xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 #include "discard.h"
25 
26 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
28 #define FORCE_EXTENT_THRESHOLD	SZ_1M
29 
30 struct btrfs_trim_range {
31 	u64 start;
32 	u64 bytes;
33 	struct list_head list;
34 };
35 
36 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
37 				struct btrfs_free_space *bitmap_info);
38 static int link_free_space(struct btrfs_free_space_ctl *ctl,
39 			   struct btrfs_free_space *info);
40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
41 			      struct btrfs_free_space *info);
42 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
43 			     struct btrfs_trans_handle *trans,
44 			     struct btrfs_io_ctl *io_ctl,
45 			     struct btrfs_path *path);
46 
47 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
48 					       struct btrfs_path *path,
49 					       u64 offset)
50 {
51 	struct btrfs_fs_info *fs_info = root->fs_info;
52 	struct btrfs_key key;
53 	struct btrfs_key location;
54 	struct btrfs_disk_key disk_key;
55 	struct btrfs_free_space_header *header;
56 	struct extent_buffer *leaf;
57 	struct inode *inode = NULL;
58 	unsigned nofs_flag;
59 	int ret;
60 
61 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62 	key.offset = offset;
63 	key.type = 0;
64 
65 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66 	if (ret < 0)
67 		return ERR_PTR(ret);
68 	if (ret > 0) {
69 		btrfs_release_path(path);
70 		return ERR_PTR(-ENOENT);
71 	}
72 
73 	leaf = path->nodes[0];
74 	header = btrfs_item_ptr(leaf, path->slots[0],
75 				struct btrfs_free_space_header);
76 	btrfs_free_space_key(leaf, header, &disk_key);
77 	btrfs_disk_key_to_cpu(&location, &disk_key);
78 	btrfs_release_path(path);
79 
80 	/*
81 	 * We are often under a trans handle at this point, so we need to make
82 	 * sure NOFS is set to keep us from deadlocking.
83 	 */
84 	nofs_flag = memalloc_nofs_save();
85 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
86 	btrfs_release_path(path);
87 	memalloc_nofs_restore(nofs_flag);
88 	if (IS_ERR(inode))
89 		return inode;
90 
91 	mapping_set_gfp_mask(inode->i_mapping,
92 			mapping_gfp_constraint(inode->i_mapping,
93 			~(__GFP_FS | __GFP_HIGHMEM)));
94 
95 	return inode;
96 }
97 
98 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
99 		struct btrfs_path *path)
100 {
101 	struct btrfs_fs_info *fs_info = block_group->fs_info;
102 	struct inode *inode = NULL;
103 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 
105 	spin_lock(&block_group->lock);
106 	if (block_group->inode)
107 		inode = igrab(block_group->inode);
108 	spin_unlock(&block_group->lock);
109 	if (inode)
110 		return inode;
111 
112 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113 					  block_group->start);
114 	if (IS_ERR(inode))
115 		return inode;
116 
117 	spin_lock(&block_group->lock);
118 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119 		btrfs_info(fs_info, "Old style space inode found, converting.");
120 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
121 			BTRFS_INODE_NODATACOW;
122 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
123 	}
124 
125 	if (!block_group->iref) {
126 		block_group->inode = igrab(inode);
127 		block_group->iref = 1;
128 	}
129 	spin_unlock(&block_group->lock);
130 
131 	return inode;
132 }
133 
134 static int __create_free_space_inode(struct btrfs_root *root,
135 				     struct btrfs_trans_handle *trans,
136 				     struct btrfs_path *path,
137 				     u64 ino, u64 offset)
138 {
139 	struct btrfs_key key;
140 	struct btrfs_disk_key disk_key;
141 	struct btrfs_free_space_header *header;
142 	struct btrfs_inode_item *inode_item;
143 	struct extent_buffer *leaf;
144 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 	int ret;
146 
147 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 	if (ret)
149 		return ret;
150 
151 	/* We inline crc's for the free disk space cache */
152 	if (ino != BTRFS_FREE_INO_OBJECTID)
153 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
154 
155 	leaf = path->nodes[0];
156 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 				    struct btrfs_inode_item);
158 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 			     sizeof(*inode_item));
161 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 	btrfs_set_inode_size(leaf, inode_item, 0);
163 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 	btrfs_set_inode_uid(leaf, inode_item, 0);
165 	btrfs_set_inode_gid(leaf, inode_item, 0);
166 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167 	btrfs_set_inode_flags(leaf, inode_item, flags);
168 	btrfs_set_inode_nlink(leaf, inode_item, 1);
169 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170 	btrfs_set_inode_block_group(leaf, inode_item, offset);
171 	btrfs_mark_buffer_dirty(leaf);
172 	btrfs_release_path(path);
173 
174 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175 	key.offset = offset;
176 	key.type = 0;
177 	ret = btrfs_insert_empty_item(trans, root, path, &key,
178 				      sizeof(struct btrfs_free_space_header));
179 	if (ret < 0) {
180 		btrfs_release_path(path);
181 		return ret;
182 	}
183 
184 	leaf = path->nodes[0];
185 	header = btrfs_item_ptr(leaf, path->slots[0],
186 				struct btrfs_free_space_header);
187 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 	btrfs_set_free_space_key(leaf, header, &disk_key);
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_release_path(path);
191 
192 	return 0;
193 }
194 
195 int create_free_space_inode(struct btrfs_trans_handle *trans,
196 			    struct btrfs_block_group *block_group,
197 			    struct btrfs_path *path)
198 {
199 	int ret;
200 	u64 ino;
201 
202 	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
203 	if (ret < 0)
204 		return ret;
205 
206 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207 					 ino, block_group->start);
208 }
209 
210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211 				       struct btrfs_block_rsv *rsv)
212 {
213 	u64 needed_bytes;
214 	int ret;
215 
216 	/* 1 for slack space, 1 for updating the inode */
217 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
218 		btrfs_calc_metadata_size(fs_info, 1);
219 
220 	spin_lock(&rsv->lock);
221 	if (rsv->reserved < needed_bytes)
222 		ret = -ENOSPC;
223 	else
224 		ret = 0;
225 	spin_unlock(&rsv->lock);
226 	return ret;
227 }
228 
229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230 				    struct btrfs_block_group *block_group,
231 				    struct inode *inode)
232 {
233 	struct btrfs_root *root = BTRFS_I(inode)->root;
234 	int ret = 0;
235 	bool locked = false;
236 
237 	if (block_group) {
238 		struct btrfs_path *path = btrfs_alloc_path();
239 
240 		if (!path) {
241 			ret = -ENOMEM;
242 			goto fail;
243 		}
244 		locked = true;
245 		mutex_lock(&trans->transaction->cache_write_mutex);
246 		if (!list_empty(&block_group->io_list)) {
247 			list_del_init(&block_group->io_list);
248 
249 			btrfs_wait_cache_io(trans, block_group, path);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 		btrfs_free_path(path);
261 	}
262 
263 	btrfs_i_size_write(BTRFS_I(inode), 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We skip the throttling logic for free space cache inodes, so we don't
268 	 * need to check for -EAGAIN.
269 	 */
270 	ret = btrfs_truncate_inode_items(trans, root, inode,
271 					 0, BTRFS_EXTENT_DATA_KEY);
272 	if (ret)
273 		goto fail;
274 
275 	ret = btrfs_update_inode(trans, root, inode);
276 
277 fail:
278 	if (locked)
279 		mutex_unlock(&trans->transaction->cache_write_mutex);
280 	if (ret)
281 		btrfs_abort_transaction(trans, ret);
282 
283 	return ret;
284 }
285 
286 static void readahead_cache(struct inode *inode)
287 {
288 	struct file_ra_state *ra;
289 	unsigned long last_index;
290 
291 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
292 	if (!ra)
293 		return;
294 
295 	file_ra_state_init(ra, inode->i_mapping);
296 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
297 
298 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
299 
300 	kfree(ra);
301 }
302 
303 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
304 		       int write)
305 {
306 	int num_pages;
307 	int check_crcs = 0;
308 
309 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
310 
311 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
312 		check_crcs = 1;
313 
314 	/* Make sure we can fit our crcs and generation into the first page */
315 	if (write && check_crcs &&
316 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
317 		return -ENOSPC;
318 
319 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
320 
321 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
322 	if (!io_ctl->pages)
323 		return -ENOMEM;
324 
325 	io_ctl->num_pages = num_pages;
326 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
327 	io_ctl->check_crcs = check_crcs;
328 	io_ctl->inode = inode;
329 
330 	return 0;
331 }
332 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
333 
334 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
335 {
336 	kfree(io_ctl->pages);
337 	io_ctl->pages = NULL;
338 }
339 
340 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
341 {
342 	if (io_ctl->cur) {
343 		io_ctl->cur = NULL;
344 		io_ctl->orig = NULL;
345 	}
346 }
347 
348 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
349 {
350 	ASSERT(io_ctl->index < io_ctl->num_pages);
351 	io_ctl->page = io_ctl->pages[io_ctl->index++];
352 	io_ctl->cur = page_address(io_ctl->page);
353 	io_ctl->orig = io_ctl->cur;
354 	io_ctl->size = PAGE_SIZE;
355 	if (clear)
356 		clear_page(io_ctl->cur);
357 }
358 
359 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
360 {
361 	int i;
362 
363 	io_ctl_unmap_page(io_ctl);
364 
365 	for (i = 0; i < io_ctl->num_pages; i++) {
366 		if (io_ctl->pages[i]) {
367 			ClearPageChecked(io_ctl->pages[i]);
368 			unlock_page(io_ctl->pages[i]);
369 			put_page(io_ctl->pages[i]);
370 		}
371 	}
372 }
373 
374 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
375 {
376 	struct page *page;
377 	struct inode *inode = io_ctl->inode;
378 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
379 	int i;
380 
381 	for (i = 0; i < io_ctl->num_pages; i++) {
382 		page = find_or_create_page(inode->i_mapping, i, mask);
383 		if (!page) {
384 			io_ctl_drop_pages(io_ctl);
385 			return -ENOMEM;
386 		}
387 		io_ctl->pages[i] = page;
388 		if (uptodate && !PageUptodate(page)) {
389 			btrfs_readpage(NULL, page);
390 			lock_page(page);
391 			if (page->mapping != inode->i_mapping) {
392 				btrfs_err(BTRFS_I(inode)->root->fs_info,
393 					  "free space cache page truncated");
394 				io_ctl_drop_pages(io_ctl);
395 				return -EIO;
396 			}
397 			if (!PageUptodate(page)) {
398 				btrfs_err(BTRFS_I(inode)->root->fs_info,
399 					   "error reading free space cache");
400 				io_ctl_drop_pages(io_ctl);
401 				return -EIO;
402 			}
403 		}
404 	}
405 
406 	for (i = 0; i < io_ctl->num_pages; i++) {
407 		clear_page_dirty_for_io(io_ctl->pages[i]);
408 		set_page_extent_mapped(io_ctl->pages[i]);
409 	}
410 
411 	return 0;
412 }
413 
414 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
415 {
416 	__le64 *val;
417 
418 	io_ctl_map_page(io_ctl, 1);
419 
420 	/*
421 	 * Skip the csum areas.  If we don't check crcs then we just have a
422 	 * 64bit chunk at the front of the first page.
423 	 */
424 	if (io_ctl->check_crcs) {
425 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
426 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
427 	} else {
428 		io_ctl->cur += sizeof(u64);
429 		io_ctl->size -= sizeof(u64) * 2;
430 	}
431 
432 	val = io_ctl->cur;
433 	*val = cpu_to_le64(generation);
434 	io_ctl->cur += sizeof(u64);
435 }
436 
437 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
438 {
439 	__le64 *gen;
440 
441 	/*
442 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
443 	 * chunk at the front of the first page.
444 	 */
445 	if (io_ctl->check_crcs) {
446 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
447 		io_ctl->size -= sizeof(u64) +
448 			(sizeof(u32) * io_ctl->num_pages);
449 	} else {
450 		io_ctl->cur += sizeof(u64);
451 		io_ctl->size -= sizeof(u64) * 2;
452 	}
453 
454 	gen = io_ctl->cur;
455 	if (le64_to_cpu(*gen) != generation) {
456 		btrfs_err_rl(io_ctl->fs_info,
457 			"space cache generation (%llu) does not match inode (%llu)",
458 				*gen, generation);
459 		io_ctl_unmap_page(io_ctl);
460 		return -EIO;
461 	}
462 	io_ctl->cur += sizeof(u64);
463 	return 0;
464 }
465 
466 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
467 {
468 	u32 *tmp;
469 	u32 crc = ~(u32)0;
470 	unsigned offset = 0;
471 
472 	if (!io_ctl->check_crcs) {
473 		io_ctl_unmap_page(io_ctl);
474 		return;
475 	}
476 
477 	if (index == 0)
478 		offset = sizeof(u32) * io_ctl->num_pages;
479 
480 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
481 	btrfs_crc32c_final(crc, (u8 *)&crc);
482 	io_ctl_unmap_page(io_ctl);
483 	tmp = page_address(io_ctl->pages[0]);
484 	tmp += index;
485 	*tmp = crc;
486 }
487 
488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 {
490 	u32 *tmp, val;
491 	u32 crc = ~(u32)0;
492 	unsigned offset = 0;
493 
494 	if (!io_ctl->check_crcs) {
495 		io_ctl_map_page(io_ctl, 0);
496 		return 0;
497 	}
498 
499 	if (index == 0)
500 		offset = sizeof(u32) * io_ctl->num_pages;
501 
502 	tmp = page_address(io_ctl->pages[0]);
503 	tmp += index;
504 	val = *tmp;
505 
506 	io_ctl_map_page(io_ctl, 0);
507 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
508 	btrfs_crc32c_final(crc, (u8 *)&crc);
509 	if (val != crc) {
510 		btrfs_err_rl(io_ctl->fs_info,
511 			"csum mismatch on free space cache");
512 		io_ctl_unmap_page(io_ctl);
513 		return -EIO;
514 	}
515 
516 	return 0;
517 }
518 
519 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
520 			    void *bitmap)
521 {
522 	struct btrfs_free_space_entry *entry;
523 
524 	if (!io_ctl->cur)
525 		return -ENOSPC;
526 
527 	entry = io_ctl->cur;
528 	entry->offset = cpu_to_le64(offset);
529 	entry->bytes = cpu_to_le64(bytes);
530 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
531 		BTRFS_FREE_SPACE_EXTENT;
532 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
533 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
534 
535 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
536 		return 0;
537 
538 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 
540 	/* No more pages to map */
541 	if (io_ctl->index >= io_ctl->num_pages)
542 		return 0;
543 
544 	/* map the next page */
545 	io_ctl_map_page(io_ctl, 1);
546 	return 0;
547 }
548 
549 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
550 {
551 	if (!io_ctl->cur)
552 		return -ENOSPC;
553 
554 	/*
555 	 * If we aren't at the start of the current page, unmap this one and
556 	 * map the next one if there is any left.
557 	 */
558 	if (io_ctl->cur != io_ctl->orig) {
559 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
560 		if (io_ctl->index >= io_ctl->num_pages)
561 			return -ENOSPC;
562 		io_ctl_map_page(io_ctl, 0);
563 	}
564 
565 	copy_page(io_ctl->cur, bitmap);
566 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
567 	if (io_ctl->index < io_ctl->num_pages)
568 		io_ctl_map_page(io_ctl, 0);
569 	return 0;
570 }
571 
572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
573 {
574 	/*
575 	 * If we're not on the boundary we know we've modified the page and we
576 	 * need to crc the page.
