1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "misc.h" 15 #include "ctree.h" 16 #include "free-space-cache.h" 17 #include "transaction.h" 18 #include "disk-io.h" 19 #include "extent_io.h" 20 #include "volumes.h" 21 #include "space-info.h" 22 #include "delalloc-space.h" 23 #include "block-group.h" 24 #include "discard.h" 25 #include "subpage.h" 26 #include "inode-item.h" 27 28 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 29 #define MAX_CACHE_BYTES_PER_GIG SZ_64K 30 #define FORCE_EXTENT_THRESHOLD SZ_1M 31 32 struct btrfs_trim_range { 33 u64 start; 34 u64 bytes; 35 struct list_head list; 36 }; 37 38 static int link_free_space(struct btrfs_free_space_ctl *ctl, 39 struct btrfs_free_space *info); 40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 41 struct btrfs_free_space *info, bool update_stat); 42 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 43 struct btrfs_free_space *bitmap_info, u64 *offset, 44 u64 *bytes, bool for_alloc); 45 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 46 struct btrfs_free_space *bitmap_info); 47 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 48 struct btrfs_free_space *info, u64 offset, 49 u64 bytes, bool update_stats); 50 51 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 52 struct btrfs_path *path, 53 u64 offset) 54 { 55 struct btrfs_fs_info *fs_info = root->fs_info; 56 struct btrfs_key key; 57 struct btrfs_key location; 58 struct btrfs_disk_key disk_key; 59 struct btrfs_free_space_header *header; 60 struct extent_buffer *leaf; 61 struct inode *inode = NULL; 62 unsigned nofs_flag; 63 int ret; 64 65 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 66 key.offset = offset; 67 key.type = 0; 68 69 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 70 if (ret < 0) 71 return ERR_PTR(ret); 72 if (ret > 0) { 73 btrfs_release_path(path); 74 return ERR_PTR(-ENOENT); 75 } 76 77 leaf = path->nodes[0]; 78 header = btrfs_item_ptr(leaf, path->slots[0], 79 struct btrfs_free_space_header); 80 btrfs_free_space_key(leaf, header, &disk_key); 81 btrfs_disk_key_to_cpu(&location, &disk_key); 82 btrfs_release_path(path); 83 84 /* 85 * We are often under a trans handle at this point, so we need to make 86 * sure NOFS is set to keep us from deadlocking. 87 */ 88 nofs_flag = memalloc_nofs_save(); 89 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path); 90 btrfs_release_path(path); 91 memalloc_nofs_restore(nofs_flag); 92 if (IS_ERR(inode)) 93 return inode; 94 95 mapping_set_gfp_mask(inode->i_mapping, 96 mapping_gfp_constraint(inode->i_mapping, 97 ~(__GFP_FS | __GFP_HIGHMEM))); 98 99 return inode; 100 } 101 102 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 103 struct btrfs_path *path) 104 { 105 struct btrfs_fs_info *fs_info = block_group->fs_info; 106 struct inode *inode = NULL; 107 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 108 109 spin_lock(&block_group->lock); 110 if (block_group->inode) 111 inode = igrab(block_group->inode); 112 spin_unlock(&block_group->lock); 113 if (inode) 114 return inode; 115 116 inode = __lookup_free_space_inode(fs_info->tree_root, path, 117 block_group->start); 118 if (IS_ERR(inode)) 119 return inode; 120 121 spin_lock(&block_group->lock); 122 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 123 btrfs_info(fs_info, "Old style space inode found, converting."); 124 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 125 BTRFS_INODE_NODATACOW; 126 block_group->disk_cache_state = BTRFS_DC_CLEAR; 127 } 128 129 if (!block_group->iref) { 130 block_group->inode = igrab(inode); 131 block_group->iref = 1; 132 } 133 spin_unlock(&block_group->lock); 134 135 return inode; 136 } 137 138 static int __create_free_space_inode(struct btrfs_root *root, 139 struct btrfs_trans_handle *trans, 140 struct btrfs_path *path, 141 u64 ino, u64 offset) 142 { 143 struct btrfs_key key; 144 struct btrfs_disk_key disk_key; 145 struct btrfs_free_space_header *header; 146 struct btrfs_inode_item *inode_item; 147 struct extent_buffer *leaf; 148 /* We inline CRCs for the free disk space cache */ 149 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC | 150 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 151 int ret; 152 153 ret = btrfs_insert_empty_inode(trans, root, path, ino); 154 if (ret) 155 return ret; 156 157 leaf = path->nodes[0]; 158 inode_item = btrfs_item_ptr(leaf, path->slots[0], 159 struct btrfs_inode_item); 160 btrfs_item_key(leaf, &disk_key, path->slots[0]); 161 memzero_extent_buffer(leaf, (unsigned long)inode_item, 162 sizeof(*inode_item)); 163 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 164 btrfs_set_inode_size(leaf, inode_item, 0); 165 btrfs_set_inode_nbytes(leaf, inode_item, 0); 166 btrfs_set_inode_uid(leaf, inode_item, 0); 167 btrfs_set_inode_gid(leaf, inode_item, 0); 168 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 169 btrfs_set_inode_flags(leaf, inode_item, flags); 170 btrfs_set_inode_nlink(leaf, inode_item, 1); 171 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 172 btrfs_set_inode_block_group(leaf, inode_item, offset); 