xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 3df0e680)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "free-space-cache.h"
15 #include "transaction.h"
16 #include "disk-io.h"
17 #include "extent_io.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 
21 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
22 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
23 
24 struct btrfs_trim_range {
25 	u64 start;
26 	u64 bytes;
27 	struct list_head list;
28 };
29 
30 static int link_free_space(struct btrfs_free_space_ctl *ctl,
31 			   struct btrfs_free_space *info);
32 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
33 			      struct btrfs_free_space *info);
34 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
35 			     struct btrfs_trans_handle *trans,
36 			     struct btrfs_io_ctl *io_ctl,
37 			     struct btrfs_path *path);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_fs_info *fs_info = root->fs_info;
44 	struct btrfs_key key;
45 	struct btrfs_key location;
46 	struct btrfs_disk_key disk_key;
47 	struct btrfs_free_space_header *header;
48 	struct extent_buffer *leaf;
49 	struct inode *inode = NULL;
50 	int ret;
51 
52 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
53 	key.offset = offset;
54 	key.type = 0;
55 
56 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
57 	if (ret < 0)
58 		return ERR_PTR(ret);
59 	if (ret > 0) {
60 		btrfs_release_path(path);
61 		return ERR_PTR(-ENOENT);
62 	}
63 
64 	leaf = path->nodes[0];
65 	header = btrfs_item_ptr(leaf, path->slots[0],
66 				struct btrfs_free_space_header);
67 	btrfs_free_space_key(leaf, header, &disk_key);
68 	btrfs_disk_key_to_cpu(&location, &disk_key);
69 	btrfs_release_path(path);
70 
71 	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
72 	if (IS_ERR(inode))
73 		return inode;
74 
75 	mapping_set_gfp_mask(inode->i_mapping,
76 			mapping_gfp_constraint(inode->i_mapping,
77 			~(__GFP_FS | __GFP_HIGHMEM)));
78 
79 	return inode;
80 }
81 
82 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
83 				      struct btrfs_block_group_cache
84 				      *block_group, struct btrfs_path *path)
85 {
86 	struct inode *inode = NULL;
87 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
88 
89 	spin_lock(&block_group->lock);
90 	if (block_group->inode)
91 		inode = igrab(block_group->inode);
92 	spin_unlock(&block_group->lock);
93 	if (inode)
94 		return inode;
95 
96 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
97 					  block_group->key.objectid);
98 	if (IS_ERR(inode))
99 		return inode;
100 
101 	spin_lock(&block_group->lock);
102 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
103 		btrfs_info(fs_info, "Old style space inode found, converting.");
104 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
105 			BTRFS_INODE_NODATACOW;
106 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
107 	}
108 
109 	if (!block_group->iref) {
110 		block_group->inode = igrab(inode);
111 		block_group->iref = 1;
112 	}
113 	spin_unlock(&block_group->lock);
114 
115 	return inode;
116 }
117 
118 static int __create_free_space_inode(struct btrfs_root *root,
119 				     struct btrfs_trans_handle *trans,
120 				     struct btrfs_path *path,
121 				     u64 ino, u64 offset)
122 {
123 	struct btrfs_key key;
124 	struct btrfs_disk_key disk_key;
125 	struct btrfs_free_space_header *header;
126 	struct btrfs_inode_item *inode_item;
127 	struct extent_buffer *leaf;
128 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
129 	int ret;
130 
131 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
132 	if (ret)
133 		return ret;
134 
135 	/* We inline crc's for the free disk space cache */
136 	if (ino != BTRFS_FREE_INO_OBJECTID)
137 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138 
139 	leaf = path->nodes[0];
140 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
141 				    struct btrfs_inode_item);
142 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
143 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
144 			     sizeof(*inode_item));
145 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
146 	btrfs_set_inode_size(leaf, inode_item, 0);
147 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
148 	btrfs_set_inode_uid(leaf, inode_item, 0);
149 	btrfs_set_inode_gid(leaf, inode_item, 0);
150 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
151 	btrfs_set_inode_flags(leaf, inode_item, flags);
152 	btrfs_set_inode_nlink(leaf, inode_item, 1);
153 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
154 	btrfs_set_inode_block_group(leaf, inode_item, offset);
155 	btrfs_mark_buffer_dirty(leaf);
156 	btrfs_release_path(path);
157 
158 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
159 	key.offset = offset;
160 	key.type = 0;
161 	ret = btrfs_insert_empty_item(trans, root, path, &key,
162 				      sizeof(struct btrfs_free_space_header));
163 	if (ret < 0) {
164 		btrfs_release_path(path);
165 		return ret;
166 	}
167 
168 	leaf = path->nodes[0];
169 	header = btrfs_item_ptr(leaf, path->slots[0],
170 				struct btrfs_free_space_header);
171 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
172 	btrfs_set_free_space_key(leaf, header, &disk_key);
173 	btrfs_mark_buffer_dirty(leaf);
174 	btrfs_release_path(path);
175 
176 	return 0;
177 }
178 
179 int create_free_space_inode(struct btrfs_fs_info *fs_info,
180 			    struct btrfs_trans_handle *trans,
181 			    struct btrfs_block_group_cache *block_group,
182 			    struct btrfs_path *path)
183 {
184 	int ret;
185 	u64 ino;
186 
187 	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
188 	if (ret < 0)
189 		return ret;
190 
191 	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
192 					 block_group->key.objectid);
193 }
194 
195 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
196 				       struct btrfs_block_rsv *rsv)
197 {
198 	u64 needed_bytes;
199 	int ret;
200 
201 	/* 1 for slack space, 1 for updating the inode */
202 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
203 		btrfs_calc_trans_metadata_size(fs_info, 1);
204 
205 	spin_lock(&rsv->lock);
206 	if (rsv->reserved < needed_bytes)
207 		ret = -ENOSPC;
208 	else
209 		ret = 0;
210 	spin_unlock(&rsv->lock);
211 	return ret;
212 }
213 
214 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
215 				    struct btrfs_block_group_cache *block_group,
216 				    struct inode *inode)
217 {
218 	struct btrfs_root *root = BTRFS_I(inode)->root;
219 	int ret = 0;
220 	bool locked = false;
221 
222 	if (block_group) {
223 		struct btrfs_path *path = btrfs_alloc_path();
224 
225 		if (!path) {
226 			ret = -ENOMEM;
227 			goto fail;
228 		}
229 		locked = true;
230 		mutex_lock(&trans->transaction->cache_write_mutex);
231 		if (!list_empty(&block_group->io_list)) {
232 			list_del_init(&block_group->io_list);
233 
234 			btrfs_wait_cache_io(trans, block_group, path);
235 			btrfs_put_block_group(block_group);
236 		}
237 
238 		/*
239 		 * now that we've truncated the cache away, its no longer
240 		 * setup or written
241 		 */
242 		spin_lock(&block_group->lock);
243 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
244 		spin_unlock(&block_group->lock);
245 		btrfs_free_path(path);
246 	}
247 
248 	btrfs_i_size_write(BTRFS_I(inode), 0);
249 	truncate_pagecache(inode, 0);
250 
251 	/*
252 	 * We skip the throttling logic for free space cache inodes, so we don't
253 	 * need to check for -EAGAIN.
254 	 */
255 	ret = btrfs_truncate_inode_items(trans, root, inode,
256 					 0, BTRFS_EXTENT_DATA_KEY);
257 	if (ret)
258 		goto fail;
259 
260 	ret = btrfs_update_inode(trans, root, inode);
261 
262 fail:
263 	if (locked)
264 		mutex_unlock(&trans->transaction->cache_write_mutex);
265 	if (ret)
266 		btrfs_abort_transaction(trans, ret);
267 
268 	return ret;
269 }
270 
271 static void readahead_cache(struct inode *inode)
272 {
273 	struct file_ra_state *ra;
274 	unsigned long last_index;
275 
276 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
277 	if (!ra)
278 		return;
279 
280 	file_ra_state_init(ra, inode->i_mapping);
281 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
282 
283 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
284 
285 	kfree(ra);
286 }
287 
288 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
289 		       int write)
290 {
291 	int num_pages;
292 	int check_crcs = 0;
293 
294 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
295 
296 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
297 		check_crcs = 1;
298 
299 	/* Make sure we can fit our crcs and generation into the first page */
300 	if (write && check_crcs &&
301 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
302 		return -ENOSPC;
303 
304 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
305 
306 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
307 	if (!io_ctl->pages)
308 		return -ENOMEM;
309 
310 	io_ctl->num_pages = num_pages;
311 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
312 	io_ctl->check_crcs = check_crcs;
313 	io_ctl->inode = inode;
314 
315 	return 0;
316 }
317 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
318 
319 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
320 {
321 	kfree(io_ctl->pages);
322 	io_ctl->pages = NULL;
323 }
324 
325 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
326 {
327 	if (io_ctl->cur) {
328 		io_ctl->cur = NULL;
329 		io_ctl->orig = NULL;
330 	}
331 }
332 
333 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
334 {
335 	ASSERT(io_ctl->index < io_ctl->num_pages);
336 	io_ctl->page = io_ctl->pages[io_ctl->index++];
337 	io_ctl->cur = page_address(io_ctl->page);
338 	io_ctl->orig = io_ctl->cur;
339 	io_ctl->size = PAGE_SIZE;
340 	if (clear)
341 		clear_page(io_ctl->cur);
342 }
343 
344 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
345 {
346 	int i;
347 
348 	io_ctl_unmap_page(io_ctl);
349 
350 	for (i = 0; i < io_ctl->num_pages; i++) {
351 		if (io_ctl->pages[i]) {
352 			ClearPageChecked(io_ctl->pages[i]);
353 			unlock_page(io_ctl->pages[i]);
354 			put_page(io_ctl->pages[i]);
355 		}
356 	}
357 }
358 
359 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
360 				int uptodate)
361 {
362 	struct page *page;
363 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
364 	int i;
365 
366 	for (i = 0; i < io_ctl->num_pages; i++) {
367 		page = find_or_create_page(inode->i_mapping, i, mask);
368 		if (!page) {
369 			io_ctl_drop_pages(io_ctl);
370 			return -ENOMEM;
371 		}
372 		io_ctl->pages[i] = page;
373 		if (uptodate && !PageUptodate(page)) {
374 			btrfs_readpage(NULL, page);
375 			lock_page(page);
376 			if (!PageUptodate(page)) {
377 				btrfs_err(BTRFS_I(inode)->root->fs_info,
378 					   "error reading free space cache");
379 				io_ctl_drop_pages(io_ctl);
380 				return -EIO;
381 			}
382 		}
383 	}
384 
385 	for (i = 0; i < io_ctl->num_pages; i++) {
386 		clear_page_dirty_for_io(io_ctl->pages[i]);
387 		set_page_extent_mapped(io_ctl->pages[i]);
388 	}
389 
390 	return 0;
391 }
392 
393 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
394 {
395 	__le64 *val;
396 
397 	io_ctl_map_page(io_ctl, 1);
398 
399 	/*
400 	 * Skip the csum areas.  If we don't check crcs then we just have a
401 	 * 64bit chunk at the front of the first page.
402 	 */
403 	if (io_ctl->check_crcs) {
404 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
405 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
406 	} else {
407 		io_ctl->cur += sizeof(u64);
408 		io_ctl->size -= sizeof(u64) * 2;
409 	}
410 
411 	val = io_ctl->cur;
412 	*val = cpu_to_le64(generation);
413 	io_ctl->cur += sizeof(u64);
414 }
415 
416 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
417 {
418 	__le64 *gen;
419 
420 	/*
421 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
422 	 * chunk at the front of the first page.
423 	 */
424 	if (io_ctl->check_crcs) {
425 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
426 		io_ctl->size -= sizeof(u64) +
427 			(sizeof(u32) * io_ctl->num_pages);
428 	} else {
429 		io_ctl->cur += sizeof(u64);
430 		io_ctl->size -= sizeof(u64) * 2;
431 	}
432 
433 	gen = io_ctl->cur;
434 	if (le64_to_cpu(*gen) != generation) {
435 		btrfs_err_rl(io_ctl->fs_info,
436 			"space cache generation (%llu) does not match inode (%llu)",
437 				*gen, generation);
438 		io_ctl_unmap_page(io_ctl);
439 		return -EIO;
440 	}
441 	io_ctl->cur += sizeof(u64);
442 	return 0;
443 }
444 
445 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
446 {
447 	u32 *tmp;
448 	u32 crc = ~(u32)0;
449 	unsigned offset = 0;
450 
451 	if (!io_ctl->check_crcs) {
452 		io_ctl_unmap_page(io_ctl);
453 		return;
454 	}
455 
456 	if (index == 0)
457 		offset = sizeof(u32) * io_ctl->num_pages;
458 
459 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
460 			      PAGE_SIZE - offset);
461 	btrfs_csum_final(crc, (u8 *)&crc);
462 	io_ctl_unmap_page(io_ctl);
463 	tmp = page_address(io_ctl->pages[0]);
464 	tmp += index;
465 	*tmp = crc;
466 }
467 
468 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
469 {
470 	u32 *tmp, val;
471 	u32 crc = ~(u32)0;
472 	unsigned offset = 0;
473 
474 	if (!io_ctl->check_crcs) {
475 		io_ctl_map_page(io_ctl, 0);
476 		return 0;
477 	}
478 
479 	if (index == 0)
480 		offset = sizeof(u32) * io_ctl->num_pages;
481 
482 	tmp = page_address(io_ctl->pages[0]);
483 	tmp += index;
484 	val = *tmp;
485 
486 	io_ctl_map_page(io_ctl, 0);
487 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
488 			      PAGE_SIZE - offset);
489 	btrfs_csum_final(crc, (u8 *)&crc);
490 	if (val != crc) {
491 		btrfs_err_rl(io_ctl->fs_info,
492 			"csum mismatch on free space cache");
493 		io_ctl_unmap_page(io_ctl);
494 		return -EIO;
495 	}
496 
497 	return 0;
498 }
499 
500 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
501 			    void *bitmap)
502 {
503 	struct btrfs_free_space_entry *entry;
504 
505 	if (!io_ctl->cur)
506 		return -ENOSPC;
507 
508 	entry = io_ctl->cur;
509 	entry->offset = cpu_to_le64(offset);
510 	entry->bytes = cpu_to_le64(bytes);
511 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
512 		BTRFS_FREE_SPACE_EXTENT;
513 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
514 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
515 
516 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
517 		return 0;
518 
519 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
520 
521 	/* No more pages to map */
522 	if (io_ctl->index >= io_ctl->num_pages)
523 		return 0;
524 
525 	/* map the next page */
526 	io_ctl_map_page(io_ctl, 1);
527 	return 0;
528 }
529 
530 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
531 {
532 	if (!io_ctl->cur)
533 		return -ENOSPC;
534 
535 	/*
536 	 * If we aren't at the start of the current page, unmap this one and
537 	 * map the next one if there is any left.
