, 231 struct inode *inode) 232 { 233 struct btrfs_root *root = BTRFS_I(inode)->root; 234 int ret = 0; 235 bool locked = false; 236 237 if (block_group) { 238 struct btrfs_path *path = btrfs_alloc_path(); 239 240 if (!path) { 241 ret = -ENOMEM; 242 goto fail; 243 } 244 locked = true; 245 mutex_lock(&trans->transaction->cache_write_mutex); 246 if (!list_empty(&block_group->io_list)) { 247 list_del_init(&block_group->io_list); 248 249 btrfs_wait_cache_io(trans, block_group, path); 250 btrfs_put_block_group(block_group); 251 } 252 253 /* 254 * now that we've truncated the cache away, its no longer 255 * setup or written 256 */ 257 spin_lock(&block_group->lock); 258 block_group->disk_cache_state = BTRFS_DC_CLEAR; 259 spin_unlock(&block_group->lock); 260 btrfs_free_path(path); 261 } 262 263 btrfs_i_size_write(BTRFS_I(inode), 0); 264 truncate_pagecache(inode, 0); 265 266 /* 267 * We skip the throttling logic for free space cache inodes, so we don't 268 * need to check for -EAGAIN. 269 */ 270 ret = btrfs_truncate_inode_items(trans, root, inode, 271 0, BTRFS_EXTENT_DATA_KEY); 272 if (ret) 273 goto fail; 274 275 ret = btrfs_update_inode(trans, root, inode); 276 277 fail: 278 if (locked) 279 mutex_unlock(&trans->transaction->cache_write_mutex); 280 if (ret) 281 btrfs_abort_transaction(trans, ret); 282 283 return ret; 284 } 285 286 static void readahead_cache(struct inode *inode) 287 { 288 struct file_ra_state *ra; 289 unsigned long last_index; 290 291 ra = kzalloc(sizeof(*ra), GFP_NOFS); 292 if (!ra) 293 return; 294 295 file_ra_state_init(ra, inode->i_mapping); 296 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 297 298 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 299 300 kfree(ra); 301 } 302 303 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 304 int write) 305 { 306 int num_pages; 307 int check_crcs = 0; 308 309 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 310 311 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) 312 check_crcs = 1; 313 314 /* Make sure we can fit our crcs and generation into the first page */ 315 if (write && check_crcs && 316 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 317 return -ENOSPC; 318 319 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 320 321 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 322 if (!io_ctl->pages) 323 return -ENOMEM; 324 325 io_ctl->num_pages = num_pages; 326 io_ctl->fs_info = btrfs_sb(inode->i_sb); 327 io_ctl->check_crcs = check_crcs; 328 io_ctl->inode = inode; 329 330 return 0; 331 } 332 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 333 334 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 335 { 336 kfree(io_ctl->pages); 337 io_ctl->pages = NULL; 338 } 339 340 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 341 { 342 if (io_ctl->cur) { 343 io_ctl->cur = NULL; 344 io_ctl->orig = NULL; 345 } 346 } 347 348 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 349 { 350 ASSERT(io_ctl->index < io_ctl->num_pages); 351 io_ctl->page = io_ctl->pages[io_ctl->index++]; 352 io_ctl->cur = page_address(io_ctl->page); 353 io_ctl->orig = io_ctl->cur; 354 io_ctl->size = PAGE_SIZE; 355 if (clear) 356 clear_page(io_ctl->cur); 357 } 358 359 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 360 { 361 int i; 362 363 io_ctl_unmap_page(io_ctl); 364 365 for (i = 0; i < io_ctl->num_pages; i++) { 366 if (io_ctl->pages[i]) { 367 ClearPageChecked(io_ctl->pages[i]); 368 unlock_page(io_ctl->pages[i]); 369 put_page(io_ctl->pages[i]); 370 } 371 } 372 } 373 374 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate) 375 { 376 struct page *page; 377 struct inode *inode = io_ctl->inode; 378 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 379 int i; 380 381 for (i = 0; i < io_ctl->num_pages; i++) { 382 page = find_or_create_page(inode->i_mapping, i, mask); 383 if (!page) { 384 io_ctl_drop_pages(io_ctl); 385 return -ENOMEM; 386 } 387 io_ctl->pages[i] = page; 388 if (uptodate && !PageUptodate(page)) { 389 btrfs_readpage(NULL, page); 390 lock_page(page); 391 if (page->mapping != inode->i_mapping) { 392 btrfs_err(BTRFS_I(inode)->root->fs_info, 393 "free space cache page truncated"); 394 io_ctl_drop_pages(io_ctl); 395 return -EIO; 396 } 397 if (!PageUptodate(page)) { 398 btrfs_err(BTRFS_I(inode)->root->fs_info, 399 "error reading free space cache"); 400 io_ctl_drop_pages(io_ctl); 401 return -EIO; 402 } 403 } 404 } 405 406 for (i = 0; i < io_ctl->num_pages; i++) { 407 clear_page_dirty_for_io(io_ctl->pages[i]); 408 set_page_extent_mapped(io_ctl->pages[i]); 409 } 410 411 return 0; 412 } 413 414 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 415 { 416 __le64 *val; 417 418 io_ctl_map_page(io_ctl, 1); 419 420 /* 421 * Skip the csum areas. If we don't check crcs then we just have a 422 * 64bit chunk at the front of the first page. 423 */ 424 if (io_ctl->check_crcs) { 425 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 426 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 427 } else { 428 io_ctl->cur += sizeof(u64); 429 io_ctl->size -= sizeof(u64) * 2; 430 } 431 432 val = io_ctl->cur; 433 *val = cpu_to_le64(generation); 434 io_ctl->cur += sizeof(u64); 435 } 436 437 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 438 { 439 __le64 *gen; 440 441 /* 442 * Skip the crc area. If we don't check crcs then we just have a 64bit 443 * chunk at the front of the first page. 444 */ 445 if (io_ctl->check_crcs) { 446 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 447 io_ctl->size -= sizeof(u64) + 448 (sizeof(u32) * io_ctl->num_pages); 449 } else { 450 io_ctl->cur += sizeof(u64); 451 io_ctl->size -= sizeof(u64) * 2; 452 } 453 454 gen = io_ctl->cur; 455 if (le64_to_cpu(*gen) != generation) { 456 btrfs_err_rl(io_ctl->fs_info, 457 "space cache generation (%llu) does not match inode (%llu)", 458 *gen, generation); 459 io_ctl_unmap_page(io_ctl); 460 return -EIO; 461 } 462 io_ctl->cur += sizeof(u64); 463 return 0; 464 } 465 466 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 467 { 468 u32 *tmp; 469 u32 crc = ~(u32)0; 470 unsigned offset = 0; 471 472 if (!io_ctl->check_crcs) { 473 io_ctl_unmap_page(io_ctl); 474 return; 475 } 476 477 if (index == 0) 478 offset = sizeof(u32) * io_ctl->num_pages; 479 480 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 481 btrfs_crc32c_final(crc, (u8 *)&crc); 482 io_ctl_unmap_page(io_ctl); 483 tmp = page_address(io_ctl->pages[0]); 484 tmp += index; 485 *tmp = crc; 486 } 487 488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 489 { 490 u32 *tmp, val; 491 u32 crc = ~(u32)0; 492 unsigned offset = 0; 493 494 if (!io_ctl->check_crcs) { 495 io_ctl_map_page(io_ctl, 0); 496 return 0; 497 } 498 499 if (index == 0) 500 offset = sizeof(u32) * io_ctl->num_pages; 501 502 tmp = page_address(io_ctl->pages[0]); 503 tmp += index; 504 val = *tmp; 505 506 io_ctl_map_page(io_ctl, 0); 507 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 508 btrfs_crc32c_final(crc, (u8 *)&crc); 509 if (val != crc) { 510 btrfs_err_rl(io_ctl->fs_info, 511 "csum mismatch on free space cache"); 512 io_ctl_unmap_page(io_ctl); 513 return -EIO; 514 } 515 516 return 0; 517 } 518 519 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 520 void *bitmap) 521 { 522 struct btrfs_free_space_entry *entry; 523 524 if (!io_ctl->cur) 525 return -ENOSPC; 526 527 entry = io_ctl->cur; 528 entry->offset = cpu_to_le64(offset); 529 entry->bytes = cpu_to_le64(bytes); 530 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 531 BTRFS_FREE_SPACE_EXTENT; 532 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 533 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 534 535 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 536 return 0; 537 538 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 539 540 /* No more pages to map */ 541 if (io_ctl->index >= io_ctl->num_pages) 542 return 0; 543 544 /* map the next page */ 545 io_ctl_map_page(io_ctl, 1); 546 return 0; 547 } 548 549 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 550 { 551 if (!io_ctl->cur) 552 return -ENOSPC; 553 554 /* 555 * If we aren't at the start of the current page, unmap this one and 556 * map the next one if there is any left. 557 */ 558 if (io_ctl->cur != io_ctl->orig) { 559 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 560 if (io_ctl->index >= io_ctl->num_pages) 561 return -ENOSPC; 562 io_ctl_map_page(io_ctl, 0); 563 } 564 565 copy_page(io_ctl->cur, bitmap); 566 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 567 if (io_ctl->index < io_ctl->num_pages) 568 io_ctl_map_page(io_ctl, 0); 569 return 0; 570 } 571 572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 573 { 574 /* 575 * If we're not on the boundary we know we've modified the page and we 576 * need to crc the page. 577 */ 578 if (io_ctl->cur != io_ctl->orig) 579 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 580 else 581 io_ctl_unmap_page(io_ctl); 582 583 while (io_ctl->index < io_ctl->num_pages) { 584 io_ctl_map_page(io_ctl, 1); 585 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 586 } 587 } 588 589 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 590 struct btrfs_free_space *entry, u8 *type) 591 { 592 struct btrfs_free_space_entry *e; 593 int ret; 594 595 if (!io_ctl->cur) { 596 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 597 if (ret) 598 return ret; 599 } 600 601 e = io_ctl->cur; 602 entry->offset = le64_to_cpu(e->offset); 603 entry->bytes = le64_to_cpu(e->bytes); 604 *type = e->type; 605 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 606 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 607 608 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 609 return 0; 610 611 io_ctl_unmap_page(io_ctl); 612 613 return 0; 614 } 615 616 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 617 struct btrfs_free_space *entry) 618 { 619 int ret; 620 621 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 622 if (ret) 623 return ret; 624 625 copy_page(entry->bitmap, io_ctl->cur); 626 io_ctl_unmap_page(io_ctl); 627 628 return 0; 629 } 630 631 /* 632 * Since we attach pinned extents after the fact we can have contiguous sections 633 * of free space that are split up in entries. This poses a problem with the 634 * tree logging stuff since it could have allocated across what appears to be 2 635 * entries since we would have merged the entries when adding the pinned extents 636 * back to the free space cache. So run through the space cache that we just 637 * loaded and merge contiguous entries. This will make the log replay stuff not 638 * blow up and it will make for nicer allocator behavior. 639 */ 640 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 641 { 642 struct btrfs_free_space *e, *prev = NULL; 643 struct rb_node *n; 644 645 again: 646 spin_lock(&ctl->tree_lock); 647 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 648 e = rb_entry(n, struct btrfs_free_space, offset_index); 649 if (!prev) 650 goto next; 651 if (e->bitmap || prev->bitmap) 652 goto next; 653 if (prev->offset + prev->bytes == e->offset) { 654 unlink_free_space(ctl, prev); 655 unlink_free_space(ctl, e); 656 prev->bytes += e->bytes; 657 kmem_cache_free(btrfs_free_space_cachep, e); 658 link_free_space(ctl, prev); 659 prev = NULL; 660 spin_unlock(&ctl->tree_lock); 661 goto again; 662 } 663 next: 664 prev = e; 665 } 666 spin_unlock(&ctl->tree_lock); 667 } 668 669 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 670 struct btrfs_free_space_ctl *ctl, 671 struct btrfs_path *path, u64 offset) 672 { 673 struct btrfs_fs_info *fs_info = root->fs_info; 674 struct btrfs_free_space_header *header; 675 struct extent_buffer *leaf; 676 struct btrfs_io_ctl io_ctl; 677 struct btrfs_key key; 678 struct btrfs_free_space *e, *n; 679 LIST_HEAD(bitmaps); 680 u64 num_entries; 681 u64 num_bitmaps; 682 u64 generation; 683 u8 type; 684 int ret = 0; 685 686 /* Nothing in the space cache, goodbye */ 687 if (!i_size_read(inode)) 688 return 0; 689 690 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 691 key.offset = offset; 692 key.type = 0; 693 694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 695 if (ret < 0) 696 return 0; 697 else if (ret > 0) { 698 btrfs_release_path(path); 699 return 0; 700 } 701 702 ret = -1; 703 704 leaf = path->nodes[0]; 705 header = btrfs_item_ptr(leaf, path->slots[0], 706 struct btrfs_free_space_header); 707 num_entries = btrfs_free_space_entries(leaf, header); 708 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 709 generation = btrfs_free_space_generation(leaf, header); 710 btrfs_release_path(path); 711 712 if (!BTRFS_I(inode)->generation) { 713 btrfs_info(fs_info, 714 "the free space cache file (%llu) is invalid, skip it", 715 offset); 716 return 0; 717 } 718 719 if (BTRFS_I(inode)->generation != generation) { 720 btrfs_err(fs_info, 721 "free space inode generation (%llu) did not match free space cache generation (%llu)", 722 BTRFS_I(inode)->generation, generation); 723 return 0; 724 } 725 726 if (!num_entries) 727 return 0; 728 729 ret = io_ctl_init(&io_ctl, inode, 0); 730 if (ret) 731 return ret; 732 733 readahead_cache(inode); 734 735 ret = io_ctl_prepare_pages(&io_ctl, true); 736 if (ret) 737 goto out; 738 739 ret = io_ctl_check_crc(&io_ctl, 0); 740 if (ret) 741 goto free_cache; 742 743 ret = io_ctl_check_generation(&io_ctl, generation); 744 if (ret) 745 goto free_cache; 746 747 while (num_entries) { 748 e = kmem_cache_zalloc(btrfs_free_space_cachep, 749 GFP_NOFS); 750 if (!e) 751 goto free_cache; 752 753 ret = io_ctl_read_entry(&io_ctl, e, &type); 754 if (ret) { 755 kmem_cache_free(btrfs_free_space_cachep, e); 756 goto free_cache; 757 } 758 759 /* 760 * Sync discard ensures that the free space cache is always 761 * trimmed. So when reading this in, the state should reflect 762 * that. We also do this for async as a stop gap for lack of 763 * persistence. 