173 btrfs_mark_buffer_dirty(leaf); 174 btrfs_release_path(path); 175 176 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 177 key.offset = offset; 178 key.type = 0; 179 ret = btrfs_insert_empty_item(trans, root, path, &key, 180 sizeof(struct btrfs_free_space_header)); 181 if (ret < 0) { 182 btrfs_release_path(path); 183 return ret; 184 } 185 186 leaf = path->nodes[0]; 187 header = btrfs_item_ptr(leaf, path->slots[0], 188 struct btrfs_free_space_header); 189 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 190 btrfs_set_free_space_key(leaf, header, &disk_key); 191 btrfs_mark_buffer_dirty(leaf); 192 btrfs_release_path(path); 193 194 return 0; 195 } 196 197 int create_free_space_inode(struct btrfs_trans_handle *trans, 198 struct btrfs_block_group *block_group, 199 struct btrfs_path *path) 200 { 201 int ret; 202 u64 ino; 203 204 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino); 205 if (ret < 0) 206 return ret; 207 208 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 209 ino, block_group->start); 210 } 211 212 /* 213 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode 214 * handles lookup, otherwise it takes ownership and iputs the inode. 215 * Don't reuse an inode pointer after passing it into this function. 216 */ 217 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans, 218 struct inode *inode, 219 struct btrfs_block_group *block_group) 220 { 221 struct btrfs_path *path; 222 struct btrfs_key key; 223 int ret = 0; 224 225 path = btrfs_alloc_path(); 226 if (!path) 227 return -ENOMEM; 228 229 if (!inode) 230 inode = lookup_free_space_inode(block_group, path); 231 if (IS_ERR(inode)) { 232 if (PTR_ERR(inode) != -ENOENT) 233 ret = PTR_ERR(inode); 234 goto out; 235 } 236 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 237 if (ret) { 238 btrfs_add_delayed_iput(inode); 239 goto out; 240 } 241 clear_nlink(inode); 242 /* One for the block groups ref */ 243 spin_lock(&block_group->lock); 244 if (block_group->iref) { 245 block_group->iref = 0; 246 block_group->inode = NULL; 247 spin_unlock(&block_group->lock); 248 iput(inode); 249 } else { 250 spin_unlock(&block_group->lock); 251 } 252 /* One for the lookup ref */ 253 btrfs_add_delayed_iput(inode); 254 255 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 256 key.type = 0; 257 key.offset = block_group->start; 258 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path, 259 -1, 1); 260 if (ret) { 261 if (ret > 0) 262 ret = 0; 263 goto out; 264 } 265 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path); 266 out: 267 btrfs_free_path(path); 268 return ret; 269 } 270 271 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 272 struct btrfs_block_rsv *rsv) 273 { 274 u64 needed_bytes; 275 int ret; 276 277 /* 1 for slack space, 1 for updating the inode */ 278 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 279 btrfs_calc_metadata_size(fs_info, 1); 280 281 spin_lock(&rsv->lock); 282 if (rsv->reserved < needed_bytes) 283 ret = -ENOSPC; 284 else 285 ret = 0; 286 spin_unlock(&rsv->lock); 287 return ret; 288 } 289 290 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 291 struct btrfs_block_group *block_group, 292 struct inode *vfs_inode) 293 { 294 struct btrfs_truncate_control control = { 295 .inode = BTRFS_I(vfs_inode), 296 .new_size = 0, 297 .ino = btrfs_ino(BTRFS_I(vfs_inode)), 298 .min_type = BTRFS_EXTENT_DATA_KEY, 299 .clear_extent_range = true, 300 }; 301 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 302 struct btrfs_root *root = inode->root; 303 struct extent_state *cached_state = NULL; 304 int ret = 0; 305 bool locked = false; 306 307 if (block_group) { 308 struct btrfs_path *path = btrfs_alloc_path(); 309 310 if (!path) { 311 ret = -ENOMEM; 312 goto fail; 313 } 314 locked = true; 315 mutex_lock(&trans->transaction->cache_write_mutex); 316 if (!list_empty(&block_group->io_list)) { 317 list_del_init(&block_group->io_list); 318 319 btrfs_wait_cache_io(trans, block_group, path); 320 btrfs_put_block_group(block_group); 321 } 322 323 /* 324 * now that we've truncated the cache away, its no longer 325 * setup or written 326 */ 327 spin_lock(&block_group->lock); 328 block_group->disk_cache_state = BTRFS_DC_CLEAR; 329 spin_unlock(&block_group->lock); 330 btrfs_free_path(path); 331 } 332 333 btrfs_i_size_write(inode, 0); 334 truncate_pagecache(vfs_inode, 0); 335 336 lock_extent_bits(&inode->io_tree, 0, (u64)-1, &cached_state); 337 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 338 339 /* 340 * We skip the throttling logic for free space cache inodes, so we don't 341 * need to check for -EAGAIN. 