538 	 */
539 	if (io_ctl->cur != io_ctl->orig) {
540 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
541 		if (io_ctl->index >= io_ctl->num_pages)
542 			return -ENOSPC;
543 		io_ctl_map_page(io_ctl, 0);
544 	}
545 
546 	copy_page(io_ctl->cur, bitmap);
547 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
548 	if (io_ctl->index < io_ctl->num_pages)
549 		io_ctl_map_page(io_ctl, 0);
550 	return 0;
551 }
552 
553 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
554 {
555 	/*
556 	 * If we're not on the boundary we know we've modified the page and we
557 	 * need to crc the page.
558 	 */
559 	if (io_ctl->cur != io_ctl->orig)
560 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
561 	else
562 		io_ctl_unmap_page(io_ctl);
563 
564 	while (io_ctl->index < io_ctl->num_pages) {
565 		io_ctl_map_page(io_ctl, 1);
566 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
567 	}
568 }
569 
570 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
571 			    struct btrfs_free_space *entry, u8 *type)
572 {
573 	struct btrfs_free_space_entry *e;
574 	int ret;
575 
576 	if (!io_ctl->cur) {
577 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
578 		if (ret)
579 			return ret;
580 	}
581 
582 	e = io_ctl->cur;
583 	entry->offset = le64_to_cpu(e->offset);
584 	entry->bytes = le64_to_cpu(e->bytes);
585 	*type = e->type;
586 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
587 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
588 
589 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
590 		return 0;
591 
592 	io_ctl_unmap_page(io_ctl);
593 
594 	return 0;
595 }
596 
597 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
598 			      struct btrfs_free_space *entry)
599 {
600 	int ret;
601 
602 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
603 	if (ret)
604 		return ret;
605 
606 	copy_page(entry->bitmap, io_ctl->cur);
607 	io_ctl_unmap_page(io_ctl);
608 
609 	return 0;
610 }
611 
612 /*
613  * Since we attach pinned extents after the fact we can have contiguous sections
614  * of free space that are split up in entries.  This poses a problem with the
615  * tree logging stuff since it could have allocated across what appears to be 2
616  * entries since we would have merged the entries when adding the pinned extents
617  * back to the free space cache.  So run through the space cache that we just
618  * loaded and merge contiguous entries.  This will make the log replay stuff not
619  * blow up and it will make for nicer allocator behavior.
620  */
621 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
622 {
623 	struct btrfs_free_space *e, *prev = NULL;
624 	struct rb_node *n;
625 
626 again:
627 	spin_lock(&ctl->tree_lock);
628 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
629 		e = rb_entry(n, struct btrfs_free_space, offset_index);
630 		if (!prev)
631 			goto next;
632 		if (e->bitmap || prev->bitmap)
633 			goto next;
634 		if (prev->offset + prev->bytes == e->offset) {
635 			unlink_free_space(ctl, prev);
636 			unlink_free_space(ctl, e);
637 			prev->bytes += e->bytes;
638 			kmem_cache_free(btrfs_free_space_cachep, e);
639 			link_free_space(ctl, prev);
640 			prev = NULL;
641 			spin_unlock(&ctl->tree_lock);
642 			goto again;
643 		}
644 next:
645 		prev = e;
646 	}
647 	spin_unlock(&ctl->tree_lock);
648 }
649 
650 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
651 				   struct btrfs_free_space_ctl *ctl,
652 				   struct btrfs_path *path, u64 offset)
653 {
654 	struct btrfs_fs_info *fs_info = root->fs_info;
655 	struct btrfs_free_space_header *header;
656 	struct extent_buffer *leaf;
657 	struct btrfs_io_ctl io_ctl;
658 	struct btrfs_key key;
659 	struct btrfs_free_space *e, *n;
660 	LIST_HEAD(bitmaps);
661 	u64 num_entries;
662 	u64 num_bitmaps;
663 	u64 generation;
664 	u8 type;
665 	int ret = 0;
666 
667 	/* Nothing in the space cache, goodbye */
668 	if (!i_size_read(inode))
669 		return 0;
670 
671 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
672 	key.offset = offset;
673 	key.type = 0;
674 
675 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
676 	if (ret < 0)
677 		return 0;
678 	else if (ret > 0) {
679 		btrfs_release_path(path);
680 		return 0;
681 	}
682 
683 	ret = -1;
684 
685 	leaf = path->nodes[0];
686 	header = btrfs_item_ptr(leaf, path->slots[0],
687 				struct btrfs_free_space_header);
688 	num_entries = btrfs_free_space_entries(leaf, header);
689 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
690 	generation = btrfs_free_space_generation(leaf, header);
691 	btrfs_release_path(path);
692 
693 	if (!BTRFS_I(inode)->generation) {
694 		btrfs_info(fs_info,
695 			   "the free space cache file (%llu) is invalid, skip it",
696 			   offset);
697 		return 0;
698 	}
699 
700 	if (BTRFS_I(inode)->generation != generation) {
701 		btrfs_err(fs_info,
702 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
703 			  BTRFS_I(inode)->generation, generation);
704 		return 0;
705 	}
706 
707 	if (!num_entries)
708 		return 0;
709 
710 	ret = io_ctl_init(&io_ctl, inode, 0);
711 	if (ret)
712 		return ret;
713 
714 	readahead_cache(inode);
715 
716 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
717 	if (ret)
718 		goto out;
719 
720 	ret = io_ctl_check_crc(&io_ctl, 0);
721 	if (ret)
722 		goto free_cache;
723 
724 	ret = io_ctl_check_generation(&io_ctl, generation);
725 	if (ret)
726 		goto free_cache;
727 
728 	while (num_entries) {
729 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
730 				      GFP_NOFS);
731 		if (!e)
732 			goto free_cache;
733 
734 		ret = io_ctl_read_entry(&io_ctl, e, &type);
735 		if (ret) {
736 			kmem_cache_free(btrfs_free_space_cachep, e);
737 			goto free_cache;
738 		}
739 
740 		if (!e->bytes) {
741 			kmem_cache_free(btrfs_free_space_cachep, e);
742 			goto free_cache;
743 		}
744 
745 		if (type == BTRFS_FREE_SPACE_EXTENT) {
746 			spin_lock(&ctl->tree_lock);
747 			ret = link_free_space(ctl, e);
748 			spin_unlock(&ctl->tree_lock);
749 			if (ret) {
750 				btrfs_err(fs_info,
751 					"Duplicate entries in free space cache, dumping");
752 				kmem_cache_free(btrfs_free_space_cachep, e);
753 				goto free_cache;
754 			}
755 		} else {
756 			ASSERT(num_bitmaps);
757 			num_bitmaps--;
758 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
759 			if (!e->bitmap) {
760 				kmem_cache_free(
761 					btrfs_free_space_cachep, e);
762 				goto free_cache;
763 			}
764 			spin_lock(&ctl->tree_lock);
765 			ret = link_free_space(ctl, e);
766 			ctl->total_bitmaps++;
767 			ctl->op->recalc_thresholds(ctl);
768 			spin_unlock(&ctl->tree_lock);
769 			if (ret) {
770 				btrfs_err(fs_info,
771 					"Duplicate entries in free space cache, dumping");
772 				kmem_cache_free(btrfs_free_space_cachep, e);
773 				goto free_cache;
774 			}
775 			list_add_tail(&e->list, &bitmaps);
776 		}
777 
778 		num_entries--;
779 	}
780 
781 	io_ctl_unmap_page(&io_ctl);
782 
783 	/*
784 	 * We add the bitmaps at the end of the entries in order that
785 	 * the bitmap entries are added to the cache.
786 	 */
787 	list_for_each_entry_safe(e, n, &bitmaps, list) {
788 		list_del_init(&e->list);
789 		ret = io_ctl_read_bitmap(&io_ctl, e);
790 		if (ret)
791 			goto free_cache;
792 	}
793 
794 	io_ctl_drop_pages(&io_ctl);
795 	merge_space_tree(ctl);
796 	ret = 1;
797 out:
798 	io_ctl_free(&io_ctl);
799 	return ret;
800 free_cache:
801 	io_ctl_drop_pages(&io_ctl);
802 	__btrfs_remove_free_space_cache(ctl);
803 	goto out;
804 }
805 
806 int load_free_space_cache(struct btrfs_fs_info *fs_info,
807 			  struct btrfs_block_group_cache *block_group)
808 {
809 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
810 	struct inode *inode;
811 	struct btrfs_path *path;
812 	int ret = 0;
813 	bool matched;
814 	u64 used = btrfs_block_group_used(&block_group->item);
815 
816 	/*
817 	 * If this block group has been marked to be cleared for one reason or
818 	 * another then we can't trust the on disk cache, so just return.
819 	 */
820 	spin_lock(&block_group->lock);
821 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
822 		spin_unlock(&block_group->lock);
823 		return 0;
824 	}
825 	spin_unlock(&block_group->lock);
826 
827 	path = btrfs_alloc_path();
828 	if (!path)
829 		return 0;
830 	path->search_commit_root = 1;
831 	path->skip_locking = 1;
832 
833 	inode = lookup_free_space_inode(fs_info, block_group, path);
834 	if (IS_ERR(inode)) {
835 		btrfs_free_path(path);
836 		return 0;
837 	}
838 
839 	/* We may have converted the inode and made the cache invalid. */
840 	spin_lock(&block_group->lock);
841 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
842 		spin_unlock(&block_group->lock);
843 		btrfs_free_path(path);
844 		goto out;
845 	}
846 	spin_unlock(&block_group->lock);
847 
848 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
849 				      path, block_group->key.objectid);
850 	btrfs_free_path(path);
851 	if (ret <= 0)
852 		goto out;
853 
854 	spin_lock(&ctl->tree_lock);
855 	matched = (ctl->free_space == (block_group->key.offset - used -
856 				       block_group->bytes_super));
857 	spin_unlock(&ctl->tree_lock);
858 
859 	if (!matched) {
860 		__btrfs_remove_free_space_cache(ctl);
861 		btrfs_warn(fs_info,
862 			   "block group %llu has wrong amount of free space",
863 			   block_group->key.objectid);
864 		ret = -1;
865 	}
866 out:
867 	if (ret < 0) {
868 		/* This cache is bogus, make sure it gets cleared */
869 		spin_lock(&block_group->lock);
870 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
871 		spin_unlock(&block_group->lock);
872 		ret = 0;
873 
874 		btrfs_warn(fs_info,
875 			   "failed to load free space cache for block group %llu, rebuilding it now",
876 			   block_group->key.objectid);
877 	}
878 
879 	iput(inode);
880 	return ret;
881 }
882 
883 static noinline_for_stack
884 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
885 			      struct btrfs_free_space_ctl *ctl,
886 			      struct btrfs_block_group_cache *block_group,
887 			      int *entries, int *bitmaps,
888 			      struct list_head *bitmap_list)
889 {
890 	int ret;
891 	struct btrfs_free_cluster *cluster = NULL;
892 	struct btrfs_free_cluster *cluster_locked = NULL;
893 	struct rb_node *node = rb_first(&ctl->free_space_offset);
894 	struct btrfs_trim_range *trim_entry;
895 
896 	/* Get the cluster for this block_group if it exists */
897 	if (block_group && !list_empty(&block_group->cluster_list)) {
898 		cluster = list_entry(block_group->cluster_list.next,
899 				     struct btrfs_free_cluster,
900 				     block_group_list);
901 	}
902 
903 	if (!node && cluster) {
904 		cluster_locked = cluster;
905 		spin_lock(&cluster_locked->lock);
906 		node = rb_first(&cluster->root);
907 		cluster = NULL;
908 	}
909 
910 	/* Write out the extent entries */
911 	while (node) {
912 		struct btrfs_free_space *e;
913 
914 		e = rb_entry(node, struct btrfs_free_space, offset_index);
915 		*entries += 1;
916 
917 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
918 				       e->bitmap);
919 		if (ret)
920 			goto fail;
921 
922 		if (e->bitmap) {
923 			list_add_tail(&e->list, bitmap_list);
924 			*bitmaps += 1;
925 		}
926 		node = rb_next(node);
927 		if (!node && cluster) {
928 			node = rb_first(&cluster->root);
929 			cluster_locked = cluster;
930 			spin_lock(&cluster_locked->lock);
931 			cluster = NULL;
932 		}
933 	}
934 	if (cluster_locked) {
935 		spin_unlock(&cluster_locked->lock);
936 		cluster_locked = NULL;
937 	}
938 
939 	/*
940 	 * Make sure we don't miss any range that was removed from our rbtree
941 	 * because trimming is running. Otherwise after a umount+mount (or crash
942 	 * after committing the transaction) we would leak free space and get
943 	 * an inconsistent free space cache report from fsck.
