xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 4800cd83)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include "ctree.h"
24 #include "free-space-cache.h"
25 #include "transaction.h"
26 #include "disk-io.h"
27 
28 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
29 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
30 
31 static void recalculate_thresholds(struct btrfs_block_group_cache
32 				   *block_group);
33 static int link_free_space(struct btrfs_block_group_cache *block_group,
34 			   struct btrfs_free_space *info);
35 
36 struct inode *lookup_free_space_inode(struct btrfs_root *root,
37 				      struct btrfs_block_group_cache
38 				      *block_group, struct btrfs_path *path)
39 {
40 	struct btrfs_key key;
41 	struct btrfs_key location;
42 	struct btrfs_disk_key disk_key;
43 	struct btrfs_free_space_header *header;
44 	struct extent_buffer *leaf;
45 	struct inode *inode = NULL;
46 	int ret;
47 
48 	spin_lock(&block_group->lock);
49 	if (block_group->inode)
50 		inode = igrab(block_group->inode);
51 	spin_unlock(&block_group->lock);
52 	if (inode)
53 		return inode;
54 
55 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
56 	key.offset = block_group->key.objectid;
57 	key.type = 0;
58 
59 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
60 	if (ret < 0)
61 		return ERR_PTR(ret);
62 	if (ret > 0) {
63 		btrfs_release_path(root, path);
64 		return ERR_PTR(-ENOENT);
65 	}
66 
67 	leaf = path->nodes[0];
68 	header = btrfs_item_ptr(leaf, path->slots[0],
69 				struct btrfs_free_space_header);
70 	btrfs_free_space_key(leaf, header, &disk_key);
71 	btrfs_disk_key_to_cpu(&location, &disk_key);
72 	btrfs_release_path(root, path);
73 
74 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
75 	if (!inode)
76 		return ERR_PTR(-ENOENT);
77 	if (IS_ERR(inode))
78 		return inode;
79 	if (is_bad_inode(inode)) {
80 		iput(inode);
81 		return ERR_PTR(-ENOENT);
82 	}
83 
84 	spin_lock(&block_group->lock);
85 	if (!root->fs_info->closing) {
86 		block_group->inode = igrab(inode);
87 		block_group->iref = 1;
88 	}
89 	spin_unlock(&block_group->lock);
90 
91 	return inode;
92 }
93 
94 int create_free_space_inode(struct btrfs_root *root,
95 			    struct btrfs_trans_handle *trans,
96 			    struct btrfs_block_group_cache *block_group,
97 			    struct btrfs_path *path)
98 {
99 	struct btrfs_key key;
100 	struct btrfs_disk_key disk_key;
101 	struct btrfs_free_space_header *header;
102 	struct btrfs_inode_item *inode_item;
103 	struct extent_buffer *leaf;
104 	u64 objectid;
105 	int ret;
106 
107 	ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
108 	if (ret < 0)
109 		return ret;
110 
111 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
112 	if (ret)
113 		return ret;
114 
115 	leaf = path->nodes[0];
116 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
117 				    struct btrfs_inode_item);
118 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
119 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
120 			     sizeof(*inode_item));
121 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
122 	btrfs_set_inode_size(leaf, inode_item, 0);
123 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
124 	btrfs_set_inode_uid(leaf, inode_item, 0);
125 	btrfs_set_inode_gid(leaf, inode_item, 0);
126 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
127 	btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
128 			      BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
129 	btrfs_set_inode_nlink(leaf, inode_item, 1);
130 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
131 	btrfs_set_inode_block_group(leaf, inode_item,
132 				    block_group->key.objectid);
133 	btrfs_mark_buffer_dirty(leaf);
134 	btrfs_release_path(root, path);
135 
136 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
137 	key.offset = block_group->key.objectid;
138 	key.type = 0;
139 
140 	ret = btrfs_insert_empty_item(trans, root, path, &key,
141 				      sizeof(struct btrfs_free_space_header));
142 	if (ret < 0) {
143 		btrfs_release_path(root, path);
144 		return ret;
145 	}
146 	leaf = path->nodes[0];
147 	header = btrfs_item_ptr(leaf, path->slots[0],
148 				struct btrfs_free_space_header);
149 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
150 	btrfs_set_free_space_key(leaf, header, &disk_key);
151 	btrfs_mark_buffer_dirty(leaf);
152 	btrfs_release_path(root, path);
153 
154 	return 0;
155 }
156 
157 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
158 				    struct btrfs_trans_handle *trans,
159 				    struct btrfs_path *path,
160 				    struct inode *inode)
161 {
162 	loff_t oldsize;
163 	int ret = 0;
164 
165 	trans->block_rsv = root->orphan_block_rsv;
166 	ret = btrfs_block_rsv_check(trans, root,
167 				    root->orphan_block_rsv,
168 				    0, 5);
169 	if (ret)
170 		return ret;
171 
172 	oldsize = i_size_read(inode);
173 	btrfs_i_size_write(inode, 0);
174 	truncate_pagecache(inode, oldsize, 0);
175 
176 	/*
177 	 * We don't need an orphan item because truncating the free space cache
178 	 * will never be split across transactions.
179 	 */
180 	ret = btrfs_truncate_inode_items(trans, root, inode,
181 					 0, BTRFS_EXTENT_DATA_KEY);
182 	if (ret) {
183 		WARN_ON(1);
184 		return ret;
185 	}
186 
187 	return btrfs_update_inode(trans, root, inode);
188 }
189 
190 static int readahead_cache(struct inode *inode)
191 {
192 	struct file_ra_state *ra;
193 	unsigned long last_index;
194 
195 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
196 	if (!ra)
197 		return -ENOMEM;
198 
199 	file_ra_state_init(ra, inode->i_mapping);
200 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
201 
202 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
203 
204 	kfree(ra);
205 
206 	return 0;
207 }
208 
209 int load_free_space_cache(struct btrfs_fs_info *fs_info,
210 			  struct btrfs_block_group_cache *block_group)
211 {
212 	struct btrfs_root *root = fs_info->tree_root;
213 	struct inode *inode;
214 	struct btrfs_free_space_header *header;
215 	struct extent_buffer *leaf;
216 	struct page *page;
217 	struct btrfs_path *path;
218 	u32 *checksums = NULL, *crc;
219 	char *disk_crcs = NULL;
220 	struct btrfs_key key;
221 	struct list_head bitmaps;
222 	u64 num_entries;
223 	u64 num_bitmaps;
224 	u64 generation;
225 	u32 cur_crc = ~(u32)0;
226 	pgoff_t index = 0;
227 	unsigned long first_page_offset;
228 	int num_checksums;
229 	int ret = 0;
230 
231 	/*
232 	 * If we're unmounting then just return, since this does a search on the
233 	 * normal root and not the commit root and we could deadlock.
234 	 */
235 	smp_mb();
236 	if (fs_info->closing)
237 		return 0;
238 
239 	/*
240 	 * If this block group has been marked to be cleared for one reason or
241 	 * another then we can't trust the on disk cache, so just return.