764 */ 765 if (btrfs_test_opt(fs_info, DISCARD_SYNC) || 766 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 767 e->trim_state = BTRFS_TRIM_STATE_TRIMMED; 768 769 if (!e->bytes) { 770 kmem_cache_free(btrfs_free_space_cachep, e); 771 goto free_cache; 772 } 773 774 if (type == BTRFS_FREE_SPACE_EXTENT) { 775 spin_lock(&ctl->tree_lock); 776 ret = link_free_space(ctl, e); 777 spin_unlock(&ctl->tree_lock); 778 if (ret) { 779 btrfs_err(fs_info, 780 "Duplicate entries in free space cache, dumping"); 781 kmem_cache_free(btrfs_free_space_cachep, e); 782 goto free_cache; 783 } 784 } else { 785 ASSERT(num_bitmaps); 786 num_bitmaps--; 787 e->bitmap = kmem_cache_zalloc( 788 btrfs_free_space_bitmap_cachep, GFP_NOFS); 789 if (!e->bitmap) { 790 kmem_cache_free( 791 btrfs_free_space_cachep, e); 792 goto free_cache; 793 } 794 spin_lock(&ctl->tree_lock); 795 ret = link_free_space(ctl, e); 796 ctl->total_bitmaps++; 797 ctl->op->recalc_thresholds(ctl); 798 spin_unlock(&ctl->tree_lock); 799 if (ret) { 800 btrfs_err(fs_info, 801 "Duplicate entries in free space cache, dumping"); 802 kmem_cache_free(btrfs_free_space_cachep, e); 803 goto free_cache; 804 } 805 list_add_tail(&e->list, &bitmaps); 806 } 807 808 num_entries--; 809 } 810 811 io_ctl_unmap_page(&io_ctl); 812 813 /* 814 * We add the bitmaps at the end of the entries in order that 815 * the bitmap entries are added to the cache. 816 */ 817 list_for_each_entry_safe(e, n, &bitmaps, list) { 818 list_del_init(&e->list); 819 ret = io_ctl_read_bitmap(&io_ctl, e); 820 if (ret) 821 goto free_cache; 822 e->bitmap_extents = count_bitmap_extents(ctl, e); 823 if (!btrfs_free_space_trimmed(e)) { 824 ctl->discardable_extents[BTRFS_STAT_CURR] += 825 e->bitmap_extents; 826 ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes; 827 } 828 } 829 830 io_ctl_drop_pages(&io_ctl); 831 merge_space_tree(ctl); 832 ret = 1; 833 out: 834 btrfs_discard_update_discardable(ctl->private, ctl); 835 io_ctl_free(&io_ctl); 836 return ret; 837 free_cache: 838 io_ctl_drop_pages(&io_ctl); 839 __btrfs_remove_free_space_cache(ctl); 840 goto out; 841 } 842 843 int load_free_space_cache(struct btrfs_block_group *block_group) 844 { 845 struct btrfs_fs_info *fs_info = block_group->fs_info; 846 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 847 struct inode *inode; 848 struct btrfs_path *path; 849 int ret = 0; 850 bool matched; 851 u64 used = block_group->used; 852 853 /* 854 * If this block group has been marked to be cleared for one reason or 855 * another then we can't trust the on disk cache, so just return. 856 */ 857 spin_lock(&block_group->lock); 858 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 859 spin_unlock(&block_group->lock); 860 return 0; 861 } 862 spin_unlock(&block_group->lock); 863 864 path = btrfs_alloc_path(); 865 if (!path) 866 return 0; 867 path->search_commit_root = 1; 868 path->skip_locking = 1; 869 870 /* 871 * We must pass a path with search_commit_root set to btrfs_iget in 872 * order to avoid a deadlock when allocating extents for the tree root. 873 * 874 * When we are COWing an extent buffer from the tree root, when looking 875 * for a free extent, at extent-tree.c:find_free_extent(), we can find 876 * block group without its free space cache loaded. When we find one 877 * we must load its space cache which requires reading its free space 878 * cache's inode item from the root tree. If this inode item is located 879 * in the same leaf that we started COWing before, then we end up in 880 * deadlock on the extent buffer (trying to read lock it when we 881 * previously write locked it). 882 * 883 * It's safe to read the inode item using the commit root because 884 * block groups, once loaded, stay in memory forever (until they are 885 * removed) as well as their space caches once loaded. New block groups 886 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 887 * we will never try to read their inode item while the fs is mounted. 888 */ 889 inode = lookup_free_space_inode(block_group, path); 890 if (IS_ERR(inode)) { 891 btrfs_free_path(path); 892 return 0; 893 } 894 895 /* We may have converted the inode and made the cache invalid. */ 896 spin_lock(&block_group->lock); 897 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 898 spin_unlock(&block_group->lock); 899 btrfs_free_path(path); 900 goto out; 901 } 902 spin_unlock(&block_group->lock); 903 904 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 905 path, block_group->start); 906 btrfs_free_path(path); 907 if (ret <= 0) 908 goto out; 909 910 spin_lock(&ctl->tree_lock); 911 matched = (ctl->free_space == (block_group->length - used - 912 block_group->bytes_super)); 913 spin_unlock(&ctl->tree_lock); 914 915 if (!matched) { 916 __btrfs_remove_free_space_cache(ctl); 917 btrfs_warn(fs_info, 918 "block group %llu has wrong amount of free space", 919 block_group->start); 920 ret = -1; 921 } 922 out: 923 if (ret < 0) { 924 /* This cache is bogus, make sure it gets cleared */ 925 spin_lock(&block_group->lock); 926 block_group->disk_cache_state = BTRFS_DC_CLEAR; 927 spin_unlock(&block_group->lock); 928 ret = 0; 929 930 btrfs_warn(fs_info, 931 "failed to load free space cache for block group %llu, rebuilding it now", 932 block_group->start); 933 } 934 935 iput(inode); 936 return ret; 937 } 938 939 static noinline_for_stack 940 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 941 struct btrfs_free_space_ctl *ctl, 942 struct btrfs_block_group *block_group, 943 int *entries, int *bitmaps, 944 struct list_head *bitmap_list) 945 { 946 int ret; 947 struct btrfs_free_cluster *cluster = NULL; 948 struct btrfs_free_cluster *cluster_locked = NULL; 949 struct rb_node *node = rb_first(&ctl->free_space_offset); 950 struct btrfs_trim_range *trim_entry; 951 952 /* Get the cluster for this block_group if it exists */ 953 if (block_group && !list_empty(&block_group->cluster_list)) { 954 cluster = list_entry(block_group->cluster_list.next, 955 struct btrfs_free_cluster, 956 block_group_list); 957 } 958 959 if (!node && cluster) { 960 cluster_locked = cluster; 961 spin_lock(&cluster_locked->lock); 962 node = rb_first(&cluster->root); 963 cluster = NULL; 964 } 965 966 /* Write out the extent entries */ 967 while (node) { 968 struct btrfs_free_space *e; 969 970 e = rb_entry(node, struct btrfs_free_space, offset_index); 971 *entries += 1; 972 973 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 974 e->bitmap); 975 if (ret) 976 goto fail; 977 978 if (e->bitmap) { 979 list_add_tail(&e->list, bitmap_list); 980 *bitmaps += 1; 981 } 982 node = rb_next(node); 983 if (!node && cluster) { 984 node = rb_first(&cluster->root); 985 cluster_locked = cluster; 986 spin_lock(&cluster_locked->lock); 987 cluster = NULL; 988 } 989 } 990 if (cluster_locked) { 991 spin_unlock(&cluster_locked->lock); 992 cluster_locked = NULL; 993 } 994 995 /* 996 * Make sure we don't miss any range that was removed from our rbtree 997 * because trimming is running. Otherwise after a umount+mount (or crash 998 * after committing the transaction) we would leak free space and get 999 * an inconsistent free space cache report from fsck. 1000 */ 1001 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 1002 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 1003 trim_entry->bytes, NULL); 1004 if (ret) 1005 goto fail; 1006 *entries += 1; 1007 } 1008 1009 return 0; 1010 fail: 1011 if (cluster_locked) 1012 spin_unlock(&cluster_locked->lock); 1013 return -ENOSPC; 1014 } 1015 1016 static noinline_for_stack int 1017 update_cache_item(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, 1019 struct inode *inode, 1020 struct btrfs_path *path, u64 offset, 1021 int entries, int bitmaps) 1022 { 1023 struct btrfs_key key; 1024 struct btrfs_free_space_header *header; 1025 struct extent_buffer *leaf; 1026 int ret; 1027 1028 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1029 key.offset = offset; 1030 key.type = 0; 1031 1032 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1033 if (ret < 0) { 1034 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1035 EXTENT_DELALLOC, 0, 0, NULL); 1036 goto fail; 1037 } 1038 leaf = path->nodes[0]; 1039 if (ret > 0) { 1040 struct btrfs_key found_key; 1041 ASSERT(path->slots[0]); 1042 path->slots[0]--; 1043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1044 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1045 found_key.offset != offset) { 1046 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1047 inode->i_size - 1, EXTENT_DELALLOC, 0, 1048 0, NULL); 1049 btrfs_release_path(path); 1050 goto fail; 1051 } 1052 } 1053 1054 BTRFS_I(inode)->generation = trans->transid; 1055 header = btrfs_item_ptr(leaf, path->slots[0], 1056 struct btrfs_free_space_header); 1057 btrfs_set_free_space_entries(leaf, header, entries); 1058 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1059 btrfs_set_free_space_generation(leaf, header, trans->transid); 1060 btrfs_mark_buffer_dirty(leaf); 1061 btrfs_release_path(path); 1062 1063 return 0; 1064 1065 fail: 1066 return -1; 1067 } 1068 1069 static noinline_for_stack int write_pinned_extent_entries( 1070 struct btrfs_trans_handle *trans, 1071 struct btrfs_block_group *block_group, 1072 struct btrfs_io_ctl *io_ctl, 1073 int *entries) 1074 { 1075 u64 start, extent_start, extent_end, len; 1076 struct extent_io_tree *unpin = NULL; 1077 int ret; 1078 1079 if (!block_group) 1080 return 0; 1081 1082 /* 1083 * We want to add any pinned extents to our free space cache 1084 * so we don't leak the space 1085 * 1086 * We shouldn't have switched the pinned extents yet so this is the 1087 * right one 1088 */ 1089 unpin = &trans->transaction->pinned_extents; 1090 1091 start = block_group->start; 1092 1093 while (start < block_group->start + block_group->length) { 1094 ret = find_first_extent_bit(unpin, start, 1095 &extent_start, &extent_end, 1096 EXTENT_DIRTY, NULL); 1097 if (ret) 1098 return 0; 1099 1100 /* This pinned extent is out of our range */ 1101 if (extent_start >= block_group->start + block_group->length) 1102 return 0; 1103 1104 extent_start = max(extent_start, start); 1105 extent_end = min(block_group->start + block_group->length, 1106 extent_end + 1); 1107 len = extent_end - extent_start; 1108 1109 *entries += 1; 1110 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1111 if (ret) 1112 return -ENOSPC; 1113 1114 start = extent_end; 1115 } 1116 1117 return 0; 1118 } 1119 1120 static noinline_for_stack int 1121 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1122 { 1123 struct btrfs_free_space *entry, *next; 1124 int ret; 1125 1126 /* Write out the bitmaps */ 1127 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1128 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1129 if (ret) 1130 return -ENOSPC; 1131 list_del_init(&entry->list); 1132 } 1133 1134 return 0; 1135 } 1136 1137 static int flush_dirty_cache(struct inode *inode) 1138 { 1139 int ret; 1140 1141 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1142 if (ret) 1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1144 EXTENT_DELALLOC, 0, 0, NULL); 1145 1146 return ret; 1147 } 1148 1149 static void noinline_for_stack 1150 cleanup_bitmap_list(struct list_head *bitmap_list) 1151 { 1152 struct btrfs_free_space *entry, *next; 1153 1154 list_for_each_entry_safe(entry, next, bitmap_list, list) 1155 list_del_init(&entry->list); 1156 } 1157 1158 static void noinline_for_stack 1159 cleanup_write_cache_enospc(struct inode *inode, 1160 struct btrfs_io_ctl *io_ctl, 1161 struct extent_state **cached_state) 1162 { 1163 io_ctl_drop_pages(io_ctl); 1164 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1165 i_size_read(inode) - 1, cached_state); 1166 } 1167 1168 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1169 struct btrfs_trans_handle *trans, 1170 struct btrfs_block_group *block_group, 1171 struct btrfs_io_ctl *io_ctl, 1172 struct btrfs_path *path, u64 offset) 1173 { 1174 int ret; 1175 struct inode *inode = io_ctl->inode; 1176 1177 if (!inode) 1178 return 0; 1179 1180 /* Flush the dirty pages in the cache file. */ 1181 ret = flush_dirty_cache(inode); 1182 if (ret) 1183 goto out; 1184 1185 /* Update the cache item to tell everyone this cache file is valid. */ 1186 ret = update_cache_item(trans, root, inode, path, offset, 1187 io_ctl->entries, io_ctl->bitmaps); 1188 out: 1189 io_ctl_free(io_ctl); 1190 if (ret) { 1191 invalidate_inode_pages2(inode->i_mapping); 1192 BTRFS_I(inode)->generation = 0; 1193 if (block_group) 1194 btrfs_debug(root->fs_info, 1195 "failed to write free space cache for block group %llu error %d", 1196 block_group->start, ret); 1197 } 1198 btrfs_update_inode(trans, root, inode); 1199 1200 if (block_group) { 1201 /* the dirty list is protected by the dirty_bgs_lock */ 1202 spin_lock(&trans->transaction->dirty_bgs_lock); 1203 1204 /* the disk_cache_state is protected by the block group lock */ 1205 spin_lock(&block_group->lock); 1206 1207 /* 1208 * only mark this as written if we didn't get put back on 1209 * the dirty list while waiting for IO. Otherwise our 1210 * cache state won't be right, and we won't get written again 1211 */ 1212 if (!ret && list_empty(&block_group->dirty_list)) 1213 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1214 else if (ret) 1215 block_group->disk_cache_state = BTRFS_DC_ERROR; 1216 1217 spin_unlock(&block_group->lock); 1218 spin_unlock(&trans->transaction->dirty_bgs_lock); 1219 io_ctl->inode = NULL; 1220 iput(inode); 1221 } 1222 1223 return ret; 1224 1225 } 1226 1227 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 1228 struct btrfs_trans_handle *trans, 1229 struct btrfs_io_ctl *io_ctl, 1230 struct btrfs_path *path) 1231 { 1232 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); 1233 } 1234 1235 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1236 struct btrfs_block_group *block_group, 1237 struct btrfs_path *path) 1238 { 1239 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1240 block_group, &block_group->io_ctl, 1241 path, block_group->start); 1242 } 1243 1244 /** 1245 * __btrfs_write_out_cache - write out cached info to an inode 1246 * @root - the root the inode belongs to 1247 * @ctl - the free space cache we are going to write out 1248 * @block_group - the block_group for this cache if it belongs to a block_group 1249 * @trans - the trans handle 1250 * 1251 * This function writes out a free space cache