577 	 */
578 	if (io_ctl->cur != io_ctl->orig)
579 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
580 	else
581 		io_ctl_unmap_page(io_ctl);
582 
583 	while (io_ctl->index < io_ctl->num_pages) {
584 		io_ctl_map_page(io_ctl, 1);
585 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
586 	}
587 }
588 
589 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
590 			    struct btrfs_free_space *entry, u8 *type)
591 {
592 	struct btrfs_free_space_entry *e;
593 	int ret;
594 
595 	if (!io_ctl->cur) {
596 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
597 		if (ret)
598 			return ret;
599 	}
600 
601 	e = io_ctl->cur;
602 	entry->offset = le64_to_cpu(e->offset);
603 	entry->bytes = le64_to_cpu(e->bytes);
604 	*type = e->type;
605 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
606 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
607 
608 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
609 		return 0;
610 
611 	io_ctl_unmap_page(io_ctl);
612 
613 	return 0;
614 }
615 
616 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
617 			      struct btrfs_free_space *entry)
618 {
619 	int ret;
620 
621 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
622 	if (ret)
623 		return ret;
624 
625 	copy_page(entry->bitmap, io_ctl->cur);
626 	io_ctl_unmap_page(io_ctl);
627 
628 	return 0;
629 }
630 
631 /*
632  * Since we attach pinned extents after the fact we can have contiguous sections
633  * of free space that are split up in entries.  This poses a problem with the
634  * tree logging stuff since it could have allocated across what appears to be 2
635  * entries since we would have merged the entries when adding the pinned extents
636  * back to the free space cache.  So run through the space cache that we just
637  * loaded and merge contiguous entries.  This will make the log replay stuff not
638  * blow up and it will make for nicer allocator behavior.
639  */
640 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
641 {
642 	struct btrfs_free_space *e, *prev = NULL;
643 	struct rb_node *n;
644 
645 again:
646 	spin_lock(&ctl->tree_lock);
647 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
648 		e = rb_entry(n, struct btrfs_free_space, offset_index);
649 		if (!prev)
650 			goto next;
651 		if (e->bitmap || prev->bitmap)
652 			goto next;
653 		if (prev->offset + prev->bytes == e->offset) {
654 			unlink_free_space(ctl, prev);
655 			unlink_free_space(ctl, e);
656 			prev->bytes += e->bytes;
657 			kmem_cache_free(btrfs_free_space_cachep, e);
658 			link_free_space(ctl, prev);
659 			prev = NULL;
660 			spin_unlock(&ctl->tree_lock);
661 			goto again;
662 		}
663 next:
664 		prev = e;
665 	}
666 	spin_unlock(&ctl->tree_lock);
667 }
668 
669 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
670 				   struct btrfs_free_space_ctl *ctl,
671 				   struct btrfs_path *path, u64 offset)
672 {
673 	struct btrfs_fs_info *fs_info = root->fs_info;
674 	struct btrfs_free_space_header *header;
675 	struct extent_buffer *leaf;
676 	struct btrfs_io_ctl io_ctl;
677 	struct btrfs_key key;
678 	struct btrfs_free_space *e, *n;
679 	LIST_HEAD(bitmaps);
680 	u64 num_entries;
681 	u64 num_bitmaps;
682 	u64 generation;
683 	u8 type;
684 	int ret = 0;
685 
686 	/* Nothing in the space cache, goodbye */
687 	if (!i_size_read(inode))
688 		return 0;
689 
690 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691 	key.offset = offset;
692 	key.type = 0;
693 
694 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695 	if (ret < 0)
696 		return 0;
697 	else if (ret > 0) {
698 		btrfs_release_path(path);
699 		return 0;
700 	}
701 
702 	ret = -1;
703 
704 	leaf = path->nodes[0];
705 	header = btrfs_item_ptr(leaf, path->slots[0],
706 				struct btrfs_free_space_header);
707 	num_entries = btrfs_free_space_entries(leaf, header);
708 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
709 	generation = btrfs_free_space_generation(leaf, header);
710 	btrfs_release_path(path);
711 
712 	if (!BTRFS_I(inode)->generation) {
713 		btrfs_info(fs_info,
714 			   "the free space cache file (%llu) is invalid, skip it",
715 			   offset);
716 		return 0;
717 	}
718 
719 	if (BTRFS_I(inode)->generation != generation) {
720 		btrfs_err(fs_info,
721 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
722 			  BTRFS_I(inode)->generation, generation);
723 		return 0;
724 	}
725 
726 	if (!num_entries)
727 		return 0;
728 
729 	ret = io_ctl_init(&io_ctl, inode, 0);
730 	if (ret)
731 		return ret;
732 
733 	readahead_cache(inode);
734 
735 	ret = io_ctl_prepare_pages(&io_ctl, true);
736 	if (ret)
737 		goto out;
738 
739 	ret = io_ctl_check_crc(&io_ctl, 0);
740 	if (ret)
741 		goto free_cache;
742 
743 	ret = io_ctl_check_generation(&io_ctl, generation);
744 	if (ret)
745 		goto free_cache;
746 
747 	while (num_entries) {
748 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
749 				      GFP_NOFS);
750 		if (!e)
751 			goto free_cache;
752 
753 		ret = io_ctl_read_entry(&io_ctl, e, &type);
754 		if (ret) {
755 			kmem_cache_free(btrfs_free_space_cachep, e);
756 			goto free_cache;
757 		}
758 
759 		/*
760 		 * Sync discard ensures that the free space cache is always
761 		 * trimmed.  So when reading this in, the state should reflect
762 		 * that.  We also do this for async as a stop gap for lack of
763 		 * persistence.
764 		 */
765 		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
766 		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
767 			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;
768 
769 		if (!e->bytes) {
770 			kmem_cache_free(btrfs_free_space_cachep, e);
771 			goto free_cache;
772 		}
773 
774 		if (type == BTRFS_FREE_SPACE_EXTENT) {
775 			spin_lock(&ctl->tree_lock);
776 			ret = link_free_space(ctl, e);
777 			spin_unlock(&ctl->tree_lock);
778 			if (ret) {
779 				btrfs_err(fs_info,
780 					"Duplicate entries in free space cache, dumping");
781 				kmem_cache_free(btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 		} else {
785 			ASSERT(num_bitmaps);
786 			num_bitmaps--;
787 			e->bitmap = kmem_cache_zalloc(
788 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
789 			if (!e->bitmap) {
790 				kmem_cache_free(
791 					btrfs_free_space_cachep, e);
792 				goto free_cache;
793 			}
794 			spin_lock(&ctl->tree_lock);
795 			ret = link_free_space(ctl, e);
796 			ctl->total_bitmaps++;
797 			ctl->op->recalc_thresholds(ctl);
798 			spin_unlock(&ctl->tree_lock);
799 			if (ret) {
800 				btrfs_err(fs_info,
801 					"Duplicate entries in free space cache, dumping");
802 				kmem_cache_free(btrfs_free_space_cachep, e);
803 				goto free_cache;
804 			}
805 			list_add_tail(&e->list, &bitmaps);
806 		}
807 
808 		num_entries--;
809 	}
810 
811 	io_ctl_unmap_page(&io_ctl);
812 
813 	/*
814 	 * We add the bitmaps at the end of the entries in order that
815 	 * the bitmap entries are added to the cache.
816 	 */
817 	list_for_each_entry_safe(e, n, &bitmaps, list) {
818 		list_del_init(&e->list);
819 		ret = io_ctl_read_bitmap(&io_ctl, e);
820 		if (ret)
821 			goto free_cache;
822 		e->bitmap_extents = count_bitmap_extents(ctl, e);
823 		if (!btrfs_free_space_trimmed(e)) {
824 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
825 				e->bitmap_extents;
826 			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
827 		}
828 	}
829 
830 	io_ctl_drop_pages(&io_ctl);
831 	merge_space_tree(ctl);
832 	ret = 1;
833 out:
834 	btrfs_discard_update_discardable(ctl->private, ctl);
835 	io_ctl_free(&io_ctl);
836 	return ret;
837 free_cache:
838 	io_ctl_drop_pages(&io_ctl);
839 	__btrfs_remove_free_space_cache(ctl);
840 	goto out;
841 }
842 
843 int load_free_space_cache(struct btrfs_block_group *block_group)
844 {
845 	struct btrfs_fs_info *fs_info = block_group->fs_info;
846 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
847 	struct inode *inode;
848 	struct btrfs_path *path;
849 	int ret = 0;
850 	bool matched;
851 	u64 used = block_group->used;
852 
853 	/*
854 	 * If this block group has been marked to be cleared for one reason or
855 	 * another then we can't trust the on disk cache, so just return.
856 	 */
857 	spin_lock(&block_group->lock);
858 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
859 		spin_unlock(&block_group->lock);
860 		return 0;
861 	}
862 	spin_unlock(&block_group->lock);
863 
864 	path = btrfs_alloc_path();
865 	if (!path)
866 		return 0;
867 	path->search_commit_root = 1;
868 	path->skip_locking = 1;
869 
870 	/*
871 	 * We must pass a path with search_commit_root set to btrfs_iget in
872 	 * order to avoid a deadlock when allocating extents for the tree root.
873 	 *
874 	 * When we are COWing an extent buffer from the tree root, when looking
875 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
876 	 * block group without its free space cache loaded. When we find one
877 	 * we must load its space cache which requires reading its free space
878 	 * cache's inode item from the root tree. If this inode item is located
879 	 * in the same leaf that we started COWing before, then we end up in
880 	 * deadlock on the extent buffer (trying to read lock it when we
881 	 * previously write locked it).
882 	 *
883 	 * It's safe to read the inode item using the commit root because
884 	 * block groups, once loaded, stay in memory forever (until they are
885 	 * removed) as well as their space caches once loaded. New block groups
886 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
887 	 * we will never try to read their inode item while the fs is mounted.
888 	 */
889 	inode = lookup_free_space_inode(block_group, path);
890 	if (IS_ERR(inode)) {
891 		btrfs_free_path(path);
892 		return 0;
893 	}
894 
895 	/* We may have converted the inode and made the cache invalid. */
896 	spin_lock(&block_group->lock);
897 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
898 		spin_unlock(&block_group->lock);
899 		btrfs_free_path(path);
900 		goto out;
901 	}
902 	spin_unlock(&block_group->lock);
903 
904 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
905 				      path, block_group->start);
906 	btrfs_free_path(path);
907 	if (ret <= 0)
908 		goto out;
909 
910 	spin_lock(&ctl->tree_lock);
911 	matched = (ctl->free_space == (block_group->length - used -
912 				       block_group->bytes_super));
913 	spin_unlock(&ctl->tree_lock);
914 
915 	if (!matched) {
916 		__btrfs_remove_free_space_cache(ctl);
917 		btrfs_warn(fs_info,
918 			   "block group %llu has wrong amount of free space",
919 			   block_group->start);
920 		ret = -1;
921 	}
922 out:
923 	if (ret < 0) {
924 		/* This cache is bogus, make sure it gets cleared */
925 		spin_lock(&block_group->lock);
926 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
927 		spin_unlock(&block_group->lock);
928 		ret = 0;
929 
930 		btrfs_warn(fs_info,
931 			   "failed to load free space cache for block group %llu, rebuilding it now",
932 			   block_group->start);
933 	}
934 
935 	iput(inode);
936 	return ret;
937 }
938 
939 static noinline_for_stack
940 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
941 			      struct btrfs_free_space_ctl *ctl,
942 			      struct btrfs_block_group *block_group,
943 			      int *entries, int *bitmaps,
944 			      struct list_head *bitmap_list)
945 {
946 	int ret;
947 	struct btrfs_free_cluster *cluster = NULL;
948 	struct btrfs_free_cluster *cluster_locked = NULL;
949 	struct rb_node *node = rb_first(&ctl->free_space_offset);
950 	struct btrfs_trim_range *trim_entry;
951 
952 	/* Get the cluster for this block_group if it exists */
953 	if (block_group && !list_empty(&block_group->cluster_list)) {
954 		cluster = list_entry(block_group->cluster_list.next,
955 				     struct btrfs_free_cluster,
956 				     block_group_list);
957 	}
958 
959 	if (!node && cluster) {
960 		cluster_locked = cluster;
961 		spin_lock(&cluster_locked->lock);
962 		node = rb_first(&cluster->root);
963 		cluster = NULL;
964 	}
965 
966 	/* Write out the extent entries */
967 	while (node) {
968 		struct btrfs_free_space *e;
969 
970 		e = rb_entry(node, struct btrfs_free_space, offset_index);
971 		*entries += 1;
972 
973 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
974 				       e->bitmap);
975 		if (ret)
976 			goto fail;
977 
978 		if (e->bitmap) {
979 			list_add_tail(&e->list, bitmap_list);
980 			*bitmaps += 1;
981 		}
982 		node = rb_next(node);
983 		if (!node && cluster) {
984 			node = rb_first(&cluster->root);
985 			cluster_locked = cluster;
986 			spin_lock(&cluster_locked->lock);
987 			cluster = NULL;
988 		}
989 	}
990 	if (cluster_locked) {
991 		spin_unlock(&cluster_locked->lock);
992 		cluster_locked = NULL;
993 	}
994 
995 	/*
996 	 * Make sure we don't miss any range that was removed from our rbtree
997 	 * because trimming is running. Otherwise after a umount+mount (or crash
998 	 * after committing the transaction) we would leak free space and get
999 	 * an inconsistent free space cache report from fsck.