242 	 */
243 	spin_lock(&block_group->lock);
244 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
245 		spin_unlock(&block_group->lock);
246 		return 0;
247 	}
248 	spin_unlock(&block_group->lock);
249 
250 	INIT_LIST_HEAD(&bitmaps);
251 
252 	path = btrfs_alloc_path();
253 	if (!path)
254 		return 0;
255 
256 	inode = lookup_free_space_inode(root, block_group, path);
257 	if (IS_ERR(inode)) {
258 		btrfs_free_path(path);
259 		return 0;
260 	}
261 
262 	/* Nothing in the space cache, goodbye */
263 	if (!i_size_read(inode)) {
264 		btrfs_free_path(path);
265 		goto out;
266 	}
267 
268 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
269 	key.offset = block_group->key.objectid;
270 	key.type = 0;
271 
272 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
273 	if (ret) {
274 		btrfs_free_path(path);
275 		goto out;
276 	}
277 
278 	leaf = path->nodes[0];
279 	header = btrfs_item_ptr(leaf, path->slots[0],
280 				struct btrfs_free_space_header);
281 	num_entries = btrfs_free_space_entries(leaf, header);
282 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
283 	generation = btrfs_free_space_generation(leaf, header);
284 	btrfs_free_path(path);
285 
286 	if (BTRFS_I(inode)->generation != generation) {
287 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
288 		       " not match free space cache generation (%llu) for "
289 		       "block group %llu\n",
290 		       (unsigned long long)BTRFS_I(inode)->generation,
291 		       (unsigned long long)generation,
292 		       (unsigned long long)block_group->key.objectid);
293 		goto free_cache;
294 	}
295 
296 	if (!num_entries)
297 		goto out;
298 
299 	/* Setup everything for doing checksumming */
300 	num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
301 	checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
302 	if (!checksums)
303 		goto out;
304 	first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
305 	disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
306 	if (!disk_crcs)
307 		goto out;
308 
309 	ret = readahead_cache(inode);
310 	if (ret) {
311 		ret = 0;
312 		goto out;
313 	}
314 
315 	while (1) {
316 		struct btrfs_free_space_entry *entry;
317 		struct btrfs_free_space *e;
318 		void *addr;
319 		unsigned long offset = 0;
320 		unsigned long start_offset = 0;
321 		int need_loop = 0;
322 
323 		if (!num_entries && !num_bitmaps)
324 			break;
325 
326 		if (index == 0) {
327 			start_offset = first_page_offset;
328 			offset = start_offset;
329 		}
330 
331 		page = grab_cache_page(inode->i_mapping, index);
332 		if (!page) {
333 			ret = 0;
334 			goto free_cache;
335 		}
336 
337 		if (!PageUptodate(page)) {
338 			btrfs_readpage(NULL, page);
339 			lock_page(page);
340 			if (!PageUptodate(page)) {
341 				unlock_page(page);
342 				page_cache_release(page);
343 				printk(KERN_ERR "btrfs: error reading free "
344 				       "space cache: %llu\n",
345 				       (unsigned long long)
346 				       block_group->key.objectid);
347 				goto free_cache;
348 			}
349 		}
350 		addr = kmap(page);
351 
352 		if (index == 0) {
353 			u64 *gen;
354 
355 			memcpy(disk_crcs, addr, first_page_offset);
356 			gen = addr + (sizeof(u32) * num_checksums);
357 			if (*gen != BTRFS_I(inode)->generation) {
358 				printk(KERN_ERR "btrfs: space cache generation"
359 				       " (%llu) does not match inode (%llu) "
360 				       "for block group %llu\n",
361 				       (unsigned long long)*gen,
362 				       (unsigned long long)
363 				       BTRFS_I(inode)->generation,
364 				       (unsigned long long)
365 				       block_group->key.objectid);
366 				kunmap(page);
367 				unlock_page(page);
368 				page_cache_release(page);
369 				goto free_cache;
370 			}
371 			crc = (u32 *)disk_crcs;
372 		}
373 		entry = addr + start_offset;
374 
375 		/* First lets check our crc before we do anything fun */
376 		cur_crc = ~(u32)0;
377 		cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
378 					  PAGE_CACHE_SIZE - start_offset);
379 		btrfs_csum_final(cur_crc, (char *)&cur_crc);
380 		if (cur_crc != *crc) {
381 			printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
382 			       "block group %llu\n", index,
383 			       (unsigned long long)block_group->key.objectid);
384 			kunmap(page);
385 			unlock_page(page);
386 			page_cache_release(page);
387 			goto free_cache;
388 		}
389 		crc++;
390 
391 		while (1) {
392 			if (!num_entries)
393 				break;
394 
395 			need_loop = 1;
396 			e = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
397 			if (!e) {
398 				kunmap(page);
399 				unlock_page(page);
400 				page_cache_release(page);
401 				goto free_cache;
402 			}
403 
404 			e->offset = le64_to_cpu(entry->offset);
405 			e->bytes = le64_to_cpu(entry->bytes);
406 			if (!e->bytes) {
407 				kunmap(page);
408 				kfree(e);
409 				unlock_page(page);
410 				page_cache_release(page);
411 				goto free_cache;
412 			}
413 
414 			if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
415 				spin_lock(&block_group->tree_lock);
416 				ret = link_free_space(block_group, e);
417 				spin_unlock(&block_group->tree_lock);
418 				BUG_ON(ret);
419 			} else {
420 				e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
421 				if (!e->bitmap) {
422 					kunmap(page);
423 					kfree(e);
424 					unlock_page(page);
425 					page_cache_release(page);
426 					goto free_cache;
427 				}
428 				spin_lock(&block_group->tree_lock);
429 				ret = link_free_space(block_group, e);
430 				block_group->total_bitmaps++;
431 				recalculate_thresholds(block_group);
432 				spin_unlock(&block_group->tree_lock);
433 				list_add_tail(&e->list, &bitmaps);
434 			}
435 
436 			num_entries--;
437 			offset += sizeof(struct btrfs_free_space_entry);
438 			if (offset + sizeof(struct btrfs_free_space_entry) >=
439 			    PAGE_CACHE_SIZE)
440 				break;
441 			entry++;
442 		}
443 
444 		/*
445 		 * We read an entry out of this page, we need to move on to the
446 		 * next page.
447 		 */
448 		if (need_loop) {
449 			kunmap(page);
450 			goto next;
451 		}
452 
453 		/*
454 		 * We add the bitmaps at the end of the entries in order that
455 		 * the bitmap entries are added to the cache.
456 		 */
457 		e = list_entry(bitmaps.next, struct btrfs_free_space, list);
458 		list_del_init(&e->list);
459 		memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
460 		kunmap(page);
461 		num_bitmaps--;
462 next:
463 		unlock_page(page);
464 		page_cache_release(page);
465 		index++;
466 	}
467 
468 	ret = 1;
469 out:
470 	kfree(checksums);
471 	kfree(disk_crcs);
472 	iput(inode);
473 	return ret;
474 
475 free_cache:
476 	/* This cache is bogus, make sure it gets cleared */
477 	spin_lock(&block_group->lock);
478 	block_group->disk_cache_state = BTRFS_DC_CLEAR;
479 	spin_unlock(&block_group->lock);
480 	btrfs_remove_free_space_cache(block_group);
481 	goto out;
482 }
483 
484 int btrfs_write_out_cache(struct btrfs_root *root,
485 			  struct btrfs_trans_handle *trans,
486 			  struct btrfs_block_group_cache *block_group,
487 			  struct btrfs_path *path)
488 {
489 	struct btrfs_free_space_header *header;
490 	struct extent_buffer *leaf;
491 	struct inode *inode;
492 	struct rb_node *node;
493 	struct list_head *pos, *n;
494 	struct page *page;
495 	struct extent_state *cached_state = NULL;
496 	struct list_head bitmap_list;
497 	struct btrfs_key key;
498 	u64 bytes = 0;
499 	u32 *crc, *checksums;
500 	pgoff_t index = 0, last_index = 0;
501 	unsigned long first_page_offset;
502 	int num_checksums;
503 	int entries = 0;
504 	int bitmaps = 0;
505 	int ret = 0;
506 
507 	root = root->fs_info->tree_root;
508 
509 	INIT_LIST_HEAD(&bitmap_list);
510 
511 	spin_lock(&block_group->lock);
512 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
513 		spin_unlock(&block_group->lock);
514 		return 0;
515 	}
516 	spin_unlock(&block_group->lock);
517 
518 	inode = lookup_free_space_inode(root, block_group, path);
519 	if (IS_ERR(inode))
520 		return 0;
521 
522 	if (!i_size_read(inode)) {
523 		iput(inode);
524 		return 0;
525 	}
526 
527 	node = rb_first(&block_group->free_space_offset);
528 	if (!node) {
529 		iput(inode);
530 		return 0;
531 	}
532 
533 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
534 	filemap_write_and_wait(inode->i_mapping);
535 	btrfs_wait_ordered_range(inode, inode->i_size &
536 				 ~(root->sectorsize - 1), (u64)-1);
537 
538 	/* We need a checksum per page. */
539 	num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
540 	crc = checksums  = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
541 	if (!crc) {
542 		iput(inode);
543 		return 0;
544 	}
545 
546 	/* Since the first page has all of our checksums and our generation we
547 	 * need to calculate the offset into the page that we can start writing
548 	 * our entries.
549 	 */
550 	first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
551 
552 	/*
553 	 * Lock all pages first so we can lock the extent safely.
554 	 *
555 	 * NOTE: Because we hold the ref the entire time we're going to write to
556 	 * the page find_get_page should never fail, so we don't do a check
557 	 * after find_get_page at this point.  Just putting this here so people
558 	 * know and don't freak out.