struct to disk for quick recovery 1252 * on mount. This will return 0 if it was successful in writing the cache out, 1253 * or an errno if it was not. 1254 */ 1255 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1256 struct btrfs_free_space_ctl *ctl, 1257 struct btrfs_block_group *block_group, 1258 struct btrfs_io_ctl *io_ctl, 1259 struct btrfs_trans_handle *trans) 1260 { 1261 struct extent_state *cached_state = NULL; 1262 LIST_HEAD(bitmap_list); 1263 int entries = 0; 1264 int bitmaps = 0; 1265 int ret; 1266 int must_iput = 0; 1267 1268 if (!i_size_read(inode)) 1269 return -EIO; 1270 1271 WARN_ON(io_ctl->pages); 1272 ret = io_ctl_init(io_ctl, inode, 1); 1273 if (ret) 1274 return ret; 1275 1276 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1277 down_write(&block_group->data_rwsem); 1278 spin_lock(&block_group->lock); 1279 if (block_group->delalloc_bytes) { 1280 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1281 spin_unlock(&block_group->lock); 1282 up_write(&block_group->data_rwsem); 1283 BTRFS_I(inode)->generation = 0; 1284 ret = 0; 1285 must_iput = 1; 1286 goto out; 1287 } 1288 spin_unlock(&block_group->lock); 1289 } 1290 1291 /* Lock all pages first so we can lock the extent safely. */ 1292 ret = io_ctl_prepare_pages(io_ctl, false); 1293 if (ret) 1294 goto out_unlock; 1295 1296 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1297 &cached_state); 1298 1299 io_ctl_set_generation(io_ctl, trans->transid); 1300 1301 mutex_lock(&ctl->cache_writeout_mutex); 1302 /* Write out the extent entries in the free space cache */ 1303 spin_lock(&ctl->tree_lock); 1304 ret = write_cache_extent_entries(io_ctl, ctl, 1305 block_group, &entries, &bitmaps, 1306 &bitmap_list); 1307 if (ret) 1308 goto out_nospc_locked; 1309 1310 /* 1311 * Some spaces that are freed in the current transaction are pinned, 1312 * they will be added into free space cache after the transaction is 1313 * committed, we shouldn't lose them. 1314 * 1315 * If this changes while we are working we'll get added back to 1316 * the dirty list and redo it. No locking needed 1317 */ 1318 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries); 1319 if (ret) 1320 goto out_nospc_locked; 1321 1322 /* 1323 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1324 * locked while doing it because a concurrent trim can be manipulating 1325 * or freeing the bitmap. 1326 */ 1327 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1328 spin_unlock(&ctl->tree_lock); 1329 mutex_unlock(&ctl->cache_writeout_mutex); 1330 if (ret) 1331 goto out_nospc; 1332 1333 /* Zero out the rest of the pages just to make sure */ 1334 io_ctl_zero_remaining_pages(io_ctl); 1335 1336 /* Everything is written out, now we dirty the pages in the file. */ 1337 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages, 1338 io_ctl->num_pages, 0, i_size_read(inode), 1339 &cached_state); 1340 if (ret) 1341 goto out_nospc; 1342 1343 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1344 up_write(&block_group->data_rwsem); 1345 /* 1346 * Release the pages and unlock the extent, we will flush 1347 * them out later 1348 */ 1349 io_ctl_drop_pages(io_ctl); 1350 1351 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1352 i_size_read(inode) - 1, &cached_state); 1353 1354 /* 1355 * at this point the pages are under IO and we're happy, 1356 * The caller is responsible for waiting on them and updating the 1357 * the cache and the inode 1358 */ 1359 io_ctl->entries = entries; 1360 io_ctl->bitmaps = bitmaps; 1361 1362 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1363 if (ret) 1364 goto out; 1365 1366 return 0; 1367 1368 out_nospc_locked: 1369 cleanup_bitmap_list(&bitmap_list); 1370 spin_unlock(&ctl->tree_lock); 1371 mutex_unlock(&ctl->cache_writeout_mutex); 1372 1373 out_nospc: 1374 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1375 1376 out_unlock: 1377 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1378 up_write(&block_group->data_rwsem); 1379 1380 out: 1381 io_ctl->inode = NULL; 1382 io_ctl_free(io_ctl); 1383 if (ret) { 1384 invalidate_inode_pages2(inode->i_mapping); 1385 BTRFS_I(inode)->generation = 0; 1386 } 1387 btrfs_update_inode(trans, root, inode); 1388 if (must_iput) 1389 iput(inode); 1390 return ret; 1391 } 1392 1393 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1394 struct btrfs_block_group *block_group, 1395 struct btrfs_path *path) 1396 { 1397 struct btrfs_fs_info *fs_info = trans->fs_info; 1398 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1399 struct inode *inode; 1400 int ret = 0; 1401 1402 spin_lock(&block_group->lock); 1403 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1404 spin_unlock(&block_group->lock); 1405 return 0; 1406 } 1407 spin_unlock(&block_group->lock); 1408 1409 inode = lookup_free_space_inode(block_group, path); 1410 if (IS_ERR(inode)) 1411 return 0; 1412 1413 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1414 block_group, &block_group->io_ctl, trans); 1415 if (ret) { 1416 btrfs_debug(fs_info, 1417 "failed to write free space cache for block group %llu error %d", 1418 block_group->start, ret); 1419 spin_lock(&block_group->lock); 1420 block_group->disk_cache_state = BTRFS_DC_ERROR; 1421 spin_unlock(&block_group->lock); 1422 1423 block_group->io_ctl.inode = NULL; 1424 iput(inode); 1425 } 1426 1427 /* 1428 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1429 * to wait for IO and put the inode 1430 */ 1431 1432 return ret; 1433 } 1434 1435 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1436 u64 offset) 1437 { 1438 ASSERT(offset >= bitmap_start); 1439 offset -= bitmap_start; 1440 return (unsigned long)(div_u64(offset, unit)); 1441 } 1442 1443 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1444 { 1445 return (unsigned long)(div_u64(bytes, unit)); 1446 } 1447 1448 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1449 u64 offset) 1450 { 1451 u64 bitmap_start; 1452 u64 bytes_per_bitmap; 1453 1454 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1455 bitmap_start = offset - ctl->start; 1456 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1457 bitmap_start *= bytes_per_bitmap; 1458 bitmap_start += ctl->start; 1459 1460 return bitmap_start; 1461 } 1462 1463 static int tree_insert_offset(struct rb_root *root, u64 offset, 1464 struct rb_node *node, int bitmap) 1465 { 1466 struct rb_node **p = &root->rb_node; 1467 struct rb_node *parent = NULL; 1468 struct btrfs_free_space *info; 1469 1470 while (*p) { 1471 parent = *p; 1472 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1473 1474 if (offset < info->offset) { 1475 p = &(*p)->rb_left; 1476 } else if (offset > info->offset) { 1477 p = &(*p)->rb_right; 1478 } else { 1479 /* 1480 * we could have a bitmap entry and an extent entry 1481 * share the same offset. If this is the case, we want 1482 * the extent entry to always be found first if we do a 1483 * linear search through the tree, since we want to have 1484 * the quickest allocation time, and allocating from an 1485 * extent is faster than allocating from a bitmap. So 1486 * if we're inserting a bitmap and we find an entry at 1487 * this offset, we want to go right, or after this entry 1488 * logically. If we are inserting an extent and we've 1489 * found a bitmap, we want to go left, or before 1490 * logically. 1491 */ 1492 if (bitmap) { 1493 if (info->bitmap) { 1494 WARN_ON_ONCE(1); 1495 return -EEXIST; 1496 } 1497 p = &(*p)->rb_right; 1498 } else { 1499 if (!info->bitmap) { 1500 WARN_ON_ONCE(1); 1501 return -EEXIST; 1502 } 1503 p = &(*p)->rb_left; 1504 } 1505 } 1506 } 1507 1508 rb_link_node(node, parent, p); 1509 rb_insert_color(node, root); 1510 1511 return 0; 1512 } 1513 1514 /* 1515 * searches the tree for the given offset. 1516 * 1517 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1518 * want a section that has at least bytes size and comes at or after the given 1519 * offset. 1520 */ 1521 static struct btrfs_free_space * 1522 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1523 u64 offset, int bitmap_only, int fuzzy) 1524 { 1525 struct rb_node *n = ctl->free_space_offset.rb_node; 1526 struct btrfs_free_space *entry, *prev = NULL; 1527 1528 /* find entry that is closest to the 'offset' */ 1529 while (1) { 1530 if (!n) { 1531 entry = NULL; 1532 break; 1533 } 1534 1535 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1536 prev = entry; 1537 1538 if (offset < entry->offset) 1539 n = n->rb_left; 1540 else if (offset > entry->offset) 1541 n = n->rb_right; 1542 else 1543 break; 1544 } 1545 1546 if (bitmap_only) { 1547 if (!entry) 1548 return NULL; 1549 if (entry->bitmap) 1550 return entry; 1551 1552 /* 1553 * bitmap entry and extent entry may share same offset, 1554 * in that case, bitmap entry comes after extent entry. 1555 */ 1556 n = rb_next(n); 1557 if (!n) 1558 return NULL; 1559 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1560 if (entry->offset != offset) 1561 return NULL; 1562 1563 WARN_ON(!entry->bitmap); 1564 return entry; 1565 } else if (entry) { 1566 if (entry->bitmap) { 1567 /* 1568 * if previous extent entry covers the offset, 1569 * we should return it instead of the bitmap entry 1570 */ 1571 n = rb_prev(&entry->offset_index); 1572 if (n) { 1573 prev = rb_entry(n, struct btrfs_free_space, 1574 offset_index); 1575 if (!prev->bitmap && 1576 prev->offset + prev->bytes > offset) 1577 entry = prev; 1578 } 1579 } 1580 return entry; 1581 } 1582 1583 if (!prev) 1584 return NULL; 1585 1586 /* find last entry before the 'offset' */ 1587 entry = prev; 1588 if (entry->offset > offset) { 1589 n = rb_prev(&entry->offset_index); 1590 if (n) { 1591 entry = rb_entry(n, struct btrfs_free_space, 1592 offset_index); 1593 ASSERT(entry->offset <= offset); 1594 } else { 1595 if (fuzzy) 1596 return entry; 1597 else 1598 return NULL; 1599 } 1600 } 1601 1602 if (entry->bitmap) { 1603 n = rb_prev(&entry->offset_index); 1604 if (n) { 1605 prev = rb_entry(n, struct btrfs_free_space, 1606 offset_index); 1607 if (!prev->bitmap && 1608 prev->offset + prev->bytes > offset) 1609 return prev; 1610 } 1611 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1612 return entry; 1613 } else if (entry->offset + entry->bytes > offset) 1614 return entry; 1615 1616 if (!fuzzy) 1617 return NULL; 1618 1619 while (1) { 1620 if (entry->bitmap) { 1621 if (entry->offset + BITS_PER_BITMAP * 1622 ctl->unit > offset) 1623 break; 1624 } else { 1625 if (entry->offset + entry->bytes > offset) 1626 break; 1627 } 1628 1629 n = rb_next(&entry->offset_index); 1630 if (!n) 1631 return NULL; 1632 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1633 } 1634 return entry; 1635 } 1636 1637 static inline void 1638 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1639 struct btrfs_free_space *info) 1640 { 1641 rb_erase(&info->offset_index, &ctl->free_space_offset); 1642 ctl->free_extents--; 1643 1644 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1645 ctl->discardable_extents[BTRFS_STAT_CURR]--; 1646 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; 1647 } 1648 } 1649 1650 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1651 struct btrfs_free_space *info) 1652 { 1653 __unlink_free_space(ctl, info); 1654 ctl->free_space -= info->bytes; 1655 } 1656 1657 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1658 struct btrfs_free_space *info) 1659 { 1660 int ret = 0; 1661 1662 ASSERT(info->bytes || info->bitmap); 1663 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1664 &info->offset_index, (info->bitmap != NULL)); 1665 if (ret) 1666 return ret; 1667 1668 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1669 ctl->discardable_extents[BTRFS_STAT_CURR]++; 1670 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 1671 } 1672 1673 ctl->free_space += info->bytes; 1674 ctl->free_extents++; 1675 return ret; 1676 } 1677 1678 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1679 { 1680 struct btrfs_block_group *block_group = ctl->private; 1681 u64 max_bytes; 1682 u64 bitmap_bytes; 1683 u64 extent_bytes; 1684 u64 size = block_group->length; 1685 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1686 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1687 1688 max_bitmaps = max_t(u64, max_bitmaps, 1); 1689 1690 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1691 1692 /* 1693 * We are trying to keep the total amount of memory used per 1GiB of 1694 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation 1695 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of 1696 * bitmaps, we may end up using more memory than this. 1697 */ 1698 if (size < SZ_1G) 1699 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1700 else 1701 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1702 1703 bitmap_bytes = ctl->total_bitmaps * ctl->unit; 1704 1705 /* 1706 * we want the extent entry threshold to always be at most 1/2 the max 1707 * bytes we can have, or whatever is less than that. 1708 */ 1709 extent_bytes = max_bytes - bitmap_bytes; 1710 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1711 1712 ctl->extents_thresh = 1713 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1714 } 1715 1716 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1717 struct btrfs_free_space *info, 1718 u64 offset, u64 bytes) 1719 { 1720 unsigned long start, count, end; 1721 int extent_delta = -1; 1722 1723 start = offset_to_bit(info->offset, ctl->unit, offset); 1724 count = bytes_to_bits(bytes, ctl->unit); 1725 end = start + count; 1726 ASSERT(end <= BITS_PER_BITMAP); 1727 1728 bitmap_clear(info->bitmap, start, count); 1729 1730 info->bytes -= bytes; 1731 if (info->max_extent_size > ctl->unit) 1732 info->max_extent_size = 0; 1733 1734 if (start && test_bit(start - 1, info->bitmap)) 1735 extent_delta++; 1736 1737 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1738 extent_delta++; 1739 1740 info->bitmap_extents += extent_delta; 1741 if (!btrfs_free_space_trimmed(info)) { 1742 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1743 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 1744 } 1745 } 1746 1747 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1748 struct btrfs_free_space *info, u64 offset, 1749 u64 bytes) 1750 { 1751 __bitmap_clear_bits(ctl, info, offset, bytes); 1752 ctl->free_space -= bytes; 1753 } 1754 1755 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1756 struct btrfs_free_space *info, u64 offset, 1757 u64 bytes) 1758 { 1759 unsigned long start, count, end; 1760 int extent_delta = 1; 1761 1762 start = offset_to_bit(info->offset, ctl->unit, offset); 1763 count = bytes_to_bits(bytes, ctl->unit); 1764 end = start + count; 1765 ASSERT(end <= BITS_PER_BITMAP); 1766 1767 bitmap_set(info->bitmap, start, count); 1768 1769 info->bytes += bytes; 1770 ctl->free_space += bytes; 1771 1772 if (start && test_bit(start - 1, info->bitmap)) 1773 extent_delta--; 1774 1775 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1776 extent_delta--; 1777 1778 info->bitmap_extents += extent_delta; 1779 if (!btrfs_free_space_trimmed(info)) { 1780 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1781 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; 1782 } 1783 } 1784 1785 /* 1786 * If we can not find suitable extent, we will use bytes to record 1787 * the size of the max extent. 