944 	 */
945 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
946 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
947 				       trim_entry->bytes, NULL);
948 		if (ret)
949 			goto fail;
950 		*entries += 1;
951 	}
952 
953 	return 0;
954 fail:
955 	if (cluster_locked)
956 		spin_unlock(&cluster_locked->lock);
957 	return -ENOSPC;
958 }
959 
960 static noinline_for_stack int
961 update_cache_item(struct btrfs_trans_handle *trans,
962 		  struct btrfs_root *root,
963 		  struct inode *inode,
964 		  struct btrfs_path *path, u64 offset,
965 		  int entries, int bitmaps)
966 {
967 	struct btrfs_key key;
968 	struct btrfs_free_space_header *header;
969 	struct extent_buffer *leaf;
970 	int ret;
971 
972 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
973 	key.offset = offset;
974 	key.type = 0;
975 
976 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
977 	if (ret < 0) {
978 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
979 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
980 		goto fail;
981 	}
982 	leaf = path->nodes[0];
983 	if (ret > 0) {
984 		struct btrfs_key found_key;
985 		ASSERT(path->slots[0]);
986 		path->slots[0]--;
987 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
988 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
989 		    found_key.offset != offset) {
990 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
991 					 inode->i_size - 1,
992 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
993 					 NULL);
994 			btrfs_release_path(path);
995 			goto fail;
996 		}
997 	}
998 
999 	BTRFS_I(inode)->generation = trans->transid;
1000 	header = btrfs_item_ptr(leaf, path->slots[0],
1001 				struct btrfs_free_space_header);
1002 	btrfs_set_free_space_entries(leaf, header, entries);
1003 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1004 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1005 	btrfs_mark_buffer_dirty(leaf);
1006 	btrfs_release_path(path);
1007 
1008 	return 0;
1009 
1010 fail:
1011 	return -1;
1012 }
1013 
1014 static noinline_for_stack int
1015 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1016 			    struct btrfs_block_group_cache *block_group,
1017 			    struct btrfs_io_ctl *io_ctl,
1018 			    int *entries)
1019 {
1020 	u64 start, extent_start, extent_end, len;
1021 	struct extent_io_tree *unpin = NULL;
1022 	int ret;
1023 
1024 	if (!block_group)
1025 		return 0;
1026 
1027 	/*
1028 	 * We want to add any pinned extents to our free space cache
1029 	 * so we don't leak the space
1030 	 *
1031 	 * We shouldn't have switched the pinned extents yet so this is the
1032 	 * right one
1033 	 */
1034 	unpin = fs_info->pinned_extents;
1035 
1036 	start = block_group->key.objectid;
1037 
1038 	while (start < block_group->key.objectid + block_group->key.offset) {
1039 		ret = find_first_extent_bit(unpin, start,
1040 					    &extent_start, &extent_end,
1041 					    EXTENT_DIRTY, NULL);
1042 		if (ret)
1043 			return 0;
1044 
1045 		/* This pinned extent is out of our range */
1046 		if (extent_start >= block_group->key.objectid +
1047 		    block_group->key.offset)
1048 			return 0;
1049 
1050 		extent_start = max(extent_start, start);
1051 		extent_end = min(block_group->key.objectid +
1052 				 block_group->key.offset, extent_end + 1);
1053 		len = extent_end - extent_start;
1054 
1055 		*entries += 1;
1056 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1057 		if (ret)
1058 			return -ENOSPC;
1059 
1060 		start = extent_end;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static noinline_for_stack int
1067 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1068 {
1069 	struct btrfs_free_space *entry, *next;
1070 	int ret;
1071 
1072 	/* Write out the bitmaps */
1073 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1074 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1075 		if (ret)
1076 			return -ENOSPC;
1077 		list_del_init(&entry->list);
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int flush_dirty_cache(struct inode *inode)
1084 {
1085 	int ret;
1086 
1087 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1088 	if (ret)
1089 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1090 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1091 
1092 	return ret;
1093 }
1094 
1095 static void noinline_for_stack
1096 cleanup_bitmap_list(struct list_head *bitmap_list)
1097 {
1098 	struct btrfs_free_space *entry, *next;
1099 
1100 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1101 		list_del_init(&entry->list);
1102 }
1103 
1104 static void noinline_for_stack
1105 cleanup_write_cache_enospc(struct inode *inode,
1106 			   struct btrfs_io_ctl *io_ctl,
1107 			   struct extent_state **cached_state)
1108 {
1109 	io_ctl_drop_pages(io_ctl);
1110 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1111 			     i_size_read(inode) - 1, cached_state);
1112 }
1113 
1114 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1115 				 struct btrfs_trans_handle *trans,
1116 				 struct btrfs_block_group_cache *block_group,
1117 				 struct btrfs_io_ctl *io_ctl,
1118 				 struct btrfs_path *path, u64 offset)
1119 {
1120 	int ret;
1121 	struct inode *inode = io_ctl->inode;
1122 
1123 	if (!inode)
1124 		return 0;
1125 
1126 	/* Flush the dirty pages in the cache file. */
1127 	ret = flush_dirty_cache(inode);
1128 	if (ret)
1129 		goto out;
1130 
1131 	/* Update the cache item to tell everyone this cache file is valid. */
1132 	ret = update_cache_item(trans, root, inode, path, offset,
1133 				io_ctl->entries, io_ctl->bitmaps);
1134 out:
1135 	io_ctl_free(io_ctl);
1136 	if (ret) {
1137 		invalidate_inode_pages2(inode->i_mapping);
1138 		BTRFS_I(inode)->generation = 0;
1139 		if (block_group) {
1140 #ifdef DEBUG
1141 			btrfs_err(root->fs_info,
1142 				  "failed to write free space cache for block group %llu",
1143 				  block_group->key.objectid);
1144 #endif
1145 		}
1146 	}
1147 	btrfs_update_inode(trans, root, inode);
1148 
1149 	if (block_group) {
1150 		/* the dirty list is protected by the dirty_bgs_lock */
1151 		spin_lock(&trans->transaction->dirty_bgs_lock);
1152 
1153 		/* the disk_cache_state is protected by the block group lock */
1154 		spin_lock(&block_group->lock);
1155 
1156 		/*
1157 		 * only mark this as written if we didn't get put back on
1158 		 * the dirty list while waiting for IO.   Otherwise our
1159 		 * cache state won't be right, and we won't get written again
1160 		 */
1161 		if (!ret && list_empty(&block_group->dirty_list))
1162 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1163 		else if (ret)
1164 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1165 
1166 		spin_unlock(&block_group->lock);
1167 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1168 		io_ctl->inode = NULL;
1169 		iput(inode);
1170 	}
1171 
1172 	return ret;
1173 
1174 }
1175 
1176 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1177 				    struct btrfs_trans_handle *trans,
1178 				    struct btrfs_io_ctl *io_ctl,
1179 				    struct btrfs_path *path)
1180 {
1181 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1182 }
1183 
1184 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1185 			struct btrfs_block_group_cache *block_group,
1186 			struct btrfs_path *path)
1187 {
1188 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1189 				     block_group, &block_group->io_ctl,
1190 				     path, block_group->key.objectid);
1191 }
1192 
1193 /**
1194  * __btrfs_write_out_cache - write out cached info to an inode
1195  * @root - the root the inode belongs to
1196  * @ctl - the free space cache we are going to write out
1197  * @block_group - the block_group for this cache if it belongs to a block_group
1198  * @trans - the trans handle
1199  *
1200  * This function writes out a free space cache struct to disk for quick recovery
1201  * on mount.  This will return 0 if it was successful in writing the cache out,
1202  * or an errno if it was not.
1203  */
1204 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1205 				   struct btrfs_free_space_ctl *ctl,
1206 				   struct btrfs_block_group_cache *block_group,
1207 				   struct btrfs_io_ctl *io_ctl,
1208 				   struct btrfs_trans_handle *trans)
1209 {
1210 	struct btrfs_fs_info *fs_info = root->fs_info;
1211 	struct extent_state *cached_state = NULL;
1212 	LIST_HEAD(bitmap_list);
1213 	int entries = 0;
1214 	int bitmaps = 0;
1215 	int ret;
1216 	int must_iput = 0;
1217 
1218 	if (!i_size_read(inode))
1219 		return -EIO;
1220 
1221 	WARN_ON(io_ctl->pages);
1222 	ret = io_ctl_init(io_ctl, inode, 1);
1223 	if (ret)
1224 		return ret;
1225 
1226 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1227 		down_write(&block_group->data_rwsem);
1228 		spin_lock(&block_group->lock);
1229 		if (block_group->delalloc_bytes) {
1230 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1231 			spin_unlock(&block_group->lock);
1232 			up_write(&block_group->data_rwsem);
1233 			BTRFS_I(inode)->generation = 0;
1234 			ret = 0;
1235 			must_iput = 1;
1236 			goto out;
1237 		}
1238 		spin_unlock(&block_group->lock);
1239 	}
1240 
1241 	/* Lock all pages first so we can lock the extent safely. */
1242 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1243 	if (ret)
1244 		goto out_unlock;
1245 
1246 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1247 			 &cached_state);
1248 
1249 	io_ctl_set_generation(io_ctl, trans->transid);
1250 
1251 	mutex_lock(&ctl->cache_writeout_mutex);
1252 	/* Write out the extent entries in the free space cache */
1253 	spin_lock(&ctl->tree_lock);
1254 	ret = write_cache_extent_entries(io_ctl, ctl,
1255 					 block_group, &entries, &bitmaps,
1256 					 &bitmap_list);
1257 	if (ret)
1258 		goto out_nospc_locked;
1259 
1260 	/*
1261 	 * Some spaces that are freed in the current transaction are pinned,
1262 	 * they will be added into free space cache after the transaction is
1263 	 * committed, we shouldn't lose them.
1264 	 *
1265 	 * If this changes while we are working we'll get added back to
1266 	 * the dirty list and redo it.  No locking needed
1267 	 */
1268 	ret = write_pinned_extent_entries(fs_info, block_group,
1269 					  io_ctl, &entries);
1270 	if (ret)
1271 		goto out_nospc_locked;
1272 
1273 	/*
1274 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1275 	 * locked while doing it because a concurrent trim can be manipulating
1276 	 * or freeing the bitmap.
1277 	 */
1278 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1279 	spin_unlock(&ctl->tree_lock);
1280 	mutex_unlock(&ctl->cache_writeout_mutex);
1281 	if (ret)
1282 		goto out_nospc;
1283 
1284 	/* Zero out the rest of the pages just to make sure */
1285 	io_ctl_zero_remaining_pages(io_ctl);
1286 
1287 	/* Everything is written out, now we dirty the pages in the file. */
1288 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1289 				i_size_read(inode), &cached_state);
1290 	if (ret)
1291 		goto out_nospc;
1292 
1293 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1294 		up_write(&block_group->data_rwsem);
1295 	/*
1296 	 * Release the pages and unlock the extent, we will flush
1297 	 * them out later
1298 	 */
1299 	io_ctl_drop_pages(io_ctl);
1300 
1301 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1302 			     i_size_read(inode) - 1, &cached_state);
1303 
1304 	/*
1305 	 * at this point the pages are under IO and we're happy,
1306 	 * The caller is responsible for waiting on them and updating the
1307 	 * the cache and the inode
1308 	 */
1309 	io_ctl->entries = entries;
1310 	io_ctl->bitmaps = bitmaps;
1311 
1312 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1313 	if (ret)
1314 		goto out;
1315 
1316 	return 0;
1317 
1318 out:
1319 	io_ctl->inode = NULL;
1320 	io_ctl_free(io_ctl);
1321 	if (ret) {
1322 		invalidate_inode_pages2(inode->i_mapping);
1323 		BTRFS_I(inode)->generation = 0;
1324 	}
1325 	btrfs_update_inode(trans, root, inode);
1326 	if (must_iput)
1327 		iput(inode);
1328 	return ret;
1329 
1330 out_nospc_locked:
1331 	cleanup_bitmap_list(&bitmap_list);
1332 	spin_unlock(&ctl->tree_lock);
1333 	mutex_unlock(&ctl->cache_writeout_mutex);
1334 
1335 out_nospc:
1336 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1337 
1338 out_unlock:
1339 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1340 		up_write(&block_group->data_rwsem);
1341 
1342 	goto out;
1343 }
1344 
1345 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1346 			  struct btrfs_trans_handle *trans,
1347 			  struct btrfs_block_group_cache *block_group,
1348 			  struct btrfs_path *path)
1349 {
1350 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1351 	struct inode *inode;
1352 	int ret = 0;
1353 
1354 	spin_lock(&block_group->lock);
1355 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1356 		spin_unlock(&block_group->lock);
1357 		return 0;
1358 	}
1359 	spin_unlock(&block_group->lock);
1360 
1361 	inode = lookup_free_space_inode(fs_info, block_group, path);
1362 	if (IS_ERR(inode))
1363 		return 0;
1364 
1365 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1366 				block_group, &block_group->io_ctl, trans);
1367 	if (ret) {
1368 #ifdef DEBUG
1369 		btrfs_err(fs_info,
1370 			  "failed to write free space cache for block group %llu",
1371 			  block_group->key.objectid);
1372 #endif
1373 		spin_lock(&block_group->lock);
1374 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1375 		spin_unlock(&block_group->lock);
1376 
1377 		block_group->io_ctl.inode = NULL;
1378 		iput(inode);
1379 	}
1380 
1381 	/*
1382 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1383 	 * to wait for IO and put the inode
1384 	 */
1385 
1386 	return ret;
1387 }
1388 
1389 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1390 					  u64 offset)
1391 {
1392 	ASSERT(offset >= bitmap_start);
1393 	offset -= bitmap_start;
1394 	return (unsigned long)(div_u64(offset, unit));
1395 }
1396 
1397 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1398 {
1399 	return (unsigned long)(div_u64(bytes, unit));
1400 }
1401 
1402 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1403 				   u64 offset)
1404 {
1405 	u64 bitmap_start;
1406 	u64 bytes_per_bitmap;
1407 
1408 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1409 	bitmap_start = offset - ctl->start;
1410 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1411 	bitmap_start *= bytes_per_bitmap;
1412 	bitmap_start += ctl->start;
1413 
1414 	return bitmap_start;
1415 }
1416 
1417 static int tree_insert_offset(struct rb_root *root, u64 offset,
1418 			      struct rb_node *node, int bitmap)
1419 {
1420 	struct rb_node **p = &root->rb_node;
1421 	struct rb_node *parent = NULL;
1422 	struct btrfs_free_space *info;
1423 
1424 	while (*p) {
1425 		parent = *p;
1426 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1427 
1428 		if (offset < info->offset) {
1429 			p = &(*p)->rb_left;
1430 		} else if (offset > info->offset) {
1431 			p = &(*p)->rb_right;
1432 		} else {
1433 			/*
1434 			 * we could have a bitmap entry and an extent entry
1435 			 * share the same offset.  If this is the case, we want
1436 			 * the extent entry to always be found first if we do a
1437 			 * linear search through the tree, since we want to have
1438 			 * the quickest allocation time, and allocating from an
1439 			 * extent is faster than allocating from a bitmap.  So
1440 			 * if we're inserting a bitmap and we find an entry at
1441 			 * this offset, we want to go right, or after this entry
1442 			 * logically.  If we are inserting an extent and we've
1443 			 * found a bitmap, we want to go left, or before
1444 			 * logically.