559 	 */
560 	while (index <= last_index) {
561 		page = grab_cache_page(inode->i_mapping, index);
562 		if (!page) {
563 			pgoff_t i = 0;
564 
565 			while (i < index) {
566 				page = find_get_page(inode->i_mapping, i);
567 				unlock_page(page);
568 				page_cache_release(page);
569 				page_cache_release(page);
570 				i++;
571 			}
572 			goto out_free;
573 		}
574 		index++;
575 	}
576 
577 	index = 0;
578 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
579 			 0, &cached_state, GFP_NOFS);
580 
581 	/* Write out the extent entries */
582 	do {
583 		struct btrfs_free_space_entry *entry;
584 		void *addr;
585 		unsigned long offset = 0;
586 		unsigned long start_offset = 0;
587 
588 		if (index == 0) {
589 			start_offset = first_page_offset;
590 			offset = start_offset;
591 		}
592 
593 		page = find_get_page(inode->i_mapping, index);
594 
595 		addr = kmap(page);
596 		entry = addr + start_offset;
597 
598 		memset(addr, 0, PAGE_CACHE_SIZE);
599 		while (1) {
600 			struct btrfs_free_space *e;
601 
602 			e = rb_entry(node, struct btrfs_free_space, offset_index);
603 			entries++;
604 
605 			entry->offset = cpu_to_le64(e->offset);
606 			entry->bytes = cpu_to_le64(e->bytes);
607 			if (e->bitmap) {
608 				entry->type = BTRFS_FREE_SPACE_BITMAP;
609 				list_add_tail(&e->list, &bitmap_list);
610 				bitmaps++;
611 			} else {
612 				entry->type = BTRFS_FREE_SPACE_EXTENT;
613 			}
614 			node = rb_next(node);
615 			if (!node)
616 				break;
617 			offset += sizeof(struct btrfs_free_space_entry);
618 			if (offset + sizeof(struct btrfs_free_space_entry) >=
619 			    PAGE_CACHE_SIZE)
620 				break;
621 			entry++;
622 		}
623 		*crc = ~(u32)0;
624 		*crc = btrfs_csum_data(root, addr + start_offset, *crc,
625 				       PAGE_CACHE_SIZE - start_offset);
626 		kunmap(page);
627 
628 		btrfs_csum_final(*crc, (char *)crc);
629 		crc++;
630 
631 		bytes += PAGE_CACHE_SIZE;
632 
633 		ClearPageChecked(page);
634 		set_page_extent_mapped(page);
635 		SetPageUptodate(page);
636 		set_page_dirty(page);
637 
638 		/*
639 		 * We need to release our reference we got for grab_cache_page,
640 		 * except for the first page which will hold our checksums, we
641 		 * do that below.
642 		 */
643 		if (index != 0) {
644 			unlock_page(page);
645 			page_cache_release(page);
646 		}
647 
648 		page_cache_release(page);
649 
650 		index++;
651 	} while (node);
652 
653 	/* Write out the bitmaps */
654 	list_for_each_safe(pos, n, &bitmap_list) {
655 		void *addr;
656 		struct btrfs_free_space *entry =
657 			list_entry(pos, struct btrfs_free_space, list);
658 
659 		page = find_get_page(inode->i_mapping, index);
660 
661 		addr = kmap(page);
662 		memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
663 		*crc = ~(u32)0;
664 		*crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
665 		kunmap(page);
666 		btrfs_csum_final(*crc, (char *)crc);
667 		crc++;
668 		bytes += PAGE_CACHE_SIZE;
669 
670 		ClearPageChecked(page);
671 		set_page_extent_mapped(page);
672 		SetPageUptodate(page);
673 		set_page_dirty(page);
674 		unlock_page(page);
675 		page_cache_release(page);
676 		page_cache_release(page);
677 		list_del_init(&entry->list);
678 		index++;
679 	}
680 
681 	/* Zero out the rest of the pages just to make sure */
682 	while (index <= last_index) {
683 		void *addr;
684 
685 		page = find_get_page(inode->i_mapping, index);
686 
687 		addr = kmap(page);
688 		memset(addr, 0, PAGE_CACHE_SIZE);
689 		kunmap(page);
690 		ClearPageChecked(page);
691 		set_page_extent_mapped(page);
692 		SetPageUptodate(page);
693 		set_page_dirty(page);
694 		unlock_page(page);
695 		page_cache_release(page);
696 		page_cache_release(page);
697 		bytes += PAGE_CACHE_SIZE;
698 		index++;
699 	}
700 
701 	btrfs_set_extent_delalloc(inode, 0, bytes - 1, &cached_state);
702 
703 	/* Write the checksums and trans id to the first page */
704 	{
705 		void *addr;
706 		u64 *gen;
707 
708 		page = find_get_page(inode->i_mapping, 0);
709 
710 		addr = kmap(page);
711 		memcpy(addr, checksums, sizeof(u32) * num_checksums);
712 		gen = addr + (sizeof(u32) * num_checksums);
713 		*gen = trans->transid;
714 		kunmap(page);
715 		ClearPageChecked(page);
716 		set_page_extent_mapped(page);
717 		SetPageUptodate(page);
718 		set_page_dirty(page);
719 		unlock_page(page);
720 		page_cache_release(page);
721 		page_cache_release(page);
722 	}
723 	BTRFS_I(inode)->generation = trans->transid;
724 
725 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
726 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
727 
728 	filemap_write_and_wait(inode->i_mapping);
729 
730 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
731 	key.offset = block_group->key.objectid;
732 	key.type = 0;
733 
734 	ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
735 	if (ret < 0) {
736 		ret = 0;
737 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
738 				 EXTENT_DIRTY | EXTENT_DELALLOC |
739 				 EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
740 		goto out_free;
741 	}
742 	leaf = path->nodes[0];
743 	if (ret > 0) {
744 		struct btrfs_key found_key;
745 		BUG_ON(!path->slots[0]);
746 		path->slots[0]--;
747 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
748 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
749 		    found_key.offset != block_group->key.objectid) {
750 			ret = 0;
751 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
752 					 EXTENT_DIRTY | EXTENT_DELALLOC |
753 					 EXTENT_DO_ACCOUNTING, 0, 0, NULL,
754 					 GFP_NOFS);
755 			btrfs_release_path(root, path);
756 			goto out_free;
757 		}
758 	}
759 	header = btrfs_item_ptr(leaf, path->slots[0],
760 				struct btrfs_free_space_header);
761 	btrfs_set_free_space_entries(leaf, header, entries);
762 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
763 	btrfs_set_free_space_generation(leaf, header, trans->transid);
764 	btrfs_mark_buffer_dirty(leaf);
765 	btrfs_release_path(root, path);
766 
767 	ret = 1;
768 
769 out_free:
770 	if (ret == 0) {
771 		invalidate_inode_pages2_range(inode->i_mapping, 0, index);
772 		spin_lock(&block_group->lock);
773 		block_group->disk_cache_state = BTRFS_DC_ERROR;
774 		spin_unlock(&block_group->lock);
775 		BTRFS_I(inode)->generation = 0;
776 	}
777 	kfree(checksums);
778 	btrfs_update_inode(trans, root, inode);
779 	iput(inode);
780 	return ret;
781 }
782 
783 static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
784 					  u64 offset)
785 {
786 	BUG_ON(offset < bitmap_start);
787 	offset -= bitmap_start;
788 	return (unsigned long)(div64_u64(offset, sectorsize));
789 }
790 
791 static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
792 {
793 	return (unsigned long)(div64_u64(bytes, sectorsize));
794 }
795 
796 static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
797 				   u64 offset)
798 {
799 	u64 bitmap_start;
800 	u64 bytes_per_bitmap;
801 
802 	bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
803 	bitmap_start = offset - block_group->key.objectid;
804 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
805 	bitmap_start *= bytes_per_bitmap;
806 	bitmap_start += block_group->key.objectid;
807 
808 	return bitmap_start;
809 }
810 
811 static int tree_insert_offset(struct rb_root *root, u64 offset,
812 			      struct rb_node *node, int bitmap)
813 {
814 	struct rb_node **p = &root->rb_node;
815 	struct rb_node *parent = NULL;
816 	struct btrfs_free_space *info;
817 
818 	while (*p) {
819 		parent = *p;
820 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
821 
822 		if (offset < info->offset) {
823 			p = &(*p)->rb_left;
824 		} else if (offset > info->offset) {
825 			p = &(*p)->rb_right;
826 		} else {
827 			/*
828 			 * we could have a bitmap entry and an extent entry
829 			 * share the same offset.  If this is the case, we want
830 			 * the extent entry to always be found first if we do a
831 			 * linear search through the tree, since we want to have
832 			 * the quickest allocation time, and allocating from an
833 			 * extent is faster than allocating from a bitmap.  So
834 			 * if we're inserting a bitmap and we find an entry at
835 			 * this offset, we want to go right, or after this entry
836 			 * logically.  If we are inserting an extent and we've
837 			 * found a bitmap, we want to go left, or before
838 			 * logically.