1788 */ 1789 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1790 struct btrfs_free_space *bitmap_info, u64 *offset, 1791 u64 *bytes, bool for_alloc) 1792 { 1793 unsigned long found_bits = 0; 1794 unsigned long max_bits = 0; 1795 unsigned long bits, i; 1796 unsigned long next_zero; 1797 unsigned long extent_bits; 1798 1799 /* 1800 * Skip searching the bitmap if we don't have a contiguous section that 1801 * is large enough for this allocation. 1802 */ 1803 if (for_alloc && 1804 bitmap_info->max_extent_size && 1805 bitmap_info->max_extent_size < *bytes) { 1806 *bytes = bitmap_info->max_extent_size; 1807 return -1; 1808 } 1809 1810 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1811 max_t(u64, *offset, bitmap_info->offset)); 1812 bits = bytes_to_bits(*bytes, ctl->unit); 1813 1814 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1815 if (for_alloc && bits == 1) { 1816 found_bits = 1; 1817 break; 1818 } 1819 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1820 BITS_PER_BITMAP, i); 1821 extent_bits = next_zero - i; 1822 if (extent_bits >= bits) { 1823 found_bits = extent_bits; 1824 break; 1825 } else if (extent_bits > max_bits) { 1826 max_bits = extent_bits; 1827 } 1828 i = next_zero; 1829 } 1830 1831 if (found_bits) { 1832 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1833 *bytes = (u64)(found_bits) * ctl->unit; 1834 return 0; 1835 } 1836 1837 *bytes = (u64)(max_bits) * ctl->unit; 1838 bitmap_info->max_extent_size = *bytes; 1839 return -1; 1840 } 1841 1842 static inline u64 get_max_extent_size(struct btrfs_free_space *entry) 1843 { 1844 if (entry->bitmap) 1845 return entry->max_extent_size; 1846 return entry->bytes; 1847 } 1848 1849 /* Cache the size of the max extent in bytes */ 1850 static struct btrfs_free_space * 1851 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1852 unsigned long align, u64 *max_extent_size) 1853 { 1854 struct btrfs_free_space *entry; 1855 struct rb_node *node; 1856 u64 tmp; 1857 u64 align_off; 1858 int ret; 1859 1860 if (!ctl->free_space_offset.rb_node) 1861 goto out; 1862 1863 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1864 if (!entry) 1865 goto out; 1866 1867 for (node = &entry->offset_index; node; node = rb_next(node)) { 1868 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1869 if (entry->bytes < *bytes) { 1870 *max_extent_size = max(get_max_extent_size(entry), 1871 *max_extent_size); 1872 continue; 1873 } 1874 1875 /* make sure the space returned is big enough 1876 * to match our requested alignment 1877 */ 1878 if (*bytes >= align) { 1879 tmp = entry->offset - ctl->start + align - 1; 1880 tmp = div64_u64(tmp, align); 1881 tmp = tmp * align + ctl->start; 1882 align_off = tmp - entry->offset; 1883 } else { 1884 align_off = 0; 1885 tmp = entry->offset; 1886 } 1887 1888 if (entry->bytes < *bytes + align_off) { 1889 *max_extent_size = max(get_max_extent_size(entry), 1890 *max_extent_size); 1891 continue; 1892 } 1893 1894 if (entry->bitmap) { 1895 u64 size = *bytes; 1896 1897 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1898 if (!ret) { 1899 *offset = tmp; 1900 *bytes = size; 1901 return entry; 1902 } else { 1903 *max_extent_size = 1904 max(get_max_extent_size(entry), 1905 *max_extent_size); 1906 } 1907 continue; 1908 } 1909 1910 *offset = tmp; 1911 *bytes = entry->bytes - align_off; 1912 return entry; 1913 } 1914 out: 1915 return NULL; 1916 } 1917 1918 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl, 1919 struct btrfs_free_space *bitmap_info) 1920 { 1921 struct btrfs_block_group *block_group = ctl->private; 1922 u64 bytes = bitmap_info->bytes; 1923 unsigned int rs, re; 1924 int count = 0; 1925 1926 if (!block_group || !bytes) 1927 return count; 1928 1929 bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0, 1930 BITS_PER_BITMAP) { 1931 bytes -= (rs - re) * ctl->unit; 1932 count++; 1933 1934 if (!bytes) 1935 break; 1936 } 1937 1938 return count; 1939 } 1940 1941 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1942 struct btrfs_free_space *info, u64 offset) 1943 { 1944 info->offset = offset_to_bitmap(ctl, offset); 1945 info->bytes = 0; 1946 info->bitmap_extents = 0; 1947 INIT_LIST_HEAD(&info->list); 1948 link_free_space(ctl, info); 1949 ctl->total_bitmaps++; 1950 1951 ctl->op->recalc_thresholds(ctl); 1952 } 1953 1954 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1955 struct btrfs_free_space *bitmap_info) 1956 { 1957 /* 1958 * Normally when this is called, the bitmap is completely empty. However, 1959 * if we are blowing up the free space cache for one reason or another 1960 * via __btrfs_remove_free_space_cache(), then it may not be freed and 1961 * we may leave stats on the table. 1962 */ 1963 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { 1964 ctl->discardable_extents[BTRFS_STAT_CURR] -= 1965 bitmap_info->bitmap_extents; 1966 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; 1967 1968 } 1969 unlink_free_space(ctl, bitmap_info); 1970 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 1971 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1972 ctl->total_bitmaps--; 1973 ctl->op->recalc_thresholds(ctl); 1974 } 1975 1976 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1977 struct btrfs_free_space *bitmap_info, 1978 u64 *offset, u64 *bytes) 1979 { 1980 u64 end; 1981 u64 search_start, search_bytes; 1982 int ret; 1983 1984 again: 1985 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1986 1987 /* 1988 * We need to search for bits in this bitmap. We could only cover some 1989 * of the extent in this bitmap thanks to how we add space, so we need 1990 * to search for as much as it as we can and clear that amount, and then 1991 * go searching for the next bit. 1992 */ 1993 search_start = *offset; 1994 search_bytes = ctl->unit; 1995 search_bytes = min(search_bytes, end - search_start + 1); 1996 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 1997 false); 1998 if (ret < 0 || search_start != *offset) 1999 return -EINVAL; 2000 2001 /* We may have found more bits than what we need */ 2002 search_bytes = min(search_bytes, *bytes); 2003 2004 /* Cannot clear past the end of the bitmap */ 2005 search_bytes = min(search_bytes, end - search_start + 1); 2006 2007 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 2008 *offset += search_bytes; 2009 *bytes -= search_bytes; 2010 2011 if (*bytes) { 2012 struct rb_node *next = rb_next(&bitmap_info->offset_index); 2013 if (!bitmap_info->bytes) 2014 free_bitmap(ctl, bitmap_info); 2015 2016 /* 2017 * no entry after this bitmap, but we still have bytes to 2018 * remove, so something has gone wrong. 2019 */ 2020 if (!next) 2021 return -EINVAL; 2022 2023 bitmap_info = rb_entry(next, struct btrfs_free_space, 2024 offset_index); 2025 2026 /* 2027 * if the next entry isn't a bitmap we need to return to let the 2028 * extent stuff do its work. 2029 */ 2030 if (!bitmap_info->bitmap) 2031 return -EAGAIN; 2032 2033 /* 2034 * Ok the next item is a bitmap, but it may not actually hold 2035 * the information for the rest of this free space stuff, so 2036 * look for it, and if we don't find it return so we can try 2037 * everything over again. 2038 */ 2039 search_start = *offset; 2040 search_bytes = ctl->unit; 2041 ret = search_bitmap(ctl, bitmap_info, &search_start, 2042 &search_bytes, false); 2043 if (ret < 0 || search_start != *offset) 2044 return -EAGAIN; 2045 2046 goto again; 2047 } else if (!bitmap_info->bytes) 2048 free_bitmap(ctl, bitmap_info); 2049 2050 return 0; 2051 } 2052 2053 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 2054 struct btrfs_free_space *info, u64 offset, 2055 u64 bytes, enum btrfs_trim_state trim_state) 2056 { 2057 u64 bytes_to_set = 0; 2058 u64 end; 2059 2060 /* 2061 * This is a tradeoff to make bitmap trim state minimal. We mark the 2062 * whole bitmap untrimmed if at any point we add untrimmed regions. 2063 */ 2064 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { 2065 if (btrfs_free_space_trimmed(info)) { 2066 ctl->discardable_extents[BTRFS_STAT_CURR] += 2067 info->bitmap_extents; 2068 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 2069 } 2070 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2071 } 2072 2073 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 2074 2075 bytes_to_set = min(end - offset, bytes); 2076 2077 bitmap_set_bits(ctl, info, offset, bytes_to_set); 2078 2079 /* 2080 * We set some bytes, we have no idea what the max extent size is 2081 * anymore. 2082 */ 2083 info->max_extent_size = 0; 2084 2085 return bytes_to_set; 2086 2087 } 2088 2089 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 2090 struct btrfs_free_space *info) 2091 { 2092 struct btrfs_block_group *block_group = ctl->private; 2093 struct btrfs_fs_info *fs_info = block_group->fs_info; 2094 bool forced = false; 2095 2096 #ifdef CONFIG_BTRFS_DEBUG 2097 if (btrfs_should_fragment_free_space(block_group)) 2098 forced = true; 2099 #endif 2100 2101 /* This is a way to reclaim large regions from the bitmaps. */ 2102 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) 2103 return false; 2104 2105 /* 2106 * If we are below the extents threshold then we can add this as an 2107 * extent, and don't have to deal with the bitmap 2108 */ 2109 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2110 /* 2111 * If this block group has some small extents we don't want to 2112 * use up all of our free slots in the cache with them, we want 2113 * to reserve them to larger extents, however if we have plenty 2114 * of cache left then go ahead an dadd them, no sense in adding 2115 * the overhead of a bitmap if we don't have to. 2116 */ 2117 if (info->bytes <= fs_info->sectorsize * 8) { 2118 if (ctl->free_extents * 3 <= ctl->extents_thresh) 2119 return false; 2120 } else { 2121 return false; 2122 } 2123 } 2124 2125 /* 2126 * The original block groups from mkfs can be really small, like 8 2127 * megabytes, so don't bother with a bitmap for those entries. However 2128 * some block groups can be smaller than what a bitmap would cover but 2129 * are still large enough that they could overflow the 32k memory limit, 2130 * so allow those block groups to still be allowed to have a bitmap 2131 * entry. 2132 */ 2133 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2134 return false; 2135 2136 return true; 2137 } 2138 2139 static const struct btrfs_free_space_op free_space_op = { 2140 .recalc_thresholds = recalculate_thresholds, 2141 .use_bitmap = use_bitmap, 2142 }; 2143 2144 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2145 struct btrfs_free_space *info) 2146 { 2147 struct btrfs_free_space *bitmap_info; 2148 struct btrfs_block_group *block_group = NULL; 2149 int added = 0; 2150 u64 bytes, offset, bytes_added; 2151 enum btrfs_trim_state trim_state; 2152 int ret; 2153 2154 bytes = info->bytes; 2155 offset = info->offset; 2156 trim_state = info->trim_state; 2157 2158 if (!ctl->op->use_bitmap(ctl, info)) 2159 return 0; 2160 2161 if (ctl->op == &free_space_op) 2162 block_group = ctl->private; 2163 again: 2164 /* 2165 * Since we link bitmaps right into the cluster we need to see if we 2166 * have a cluster here, and if so and it has our bitmap we need to add 2167 * the free space to that bitmap. 2168 */ 2169 if (block_group && !list_empty(&block_group->cluster_list)) { 2170 struct btrfs_free_cluster *cluster; 2171 struct rb_node *node; 2172 struct btrfs_free_space *entry; 2173 2174 cluster = list_entry(block_group->cluster_list.next, 2175 struct btrfs_free_cluster, 2176 block_group_list); 2177 spin_lock(&cluster->lock); 2178 node = rb_first(&cluster->root); 2179 if (!node) { 2180 spin_unlock(&cluster->lock); 2181 goto no_cluster_bitmap; 2182 } 2183 2184 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2185 if (!entry->bitmap) { 2186 spin_unlock(&cluster->lock); 2187 goto no_cluster_bitmap; 2188 } 2189 2190 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2191 bytes_added = add_bytes_to_bitmap(ctl, entry, offset, 2192 bytes, trim_state); 2193 bytes -= bytes_added; 2194 offset += bytes_added; 2195 } 2196 spin_unlock(&cluster->lock); 2197 if (!bytes) { 2198 ret = 1; 2199 goto out; 2200 } 2201 } 2202 2203 no_cluster_bitmap: 2204 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2205 1, 0); 2206 if (!bitmap_info) { 2207 ASSERT(added == 0); 2208 goto new_bitmap; 2209 } 2210 2211 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 2212 trim_state); 2213 bytes -= bytes_added; 2214 offset += bytes_added; 2215 added = 0; 2216 2217 if (!bytes) { 2218 ret = 1; 2219 goto out; 2220 } else 2221 goto again; 2222 2223 new_bitmap: 2224 if (info && info->bitmap) { 2225 add_new_bitmap(ctl, info, offset); 2226 added = 1; 2227 info = NULL; 2228 goto again; 2229 } else { 2230 spin_unlock(&ctl->tree_lock); 2231 2232 /* no pre-allocated info, allocate a new one */ 2233 if (!info) { 2234 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2235 GFP_NOFS); 2236 if (!info) { 2237 spin_lock(&ctl->tree_lock); 2238 ret = -ENOMEM; 2239 goto out; 2240 } 2241 } 2242 2243 /* allocate the bitmap */ 2244 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2245 GFP_NOFS); 2246 info->trim_state = BTRFS_TRIM_STATE_TRIMMED; 2247 spin_lock(&ctl->tree_lock); 2248 if (!info->bitmap) { 2249 ret = -ENOMEM; 2250 goto out; 2251 } 2252 goto again; 2253 } 2254 2255 out: 2256 if (info) { 2257 if (info->bitmap) 2258 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2259 info->bitmap); 2260 kmem_cache_free(btrfs_free_space_cachep, info); 2261 } 2262 2263 return ret; 2264 } 2265 2266 /* 2267 * Free space merging rules: 2268 * 1) Merge trimmed areas together 2269 * 2) Let untrimmed areas coalesce with trimmed areas 2270 * 3) Always pull neighboring regions from bitmaps 2271 * 2272 * The above rules are for when we merge free space based on btrfs_trim_state. 