1445 			 */
1446 			if (bitmap) {
1447 				if (info->bitmap) {
1448 					WARN_ON_ONCE(1);
1449 					return -EEXIST;
1450 				}
1451 				p = &(*p)->rb_right;
1452 			} else {
1453 				if (!info->bitmap) {
1454 					WARN_ON_ONCE(1);
1455 					return -EEXIST;
1456 				}
1457 				p = &(*p)->rb_left;
1458 			}
1459 		}
1460 	}
1461 
1462 	rb_link_node(node, parent, p);
1463 	rb_insert_color(node, root);
1464 
1465 	return 0;
1466 }
1467 
1468 /*
1469  * searches the tree for the given offset.
1470  *
1471  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1472  * want a section that has at least bytes size and comes at or after the given
1473  * offset.
1474  */
1475 static struct btrfs_free_space *
1476 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1477 		   u64 offset, int bitmap_only, int fuzzy)
1478 {
1479 	struct rb_node *n = ctl->free_space_offset.rb_node;
1480 	struct btrfs_free_space *entry, *prev = NULL;
1481 
1482 	/* find entry that is closest to the 'offset' */
1483 	while (1) {
1484 		if (!n) {
1485 			entry = NULL;
1486 			break;
1487 		}
1488 
1489 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1490 		prev = entry;
1491 
1492 		if (offset < entry->offset)
1493 			n = n->rb_left;
1494 		else if (offset > entry->offset)
1495 			n = n->rb_right;
1496 		else
1497 			break;
1498 	}
1499 
1500 	if (bitmap_only) {
1501 		if (!entry)
1502 			return NULL;
1503 		if (entry->bitmap)
1504 			return entry;
1505 
1506 		/*
1507 		 * bitmap entry and extent entry may share same offset,
1508 		 * in that case, bitmap entry comes after extent entry.
1509 		 */
1510 		n = rb_next(n);
1511 		if (!n)
1512 			return NULL;
1513 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1514 		if (entry->offset != offset)
1515 			return NULL;
1516 
1517 		WARN_ON(!entry->bitmap);
1518 		return entry;
1519 	} else if (entry) {
1520 		if (entry->bitmap) {
1521 			/*
1522 			 * if previous extent entry covers the offset,
1523 			 * we should return it instead of the bitmap entry
1524 			 */
1525 			n = rb_prev(&entry->offset_index);
1526 			if (n) {
1527 				prev = rb_entry(n, struct btrfs_free_space,
1528 						offset_index);
1529 				if (!prev->bitmap &&
1530 				    prev->offset + prev->bytes > offset)
1531 					entry = prev;
1532 			}
1533 		}
1534 		return entry;
1535 	}
1536 
1537 	if (!prev)
1538 		return NULL;
1539 
1540 	/* find last entry before the 'offset' */
1541 	entry = prev;
1542 	if (entry->offset > offset) {
1543 		n = rb_prev(&entry->offset_index);
1544 		if (n) {
1545 			entry = rb_entry(n, struct btrfs_free_space,
1546 					offset_index);
1547 			ASSERT(entry->offset <= offset);
1548 		} else {
1549 			if (fuzzy)
1550 				return entry;
1551 			else
1552 				return NULL;
1553 		}
1554 	}
1555 
1556 	if (entry->bitmap) {
1557 		n = rb_prev(&entry->offset_index);
1558 		if (n) {
1559 			prev = rb_entry(n, struct btrfs_free_space,
1560 					offset_index);
1561 			if (!prev->bitmap &&
1562 			    prev->offset + prev->bytes > offset)
1563 				return prev;
1564 		}
1565 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1566 			return entry;
1567 	} else if (entry->offset + entry->bytes > offset)
1568 		return entry;
1569 
1570 	if (!fuzzy)
1571 		return NULL;
1572 
1573 	while (1) {
1574 		if (entry->bitmap) {
1575 			if (entry->offset + BITS_PER_BITMAP *
1576 			    ctl->unit > offset)
1577 				break;
1578 		} else {
1579 			if (entry->offset + entry->bytes > offset)
1580 				break;
1581 		}
1582 
1583 		n = rb_next(&entry->offset_index);
1584 		if (!n)
1585 			return NULL;
1586 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1587 	}
1588 	return entry;
1589 }
1590 
1591 static inline void
1592 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1593 		    struct btrfs_free_space *info)
1594 {
1595 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1596 	ctl->free_extents--;
1597 }
1598 
1599 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1600 			      struct btrfs_free_space *info)
1601 {
1602 	__unlink_free_space(ctl, info);
1603 	ctl->free_space -= info->bytes;
1604 }
1605 
1606 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1607 			   struct btrfs_free_space *info)
1608 {
1609 	int ret = 0;
1610 
1611 	ASSERT(info->bytes || info->bitmap);
1612 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1613 				 &info->offset_index, (info->bitmap != NULL));
1614 	if (ret)
1615 		return ret;
1616 
1617 	ctl->free_space += info->bytes;
1618 	ctl->free_extents++;
1619 	return ret;
1620 }
1621 
1622 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1623 {
1624 	struct btrfs_block_group_cache *block_group = ctl->private;
1625 	u64 max_bytes;
1626 	u64 bitmap_bytes;
1627 	u64 extent_bytes;
1628 	u64 size = block_group->key.offset;
1629 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1630 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1631 
1632 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1633 
1634 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1635 
1636 	/*
1637 	 * The goal is to keep the total amount of memory used per 1gb of space
1638 	 * at or below 32k, so we need to adjust how much memory we allow to be
1639 	 * used by extent based free space tracking
1640 	 */
1641 	if (size < SZ_1G)
1642 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1643 	else
1644 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1645 
1646 	/*
1647 	 * we want to account for 1 more bitmap than what we have so we can make
1648 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1649 	 * we add more bitmaps.
1650 	 */
1651 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1652 
1653 	if (bitmap_bytes >= max_bytes) {
1654 		ctl->extents_thresh = 0;
1655 		return;
1656 	}
1657 
1658 	/*
1659 	 * we want the extent entry threshold to always be at most 1/2 the max
1660 	 * bytes we can have, or whatever is less than that.
1661 	 */
1662 	extent_bytes = max_bytes - bitmap_bytes;
1663 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1664 
1665 	ctl->extents_thresh =
1666 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1667 }
1668 
1669 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1670 				       struct btrfs_free_space *info,
1671 				       u64 offset, u64 bytes)
1672 {
1673 	unsigned long start, count;
1674 
1675 	start = offset_to_bit(info->offset, ctl->unit, offset);
1676 	count = bytes_to_bits(bytes, ctl->unit);
1677 	ASSERT(start + count <= BITS_PER_BITMAP);
1678 
1679 	bitmap_clear(info->bitmap, start, count);
1680 
1681 	info->bytes -= bytes;
1682 }
1683 
1684 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1685 			      struct btrfs_free_space *info, u64 offset,
1686 			      u64 bytes)
1687 {
1688 	__bitmap_clear_bits(ctl, info, offset, bytes);
1689 	ctl->free_space -= bytes;
1690 }
1691 
1692 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1693 			    struct btrfs_free_space *info, u64 offset,
1694 			    u64 bytes)
1695 {
1696 	unsigned long start, count;
1697 
1698 	start = offset_to_bit(info->offset, ctl->unit, offset);
1699 	count = bytes_to_bits(bytes, ctl->unit);
1700 	ASSERT(start + count <= BITS_PER_BITMAP);
1701 
1702 	bitmap_set(info->bitmap, start, count);
1703 
1704 	info->bytes += bytes;
1705 	ctl->free_space += bytes;
1706 }
1707 
1708 /*
1709  * If we can not find suitable extent, we will use bytes to record
1710  * the size of the max extent.
1711  */
1712 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1713 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1714 			 u64 *bytes, bool for_alloc)
1715 {
1716 	unsigned long found_bits = 0;
1717 	unsigned long max_bits = 0;
1718 	unsigned long bits, i;
1719 	unsigned long next_zero;
1720 	unsigned long extent_bits;
1721 
1722 	/*
1723 	 * Skip searching the bitmap if we don't have a contiguous section that
1724 	 * is large enough for this allocation.
1725 	 */
1726 	if (for_alloc &&
1727 	    bitmap_info->max_extent_size &&
1728 	    bitmap_info->max_extent_size < *bytes) {
1729 		*bytes = bitmap_info->max_extent_size;
1730 		return -1;
1731 	}
1732 
1733 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1734 			  max_t(u64, *offset, bitmap_info->offset));
1735 	bits = bytes_to_bits(*bytes, ctl->unit);
1736 
1737 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1738 		if (for_alloc && bits == 1) {
1739 			found_bits = 1;
1740 			break;
1741 		}
1742 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1743 					       BITS_PER_BITMAP, i);
1744 		extent_bits = next_zero - i;
1745 		if (extent_bits >= bits) {
1746 			found_bits = extent_bits;
1747 			break;
1748 		} else if (extent_bits > max_bits) {
1749 			max_bits = extent_bits;
1750 		}
1751 		i = next_zero;
1752 	}
1753 
1754 	if (found_bits) {
1755 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1756 		*bytes = (u64)(found_bits) * ctl->unit;
1757 		return 0;
1758 	}
1759 
1760 	*bytes = (u64)(max_bits) * ctl->unit;
1761 	bitmap_info->max_extent_size = *bytes;
1762 	return -1;
1763 }
1764 
1765 /* Cache the size of the max extent in bytes */
1766 static struct btrfs_free_space *
1767 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1768 		unsigned long align, u64 *max_extent_size)
1769 {
1770 	struct btrfs_free_space *entry;
1771 	struct rb_node *node;
1772 	u64 tmp;
1773 	u64 align_off;
1774 	int ret;
1775 
1776 	if (!ctl->free_space_offset.rb_node)
1777 		goto out;
1778 
1779 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1780 	if (!entry)
1781 		goto out;
1782 
1783 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1784 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1785 		if (entry->bytes < *bytes) {
1786 			if (entry->bytes > *max_extent_size)
1787 				*max_extent_size = entry->bytes;
1788 			continue;
1789 		}
1790 
1791 		/* make sure the space returned is big enough
1792 		 * to match our requested alignment
1793 		 */
1794 		if (*bytes >= align) {
1795 			tmp = entry->offset - ctl->start + align - 1;
1796 			tmp = div64_u64(tmp, align);
1797 			tmp = tmp * align + ctl->start;
1798 			align_off = tmp - entry->offset;
1799 		} else {
1800 			align_off = 0;
1801 			tmp = entry->offset;
1802 		}
1803 
1804 		if (entry->bytes < *bytes + align_off) {
1805 			if (entry->bytes > *max_extent_size)
1806 				*max_extent_size = entry->bytes;
1807 			continue;
1808 		}
1809 
1810 		if (entry->bitmap) {
1811 			u64 size = *bytes;
1812 
1813 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1814 			if (!ret) {
1815 				*offset = tmp;
1816 				*bytes = size;
1817 				return entry;
1818 			} else if (size > *max_extent_size) {
1819 				*max_extent_size = size;
1820 			}
1821 			continue;
1822 		}
1823 
1824 		*offset = tmp;
1825 		*bytes = entry->bytes - align_off;
1826 		return entry;
1827 	}
1828 out:
1829 	return NULL;
1830 }
1831 
1832 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1833 			   struct btrfs_free_space *info, u64 offset)
1834 {
1835 	info->offset = offset_to_bitmap(ctl, offset);
1836 	info->bytes = 0;
1837 	INIT_LIST_HEAD(&info->list);
1838 	link_free_space(ctl, info);
1839 	ctl->total_bitmaps++;
1840 
1841 	ctl->op->recalc_thresholds(ctl);
1842 }
1843 
1844 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1845 			struct btrfs_free_space *bitmap_info)
1846 {
1847 	unlink_free_space(ctl, bitmap_info);
1848 	kfree(bitmap_info->bitmap);
1849 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1850 	ctl->total_bitmaps--;
1851 	ctl->op->recalc_thresholds(ctl);
1852 }
1853 
1854 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1855 			      struct btrfs_free_space *bitmap_info,
1856 			      u64 *offset, u64 *bytes)
1857 {
1858 	u64 end;
1859 	u64 search_start, search_bytes;
1860 	int ret;
1861 
1862 again:
1863 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1864 
1865 	/*
1866 	 * We need to search for bits in this bitmap.  We could only cover some
1867 	 * of the extent in this bitmap thanks to how we add space, so we need
1868 	 * to search for as much as it as we can and clear that amount, and then
1869 	 * go searching for the next bit.
1870 	 */
1871 	search_start = *offset;
1872 	search_bytes = ctl->unit;
1873 	search_bytes = min(search_bytes, end - search_start + 1);
1874 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1875 			    false);
1876 	if (ret < 0 || search_start != *offset)
1877 		return -EINVAL;
1878 
1879 	/* We may have found more bits than what we need */
1880 	search_bytes = min(search_bytes, *bytes);
1881 
1882 	/* Cannot clear past the end of the bitmap */
1883 	search_bytes = min(search_bytes, end - search_start + 1);
1884 
1885 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1886 	*offset += search_bytes;
1887 	*bytes -= search_bytes;
1888 
1889 	if (*bytes) {
1890 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1891 		if (!bitmap_info->bytes)
1892 			free_bitmap(ctl, bitmap_info);
1893 
1894 		/*
1895 		 * no entry after this bitmap, but we still have bytes to
1896 		 * remove, so something has gone wrong.