839 			 */
840 			if (bitmap) {
841 				WARN_ON(info->bitmap);
842 				p = &(*p)->rb_right;
843 			} else {
844 				WARN_ON(!info->bitmap);
845 				p = &(*p)->rb_left;
846 			}
847 		}
848 	}
849 
850 	rb_link_node(node, parent, p);
851 	rb_insert_color(node, root);
852 
853 	return 0;
854 }
855 
856 /*
857  * searches the tree for the given offset.
858  *
859  * fuzzy - If this is set, then we are trying to make an allocation, and we just
860  * want a section that has at least bytes size and comes at or after the given
861  * offset.
862  */
863 static struct btrfs_free_space *
864 tree_search_offset(struct btrfs_block_group_cache *block_group,
865 		   u64 offset, int bitmap_only, int fuzzy)
866 {
867 	struct rb_node *n = block_group->free_space_offset.rb_node;
868 	struct btrfs_free_space *entry, *prev = NULL;
869 
870 	/* find entry that is closest to the 'offset' */
871 	while (1) {
872 		if (!n) {
873 			entry = NULL;
874 			break;
875 		}
876 
877 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
878 		prev = entry;
879 
880 		if (offset < entry->offset)
881 			n = n->rb_left;
882 		else if (offset > entry->offset)
883 			n = n->rb_right;
884 		else
885 			break;
886 	}
887 
888 	if (bitmap_only) {
889 		if (!entry)
890 			return NULL;
891 		if (entry->bitmap)
892 			return entry;
893 
894 		/*
895 		 * bitmap entry and extent entry may share same offset,
896 		 * in that case, bitmap entry comes after extent entry.
897 		 */
898 		n = rb_next(n);
899 		if (!n)
900 			return NULL;
901 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
902 		if (entry->offset != offset)
903 			return NULL;
904 
905 		WARN_ON(!entry->bitmap);
906 		return entry;
907 	} else if (entry) {
908 		if (entry->bitmap) {
909 			/*
910 			 * if previous extent entry covers the offset,
911 			 * we should return it instead of the bitmap entry
912 			 */
913 			n = &entry->offset_index;
914 			while (1) {
915 				n = rb_prev(n);
916 				if (!n)
917 					break;
918 				prev = rb_entry(n, struct btrfs_free_space,
919 						offset_index);
920 				if (!prev->bitmap) {
921 					if (prev->offset + prev->bytes > offset)
922 						entry = prev;
923 					break;
924 				}
925 			}
926 		}
927 		return entry;
928 	}
929 
930 	if (!prev)
931 		return NULL;
932 
933 	/* find last entry before the 'offset' */
934 	entry = prev;
935 	if (entry->offset > offset) {
936 		n = rb_prev(&entry->offset_index);
937 		if (n) {
938 			entry = rb_entry(n, struct btrfs_free_space,
939 					offset_index);
940 			BUG_ON(entry->offset > offset);
941 		} else {
942 			if (fuzzy)
943 				return entry;
944 			else
945 				return NULL;
946 		}
947 	}
948 
949 	if (entry->bitmap) {
950 		n = &entry->offset_index;
951 		while (1) {
952 			n = rb_prev(n);
953 			if (!n)
954 				break;
955 			prev = rb_entry(n, struct btrfs_free_space,
956 					offset_index);
957 			if (!prev->bitmap) {
958 				if (prev->offset + prev->bytes > offset)
959 					return prev;
960 				break;
961 			}
962 		}
963 		if (entry->offset + BITS_PER_BITMAP *
964 		    block_group->sectorsize > offset)
965 			return entry;
966 	} else if (entry->offset + entry->bytes > offset)
967 		return entry;
968 
969 	if (!fuzzy)
970 		return NULL;
971 
972 	while (1) {
973 		if (entry->bitmap) {
974 			if (entry->offset + BITS_PER_BITMAP *
975 			    block_group->sectorsize > offset)
976 				break;
977 		} else {
978 			if (entry->offset + entry->bytes > offset)
979 				break;
980 		}
981 
982 		n = rb_next(&entry->offset_index);
983 		if (!n)
984 			return NULL;
985 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
986 	}
987 	return entry;
988 }
989 
990 static inline void
991 __unlink_free_space(struct btrfs_block_group_cache *block_group,
992 		    struct btrfs_free_space *info)
993 {
994 	rb_erase(&info->offset_index, &block_group->free_space_offset);
995 	block_group->free_extents--;
996 }
997 
998 static void unlink_free_space(struct btrfs_block_group_cache *block_group,
999 			      struct btrfs_free_space *info)
1000 {
1001 	__unlink_free_space(block_group, info);
1002 	block_group->free_space -= info->bytes;
1003 }
1004 
1005 static int link_free_space(struct btrfs_block_group_cache *block_group,
1006 			   struct btrfs_free_space *info)
1007 {
1008 	int ret = 0;
1009 
1010 	BUG_ON(!info->bitmap && !info->bytes);
1011 	ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
1012 				 &info->offset_index, (info->bitmap != NULL));
1013 	if (ret)
1014 		return ret;
1015 
1016 	block_group->free_space += info->bytes;
1017 	block_group->free_extents++;
1018 	return ret;
1019 }
1020 
1021 static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
1022 {
1023 	u64 max_bytes;
1024 	u64 bitmap_bytes;
1025 	u64 extent_bytes;
1026 	u64 size = block_group->key.offset;
1027 
1028 	/*
1029 	 * The goal is to keep the total amount of memory used per 1gb of space
1030 	 * at or below 32k, so we need to adjust how much memory we allow to be
1031 	 * used by extent based free space tracking
1032 	 */
1033 	if (size < 1024 * 1024 * 1024)
1034 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1035 	else
1036 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1037 			div64_u64(size, 1024 * 1024 * 1024);
1038 
1039 	/*
1040 	 * we want to account for 1 more bitmap than what we have so we can make
1041 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1042 	 * we add more bitmaps.
1043 	 */
1044 	bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1045 
1046 	if (bitmap_bytes >= max_bytes) {
1047 		block_group->extents_thresh = 0;
1048 		return;
1049 	}
1050 
1051 	/*
1052 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1053 	 * bytes we can have, or whatever is less than that.