1000 	 */
1001 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1002 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1003 				       trim_entry->bytes, NULL);
1004 		if (ret)
1005 			goto fail;
1006 		*entries += 1;
1007 	}
1008 
1009 	return 0;
1010 fail:
1011 	if (cluster_locked)
1012 		spin_unlock(&cluster_locked->lock);
1013 	return -ENOSPC;
1014 }
1015 
1016 static noinline_for_stack int
1017 update_cache_item(struct btrfs_trans_handle *trans,
1018 		  struct btrfs_root *root,
1019 		  struct inode *inode,
1020 		  struct btrfs_path *path, u64 offset,
1021 		  int entries, int bitmaps)
1022 {
1023 	struct btrfs_key key;
1024 	struct btrfs_free_space_header *header;
1025 	struct extent_buffer *leaf;
1026 	int ret;
1027 
1028 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1029 	key.offset = offset;
1030 	key.type = 0;
1031 
1032 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1033 	if (ret < 0) {
1034 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035 				 EXTENT_DELALLOC, 0, 0, NULL);
1036 		goto fail;
1037 	}
1038 	leaf = path->nodes[0];
1039 	if (ret > 0) {
1040 		struct btrfs_key found_key;
1041 		ASSERT(path->slots[0]);
1042 		path->slots[0]--;
1043 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1044 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1045 		    found_key.offset != offset) {
1046 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1048 					 0, NULL);
1049 			btrfs_release_path(path);
1050 			goto fail;
1051 		}
1052 	}
1053 
1054 	BTRFS_I(inode)->generation = trans->transid;
1055 	header = btrfs_item_ptr(leaf, path->slots[0],
1056 				struct btrfs_free_space_header);
1057 	btrfs_set_free_space_entries(leaf, header, entries);
1058 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1059 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1060 	btrfs_mark_buffer_dirty(leaf);
1061 	btrfs_release_path(path);
1062 
1063 	return 0;
1064 
1065 fail:
1066 	return -1;
1067 }
1068 
1069 static noinline_for_stack int write_pinned_extent_entries(
1070 			    struct btrfs_trans_handle *trans,
1071 			    struct btrfs_block_group *block_group,
1072 			    struct btrfs_io_ctl *io_ctl,
1073 			    int *entries)
1074 {
1075 	u64 start, extent_start, extent_end, len;
1076 	struct extent_io_tree *unpin = NULL;
1077 	int ret;
1078 
1079 	if (!block_group)
1080 		return 0;
1081 
1082 	/*
1083 	 * We want to add any pinned extents to our free space cache
1084 	 * so we don't leak the space
1085 	 *
1086 	 * We shouldn't have switched the pinned extents yet so this is the
1087 	 * right one
1088 	 */
1089 	unpin = &trans->transaction->pinned_extents;
1090 
1091 	start = block_group->start;
1092 
1093 	while (start < block_group->start + block_group->length) {
1094 		ret = find_first_extent_bit(unpin, start,
1095 					    &extent_start, &extent_end,
1096 					    EXTENT_DIRTY, NULL);
1097 		if (ret)
1098 			return 0;
1099 
1100 		/* This pinned extent is out of our range */
1101 		if (extent_start >= block_group->start + block_group->length)
1102 			return 0;
1103 
1104 		extent_start = max(extent_start, start);
1105 		extent_end = min(block_group->start + block_group->length,
1106 				 extent_end + 1);
1107 		len = extent_end - extent_start;
1108 
1109 		*entries += 1;
1110 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1111 		if (ret)
1112 			return -ENOSPC;
1113 
1114 		start = extent_end;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static noinline_for_stack int
1121 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1122 {
1123 	struct btrfs_free_space *entry, *next;
1124 	int ret;
1125 
1126 	/* Write out the bitmaps */
1127 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1128 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1129 		if (ret)
1130 			return -ENOSPC;
1131 		list_del_init(&entry->list);
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int flush_dirty_cache(struct inode *inode)
1138 {
1139 	int ret;
1140 
1141 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1142 	if (ret)
1143 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1144 				 EXTENT_DELALLOC, 0, 0, NULL);
1145 
1146 	return ret;
1147 }
1148 
1149 static void noinline_for_stack
1150 cleanup_bitmap_list(struct list_head *bitmap_list)
1151 {
1152 	struct btrfs_free_space *entry, *next;
1153 
1154 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1155 		list_del_init(&entry->list);
1156 }
1157 
1158 static void noinline_for_stack
1159 cleanup_write_cache_enospc(struct inode *inode,
1160 			   struct btrfs_io_ctl *io_ctl,
1161 			   struct extent_state **cached_state)
1162 {
1163 	io_ctl_drop_pages(io_ctl);
1164 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1165 			     i_size_read(inode) - 1, cached_state);
1166 }
1167 
1168 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1169 				 struct btrfs_trans_handle *trans,
1170 				 struct btrfs_block_group *block_group,
1171 				 struct btrfs_io_ctl *io_ctl,
1172 				 struct btrfs_path *path, u64 offset)
1173 {
1174 	int ret;
1175 	struct inode *inode = io_ctl->inode;
1176 
1177 	if (!inode)
1178 		return 0;
1179 
1180 	/* Flush the dirty pages in the cache file. */
1181 	ret = flush_dirty_cache(inode);
1182 	if (ret)
1183 		goto out;
1184 
1185 	/* Update the cache item to tell everyone this cache file is valid. */
1186 	ret = update_cache_item(trans, root, inode, path, offset,
1187 				io_ctl->entries, io_ctl->bitmaps);
1188 out:
1189 	io_ctl_free(io_ctl);
1190 	if (ret) {
1191 		invalidate_inode_pages2(inode->i_mapping);
1192 		BTRFS_I(inode)->generation = 0;
1193 		if (block_group)
1194 			btrfs_debug(root->fs_info,
1195 	  "failed to write free space cache for block group %llu error %d",
1196 				  block_group->start, ret);
1197 	}
1198 	btrfs_update_inode(trans, root, inode);
1199 
1200 	if (block_group) {
1201 		/* the dirty list is protected by the dirty_bgs_lock */
1202 		spin_lock(&trans->transaction->dirty_bgs_lock);
1203 
1204 		/* the disk_cache_state is protected by the block group lock */
1205 		spin_lock(&block_group->lock);
1206 
1207 		/*
1208 		 * only mark this as written if we didn't get put back on
1209 		 * the dirty list while waiting for IO.   Otherwise our
1210 		 * cache state won't be right, and we won't get written again
1211 		 */
1212 		if (!ret && list_empty(&block_group->dirty_list))
1213 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1214 		else if (ret)
1215 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1216 
1217 		spin_unlock(&block_group->lock);
1218 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1219 		io_ctl->inode = NULL;
1220 		iput(inode);
1221 	}
1222 
1223 	return ret;
1224 
1225 }
1226 
1227 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1228 				    struct btrfs_trans_handle *trans,
1229 				    struct btrfs_io_ctl *io_ctl,
1230 				    struct btrfs_path *path)
1231 {
1232 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1233 }
1234 
1235 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1236 			struct btrfs_block_group *block_group,
1237 			struct btrfs_path *path)
1238 {
1239 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1240 				     block_group, &block_group->io_ctl,
1241 				     path, block_group->start);
1242 }
1243 
1244 /**
1245  * __btrfs_write_out_cache - write out cached info to an inode
1246  * @root - the root the inode belongs to
1247  * @ctl - the free space cache we are going to write out
1248  * @block_group - the block_group for this cache if it belongs to a block_group
1249  * @trans - the trans handle
1250  *
1251  * This function writes out a free space cache struct to disk for quick recovery
1252  * on mount.  This will return 0 if it was successful in writing the cache out,
1253  * or an errno if it was not.
1254  */
1255 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1256 				   struct btrfs_free_space_ctl *ctl,
1257 				   struct btrfs_block_group *block_group,
1258 				   struct btrfs_io_ctl *io_ctl,
1259 				   struct btrfs_trans_handle *trans)
1260 {
1261 	struct extent_state *cached_state = NULL;
1262 	LIST_HEAD(bitmap_list);
1263 	int entries = 0;
1264 	int bitmaps = 0;
1265 	int ret;
1266 	int must_iput = 0;
1267 
1268 	if (!i_size_read(inode))
1269 		return -EIO;
1270 
1271 	WARN_ON(io_ctl->pages);
1272 	ret = io_ctl_init(io_ctl, inode, 1);
1273 	if (ret)
1274 		return ret;
1275 
1276 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1277 		down_write(&block_group->data_rwsem);
1278 		spin_lock(&block_group->lock);
1279 		if (block_group->delalloc_bytes) {
1280 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1281 			spin_unlock(&block_group->lock);
1282 			up_write(&block_group->data_rwsem);
1283 			BTRFS_I(inode)->generation = 0;
1284 			ret = 0;
1285 			must_iput = 1;
1286 			goto out;
1287 		}
1288 		spin_unlock(&block_group->lock);
1289 	}
1290 
1291 	/* Lock all pages first so we can lock the extent safely. */
1292 	ret = io_ctl_prepare_pages(io_ctl, false);
1293 	if (ret)
1294 		goto out_unlock;
1295 
1296 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1297 			 &cached_state);
1298 
1299 	io_ctl_set_generation(io_ctl, trans->transid);
1300 
1301 	mutex_lock(&ctl->cache_writeout_mutex);
1302 	/* Write out the extent entries in the free space cache */
1303 	spin_lock(&ctl->tree_lock);
1304 	ret = write_cache_extent_entries(io_ctl, ctl,
1305 					 block_group, &entries, &bitmaps,
1306 					 &bitmap_list);
1307 	if (ret)
1308 		goto out_nospc_locked;
1309 
1310 	/*
1311 	 * Some spaces that are freed in the current transaction are pinned,
1312 	 * they will be added into free space cache after the transaction is
1313 	 * committed, we shouldn't lose them.
1314 	 *
1315 	 * If this changes while we are working we'll get added back to
1316 	 * the dirty list and redo it.  No locking needed
1317 	 */
1318 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1319 	if (ret)
1320 		goto out_nospc_locked;
1321 
1322 	/*
1323 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1324 	 * locked while doing it because a concurrent trim can be manipulating
1325 	 * or freeing the bitmap.
1326 	 */
1327 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1328 	spin_unlock(&ctl->tree_lock);
1329 	mutex_unlock(&ctl->cache_writeout_mutex);
1330 	if (ret)
1331 		goto out_nospc;
1332 
1333 	/* Zero out the rest of the pages just to make sure */
1334 	io_ctl_zero_remaining_pages(io_ctl);
1335 
1336 	/* Everything is written out, now we dirty the pages in the file. */
1337 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1338 				i_size_read(inode), &cached_state);
1339 	if (ret)
1340 		goto out_nospc;
1341 
1342 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1343 		up_write(&block_group->data_rwsem);
1344 	/*
1345 	 * Release the pages and unlock the extent, we will flush
1346 	 * them out later
1347 	 */
1348 	io_ctl_drop_pages(io_ctl);
1349 
1350 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1351 			     i_size_read(inode) - 1, &cached_state);
1352 
1353 	/*
1354 	 * at this point the pages are under IO and we're happy,
1355 	 * The caller is responsible for waiting on them and updating the
1356 	 * the cache and the inode
1357 	 */
1358 	io_ctl->entries = entries;
1359 	io_ctl->bitmaps = bitmaps;
1360 
1361 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1362 	if (ret)
1363 		goto out;
1364 
1365 	return 0;
1366 
1367 out_nospc_locked:
1368 	cleanup_bitmap_list(&bitmap_list);
1369 	spin_unlock(&ctl->tree_lock);
1370 	mutex_unlock(&ctl->cache_writeout_mutex);
1371 
1372 out_nospc:
1373 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1374 
1375 out_unlock:
1376 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1377 		up_write(&block_group->data_rwsem);
1378 
1379 out:
1380 	io_ctl->inode = NULL;
1381 	io_ctl_free(io_ctl);
1382 	if (ret) {
1383 		invalidate_inode_pages2(inode->i_mapping);
1384 		BTRFS_I(inode)->generation = 0;
1385 	}
1386 	btrfs_update_inode(trans, root, inode);
1387 	if (must_iput)
1388 		iput(inode);
1389 	return ret;
1390 }
1391 
1392 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1393 			  struct btrfs_block_group *block_group,
1394 			  struct btrfs_path *path)
1395 {
1396 	struct btrfs_fs_info *fs_info = trans->fs_info;
1397 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1398 	struct inode *inode;
1399 	int ret = 0;
1400 
1401 	spin_lock(&block_group->lock);
1402 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1403 		spin_unlock(&block_group->lock);
1404 		return 0;
1405 	}
1406 	spin_unlock(&block_group->lock);
1407 
1408 	inode = lookup_free_space_inode(block_group, path);
1409 	if (IS_ERR(inode))
1410 		return 0;
1411 
1412 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1413 				block_group, &block_group->io_ctl, trans);
1414 	if (ret) {
1415 		btrfs_debug(fs_info,
1416 	  "failed to write free space cache for block group %llu error %d",
1417 			  block_group->start, ret);
1418 		spin_lock(&block_group->lock);
1419 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1420 		spin_unlock(&block_group->lock);
1421 
1422 		block_group->io_ctl.inode = NULL;
1423 		iput(inode);
1424 	}
1425 
1426 	/*
1427 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1428 	 * to wait for IO and put the inode
1429 	 */
1430 
1431 	return ret;
1432 }
1433 
1434 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1435 					  u64 offset)
1436 {
1437 	ASSERT(offset >= bitmap_start);
1438 	offset -= bitmap_start;
1439 	return (unsigned long)(div_u64(offset, unit));
1440 }
1441 
1442 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1443 {
1444 	return (unsigned long)(div_u64(bytes, unit));
1445 }
1446 
1447 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1448 				   u64 offset)
1449 {
1450 	u64 bitmap_start;
1451 	u64 bytes_per_bitmap;
1452 
1453 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1454 	bitmap_start = offset - ctl->start;
1455 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1456 	bitmap_start *= bytes_per_bitmap;
1457 	bitmap_start += ctl->start;
1458 
1459 	return bitmap_start;
1460 }
1461 
1462 static int tree_insert_offset(struct rb_root *root, u64 offset,
1463 			      struct rb_node *node, int bitmap)
1464 {
1465 	struct rb_node **p = &root->rb_node;
1466 	struct rb_node *parent = NULL;
1467 	struct btrfs_free_space *info;
1468 
1469 	while (*p) {
1470 		parent = *p;
1471 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1472 
1473 		if (offset < info->offset) {
1474 			p = &(*p)->rb_left;
1475 		} else if (offset > info->offset) {
1476 			p = &(*p)->rb_right;
1477 		} else {
1478 			/*
1479 			 * we could have a bitmap entry and an extent entry
1480 			 * share the same offset.  If this is the case, we want
1481 			 * the extent entry to always be found first if we do a
1482 			 * linear search through the tree, since we want to have
1483 			 * the quickest allocation time, and allocating from an
1484 			 * extent is faster than allocating from a bitmap.  So
1485 			 * if we're inserting a bitmap and we find an entry at
1486 			 * this offset, we want to go right, or after this entry
1487 			 * logically.  If we are inserting an extent and we've
1488 			 * found a bitmap, we want to go left, or before
1489 			 * logically.
1490 			 */
1491 			if (bitmap) {
1492 				if (info->bitmap) {
1493 					WARN_ON_ONCE(1);
1494 					return -EEXIST;
1495 				}
1496 				p = &(*p)->rb_right;
1497 			} else {
1498 				if (!info->bitmap) {
1499 					WARN_ON_ONCE(1);
1500 					return -EEXIST;
1501 				}
1502 				p = &(*p)->rb_left;
1503 			}
1504 		}
1505 	}
1506 
1507 	rb_link_node(node, parent, p);
1508 	rb_insert_color(node, root);
1509 
1510 	return 0;
1511 }
1512 
1513 /*
1514  * searches the tree for the given offset.
1515  *
1516  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1517  * want a section that has at least bytes size and comes at or after the given
1518  * offset.
1519  */
1520 static struct btrfs_free_space *
1521 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1522 		   u64 offset, int bitmap_only, int fuzzy)
1523 {
1524 	struct rb_node *n = ctl->free_space_offset.rb_node;
1525 	struct btrfs_free_space *entry, *prev = NULL;
1526 
1527 	/* find entry that is closest to the 'offset' */
1528 	while (1) {
1529 		if (!n) {
1530 			entry = NULL;
1531 			break;
1532 		}
1533 
1534 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1535 		prev = entry;
1536 
1537 		if (offset < entry->offset)
1538 			n = n->rb_left;
1539 		else if (offset > entry->offset)
1540 			n = n->rb_right;
1541 		else
1542 			break;
1543 	}
1544 
1545 	if (bitmap_only) {
1546 		if (!entry)
1547 			return NULL;
1548 		if (entry->bitmap)
1549 			return entry;
1550 
1551 		/*
1552 		 * bitmap entry and extent entry may share same offset,
1553 		 * in that case, bitmap entry comes after extent entry.