342 */ 343 ret = btrfs_truncate_inode_items(trans, root, &control); 344 345 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 346 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 347 348 unlock_extent_cached(&inode->io_tree, 0, (u64)-1, &cached_state); 349 if (ret) 350 goto fail; 351 352 ret = btrfs_update_inode(trans, root, inode); 353 354 fail: 355 if (locked) 356 mutex_unlock(&trans->transaction->cache_write_mutex); 357 if (ret) 358 btrfs_abort_transaction(trans, ret); 359 360 return ret; 361 } 362 363 static void readahead_cache(struct inode *inode) 364 { 365 struct file_ra_state ra; 366 unsigned long last_index; 367 368 file_ra_state_init(&ra, inode->i_mapping); 369 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 370 371 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index); 372 } 373 374 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 375 int write) 376 { 377 int num_pages; 378 379 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 380 381 /* Make sure we can fit our crcs and generation into the first page */ 382 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 383 return -ENOSPC; 384 385 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 386 387 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 388 if (!io_ctl->pages) 389 return -ENOMEM; 390 391 io_ctl->num_pages = num_pages; 392 io_ctl->fs_info = btrfs_sb(inode->i_sb); 393 io_ctl->inode = inode; 394 395 return 0; 396 } 397 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 398 399 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 400 { 401 kfree(io_ctl->pages); 402 io_ctl->pages = NULL; 403 } 404 405 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 406 { 407 if (io_ctl->cur) { 408 io_ctl->cur = NULL; 409 io_ctl->orig = NULL; 410 } 411 } 412 413 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 414 { 415 ASSERT(io_ctl->index < io_ctl->num_pages); 416 io_ctl->page = io_ctl->pages[io_ctl->index++]; 417 io_ctl->cur = page_address(io_ctl->page); 418 io_ctl->orig = io_ctl->cur; 419 io_ctl->size = PAGE_SIZE; 420 if (clear) 421 clear_page(io_ctl->cur); 422 } 423 424 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 425 { 426 int i; 427 428 io_ctl_unmap_page(io_ctl); 429 430 for (i = 0; i < io_ctl->num_pages; i++) { 431 if (io_ctl->pages[i]) { 432 btrfs_page_clear_checked(io_ctl->fs_info, 433 io_ctl->pages[i], 434 page_offset(io_ctl->pages[i]), 435 PAGE_SIZE); 436 unlock_page(io_ctl->pages[i]); 437 put_page(io_ctl->pages[i]); 438 } 439 } 440 } 441 442 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate) 443 { 444 struct page *page; 445 struct inode *inode = io_ctl->inode; 446 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 447 int i; 448 449 for (i = 0; i < io_ctl->num_pages; i++) { 450 int ret; 451 452 page = find_or_create_page(inode->i_mapping, i, mask); 453 if (!page) { 454 io_ctl_drop_pages(io_ctl); 455 return -ENOMEM; 456 } 457 458 ret = set_page_extent_mapped(page); 459 if (ret < 0) { 460 unlock_page(page); 461 put_page(page); 462 io_ctl_drop_pages(io_ctl); 463 return ret; 464 } 465 466 io_ctl->pages[i] = page; 467 if (uptodate && !PageUptodate(page)) { 468 btrfs_readpage(NULL, page); 469 lock_page(page); 470 if (page->mapping != inode->i_mapping) { 471 btrfs_err(BTRFS_I(inode)->root->fs_info, 472 "free space cache page truncated"); 473 io_ctl_drop_pages(io_ctl); 474 return -EIO; 475 } 476 if (!PageUptodate(page)) { 477 btrfs_err(BTRFS_I(inode)->root->fs_info, 478 "error reading free space cache"); 479 io_ctl_drop_pages(io_ctl); 480 return -EIO; 481 } 482 } 483 } 484 485 for (i = 0; i < io_ctl->num_pages; i++) 486 clear_page_dirty_for_io(io_ctl->pages[i]); 487 488 return 0; 489 } 490 491 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 492 { 493 io_ctl_map_page(io_ctl, 1); 494 495 /* 496 * Skip the csum areas. If we don't check crcs then we just have a 497 * 64bit chunk at the front of the first page. 498 */ 499 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 500 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 501 502 put_unaligned_le64(generation, io_ctl->cur); 503 io_ctl->cur += sizeof(u64); 504 } 505 506 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 507 { 508 u64 cache_gen; 509 510 /* 511 * Skip the crc area. If we don't check crcs then we just have a 64bit 512 * chunk at the front of the first page. 513 */ 514 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 515 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 516 517 cache_gen = get_unaligned_le64(io_ctl->cur); 518 if (cache_gen != generation) { 519 btrfs_err_rl(io_ctl->fs_info, 520 "space cache generation (%llu) does not match inode (%llu)", 521 cache_gen, generation); 522 io_ctl_unmap_page(io_ctl); 523 return -EIO; 524 } 525 io_ctl->cur += sizeof(u64); 526 return 0; 527 } 528 529 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 530 { 531 u32 *tmp; 532 u32 crc = ~(u32)0; 533 unsigned offset = 0; 534 535 if (index == 0) 536 offset = sizeof(u32) * io_ctl->num_pages; 537 538 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 539 btrfs_crc32c_final(crc, (u8 *)&crc); 540 io_ctl_unmap_page(io_ctl); 541 tmp = page_address(io_ctl->pages[0]); 542 tmp += index; 543 *tmp = crc; 544 } 545 546 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 547 { 548 u32 *tmp, val; 549 u32 crc = ~(u32)0; 550 unsigned offset = 0; 551 552 if (index == 0) 553 offset = sizeof(u32) * io_ctl->num_pages; 554 555 tmp = page_address(io_ctl->pages[0]); 556 tmp += index; 