1054 	 */
1055 	extent_bytes = max_bytes - bitmap_bytes;
1056 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1057 
1058 	block_group->extents_thresh =
1059 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1060 }
1061 
1062 static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
1063 			      struct btrfs_free_space *info, u64 offset,
1064 			      u64 bytes)
1065 {
1066 	unsigned long start, end;
1067 	unsigned long i;
1068 
1069 	start = offset_to_bit(info->offset, block_group->sectorsize, offset);
1070 	end = start + bytes_to_bits(bytes, block_group->sectorsize);
1071 	BUG_ON(end > BITS_PER_BITMAP);
1072 
1073 	for (i = start; i < end; i++)
1074 		clear_bit(i, info->bitmap);
1075 
1076 	info->bytes -= bytes;
1077 	block_group->free_space -= bytes;
1078 }
1079 
1080 static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
1081 			    struct btrfs_free_space *info, u64 offset,
1082 			    u64 bytes)
1083 {
1084 	unsigned long start, end;
1085 	unsigned long i;
1086 
1087 	start = offset_to_bit(info->offset, block_group->sectorsize, offset);
1088 	end = start + bytes_to_bits(bytes, block_group->sectorsize);
1089 	BUG_ON(end > BITS_PER_BITMAP);
1090 
1091 	for (i = start; i < end; i++)
1092 		set_bit(i, info->bitmap);
1093 
1094 	info->bytes += bytes;
1095 	block_group->free_space += bytes;
1096 }
1097 
1098 static int search_bitmap(struct btrfs_block_group_cache *block_group,
1099 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1100 			 u64 *bytes)
1101 {
1102 	unsigned long found_bits = 0;
1103 	unsigned long bits, i;
1104 	unsigned long next_zero;
1105 
1106 	i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
1107 			  max_t(u64, *offset, bitmap_info->offset));
1108 	bits = bytes_to_bits(*bytes, block_group->sectorsize);
1109 
1110 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1111 	     i < BITS_PER_BITMAP;
1112 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1113 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1114 					       BITS_PER_BITMAP, i);
1115 		if ((next_zero - i) >= bits) {
1116 			found_bits = next_zero - i;
1117 			break;
1118 		}
1119 		i = next_zero;
1120 	}
1121 
1122 	if (found_bits) {
1123 		*offset = (u64)(i * block_group->sectorsize) +
1124 			bitmap_info->offset;
1125 		*bytes = (u64)(found_bits) * block_group->sectorsize;
1126 		return 0;
1127 	}
1128 
1129 	return -1;
1130 }
1131 
1132 static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
1133 						*block_group, u64 *offset,
1134 						u64 *bytes, int debug)
1135 {
1136 	struct btrfs_free_space *entry;
1137 	struct rb_node *node;
1138 	int ret;
1139 
1140 	if (!block_group->free_space_offset.rb_node)
1141 		return NULL;
1142 
1143 	entry = tree_search_offset(block_group,
1144 				   offset_to_bitmap(block_group, *offset),
1145 				   0, 1);
1146 	if (!entry)
1147 		return NULL;
1148 
1149 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1150 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1151 		if (entry->bytes < *bytes)
1152 			continue;
1153 
1154 		if (entry->bitmap) {
1155 			ret = search_bitmap(block_group, entry, offset, bytes);
1156 			if (!ret)
1157 				return entry;
1158 			continue;
1159 		}
1160 
1161 		*offset = entry->offset;
1162 		*bytes = entry->bytes;
1163 		return entry;
1164 	}
1165 
1166 	return NULL;
1167 }
1168 
1169 static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
1170 			   struct btrfs_free_space *info, u64 offset)
1171 {
1172 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1173 	int max_bitmaps = (int)div64_u64(block_group->key.offset +
1174 					 bytes_per_bg - 1, bytes_per_bg);
1175 	BUG_ON(block_group->total_bitmaps >= max_bitmaps);
1176 
1177 	info->offset = offset_to_bitmap(block_group, offset);
1178 	info->bytes = 0;
1179 	link_free_space(block_group, info);
1180 	block_group->total_bitmaps++;
1181 
1182 	recalculate_thresholds(block_group);
1183 }
1184 
1185 static void free_bitmap(struct btrfs_block_group_cache *block_group,
1186 			struct btrfs_free_space *bitmap_info)
1187 {
1188 	unlink_free_space(block_group, bitmap_info);
1189 	kfree(bitmap_info->bitmap);
1190 	kfree(bitmap_info);
1191 	block_group->total_bitmaps--;
1192 	recalculate_thresholds(block_group);
1193 }
1194 
1195 static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
1196 			      struct btrfs_free_space *bitmap_info,
1197 			      u64 *offset, u64 *bytes)
1198 {
1199 	u64 end;
1200 	u64 search_start, search_bytes;
1201 	int ret;
1202 
1203 again:
1204 	end = bitmap_info->offset +
1205 		(u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
1206 
1207 	/*
1208 	 * XXX - this can go away after a few releases.
1209 	 *
1210 	 * since the only user of btrfs_remove_free_space is the tree logging
1211 	 * stuff, and the only way to test that is under crash conditions, we
1212 	 * want to have this debug stuff here just in case somethings not
1213 	 * working.  Search the bitmap for the space we are trying to use to
1214 	 * make sure its actually there.  If its not there then we need to stop
1215 	 * because something has gone wrong.
1216 	 */
1217 	search_start = *offset;
1218 	search_bytes = *bytes;
1219 	search_bytes = min(search_bytes, end - search_start + 1);
1220 	ret = search_bitmap(block_group, bitmap_info, &search_start,
1221 			    &search_bytes);
1222 	BUG_ON(ret < 0 || search_start != *offset);
1223 
1224 	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1225 		bitmap_clear_bits(block_group, bitmap_info, *offset,
1226 				  end - *offset + 1);
1227 		*bytes -= end - *offset + 1;
1228 		*offset = end + 1;
1229 	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1230 		bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
1231 		*bytes = 0;
1232 	}
1233 
1234 	if (*bytes) {
1235 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1236 		if (!bitmap_info->bytes)
1237 			free_bitmap(block_group, bitmap_info);
1238 
1239 		/*
1240 		 * no entry after this bitmap, but we still have bytes to
1241 		 * remove, so something has gone wrong.
1242 		 */
1243 		if (!next)
1244 			return -EINVAL;
1245 
1246 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1247 				       offset_index);
1248 
1249 		/*
1250 		 * if the next entry isn't a bitmap we need to return to let the
1251 		 * extent stuff do its work.
1252 		 */
1253 		if (!bitmap_info->bitmap)
1254 			return -EAGAIN;
1255 
1256 		/*
1257 		 * Ok the next item is a bitmap, but it may not actually hold
1258 		 * the information for the rest of this free space stuff, so
1259 		 * look for it, and if we don't find it return so we can try
1260 		 * everything over again.
1261 		 */
1262 		search_start = *offset;
1263 		search_bytes = *bytes;
1264 		ret = search_bitmap(block_group, bitmap_info, &search_start,
1265 				    &search_bytes);
1266 		if (ret < 0 || search_start != *offset)
1267 			return -EAGAIN;
1268 
1269 		goto again;
1270 	} else if (!bitmap_info->bytes)
1271 		free_bitmap(block_group, bitmap_info);
1272 
1273 	return 0;
1274 }
1275 
1276 static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
1277 			      struct btrfs_free_space *info)
1278 {
1279 	struct btrfs_free_space *bitmap_info;
1280 	int added = 0;
1281 	u64 bytes, offset, end;
1282 	int ret;
1283 
1284 	/*
1285 	 * If we are below the extents threshold then we can add this as an
1286 	 * extent, and don't have to deal with the bitmap
1287 	 */
1288 	if (block_group->free_extents < block_group->extents_thresh &&
1289 	    info->bytes > block_group->sectorsize * 4)
1290 		return 0;
1291 
1292 	/*
1293 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1294 	 * don't even bother to create a bitmap for this
1295 	 */
1296 	if (BITS_PER_BITMAP * block_group->sectorsize >
1297 	    block_group->key.offset)
1298 		return 0;
1299 
1300 	bytes = info->bytes;
1301 	offset = info->offset;
1302 
1303 again:
1304 	bitmap_info = tree_search_offset(block_group,
1305 					 offset_to_bitmap(block_group, offset),
1306 					 1, 0);
1307 	if (!bitmap_info) {
1308 		BUG_ON(added);
1309 		goto new_bitmap;
1310 	}
1311 
1312 	end = bitmap_info->offset +
1313 		(u64)(BITS_PER_BITMAP * block_group->sectorsize);
1314 
1315 	if (offset >= bitmap_info->offset && offset + bytes > end) {
1316 		bitmap_set_bits(block_group, bitmap_info, offset,
1317 				end - offset);
1318 		bytes -= end - offset;
1319 		offset = end;
1320 		added = 0;
1321 	} else if (offset >= bitmap_info->offset && offset + bytes <= end) {
1322 		bitmap_set_bits(block_group, bitmap_info, offset, bytes);
1323 		bytes = 0;
1324 	} else {
1325 		BUG();
1326 	}
1327 
1328 	if (!bytes) {
1329 		ret = 1;
1330 		goto out;
1331 	} else
1332 		goto again;
1333 
1334 new_bitmap:
1335 	if (info && info->bitmap) {
1336 		add_new_bitmap(block_group, info, offset);
1337 		added = 1;
1338 		info = NULL;
1339 		goto again;
1340 	} else {
1341 		spin_unlock(&block_group->tree_lock);
1342 
1343 		/* no pre-allocated info, allocate a new one */
1344 		if (!info) {
1345 			info = kzalloc(sizeof(struct btrfs_free_space),
1346 				       GFP_NOFS);