1897 		 */
1898 		if (!next)
1899 			return -EINVAL;
1900 
1901 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1902 				       offset_index);
1903 
1904 		/*
1905 		 * if the next entry isn't a bitmap we need to return to let the
1906 		 * extent stuff do its work.
1907 		 */
1908 		if (!bitmap_info->bitmap)
1909 			return -EAGAIN;
1910 
1911 		/*
1912 		 * Ok the next item is a bitmap, but it may not actually hold
1913 		 * the information for the rest of this free space stuff, so
1914 		 * look for it, and if we don't find it return so we can try
1915 		 * everything over again.
1916 		 */
1917 		search_start = *offset;
1918 		search_bytes = ctl->unit;
1919 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1920 				    &search_bytes, false);
1921 		if (ret < 0 || search_start != *offset)
1922 			return -EAGAIN;
1923 
1924 		goto again;
1925 	} else if (!bitmap_info->bytes)
1926 		free_bitmap(ctl, bitmap_info);
1927 
1928 	return 0;
1929 }
1930 
1931 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1932 			       struct btrfs_free_space *info, u64 offset,
1933 			       u64 bytes)
1934 {
1935 	u64 bytes_to_set = 0;
1936 	u64 end;
1937 
1938 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1939 
1940 	bytes_to_set = min(end - offset, bytes);
1941 
1942 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1943 
1944 	/*
1945 	 * We set some bytes, we have no idea what the max extent size is
1946 	 * anymore.
1947 	 */
1948 	info->max_extent_size = 0;
1949 
1950 	return bytes_to_set;
1951 
1952 }
1953 
1954 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1955 		      struct btrfs_free_space *info)
1956 {
1957 	struct btrfs_block_group_cache *block_group = ctl->private;
1958 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1959 	bool forced = false;
1960 
1961 #ifdef CONFIG_BTRFS_DEBUG
1962 	if (btrfs_should_fragment_free_space(block_group))
1963 		forced = true;
1964 #endif
1965 
1966 	/*
1967 	 * If we are below the extents threshold then we can add this as an
1968 	 * extent, and don't have to deal with the bitmap
1969 	 */
1970 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1971 		/*
1972 		 * If this block group has some small extents we don't want to
1973 		 * use up all of our free slots in the cache with them, we want
1974 		 * to reserve them to larger extents, however if we have plenty
1975 		 * of cache left then go ahead an dadd them, no sense in adding
1976 		 * the overhead of a bitmap if we don't have to.
1977 		 */
1978 		if (info->bytes <= fs_info->sectorsize * 4) {
1979 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1980 				return false;
1981 		} else {
1982 			return false;
1983 		}
1984 	}
1985 
1986 	/*
1987 	 * The original block groups from mkfs can be really small, like 8
1988 	 * megabytes, so don't bother with a bitmap for those entries.  However
1989 	 * some block groups can be smaller than what a bitmap would cover but
1990 	 * are still large enough that they could overflow the 32k memory limit,
1991 	 * so allow those block groups to still be allowed to have a bitmap
1992 	 * entry.
1993 	 */
1994 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1995 		return false;
1996 
1997 	return true;
1998 }
1999 
2000 static const struct btrfs_free_space_op free_space_op = {
2001 	.recalc_thresholds	= recalculate_thresholds,
2002 	.use_bitmap		= use_bitmap,
2003 };
2004 
2005 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2006 			      struct btrfs_free_space *info)
2007 {
2008 	struct btrfs_free_space *bitmap_info;
2009 	struct btrfs_block_group_cache *block_group = NULL;
2010 	int added = 0;
2011 	u64 bytes, offset, bytes_added;
2012 	int ret;
2013 
2014 	bytes = info->bytes;
2015 	offset = info->offset;
2016 
2017 	if (!ctl->op->use_bitmap(ctl, info))
2018 		return 0;
2019 
2020 	if (ctl->op == &free_space_op)
2021 		block_group = ctl->private;
2022 again:
2023 	/*
2024 	 * Since we link bitmaps right into the cluster we need to see if we
2025 	 * have a cluster here, and if so and it has our bitmap we need to add
2026 	 * the free space to that bitmap.
2027 	 */
2028 	if (block_group && !list_empty(&block_group->cluster_list)) {
2029 		struct btrfs_free_cluster *cluster;
2030 		struct rb_node *node;
2031 		struct btrfs_free_space *entry;
2032 
2033 		cluster = list_entry(block_group->cluster_list.next,
2034 				     struct btrfs_free_cluster,
2035 				     block_group_list);
2036 		spin_lock(&cluster->lock);
2037 		node = rb_first(&cluster->root);
2038 		if (!node) {
2039 			spin_unlock(&cluster->lock);
2040 			goto no_cluster_bitmap;
2041 		}
2042 
2043 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2044 		if (!entry->bitmap) {
2045 			spin_unlock(&cluster->lock);
2046 			goto no_cluster_bitmap;
2047 		}
2048 
2049 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2050 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2051 							  offset, bytes);
2052 			bytes -= bytes_added;
2053 			offset += bytes_added;
2054 		}
2055 		spin_unlock(&cluster->lock);
2056 		if (!bytes) {
2057 			ret = 1;
2058 			goto out;
2059 		}
2060 	}
2061 
2062 no_cluster_bitmap:
2063 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2064 					 1, 0);
2065 	if (!bitmap_info) {
2066 		ASSERT(added == 0);
2067 		goto new_bitmap;
2068 	}
2069 
2070 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2071 	bytes -= bytes_added;
2072 	offset += bytes_added;
2073 	added = 0;
2074 
2075 	if (!bytes) {
2076 		ret = 1;
2077 		goto out;
2078 	} else
2079 		goto again;
2080 
2081 new_bitmap:
2082 	if (info && info->bitmap) {
2083 		add_new_bitmap(ctl, info, offset);
2084 		added = 1;
2085 		info = NULL;
2086 		goto again;
2087 	} else {
2088 		spin_unlock(&ctl->tree_lock);
2089 
2090 		/* no pre-allocated info, allocate a new one */
2091 		if (!info) {
2092 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2093 						 GFP_NOFS);
2094 			if (!info) {
2095 				spin_lock(&ctl->tree_lock);
2096 				ret = -ENOMEM;
2097 				goto out;
2098 			}
2099 		}
2100 
2101 		/* allocate the bitmap */
2102 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2103 		spin_lock(&ctl->tree_lock);
2104 		if (!info->bitmap) {
2105 			ret = -ENOMEM;
2106 			goto out;
2107 		}
2108 		goto again;
2109 	}
2110 
2111 out:
2112 	if (info) {
2113 		if (info->bitmap)
2114 			kfree(info->bitmap);
2115 		kmem_cache_free(btrfs_free_space_cachep, info);
2116 	}
2117 
2118 	return ret;
2119 }
2120 
2121 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2122 			  struct btrfs_free_space *info, bool update_stat)
2123 {
2124 	struct btrfs_free_space *left_info;
2125 	struct btrfs_free_space *right_info;
2126 	bool merged = false;
2127 	u64 offset = info->offset;
2128 	u64 bytes = info->bytes;
2129 
2130 	/*
2131 	 * first we want to see if there is free space adjacent to the range we
2132 	 * are adding, if there is remove that struct and add a new one to
2133 	 * cover the entire range
2134 	 */
2135 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2136 	if (right_info && rb_prev(&right_info->offset_index))
2137 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2138 				     struct btrfs_free_space, offset_index);
2139 	else
2140 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2141 
2142 	if (right_info && !right_info->bitmap) {
2143 		if (update_stat)
2144 			unlink_free_space(ctl, right_info);
2145 		else
2146 			__unlink_free_space(ctl, right_info);
2147 		info->bytes += right_info->bytes;
2148 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2149 		merged = true;
2150 	}
2151 
2152 	if (left_info && !left_info->bitmap &&
2153 	    left_info->offset + left_info->bytes == offset) {
2154 		if (update_stat)
2155 			unlink_free_space(ctl, left_info);
2156 		else
2157 			__unlink_free_space(ctl, left_info);
2158 		info->offset = left_info->offset;
2159 		info->bytes += left_info->bytes;
2160 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2161 		merged = true;
2162 	}
2163 
2164 	return merged;
2165 }
2166 
2167 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2168 				     struct btrfs_free_space *info,
2169 				     bool update_stat)
2170 {
2171 	struct btrfs_free_space *bitmap;
2172 	unsigned long i;
2173 	unsigned long j;
2174 	const u64 end = info->offset + info->bytes;
2175 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2176 	u64 bytes;
2177 
2178 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2179 	if (!bitmap)
2180 		return false;
2181 
2182 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2183 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2184 	if (j == i)
2185 		return false;
2186 	bytes = (j - i) * ctl->unit;
2187 	info->bytes += bytes;
2188 
2189 	if (update_stat)
2190 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2191 	else
2192 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2193 
2194 	if (!bitmap->bytes)
2195 		free_bitmap(ctl, bitmap);
2196 
2197 	return true;
2198 }
2199 
2200 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2201 				       struct btrfs_free_space *info,
2202 				       bool update_stat)
2203 {
2204 	struct btrfs_free_space *bitmap;
2205 	u64 bitmap_offset;
2206 	unsigned long i;
2207 	unsigned long j;
2208 	unsigned long prev_j;
2209 	u64 bytes;
2210 
2211 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2212 	/* If we're on a boundary, try the previous logical bitmap. */
2213 	if (bitmap_offset == info->offset) {
2214 		if (info->offset == 0)
2215 			return false;
2216 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2217 	}
2218 
2219 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2220 	if (!bitmap)
2221 		return false;
2222 
2223 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2224 	j = 0;
2225 	prev_j = (unsigned long)-1;
2226 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2227 		if (j > i)
2228 			break;
2229 		prev_j = j;
2230 	}
2231 	if (prev_j == i)
2232 		return false;
2233 
2234 	if (prev_j == (unsigned long)-1)
2235 		bytes = (i + 1) * ctl->unit;
2236 	else
2237 		bytes = (i - prev_j) * ctl->unit;
2238 
2239 	info->offset -= bytes;
2240 	info->bytes += bytes;
2241 
2242 	if (update_stat)
2243 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2244 	else
2245 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2246 
2247 	if (!bitmap->bytes)
2248 		free_bitmap(ctl, bitmap);
2249 
2250 	return true;
2251 }
2252 
2253 /*
2254  * We prefer always to allocate from extent entries, both for clustered and
2255  * non-clustered allocation requests. So when attempting to add a new extent
2256  * entry, try to see if there's adjacent free space in bitmap entries, and if
2257  * there is, migrate that space from the bitmaps to the extent.
2258  * Like this we get better chances of satisfying space allocation requests
2259  * because we attempt to satisfy them based on a single cache entry, and never
2260  * on 2 or more entries - even if the entries represent a contiguous free space
2261  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2262  * ends).
2263  */
2264 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2265 			      struct btrfs_free_space *info,
2266 			      bool update_stat)
2267 {
2268 	/*
2269 	 * Only work with disconnected entries, as we can change their offset,
2270 	 * and must be extent entries.
2271 	 */
2272 	ASSERT(!info->bitmap);
2273 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2274 
2275 	if (ctl->total_bitmaps > 0) {
2276 		bool stole_end;
2277 		bool stole_front = false;
2278 
2279 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2280 		if (ctl->total_bitmaps > 0)
2281 			stole_front = steal_from_bitmap_to_front(ctl, info,
2282 								 update_stat);
2283 
2284 		if (stole_end || stole_front)
2285 			try_merge_free_space(ctl, info, update_stat);
2286 	}
2287 }
2288 
2289 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2290 			   struct btrfs_free_space_ctl *ctl,
2291 			   u64 offset, u64 bytes)
2292 {
2293 	struct btrfs_free_space *info;
2294 	int ret = 0;
2295 
2296 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2297 	if (!info)
2298 		return -ENOMEM;
2299 
2300 	info->offset = offset;
2301 	info->bytes = bytes;
2302 	RB_CLEAR_NODE(&info->offset_index);
2303 
2304 	spin_lock(&ctl->tree_lock);
2305 
2306 	if (try_merge_free_space(ctl, info, true))
2307 		goto link;
2308 
2309 	/*
2310 	 * There was no extent directly to the left or right of this new
2311 	 * extent then we know we're going to have to allocate a new extent, so
2312 	 * before we do that see if we need to drop this into a bitmap
2313 	 */
2314 	ret = insert_into_bitmap(ctl, info);
2315 	if (ret < 0) {
2316 		goto out;
2317 	} else if (ret) {
2318 		ret = 0;
2319 		goto out;
2320 	}
2321 link:
2322 	/*
2323 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2324 	 * going to add the new free space to existing bitmap entries - because
2325 	 * that would mean unnecessary work that would be reverted. Therefore
2326 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2327 	 */
2328 	steal_from_bitmap(ctl, info, true);
2329 
2330 	ret = link_free_space(ctl, info);
2331 	if (ret)
2332 		kmem_cache_free(btrfs_free_space_cachep, info);
2333 out:
2334 	spin_unlock(&ctl->tree_lock);
2335 
2336 	if (ret) {
2337 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2338 		ASSERT(ret != -EEXIST);
2339 	}
2340 
2341 	return ret;
2342 }
2343 
2344 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2345 			    u64 offset, u64 bytes)
2346 {
2347 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2348 	struct btrfs_free_space *info;
2349 	int ret;
2350 	bool re_search = false;
2351 
2352 	spin_lock(&ctl->tree_lock);
2353 
2354 again:
2355 	ret = 0;
2356 	if (!bytes)
2357 		goto out_lock;
2358 
2359 	info = tree_search_offset(ctl, offset, 0, 0);
2360 	if (!info) {
2361 		/*
2362 		 * oops didn't find an extent that matched the space we wanted
2363 		 * to remove, look for a bitmap instead
2364 		 */
2365 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2366 					  1, 0);
2367 		if (!info) {
2368 			/*
2369 			 * If we found a partial bit of our free space in a
2370 			 * bitmap but then couldn't find the other part this may
2371 			 * be a problem, so WARN about it.