2273 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the 2274 * same reason: to promote larger extent regions which makes life easier for 2275 * find_free_extent(). Rule 2 enables coalescing based on the common path 2276 * being returning free space from btrfs_finish_extent_commit(). So when free 2277 * space is trimmed, it will prevent aggregating trimmed new region and 2278 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents 2279 * and provide find_free_extent() with the largest extents possible hoping for 2280 * the reuse path. 2281 */ 2282 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2283 struct btrfs_free_space *info, bool update_stat) 2284 { 2285 struct btrfs_free_space *left_info; 2286 struct btrfs_free_space *right_info; 2287 bool merged = false; 2288 u64 offset = info->offset; 2289 u64 bytes = info->bytes; 2290 const bool is_trimmed = btrfs_free_space_trimmed(info); 2291 2292 /* 2293 * first we want to see if there is free space adjacent to the range we 2294 * are adding, if there is remove that struct and add a new one to 2295 * cover the entire range 2296 */ 2297 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2298 if (right_info && rb_prev(&right_info->offset_index)) 2299 left_info = rb_entry(rb_prev(&right_info->offset_index), 2300 struct btrfs_free_space, offset_index); 2301 else 2302 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2303 2304 /* See try_merge_free_space() comment. */ 2305 if (right_info && !right_info->bitmap && 2306 (!is_trimmed || btrfs_free_space_trimmed(right_info))) { 2307 if (update_stat) 2308 unlink_free_space(ctl, right_info); 2309 else 2310 __unlink_free_space(ctl, right_info); 2311 info->bytes += right_info->bytes; 2312 kmem_cache_free(btrfs_free_space_cachep, right_info); 2313 merged = true; 2314 } 2315 2316 /* See try_merge_free_space() comment. */ 2317 if (left_info && !left_info->bitmap && 2318 left_info->offset + left_info->bytes == offset && 2319 (!is_trimmed || btrfs_free_space_trimmed(left_info))) { 2320 if (update_stat) 2321 unlink_free_space(ctl, left_info); 2322 else 2323 __unlink_free_space(ctl, left_info); 2324 info->offset = left_info->offset; 2325 info->bytes += left_info->bytes; 2326 kmem_cache_free(btrfs_free_space_cachep, left_info); 2327 merged = true; 2328 } 2329 2330 return merged; 2331 } 2332 2333 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2334 struct btrfs_free_space *info, 2335 bool update_stat) 2336 { 2337 struct btrfs_free_space *bitmap; 2338 unsigned long i; 2339 unsigned long j; 2340 const u64 end = info->offset + info->bytes; 2341 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2342 u64 bytes; 2343 2344 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2345 if (!bitmap) 2346 return false; 2347 2348 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2349 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2350 if (j == i) 2351 return false; 2352 bytes = (j - i) * ctl->unit; 2353 info->bytes += bytes; 2354 2355 /* See try_merge_free_space() comment. */ 2356 if (!btrfs_free_space_trimmed(bitmap)) 2357 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2358 2359 if (update_stat) 2360 bitmap_clear_bits(ctl, bitmap, end, bytes); 2361 else 2362 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2363 2364 if (!bitmap->bytes) 2365 free_bitmap(ctl, bitmap); 2366 2367 return true; 2368 } 2369 2370 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2371 struct btrfs_free_space *info, 2372 bool update_stat) 2373 { 2374 struct btrfs_free_space *bitmap; 2375 u64 bitmap_offset; 2376 unsigned long i; 2377 unsigned long j; 2378 unsigned long prev_j; 2379 u64 bytes; 2380 2381 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2382 /* If we're on a boundary, try the previous logical bitmap. */ 2383 if (bitmap_offset == info->offset) { 2384 if (info->offset == 0) 2385 return false; 2386 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2387 } 2388 2389 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2390 if (!bitmap) 2391 return false; 2392 2393 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2394 j = 0; 2395 prev_j = (unsigned long)-1; 2396 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2397 if (j > i) 2398 break; 2399 prev_j = j; 2400 } 2401 if (prev_j == i) 2402 return false; 2403 2404 if (prev_j == (unsigned long)-1) 2405 bytes = (i + 1) * ctl->unit; 2406 else 2407 bytes = (i - prev_j) * ctl->unit; 2408 2409 info->offset -= bytes; 2410 info->bytes += bytes; 2411 2412 /* See try_merge_free_space() comment. */ 2413 if (!btrfs_free_space_trimmed(bitmap)) 2414 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2415 2416 if (update_stat) 2417 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2418 else 2419 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2420 2421 if (!bitmap->bytes) 2422 free_bitmap(ctl, bitmap); 2423 2424 return true; 2425 } 2426 2427 /* 2428 * We prefer always to allocate from extent entries, both for clustered and 2429 * non-clustered allocation requests. So when attempting to add a new extent 2430 * entry, try to see if there's adjacent free space in bitmap entries, and if 2431 * there is, migrate that space from the bitmaps to the extent. 2432 * Like this we get better chances of satisfying space allocation requests 2433 * because we attempt to satisfy them based on a single cache entry, and never 2434 * on 2 or more entries - even if the entries represent a contiguous free space 2435 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2436 * ends). 2437 */ 2438 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2439 struct btrfs_free_space *info, 2440 bool update_stat) 2441 { 2442 /* 2443 * Only work with disconnected entries, as we can change their offset, 2444 * and must be extent entries. 2445 */ 2446 ASSERT(!info->bitmap); 2447 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2448 2449 if (ctl->total_bitmaps > 0) { 2450 bool stole_end; 2451 bool stole_front = false; 2452 2453 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2454 if (ctl->total_bitmaps > 0) 2455 stole_front = steal_from_bitmap_to_front(ctl, info, 2456 update_stat); 2457 2458 if (stole_end || stole_front) 2459 try_merge_free_space(ctl, info, update_stat); 2460 } 2461 } 2462 2463 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, 2464 struct btrfs_free_space_ctl *ctl, 2465 u64 offset, u64 bytes, 2466 enum btrfs_trim_state trim_state) 2467 { 2468 struct btrfs_block_group *block_group = ctl->private; 2469 struct btrfs_free_space *info; 2470 int ret = 0; 2471 u64 filter_bytes = bytes; 2472 2473 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2474 if (!info) 2475 return -ENOMEM; 2476 2477 info->offset = offset; 2478 info->bytes = bytes; 2479 info->trim_state = trim_state; 2480 RB_CLEAR_NODE(&info->offset_index); 2481 2482 spin_lock(&ctl->tree_lock); 2483 2484 if (try_merge_free_space(ctl, info, true)) 2485 goto link; 2486 2487 /* 2488 * There was no extent directly to the left or right of this new 2489 * extent then we know we're going to have to allocate a new extent, so 2490 * before we do that see if we need to drop this into a bitmap 2491 */ 2492 ret = insert_into_bitmap(ctl, info); 2493 if (ret < 0) { 2494 goto out; 2495 } else if (ret) { 2496 ret = 0; 2497 goto out; 2498 } 2499 link: 2500 /* 2501 * Only steal free space from adjacent bitmaps if we're sure we're not 2502 * going to add the new free space to existing bitmap entries - because 2503 * that would mean unnecessary work that would be reverted. Therefore 2504 * attempt to steal space from bitmaps if we're adding an extent entry. 2505 */ 2506 steal_from_bitmap(ctl, info, true); 2507 2508 filter_bytes = max(filter_bytes, info->bytes); 2509 2510 ret = link_free_space(ctl, info); 2511 if (ret) 2512 kmem_cache_free(btrfs_free_space_cachep, info); 2513 out: 2514 btrfs_discard_update_discardable(block_group, ctl); 2515 spin_unlock(&ctl->tree_lock); 2516 2517 if (ret) { 2518 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2519 ASSERT(ret != -EEXIST); 2520 } 2521 2522 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { 2523 btrfs_discard_check_filter(block_group, filter_bytes); 2524 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 2525 } 2526 2527 return ret; 2528 } 2529 2530 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2531 u64 bytenr, u64 size) 2532 { 2533 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2534 2535 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) 2536 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2537 2538 return __btrfs_add_free_space(block_group->fs_info, 2539 block_group->free_space_ctl, 2540 bytenr, size, trim_state); 2541 } 2542 2543 /* 2544 * This is a subtle distinction because when adding free space back in general, 2545 * we want it to be added as untrimmed for async. But in the case where we add 2546 * it on loading of a block group, we want to consider it trimmed. 2547 */ 2548 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, 2549 u64 bytenr, u64 size) 2550 { 2551 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2552 2553 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || 2554 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 2555 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2556 2557 return __btrfs_add_free_space(block_group->fs_info, 2558 block_group->free_space_ctl, 2559 bytenr, size, trim_state); 2560 } 2561 2562 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2563 u64 offset, u64 bytes) 2564 { 2565 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2566 struct btrfs_free_space *info; 2567 int ret; 2568 bool re_search = false; 2569 2570 spin_lock(&ctl->tree_lock); 2571 2572 again: 2573 ret = 0; 2574 if (!bytes) 2575 goto out_lock; 2576 2577 info = tree_search_offset(ctl, offset, 0, 0); 2578 if (!info) { 2579 /* 2580 * oops didn't find an extent that matched the space we wanted 2581 * to remove, look for a bitmap instead 2582 */ 2583 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2584 1, 0); 2585 if (!info) { 2586 /* 2587 * If we found a partial bit of our free space in a 2588 * bitmap but then couldn't find the other part this may 2589 * be a problem, so WARN about it. 2590 */ 2591 WARN_ON(re_search); 2592 goto out_lock; 2593 } 2594 } 2595 2596 re_search = false; 2597 if (!info->bitmap) { 2598 unlink_free_space(ctl, info); 2599 if (offset == info->offset) { 2600 u64 to_free = min(bytes, info->bytes); 2601 2602 info->bytes -= to_free; 2603 info->offset += to_free; 2604 if (info->bytes) { 2605 ret = link_free_space(ctl, info); 2606 WARN_ON(ret); 2607 } else { 2608 kmem_cache_free(btrfs_free_space_cachep, info); 2609 } 2610 2611 offset += to_free; 2612 bytes -= to_free; 2613 goto again; 2614 } else { 2615 u64 old_end = info->bytes + info->offset; 2616 2617 info->bytes = offset - info->offset; 2618 ret = link_free_space(ctl, info); 2619 WARN_ON(ret); 2620 if (ret) 2621 goto out_lock; 2622 2623 /* Not enough bytes in this entry to satisfy us */ 2624 if (old_end < offset + bytes) { 2625 bytes -= old_end - offset; 2626 offset = old_end; 2627 goto again; 2628 } else if (old_end == offset + bytes) { 2629 /* all done */ 2630 goto out_lock; 2631 } 2632 spin_unlock(&ctl->tree_lock); 2633 2634 ret = __btrfs_add_free_space(block_group->fs_info, ctl, 2635 offset + bytes, 2636 old_end - (offset + bytes), 2637 info->trim_state); 2638 WARN_ON(ret); 2639 goto out; 2640 } 2641 } 2642 2643 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2644 if (ret == -EAGAIN) { 2645 re_search = true; 2646 goto again; 2647 } 2648 out_lock: 2649 btrfs_discard_update_discardable(block_group, ctl); 2650 spin_unlock(&ctl->tree_lock); 2651 out: 2652 return ret; 2653 } 2654 2655 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2656 u64 bytes) 2657 { 2658 struct btrfs_fs_info *fs_info = block_group->fs_info; 2659 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2660 struct btrfs_free_space *info; 2661 struct rb_node *n; 2662 int count = 0; 2663 2664 spin_lock(&ctl->tree_lock); 2665 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2666 info = rb_entry(n, struct btrfs_free_space, offset_index); 2667 if (info->bytes >= bytes && !block_group->ro) 2668 count++; 2669 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2670 info->offset, info->bytes, 2671 (info->bitmap) ? "yes" : "no"); 2672 } 2673 spin_unlock(&ctl->tree_lock); 2674 btrfs_info(fs_info, "block group has cluster?: %s", 2675 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2676 btrfs_info(fs_info, 2677 "%d blocks of free space at or bigger than bytes is", count); 2678 } 2679 2680 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group) 2681 { 2682 struct btrfs_fs_info *fs_info = block_group->fs_info; 2683 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2684 2685 spin_lock_init(&ctl->tree_lock); 2686 ctl->unit = fs_info->sectorsize; 2687 ctl->start = block_group->start; 2688 ctl->private = block_group; 2689 ctl->op = &free_space_op; 2690 INIT_LIST_HEAD(&ctl->trimming_ranges); 2691 mutex_init(&ctl->cache_writeout_mutex); 2692 2693 /* 2694 * we only want to have 32k of ram per block group for keeping 2695 * track of free space, and if we pass 1/2 of that we want to 2696 * start converting things over to using bitmaps 2697 */ 2698 