1347 			if (!info) {
1348 				spin_lock(&block_group->tree_lock);
1349 				ret = -ENOMEM;
1350 				goto out;
1351 			}
1352 		}
1353 
1354 		/* allocate the bitmap */
1355 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1356 		spin_lock(&block_group->tree_lock);
1357 		if (!info->bitmap) {
1358 			ret = -ENOMEM;
1359 			goto out;
1360 		}
1361 		goto again;
1362 	}
1363 
1364 out:
1365 	if (info) {
1366 		if (info->bitmap)
1367 			kfree(info->bitmap);
1368 		kfree(info);
1369 	}
1370 
1371 	return ret;
1372 }
1373 
1374 bool try_merge_free_space(struct btrfs_block_group_cache *block_group,
1375 			  struct btrfs_free_space *info, bool update_stat)
1376 {
1377 	struct btrfs_free_space *left_info;
1378 	struct btrfs_free_space *right_info;
1379 	bool merged = false;
1380 	u64 offset = info->offset;
1381 	u64 bytes = info->bytes;
1382 
1383 	/*
1384 	 * first we want to see if there is free space adjacent to the range we
1385 	 * are adding, if there is remove that struct and add a new one to
1386 	 * cover the entire range
1387 	 */
1388 	right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
1389 	if (right_info && rb_prev(&right_info->offset_index))
1390 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1391 				     struct btrfs_free_space, offset_index);
1392 	else
1393 		left_info = tree_search_offset(block_group, offset - 1, 0, 0);
1394 
1395 	if (right_info && !right_info->bitmap) {
1396 		if (update_stat)
1397 			unlink_free_space(block_group, right_info);
1398 		else
1399 			__unlink_free_space(block_group, right_info);
1400 		info->bytes += right_info->bytes;
1401 		kfree(right_info);
1402 		merged = true;
1403 	}
1404 
1405 	if (left_info && !left_info->bitmap &&
1406 	    left_info->offset + left_info->bytes == offset) {
1407 		if (update_stat)
1408 			unlink_free_space(block_group, left_info);
1409 		else
1410 			__unlink_free_space(block_group, left_info);
1411 		info->offset = left_info->offset;
1412 		info->bytes += left_info->bytes;
1413 		kfree(left_info);
1414 		merged = true;
1415 	}
1416 
1417 	return merged;
1418 }
1419 
1420 int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
1421 			 u64 offset, u64 bytes)
1422 {
1423 	struct btrfs_free_space *info;
1424 	int ret = 0;
1425 
1426 	info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
1427 	if (!info)
1428 		return -ENOMEM;
1429 
1430 	info->offset = offset;
1431 	info->bytes = bytes;
1432 
1433 	spin_lock(&block_group->tree_lock);
1434 
1435 	if (try_merge_free_space(block_group, info, true))
1436 		goto link;
1437 
1438 	/*
1439 	 * There was no extent directly to the left or right of this new
1440 	 * extent then we know we're going to have to allocate a new extent, so
1441 	 * before we do that see if we need to drop this into a bitmap
1442 	 */
1443 	ret = insert_into_bitmap(block_group, info);
1444 	if (ret < 0) {
1445 		goto out;
1446 	} else if (ret) {
1447 		ret = 0;
1448 		goto out;
1449 	}
1450 link:
1451 	ret = link_free_space(block_group, info);
1452 	if (ret)
1453 		kfree(info);
1454 out:
1455 	spin_unlock(&block_group->tree_lock);
1456 
1457 	if (ret) {
1458 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1459 		BUG_ON(ret == -EEXIST);
1460 	}
1461 
1462 	return ret;
1463 }
1464 
1465 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1466 			    u64 offset, u64 bytes)
1467 {
1468 	struct btrfs_free_space *info;
1469 	struct btrfs_free_space *next_info = NULL;
1470 	int ret = 0;
1471 
1472 	spin_lock(&block_group->tree_lock);
1473 
1474 again:
1475 	info = tree_search_offset(block_group, offset, 0, 0);
1476 	if (!info) {
1477 		/*
1478 		 * oops didn't find an extent that matched the space we wanted
1479 		 * to remove, look for a bitmap instead
1480 		 */
1481 		info = tree_search_offset(block_group,
1482 					  offset_to_bitmap(block_group, offset),
1483 					  1, 0);
1484 		if (!info) {
1485 			WARN_ON(1);
1486 			goto out_lock;
1487 		}
1488 	}
1489 
1490 	if (info->bytes < bytes && rb_next(&info->offset_index)) {
1491 		u64 end;
1492 		next_info = rb_entry(rb_next(&info->offset_index),
1493 					     struct btrfs_free_space,
1494 					     offset_index);
1495 
1496 		if (next_info->bitmap)
1497 			end = next_info->offset + BITS_PER_BITMAP *
1498 				block_group->sectorsize - 1;
1499 		else
1500 			end = next_info->offset + next_info->bytes;
1501 
1502 		if (next_info->bytes < bytes ||
1503 		    next_info->offset > offset || offset > end) {
1504 			printk(KERN_CRIT "Found free space at %llu, size %llu,"
1505 			      " trying to use %llu\n",
1506 			      (unsigned long long)info->offset,
1507 			      (unsigned long long)info->bytes,
1508 			      (unsigned long long)bytes);
1509 			WARN_ON(1);
1510 			ret = -EINVAL;
1511 			goto out_lock;
1512 		}
1513 
1514 		info = next_info;
1515 	}
1516 
1517 	if (info->bytes == bytes) {
1518 		unlink_free_space(block_group, info);
1519 		if (info->bitmap) {
1520 			kfree(info->bitmap);
1521 			block_group->total_bitmaps--;
1522 		}
1523 		kfree(info);
1524 		goto out_lock;
1525 	}
1526 
1527 	if (!info->bitmap && info->offset == offset) {
1528 		unlink_free_space(block_group, info);
1529 		info->offset += bytes;
1530 		info->bytes -= bytes;
1531 		link_free_space(block_group, info);
1532 		goto out_lock;
1533 	}
1534 
1535 	if (!info->bitmap && info->offset <= offset &&
1536 	    info->offset + info->bytes >= offset + bytes) {
1537 		u64 old_start = info->offset;
1538 		/*
1539 		 * we're freeing space in the middle of the info,
1540 		 * this can happen during tree log replay
1541 		 *
1542 		 * first unlink the old info and then
1543 		 * insert it again after the hole we're creating
1544 		 */
1545 		unlink_free_space(block_group, info);
1546 		if (offset + bytes < info->offset + info->bytes) {
1547 			u64 old_end = info->offset + info->bytes;
1548 
1549 			info->offset = offset + bytes;
1550 			info->bytes = old_end - info->offset;
1551 			ret = link_free_space(block_group, info);
1552 			WARN_ON(ret);
1553 			if (ret)
1554 				goto out_lock;
1555 		} else {
1556 			/* the hole we're creating ends at the end
1557 			 * of the info struct, just free the info
1558 			 */
1559 			kfree(info);
1560 		}
1561 		spin_unlock(&block_group->tree_lock);
1562 
1563 		/* step two, insert a new info struct to cover
1564 		 * anything before the hole
1565 		 */
1566 		ret = btrfs_add_free_space(block_group, old_start,
1567 					   offset - old_start);
1568 		WARN_ON(ret);
1569 		goto out;
1570 	}
1571 
1572 	ret = remove_from_bitmap(block_group, info, &offset, &bytes);
1573 	if (ret == -EAGAIN)
1574 		goto again;
1575 	BUG_ON(ret);
1576 out_lock:
1577 	spin_unlock(&block_group->tree_lock);
1578 out:
1579 	return ret;
1580 }
1581 
1582 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1583 			   u64 bytes)
1584 {
1585 	struct btrfs_free_space *info;
1586 	struct rb_node *n;
1587 	int count = 0;
1588 
1589 	for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
1590 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1591 		if (info->bytes >= bytes)
1592 			count++;
1593 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1594 		       (unsigned long long)info->offset,
1595 		       (unsigned long long)info->bytes,
1596 		       (info->bitmap) ? "yes" : "no");
1597 	}
1598 	printk(KERN_INFO "block group has cluster?: %s\n",
1599 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1600 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1601 	       "\n", count);
1602 }
1603 
1604 u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
1605 {
1606 	struct btrfs_free_space *info;
1607 	struct rb_node *n;
1608 	u64 ret = 0;
1609 
1610 	for (n = rb_first(&block_group->free_space_offset); n;
1611 	     n = rb_next(n)) {
1612 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1613 		ret += info->bytes;
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 /*
1620  * for a given cluster, put all of its extents back into the free
1621  * space cache.  If the block group passed doesn't match the block group
1622  * pointed to by the cluster, someone else raced in and freed the
1623  * cluster already.  In that case, we just return without changing anything
1624  */
1625 static int
1626 __btrfs_return_cluster_to_free_space(
1627 			     struct btrfs_block_group_cache *block_group,
1628 			     struct btrfs_free_cluster *cluster)
1629 {
1630 	struct btrfs_free_space *entry;
1631 	struct rb_node *node;
1632 	bool bitmap;
1633 
1634 	spin_lock(&cluster->lock);
1635 	if (cluster->block_group != block_group)
1636 		goto out;
1637 
1638 	bitmap = cluster->points_to_bitmap;
1639 	cluster->block_group = NULL;
1640 	cluster->window_start = 0;
1641 	list_del_init(&cluster->block_group_list);
1642 	cluster->points_to_bitmap = false;
1643 
1644 	if (bitmap)
1645 		goto out;
1646 
1647 	node = rb_first(&cluster->root);
1648 	while (node) {
1649 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1650 		node = rb_next(&entry->offset_index);
1651 		rb_erase(&entry->offset_index, &cluster->root);
1652 		BUG_ON(entry->bitmap);