1554 		 */
1555 		n = rb_next(n);
1556 		if (!n)
1557 			return NULL;
1558 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1559 		if (entry->offset != offset)
1560 			return NULL;
1561 
1562 		WARN_ON(!entry->bitmap);
1563 		return entry;
1564 	} else if (entry) {
1565 		if (entry->bitmap) {
1566 			/*
1567 			 * if previous extent entry covers the offset,
1568 			 * we should return it instead of the bitmap entry
1569 			 */
1570 			n = rb_prev(&entry->offset_index);
1571 			if (n) {
1572 				prev = rb_entry(n, struct btrfs_free_space,
1573 						offset_index);
1574 				if (!prev->bitmap &&
1575 				    prev->offset + prev->bytes > offset)
1576 					entry = prev;
1577 			}
1578 		}
1579 		return entry;
1580 	}
1581 
1582 	if (!prev)
1583 		return NULL;
1584 
1585 	/* find last entry before the 'offset' */
1586 	entry = prev;
1587 	if (entry->offset > offset) {
1588 		n = rb_prev(&entry->offset_index);
1589 		if (n) {
1590 			entry = rb_entry(n, struct btrfs_free_space,
1591 					offset_index);
1592 			ASSERT(entry->offset <= offset);
1593 		} else {
1594 			if (fuzzy)
1595 				return entry;
1596 			else
1597 				return NULL;
1598 		}
1599 	}
1600 
1601 	if (entry->bitmap) {
1602 		n = rb_prev(&entry->offset_index);
1603 		if (n) {
1604 			prev = rb_entry(n, struct btrfs_free_space,
1605 					offset_index);
1606 			if (!prev->bitmap &&
1607 			    prev->offset + prev->bytes > offset)
1608 				return prev;
1609 		}
1610 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1611 			return entry;
1612 	} else if (entry->offset + entry->bytes > offset)
1613 		return entry;
1614 
1615 	if (!fuzzy)
1616 		return NULL;
1617 
1618 	while (1) {
1619 		if (entry->bitmap) {
1620 			if (entry->offset + BITS_PER_BITMAP *
1621 			    ctl->unit > offset)
1622 				break;
1623 		} else {
1624 			if (entry->offset + entry->bytes > offset)
1625 				break;
1626 		}
1627 
1628 		n = rb_next(&entry->offset_index);
1629 		if (!n)
1630 			return NULL;
1631 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1632 	}
1633 	return entry;
1634 }
1635 
1636 static inline void
1637 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1638 		    struct btrfs_free_space *info)
1639 {
1640 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1641 	ctl->free_extents--;
1642 
1643 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1644 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1645 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1646 	}
1647 }
1648 
1649 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1650 			      struct btrfs_free_space *info)
1651 {
1652 	__unlink_free_space(ctl, info);
1653 	ctl->free_space -= info->bytes;
1654 }
1655 
1656 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1657 			   struct btrfs_free_space *info)
1658 {
1659 	int ret = 0;
1660 
1661 	ASSERT(info->bytes || info->bitmap);
1662 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1663 				 &info->offset_index, (info->bitmap != NULL));
1664 	if (ret)
1665 		return ret;
1666 
1667 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1668 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1669 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1670 	}
1671 
1672 	ctl->free_space += info->bytes;
1673 	ctl->free_extents++;
1674 	return ret;
1675 }
1676 
1677 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1678 {
1679 	struct btrfs_block_group *block_group = ctl->private;
1680 	u64 max_bytes;
1681 	u64 bitmap_bytes;
1682 	u64 extent_bytes;
1683 	u64 size = block_group->length;
1684 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1685 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1686 
1687 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1688 
1689 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1690 
1691 	/*
1692 	 * We are trying to keep the total amount of memory used per 1GiB of
1693 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
1694 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1695 	 * bitmaps, we may end up using more memory than this.
1696 	 */
1697 	if (size < SZ_1G)
1698 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1699 	else
1700 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1701 
1702 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1703 
1704 	/*
1705 	 * we want the extent entry threshold to always be at most 1/2 the max
1706 	 * bytes we can have, or whatever is less than that.
1707 	 */
1708 	extent_bytes = max_bytes - bitmap_bytes;
1709 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1710 
1711 	ctl->extents_thresh =
1712 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1713 }
1714 
1715 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1716 				       struct btrfs_free_space *info,
1717 				       u64 offset, u64 bytes)
1718 {
1719 	unsigned long start, count, end;
1720 	int extent_delta = -1;
1721 
1722 	start = offset_to_bit(info->offset, ctl->unit, offset);
1723 	count = bytes_to_bits(bytes, ctl->unit);
1724 	end = start + count;
1725 	ASSERT(end <= BITS_PER_BITMAP);
1726 
1727 	bitmap_clear(info->bitmap, start, count);
1728 
1729 	info->bytes -= bytes;
1730 	if (info->max_extent_size > ctl->unit)
1731 		info->max_extent_size = 0;
1732 
1733 	if (start && test_bit(start - 1, info->bitmap))
1734 		extent_delta++;
1735 
1736 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1737 		extent_delta++;
1738 
1739 	info->bitmap_extents += extent_delta;
1740 	if (!btrfs_free_space_trimmed(info)) {
1741 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1742 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1743 	}
1744 }
1745 
1746 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1747 			      struct btrfs_free_space *info, u64 offset,
1748 			      u64 bytes)
1749 {
1750 	__bitmap_clear_bits(ctl, info, offset, bytes);
1751 	ctl->free_space -= bytes;
1752 }
1753 
1754 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1755 			    struct btrfs_free_space *info, u64 offset,
1756 			    u64 bytes)
1757 {
1758 	unsigned long start, count, end;
1759 	int extent_delta = 1;
1760 
1761 	start = offset_to_bit(info->offset, ctl->unit, offset);
1762 	count = bytes_to_bits(bytes, ctl->unit);
1763 	end = start + count;
1764 	ASSERT(end <= BITS_PER_BITMAP);
1765 
1766 	bitmap_set(info->bitmap, start, count);
1767 
1768 	info->bytes += bytes;
1769 	ctl->free_space += bytes;
1770 
1771 	if (start && test_bit(start - 1, info->bitmap))
1772 		extent_delta--;
1773 
1774 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1775 		extent_delta--;
1776 
1777 	info->bitmap_extents += extent_delta;
1778 	if (!btrfs_free_space_trimmed(info)) {
1779 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1780 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1781 	}
1782 }
1783 
1784 /*
1785  * If we can not find suitable extent, we will use bytes to record
1786  * the size of the max extent.
1787  */
1788 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1789 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1790 			 u64 *bytes, bool for_alloc)
1791 {
1792 	unsigned long found_bits = 0;
1793 	unsigned long max_bits = 0;
1794 	unsigned long bits, i;
1795 	unsigned long next_zero;
1796 	unsigned long extent_bits;
1797 
1798 	/*
1799 	 * Skip searching the bitmap if we don't have a contiguous section that
1800 	 * is large enough for this allocation.
1801 	 */
1802 	if (for_alloc &&
1803 	    bitmap_info->max_extent_size &&
1804 	    bitmap_info->max_extent_size < *bytes) {
1805 		*bytes = bitmap_info->max_extent_size;
1806 		return -1;
1807 	}
1808 
1809 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1810 			  max_t(u64, *offset, bitmap_info->offset));
1811 	bits = bytes_to_bits(*bytes, ctl->unit);
1812 
1813 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1814 		if (for_alloc && bits == 1) {
1815 			found_bits = 1;
1816 			break;
1817 		}
1818 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1819 					       BITS_PER_BITMAP, i);
1820 		extent_bits = next_zero - i;
1821 		if (extent_bits >= bits) {
1822 			found_bits = extent_bits;
1823 			break;
1824 		} else if (extent_bits > max_bits) {
1825 			max_bits = extent_bits;
1826 		}
1827 		i = next_zero;
1828 	}
1829 
1830 	if (found_bits) {
1831 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1832 		*bytes = (u64)(found_bits) * ctl->unit;
1833 		return 0;
1834 	}
1835 
1836 	*bytes = (u64)(max_bits) * ctl->unit;
1837 	bitmap_info->max_extent_size = *bytes;
1838 	return -1;
1839 }
1840 
1841 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1842 {
1843 	if (entry->bitmap)
1844 		return entry->max_extent_size;
1845 	return entry->bytes;
1846 }
1847 
1848 /* Cache the size of the max extent in bytes */
1849 static struct btrfs_free_space *
1850 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1851 		unsigned long align, u64 *max_extent_size)
1852 {
1853 	struct btrfs_free_space *entry;
1854 	struct rb_node *node;
1855 	u64 tmp;
1856 	u64 align_off;
1857 	int ret;
1858 
1859 	if (!ctl->free_space_offset.rb_node)
1860 		goto out;
1861 
1862 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1863 	if (!entry)
1864 		goto out;
1865 
1866 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1867 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1868 		if (entry->bytes < *bytes) {
1869 			*max_extent_size = max(get_max_extent_size(entry),
1870 					       *max_extent_size);
1871 			continue;
1872 		}
1873 
1874 		/* make sure the space returned is big enough
1875 		 * to match our requested alignment
1876 		 */
1877 		if (*bytes >= align) {
1878 			tmp = entry->offset - ctl->start + align - 1;
1879 			tmp = div64_u64(tmp, align);
1880 			tmp = tmp * align + ctl->start;
1881 			align_off = tmp - entry->offset;
1882 		} else {
1883 			align_off = 0;
1884 			tmp = entry->offset;
1885 		}
1886 
1887 		if (entry->bytes < *bytes + align_off) {
1888 			*max_extent_size = max(get_max_extent_size(entry),
1889 					       *max_extent_size);
1890 			continue;
1891 		}
1892 
1893 		if (entry->bitmap) {
1894 			u64 size = *bytes;
1895 
1896 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1897 			if (!ret) {
1898 				*offset = tmp;
1899 				*bytes = size;
1900 				return entry;
1901 			} else {
1902 				*max_extent_size =
1903 					max(get_max_extent_size(entry),
1904 					    *max_extent_size);
1905 			}
1906 			continue;
1907 		}
1908 
1909 		*offset = tmp;
1910 		*bytes = entry->bytes - align_off;
1911 		return entry;
1912 	}
1913 out:
1914 	return NULL;
1915 }
1916 
1917 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
1918 				struct btrfs_free_space *bitmap_info)
1919 {
1920 	struct btrfs_block_group *block_group = ctl->private;
1921 	u64 bytes = bitmap_info->bytes;
1922 	unsigned int rs, re;
1923 	int count = 0;
1924 
1925 	if (!block_group || !bytes)
1926 		return count;
1927 
1928 	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
1929 				   BITS_PER_BITMAP) {
1930 		bytes -= (rs - re) * ctl->unit;
1931 		count++;
1932 
1933 		if (!bytes)
1934 			break;
1935 	}
1936 
1937 	return count;
1938 }
1939 
1940 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1941 			   struct btrfs_free_space *info, u64 offset)
1942 {
1943 	info->offset = offset_to_bitmap(ctl, offset);
1944 	info->bytes = 0;
1945 	info->bitmap_extents = 0;
1946 	INIT_LIST_HEAD(&info->list);
1947 	link_free_space(ctl, info);
1948 	ctl->total_bitmaps++;
1949 
1950 	ctl->op->recalc_thresholds(ctl);
1951 }
1952 
1953 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1954 			struct btrfs_free_space *bitmap_info)
1955 {
1956 	/*
1957 	 * Normally when this is called, the bitmap is completely empty. However,
1958 	 * if we are blowing up the free space cache for one reason or another
1959 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1960 	 * we may leave stats on the table.
1961 	 */
1962 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1963 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1964 			bitmap_info->bitmap_extents;
1965 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1966 
1967 	}
1968 	unlink_free_space(ctl, bitmap_info);
1969 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1970 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1971 	ctl->total_bitmaps--;
1972 	ctl->op->recalc_thresholds(ctl);
1973 }
1974 
1975 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1976 			      struct btrfs_free_space *bitmap_info,
1977 			      u64 *offset, u64 *bytes)
1978 {
1979 	u64 end;
1980 	u64 search_start, search_bytes;
1981 	int ret;
1982 
1983 again:
1984 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1985 
1986 	/*
1987 	 * We need to search for bits in this bitmap.  We could only cover some
1988 	 * of the extent in this bitmap thanks to how we add space, so we need
1989 	 * to search for as much as it as we can and clear that amount, and then
1990 	 * go searching for the next bit.
1991 	 */
1992 	search_start = *offset;
1993 	search_bytes = ctl->unit;
1994 	search_bytes = min(search_bytes, end - search_start + 1);
1995 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1996 			    false);
1997 	if (ret < 0 || search_start != *offset)
1998 		return -EINVAL;
1999 
2000 	/* We may have found more bits than what we need */
2001 	search_bytes = min(search_bytes, *bytes);
2002 
2003 	/* Cannot clear past the end of the bitmap */
2004 	search_bytes = min(search_bytes, end - search_start + 1);
2005 
2006 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2007 	*offset += search_bytes;
2008 	*bytes -= search_bytes;
2009 
2010 	if (*bytes) {
2011 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2012 		if (!bitmap_info->bytes)
2013 			free_bitmap(ctl, bitmap_info);
2014 
2015 		/*
2016 		 * no entry after this bitmap, but we still have bytes to
2017 		 * remove, so something has gone wrong.
2018 		 */
2019 		if (!next)
2020 			return -EINVAL;
2021 
2022 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2023 				       offset_index);
2024 
2025 		/*
2026 		 * if the next entry isn't a bitmap we need to return to let the
2027 		 * extent stuff do its work.
2028 		 */
2029 		if (!bitmap_info->bitmap)
2030 			return -EAGAIN;
2031 
2032 		/*
2033 		 * Ok the next item is a bitmap, but it may not actually hold
2034 		 * the information for the rest of this free space stuff, so
2035 		 * look for it, and if we don't find it return so we can try
2036 		 * everything over again.
2037 		 */
2038 		search_start = *offset;
2039 		search_bytes = ctl->unit;
2040 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2041 				    &search_bytes, false);
2042 		if (ret < 0 || search_start != *offset)
2043 			return -EAGAIN;
2044 
2045 		goto again;
2046 	} else if (!bitmap_info->bytes)
2047 		free_bitmap(ctl, bitmap_info);
2048 
2049 	return 0;
2050 }
2051 
2052 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2053 			       struct btrfs_free_space *info, u64 offset,
2054 			       u64 bytes, enum btrfs_trim_state trim_state)
2055 {
2056 	u64 bytes_to_set = 0;
2057 	u64 end;
2058 
2059 	/*
2060 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2061 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2062 	 */
2063 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2064 		if (btrfs_free_space_trimmed(info)) {
2065 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2066 				info->bitmap_extents;
2067 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2068 		}
2069 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2070 	}
2071 
2072 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2073 
2074 	bytes_to_set = min(end - offset, bytes);
2075 
2076 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2077 
2078 	/*
2079 	 * We set some bytes, we have no idea what the max extent size is
2080 	 * anymore.
2081 	 */
2082 	info->max_extent_size = 0;
2083 
2084 	return bytes_to_set;
2085 
2086 }
2087 
2088 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2089 		      struct btrfs_free_space *info)
2090 {
2091 	struct btrfs_block_group *block_group = ctl->private;
2092 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2093 	bool forced = false;
2094 
2095 #ifdef CONFIG_BTRFS_DEBUG
2096 	if (btrfs_should_fragment_free_space(block_group))
2097 		forced = true;
2098 #endif
2099 
2100 	/* This is a way to reclaim large regions from the bitmaps. */
2101 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2102 		return false;
2103 
2104 	/*
2105 	 * If we are below the extents threshold then we can add this as an
2106 	 * extent, and don't have to deal with the bitmap
2107 	 */
2108 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2109 		/*
2110 		 * If this block group has some small extents we don't want to
2111 		 * use up all of our free slots in the cache with them, we want
2112 		 * to reserve them to larger extents, however if we have plenty
2113 		 * of cache left then go ahead an dadd them, no sense in adding
2114 		 * the overhead of a bitmap if we don't have to.
2115 		 */
2116 		if (info->bytes <= fs_info->sectorsize * 8) {
2117 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2118 				return false;
2119 		} else {
2120 			return false;
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * The original block groups from mkfs can be really small, like 8
2126 	 * megabytes, so don't bother with a bitmap for those entries.  However
2127 	 * some block groups can be smaller than what a bitmap would cover but
2128 	 * are still large enough that they could overflow the 32k memory limit,
2129 	 * so allow those block groups to still be allowed to have a bitmap
2130 	 * entry.