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2699 } 2700 2701 /* 2702 * for a given cluster, put all of its extents back into the free 2703 * space cache. If the block group passed doesn't match the block group 2704 * pointed to by the cluster, someone else raced in and freed the 2705 * cluster already. In that case, we just return without changing anything 2706 */ 2707 static void __btrfs_return_cluster_to_free_space( 2708 struct btrfs_block_group *block_group, 2709 struct btrfs_free_cluster *cluster) 2710 { 2711 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2712 struct btrfs_free_space *entry; 2713 struct rb_node *node; 2714 2715 spin_lock(&cluster->lock); 2716 if (cluster->block_group != block_group) 2717 goto out; 2718 2719 cluster->block_group = NULL; 2720 cluster->window_start = 0; 2721 list_del_init(&cluster->block_group_list); 2722 2723 node = rb_first(&cluster->root); 2724 while (node) { 2725 bool bitmap; 2726 2727 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2728 node = rb_next(&entry->offset_index); 2729 rb_erase(&entry->offset_index, &cluster->root); 2730 RB_CLEAR_NODE(&entry->offset_index); 2731 2732 bitmap = (entry->bitmap != NULL); 2733 if (!bitmap) { 2734 /* Merging treats extents as if they were new */ 2735 if (!btrfs_free_space_trimmed(entry)) { 2736 ctl->discardable_extents[BTRFS_STAT_CURR]--; 2737 ctl->discardable_bytes[BTRFS_STAT_CURR] -= 2738 entry->bytes; 2739 } 2740 2741 try_merge_free_space(ctl, entry, false); 2742 steal_from_bitmap(ctl, entry, false); 2743 2744 /* As we insert directly, update these statistics */ 2745 if (!btrfs_free_space_trimmed(entry)) { 2746 ctl->discardable_extents[BTRFS_STAT_CURR]++; 2747 ctl->discardable_bytes[BTRFS_STAT_CURR] += 2748 entry->bytes; 2749 } 2750 } 2751 tree_insert_offset(&ctl->free_space_offset, 2752 entry->offset, &entry->offset_index, bitmap); 2753 } 2754 cluster->root = RB_ROOT; 2755 2756 out: 2757 spin_unlock(&cluster->lock); 2758 btrfs_put_block_group(block_group); 2759 } 2760 2761 static void __btrfs_remove_free_space_cache_locked( 2762 struct btrfs_free_space_ctl *ctl) 2763 { 2764 struct btrfs_free_space *info; 2765 struct rb_node *node; 2766 2767 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2768 info = rb_entry(node, struct btrfs_free_space, offset_index); 2769 if (!info->bitmap) { 2770 unlink_free_space(ctl, info); 2771 kmem_cache_free(btrfs_free_space_cachep, info); 2772 } else { 2773 free_bitmap(ctl, info); 2774 } 2775 2776 cond_resched_lock(&ctl->tree_lock); 2777 } 2778 } 2779 2780 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2781 { 2782 spin_lock(&ctl->tree_lock); 2783 __btrfs_remove_free_space_cache_locked(ctl); 2784 if (ctl->private) 2785 btrfs_discard_update_discardable(ctl->private, ctl); 2786 spin_unlock(&ctl->tree_lock); 2787 } 2788 2789 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 2790 { 2791 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2792 struct btrfs_free_cluster *cluster; 2793 struct list_head *head; 2794 2795 spin_lock(&ctl->tree_lock); 2796 while ((head = block_group->cluster_list.next) != 2797 &block_group->cluster_list) { 2798 cluster = list_entry(head, struct btrfs_free_cluster, 2799 block_group_list); 2800 2801 WARN_ON(cluster->block_group != block_group); 2802 __btrfs_return_cluster_to_free_space(block_group, cluster); 2803 2804 cond_resched_lock(&ctl->tree_lock); 2805 } 2806 __btrfs_remove_free_space_cache_locked(ctl); 2807 btrfs_discard_update_discardable(block_group, ctl); 2808 spin_unlock(&ctl->tree_lock); 2809 2810 } 2811 2812 /** 2813 * btrfs_is_free_space_trimmed - see if everything is trimmed 2814 * @block_group: block_group of interest 2815 * 2816 * Walk @block_group's free space rb_tree to determine if everything is trimmed. 2817 */ 2818 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) 2819 { 2820 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2821 struct btrfs_free_space *info; 2822 struct rb_node *node; 2823 bool ret = true; 2824 2825 spin_lock(&ctl->tree_lock); 2826 node = rb_first(&ctl->free_space_offset); 2827 2828 while (node) { 2829 info = rb_entry(node, struct btrfs_free_space, offset_index); 2830 2831 if (!btrfs_free_space_trimmed(info)) { 2832 ret = false; 2833 break; 2834 } 2835 2836 node = rb_next(node); 2837 } 2838 2839 spin_unlock(&ctl->tree_lock); 2840 return ret; 2841 } 2842 2843 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 2844 u64 offset, u64 bytes, u64 empty_size, 2845 u64 *max_extent_size) 2846 { 2847 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2848 struct btrfs_discard_ctl *discard_ctl = 2849 &block_group->fs_info->discard_ctl; 2850 struct btrfs_free_space *entry = NULL; 2851 u64 bytes_search = bytes + empty_size; 2852 u64 ret = 0; 2853 u64 align_gap = 0; 2854 u64 align_gap_len = 0; 2855 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2856 2857 spin_lock(&ctl->tree_lock); 2858 entry = find_free_space(ctl, &offset, &bytes_search, 2859 block_group->full_stripe_len, max_extent_size); 2860 if (!entry) 2861 goto out; 2862 2863 ret = offset; 2864 if (entry->bitmap) { 2865 bitmap_clear_bits(ctl, entry, offset, bytes); 2866 2867 if (!btrfs_free_space_trimmed(entry)) 2868 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 2869 2870 if (!entry->bytes) 2871 free_bitmap(ctl, entry); 2872 } else { 2873 unlink_free_space(ctl, entry); 2874 align_gap_len = offset - entry->offset; 2875 align_gap = entry->offset; 2876 align_gap_trim_state = entry->trim_state; 2877 2878 if (!btrfs_free_space_trimmed(entry)) 2879 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 2880 2881 entry->offset = offset + bytes; 2882 WARN_ON(entry->bytes < bytes + align_gap_len); 2883 2884 entry->bytes -= bytes + align_gap_len; 2885 if (!entry->bytes) 2886 kmem_cache_free(btrfs_free_space_cachep, entry); 2887 else 2888 link_free_space(ctl, entry); 2889 } 2890 out: 2891 btrfs_discard_update_discardable(block_group, ctl); 2892 spin_unlock(&ctl->tree_lock); 2893 2894 if (align_gap_len) 2895 __btrfs_add_free_space(block_group->fs_info, ctl, 2896 align_gap, align_gap_len, 2897 align_gap_trim_state); 2898 return ret; 2899 } 2900 2901 /* 2902 * given a cluster, put all of its extents back into the free space 2903 * cache. If a block group is passed, this function will only free 2904 * a cluster that belongs to the passed block group. 2905 * 2906 * Otherwise, it'll get a reference on the block group pointed to by the 2907 * cluster and remove the cluster from it. 2908 */ 2909 void btrfs_return_cluster_to_free_space( 2910 struct btrfs_block_group *block_group, 2911 struct btrfs_free_cluster *cluster) 2912 { 2913 struct btrfs_free_space_ctl *ctl; 2914 2915 /* first, get a safe pointer to the block group */ 2916 spin_lock(&cluster->lock); 2917 if (!block_group) { 2918 block_group = cluster->block_group; 2919 if (!block_group) { 2920 spin_unlock(&cluster->lock); 2921 return; 2922 } 2923 } else if (cluster->block_group != block_group) { 2924 /* someone else has already freed it don't redo their work */ 2925 spin_unlock(&cluster->lock); 2926 return; 2927 } 2928 btrfs_get_block_group(block_group); 2929 spin_unlock(&cluster->lock); 2930 2931 ctl = block_group->free_space_ctl; 2932 2933 /* now return any extents the cluster had on it */ 2934 spin_lock(&ctl->tree_lock); 2935 __btrfs_return_cluster_to_free_space(block_group, cluster); 2936 spin_unlock(&ctl->tree_lock); 2937 2938 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); 2939 2940 /* finally drop our ref */ 2941 btrfs_put_block_group(block_group); 2942 } 2943 2944 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 2945 struct btrfs_free_cluster *cluster, 2946 struct btrfs_free_space *entry, 2947 u64 bytes, u64 min_start, 2948 u64 *max_extent_size) 2949 { 2950 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2951 int err; 2952 u64 search_start = cluster->window_start; 2953 u64 search_bytes = bytes; 2954 u64 ret = 0; 2955 2956 search_start = min_start; 2957 search_bytes = bytes; 2958 2959 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2960 if (err) { 2961 *max_extent_size = max(get_max_extent_size(entry), 2962 *max_extent_size); 2963 return 0; 2964 } 2965 2966 ret = search_start; 2967 __bitmap_clear_bits(ctl, entry, ret, bytes); 2968 2969 return ret; 2970 } 2971 2972 /* 2973 * given a cluster, try to allocate 'bytes' from it, returns 0 2974 * if it couldn't find anything suitably large, or a logical disk offset 2975 * if things worked out 2976 */ 2977 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 2978 struct btrfs_free_cluster *cluster, u64 bytes, 2979 u64 min_start, u64 *max_extent_size) 2980 { 2981 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2982 struct btrfs_discard_ctl *discard_ctl = 2983 &block_group->fs_info->discard_ctl; 2984 struct btrfs_free_space *entry = NULL; 2985 struct rb_node *node; 2986 u64 ret = 0; 2987 2988 spin_lock(&cluster->lock); 2989 if (bytes > cluster->max_size) 2990 goto out; 2991 2992 if (cluster->block_group != block_group) 2993 goto out; 2994 2995 node = rb_first(&cluster->root); 2996 if (!node) 2997 goto out; 2998 2999 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3000 while (1) { 3001 if (entry->bytes < bytes) 3002 *max_extent_size = max(get_max_extent_size(entry), 3003 *max_extent_size); 3004 3005 if (entry->bytes < bytes || 3006 (!entry->bitmap && entry->offset < min_start)) { 3007 node = rb_next(&entry->offset_index); 3008 if (!node) 3009 break; 3010 entry = rb_entry(node, struct btrfs_free_space, 3011 offset_index); 3012 continue; 3013 } 3014 3015 if (entry->bitmap) { 3016 ret = btrfs_alloc_from_bitmap(block_group, 3017 cluster, entry, bytes, 3018 cluster->window_start, 3019 max_extent_size); 3020 if (ret == 0) { 3021 node = rb_next(&entry->offset_index); 3022 if (!node) 3023 break; 3024 entry = rb_entry(node, struct btrfs_free_space, 3025 offset_index); 3026 continue; 3027 } 3028 cluster->window_start += bytes; 3029 } else { 3030 ret = entry->offset; 3031 3032 entry->offset += bytes; 3033 entry->bytes -= bytes; 3034 } 3035 3036 if (entry->bytes == 0) 3037 rb_erase(&entry->offset_index, &cluster->root); 3038 break; 3039 } 3040 out: 3041 spin_unlock(&cluster->lock); 3042 3043 if (!ret) 3044 return 0; 3045 3046 spin_lock(&ctl->tree_lock); 3047 3048 if (!btrfs_free_space_trimmed(entry)) 3049 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3050 3051 ctl->free_space -= bytes; 3052 if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) 3053 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 3054 if (entry->bytes == 0) { 3055 ctl->free_extents--; 3056 if (entry->bitmap) { 3057 kmem_cache_free(btrfs_free_space_bitmap_cachep, 3058 entry->bitmap); 3059 ctl->total_bitmaps--; 3060 ctl->op->recalc_thresholds(ctl); 3061 } else if (!btrfs_free_space_trimmed(entry)) { 3062 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3063 } 3064 kmem_cache_free(btrfs_free_space_cachep, entry); 3065 } 3066 3067 spin_unlock(&ctl->tree_lock); 3068 3069 return ret; 3070 } 3071 3072 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 3073 struct btrfs_free_space *entry, 3074 struct btrfs_free_cluster *cluster, 3075 u64 offset, u64 bytes, 3076 u64 cont1_bytes, u64 min_bytes) 3077 { 3078 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3079 unsigned long next_zero; 3080 unsigned long i; 3081 unsigned long want_bits; 3082 unsigned long min_bits; 3083 unsigned long found_bits; 3084 unsigned long max_bits = 0; 3085 unsigned long start = 0; 3086 unsigned long total_found = 0; 3087 int ret; 3088 3089 i = offset_to_bit(entry->offset, ctl->unit, 3090 max_t(u64, offset, entry->offset)); 3091 want_bits = bytes_to_bits(bytes, ctl->unit); 3092 min_bits = bytes_to_bits(min_bytes, ctl->unit); 3093 3094 /* 3095 * Don't bother looking for a cluster in this bitmap if it's heavily 3096 * fragmented. 3097 */ 3098 if (entry->max_extent_size && 3099 entry->max_extent_size < cont1_bytes) 3100 return -ENOSPC; 3101 again: 3102 found_bits = 0; 3103 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 3104 next_zero = find_next_zero_bit(entry->bitmap, 3105 BITS_PER_BITMAP, i); 3106 if (next_zero - i >= min_bits) { 3107 found_bits = next_zero - i; 3108 if (found_bits > max_bits) 3109 max_bits = found_bits; 3110 break; 3111 } 3112 if (next_zero - i > max_bits) 3113 max_bits = next_zero - i; 3114 i = next_zero; 3115 } 3116 3117 if (!found_bits) { 3118 entry->max_extent_size = (u64)max_bits * ctl->unit; 3119 return -ENOSPC; 3120 } 3121 3122 if (!total_found) { 3123 start = i; 3124 cluster->max_size = 0; 3125 } 3126 3127 total_found += found_bits; 3128 3129 if (cluster->max_size < found_bits * ctl->unit) 3130 cluster->max_size = found_bits * ctl->unit; 3131 3132 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 3133 i = next_zero + 1; 3134 goto again; 3135 } 3136 3137 cluster->window_start = start * ctl->unit + entry->offset; 3138 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3139 ret = tree_insert_offset(&cluster->root, entry->offset, 3140 &entry->offset_index, 1); 3141 ASSERT(!ret); /* -EEXIST; Logic error */ 3142 3143 trace_btrfs_setup_cluster(block_group, cluster, 3144 total_found * ctl->unit, 1); 3145 return 0; 3146 } 3147 3148 /* 3149 * This searches the block group for just extents to fill the cluster with. 3150 * Try to find a cluster with at least bytes total bytes, at least one 3151 * extent of cont1_bytes, and other clusters of at least min_bytes. 3152 */ 3153 static noinline int 3154 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 3155 struct btrfs_free_cluster *cluster, 3156 struct list_head *bitmaps, u64 offset, u64 bytes, 3157 u64 cont1_bytes, u64 min_bytes) 3158 { 3159 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3160 struct btrfs_free_space *first = NULL; 3161 struct btrfs_free_space *entry = NULL; 3162 struct btrfs_free_space *last; 3163 struct rb_node *node; 3164 u64 window_free; 3165 u64 max_extent; 3166 u64 total_size = 0; 3167 3168 entry = tree_search_offset(ctl, offset, 0, 1); 3169 if (!entry) 3170 return -ENOSPC; 3171 3172 /* 3173 * We don't want bitmaps, so just move along until we find a normal 3174 * extent entry. 