1653 		try_merge_free_space(block_group, entry, false);
1654 		tree_insert_offset(&block_group->free_space_offset,
1655 				   entry->offset, &entry->offset_index, 0);
1656 	}
1657 	cluster->root = RB_ROOT;
1658 
1659 out:
1660 	spin_unlock(&cluster->lock);
1661 	btrfs_put_block_group(block_group);
1662 	return 0;
1663 }
1664 
1665 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1666 {
1667 	struct btrfs_free_space *info;
1668 	struct rb_node *node;
1669 	struct btrfs_free_cluster *cluster;
1670 	struct list_head *head;
1671 
1672 	spin_lock(&block_group->tree_lock);
1673 	while ((head = block_group->cluster_list.next) !=
1674 	       &block_group->cluster_list) {
1675 		cluster = list_entry(head, struct btrfs_free_cluster,
1676 				     block_group_list);
1677 
1678 		WARN_ON(cluster->block_group != block_group);
1679 		__btrfs_return_cluster_to_free_space(block_group, cluster);
1680 		if (need_resched()) {
1681 			spin_unlock(&block_group->tree_lock);
1682 			cond_resched();
1683 			spin_lock(&block_group->tree_lock);
1684 		}
1685 	}
1686 
1687 	while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
1688 		info = rb_entry(node, struct btrfs_free_space, offset_index);
1689 		unlink_free_space(block_group, info);
1690 		if (info->bitmap)
1691 			kfree(info->bitmap);
1692 		kfree(info);
1693 		if (need_resched()) {
1694 			spin_unlock(&block_group->tree_lock);
1695 			cond_resched();
1696 			spin_lock(&block_group->tree_lock);
1697 		}
1698 	}
1699 
1700 	spin_unlock(&block_group->tree_lock);
1701 }
1702 
1703 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1704 			       u64 offset, u64 bytes, u64 empty_size)
1705 {
1706 	struct btrfs_free_space *entry = NULL;
1707 	u64 bytes_search = bytes + empty_size;
1708 	u64 ret = 0;
1709 
1710 	spin_lock(&block_group->tree_lock);
1711 	entry = find_free_space(block_group, &offset, &bytes_search, 0);
1712 	if (!entry)
1713 		goto out;
1714 
1715 	ret = offset;
1716 	if (entry->bitmap) {
1717 		bitmap_clear_bits(block_group, entry, offset, bytes);
1718 		if (!entry->bytes)
1719 			free_bitmap(block_group, entry);
1720 	} else {
1721 		unlink_free_space(block_group, entry);
1722 		entry->offset += bytes;
1723 		entry->bytes -= bytes;
1724 		if (!entry->bytes)
1725 			kfree(entry);
1726 		else
1727 			link_free_space(block_group, entry);
1728 	}
1729 
1730 out:
1731 	spin_unlock(&block_group->tree_lock);
1732 
1733 	return ret;
1734 }
1735 
1736 /*
1737  * given a cluster, put all of its extents back into the free space
1738  * cache.  If a block group is passed, this function will only free
1739  * a cluster that belongs to the passed block group.
1740  *
1741  * Otherwise, it'll get a reference on the block group pointed to by the
1742  * cluster and remove the cluster from it.
1743  */
1744 int btrfs_return_cluster_to_free_space(
1745 			       struct btrfs_block_group_cache *block_group,
1746 			       struct btrfs_free_cluster *cluster)
1747 {
1748 	int ret;
1749 
1750 	/* first, get a safe pointer to the block group */
1751 	spin_lock(&cluster->lock);
1752 	if (!block_group) {
1753 		block_group = cluster->block_group;
1754 		if (!block_group) {
1755 			spin_unlock(&cluster->lock);
1756 			return 0;
1757 		}
1758 	} else if (cluster->block_group != block_group) {
1759 		/* someone else has already freed it don't redo their work */
1760 		spin_unlock(&cluster->lock);
1761 		return 0;
1762 	}
1763 	atomic_inc(&block_group->count);
1764 	spin_unlock(&cluster->lock);
1765 
1766 	/* now return any extents the cluster had on it */
1767 	spin_lock(&block_group->tree_lock);
1768 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
1769 	spin_unlock(&block_group->tree_lock);
1770 
1771 	/* finally drop our ref */
1772 	btrfs_put_block_group(block_group);
1773 	return ret;
1774 }
1775 
1776 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
1777 				   struct btrfs_free_cluster *cluster,
1778 				   u64 bytes, u64 min_start)
1779 {
1780 	struct btrfs_free_space *entry;
1781 	int err;
1782 	u64 search_start = cluster->window_start;
1783 	u64 search_bytes = bytes;
1784 	u64 ret = 0;
1785 
1786 	spin_lock(&block_group->tree_lock);
1787 	spin_lock(&cluster->lock);
1788 
1789 	if (!cluster->points_to_bitmap)
1790 		goto out;
1791 
1792 	if (cluster->block_group != block_group)
1793 		goto out;
1794 
1795 	/*
1796 	 * search_start is the beginning of the bitmap, but at some point it may
1797 	 * be a good idea to point to the actual start of the free area in the
1798 	 * bitmap, so do the offset_to_bitmap trick anyway, and set bitmap_only
1799 	 * to 1 to make sure we get the bitmap entry
1800 	 */
1801 	entry = tree_search_offset(block_group,
1802 				   offset_to_bitmap(block_group, search_start),
1803 				   1, 0);
1804 	if (!entry || !entry->bitmap)
1805 		goto out;
1806 
1807 	search_start = min_start;
1808 	search_bytes = bytes;
1809 
1810 	err = search_bitmap(block_group, entry, &search_start,
1811 			    &search_bytes);
1812 	if (err)
1813 		goto out;
1814 
1815 	ret = search_start;
1816 	bitmap_clear_bits(block_group, entry, ret, bytes);
1817 	if (entry->bytes == 0)
1818 		free_bitmap(block_group, entry);
1819 out:
1820 	spin_unlock(&cluster->lock);
1821 	spin_unlock(&block_group->tree_lock);
1822 
1823 	return ret;
1824 }
1825 
1826 /*
1827  * given a cluster, try to allocate 'bytes' from it, returns 0
1828  * if it couldn't find anything suitably large, or a logical disk offset
1829  * if things worked out
1830  */
1831 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
1832 			     struct btrfs_free_cluster *cluster, u64 bytes,
1833 			     u64 min_start)
1834 {
1835 	struct btrfs_free_space *entry = NULL;
1836 	struct rb_node *node;
1837 	u64 ret = 0;
1838 
1839 	if (cluster->points_to_bitmap)
1840 		return btrfs_alloc_from_bitmap(block_group, cluster, bytes,
1841 					       min_start);
1842 
1843 	spin_lock(&cluster->lock);
1844 	if (bytes > cluster->max_size)
1845 		goto out;
1846 
1847 	if (cluster->block_group != block_group)
1848 		goto out;
1849 
1850 	node = rb_first(&cluster->root);
1851 	if (!node)
1852 		goto out;
1853 
1854 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
1855 
1856 	while(1) {
1857 		if (entry->bytes < bytes || entry->offset < min_start) {
1858 			struct rb_node *node;
1859 
1860 			node = rb_next(&entry->offset_index);
1861 			if (!node)
1862 				break;
1863 			entry = rb_entry(node, struct btrfs_free_space,
1864 					 offset_index);
1865 			continue;
1866 		}
1867 		ret = entry->offset;
1868 
1869 		entry->offset += bytes;
1870 		entry->bytes -= bytes;
1871 
1872 		if (entry->bytes == 0)
1873 			rb_erase(&entry->offset_index, &cluster->root);
1874 		break;
1875 	}
1876 out:
1877 	spin_unlock(&cluster->lock);
1878 
1879 	if (!ret)
1880 		return 0;
1881 
1882 	spin_lock(&block_group->tree_lock);
1883 
1884 	block_group->free_space -= bytes;
1885 	if (entry->bytes == 0) {
1886 		block_group->free_extents--;
1887 		kfree(entry);
1888 	}
1889 
1890 	spin_unlock(&block_group->tree_lock);
1891 
1892 	return ret;
1893 }
1894 
1895 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
1896 				struct btrfs_free_space *entry,
1897 				struct btrfs_free_cluster *cluster,
1898 				u64 offset, u64 bytes, u64 min_bytes)
1899 {
1900 	unsigned long next_zero;
1901 	unsigned long i;
1902 	unsigned long search_bits;
1903 	unsigned long total_bits;
1904 	unsigned long found_bits;
1905 	unsigned long start = 0;
1906 	unsigned long total_found = 0;
1907 	bool found = false;
1908 
1909 	i = offset_to_bit(entry->offset, block_group->sectorsize,
1910 			  max_t(u64, offset, entry->offset));
1911 	search_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
1912 	total_bits = bytes_to_bits(bytes, block_group->sectorsize);
1913 
1914 again:
1915 	found_bits = 0;
1916 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
1917 	     i < BITS_PER_BITMAP;
1918 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
1919 		next_zero = find_next_zero_bit(entry->bitmap,
1920 					       BITS_PER_BITMAP, i);
1921 		if (next_zero - i >= search_bits) {
1922 			found_bits = next_zero - i;
1923 			break;
1924 		}
1925 		i = next_zero;
1926 	}
1927 
1928 	if (!found_bits)
1929 		return -1;
1930 
1931 	if (!found) {
1932 		start = i;
1933 		found = true;
1934 	}
1935 
1936 	total_found += found_bits;
1937 
1938 	if (cluster->max_size < found_bits * block_group->sectorsize)
1939 		cluster->max_size = found_bits * block_group->sectorsize;
1940 
1941 	if (total_found < total_bits) {
1942 		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
1943 		if (i - start > total_bits * 2) {
1944 			total_found = 0;
1945 			cluster->max_size = 0;
1946 			found = false;
1947 		}
1948 		goto again;
1949 	}
1950 
1951 	cluster->window_start = start * block_group->sectorsize +
1952 		entry->offset;
1953 	cluster->points_to_bitmap = true;
1954 
1955 	return 0;
1956 }
1957 
1958 /*
1959  * here we try to find a cluster of blocks in a block group.  The goal
1960  * is to find at least bytes free and up to empty_size + bytes free.