2372 			 */
2373 			WARN_ON(re_search);
2374 			goto out_lock;
2375 		}
2376 	}
2377 
2378 	re_search = false;
2379 	if (!info->bitmap) {
2380 		unlink_free_space(ctl, info);
2381 		if (offset == info->offset) {
2382 			u64 to_free = min(bytes, info->bytes);
2383 
2384 			info->bytes -= to_free;
2385 			info->offset += to_free;
2386 			if (info->bytes) {
2387 				ret = link_free_space(ctl, info);
2388 				WARN_ON(ret);
2389 			} else {
2390 				kmem_cache_free(btrfs_free_space_cachep, info);
2391 			}
2392 
2393 			offset += to_free;
2394 			bytes -= to_free;
2395 			goto again;
2396 		} else {
2397 			u64 old_end = info->bytes + info->offset;
2398 
2399 			info->bytes = offset - info->offset;
2400 			ret = link_free_space(ctl, info);
2401 			WARN_ON(ret);
2402 			if (ret)
2403 				goto out_lock;
2404 
2405 			/* Not enough bytes in this entry to satisfy us */
2406 			if (old_end < offset + bytes) {
2407 				bytes -= old_end - offset;
2408 				offset = old_end;
2409 				goto again;
2410 			} else if (old_end == offset + bytes) {
2411 				/* all done */
2412 				goto out_lock;
2413 			}
2414 			spin_unlock(&ctl->tree_lock);
2415 
2416 			ret = btrfs_add_free_space(block_group, offset + bytes,
2417 						   old_end - (offset + bytes));
2418 			WARN_ON(ret);
2419 			goto out;
2420 		}
2421 	}
2422 
2423 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2424 	if (ret == -EAGAIN) {
2425 		re_search = true;
2426 		goto again;
2427 	}
2428 out_lock:
2429 	spin_unlock(&ctl->tree_lock);
2430 out:
2431 	return ret;
2432 }
2433 
2434 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2435 			   u64 bytes)
2436 {
2437 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2438 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2439 	struct btrfs_free_space *info;
2440 	struct rb_node *n;
2441 	int count = 0;
2442 
2443 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2444 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2445 		if (info->bytes >= bytes && !block_group->ro)
2446 			count++;
2447 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2448 			   info->offset, info->bytes,
2449 		       (info->bitmap) ? "yes" : "no");
2450 	}
2451 	btrfs_info(fs_info, "block group has cluster?: %s",
2452 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2453 	btrfs_info(fs_info,
2454 		   "%d blocks of free space at or bigger than bytes is", count);
2455 }
2456 
2457 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2458 {
2459 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2460 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2461 
2462 	spin_lock_init(&ctl->tree_lock);
2463 	ctl->unit = fs_info->sectorsize;
2464 	ctl->start = block_group->key.objectid;
2465 	ctl->private = block_group;
2466 	ctl->op = &free_space_op;
2467 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2468 	mutex_init(&ctl->cache_writeout_mutex);
2469 
2470 	/*
2471 	 * we only want to have 32k of ram per block group for keeping
2472 	 * track of free space, and if we pass 1/2 of that we want to
2473 	 * start converting things over to using bitmaps
2474 	 */
2475 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2476 }
2477 
2478 /*
2479  * for a given cluster, put all of its extents back into the free
2480  * space cache.  If the block group passed doesn't match the block group
2481  * pointed to by the cluster, someone else raced in and freed the
2482  * cluster already.  In that case, we just return without changing anything
2483  */
2484 static int
2485 __btrfs_return_cluster_to_free_space(
2486 			     struct btrfs_block_group_cache *block_group,
2487 			     struct btrfs_free_cluster *cluster)
2488 {
2489 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2490 	struct btrfs_free_space *entry;
2491 	struct rb_node *node;
2492 
2493 	spin_lock(&cluster->lock);
2494 	if (cluster->block_group != block_group)
2495 		goto out;
2496 
2497 	cluster->block_group = NULL;
2498 	cluster->window_start = 0;
2499 	list_del_init(&cluster->block_group_list);
2500 
2501 	node = rb_first(&cluster->root);
2502 	while (node) {
2503 		bool bitmap;
2504 
2505 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2506 		node = rb_next(&entry->offset_index);
2507 		rb_erase(&entry->offset_index, &cluster->root);
2508 		RB_CLEAR_NODE(&entry->offset_index);
2509 
2510 		bitmap = (entry->bitmap != NULL);
2511 		if (!bitmap) {
2512 			try_merge_free_space(ctl, entry, false);
2513 			steal_from_bitmap(ctl, entry, false);
2514 		}
2515 		tree_insert_offset(&ctl->free_space_offset,
2516 				   entry->offset, &entry->offset_index, bitmap);
2517 	}
2518 	cluster->root = RB_ROOT;
2519 
2520 out:
2521 	spin_unlock(&cluster->lock);
2522 	btrfs_put_block_group(block_group);
2523 	return 0;
2524 }
2525 
2526 static void __btrfs_remove_free_space_cache_locked(
2527 				struct btrfs_free_space_ctl *ctl)
2528 {
2529 	struct btrfs_free_space *info;
2530 	struct rb_node *node;
2531 
2532 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2533 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2534 		if (!info->bitmap) {
2535 			unlink_free_space(ctl, info);
2536 			kmem_cache_free(btrfs_free_space_cachep, info);
2537 		} else {
2538 			free_bitmap(ctl, info);
2539 		}
2540 
2541 		cond_resched_lock(&ctl->tree_lock);
2542 	}
2543 }
2544 
2545 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2546 {
2547 	spin_lock(&ctl->tree_lock);
2548 	__btrfs_remove_free_space_cache_locked(ctl);
2549 	spin_unlock(&ctl->tree_lock);
2550 }
2551 
2552 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2553 {
2554 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2555 	struct btrfs_free_cluster *cluster;
2556 	struct list_head *head;
2557 
2558 	spin_lock(&ctl->tree_lock);
2559 	while ((head = block_group->cluster_list.next) !=
2560 	       &block_group->cluster_list) {
2561 		cluster = list_entry(head, struct btrfs_free_cluster,
2562 				     block_group_list);
2563 
2564 		WARN_ON(cluster->block_group != block_group);
2565 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2566 
2567 		cond_resched_lock(&ctl->tree_lock);
2568 	}
2569 	__btrfs_remove_free_space_cache_locked(ctl);
2570 	spin_unlock(&ctl->tree_lock);
2571 
2572 }
2573 
2574 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2575 			       u64 offset, u64 bytes, u64 empty_size,
2576 			       u64 *max_extent_size)
2577 {
2578 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2579 	struct btrfs_free_space *entry = NULL;
2580 	u64 bytes_search = bytes + empty_size;
2581 	u64 ret = 0;
2582 	u64 align_gap = 0;
2583 	u64 align_gap_len = 0;
2584 
2585 	spin_lock(&ctl->tree_lock);
2586 	entry = find_free_space(ctl, &offset, &bytes_search,
2587 				block_group->full_stripe_len, max_extent_size);
2588 	if (!entry)
2589 		goto out;
2590 
2591 	ret = offset;
2592 	if (entry->bitmap) {
2593 		bitmap_clear_bits(ctl, entry, offset, bytes);
2594 		if (!entry->bytes)
2595 			free_bitmap(ctl, entry);
2596 	} else {
2597 		unlink_free_space(ctl, entry);
2598 		align_gap_len = offset - entry->offset;
2599 		align_gap = entry->offset;
2600 
2601 		entry->offset = offset + bytes;
2602 		WARN_ON(entry->bytes < bytes + align_gap_len);
2603 
2604 		entry->bytes -= bytes + align_gap_len;
2605 		if (!entry->bytes)
2606 			kmem_cache_free(btrfs_free_space_cachep, entry);
2607 		else
2608 			link_free_space(ctl, entry);
2609 	}
2610 out:
2611 	spin_unlock(&ctl->tree_lock);
2612 
2613 	if (align_gap_len)
2614 		__btrfs_add_free_space(block_group->fs_info, ctl,
2615 				       align_gap, align_gap_len);
2616 	return ret;
2617 }
2618 
2619 /*
2620  * given a cluster, put all of its extents back into the free space
2621  * cache.  If a block group is passed, this function will only free
2622  * a cluster that belongs to the passed block group.
2623  *
2624  * Otherwise, it'll get a reference on the block group pointed to by the
2625  * cluster and remove the cluster from it.
2626  */
2627 int btrfs_return_cluster_to_free_space(
2628 			       struct btrfs_block_group_cache *block_group,
2629 			       struct btrfs_free_cluster *cluster)
2630 {
2631 	struct btrfs_free_space_ctl *ctl;
2632 	int ret;
2633 
2634 	/* first, get a safe pointer to the block group */
2635 	spin_lock(&cluster->lock);
2636 	if (!block_group) {
2637 		block_group = cluster->block_group;
2638 		if (!block_group) {
2639 			spin_unlock(&cluster->lock);
2640 			return 0;
2641 		}
2642 	} else if (cluster->block_group != block_group) {
2643 		/* someone else has already freed it don't redo their work */
2644 		spin_unlock(&cluster->lock);
2645 		return 0;
2646 	}
2647 	atomic_inc(&block_group->count);
2648 	spin_unlock(&cluster->lock);
2649 
2650 	ctl = block_group->free_space_ctl;
2651 
2652 	/* now return any extents the cluster had on it */
2653 	spin_lock(&ctl->tree_lock);
2654 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2655 	spin_unlock(&ctl->tree_lock);
2656 
2657 	/* finally drop our ref */
2658 	btrfs_put_block_group(block_group);
2659 	return ret;
2660 }
2661 
2662 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2663 				   struct btrfs_free_cluster *cluster,
2664 				   struct btrfs_free_space *entry,
2665 				   u64 bytes, u64 min_start,
2666 				   u64 *max_extent_size)
2667 {
2668 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2669 	int err;
2670 	u64 search_start = cluster->window_start;
2671 	u64 search_bytes = bytes;
2672 	u64 ret = 0;
2673 
2674 	search_start = min_start;
2675 	search_bytes = bytes;
2676 
2677 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2678 	if (err) {
2679 		if (search_bytes > *max_extent_size)
2680 			*max_extent_size = search_bytes;
2681 		return 0;
2682 	}
2683 
2684 	ret = search_start;
2685 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2686 
2687 	return ret;
2688 }
2689 
2690 /*
2691  * given a cluster, try to allocate 'bytes' from it, returns 0
2692  * if it couldn't find anything suitably large, or a logical disk offset
2693  * if things worked out
2694  */
2695 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2696 			     struct btrfs_free_cluster *cluster, u64 bytes,
2697 			     u64 min_start, u64 *max_extent_size)
2698 {
2699 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2700 	struct btrfs_free_space *entry = NULL;
2701 	struct rb_node *node;
2702 	u64 ret = 0;
2703 
2704 	spin_lock(&cluster->lock);
2705 	if (bytes > cluster->max_size)
2706 		goto out;
2707 
2708 	if (cluster->block_group != block_group)
2709 		goto out;
2710 
2711 	node = rb_first(&cluster->root);
2712 	if (!node)
2713 		goto out;
2714 
2715 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2716 	while (1) {
2717 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2718 			*max_extent_size = entry->bytes;
2719 
2720 		if (entry->bytes < bytes ||
2721 		    (!entry->bitmap && entry->offset < min_start)) {
2722 			node = rb_next(&entry->offset_index);
2723 			if (!node)
2724 				break;
2725 			entry = rb_entry(node, struct btrfs_free_space,
2726 					 offset_index);
2727 			continue;
2728 		}
2729 
2730 		if (entry->bitmap) {
2731 			ret = btrfs_alloc_from_bitmap(block_group,
2732 						      cluster, entry, bytes,
2733 						      cluster->window_start,
2734 						      max_extent_size);
2735 			if (ret == 0) {
2736 				node = rb_next(&entry->offset_index);
2737 				if (!node)
2738 					break;
2739 				entry = rb_entry(node, struct btrfs_free_space,
2740 						 offset_index);
2741 				continue;
2742 			}
2743 			cluster->window_start += bytes;
2744 		} else {
2745 			ret = entry->offset;
2746 
2747 			entry->offset += bytes;
2748 			entry->bytes -= bytes;
2749 		}
2750 
2751 		if (entry->bytes == 0)
2752 			rb_erase(&entry->offset_index, &cluster->root);
2753 		break;
2754 	}
2755 out:
2756 	spin_unlock(&cluster->lock);
2757 
2758 	if (!ret)
2759 		return 0;
2760 
2761 	spin_lock(&ctl->tree_lock);
2762 
2763 	ctl->free_space -= bytes;
2764 	if (entry->bytes == 0) {
2765 		ctl->free_extents--;
2766 		if (entry->bitmap) {
2767 			kfree(entry->bitmap);
2768 			ctl->total_bitmaps--;
2769 			ctl->op->recalc_thresholds(ctl);
2770 		}
2771 		kmem_cache_free(btrfs_free_space_cachep, entry);
2772 	}
2773 
2774 	spin_unlock(&ctl->tree_lock);
2775 
2776 	return ret;
2777 }
2778 
2779 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2780 				struct btrfs_free_space *entry,
2781 				struct btrfs_free_cluster *cluster,
2782 				u64 offset, u64 bytes,
2783 				u64 cont1_bytes, u64 min_bytes)
2784 {
2785 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2786 	unsigned long next_zero;
2787 	unsigned long i;
2788 	unsigned long want_bits;
2789 	unsigned long min_bits;
2790 	unsigned long found_bits;
2791 	unsigned long max_bits = 0;
2792 	unsigned long start = 0;
2793 	unsigned long total_found = 0;
2794 	int ret;
2795 
2796 	i = offset_to_bit(entry->offset, ctl->unit,
2797 			  max_t(u64, offset, entry->offset));
2798 	want_bits = bytes_to_bits(bytes, ctl->unit);
2799 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2800 
2801 	/*
2802 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2803 	 * fragmented.