3175 */ 3176 while (entry->bitmap || entry->bytes < min_bytes) { 3177 if (entry->bitmap && list_empty(&entry->list)) 3178 list_add_tail(&entry->list, bitmaps); 3179 node = rb_next(&entry->offset_index); 3180 if (!node) 3181 return -ENOSPC; 3182 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3183 } 3184 3185 window_free = entry->bytes; 3186 max_extent = entry->bytes; 3187 first = entry; 3188 last = entry; 3189 3190 for (node = rb_next(&entry->offset_index); node; 3191 node = rb_next(&entry->offset_index)) { 3192 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3193 3194 if (entry->bitmap) { 3195 if (list_empty(&entry->list)) 3196 list_add_tail(&entry->list, bitmaps); 3197 continue; 3198 } 3199 3200 if (entry->bytes < min_bytes) 3201 continue; 3202 3203 last = entry; 3204 window_free += entry->bytes; 3205 if (entry->bytes > max_extent) 3206 max_extent = entry->bytes; 3207 } 3208 3209 if (window_free < bytes || max_extent < cont1_bytes) 3210 return -ENOSPC; 3211 3212 cluster->window_start = first->offset; 3213 3214 node = &first->offset_index; 3215 3216 /* 3217 * now we've found our entries, pull them out of the free space 3218 * cache and put them into the cluster rbtree 3219 */ 3220 do { 3221 int ret; 3222 3223 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3224 node = rb_next(&entry->offset_index); 3225 if (entry->bitmap || entry->bytes < min_bytes) 3226 continue; 3227 3228 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3229 ret = tree_insert_offset(&cluster->root, entry->offset, 3230 &entry->offset_index, 0); 3231 total_size += entry->bytes; 3232 ASSERT(!ret); /* -EEXIST; Logic error */ 3233 } while (node && entry != last); 3234 3235 cluster->max_size = max_extent; 3236 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 3237 return 0; 3238 } 3239 3240 /* 3241 * This specifically looks for bitmaps that may work in the cluster, we assume 3242 * that we have already failed to find extents that will work. 3243 */ 3244 static noinline int 3245 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3246 struct btrfs_free_cluster *cluster, 3247 struct list_head *bitmaps, u64 offset, u64 bytes, 3248 u64 cont1_bytes, u64 min_bytes) 3249 { 3250 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3251 struct btrfs_free_space *entry = NULL; 3252 int ret = -ENOSPC; 3253 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3254 3255 if (ctl->total_bitmaps == 0) 3256 return -ENOSPC; 3257 3258 /* 3259 * The bitmap that covers offset won't be in the list unless offset 3260 * is just its start offset. 3261 */ 3262 if (!list_empty(bitmaps)) 3263 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3264 3265 if (!entry || entry->offset != bitmap_offset) { 3266 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3267 if (entry && list_empty(&entry->list)) 3268 list_add(&entry->list, bitmaps); 3269 } 3270 3271 list_for_each_entry(entry, bitmaps, list) { 3272 if (entry->bytes < bytes) 3273 continue; 3274 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3275 bytes, cont1_bytes, min_bytes); 3276 if (!ret) 3277 return 0; 3278 } 3279 3280 /* 3281 * The bitmaps list has all the bitmaps that record free space 3282 * starting after offset, so no more search is required. 3283 */ 3284 return -ENOSPC; 3285 } 3286 3287 /* 3288 * here we try to find a cluster of blocks in a block group. The goal 3289 * is to find at least bytes+empty_size. 3290 * We might not find them all in one contiguous area. 3291 * 3292 * returns zero and sets up cluster if things worked out, otherwise 3293 * it returns -enospc 3294 */ 3295 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3296 struct btrfs_free_cluster *cluster, 3297 u64 offset, u64 bytes, u64 empty_size) 3298 { 3299 struct btrfs_fs_info *fs_info = block_group->fs_info; 3300 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3301 struct btrfs_free_space *entry, *tmp; 3302 LIST_HEAD(bitmaps); 3303 u64 min_bytes; 3304 u64 cont1_bytes; 3305 int ret; 3306 3307 /* 3308 * Choose the minimum extent size we'll require for this 3309 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3310 * For metadata, allow allocates with smaller extents. For 3311 * data, keep it dense. 3312 */ 3313 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3314 cont1_bytes = min_bytes = bytes + empty_size; 3315 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3316 cont1_bytes = bytes; 3317 min_bytes = fs_info->sectorsize; 3318 } else { 3319 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3320 min_bytes = fs_info->sectorsize; 3321 } 3322 3323 spin_lock(&ctl->tree_lock); 3324 3325 /* 3326 * If we know we don't have enough space to make a cluster don't even 3327 * bother doing all the work to try and find one. 3328 */ 3329 if (ctl->free_space < bytes) { 3330 spin_unlock(&ctl->tree_lock); 3331 return -ENOSPC; 3332 } 3333 3334 spin_lock(&cluster->lock); 3335 3336 /* someone already found a cluster, hooray */ 3337 if (cluster->block_group) { 3338 ret = 0; 3339 goto out; 3340 } 3341 3342 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3343 min_bytes); 3344 3345 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3346 bytes + empty_size, 3347 cont1_bytes, min_bytes); 3348 if (ret) 3349 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3350 offset, bytes + empty_size, 3351 cont1_bytes, min_bytes); 3352 3353 /* Clear our temporary list */ 3354 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3355 list_del_init(&entry->list); 3356 3357 if (!ret) { 3358 btrfs_get_block_group(block_group); 3359 list_add_tail(&cluster->block_group_list, 3360 &block_group->cluster_list); 3361 cluster->block_group = block_group; 3362 } else { 3363 trace_btrfs_failed_cluster_setup(block_group); 3364 } 3365 out: 3366 spin_unlock(&cluster->lock); 3367 spin_unlock(&ctl->tree_lock); 3368 3369 return ret; 3370 } 3371 3372 /* 3373 * simple code to zero out a cluster 3374 */ 3375 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3376 { 3377 spin_lock_init(&cluster->lock); 3378 spin_lock_init(&cluster->refill_lock); 3379 cluster->root = RB_ROOT; 3380 cluster->max_size = 0; 3381 cluster->fragmented = false; 3382 INIT_LIST_HEAD(&cluster->block_group_list); 3383 cluster->block_group = NULL; 3384 } 3385 3386 static int do_trimming(struct btrfs_block_group *block_group, 3387 u64 *total_trimmed, u64 start, u64 bytes, 3388 u64 reserved_start, u64 reserved_bytes, 3389 enum btrfs_trim_state reserved_trim_state, 3390 struct btrfs_trim_range *trim_entry) 3391 { 3392 struct btrfs_space_info *space_info = block_group->space_info; 3393 struct btrfs_fs_info *fs_info = block_group->fs_info; 3394 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3395 int ret; 3396 int update = 0; 3397 const u64 end = start + bytes; 3398 const u64 reserved_end = reserved_start + reserved_bytes; 3399 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3400 u64 trimmed = 0; 3401 3402 spin_lock(&space_info->lock); 3403 spin_lock(&block_group->lock); 3404 if (!block_group->ro) { 3405 block_group->reserved += reserved_bytes; 3406 space_info->bytes_reserved += reserved_bytes; 3407 update = 1; 3408 } 3409 spin_unlock(&block_group->lock); 3410 spin_unlock(&space_info->lock); 3411 3412 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3413 if (!ret) { 3414 *total_trimmed += trimmed; 3415 trim_state = BTRFS_TRIM_STATE_TRIMMED; 3416 } 3417 3418 mutex_lock(&ctl->cache_writeout_mutex); 3419 if (reserved_start < start) 3420 __btrfs_add_free_space(fs_info, ctl, reserved_start, 3421 start - reserved_start, 3422 reserved_trim_state); 3423 if (start + bytes < reserved_start + reserved_bytes) 3424 __btrfs_add_free_space(fs_info, ctl, end, reserved_end - end, 3425 reserved_trim_state); 3426 __btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state); 3427 list_del(&trim_entry->list); 3428 mutex_unlock(&ctl->cache_writeout_mutex); 3429 3430 if (update) { 3431 spin_lock(&space_info->lock); 3432 spin_lock(&block_group->lock); 3433 if (block_group->ro) 3434 space_info->bytes_readonly += reserved_bytes; 3435 block_group->reserved -= reserved_bytes; 3436 space_info->bytes_reserved -= reserved_bytes; 3437 spin_unlock(&block_group->lock); 3438 spin_unlock(&space_info->lock); 3439 } 3440 3441 return ret; 3442 } 3443 3444 /* 3445 * If @async is set, then we will trim 1 region and return. 3446 */ 3447 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3448 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3449 bool async) 3450 { 3451 struct btrfs_discard_ctl *discard_ctl = 3452 &block_group->fs_info->discard_ctl; 3453 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3454 struct btrfs_free_space *entry; 3455 struct rb_node *node; 3456 int ret = 0; 3457 u64 extent_start; 3458 u64 extent_bytes; 3459 enum btrfs_trim_state extent_trim_state; 3460 u64 bytes; 3461 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3462 3463 while (start < end) { 3464 struct btrfs_trim_range trim_entry; 3465 3466 mutex_lock(&ctl->cache_writeout_mutex); 3467 spin_lock(&ctl->tree_lock); 3468 3469 if (ctl->free_space < minlen) 3470 goto out_unlock; 3471 3472 entry = tree_search_offset(ctl, start, 0, 1); 3473 if (!entry) 3474 goto out_unlock; 3475 3476 /* Skip bitmaps and if async, already trimmed entries */ 3477 while (entry->bitmap || 3478 (async && btrfs_free_space_trimmed(entry))) { 3479 node = rb_next(&entry->offset_index); 3480 if (!node) 3481 goto out_unlock; 3482 entry = rb_entry(node, struct btrfs_free_space, 3483 offset_index); 3484 } 3485 3486 if (entry->offset >= end) 3487 goto out_unlock; 3488 3489 extent_start = entry->offset; 3490 extent_bytes = entry->bytes; 3491 extent_trim_state = entry->trim_state; 3492 if (async) { 3493 start = entry->offset; 3494 bytes = entry->bytes; 3495 if (bytes < minlen) { 3496 spin_unlock(&ctl->tree_lock); 3497 mutex_unlock(&ctl->cache_writeout_mutex); 3498 goto next; 3499 } 3500 unlink_free_space(ctl, entry); 3501 /* 3502 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3503 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim 3504 * X when we come back around. So trim it now. 3505 */ 3506 if (max_discard_size && 3507 bytes >= (max_discard_size + 3508 BTRFS_ASYNC_DISCARD_MIN_FILTER)) { 3509 bytes = max_discard_size; 3510 extent_bytes = max_discard_size; 3511 entry->offset += max_discard_size; 3512 entry->bytes -= max_discard_size; 3513 link_free_space(ctl, entry); 3514 } else { 3515 kmem_cache_free(btrfs_free_space_cachep, entry); 3516 } 3517 } else { 3518 start = max(start, extent_start); 3519 bytes = min(extent_start + extent_bytes, end) - start; 3520 if (bytes < minlen) { 3521 spin_unlock(&ctl->tree_lock); 3522 mutex_unlock(&ctl->cache_writeout_mutex); 3523 goto next; 3524 } 3525 3526 unlink_free_space(ctl, entry); 3527 kmem_cache_free(btrfs_free_space_cachep, entry); 3528 } 3529 3530 spin_unlock(&ctl->tree_lock); 3531 trim_entry.start = extent_start; 3532 trim_entry.bytes = extent_bytes; 3533 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3534 mutex_unlock(&ctl->cache_writeout_mutex); 3535 3536 ret = do_trimming(block_group, total_trimmed, start, bytes, 3537 extent_start, extent_bytes, extent_trim_state, 3538 &trim_entry); 3539 if (ret) { 3540 block_group->discard_cursor = start + bytes; 3541 break; 3542 } 3543 next: 3544 start += bytes; 3545 block_group->discard_cursor = start; 3546 if (async && *total_trimmed) 3547 break; 3548 3549 if (fatal_signal_pending(current)) { 3550 ret = -ERESTARTSYS; 3551 break; 3552 } 3553 3554 cond_resched(); 3555 } 3556 3557 return ret; 3558 3559 out_unlock: 3560 block_group->discard_cursor = btrfs_block_group_end(block_group); 3561 spin_unlock(&ctl->tree_lock); 3562 mutex_unlock(&ctl->cache_writeout_mutex); 3563 3564 return ret; 3565 } 3566 3567 /* 3568 * If we break out of trimming a bitmap prematurely, we should reset the 3569 * trimming bit. In a rather contrieved case, it's possible to race here so 3570 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. 3571 * 3572 * start = start of bitmap 3573 * end = near end of bitmap 3574 * 3575 * Thread 1: Thread 2: 3576 * trim_bitmaps(start) 3577 * trim_bitmaps(end) 3578 * end_trimming_bitmap() 3579 * reset_trimming_bitmap() 3580 */ 3581 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) 3582 { 3583 struct btrfs_free_space *entry; 3584 3585 spin_lock(&ctl->tree_lock); 3586 entry = tree_search_offset(ctl, offset, 1, 0); 3587 if (entry) { 3588 if (btrfs_free_space_trimmed(entry)) { 3589 ctl->discardable_extents[BTRFS_STAT_CURR] += 3590 entry->bitmap_extents; 3591 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; 3592 } 3593 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3594 } 3595 3596 spin_unlock(&ctl->tree_lock); 3597 } 3598 3599 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, 3600 struct btrfs_free_space *entry) 3601 { 3602 if (btrfs_free_space_trimming_bitmap(entry)) { 3603 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; 3604 ctl->discardable_extents[BTRFS_STAT_CURR] -= 3605 entry->bitmap_extents; 3606 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; 3607 } 3608 } 3609 3610 /* 3611 * If @async is set, then we will trim 1 region and return. 3612 */ 3613 static int trim_bitmaps(struct btrfs_block_group *block_group, 3614 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3615 u64 maxlen, bool async) 3616 { 3617 struct btrfs_discard_ctl *discard_ctl = 3618 &block_group->fs_info->discard_ctl; 3619 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3620 struct btrfs_free_space *entry; 3621 int ret = 0; 3622 int ret2; 3623 u64 bytes; 3624 u64 offset = offset_to_bitmap(ctl, start); 3625 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3626 3627 while (offset < end) { 3628 bool next_bitmap = false; 3629 struct btrfs_trim_range trim_entry; 3630 3631 mutex_lock(&ctl->cache_writeout_mutex); 3632 spin_lock(&ctl->tree_lock); 3633 3634 if (ctl->free_space < minlen) { 3635 block_group->discard_cursor = 3636 btrfs_block_group_end(block_group); 3637 spin_unlock(&ctl->tree_lock); 3638 mutex_unlock(&ctl->cache_writeout_mutex); 3639 break; 3640 } 3641 3642 entry = tree_search_offset(ctl, offset, 1, 0); 3643 /* 3644 * Bitmaps are marked trimmed lossily now to prevent constant 3645 * discarding of the same bitmap (the reason why we are bound 3646 * by the filters). So, retrim the block group bitmaps when we 3647 * are preparing to punt to the unused_bgs list. This uses 3648 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED 3649 * which is the only discard index which sets minlen to 0. 