557 val = *tmp; 558 559 io_ctl_map_page(io_ctl, 0); 560 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 561 btrfs_crc32c_final(crc, (u8 *)&crc); 562 if (val != crc) { 563 btrfs_err_rl(io_ctl->fs_info, 564 "csum mismatch on free space cache"); 565 io_ctl_unmap_page(io_ctl); 566 return -EIO; 567 } 568 569 return 0; 570 } 571 572 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 573 void *bitmap) 574 { 575 struct btrfs_free_space_entry *entry; 576 577 if (!io_ctl->cur) 578 return -ENOSPC; 579 580 entry = io_ctl->cur; 581 put_unaligned_le64(offset, &entry->offset); 582 put_unaligned_le64(bytes, &entry->bytes); 583 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 584 BTRFS_FREE_SPACE_EXTENT; 585 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 586 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 587 588 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 589 return 0; 590 591 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 592 593 /* No more pages to map */ 594 if (io_ctl->index >= io_ctl->num_pages) 595 return 0; 596 597 /* map the next page */ 598 io_ctl_map_page(io_ctl, 1); 599 return 0; 600 } 601 602 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 603 { 604 if (!io_ctl->cur) 605 return -ENOSPC; 606 607 /* 608 * If we aren't at the start of the current page, unmap this one and 609 * map the next one if there is any left. 610 */ 611 if (io_ctl->cur != io_ctl->orig) { 612 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 613 if (io_ctl->index >= io_ctl->num_pages) 614 return -ENOSPC; 615 io_ctl_map_page(io_ctl, 0); 616 } 617 618 copy_page(io_ctl->cur, bitmap); 619 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 620 if (io_ctl->index < io_ctl->num_pages) 621 io_ctl_map_page(io_ctl, 0); 622 return 0; 623 } 624 625 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 626 { 627 /* 628 * If we're not on the boundary we know we've modified the page and we 629 * need to crc the page. 630 */ 631 if (io_ctl->cur != io_ctl->orig) 632 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 633 else 634 io_ctl_unmap_page(io_ctl); 635 636 while (io_ctl->index < io_ctl->num_pages) { 637 io_ctl_map_page(io_ctl, 1); 638 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 639 } 640 } 641 642 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 643 struct btrfs_free_space *entry, u8 *type) 644 { 645 struct btrfs_free_space_entry *e; 646 int ret; 647 648 if (!io_ctl->cur) { 649 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 650 if (ret) 651 return ret; 652 } 653 654 e = io_ctl->cur; 655 entry->offset = get_unaligned_le64(&e->offset); 656 entry->bytes = get_unaligned_le64(&e->bytes); 657 *type = e->type; 658 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 659 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 660 661 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 662 return 0; 663 664 io_ctl_unmap_page(io_ctl); 665 666 return 0; 667 } 668 669 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 670 struct btrfs_free_space *entry) 671 { 672 int ret; 673 674 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 675 if (ret) 676 return ret; 677 678 copy_page(entry->bitmap, io_ctl->cur); 679 io_ctl_unmap_page(io_ctl); 680 681 return 0; 682 } 683 684 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 685 { 686 struct btrfs_block_group *block_group = ctl->block_group; 687 u64 max_bytes; 688 u64 bitmap_bytes; 689 u64 extent_bytes; 690 u64 size = block_group->length; 691 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 692 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 693 694 max_bitmaps = max_t(u64, max_bitmaps, 1); 695 696 ASSERT(ctl->total_bitmaps <= max_bitmaps); 697 698 /* 699 * We are trying to keep the total amount of memory used per 1GiB of 700 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation 701 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of 702 * bitmaps, we may end up using more memory than this. 703 */ 704 if (size < SZ_1G) 705 max_bytes = MAX_CACHE_BYTES_PER_GIG; 706 else 707 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 708 709 bitmap_bytes = ctl->total_bitmaps * ctl->unit; 710 711 /* 712 * we want the extent entry threshold to always be at most 1/2 the max 713 * bytes we can have, or whatever is less than that. 714 */ 715 extent_bytes = max_bytes - bitmap_bytes; 716 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 717 718 ctl->extents_thresh = 719 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 720 } 721 722 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 723 struct btrfs_free_space_ctl *ctl, 724 struct btrfs_path *path, u64 offset) 725 { 726 struct btrfs_fs_info *fs_info = root->fs_info; 727 struct btrfs_free_space_header *header; 728 struct extent_buffer *leaf; 729 struct btrfs_io_ctl io_ctl; 730 struct btrfs_key key; 731 struct btrfs_free_space *e, *n; 732 LIST_HEAD(bitmaps); 733 u64 num_entries; 734 u64 num_bitmaps; 735 u64 generation; 736 u8 type; 737 int ret = 0; 738 739 /* Nothing in the space cache, goodbye */ 740 if (!i_size_read(inode)) 741 return 0; 742 743 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 744 key.offset = offset; 745 key.type = 0; 746 747 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 748 if (ret < 0) 749 return 0; 750 else if (ret > 0) { 751 btrfs_release_path(path); 752 return 0; 753 } 754 755 ret = -1; 756 757 leaf = path->nodes[0]; 758 header = btrfs_item_ptr(leaf, path->slots[0], 759 struct btrfs_free_space_header); 760 num_entries = btrfs_free_space_entries(leaf, header); 761 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 762 generation = btrfs_free_space_generation(leaf, header); 763 btrfs_release_path(path); 764 765 if (!BTRFS_I(inode)->generation) { 766 btrfs_info(fs_info, 767 "the free space cache file (%llu) is invalid, skip it", 768 offset); 769 return 0; 770 } 771 772 if (BTRFS_I(inode)->generation != generation) { 773 btrfs_err(fs_info, 774 "free space inode generation (%llu) did not match free space cache generation (%llu)", 775 BTRFS_I(inode)->generation, generation); 776 return 0; 777 } 778 779 if (!num_entries) 780 return 0; 781 782 ret = io_ctl_init(&io_ctl, inode, 0); 783 if (ret) 784 return ret; 785 786 readahead_cache(inode); 787 788 ret = io_ctl_prepare_pages(&io_ctl, true); 789 if (ret) 790 goto out; 791 792 ret = io_ctl_check_crc(&io_ctl, 0); 793 if (ret) 794 goto free_cache; 795 796 ret = io_ctl_check_generation(&io_ctl, generation); 797 if (ret) 798 goto free_cache; 799 800 while (num_entries) { 801 e = kmem_cache_zalloc(btrfs_free_space_cachep, 802 GFP_NOFS); 803 if (!e) { 804 ret = -ENOMEM; 805 goto free_cache; 806 } 807 808 ret = io_ctl_read_entry(&io_ctl, e, &type); 809 if (ret) { 810 kmem_cache_free(btrfs_free_space_cachep, e); 811 goto free_cache; 812 } 813 814 if (!e->bytes) { 815 ret = -1; 816 kmem_cache_free(btrfs_free_space_cachep, e); 817 goto free_cache; 818 } 819 820 if (type == BTRFS_FREE_SPACE_EXTENT) { 821 spin_lock(&ctl->tree_lock); 822 ret = link_free_space(ctl, e); 823 spin_unlock(&ctl->tree_lock); 824 if (ret) { 825 btrfs_err(fs_info, 826 "Duplicate entries in free space cache, dumping"); 827 kmem_cache_free(btrfs_free_space_cachep, e); 828 goto free_cache; 829 } 830 } else { 831 ASSERT(num_bitmaps); 832 num_bitmaps--; 833 e->bitmap = kmem_cache_zalloc( 834 btrfs_free_space_bitmap_cachep, GFP_NOFS); 835 if (!e->bitmap) { 836 ret = -ENOMEM; 837 kmem_cache_free( 838 btrfs_free_space_cachep, e); 839 goto free_cache; 840 } 841 spin_lock(&ctl->tree_lock); 842 ret = link_free_space(ctl, e); 843 ctl->total_bitmaps++; 844 recalculate_thresholds(ctl); 845 spin_unlock(&ctl->tree_lock); 846 if (ret) { 847 btrfs_err(fs_info, 848 "Duplicate entries in free space cache, dumping"); 849 kmem_cache_free(btrfs_free_space_cachep, e); 850 goto free_cache; 851 } 852 list_add_tail(&e->list, &bitmaps); 853 } 854 855 num_entries--; 856 } 857 858 io_ctl_unmap_page(&io_ctl); 859 860 /* 861 * We add the bitmaps at the end of the entries in order that 862 * the bitmap entries are added to the cache. 863 */ 864 list_for_each_entry_safe(e, n, &bitmaps, list) { 865 list_del_init(&e->list); 866 ret = io_ctl_read_bitmap(&io_ctl, e); 867 if (ret) 868 goto free_cache; 869 } 870 871 io_ctl_drop_pages(&io_ctl); 872 ret = 1; 873 out: 874 io_ctl_free(&io_ctl); 875 return ret; 876 free_cache: 877 io_ctl_drop_pages(&io_ctl); 878 __btrfs_remove_free_space_cache(ctl); 879 goto out; 880 } 881 882 static int copy_free_space_cache(struct btrfs_block_group *block_group, 883 struct btrfs_free_space_ctl *ctl) 884 { 885 struct btrfs_free_space *info; 886 struct rb_node *n; 887 int ret = 0; 888 889 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) { 890 info = rb_entry(n, struct btrfs_free_space, offset_index); 891 if (!info->bitmap) { 892 unlink_free_space(ctl, info, true); 893 ret = btrfs_add_free_space(block_group, info->offset, 894 info->bytes); 895 kmem_cache_free(btrfs_free_space_cachep, info); 896 } else { 897 u64 offset = info->offset; 898 u64 bytes = ctl->unit; 899 900 while (search_bitmap(ctl, info, &offset, &bytes, 901 false) == 0) { 902 ret = btrfs_add_free_space(block_group, offset, 903 bytes); 904 if (ret) 905 break; 906 bitmap_clear_bits(ctl, info, offset, bytes, true); 907 offset = info->offset; 908 bytes = ctl->unit; 909 } 910 free_bitmap(ctl, info); 911 } 912 cond_resched(); 913 } 914 return ret; 915 } 916 917 int load_free_space_cache(struct btrfs_block_group *block_group) 918 { 919 struct btrfs_fs_info *fs_info = block_group->fs_info; 920 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 921 struct btrfs_free_space_ctl tmp_ctl = {}; 922 struct inode *inode; 923 struct btrfs_path *path; 924 int ret = 0; 925 bool matched; 926 u64 used = block_group->used; 927 928 /* 929 * Because we could potentially discard our loaded free space, we want 930 * to load everything into a temporary structure first, and then if it's 931 * valid copy it all into the actual free space ctl. 932 */ 933 btrfs_init_free_space_ctl(block_group, &tmp_ctl); 934 935 /* 936 * If this block group has been marked to be cleared for one reason or 937 * another then we can't trust the on disk cache, so just return. 