2804 	 */
2805 	if (entry->max_extent_size &&
2806 	    entry->max_extent_size < cont1_bytes)
2807 		return -ENOSPC;
2808 again:
2809 	found_bits = 0;
2810 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2811 		next_zero = find_next_zero_bit(entry->bitmap,
2812 					       BITS_PER_BITMAP, i);
2813 		if (next_zero - i >= min_bits) {
2814 			found_bits = next_zero - i;
2815 			if (found_bits > max_bits)
2816 				max_bits = found_bits;
2817 			break;
2818 		}
2819 		if (next_zero - i > max_bits)
2820 			max_bits = next_zero - i;
2821 		i = next_zero;
2822 	}
2823 
2824 	if (!found_bits) {
2825 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2826 		return -ENOSPC;
2827 	}
2828 
2829 	if (!total_found) {
2830 		start = i;
2831 		cluster->max_size = 0;
2832 	}
2833 
2834 	total_found += found_bits;
2835 
2836 	if (cluster->max_size < found_bits * ctl->unit)
2837 		cluster->max_size = found_bits * ctl->unit;
2838 
2839 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2840 		i = next_zero + 1;
2841 		goto again;
2842 	}
2843 
2844 	cluster->window_start = start * ctl->unit + entry->offset;
2845 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2846 	ret = tree_insert_offset(&cluster->root, entry->offset,
2847 				 &entry->offset_index, 1);
2848 	ASSERT(!ret); /* -EEXIST; Logic error */
2849 
2850 	trace_btrfs_setup_cluster(block_group, cluster,
2851 				  total_found * ctl->unit, 1);
2852 	return 0;
2853 }
2854 
2855 /*
2856  * This searches the block group for just extents to fill the cluster with.
2857  * Try to find a cluster with at least bytes total bytes, at least one
2858  * extent of cont1_bytes, and other clusters of at least min_bytes.
2859  */
2860 static noinline int
2861 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2862 			struct btrfs_free_cluster *cluster,
2863 			struct list_head *bitmaps, u64 offset, u64 bytes,
2864 			u64 cont1_bytes, u64 min_bytes)
2865 {
2866 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2867 	struct btrfs_free_space *first = NULL;
2868 	struct btrfs_free_space *entry = NULL;
2869 	struct btrfs_free_space *last;
2870 	struct rb_node *node;
2871 	u64 window_free;
2872 	u64 max_extent;
2873 	u64 total_size = 0;
2874 
2875 	entry = tree_search_offset(ctl, offset, 0, 1);
2876 	if (!entry)
2877 		return -ENOSPC;
2878 
2879 	/*
2880 	 * We don't want bitmaps, so just move along until we find a normal
2881 	 * extent entry.
2882 	 */
2883 	while (entry->bitmap || entry->bytes < min_bytes) {
2884 		if (entry->bitmap && list_empty(&entry->list))
2885 			list_add_tail(&entry->list, bitmaps);
2886 		node = rb_next(&entry->offset_index);
2887 		if (!node)
2888 			return -ENOSPC;
2889 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2890 	}
2891 
2892 	window_free = entry->bytes;
2893 	max_extent = entry->bytes;
2894 	first = entry;
2895 	last = entry;
2896 
2897 	for (node = rb_next(&entry->offset_index); node;
2898 	     node = rb_next(&entry->offset_index)) {
2899 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2900 
2901 		if (entry->bitmap) {
2902 			if (list_empty(&entry->list))
2903 				list_add_tail(&entry->list, bitmaps);
2904 			continue;
2905 		}
2906 
2907 		if (entry->bytes < min_bytes)
2908 			continue;
2909 
2910 		last = entry;
2911 		window_free += entry->bytes;
2912 		if (entry->bytes > max_extent)
2913 			max_extent = entry->bytes;
2914 	}
2915 
2916 	if (window_free < bytes || max_extent < cont1_bytes)
2917 		return -ENOSPC;
2918 
2919 	cluster->window_start = first->offset;
2920 
2921 	node = &first->offset_index;
2922 
2923 	/*
2924 	 * now we've found our entries, pull them out of the free space
2925 	 * cache and put them into the cluster rbtree
2926 	 */
2927 	do {
2928 		int ret;
2929 
2930 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2931 		node = rb_next(&entry->offset_index);
2932 		if (entry->bitmap || entry->bytes < min_bytes)
2933 			continue;
2934 
2935 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2936 		ret = tree_insert_offset(&cluster->root, entry->offset,
2937 					 &entry->offset_index, 0);
2938 		total_size += entry->bytes;
2939 		ASSERT(!ret); /* -EEXIST; Logic error */
2940 	} while (node && entry != last);
2941 
2942 	cluster->max_size = max_extent;
2943 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2944 	return 0;
2945 }
2946 
2947 /*
2948  * This specifically looks for bitmaps that may work in the cluster, we assume
2949  * that we have already failed to find extents that will work.
2950  */
2951 static noinline int
2952 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2953 		     struct btrfs_free_cluster *cluster,
2954 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2955 		     u64 cont1_bytes, u64 min_bytes)
2956 {
2957 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2958 	struct btrfs_free_space *entry = NULL;
2959 	int ret = -ENOSPC;
2960 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2961 
2962 	if (ctl->total_bitmaps == 0)
2963 		return -ENOSPC;
2964 
2965 	/*
2966 	 * The bitmap that covers offset won't be in the list unless offset
2967 	 * is just its start offset.
2968 	 */
2969 	if (!list_empty(bitmaps))
2970 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2971 
2972 	if (!entry || entry->offset != bitmap_offset) {
2973 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2974 		if (entry && list_empty(&entry->list))
2975 			list_add(&entry->list, bitmaps);
2976 	}
2977 
2978 	list_for_each_entry(entry, bitmaps, list) {
2979 		if (entry->bytes < bytes)
2980 			continue;
2981 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2982 					   bytes, cont1_bytes, min_bytes);
2983 		if (!ret)
2984 			return 0;
2985 	}
2986 
2987 	/*
2988 	 * The bitmaps list has all the bitmaps that record free space
2989 	 * starting after offset, so no more search is required.
2990 	 */
2991 	return -ENOSPC;
2992 }
2993 
2994 /*
2995  * here we try to find a cluster of blocks in a block group.  The goal
2996  * is to find at least bytes+empty_size.
2997  * We might not find them all in one contiguous area.
2998  *
2999  * returns zero and sets up cluster if things worked out, otherwise
3000  * it returns -enospc
3001  */
3002 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3003 			     struct btrfs_block_group_cache *block_group,
3004 			     struct btrfs_free_cluster *cluster,
3005 			     u64 offset, u64 bytes, u64 empty_size)
3006 {
3007 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3008 	struct btrfs_free_space *entry, *tmp;
3009 	LIST_HEAD(bitmaps);
3010 	u64 min_bytes;
3011 	u64 cont1_bytes;
3012 	int ret;
3013 
3014 	/*
3015 	 * Choose the minimum extent size we'll require for this
3016 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3017 	 * For metadata, allow allocates with smaller extents.  For
3018 	 * data, keep it dense.
3019 	 */
3020 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3021 		cont1_bytes = min_bytes = bytes + empty_size;
3022 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3023 		cont1_bytes = bytes;
3024 		min_bytes = fs_info->sectorsize;
3025 	} else {
3026 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3027 		min_bytes = fs_info->sectorsize;
3028 	}
3029 
3030 	spin_lock(&ctl->tree_lock);
3031 
3032 	/*
3033 	 * If we know we don't have enough space to make a cluster don't even
3034 	 * bother doing all the work to try and find one.
3035 	 */
3036 	if (ctl->free_space < bytes) {
3037 		spin_unlock(&ctl->tree_lock);
3038 		return -ENOSPC;
3039 	}
3040 
3041 	spin_lock(&cluster->lock);
3042 
3043 	/* someone already found a cluster, hooray */
3044 	if (cluster->block_group) {
3045 		ret = 0;
3046 		goto out;
3047 	}
3048 
3049 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3050 				 min_bytes);
3051 
3052 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3053 				      bytes + empty_size,
3054 				      cont1_bytes, min_bytes);
3055 	if (ret)
3056 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3057 					   offset, bytes + empty_size,
3058 					   cont1_bytes, min_bytes);
3059 
3060 	/* Clear our temporary list */
3061 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3062 		list_del_init(&entry->list);
3063 
3064 	if (!ret) {
3065 		atomic_inc(&block_group->count);
3066 		list_add_tail(&cluster->block_group_list,
3067 			      &block_group->cluster_list);
3068 		cluster->block_group = block_group;
3069 	} else {
3070 		trace_btrfs_failed_cluster_setup(block_group);
3071 	}
3072 out:
3073 	spin_unlock(&cluster->lock);
3074 	spin_unlock(&ctl->tree_lock);
3075 
3076 	return ret;
3077 }
3078 
3079 /*
3080  * simple code to zero out a cluster
3081  */
3082 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3083 {
3084 	spin_lock_init(&cluster->lock);
3085 	spin_lock_init(&cluster->refill_lock);
3086 	cluster->root = RB_ROOT;
3087 	cluster->max_size = 0;
3088 	cluster->fragmented = false;
3089 	INIT_LIST_HEAD(&cluster->block_group_list);
3090 	cluster->block_group = NULL;
3091 }
3092 
3093 static int do_trimming(struct btrfs_block_group_cache *block_group,
3094 		       u64 *total_trimmed, u64 start, u64 bytes,
3095 		       u64 reserved_start, u64 reserved_bytes,
3096 		       struct btrfs_trim_range *trim_entry)
3097 {
3098 	struct btrfs_space_info *space_info = block_group->space_info;
3099 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3100 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3101 	int ret;
3102 	int update = 0;
3103 	u64 trimmed = 0;
3104 
3105 	spin_lock(&space_info->lock);
3106 	spin_lock(&block_group->lock);
3107 	if (!block_group->ro) {
3108 		block_group->reserved += reserved_bytes;
3109 		space_info->bytes_reserved += reserved_bytes;
3110 		update = 1;
3111 	}
3112 	spin_unlock(&block_group->lock);
3113 	spin_unlock(&space_info->lock);
3114 
3115 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3116 	if (!ret)
3117 		*total_trimmed += trimmed;
3118 
3119 	mutex_lock(&ctl->cache_writeout_mutex);
3120 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3121 	list_del(&trim_entry->list);
3122 	mutex_unlock(&ctl->cache_writeout_mutex);
3123 
3124 	if (update) {
3125 		spin_lock(&space_info->lock);
3126 		spin_lock(&block_group->lock);
3127 		if (block_group->ro)
3128 			space_info->bytes_readonly += reserved_bytes;
3129 		block_group->reserved -= reserved_bytes;
3130 		space_info->bytes_reserved -= reserved_bytes;
3131 		spin_unlock(&space_info->lock);
3132 		spin_unlock(&block_group->lock);
3133 	}
3134 
3135 	return ret;
3136 }
3137 
3138 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3139 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3140 {
3141 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3142 	struct btrfs_free_space *entry;
3143 	struct rb_node *node;
3144 	int ret = 0;
3145 	u64 extent_start;
3146 	u64 extent_bytes;
3147 	u64 bytes;
3148 
3149 	while (start < end) {
3150 		struct btrfs_trim_range trim_entry;
3151 
3152 		mutex_lock(&ctl->cache_writeout_mutex);
3153 		spin_lock(&ctl->tree_lock);
3154 
3155 		if (ctl->free_space < minlen) {
3156 			spin_unlock(&ctl->tree_lock);
3157 			mutex_unlock(&ctl->cache_writeout_mutex);
3158 			break;
3159 		}
3160 
3161 		entry = tree_search_offset(ctl, start, 0, 1);
3162 		if (!entry) {
3163 			spin_unlock(&ctl->tree_lock);
3164 			mutex_unlock(&ctl->cache_writeout_mutex);
3165 			break;
3166 		}
3167 
3168 		/* skip bitmaps */
3169 		while (entry->bitmap) {
3170 			node = rb_next(&entry->offset_index);
3171 			if (!node) {
3172 				spin_unlock(&ctl->tree_lock);
3173 				mutex_unlock(&ctl->cache_writeout_mutex);
3174 				goto out;
3175 			}
3176 			entry = rb_entry(node, struct btrfs_free_space,
3177 					 offset_index);
3178 		}
3179 
3180 		if (entry->offset >= end) {
3181 			spin_unlock(&ctl->tree_lock);
3182 			mutex_unlock(&ctl->cache_writeout_mutex);
3183 			break;
3184 		}
3185 
3186 		extent_start = entry->offset;
3187 		extent_bytes = entry->bytes;
3188 		start = max(start, extent_start);
3189 		bytes = min(extent_start + extent_bytes, end) - start;
3190 		if (bytes < minlen) {
3191 			spin_unlock(&ctl->tree_lock);
3192 			mutex_unlock(&ctl->cache_writeout_mutex);
3193 			goto next;
3194 		}
3195 
3196 		unlink_free_space(ctl, entry);
3197 		kmem_cache_free(btrfs_free_space_cachep, entry);
3198 
3199 		spin_unlock(&ctl->tree_lock);
3200 		trim_entry.start = extent_start;
3201 		trim_entry.bytes = extent_bytes;
3202 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3203 		mutex_unlock(&ctl->cache_writeout_mutex);
3204 
3205 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3206 				  extent_start, extent_bytes, &trim_entry);
3207 		if (ret)
3208 			break;
3209 next:
3210 		start += bytes;
3211 
3212 		if (fatal_signal_pending(current)) {
3213 			ret = -ERESTARTSYS;
3214 			break;
3215 		}
3216 
3217 		cond_resched();
3218 	}
3219 out:
3220 	return ret;
3221 }
3222 
3223 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3224 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3225 {
3226 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3227 	struct btrfs_free_space *entry;
3228 	int ret = 0;
3229 	int ret2;
3230 	u64 bytes;
3231 	u64 offset = offset_to_bitmap(ctl, start);
3232 
3233 	while (offset < end) {
3234 		bool next_bitmap = false;
3235 		struct btrfs_trim_range trim_entry;
3236 
3237 		mutex_lock(&ctl->cache_writeout_mutex);
3238 		spin_lock(&ctl->tree_lock);
3239 
3240 		if (ctl->free_space < minlen) {
3241 			spin_unlock(&ctl->tree_lock);
3242 			mutex_unlock(&ctl->cache_writeout_mutex);
3243 			break;
3244 		}
3245 
3246 		entry = tree_search_offset(ctl, offset, 1, 0);
3247 		if (!entry) {
3248 			spin_unlock(&ctl->tree_lock);
3249 			mutex_unlock(&ctl->cache_writeout_mutex);
3250 			next_bitmap = true;
3251 			goto next;
3252 		}
3253 
3254 		bytes = minlen;
3255 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3256 		if (ret2 || start >= end) {
3257 			spin_unlock(&ctl->tree_lock);
3258 			mutex_unlock(&ctl->cache_writeout_mutex);
3259 			next_bitmap = true;
3260 			goto next;
3261 		}
3262 
3263 		bytes = min(bytes, end - start);
3264 		if (bytes < minlen) {
3265 			spin_unlock(&ctl->tree_lock);
3266 			mutex_unlock(&ctl->cache_writeout_mutex);
3267 			goto next;
3268 		}
3269 
3270 		bitmap_clear_bits(ctl, entry, start, bytes);
3271 		if (entry->bytes == 0)
3272 			free_bitmap(ctl, entry);
3273 
3274 		spin_unlock(&ctl->tree_lock);
3275 		trim_entry.start = start;
3276 		trim_entry.bytes = bytes;
3277 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3278 		mutex_unlock(&ctl->cache_writeout_mutex);
3279 
3280 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3281 				  start, bytes, &trim_entry);
3282 		if (ret)
3283 			break;
3284 next:
3285 		if (next_bitmap) {
3286 			offset += BITS_PER_BITMAP * ctl->unit;
3287 		} else {
3288 			start += bytes;
3289 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3290 				offset += BITS_PER_BITMAP * ctl->unit;
3291 		}
3292 
3293 		if (fatal_signal_pending(current)) {
3294 			ret = -ERESTARTSYS;
3295 			break;
3296 		}
3297 
3298 		cond_resched();
3299 	}
3300 
3301 	return ret;
3302 }
3303 
3304 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3305 {
3306 	atomic_inc(&cache->trimming);
3307 }
3308 
3309 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3310 {
3311 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3312 	struct extent_map_tree *em_tree;
3313 	struct extent_map *em;
3314 	bool cleanup;
3315 
3316 	spin_lock(&block_group->lock);
3317 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3318 		   block_group->removed);
3319 	spin_unlock(&block_group->lock);
3320 
3321 	if (cleanup) {
3322 		mutex_lock(&fs_info->chunk_mutex);
3323 		em_tree = &fs_info->mapping_tree.map_tree;
3324 		write_lock(&em_tree->lock);
3325 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3326 					   1);
3327 		BUG_ON(!em); /* logic error, can't happen */
3328 		/*
3329 		 * remove_extent_mapping() will delete us from the pinned_chunks
3330 		 * list, which is protected by the chunk mutex.