2131 	 */
2132 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2133 		return false;
2134 
2135 	return true;
2136 }
2137 
2138 static const struct btrfs_free_space_op free_space_op = {
2139 	.recalc_thresholds	= recalculate_thresholds,
2140 	.use_bitmap		= use_bitmap,
2141 };
2142 
2143 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2144 			      struct btrfs_free_space *info)
2145 {
2146 	struct btrfs_free_space *bitmap_info;
2147 	struct btrfs_block_group *block_group = NULL;
2148 	int added = 0;
2149 	u64 bytes, offset, bytes_added;
2150 	enum btrfs_trim_state trim_state;
2151 	int ret;
2152 
2153 	bytes = info->bytes;
2154 	offset = info->offset;
2155 	trim_state = info->trim_state;
2156 
2157 	if (!ctl->op->use_bitmap(ctl, info))
2158 		return 0;
2159 
2160 	if (ctl->op == &free_space_op)
2161 		block_group = ctl->private;
2162 again:
2163 	/*
2164 	 * Since we link bitmaps right into the cluster we need to see if we
2165 	 * have a cluster here, and if so and it has our bitmap we need to add
2166 	 * the free space to that bitmap.
2167 	 */
2168 	if (block_group && !list_empty(&block_group->cluster_list)) {
2169 		struct btrfs_free_cluster *cluster;
2170 		struct rb_node *node;
2171 		struct btrfs_free_space *entry;
2172 
2173 		cluster = list_entry(block_group->cluster_list.next,
2174 				     struct btrfs_free_cluster,
2175 				     block_group_list);
2176 		spin_lock(&cluster->lock);
2177 		node = rb_first(&cluster->root);
2178 		if (!node) {
2179 			spin_unlock(&cluster->lock);
2180 			goto no_cluster_bitmap;
2181 		}
2182 
2183 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2184 		if (!entry->bitmap) {
2185 			spin_unlock(&cluster->lock);
2186 			goto no_cluster_bitmap;
2187 		}
2188 
2189 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2190 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2191 							  bytes, trim_state);
2192 			bytes -= bytes_added;
2193 			offset += bytes_added;
2194 		}
2195 		spin_unlock(&cluster->lock);
2196 		if (!bytes) {
2197 			ret = 1;
2198 			goto out;
2199 		}
2200 	}
2201 
2202 no_cluster_bitmap:
2203 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2204 					 1, 0);
2205 	if (!bitmap_info) {
2206 		ASSERT(added == 0);
2207 		goto new_bitmap;
2208 	}
2209 
2210 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2211 					  trim_state);
2212 	bytes -= bytes_added;
2213 	offset += bytes_added;
2214 	added = 0;
2215 
2216 	if (!bytes) {
2217 		ret = 1;
2218 		goto out;
2219 	} else
2220 		goto again;
2221 
2222 new_bitmap:
2223 	if (info && info->bitmap) {
2224 		add_new_bitmap(ctl, info, offset);
2225 		added = 1;
2226 		info = NULL;
2227 		goto again;
2228 	} else {
2229 		spin_unlock(&ctl->tree_lock);
2230 
2231 		/* no pre-allocated info, allocate a new one */
2232 		if (!info) {
2233 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2234 						 GFP_NOFS);
2235 			if (!info) {
2236 				spin_lock(&ctl->tree_lock);
2237 				ret = -ENOMEM;
2238 				goto out;
2239 			}
2240 		}
2241 
2242 		/* allocate the bitmap */
2243 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2244 						 GFP_NOFS);
2245 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2246 		spin_lock(&ctl->tree_lock);
2247 		if (!info->bitmap) {
2248 			ret = -ENOMEM;
2249 			goto out;
2250 		}
2251 		goto again;
2252 	}
2253 
2254 out:
2255 	if (info) {
2256 		if (info->bitmap)
2257 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2258 					info->bitmap);
2259 		kmem_cache_free(btrfs_free_space_cachep, info);
2260 	}
2261 
2262 	return ret;
2263 }
2264 
2265 /*
2266  * Free space merging rules:
2267  *  1) Merge trimmed areas together
2268  *  2) Let untrimmed areas coalesce with trimmed areas
2269  *  3) Always pull neighboring regions from bitmaps
2270  *
2271  * The above rules are for when we merge free space based on btrfs_trim_state.
2272  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2273  * same reason: to promote larger extent regions which makes life easier for
2274  * find_free_extent().  Rule 2 enables coalescing based on the common path
2275  * being returning free space from btrfs_finish_extent_commit().  So when free
2276  * space is trimmed, it will prevent aggregating trimmed new region and
2277  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2278  * and provide find_free_extent() with the largest extents possible hoping for
2279  * the reuse path.
2280  */
2281 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2282 			  struct btrfs_free_space *info, bool update_stat)
2283 {
2284 	struct btrfs_free_space *left_info;
2285 	struct btrfs_free_space *right_info;
2286 	bool merged = false;
2287 	u64 offset = info->offset;
2288 	u64 bytes = info->bytes;
2289 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2290 
2291 	/*
2292 	 * first we want to see if there is free space adjacent to the range we
2293 	 * are adding, if there is remove that struct and add a new one to
2294 	 * cover the entire range
2295 	 */
2296 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2297 	if (right_info && rb_prev(&right_info->offset_index))
2298 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2299 				     struct btrfs_free_space, offset_index);
2300 	else
2301 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2302 
2303 	/* See try_merge_free_space() comment. */
2304 	if (right_info && !right_info->bitmap &&
2305 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2306 		if (update_stat)
2307 			unlink_free_space(ctl, right_info);
2308 		else
2309 			__unlink_free_space(ctl, right_info);
2310 		info->bytes += right_info->bytes;
2311 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2312 		merged = true;
2313 	}
2314 
2315 	/* See try_merge_free_space() comment. */
2316 	if (left_info && !left_info->bitmap &&
2317 	    left_info->offset + left_info->bytes == offset &&
2318 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2319 		if (update_stat)
2320 			unlink_free_space(ctl, left_info);
2321 		else
2322 			__unlink_free_space(ctl, left_info);
2323 		info->offset = left_info->offset;
2324 		info->bytes += left_info->bytes;
2325 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2326 		merged = true;
2327 	}
2328 
2329 	return merged;
2330 }
2331 
2332 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2333 				     struct btrfs_free_space *info,
2334 				     bool update_stat)
2335 {
2336 	struct btrfs_free_space *bitmap;
2337 	unsigned long i;
2338 	unsigned long j;
2339 	const u64 end = info->offset + info->bytes;
2340 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2341 	u64 bytes;
2342 
2343 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2344 	if (!bitmap)
2345 		return false;
2346 
2347 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2348 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2349 	if (j == i)
2350 		return false;
2351 	bytes = (j - i) * ctl->unit;
2352 	info->bytes += bytes;
2353 
2354 	/* See try_merge_free_space() comment. */
2355 	if (!btrfs_free_space_trimmed(bitmap))
2356 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2357 
2358 	if (update_stat)
2359 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2360 	else
2361 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2362 
2363 	if (!bitmap->bytes)
2364 		free_bitmap(ctl, bitmap);
2365 
2366 	return true;
2367 }
2368 
2369 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2370 				       struct btrfs_free_space *info,
2371 				       bool update_stat)
2372 {
2373 	struct btrfs_free_space *bitmap;
2374 	u64 bitmap_offset;
2375 	unsigned long i;
2376 	unsigned long j;
2377 	unsigned long prev_j;
2378 	u64 bytes;
2379 
2380 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2381 	/* If we're on a boundary, try the previous logical bitmap. */
2382 	if (bitmap_offset == info->offset) {
2383 		if (info->offset == 0)
2384 			return false;
2385 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2386 	}
2387 
2388 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2389 	if (!bitmap)
2390 		return false;
2391 
2392 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2393 	j = 0;
2394 	prev_j = (unsigned long)-1;
2395 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2396 		if (j > i)
2397 			break;
2398 		prev_j = j;
2399 	}
2400 	if (prev_j == i)
2401 		return false;
2402 
2403 	if (prev_j == (unsigned long)-1)
2404 		bytes = (i + 1) * ctl->unit;
2405 	else
2406 		bytes = (i - prev_j) * ctl->unit;
2407 
2408 	info->offset -= bytes;
2409 	info->bytes += bytes;
2410 
2411 	/* See try_merge_free_space() comment. */
2412 	if (!btrfs_free_space_trimmed(bitmap))
2413 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2414 
2415 	if (update_stat)
2416 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2417 	else
2418 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2419 
2420 	if (!bitmap->bytes)
2421 		free_bitmap(ctl, bitmap);
2422 
2423 	return true;
2424 }
2425 
2426 /*
2427  * We prefer always to allocate from extent entries, both for clustered and
2428  * non-clustered allocation requests. So when attempting to add a new extent
2429  * entry, try to see if there's adjacent free space in bitmap entries, and if
2430  * there is, migrate that space from the bitmaps to the extent.
2431  * Like this we get better chances of satisfying space allocation requests
2432  * because we attempt to satisfy them based on a single cache entry, and never
2433  * on 2 or more entries - even if the entries represent a contiguous free space
2434  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2435  * ends).
2436  */
2437 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2438 			      struct btrfs_free_space *info,
2439 			      bool update_stat)
2440 {
2441 	/*
2442 	 * Only work with disconnected entries, as we can change their offset,
2443 	 * and must be extent entries.
2444 	 */
2445 	ASSERT(!info->bitmap);
2446 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2447 
2448 	if (ctl->total_bitmaps > 0) {
2449 		bool stole_end;
2450 		bool stole_front = false;
2451 
2452 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2453 		if (ctl->total_bitmaps > 0)
2454 			stole_front = steal_from_bitmap_to_front(ctl, info,
2455 								 update_stat);
2456 
2457 		if (stole_end || stole_front)
2458 			try_merge_free_space(ctl, info, update_stat);
2459 	}
2460 }
2461 
2462 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2463 			   struct btrfs_free_space_ctl *ctl,
2464 			   u64 offset, u64 bytes,
2465 			   enum btrfs_trim_state trim_state)
2466 {
2467 	struct btrfs_block_group *block_group = ctl->private;
2468 	struct btrfs_free_space *info;
2469 	int ret = 0;
2470 	u64 filter_bytes = bytes;
2471 
2472 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2473 	if (!info)
2474 		return -ENOMEM;
2475 
2476 	info->offset = offset;
2477 	info->bytes = bytes;
2478 	info->trim_state = trim_state;
2479 	RB_CLEAR_NODE(&info->offset_index);
2480 
2481 	spin_lock(&ctl->tree_lock);
2482 
2483 	if (try_merge_free_space(ctl, info, true))
2484 		goto link;
2485 
2486 	/*
2487 	 * There was no extent directly to the left or right of this new
2488 	 * extent then we know we're going to have to allocate a new extent, so
2489 	 * before we do that see if we need to drop this into a bitmap
2490 	 */
2491 	ret = insert_into_bitmap(ctl, info);
2492 	if (ret < 0) {
2493 		goto out;
2494 	} else if (ret) {
2495 		ret = 0;
2496 		goto out;
2497 	}
2498 link:
2499 	/*
2500 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2501 	 * going to add the new free space to existing bitmap entries - because
2502 	 * that would mean unnecessary work that would be reverted. Therefore
2503 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2504 	 */
2505 	steal_from_bitmap(ctl, info, true);
2506 
2507 	filter_bytes = max(filter_bytes, info->bytes);
2508 
2509 	ret = link_free_space(ctl, info);
2510 	if (ret)
2511 		kmem_cache_free(btrfs_free_space_cachep, info);
2512 out:
2513 	btrfs_discard_update_discardable(block_group, ctl);
2514 	spin_unlock(&ctl->tree_lock);
2515 
2516 	if (ret) {
2517 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2518 		ASSERT(ret != -EEXIST);
2519 	}
2520 
2521 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2522 		btrfs_discard_check_filter(block_group, filter_bytes);
2523 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2530 			 u64 bytenr, u64 size)
2531 {
2532 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2533 
2534 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2535 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2536 
2537 	return __btrfs_add_free_space(block_group->fs_info,
2538 				      block_group->free_space_ctl,
2539 				      bytenr, size, trim_state);
2540 }
2541 
2542 /*
2543  * This is a subtle distinction because when adding free space back in general,
2544  * we want it to be added as untrimmed for async. But in the case where we add
2545  * it on loading of a block group, we want to consider it trimmed.
2546  */
2547 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2548 				       u64 bytenr, u64 size)
2549 {
2550 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2551 
2552 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2553 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2554 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2555 
2556 	return __btrfs_add_free_space(block_group->fs_info,
2557 				      block_group->free_space_ctl,
2558 				      bytenr, size, trim_state);
2559 }
2560 
2561 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2562 			    u64 offset, u64 bytes)
2563 {
2564 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2565 	struct btrfs_free_space *info;
2566 	int ret;
2567 	bool re_search = false;
2568 
2569 	spin_lock(&ctl->tree_lock);
2570 
2571 again:
2572 	ret = 0;
2573 	if (!bytes)
2574 		goto out_lock;
2575 
2576 	info = tree_search_offset(ctl, offset, 0, 0);
2577 	if (!info) {
2578 		/*
2579 		 * oops didn't find an extent that matched the space we wanted
2580 		 * to remove, look for a bitmap instead
2581 		 */
2582 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2583 					  1, 0);
2584 		if (!info) {
2585 			/*
2586 			 * If we found a partial bit of our free space in a
2587 			 * bitmap but then couldn't find the other part this may
2588 			 * be a problem, so WARN about it.