938 */ 939 spin_lock(&block_group->lock); 940 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 941 spin_unlock(&block_group->lock); 942 return 0; 943 } 944 spin_unlock(&block_group->lock); 945 946 path = btrfs_alloc_path(); 947 if (!path) 948 return 0; 949 path->search_commit_root = 1; 950 path->skip_locking = 1; 951 952 /* 953 * We must pass a path with search_commit_root set to btrfs_iget in 954 * order to avoid a deadlock when allocating extents for the tree root. 955 * 956 * When we are COWing an extent buffer from the tree root, when looking 957 * for a free extent, at extent-tree.c:find_free_extent(), we can find 958 * block group without its free space cache loaded. When we find one 959 * we must load its space cache which requires reading its free space 960 * cache's inode item from the root tree. If this inode item is located 961 * in the same leaf that we started COWing before, then we end up in 962 * deadlock on the extent buffer (trying to read lock it when we 963 * previously write locked it). 964 * 965 * It's safe to read the inode item using the commit root because 966 * block groups, once loaded, stay in memory forever (until they are 967 * removed) as well as their space caches once loaded. New block groups 968 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 969 * we will never try to read their inode item while the fs is mounted. 970 */ 971 inode = lookup_free_space_inode(block_group, path); 972 if (IS_ERR(inode)) { 973 btrfs_free_path(path); 974 return 0; 975 } 976 977 /* We may have converted the inode and made the cache invalid. */ 978 spin_lock(&block_group->lock); 979 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 980 spin_unlock(&block_group->lock); 981 btrfs_free_path(path); 982 goto out; 983 } 984 spin_unlock(&block_group->lock); 985 986 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl, 987 path, block_group->start); 988 btrfs_free_path(path); 989 if (ret <= 0) 990 goto out; 991 992 matched = (tmp_ctl.free_space == (block_group->length - used - 993 block_group->bytes_super)); 994 995 if (matched) { 996 ret = copy_free_space_cache(block_group, &tmp_ctl); 997 /* 998 * ret == 1 means we successfully loaded the free space cache, 999 * so we need to re-set it here. 1000 */ 1001 if (ret == 0) 1002 ret = 1; 1003 } else { 1004 __btrfs_remove_free_space_cache(&tmp_ctl); 1005 btrfs_warn(fs_info, 1006 "block group %llu has wrong amount of free space", 1007 block_group->start); 1008 ret = -1; 1009 } 1010 out: 1011 if (ret < 0) { 1012 /* This cache is bogus, make sure it gets cleared */ 1013 spin_lock(&block_group->lock); 1014 block_group->disk_cache_state = BTRFS_DC_CLEAR; 1015 spin_unlock(&block_group->lock); 1016 ret = 0; 1017 1018 btrfs_warn(fs_info, 1019 "failed to load free space cache for block group %llu, rebuilding it now", 1020 block_group->start); 1021 } 1022 1023 spin_lock(&ctl->tree_lock); 1024 btrfs_discard_update_discardable(block_group); 1025 spin_unlock(&ctl->tree_lock); 1026 iput(inode); 1027 return ret; 1028 } 1029 1030 static noinline_for_stack 1031 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 1032 struct btrfs_free_space_ctl *ctl, 1033 struct btrfs_block_group *block_group, 1034 int *entries, int *bitmaps, 1035 struct list_head *bitmap_list) 1036 { 1037 int ret; 1038 struct btrfs_free_cluster *cluster = NULL; 1039 struct btrfs_free_cluster *cluster_locked = NULL; 1040 struct rb_node *node = rb_first(&ctl->free_space_offset); 1041 struct btrfs_trim_range *trim_entry; 1042 1043 /* Get the cluster for this block_group if it exists */ 1044 if (block_group && !list_empty(&block_group->cluster_list)) { 1045 cluster = list_entry(block_group->cluster_list.next, 1046 struct btrfs_free_cluster, 1047 block_group_list); 1048 } 1049 1050 if (!node && cluster) { 1051 cluster_locked = cluster; 1052 spin_lock(&cluster_locked->lock); 1053 node = rb_first(&cluster->root); 1054 cluster = NULL; 1055 } 1056 1057 /* Write out the extent entries */ 1058 while (node) { 1059 struct btrfs_free_space *e; 1060 1061 e = rb_entry(node, struct btrfs_free_space, offset_index); 1062 *entries += 1; 1063 1064 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 1065 e->bitmap); 1066 if (ret) 1067 goto fail; 1068 1069 if (e->bitmap) { 1070 list_add_tail(&e->list, bitmap_list); 1071 *bitmaps += 1; 1072 } 1073 node = rb_next(node); 1074 if (!node && cluster) { 1075 node = rb_first(&cluster->root); 1076 cluster_locked = cluster; 1077 spin_lock(&cluster_locked->lock); 1078 cluster = NULL; 1079 } 1080 } 1081 if (cluster_locked) { 1082 spin_unlock(&cluster_locked->lock); 1083 cluster_locked = NULL; 1084 } 1085 1086 /* 1087 * Make sure we don't miss any range that was removed from our rbtree 1088 * because trimming is running. Otherwise after a umount+mount (or crash 1089 * after committing the transaction) we would leak free space and get 1090 * an inconsistent free space cache report from fsck. 1091 */ 