3331 		 */
3332 		remove_extent_mapping(em_tree, em);
3333 		write_unlock(&em_tree->lock);
3334 		mutex_unlock(&fs_info->chunk_mutex);
3335 
3336 		/* once for us and once for the tree */
3337 		free_extent_map(em);
3338 		free_extent_map(em);
3339 
3340 		/*
3341 		 * We've left one free space entry and other tasks trimming
3342 		 * this block group have left 1 entry each one. Free them.
3343 		 */
3344 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3345 	}
3346 }
3347 
3348 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3349 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3350 {
3351 	int ret;
3352 
3353 	*trimmed = 0;
3354 
3355 	spin_lock(&block_group->lock);
3356 	if (block_group->removed) {
3357 		spin_unlock(&block_group->lock);
3358 		return 0;
3359 	}
3360 	btrfs_get_block_group_trimming(block_group);
3361 	spin_unlock(&block_group->lock);
3362 
3363 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3364 	if (ret)
3365 		goto out;
3366 
3367 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3368 out:
3369 	btrfs_put_block_group_trimming(block_group);
3370 	return ret;
3371 }
3372 
3373 /*
3374  * Find the left-most item in the cache tree, and then return the
3375  * smallest inode number in the item.
3376  *
3377  * Note: the returned inode number may not be the smallest one in
3378  * the tree, if the left-most item is a bitmap.
3379  */
3380 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3381 {
3382 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3383 	struct btrfs_free_space *entry = NULL;
3384 	u64 ino = 0;
3385 
3386 	spin_lock(&ctl->tree_lock);
3387 
3388 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3389 		goto out;
3390 
3391 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3392 			 struct btrfs_free_space, offset_index);
3393 
3394 	if (!entry->bitmap) {
3395 		ino = entry->offset;
3396 
3397 		unlink_free_space(ctl, entry);
3398 		entry->offset++;
3399 		entry->bytes--;
3400 		if (!entry->bytes)
3401 			kmem_cache_free(btrfs_free_space_cachep, entry);
3402 		else
3403 			link_free_space(ctl, entry);
3404 	} else {
3405 		u64 offset = 0;
3406 		u64 count = 1;
3407 		int ret;
3408 
3409 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3410 		/* Logic error; Should be empty if it can't find anything */
3411 		ASSERT(!ret);
3412 
3413 		ino = offset;
3414 		bitmap_clear_bits(ctl, entry, offset, 1);
3415 		if (entry->bytes == 0)
3416 			free_bitmap(ctl, entry);
3417 	}
3418 out:
3419 	spin_unlock(&ctl->tree_lock);
3420 
3421 	return ino;
3422 }
3423 
3424 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3425 				    struct btrfs_path *path)
3426 {
3427 	struct inode *inode = NULL;
3428 
3429 	spin_lock(&root->ino_cache_lock);
3430 	if (root->ino_cache_inode)
3431 		inode = igrab(root->ino_cache_inode);
3432 	spin_unlock(&root->ino_cache_lock);
3433 	if (inode)
3434 		return inode;
3435 
3436 	inode = __lookup_free_space_inode(root, path, 0);
3437 	if (IS_ERR(inode))
3438 		return inode;
3439 
3440 	spin_lock(&root->ino_cache_lock);
3441 	if (!btrfs_fs_closing(root->fs_info))
3442 		root->ino_cache_inode = igrab(inode);
3443 	spin_unlock(&root->ino_cache_lock);
3444 
3445 	return inode;
3446 }
3447 
3448 int create_free_ino_inode(struct btrfs_root *root,
3449 			  struct btrfs_trans_handle *trans,
3450 			  struct btrfs_path *path)
3451 {
3452 	return __create_free_space_inode(root, trans, path,
3453 					 BTRFS_FREE_INO_OBJECTID, 0);
3454 }
3455 
3456 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3457 {
3458 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3459 	struct btrfs_path *path;
3460 	struct inode *inode;
3461 	int ret = 0;
3462 	u64 root_gen = btrfs_root_generation(&root->root_item);
3463 
3464 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3465 		return 0;
3466 
3467 	/*
3468 	 * If we're unmounting then just return, since this does a search on the
3469 	 * normal root and not the commit root and we could deadlock.
3470 	 */
3471 	if (btrfs_fs_closing(fs_info))
3472 		return 0;
3473 
3474 	path = btrfs_alloc_path();
3475 	if (!path)
3476 		return 0;
3477 
3478 	inode = lookup_free_ino_inode(root, path);
3479 	if (IS_ERR(inode))
3480 		goto out;
3481 
3482 	if (root_gen != BTRFS_I(inode)->generation)
3483 		goto out_put;
3484 
3485 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3486 
3487 	if (ret < 0)
3488 		btrfs_err(fs_info,
3489 			"failed to load free ino cache for root %llu",
3490 			root->root_key.objectid);
3491 out_put:
3492 	iput(inode);
3493 out:
3494 	btrfs_free_path(path);
3495 	return ret;
3496 }
3497 
3498 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3499 			      struct btrfs_trans_handle *trans,
3500 			      struct btrfs_path *path,
3501 			      struct inode *inode)
3502 {
3503 	struct btrfs_fs_info *fs_info = root->fs_info;
3504 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3505 	int ret;
3506 	struct btrfs_io_ctl io_ctl;
3507 	bool release_metadata = true;
3508 
3509 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3510 		return 0;
3511 
3512 	memset(&io_ctl, 0, sizeof(io_ctl));
3513 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3514 	if (!ret) {
3515 		/*
3516 		 * At this point writepages() didn't error out, so our metadata
3517 		 * reservation is released when the writeback finishes, at
3518 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3519 		 * with or without an error.
3520 		 */
3521 		release_metadata = false;
3522 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3523 	}
3524 
3525 	if (ret) {
3526 		if (release_metadata)
3527 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3528 					inode->i_size, true);
3529 #ifdef DEBUG
3530 		btrfs_err(fs_info,
3531 			  "failed to write free ino cache for root %llu",
3532 			  root->root_key.objectid);
3533 #endif
3534 	}
3535 
3536 	return ret;
3537 }
3538 
3539 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3540 /*
3541  * Use this if you need to make a bitmap or extent entry specifically, it
3542  * doesn't do any of the merging that add_free_space does, this acts a lot like
3543  * how the free space cache loading stuff works, so you can get really weird
3544  * configurations.
3545  */
3546 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3547 			      u64 offset, u64 bytes, bool bitmap)
3548 {
3549 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3550 	struct btrfs_free_space *info = NULL, *bitmap_info;
3551 	void *map = NULL;
3552 	u64 bytes_added;
3553 	int ret;
3554 
3555 again:
3556 	if (!info) {
3557 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3558 		if (!info)
3559 			return -ENOMEM;
3560 	}
3561 
3562 	if (!bitmap) {
3563 		spin_lock(&ctl->tree_lock);
3564 		info->offset = offset;
3565 		info->bytes = bytes;
3566 		info->max_extent_size = 0;
3567 		ret = link_free_space(ctl, info);
3568 		spin_unlock(&ctl->tree_lock);
3569 		if (ret)
3570 			kmem_cache_free(btrfs_free_space_cachep, info);
3571 		return ret;
3572 	}
3573 
3574 	if (!map) {
3575 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3576 		if (!map) {
3577 			kmem_cache_free(btrfs_free_space_cachep, info);
3578 			return -ENOMEM;
3579 		}
3580 	}
3581 
3582 	spin_lock(&ctl->tree_lock);
3583 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3584 					 1, 0);
3585 	if (!bitmap_info) {
3586 		info->bitmap = map;
3587 		map = NULL;
3588 		add_new_bitmap(ctl, info, offset);
3589 		bitmap_info = info;
3590 		info = NULL;
3591 	}
3592 
3593 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3594 
3595 	bytes -= bytes_added;
3596 	offset += bytes_added;
3597 	spin_unlock(&ctl->tree_lock);
3598 
3599 	if (bytes)
3600 		goto again;
3601 
3602 	if (info)
3603 		kmem_cache_free(btrfs_free_space_cachep, info);
3604 	if (map)
3605 		kfree(map);
3606 	return 0;
3607 }
3608 
3609 /*
3610  * Checks to see if the given range is in the free space cache.  This is really
3611  * just used to check the absence of space, so if there is free space in the
3612  * range at all we will return 1.
3613  */
3614 int test_check_exists(struct btrfs_block_group_cache *cache,
3615 		      u64 offset, u64 bytes)
3616 {
3617 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3618 	struct btrfs_free_space *info;
3619 	int ret = 0;
3620 
3621 	spin_lock(&ctl->tree_lock);
3622 	info = tree_search_offset(ctl, offset, 0, 0);
3623 	if (!info) {
3624 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3625 					  1, 0);
3626 		if (!info)
3627 			goto out;
3628 	}
3629 
3630 have_info:
3631 	if (info->bitmap) {
3632 		u64 bit_off, bit_bytes;
3633 		struct rb_node *n;
3634 		struct btrfs_free_space *tmp;
3635 
3636 		bit_off = offset;
3637 		bit_bytes = ctl->unit;
3638 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3639 		if (!ret) {
3640 			if (bit_off == offset) {
3641 				ret = 1;
3642 				goto out;
3643 			} else if (bit_off > offset &&
3644 				   offset + bytes > bit_off) {
3645 				ret = 1;
3646 				goto out;
3647 			}
3648 		}
3649 
3650 		n = rb_prev(&info->offset_index);
3651 		while (n) {
3652 			tmp = rb_entry(n, struct btrfs_free_space,
3653 				       offset_index);
3654 			if (tmp->offset + tmp->bytes < offset)
3655 				break;
3656 			if (offset + bytes < tmp->offset) {
3657 				n = rb_prev(&tmp->offset_index);
3658 				continue;
3659 			}
3660 			info = tmp;
3661 			goto have_info;
3662 		}
3663 
3664 		n = rb_next(&info->offset_index);
3665 		while (n) {
3666 			tmp = rb_entry(n, struct btrfs_free_space,
3667 				       offset_index);
3668 			if (offset + bytes < tmp->offset)
3669 				break;
3670 			if (tmp->offset + tmp->bytes < offset) {
3671 				n = rb_next(&tmp->offset_index);
3672 				continue;
3673 			}
3674 			info = tmp;
3675 			goto have_info;
3676 		}
3677 
3678 		ret = 0;
3679 		goto out;
3680 	}
3681 
3682 	if (info->offset == offset) {
3683 		ret = 1;
3684 		goto out;
3685 	}
3686 
3687 	if (offset > info->offset && offset < info->offset + info->bytes)
3688 		ret = 1;
3689 out:
3690 	spin_unlock(&ctl->tree_lock);
3691 	return ret;
3692 }
3693 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3694