2589 			 */
2590 			WARN_ON(re_search);
2591 			goto out_lock;
2592 		}
2593 	}
2594 
2595 	re_search = false;
2596 	if (!info->bitmap) {
2597 		unlink_free_space(ctl, info);
2598 		if (offset == info->offset) {
2599 			u64 to_free = min(bytes, info->bytes);
2600 
2601 			info->bytes -= to_free;
2602 			info->offset += to_free;
2603 			if (info->bytes) {
2604 				ret = link_free_space(ctl, info);
2605 				WARN_ON(ret);
2606 			} else {
2607 				kmem_cache_free(btrfs_free_space_cachep, info);
2608 			}
2609 
2610 			offset += to_free;
2611 			bytes -= to_free;
2612 			goto again;
2613 		} else {
2614 			u64 old_end = info->bytes + info->offset;
2615 
2616 			info->bytes = offset - info->offset;
2617 			ret = link_free_space(ctl, info);
2618 			WARN_ON(ret);
2619 			if (ret)
2620 				goto out_lock;
2621 
2622 			/* Not enough bytes in this entry to satisfy us */
2623 			if (old_end < offset + bytes) {
2624 				bytes -= old_end - offset;
2625 				offset = old_end;
2626 				goto again;
2627 			} else if (old_end == offset + bytes) {
2628 				/* all done */
2629 				goto out_lock;
2630 			}
2631 			spin_unlock(&ctl->tree_lock);
2632 
2633 			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2634 						     offset + bytes,
2635 						     old_end - (offset + bytes),
2636 						     info->trim_state);
2637 			WARN_ON(ret);
2638 			goto out;
2639 		}
2640 	}
2641 
2642 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2643 	if (ret == -EAGAIN) {
2644 		re_search = true;
2645 		goto again;
2646 	}
2647 out_lock:
2648 	btrfs_discard_update_discardable(block_group, ctl);
2649 	spin_unlock(&ctl->tree_lock);
2650 out:
2651 	return ret;
2652 }
2653 
2654 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2655 			   u64 bytes)
2656 {
2657 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2658 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2659 	struct btrfs_free_space *info;
2660 	struct rb_node *n;
2661 	int count = 0;
2662 
2663 	spin_lock(&ctl->tree_lock);
2664 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2665 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2666 		if (info->bytes >= bytes && !block_group->ro)
2667 			count++;
2668 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2669 			   info->offset, info->bytes,
2670 		       (info->bitmap) ? "yes" : "no");
2671 	}
2672 	spin_unlock(&ctl->tree_lock);
2673 	btrfs_info(fs_info, "block group has cluster?: %s",
2674 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2675 	btrfs_info(fs_info,
2676 		   "%d blocks of free space at or bigger than bytes is", count);
2677 }
2678 
2679 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2680 {
2681 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2682 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2683 
2684 	spin_lock_init(&ctl->tree_lock);
2685 	ctl->unit = fs_info->sectorsize;
2686 	ctl->start = block_group->start;
2687 	ctl->private = block_group;
2688 	ctl->op = &free_space_op;
2689 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2690 	mutex_init(&ctl->cache_writeout_mutex);
2691 
2692 	/*
2693 	 * we only want to have 32k of ram per block group for keeping
2694 	 * track of free space, and if we pass 1/2 of that we want to
2695 	 * start converting things over to using bitmaps
2696 	 */
2697 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2698 }
2699 
2700 /*
2701  * for a given cluster, put all of its extents back into the free
2702  * space cache.  If the block group passed doesn't match the block group
2703  * pointed to by the cluster, someone else raced in and freed the
2704  * cluster already.  In that case, we just return without changing anything
2705  */
2706 static int
2707 __btrfs_return_cluster_to_free_space(
2708 			     struct btrfs_block_group *block_group,
2709 			     struct btrfs_free_cluster *cluster)
2710 {
2711 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2712 	struct btrfs_free_space *entry;
2713 	struct rb_node *node;
2714 
2715 	spin_lock(&cluster->lock);
2716 	if (cluster->block_group != block_group)
2717 		goto out;
2718 
2719 	cluster->block_group = NULL;
2720 	cluster->window_start = 0;
2721 	list_del_init(&cluster->block_group_list);
2722 
2723 	node = rb_first(&cluster->root);
2724 	while (node) {
2725 		bool bitmap;
2726 
2727 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2728 		node = rb_next(&entry->offset_index);
2729 		rb_erase(&entry->offset_index, &cluster->root);
2730 		RB_CLEAR_NODE(&entry->offset_index);
2731 
2732 		bitmap = (entry->bitmap != NULL);
2733 		if (!bitmap) {
2734 			/* Merging treats extents as if they were new */
2735 			if (!btrfs_free_space_trimmed(entry)) {
2736 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2737 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2738 					entry->bytes;
2739 			}
2740 
2741 			try_merge_free_space(ctl, entry, false);
2742 			steal_from_bitmap(ctl, entry, false);
2743 
2744 			/* As we insert directly, update these statistics */
2745 			if (!btrfs_free_space_trimmed(entry)) {
2746 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2747 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2748 					entry->bytes;
2749 			}
2750 		}
2751 		tree_insert_offset(&ctl->free_space_offset,
2752 				   entry->offset, &entry->offset_index, bitmap);
2753 	}
2754 	cluster->root = RB_ROOT;
2755 
2756 out:
2757 	spin_unlock(&cluster->lock);
2758 	btrfs_put_block_group(block_group);
2759 	return 0;
2760 }
2761 
2762 static void __btrfs_remove_free_space_cache_locked(
2763 				struct btrfs_free_space_ctl *ctl)
2764 {
2765 	struct btrfs_free_space *info;
2766 	struct rb_node *node;
2767 
2768 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2769 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2770 		if (!info->bitmap) {
2771 			unlink_free_space(ctl, info);
2772 			kmem_cache_free(btrfs_free_space_cachep, info);
2773 		} else {
2774 			free_bitmap(ctl, info);
2775 		}
2776 
2777 		cond_resched_lock(&ctl->tree_lock);
2778 	}
2779 }
2780 
2781 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2782 {
2783 	spin_lock(&ctl->tree_lock);
2784 	__btrfs_remove_free_space_cache_locked(ctl);
2785 	if (ctl->private)
2786 		btrfs_discard_update_discardable(ctl->private, ctl);
2787 	spin_unlock(&ctl->tree_lock);
2788 }
2789 
2790 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2791 {
2792 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2793 	struct btrfs_free_cluster *cluster;
2794 	struct list_head *head;
2795 
2796 	spin_lock(&ctl->tree_lock);
2797 	while ((head = block_group->cluster_list.next) !=
2798 	       &block_group->cluster_list) {
2799 		cluster = list_entry(head, struct btrfs_free_cluster,
2800 				     block_group_list);
2801 
2802 		WARN_ON(cluster->block_group != block_group);
2803 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2804 
2805 		cond_resched_lock(&ctl->tree_lock);
2806 	}
2807 	__btrfs_remove_free_space_cache_locked(ctl);
2808 	btrfs_discard_update_discardable(block_group, ctl);
2809 	spin_unlock(&ctl->tree_lock);
2810 
2811 }
2812 
2813 /**
2814  * btrfs_is_free_space_trimmed - see if everything is trimmed
2815  * @block_group: block_group of interest
2816  *
2817  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2818  */
2819 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2820 {
2821 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2822 	struct btrfs_free_space *info;
2823 	struct rb_node *node;
2824 	bool ret = true;
2825 
2826 	spin_lock(&ctl->tree_lock);
2827 	node = rb_first(&ctl->free_space_offset);
2828 
2829 	while (node) {
2830 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2831 
2832 		if (!btrfs_free_space_trimmed(info)) {
2833 			ret = false;
2834 			break;
2835 		}
2836 
2837 		node = rb_next(node);
2838 	}
2839 
2840 	spin_unlock(&ctl->tree_lock);
2841 	return ret;
2842 }
2843 
2844 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2845 			       u64 offset, u64 bytes, u64 empty_size,
2846 			       u64 *max_extent_size)
2847 {
2848 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2849 	struct btrfs_discard_ctl *discard_ctl =
2850 					&block_group->fs_info->discard_ctl;
2851 	struct btrfs_free_space *entry = NULL;
2852 	u64 bytes_search = bytes + empty_size;
2853 	u64 ret = 0;
2854 	u64 align_gap = 0;
2855 	u64 align_gap_len = 0;
2856 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2857 
2858 	spin_lock(&ctl->tree_lock);
2859 	entry = find_free_space(ctl, &offset, &bytes_search,
2860 				block_group->full_stripe_len, max_extent_size);
2861 	if (!entry)
2862 		goto out;
2863 
2864 	ret = offset;
2865 	if (entry->bitmap) {
2866 		bitmap_clear_bits(ctl, entry, offset, bytes);
2867 
2868 		if (!btrfs_free_space_trimmed(entry))
2869 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2870 
2871 		if (!entry->bytes)
2872 			free_bitmap(ctl, entry);
2873 	} else {
2874 		unlink_free_space(ctl, entry);
2875 		align_gap_len = offset - entry->offset;
2876 		align_gap = entry->offset;
2877 		align_gap_trim_state = entry->trim_state;
2878 
2879 		if (!btrfs_free_space_trimmed(entry))
2880 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2881 
2882 		entry->offset = offset + bytes;
2883 		WARN_ON(entry->bytes < bytes + align_gap_len);
2884 
2885 		entry->bytes -= bytes + align_gap_len;
2886 		if (!entry->bytes)
2887 			kmem_cache_free(btrfs_free_space_cachep, entry);
2888 		else
2889 			link_free_space(ctl, entry);
2890 	}
2891 out:
2892 	btrfs_discard_update_discardable(block_group, ctl);
2893 	spin_unlock(&ctl->tree_lock);
2894 
2895 	if (align_gap_len)
2896 		__btrfs_add_free_space(block_group->fs_info, ctl,
2897 				       align_gap, align_gap_len,
2898 				       align_gap_trim_state);
2899 	return ret;
2900 }
2901 
2902 /*
2903  * given a cluster, put all of its extents back into the free space
2904  * cache.  If a block group is passed, this function will only free
2905  * a cluster that belongs to the passed block group.
2906  *
2907  * Otherwise, it'll get a reference on the block group pointed to by the
2908  * cluster and remove the cluster from it.
2909  */
2910 int btrfs_return_cluster_to_free_space(
2911 			       struct btrfs_block_group *block_group,
2912 			       struct btrfs_free_cluster *cluster)
2913 {
2914 	struct btrfs_free_space_ctl *ctl;
2915 	int ret;
2916 
2917 	/* first, get a safe pointer to the block group */
2918 	spin_lock(&cluster->lock);
2919 	if (!block_group) {
2920 		block_group = cluster->block_group;
2921 		if (!block_group) {
2922 			spin_unlock(&cluster->lock);
2923 			return 0;
2924 		}
2925 	} else if (cluster->block_group != block_group) {
2926 		/* someone else has already freed it don't redo their work */
2927 		spin_unlock(&cluster->lock);
2928 		return 0;
2929 	}
2930 	atomic_inc(&block_group->count);
2931 	spin_unlock(&cluster->lock);
2932 
2933 	ctl = block_group->free_space_ctl;
2934 
2935 	/* now return any extents the cluster had on it */
2936 	spin_lock(&ctl->tree_lock);
2937 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2938 	spin_unlock(&ctl->tree_lock);
2939 
2940 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
2941 
2942 	/* finally drop our ref */
2943 	btrfs_put_block_group(block_group);
2944 	return ret;
2945 }
2946 
2947 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2948 				   struct btrfs_free_cluster *cluster,
2949 				   struct btrfs_free_space *entry,
2950 				   u64 bytes, u64 min_start,
2951 				   u64 *max_extent_size)
2952 {
2953 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2954 	int err;
2955 	u64 search_start = cluster->window_start;
2956 	u64 search_bytes = bytes;
2957 	u64 ret = 0;
2958 
2959 	search_start = min_start;
2960 	search_bytes = bytes;
2961 
2962 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2963 	if (err) {
2964 		*max_extent_size = max(get_max_extent_size(entry),
2965 				       *max_extent_size);
2966 		return 0;
2967 	}
2968 
2969 	ret = search_start;
2970 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2971 
2972 	return ret;
2973 }
2974 
2975 /*
2976  * given a cluster, try to allocate 'bytes' from it, returns 0
2977  * if it couldn't find anything suitably large, or a logical disk offset
2978  * if things worked out
2979  */
2980 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2981 			     struct btrfs_free_cluster *cluster, u64 bytes,
2982 			     u64 min_start, u64 *max_extent_size)
2983 {
2984 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2985 	struct btrfs_discard_ctl *discard_ctl =
2986 					&block_group->fs_info->discard_ctl;
2987 	struct btrfs_free_space *entry = NULL;
2988 	struct rb_node *node;
2989 	u64 ret = 0;
2990 
2991 	spin_lock(&cluster->lock);
2992 	if (bytes > cluster->max_size)
2993 		goto out;
2994 
2995 	if (cluster->block_group != block_group)
2996 		goto out;
2997 
2998 	node = rb_first(&cluster->root);
2999 	if (!node)
3000 		goto out;
3001 
3002 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3003 	while (1) {
3004 		if (entry->bytes < bytes)
3005 			*max_extent_size = max(get_max_extent_size(entry),
3006 					       *max_extent_size);
3007 
3008 		if (entry->bytes < bytes ||
3009 		    (!entry->bitmap && entry->offset < min_start)) {
3010 			node = rb_next(&entry->offset_index);
3011 			if (!node)
3012 				break;
3013 			entry = rb_entry(node, struct btrfs_free_space,
3014 					 offset_index);
3015 			continue;
3016 		}
3017 
3018 		if (entry->bitmap) {
3019 			ret = btrfs_alloc_from_bitmap(block_group,
3020 						      cluster, entry, bytes,
3021 						      cluster->window_start,
3022 						      max_extent_size);
3023 			if (ret == 0) {
3024 				node = rb_next(&entry->offset_index);
3025 				if (!node)
3026 					break;
3027 				entry = rb_entry(node, struct btrfs_free_space,
3028 						 offset_index);
3029 				continue;
3030 			}
3031 			cluster->window_start += bytes;
3032 		} else {
3033 			ret = entry->offset;
3034 
3035 			entry->offset += bytes;
3036 			entry->bytes -= bytes;
3037 		}
3038 
3039 		if (entry->bytes == 0)
3040 			rb_erase(&entry->offset_index, &cluster->root);
3041 		break;
3042 	}
3043 out:
3044 	spin_unlock(&cluster->lock);
3045 
3046 	if (!ret)
3047 		return 0;
3048 
3049 	spin_lock(&ctl->tree_lock);
3050 
3051 	if (!btrfs_free_space_trimmed(entry))
3052 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3053 
3054 	ctl->free_space -= bytes;
3055 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3056 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3057 	if (entry->bytes == 0) {
3058 		ctl->free_extents--;
3059 		if (entry->bitmap) {
3060 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3061 					entry->bitmap);
3062 			ctl->total_bitmaps--;
3063 			ctl->op->recalc_thresholds(ctl);
3064 		} else if (!btrfs_free_space_trimmed(entry)) {
3065 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3066 		}
3067 		kmem_cache_free(btrfs_free_space_cachep, entry);
3068 	}
3069 
3070 	spin_unlock(&ctl->tree_lock);
3071 
3072 	return ret;
3073 }
3074 
3075 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3076 				struct btrfs_free_space *entry,
3077 				struct btrfs_free_cluster *cluster,
3078 				u64 offset, u64 bytes,
3079 				u64 cont1_bytes, u64 min_bytes)
3080 {
3081 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3082 	unsigned long next_zero;
3083 	unsigned long i;
3084 	unsigned long want_bits;
3085 	unsigned long min_bits;
3086 	unsigned long found_bits;
3087 	unsigned long max_bits = 0;
3088 	unsigned long start = 0;
3089 	unsigned long total_found = 0;
3090 	int ret;
3091 
3092 	i = offset_to_bit(entry->offset, ctl->unit,
3093 			  max_t(u64, offset, entry->offset));
3094 	want_bits = bytes_to_bits(bytes, ctl->unit);
3095 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3096 
3097 	/*
3098 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3099 	 * fragmented.
3100 	 */
3101 	if (entry->max_extent_size &&
3102 	    entry->max_extent_size < cont1_bytes)
3103 		return -ENOSPC;
3104 again:
3105 	found_bits = 0;
3106 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3107 		next_zero = find_next_zero_bit(entry->bitmap,
3108 					       BITS_PER_BITMAP, i);
3109 		if (next_zero - i >= min_bits) {
3110 			found_bits = next_zero - i;
3111 			if (found_bits > max_bits)
3112 				max_bits = found_bits;
3113 			break;
3114 		}
3115 		if (next_zero - i > max_bits)
3116 			max_bits = next_zero - i;
3117 		i = next_zero;
3118 	}
3119 
3120 	if (!found_bits) {
3121 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3122 		return -ENOSPC;
3123 	}
3124 
3125 	if (!total_found) {
3126 		start = i;
3127 		cluster->max_size = 0;
3128 	}
3129 
3130 	total_found += found_bits;
3131 
3132 	if (cluster->max_size < found_bits * ctl->unit)
3133 		cluster->max_size = found_bits * ctl->unit;
3134 
3135 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3136 		i = next_zero + 1;
3137 		goto again;
3138 	}
3139 
3140 	cluster->window_start = start * ctl->unit + entry->offset;
3141 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3142 	ret = tree_insert_offset(&cluster->root, entry->offset,
3143 				 &entry->offset_index, 1);
3144 	ASSERT(!ret); /* -EEXIST; Logic error */
3145 
3146 	trace_btrfs_setup_cluster(block_group, cluster,
3147 				  total_found * ctl->unit, 1);
3148 	return 0;
3149 }
3150 
3151 /*
3152  * This searches the block group for just extents to fill the cluster with.