1092 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 1093 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 1094 trim_entry->bytes, NULL); 1095 if (ret) 1096 goto fail; 1097 *entries += 1; 1098 } 1099 1100 return 0; 1101 fail: 1102 if (cluster_locked) 1103 spin_unlock(&cluster_locked->lock); 1104 return -ENOSPC; 1105 } 1106 1107 static noinline_for_stack int 1108 update_cache_item(struct btrfs_trans_handle *trans, 1109 struct btrfs_root *root, 1110 struct inode *inode, 1111 struct btrfs_path *path, u64 offset, 1112 int entries, int bitmaps) 1113 { 1114 struct btrfs_key key; 1115 struct btrfs_free_space_header *header; 1116 struct extent_buffer *leaf; 1117 int ret; 1118 1119 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1120 key.offset = offset; 1121 key.type = 0; 1122 1123 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1124 if (ret < 0) { 1125 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1126 EXTENT_DELALLOC, 0, 0, NULL); 1127 goto fail; 1128 } 1129 leaf = path->nodes[0]; 1130 if (ret > 0) { 1131 struct btrfs_key found_key; 1132 ASSERT(path->slots[0]); 1133 path->slots[0]--; 1134 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1135 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1136 found_key.offset != offset) { 1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1138 inode->i_size - 1, EXTENT_DELALLOC, 0, 1139 0, NULL); 1140 btrfs_release_path(path); 1141 goto fail; 1142 } 1143 } 1144 1145 BTRFS_I(inode)->generation = trans->transid; 1146 header = btrfs_item_ptr(leaf, path->slots[0], 1147 struct btrfs_free_space_header); 1148 btrfs_set_free_space_entries(leaf, header, entries); 1149 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1150 btrfs_set_free_space_generation(leaf, header, trans->transid); 1151 btrfs_mark_buffer_dirty(leaf); 1152 btrfs_release_path(path); 1153 1154 return 0; 1155 1156 fail: 1157 return -1; 1158 } 1159 1160 static noinline_for_stack int write_pinned_extent_entries( 1161 struct btrfs_trans_handle *trans, 1162 struct btrfs_block_group *block_group, 1163 struct btrfs_io_ctl *io_ctl, 1164 int *entries) 1165 { 1166 u64 start, extent_start, extent_end, len; 1167 struct extent_io_tree *unpin = NULL; 1168 int ret; 1169 1170 if (!block_group) 1171 return 0; 1172 1173 /* 1174 * We want to add any pinned extents to our free space cache 1175 * so we don't leak the space 1176 * 1177 * We shouldn't have switched the pinned extents yet so this is the 1178 * right one 1179 */ 1180 unpin = &trans->transaction->pinned_extents; 1181 1182 start = block_group->start; 1183 1184 while (start < block_group->start + block_group->length) { 1185 ret = find_first_extent_bit(unpin, start, 1186 &extent_start, &extent_end, 1187 EXTENT_DIRTY, NULL); 1188 if (ret) 1189 return 0; 1190 1191 /* This pinned extent is out of our range */ 1192 if (extent_start >= block_group->start + block_group->length) 1193 return 0; 1194 1195 extent_start = max(extent_start, start); 1196 extent_end = min(block_group->start + block_group->length, 1197 extent_end + 1); 1198 len = extent_end - extent_start; 1199 1200 *entries += 1; 1201 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1202 if (ret) 1203 return -ENOSPC; 1204 1205 start = extent_end; 1206 } 1207 1208 return 0; 1209 } 1210 1211 static noinline_for_stack int 1212 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1213 { 1214 struct btrfs_free_space *entry, *next; 1215 int ret; 1216 1217 /* Write out the bitmaps */ 1218 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1219 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1220 if (ret) 1221 return -ENOSPC; 1222 list_del_init(&entry->list); 1223 } 1224 1225 return 0; 1226 } 1227 1228 static int flush_dirty_cache(struct inode *inode) 1229 { 1230 int ret; 1231 1232 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1233 if (ret) 1234 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1235 EXTENT_DELALLOC, 0, 0, NULL); 1236 1237 return ret; 1238 } 1239 1240 static void noinline_for_stack 1241 cleanup_bitmap_list(struct list_head *bitmap_list) 1242 { 1243 struct btrfs_free_space *entry, *next; 1244 1245 list_for_each_entry_safe(entry, next, bitmap_list, list) 1246 list_del_init(&entry->list); 1247 } 1248 1249 static void noinline_for_stack 1250 cleanup_write_cache_enospc(struct inode *inode, 1251 struct btrfs_io_ctl *io_ctl, 1252 struct extent_state **cached_state) 1253 { 1254 io_ctl_drop_pages(io_ctl); 1255 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1256 i_size_read(inode) - 1, cached_state); 1257 } 1258 1259 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1260 struct btrfs_trans_handle *trans, 1261 struct btrfs_block_group *block_group, 1262 struct btrfs_io_ctl *io_ctl, 1263 struct btrfs_path *path, u64 offset) 1264 { 1265 int ret; 1266 struct inode *inode = io_ctl->inode; 1267 1268 if (!inode) 1269 return 0; 1270 1271 /* Flush the dirty pages in the cache file. */ 1272 ret = flush_dirty_cache(inode); 1273 if (ret) 1274 goto out; 1275 1276 /* Update the cache item to tell