1961  * We might not find them all in one contiguous area.
1962  *
1963  * returns zero and sets up cluster if things worked out, otherwise
1964  * it returns -enospc
1965  */
1966 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
1967 			     struct btrfs_root *root,
1968 			     struct btrfs_block_group_cache *block_group,
1969 			     struct btrfs_free_cluster *cluster,
1970 			     u64 offset, u64 bytes, u64 empty_size)
1971 {
1972 	struct btrfs_free_space *entry = NULL;
1973 	struct rb_node *node;
1974 	struct btrfs_free_space *next;
1975 	struct btrfs_free_space *last = NULL;
1976 	u64 min_bytes;
1977 	u64 window_start;
1978 	u64 window_free;
1979 	u64 max_extent = 0;
1980 	bool found_bitmap = false;
1981 	int ret;
1982 
1983 	/* for metadata, allow allocates with more holes */
1984 	if (btrfs_test_opt(root, SSD_SPREAD)) {
1985 		min_bytes = bytes + empty_size;
1986 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1987 		/*
1988 		 * we want to do larger allocations when we are
1989 		 * flushing out the delayed refs, it helps prevent
1990 		 * making more work as we go along.
1991 		 */
1992 		if (trans->transaction->delayed_refs.flushing)
1993 			min_bytes = max(bytes, (bytes + empty_size) >> 1);
1994 		else
1995 			min_bytes = max(bytes, (bytes + empty_size) >> 4);
1996 	} else
1997 		min_bytes = max(bytes, (bytes + empty_size) >> 2);
1998 
1999 	spin_lock(&block_group->tree_lock);
2000 	spin_lock(&cluster->lock);
2001 
2002 	/* someone already found a cluster, hooray */
2003 	if (cluster->block_group) {
2004 		ret = 0;
2005 		goto out;
2006 	}
2007 again:
2008 	entry = tree_search_offset(block_group, offset, found_bitmap, 1);
2009 	if (!entry) {
2010 		ret = -ENOSPC;
2011 		goto out;
2012 	}
2013 
2014 	/*
2015 	 * If found_bitmap is true, we exhausted our search for extent entries,
2016 	 * and we just want to search all of the bitmaps that we can find, and
2017 	 * ignore any extent entries we find.
2018 	 */
2019 	while (entry->bitmap || found_bitmap ||
2020 	       (!entry->bitmap && entry->bytes < min_bytes)) {
2021 		struct rb_node *node = rb_next(&entry->offset_index);
2022 
2023 		if (entry->bitmap && entry->bytes > bytes + empty_size) {
2024 			ret = btrfs_bitmap_cluster(block_group, entry, cluster,
2025 						   offset, bytes + empty_size,
2026 						   min_bytes);
2027 			if (!ret)
2028 				goto got_it;
2029 		}
2030 
2031 		if (!node) {
2032 			ret = -ENOSPC;
2033 			goto out;
2034 		}
2035 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2036 	}
2037 
2038 	/*
2039 	 * We already searched all the extent entries from the passed in offset
2040 	 * to the end and didn't find enough space for the cluster, and we also
2041 	 * didn't find any bitmaps that met our criteria, just go ahead and exit
2042 	 */
2043 	if (found_bitmap) {
2044 		ret = -ENOSPC;
2045 		goto out;
2046 	}
2047 
2048 	cluster->points_to_bitmap = false;
2049 	window_start = entry->offset;
2050 	window_free = entry->bytes;
2051 	last = entry;
2052 	max_extent = entry->bytes;
2053 
2054 	while (1) {
2055 		/* out window is just right, lets fill it */
2056 		if (window_free >= bytes + empty_size)
2057 			break;
2058 
2059 		node = rb_next(&last->offset_index);
2060 		if (!node) {
2061 			if (found_bitmap)
2062 				goto again;
2063 			ret = -ENOSPC;
2064 			goto out;
2065 		}
2066 		next = rb_entry(node, struct btrfs_free_space, offset_index);
2067 
2068 		/*
2069 		 * we found a bitmap, so if this search doesn't result in a
2070 		 * cluster, we know to go and search again for the bitmaps and
2071 		 * start looking for space there
2072 		 */
2073 		if (next->bitmap) {
2074 			if (!found_bitmap)
2075 				offset = next->offset;
2076 			found_bitmap = true;
2077 			last = next;
2078 			continue;
2079 		}
2080 
2081 		/*
2082 		 * we haven't filled the empty size and the window is
2083 		 * very large.  reset and try again
2084 		 */
2085 		if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
2086 		    next->offset - window_start > (bytes + empty_size) * 2) {
2087 			entry = next;
2088 			window_start = entry->offset;
2089 			window_free = entry->bytes;
2090 			last = entry;
2091 			max_extent = entry->bytes;
2092 		} else {
2093 			last = next;
2094 			window_free += next->bytes;
2095 			if (entry->bytes > max_extent)
2096 				max_extent = entry->bytes;
2097 		}
2098 	}
2099 
2100 	cluster->window_start = entry->offset;
2101 
2102 	/*
2103 	 * now we've found our entries, pull them out of the free space
2104 	 * cache and put them into the cluster rbtree
2105 	 *
2106 	 * The cluster includes an rbtree, but only uses the offset index
2107 	 * of each free space cache entry.
2108 	 */
2109 	while (1) {
2110 		node = rb_next(&entry->offset_index);
2111 		if (entry->bitmap && node) {
2112 			entry = rb_entry(node, struct btrfs_free_space,
2113 					 offset_index);
2114 			continue;
2115 		} else if (entry->bitmap && !node) {
2116 			break;
2117 		}
2118 
2119 		rb_erase(&entry->offset_index, &block_group->free_space_offset);
2120 		ret = tree_insert_offset(&cluster->root, entry->offset,
2121 					 &entry->offset_index, 0);
2122 		BUG_ON(ret);
2123 
2124 		if (!node || entry == last)
2125 			break;
2126 
2127 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2128 	}
2129 
2130 	cluster->max_size = max_extent;
2131 got_it:
2132 	ret = 0;
2133 	atomic_inc(&block_group->count);
2134 	list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
2135 	cluster->block_group = block_group;
2136 out:
2137 	spin_unlock(&cluster->lock);
2138 	spin_unlock(&block_group->tree_lock);
2139 
2140 	return ret;
2141 }
2142 
2143 /*
2144  * simple code to zero out a cluster
2145  */
2146 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2147 {
2148 	spin_lock_init(&cluster->lock);
2149 	spin_lock_init(&cluster->refill_lock);
2150 	cluster->root = RB_ROOT;
2151 	cluster->max_size = 0;
2152 	cluster->points_to_bitmap = false;
2153 	INIT_LIST_HEAD(&cluster->block_group_list);
2154 	cluster->block_group = NULL;
2155 }
2156 
2157