3153  * Try to find a cluster with at least bytes total bytes, at least one
3154  * extent of cont1_bytes, and other clusters of at least min_bytes.
3155  */
3156 static noinline int
3157 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3158 			struct btrfs_free_cluster *cluster,
3159 			struct list_head *bitmaps, u64 offset, u64 bytes,
3160 			u64 cont1_bytes, u64 min_bytes)
3161 {
3162 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3163 	struct btrfs_free_space *first = NULL;
3164 	struct btrfs_free_space *entry = NULL;
3165 	struct btrfs_free_space *last;
3166 	struct rb_node *node;
3167 	u64 window_free;
3168 	u64 max_extent;
3169 	u64 total_size = 0;
3170 
3171 	entry = tree_search_offset(ctl, offset, 0, 1);
3172 	if (!entry)
3173 		return -ENOSPC;
3174 
3175 	/*
3176 	 * We don't want bitmaps, so just move along until we find a normal
3177 	 * extent entry.
3178 	 */
3179 	while (entry->bitmap || entry->bytes < min_bytes) {
3180 		if (entry->bitmap && list_empty(&entry->list))
3181 			list_add_tail(&entry->list, bitmaps);
3182 		node = rb_next(&entry->offset_index);
3183 		if (!node)
3184 			return -ENOSPC;
3185 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3186 	}
3187 
3188 	window_free = entry->bytes;
3189 	max_extent = entry->bytes;
3190 	first = entry;
3191 	last = entry;
3192 
3193 	for (node = rb_next(&entry->offset_index); node;
3194 	     node = rb_next(&entry->offset_index)) {
3195 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3196 
3197 		if (entry->bitmap) {
3198 			if (list_empty(&entry->list))
3199 				list_add_tail(&entry->list, bitmaps);
3200 			continue;
3201 		}
3202 
3203 		if (entry->bytes < min_bytes)
3204 			continue;
3205 
3206 		last = entry;
3207 		window_free += entry->bytes;
3208 		if (entry->bytes > max_extent)
3209 			max_extent = entry->bytes;
3210 	}
3211 
3212 	if (window_free < bytes || max_extent < cont1_bytes)
3213 		return -ENOSPC;
3214 
3215 	cluster->window_start = first->offset;
3216 
3217 	node = &first->offset_index;
3218 
3219 	/*
3220 	 * now we've found our entries, pull them out of the free space
3221 	 * cache and put them into the cluster rbtree
3222 	 */
3223 	do {
3224 		int ret;
3225 
3226 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3227 		node = rb_next(&entry->offset_index);
3228 		if (entry->bitmap || entry->bytes < min_bytes)
3229 			continue;
3230 
3231 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3232 		ret = tree_insert_offset(&cluster->root, entry->offset,
3233 					 &entry->offset_index, 0);
3234 		total_size += entry->bytes;
3235 		ASSERT(!ret); /* -EEXIST; Logic error */
3236 	} while (node && entry != last);
3237 
3238 	cluster->max_size = max_extent;
3239 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3240 	return 0;
3241 }
3242 
3243 /*
3244  * This specifically looks for bitmaps that may work in the cluster, we assume
3245  * that we have already failed to find extents that will work.
3246  */
3247 static noinline int
3248 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3249 		     struct btrfs_free_cluster *cluster,
3250 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3251 		     u64 cont1_bytes, u64 min_bytes)
3252 {
3253 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3254 	struct btrfs_free_space *entry = NULL;
3255 	int ret = -ENOSPC;
3256 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3257 
3258 	if (ctl->total_bitmaps == 0)
3259 		return -ENOSPC;
3260 
3261 	/*
3262 	 * The bitmap that covers offset won't be in the list unless offset
3263 	 * is just its start offset.
3264 	 */
3265 	if (!list_empty(bitmaps))
3266 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3267 
3268 	if (!entry || entry->offset != bitmap_offset) {
3269 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3270 		if (entry && list_empty(&entry->list))
3271 			list_add(&entry->list, bitmaps);
3272 	}
3273 
3274 	list_for_each_entry(entry, bitmaps, list) {
3275 		if (entry->bytes < bytes)
3276 			continue;
3277 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3278 					   bytes, cont1_bytes, min_bytes);
3279 		if (!ret)
3280 			return 0;
3281 	}
3282 
3283 	/*
3284 	 * The bitmaps list has all the bitmaps that record free space
3285 	 * starting after offset, so no more search is required.
3286 	 */
3287 	return -ENOSPC;
3288 }
3289 
3290 /*
3291  * here we try to find a cluster of blocks in a block group.  The goal
3292  * is to find at least bytes+empty_size.
3293  * We might not find them all in one contiguous area.
3294  *
3295  * returns zero and sets up cluster if things worked out, otherwise
3296  * it returns -enospc
3297  */
3298 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3299 			     struct btrfs_free_cluster *cluster,
3300 			     u64 offset, u64 bytes, u64 empty_size)
3301 {
3302 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3303 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3304 	struct btrfs_free_space *entry, *tmp;
3305 	LIST_HEAD(bitmaps);
3306 	u64 min_bytes;
3307 	u64 cont1_bytes;
3308 	int ret;
3309 
3310 	/*
3311 	 * Choose the minimum extent size we'll require for this
3312 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3313 	 * For metadata, allow allocates with smaller extents.  For
3314 	 * data, keep it dense.
3315 	 */
3316 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3317 		cont1_bytes = min_bytes = bytes + empty_size;
3318 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3319 		cont1_bytes = bytes;
3320 		min_bytes = fs_info->sectorsize;
3321 	} else {
3322 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3323 		min_bytes = fs_info->sectorsize;
3324 	}
3325 
3326 	spin_lock(&ctl->tree_lock);
3327 
3328 	/*
3329 	 * If we know we don't have enough space to make a cluster don't even
3330 	 * bother doing all the work to try and find one.
3331 	 */
3332 	if (ctl->free_space < bytes) {
3333 		spin_unlock(&ctl->tree_lock);
3334 		return -ENOSPC;
3335 	}
3336 
3337 	spin_lock(&cluster->lock);
3338 
3339 	/* someone already found a cluster, hooray */
3340 	if (cluster->block_group) {
3341 		ret = 0;
3342 		goto out;
3343 	}
3344 
3345 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3346 				 min_bytes);
3347 
3348 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3349 				      bytes + empty_size,
3350 				      cont1_bytes, min_bytes);
3351 	if (ret)
3352 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3353 					   offset, bytes + empty_size,
3354 					   cont1_bytes, min_bytes);
3355 
3356 	/* Clear our temporary list */
3357 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3358 		list_del_init(&entry->list);
3359 
3360 	if (!ret) {
3361 		atomic_inc(&block_group->count);
3362 		list_add_tail(&cluster->block_group_list,
3363 			      &block_group->cluster_list);
3364 		cluster->block_group = block_group;
3365 	} else {
3366 		trace_btrfs_failed_cluster_setup(block_group);
3367 	}
3368 out:
3369 	spin_unlock(&cluster->lock);
3370 	spin_unlock(&ctl->tree_lock);
3371 
3372 	return ret;
3373 }
3374 
3375 /*
3376  * simple code to zero out a cluster
3377  */
3378 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3379 {
3380 	spin_lock_init(&cluster->lock);
3381 	spin_lock_init(&cluster->refill_lock);
3382 	cluster->root = RB_ROOT;
3383 	cluster->max_size = 0;
3384 	cluster->fragmented = false;
3385 	INIT_LIST_HEAD(&cluster->block_group_list);
3386 	cluster->block_group = NULL;
3387 }
3388 
3389 static int do_trimming(struct btrfs_block_group *block_group,
3390 		       u64 *total_trimmed, u64 start, u64 bytes,
3391 		       u64 reserved_start, u64 reserved_bytes,
3392 		       enum btrfs_trim_state reserved_trim_state,
3393 		       struct btrfs_trim_range *trim_entry)
3394 {
3395 	struct btrfs_space_info *space_info = block_group->space_info;
3396 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3397 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3398 	int ret;
3399 	int update = 0;
3400 	const u64 end = start + bytes;
3401 	const u64 reserved_end = reserved_start + reserved_bytes;
3402 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3403 	u64 trimmed = 0;
3404 
3405 	spin_lock(&space_info->lock);
3406 	spin_lock(&block_group->lock);
3407 	if (!block_group->ro) {
3408 		block_group->reserved += reserved_bytes;
3409 		space_info->bytes_reserved += reserved_bytes;
3410 		update = 1;
3411 	}
3412 	spin_unlock(&block_group->lock);
3413 	spin_unlock(&space_info->lock);
3414 
3415 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3416 	if (!ret) {
3417 		*total_trimmed += trimmed;
3418 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3419 	}
3420 
3421 	mutex_lock(&ctl->cache_writeout_mutex);
3422 	if (reserved_start < start)
3423 		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3424 				       start - reserved_start,
3425 				       reserved_trim_state);
3426 	if (start + bytes < reserved_start + reserved_bytes)
3427 		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3428 				       reserved_trim_state);
3429 	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3430 	list_del(&trim_entry->list);
3431 	mutex_unlock(&ctl->cache_writeout_mutex);
3432 
3433 	if (update) {
3434 		spin_lock(&space_info->lock);
3435 		spin_lock(&block_group->lock);
3436 		if (block_group->ro)
3437 			space_info->bytes_readonly += reserved_bytes;
3438 		block_group->reserved -= reserved_bytes;
3439 		space_info->bytes_reserved -= reserved_bytes;
3440 		spin_unlock(&block_group->lock);
3441 		spin_unlock(&space_info->lock);
3442 	}
3443 
3444 	return ret;
3445 }
3446 
3447 /*
3448  * If @async is set, then we will trim 1 region and return.
3449  */
3450 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3451 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3452 			  bool async)
3453 {
3454 	struct btrfs_discard_ctl *discard_ctl =
3455 					&block_group->fs_info->discard_ctl;
3456 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3457 	struct btrfs_free_space *entry;
3458 	struct rb_node *node;
3459 	int ret = 0;
3460 	u64 extent_start;
3461 	u64 extent_bytes;
3462 	enum btrfs_trim_state extent_trim_state;
3463 	u64 bytes;
3464 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3465 
3466 	while (start < end) {
3467 		struct btrfs_trim_range trim_entry;
3468 
3469 		mutex_lock(&ctl->cache_writeout_mutex);
3470 		spin_lock(&ctl->tree_lock);
3471 
3472 		if (ctl->free_space < minlen)
3473 			goto out_unlock;
3474 
3475 		entry = tree_search_offset(ctl, start, 0, 1);
3476 		if (!entry)
3477 			goto out_unlock;
3478 
3479 		/* Skip bitmaps and if async, already trimmed entries */
3480 		while (entry->bitmap ||
3481 		       (async && btrfs_free_space_trimmed(entry))) {
3482 			node = rb_next(&entry->offset_index);
3483 			if (!node)
3484 				goto out_unlock;
3485 			entry = rb_entry(node, struct btrfs_free_space,
3486 					 offset_index);
3487 		}
3488 
3489 		if (entry->offset >= end)
3490 			goto out_unlock;
3491 
3492 		extent_start = entry->offset;
3493 		extent_bytes = entry->bytes;
3494 		extent_trim_state = entry->trim_state;
3495 		if (async) {
3496 			start = entry->offset;
3497 			bytes = entry->bytes;
3498 			if (bytes < minlen) {
3499 				spin_unlock(&ctl->tree_lock);
3500 				mutex_unlock(&ctl->cache_writeout_mutex);
3501 				goto next;
3502 			}
3503 			unlink_free_space(ctl, entry);
3504 			/*
3505 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3506 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3507 			 * X when we come back around.  So trim it now.
3508 			 */
3509 			if (max_discard_size &&
3510 			    bytes >= (max_discard_size +
3511 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3512 				bytes = max_discard_size;
3513 				extent_bytes = max_discard_size;
3514 				entry->offset += max_discard_size;
3515 				entry->bytes -= max_discard_size;
3516 				link_free_space(ctl, entry);
3517 			} else {
3518 				kmem_cache_free(btrfs_free_space_cachep, entry);
3519 			}
3520 		} else {
3521 			start = max(start, extent_start);
3522 			bytes = min(extent_start + extent_bytes, end) - start;
3523 			if (bytes < minlen) {
3524 				spin_unlock(&ctl->tree_lock);
3525 				mutex_unlock(&ctl->cache_writeout_mutex);
3526 				goto next;
3527 			}
3528 
3529 			unlink_free_space(ctl, entry);
3530 			kmem_cache_free(btrfs_free_space_cachep, entry);
3531 		}
3532 
3533 		spin_unlock(&ctl->tree_lock);
3534 		trim_entry.start = extent_start;
3535 		trim_entry.bytes = extent_bytes;
3536 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3537 		mutex_unlock(&ctl->cache_writeout_mutex);
3538 
3539 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3540 				  extent_start, extent_bytes, extent_trim_state,
3541 				  &trim_entry);
3542 		if (ret) {
3543 			block_group->discard_cursor = start + bytes;
3544 			break;
3545 		}
3546 next:
3547 		start += bytes;
3548 		block_group->discard_cursor = start;
3549 		if (async && *total_trimmed)
3550 			break;
3551 
3552 		if (fatal_signal_pending(current)) {
3553 			ret = -ERESTARTSYS;
3554 			break;
3555 		}
3556 
3557 		cond_resched();
3558 	}
3559 
3560 	return ret;
3561 
3562 out_unlock:
3563 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3564 	spin_unlock(&ctl->tree_lock);
3565 	mutex_unlock(&ctl->cache_writeout_mutex);
3566 
3567 	return ret;
3568 }
3569 
3570 /*
3571  * If we break out of trimming a bitmap prematurely, we should reset the
3572  * trimming bit.  In a rather contrieved case, it's possible to race here so
3573  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3574  *
3575  * start = start of bitmap
3576  * end = near end of bitmap
3577  *
3578  * Thread 1:			Thread 2:
3579  * trim_bitmaps(start)
3580  *				trim_bitmaps(end)
3581  *				end_trimming_bitmap()
3582  * reset_trimming_bitmap()
3583  */
3584 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3585 {
3586 	struct btrfs_free_space *entry;
3587 
3588 	spin_lock(&ctl->tree_lock);
3589 	entry = tree_search_offset(ctl, offset, 1, 0);
3590 	if (entry) {
3591 		if (btrfs_free_space_trimmed(entry)) {
3592 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3593 				entry->bitmap_extents;
3594 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3595 		}
3596 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3597 	}
3598 
3599 	spin_unlock(&ctl->tree_lock);
3600 }
3601 
3602 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3603 				struct btrfs_free_space *entry)
3604 {
3605 	if (btrfs_free_space_trimming_bitmap(entry)) {
3606 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3607 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3608 			entry->bitmap_extents;
3609 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3610 	}
3611 }
3612 
3613 /*
3614  * If @async is set, then we will trim 1 region and return.