3650 */ 3651 if (!entry || (async && minlen && start == offset && 3652 btrfs_free_space_trimmed(entry))) { 3653 spin_unlock(&ctl->tree_lock); 3654 mutex_unlock(&ctl->cache_writeout_mutex); 3655 next_bitmap = true; 3656 goto next; 3657 } 3658 3659 /* 3660 * Async discard bitmap trimming begins at by setting the start 3661 * to be key.objectid and the offset_to_bitmap() aligns to the 3662 * start of the bitmap. This lets us know we are fully 3663 * scanning the bitmap rather than only some portion of it. 3664 */ 3665 if (start == offset) 3666 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; 3667 3668 bytes = minlen; 3669 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3670 if (ret2 || start >= end) { 3671 /* 3672 * We lossily consider a bitmap trimmed if we only skip 3673 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. 3674 */ 3675 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) 3676 end_trimming_bitmap(ctl, entry); 3677 else 3678 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3679 spin_unlock(&ctl->tree_lock); 3680 mutex_unlock(&ctl->cache_writeout_mutex); 3681 next_bitmap = true; 3682 goto next; 3683 } 3684 3685 /* 3686 * We already trimmed a region, but are using the locking above 3687 * to reset the trim_state. 3688 */ 3689 if (async && *total_trimmed) { 3690 spin_unlock(&ctl->tree_lock); 3691 mutex_unlock(&ctl->cache_writeout_mutex); 3692 goto out; 3693 } 3694 3695 bytes = min(bytes, end - start); 3696 if (bytes < minlen || (async && maxlen && bytes > maxlen)) { 3697 spin_unlock(&ctl->tree_lock); 3698 mutex_unlock(&ctl->cache_writeout_mutex); 3699 goto next; 3700 } 3701 3702 /* 3703 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3704 * If X < @minlen, we won't trim X when we come back around. 3705 * So trim it now. We differ here from trimming extents as we 3706 * don't keep individual state per bit. 3707 */ 3708 if (async && 3709 max_discard_size && 3710 bytes > (max_discard_size + minlen)) 3711 bytes = max_discard_size; 3712 3713 bitmap_clear_bits(ctl, entry, start, bytes); 3714 if (entry->bytes == 0) 3715 free_bitmap(ctl, entry); 3716 3717 spin_unlock(&ctl->tree_lock); 3718 trim_entry.start = start; 3719 trim_entry.bytes = bytes; 3720 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3721 mutex_unlock(&ctl->cache_writeout_mutex); 3722 3723 ret = do_trimming(block_group, total_trimmed, start, bytes, 3724 start, bytes, 0, &trim_entry); 3725 if (ret) { 3726 reset_trimming_bitmap(ctl, offset); 3727 block_group->discard_cursor = 3728 btrfs_block_group_end(block_group); 3729 break; 3730 } 3731 next: 3732 if (next_bitmap) { 3733 offset += BITS_PER_BITMAP * ctl->unit; 3734 start = offset; 3735 } else { 3736 start += bytes; 3737 } 3738 block_group->discard_cursor = start; 3739 3740 if (fatal_signal_pending(current)) { 3741 if (start != offset) 3742 reset_trimming_bitmap(ctl, offset); 3743 ret = -ERESTARTSYS; 3744 break; 3745 } 3746 3747 cond_resched(); 3748 } 3749 3750 if (offset >= end) 3751 block_group->discard_cursor = end; 3752 3753 out: 3754 return ret; 3755 } 3756 3757 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 3758 u64 *trimmed, u64 start, u64 end, u64 minlen) 3759 { 3760 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3761 int ret; 3762 u64 rem = 0; 3763 3764 *trimmed = 0; 3765 3766 spin_lock(&block_group->lock); 3767 if (block_group->removed) { 3768 spin_unlock(&block_group->lock); 3769 return 0; 3770 } 3771 btrfs_freeze_block_group(block_group); 3772 spin_unlock(&block_group->lock); 3773 3774 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); 3775 if (ret) 3776 goto out; 3777 3778 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); 3779 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); 3780 /* If we ended in the middle of a bitmap, reset the trimming flag */ 3781 if (rem) 3782 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); 3783 out: 3784 btrfs_unfreeze_block_group(block_group); 3785 return ret; 3786 } 3787 3788 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, 3789 u64 *trimmed, u64 start, u64 end, u64 minlen, 3790 bool async) 3791 { 3792 int ret; 3793 3794 *trimmed = 0; 3795 3796 spin_lock(&block_group->lock); 3797 if (block_group->removed) { 3798 spin_unlock(&block_group->lock); 3799 return 0; 3800 } 3801 btrfs_freeze_block_group(block_group); 3802 spin_unlock(&block_group->lock); 3803 3804 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); 3805 btrfs_unfreeze_block_group(block_group); 3806 3807 return ret; 3808 } 3809 3810 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, 3811 u64 *trimmed, u64 start, u64 end, u64 minlen, 3812 u64 maxlen, bool async) 3813 { 3814 int ret; 3815 3816 *trimmed = 0; 3817 3818 spin_lock(&block_group->lock); 3819 if (block_group->removed) { 3820 spin_unlock(&block_group->lock); 3821 return 0; 3822 } 3823 btrfs_freeze_block_group(block_group); 3824 spin_unlock(&block_group->lock); 3825 3826 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, 3827 async); 3828 3829 btrfs_unfreeze_block_group(block_group); 3830 3831 return ret; 3832 } 3833 3834 /* 3835 * Find the left-most item in the cache tree, and then return the 3836 * smallest inode number in the item. 3837 * 3838 * Note: the returned inode number may not be the smallest one in 3839 * the tree, if the left-most item is a bitmap. 3840 */ 3841 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3842 { 3843 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3844 struct btrfs_free_space *entry = NULL; 3845 u64 ino = 0; 3846 3847 spin_lock(&ctl->tree_lock); 3848 3849 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3850 goto out; 3851 3852 entry = rb_entry(rb_first(&ctl->free_space_offset), 3853 struct btrfs_free_space, offset_index); 3854 3855 if (!entry->bitmap) { 3856 ino = entry->offset; 3857 3858 unlink_free_space(ctl, entry); 3859 entry->offset++; 3860 entry->bytes--; 3861 if (!entry->bytes) 3862 kmem_cache_free(btrfs_free_space_cachep, entry); 3863 else 3864 link_free_space(ctl, entry); 3865 } else { 3866 u64 offset = 0; 3867 u64 count = 1; 3868 int ret; 3869 3870 ret = search_bitmap(ctl, entry, &offset, &count, true); 3871 /* Logic error; Should be empty if it can't find anything */ 3872 ASSERT(!ret); 3873 3874 ino = offset; 3875 bitmap_clear_bits(ctl, entry, offset, 1); 3876 if (entry->bytes == 0) 3877 free_bitmap(ctl, entry); 3878 } 3879 out: 3880 spin_unlock(&ctl->tree_lock); 3881 3882 return ino; 3883 } 3884 3885 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3886 struct btrfs_path *path) 3887 { 3888 struct inode *inode = NULL; 3889 3890 spin_lock(&root->ino_cache_lock); 3891 if (root->ino_cache_inode) 3892 inode = igrab(root->ino_cache_inode); 3893 spin_unlock(&root->ino_cache_lock); 3894 if (inode) 3895 return inode; 3896 3897 inode = __lookup_free_space_inode(root, path, 0); 3898 if (IS_ERR(inode)) 3899 return inode; 3900 3901 spin_lock(&root->ino_cache_lock); 3902 if (!btrfs_fs_closing(root->fs_info)) 3903 root->ino_cache_inode = igrab(inode); 3904 spin_unlock(&root->ino_cache_lock); 3905 3906 return inode; 3907 } 3908 3909 int create_free_ino_inode(struct btrfs_root *root, 3910 struct btrfs_trans_handle *trans, 3911 struct btrfs_path *path) 3912 { 3913 return __create_free_space_inode(root, trans, path, 3914 BTRFS_FREE_INO_OBJECTID, 0); 3915 } 3916 3917 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3918 { 3919 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3920 struct btrfs_path *path; 3921 struct inode *inode; 3922 int ret = 0; 3923 u64 root_gen = btrfs_root_generation(&root->root_item); 3924 3925 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3926 return 0; 3927 3928 /* 3929 * If we're unmounting then just return, since this does a search on the 3930 * normal root and not the commit root and we could deadlock. 3931 */ 3932 if (btrfs_fs_closing(fs_info)) 3933 return 0; 3934 3935 path = btrfs_alloc_path(); 3936 if (!path) 3937 return 0; 3938 3939 inode = lookup_free_ino_inode(root, path); 3940 if (IS_ERR(inode)) 3941 goto out; 3942 3943 if (root_gen != BTRFS_I(inode)->generation) 3944 goto out_put; 3945 3946 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3947 3948 if (ret < 0) 3949 btrfs_err(fs_info, 3950 "failed to load free ino cache for root %llu", 3951 root->root_key.objectid); 3952 out_put: 3953 iput(inode); 3954 out: 3955 btrfs_free_path(path); 3956 return ret; 3957 } 3958 3959 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3960 struct btrfs_trans_handle *trans, 3961 struct btrfs_path *path, 3962 struct inode *inode) 3963 { 3964 struct btrfs_fs_info *fs_info = root->fs_info; 3965 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3966 int ret; 3967 struct btrfs_io_ctl io_ctl; 3968 bool release_metadata = true; 3969 3970 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3971 return 0; 3972 3973 memset(&io_ctl, 0, sizeof(io_ctl)); 3974 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); 3975 if (!ret) { 3976 /* 3977 * At this point writepages() didn't error out, so our metadata 3978 * reservation is released when the writeback finishes, at 3979 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 3980 * with or without an error. 3981 */ 3982 release_metadata = false; 3983 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); 3984 } 3985 3986 if (ret) { 3987 if (release_metadata) 3988 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3989 inode->i_size, true); 3990 btrfs_debug(fs_info, 3991 "failed to write free ino cache for root %llu error %d", 3992 root->root_key.objectid, ret); 3993 } 3994 3995 return ret; 3996 } 3997 3998 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3999 /* 4000 * Use this if you need to make a bitmap or extent entry specifically, it 4001 * doesn't do any of the merging that add_free_space does, this acts a lot like 4002 * how the free space cache loading stuff works, so you can get really weird 4003 * configurations. 4004 */ 4005 int test_add_free_space_entry(struct btrfs_block_group *cache, 4006 u64 offset, u64 bytes, bool bitmap) 4007 { 4008 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4009 struct btrfs_free_space *info = NULL, *bitmap_info; 4010 void *map = NULL; 4011 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; 4012 u64 bytes_added; 4013 int ret; 4014 4015 again: 4016 if (!info) { 4017 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 4018 if (!info) 4019 return -ENOMEM; 4020 } 4021 4022 if (!bitmap) { 4023 spin_lock(&ctl->tree_lock); 4024 info->offset = offset; 4025 info->bytes = bytes; 4026 info->max_extent_size = 0; 4027 ret = link_free_space(ctl, info); 4028 spin_unlock(&ctl->tree_lock); 4029 if (ret) 4030 kmem_cache_free(btrfs_free_space_cachep, info); 4031 return ret; 4032 } 4033 4034 if (!map) { 4035 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 4036 if (!map) { 4037 kmem_cache_free(btrfs_free_space_cachep, info); 4038 return -ENOMEM; 4039 } 4040 } 4041 4042 spin_lock(&ctl->tree_lock); 4043 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4044 1, 0); 4045 if (!bitmap_info) { 4046 info->bitmap = map; 4047 map = NULL; 4048 add_new_bitmap(ctl, info, offset); 4049 bitmap_info = info; 4050 info = NULL; 4051 } 4052 4053 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 4054 trim_state); 4055 4056 bytes -= bytes_added; 4057 offset += bytes_added; 4058 spin_unlock(&ctl->tree_lock); 4059 4060 if (bytes) 4061 goto again; 4062 4063 if (info) 4064 kmem_cache_free(btrfs_free_space_cachep, info); 4065 if (map) 4066 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 4067 return 0; 4068 } 4069 4070 /* 4071 * Checks to see if the given range is in the free space cache. This is really 4072 * just used to check the absence of space, so if there is free space in the 4073 * range at all we will return 1. 4074 */ 4075 int test_check_exists(struct btrfs_block_group *cache, 4076 u64 offset, u64 bytes) 4077 { 4078 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4079 struct btrfs_free_space *info; 4080 int ret = 0; 4081 4082 spin_lock(&ctl->tree_lock); 4083 info = tree_search_offset(ctl, offset, 0, 0); 4084 if (!info) { 4085 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4086 1, 0); 4087 if (!info) 4088 goto out; 4089 } 4090 4091 have_info: 4092 if (info->bitmap) { 4093 u64 bit_off, bit_bytes; 4094 struct rb_node *n; 4095 struct btrfs_free_space *tmp; 4096 4097 bit_off = offset; 4098 bit_bytes = ctl->unit; 4099 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 4100 if (!ret) { 4101 if (bit_off == offset) { 4102 ret = 1; 4103 goto out; 4104 } else if (bit_off > offset && 4105 offset + bytes > bit_off) { 4106 ret = 1; 4107 goto out; 4108 } 4109 } 4110 4111 n = rb_prev(&info->offset_index); 4112 while (n) { 4113 tmp = rb_entry(n, struct btrfs_free_space, 4114 offset_index); 4115 if (tmp->offset + tmp->bytes < offset) 4116 break; 4117 if (offset + bytes < tmp->offset) { 4118 n = rb_prev(&tmp->offset_index); 4119 continue; 4120 } 4121 info = tmp; 4122 goto have_info; 4123 } 4124 4125 n = rb_next(&info->offset_index); 4126 while (n) { 4127 tmp = rb_entry(n, struct btrfs_free_space, 4128 offset_index); 4129 if (offset + bytes < tmp->offset) 4130 break; 4131 if (tmp->offset + tmp->bytes < offset) { 4132 n = rb_next(&tmp->offset_index); 4133 continue; 4134 } 4135 info = tmp; 4136 goto have_info; 4137 } 4138 4139 ret = 0; 4140 goto out; 4141 } 4142 4143 if (info->offset == offset) { 4144 ret = 1; 4145 goto out; 4146 } 4147 4148 if (offset > info->offset && offset < info->offset + info->bytes) 4149 ret = 1; 4150 out: 4151 spin_unlock(&ctl->tree_lock); 4152 return ret; 4153 } 4154 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 4155