3615  */
3616 static int trim_bitmaps(struct btrfs_block_group *block_group,
3617 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3618 			u64 maxlen, bool async)
3619 {
3620 	struct btrfs_discard_ctl *discard_ctl =
3621 					&block_group->fs_info->discard_ctl;
3622 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3623 	struct btrfs_free_space *entry;
3624 	int ret = 0;
3625 	int ret2;
3626 	u64 bytes;
3627 	u64 offset = offset_to_bitmap(ctl, start);
3628 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3629 
3630 	while (offset < end) {
3631 		bool next_bitmap = false;
3632 		struct btrfs_trim_range trim_entry;
3633 
3634 		mutex_lock(&ctl->cache_writeout_mutex);
3635 		spin_lock(&ctl->tree_lock);
3636 
3637 		if (ctl->free_space < minlen) {
3638 			block_group->discard_cursor =
3639 				btrfs_block_group_end(block_group);
3640 			spin_unlock(&ctl->tree_lock);
3641 			mutex_unlock(&ctl->cache_writeout_mutex);
3642 			break;
3643 		}
3644 
3645 		entry = tree_search_offset(ctl, offset, 1, 0);
3646 		/*
3647 		 * Bitmaps are marked trimmed lossily now to prevent constant
3648 		 * discarding of the same bitmap (the reason why we are bound
3649 		 * by the filters).  So, retrim the block group bitmaps when we
3650 		 * are preparing to punt to the unused_bgs list.  This uses
3651 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3652 		 * which is the only discard index which sets minlen to 0.
3653 		 */
3654 		if (!entry || (async && minlen && start == offset &&
3655 			       btrfs_free_space_trimmed(entry))) {
3656 			spin_unlock(&ctl->tree_lock);
3657 			mutex_unlock(&ctl->cache_writeout_mutex);
3658 			next_bitmap = true;
3659 			goto next;
3660 		}
3661 
3662 		/*
3663 		 * Async discard bitmap trimming begins at by setting the start
3664 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3665 		 * start of the bitmap.  This lets us know we are fully
3666 		 * scanning the bitmap rather than only some portion of it.
3667 		 */
3668 		if (start == offset)
3669 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3670 
3671 		bytes = minlen;
3672 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3673 		if (ret2 || start >= end) {
3674 			/*
3675 			 * We lossily consider a bitmap trimmed if we only skip
3676 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3677 			 */
3678 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3679 				end_trimming_bitmap(ctl, entry);
3680 			else
3681 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3682 			spin_unlock(&ctl->tree_lock);
3683 			mutex_unlock(&ctl->cache_writeout_mutex);
3684 			next_bitmap = true;
3685 			goto next;
3686 		}
3687 
3688 		/*
3689 		 * We already trimmed a region, but are using the locking above
3690 		 * to reset the trim_state.
3691 		 */
3692 		if (async && *total_trimmed) {
3693 			spin_unlock(&ctl->tree_lock);
3694 			mutex_unlock(&ctl->cache_writeout_mutex);
3695 			goto out;
3696 		}
3697 
3698 		bytes = min(bytes, end - start);
3699 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3700 			spin_unlock(&ctl->tree_lock);
3701 			mutex_unlock(&ctl->cache_writeout_mutex);
3702 			goto next;
3703 		}
3704 
3705 		/*
3706 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3707 		 * If X < @minlen, we won't trim X when we come back around.
3708 		 * So trim it now.  We differ here from trimming extents as we
3709 		 * don't keep individual state per bit.
3710 		 */
3711 		if (async &&
3712 		    max_discard_size &&
3713 		    bytes > (max_discard_size + minlen))
3714 			bytes = max_discard_size;
3715 
3716 		bitmap_clear_bits(ctl, entry, start, bytes);
3717 		if (entry->bytes == 0)
3718 			free_bitmap(ctl, entry);
3719 
3720 		spin_unlock(&ctl->tree_lock);
3721 		trim_entry.start = start;
3722 		trim_entry.bytes = bytes;
3723 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3724 		mutex_unlock(&ctl->cache_writeout_mutex);
3725 
3726 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3727 				  start, bytes, 0, &trim_entry);
3728 		if (ret) {
3729 			reset_trimming_bitmap(ctl, offset);
3730 			block_group->discard_cursor =
3731 				btrfs_block_group_end(block_group);
3732 			break;
3733 		}
3734 next:
3735 		if (next_bitmap) {
3736 			offset += BITS_PER_BITMAP * ctl->unit;
3737 			start = offset;
3738 		} else {
3739 			start += bytes;
3740 		}
3741 		block_group->discard_cursor = start;
3742 
3743 		if (fatal_signal_pending(current)) {
3744 			if (start != offset)
3745 				reset_trimming_bitmap(ctl, offset);
3746 			ret = -ERESTARTSYS;
3747 			break;
3748 		}
3749 
3750 		cond_resched();
3751 	}
3752 
3753 	if (offset >= end)
3754 		block_group->discard_cursor = end;
3755 
3756 out:
3757 	return ret;
3758 }
3759 
3760 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3761 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3762 {
3763 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3764 	int ret;
3765 	u64 rem = 0;
3766 
3767 	*trimmed = 0;
3768 
3769 	spin_lock(&block_group->lock);
3770 	if (block_group->removed) {
3771 		spin_unlock(&block_group->lock);
3772 		return 0;
3773 	}
3774 	btrfs_freeze_block_group(block_group);
3775 	spin_unlock(&block_group->lock);
3776 
3777 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3778 	if (ret)
3779 		goto out;
3780 
3781 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3782 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3783 	/* If we ended in the middle of a bitmap, reset the trimming flag */
3784 	if (rem)
3785 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3786 out:
3787 	btrfs_unfreeze_block_group(block_group);
3788 	return ret;
3789 }
3790 
3791 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3792 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3793 				   bool async)
3794 {
3795 	int ret;
3796 
3797 	*trimmed = 0;
3798 
3799 	spin_lock(&block_group->lock);
3800 	if (block_group->removed) {
3801 		spin_unlock(&block_group->lock);
3802 		return 0;
3803 	}
3804 	btrfs_freeze_block_group(block_group);
3805 	spin_unlock(&block_group->lock);
3806 
3807 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3808 	btrfs_unfreeze_block_group(block_group);
3809 
3810 	return ret;
3811 }
3812 
3813 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3814 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3815 				   u64 maxlen, bool async)
3816 {
3817 	int ret;
3818 
3819 	*trimmed = 0;
3820 
3821 	spin_lock(&block_group->lock);
3822 	if (block_group->removed) {
3823 		spin_unlock(&block_group->lock);
3824 		return 0;
3825 	}
3826 	btrfs_freeze_block_group(block_group);
3827 	spin_unlock(&block_group->lock);
3828 
3829 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3830 			   async);
3831 
3832 	btrfs_unfreeze_block_group(block_group);
3833 
3834 	return ret;
3835 }
3836 
3837 /*
3838  * Find the left-most item in the cache tree, and then return the
3839  * smallest inode number in the item.
3840  *
3841  * Note: the returned inode number may not be the smallest one in
3842  * the tree, if the left-most item is a bitmap.
3843  */
3844 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3845 {
3846 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3847 	struct btrfs_free_space *entry = NULL;
3848 	u64 ino = 0;
3849 
3850 	spin_lock(&ctl->tree_lock);
3851 
3852 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3853 		goto out;
3854 
3855 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3856 			 struct btrfs_free_space, offset_index);
3857 
3858 	if (!entry->bitmap) {
3859 		ino = entry->offset;
3860 
3861 		unlink_free_space(ctl, entry);
3862 		entry->offset++;
3863 		entry->bytes--;
3864 		if (!entry->bytes)
3865 			kmem_cache_free(btrfs_free_space_cachep, entry);
3866 		else
3867 			link_free_space(ctl, entry);
3868 	} else {
3869 		u64 offset = 0;
3870 		u64 count = 1;
3871 		int ret;
3872 
3873 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3874 		/* Logic error; Should be empty if it can't find anything */
3875 		ASSERT(!ret);
3876 
3877 		ino = offset;
3878 		bitmap_clear_bits(ctl, entry, offset, 1);
3879 		if (entry->bytes == 0)
3880 			free_bitmap(ctl, entry);
3881 	}
3882 out:
3883 	spin_unlock(&ctl->tree_lock);
3884 
3885 	return ino;
3886 }
3887 
3888 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3889 				    struct btrfs_path *path)
3890 {
3891 	struct inode *inode = NULL;
3892 
3893 	spin_lock(&root->ino_cache_lock);
3894 	if (root->ino_cache_inode)
3895 		inode = igrab(root->ino_cache_inode);
3896 	spin_unlock(&root->ino_cache_lock);
3897 	if (inode)
3898 		return inode;
3899 
3900 	inode = __lookup_free_space_inode(root, path, 0);
3901 	if (IS_ERR(inode))
3902 		return inode;
3903 
3904 	spin_lock(&root->ino_cache_lock);
3905 	if (!btrfs_fs_closing(root->fs_info))
3906 		root->ino_cache_inode = igrab(inode);
3907 	spin_unlock(&root->ino_cache_lock);
3908 
3909 	return inode;
3910 }
3911 
3912 int create_free_ino_inode(struct btrfs_root *root,
3913 			  struct btrfs_trans_handle *trans,
3914 			  struct btrfs_path *path)
3915 {
3916 	return __create_free_space_inode(root, trans, path,
3917 					 BTRFS_FREE_INO_OBJECTID, 0);
3918 }
3919 
3920 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3921 {
3922 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3923 	struct btrfs_path *path;
3924 	struct inode *inode;
3925 	int ret = 0;
3926 	u64 root_gen = btrfs_root_generation(&root->root_item);
3927 
3928 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3929 		return 0;
3930 
3931 	/*
3932 	 * If we're unmounting then just return, since this does a search on the
3933 	 * normal root and not the commit root and we could deadlock.
3934 	 */
3935 	if (btrfs_fs_closing(fs_info))
3936 		return 0;
3937 
3938 	path = btrfs_alloc_path();
3939 	if (!path)
3940 		return 0;
3941 
3942 	inode = lookup_free_ino_inode(root, path);
3943 	if (IS_ERR(inode))
3944 		goto out;
3945 
3946 	if (root_gen != BTRFS_I(inode)->generation)
3947 		goto out_put;
3948 
3949 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3950 
3951 	if (ret < 0)
3952 		btrfs_err(fs_info,
3953 			"failed to load free ino cache for root %llu",
3954 			root->root_key.objectid);
3955 out_put:
3956 	iput(inode);
3957 out:
3958 	btrfs_free_path(path);
3959 	return ret;
3960 }
3961 
3962 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3963 			      struct btrfs_trans_handle *trans,
3964 			      struct btrfs_path *path,
3965 			      struct inode *inode)
3966 {
3967 	struct btrfs_fs_info *fs_info = root->fs_info;
3968 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3969 	int ret;
3970 	struct btrfs_io_ctl io_ctl;
3971 	bool release_metadata = true;
3972 
3973 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3974 		return 0;
3975 
3976 	memset(&io_ctl, 0, sizeof(io_ctl));
3977 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3978 	if (!ret) {
3979 		/*
3980 		 * At this point writepages() didn't error out, so our metadata
3981 		 * reservation is released when the writeback finishes, at
3982 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3983 		 * with or without an error.
3984 		 */
3985 		release_metadata = false;
3986 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3987 	}
3988 
3989 	if (ret) {
3990 		if (release_metadata)
3991 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3992 					inode->i_size, true);
3993 		btrfs_debug(fs_info,
3994 			  "failed to write free ino cache for root %llu error %d",
3995 			  root->root_key.objectid, ret);
3996 	}
3997 
3998 	return ret;
3999 }
4000 
4001 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4002 /*
4003  * Use this if you need to make a bitmap or extent entry specifically, it
4004  * doesn't do any of the merging that add_free_space does, this acts a lot like
4005  * how the free space cache loading stuff works, so you can get really weird
4006  * configurations.
4007  */
4008 int test_add_free_space_entry(struct btrfs_block_group *cache,
4009 			      u64 offset, u64 bytes, bool bitmap)
4010 {
4011 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4012 	struct btrfs_free_space *info = NULL, *bitmap_info;
4013 	void *map = NULL;
4014 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4015 	u64 bytes_added;
4016 	int ret;
4017 
4018 again:
4019 	if (!info) {
4020 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4021 		if (!info)
4022 			return -ENOMEM;
4023 	}
4024 
4025 	if (!bitmap) {
4026 		spin_lock(&ctl->tree_lock);
4027 		info->offset = offset;
4028 		info->bytes = bytes;
4029 		info->max_extent_size = 0;
4030 		ret = link_free_space(ctl, info);
4031 		spin_unlock(&ctl->tree_lock);
4032 		if (ret)
4033 			kmem_cache_free(btrfs_free_space_cachep, info);
4034 		return ret;
4035 	}
4036 
4037 	if (!map) {
4038 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4039 		if (!map) {
4040 			kmem_cache_free(btrfs_free_space_cachep, info);
4041 			return -ENOMEM;
4042 		}
4043 	}
4044 
4045 	spin_lock(&ctl->tree_lock);
4046 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4047 					 1, 0);
4048 	if (!bitmap_info) {
4049 		info->bitmap = map;
4050 		map = NULL;
4051 		add_new_bitmap(ctl, info, offset);
4052 		bitmap_info = info;
4053 		info = NULL;
4054 	}
4055 
4056 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4057 					  trim_state);
4058 
4059 	bytes -= bytes_added;
4060 	offset += bytes_added;
4061 	spin_unlock(&ctl->tree_lock);
4062 
4063 	if (bytes)
4064 		goto again;
4065 
4066 	if (info)
4067 		kmem_cache_free(btrfs_free_space_cachep, info);
4068 	if (map)
4069 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4070 	return 0;
4071 }
4072 
4073 /*
4074  * Checks to see if the given range is in the free space cache.  This is really
4075  * just used to check the absence of space, so if there is free space in the
4076  * range at all we will return 1.
4077  */
4078 int test_check_exists(struct btrfs_block_group *cache,
4079 		      u64 offset, u64 bytes)
4080 {
4081 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4082 	struct btrfs_free_space *info;
4083 	int ret = 0;
4084 
4085 	spin_lock(&ctl->tree_lock);
4086 	info = tree_search_offset(ctl, offset, 0, 0);
4087 	if (!info) {
4088 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4089 					  1, 0);
4090 		if (!info)
4091 			goto out;
4092 	}
4093 
4094 have_info:
4095 	if (info->bitmap) {
4096 		u64 bit_off, bit_bytes;
4097 		struct rb_node *n;
4098 		struct btrfs_free_space *tmp;
4099 
4100 		bit_off = offset;
4101 		bit_bytes = ctl->unit;
4102 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4103 		if (!ret) {
4104 			if (bit_off == offset) {
4105 				ret = 1;
4106 				goto out;
4107 			} else if (bit_off > offset &&
4108 				   offset + bytes > bit_off) {
4109 				ret = 1;
4110 				goto out;
4111 			}
4112 		}
4113 
4114 		n = rb_prev(&info->offset_index);
4115 		while (n) {
4116 			tmp = rb_entry(n, struct btrfs_free_space,
4117 				       offset_index);
4118 			if (tmp->offset + tmp->bytes < offset)
4119 				break;
4120 			if (offset + bytes < tmp->offset) {
4121 				n = rb_prev(&tmp->offset_index);
4122 				continue;
4123 			}
4124 			info = tmp;
4125 			goto have_info;
4126 		}
4127 
4128 		n = rb_next(&info->offset_index);
4129 		while (n) {
4130 			tmp = rb_entry(n, struct btrfs_free_space,
4131 				       offset_index);
4132 			if (offset + bytes < tmp->offset)
4133 				break;
4134 			if (tmp->offset + tmp->bytes < offset) {
4135 				n = rb_next(&tmp->offset_index);
4136 				continue;
4137 			}
4138 			info = tmp;
4139 			goto have_info;
4140 		}
4141 
4142 		ret = 0;
4143 		goto out;
4144 	}
4145 
4146 	if (info->offset == offset) {
4147 		ret = 1;
4148 		goto out;
4149 	}
4150 
4151 	if (offset > info->offset && offset < info->offset + info->bytes)
4152 		ret = 1;
4153 out:
4154 	spin_unlock(&ctl->tree_lock);
4155 	return ret;
4156 }
4157 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4158