everyone this cache file is valid. */ 1277 ret = update_cache_item(trans, root, inode, path, offset, 1278 io_ctl->entries, io_ctl->bitmaps); 1279 out: 1280 if (ret) { 1281 invalidate_inode_pages2(inode->i_mapping); 1282 BTRFS_I(inode)->generation = 0; 1283 if (block_group) 1284 btrfs_debug(root->fs_info, 1285 "failed to write free space cache for block group %llu error %d", 1286 block_group->start, ret); 1287 } 1288 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1289 1290 if (block_group) { 1291 /* the dirty list is protected by the dirty_bgs_lock */ 1292 spin_lock(&trans->transaction->dirty_bgs_lock); 1293 1294 /* the disk_cache_state is protected by the block group lock */ 1295 spin_lock(&block_group->lock); 1296 1297 /* 1298 * only mark this as written if we didn't get put back on 1299 * the dirty list while waiting for IO. Otherwise our 1300 * cache state won't be right, and we won't get written again 1301 */ 1302 if (!ret && list_empty(&block_group->dirty_list)) 1303 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1304 else if (ret) 1305 block_group->disk_cache_state = BTRFS_DC_ERROR; 1306 1307 spin_unlock(&block_group->lock); 1308 spin_unlock(&trans->transaction->dirty_bgs_lock); 1309 io_ctl->inode = NULL; 1310 iput(inode); 1311 } 1312 1313 return ret; 1314 1315 } 1316 1317 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1318 struct btrfs_block_group *block_group, 1319 struct btrfs_path *path) 1320 { 1321 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1322 block_group, &block_group->io_ctl, 1323 path, block_group->start); 1324 } 1325 1326 /** 1327 * Write out cached info to an inode 1328 * 1329 * @root: root the inode belongs to 1330 * @inode: freespace inode we are writing out 1331 * @ctl: free space cache we are going to write out 1332 * @block_group: block_group for this cache if it belongs to a block_group 1333 * @io_ctl: holds context for the io 1334 * @trans: the trans handle 1335 * 1336 * This function writes out a free space cache struct to disk for quick recovery 1337 * on mount. This will return 0 if it was successful in writing the cache out, 1338 * or an errno if it was not. 1339 */ 1340 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1341 struct btrfs_free_space_ctl *ctl, 1342 struct btrfs_block_group *block_group, 1343 struct btrfs_io_ctl *io_ctl, 1344 struct btrfs_trans_handle *trans) 1345 { 1346 struct extent_state *cached_state = NULL; 1347 LIST_HEAD(bitmap_list); 1348 int entries = 0; 1349 int bitmaps = 0; 1350 int ret; 1351 int must_iput = 0; 1352 1353 if (!i_size_read(inode)) 1354 return -EIO; 1355 1356 WARN_ON(io_ctl->pages); 1357 ret = io_ctl_init(io_ctl, inode, 1); 1358 if (ret) 1359 return ret; 1360 1361 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1362 down_write(&block_group->data_rwsem); 1363 spin_lock(&block_group->lock); 1364 if (block_group->delalloc_bytes) { 1365 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1366 spin_unlock(&block_group->lock); 1367 up_write(&block_group->data_rwsem); 1368 BTRFS_I(inode)->generation = 0; 1369 ret = 0; 1370 must_iput = 1; 1371 goto out; 1372 } 1373 spin_unlock(&block_group->lock); 1374 } 1375 1376 /* Lock all pages first so we can lock the extent safely. */ 1377 ret = io_ctl_prepare_pages(io_ctl, false); 1378 if (ret) 1379 goto out_unlock; 1380 1381 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1382 &cached_state); 1383 1384 io_ctl_set_generation(io_ctl, trans->transid); 1385 1386 mutex_lock(&ctl->cache_writeout_mutex); 1387 /* Write out the extent entries in the free space cache */ 1388 spin_lock(&ctl->tree_lock); 1389 ret = write_cache_extent_entries(io_ctl, ctl, 1390 block_group, &entries, &bitmaps, 1391 &bitmap_list); 1392 if (ret) 1393 goto out_nospc_locked; 1394 1395 /* 1396 * Some spaces that are freed in the current transaction are pinned, 1397 * they will be added into free space cache after the transaction is 1398 * committed, we shouldn't lose them. 1399 * 1400 * If this changes while we are working we'll get added back to 1401 * the dirty list and redo it. No locking needed 1402 */ 1403 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries); 1404 if (ret) 1405 goto out_nospc_locked; 1406 1407 /* 1408 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1409 * locked while doing it because a concurrent trim can be manipulating 1410 * or freeing the bitmap. 1411 */ 1412 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1413 spin_unlock(&ctl->tree_lock); 1414 mutex_unlock(&ctl->cache_writeout_mutex); 1415 if (ret) 1416 goto out_nospc; 1417 1418 /* Zero out the rest of the pages just to make sure */ 1419 io_ctl_zero_remaining_pages(io_ctl); 1420 1421 /* Everything is written out, now we dirty the pages in the file. */ 1422 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages, 1423 io_ctl->num_pages, 0, i_size_read(inode), 1424 &cached_state, false); 1425 if (ret) 1426 goto out_nospc; 1427 1428 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1429 up_write(&block_group->data_rwsem); 1430 /* 1431 * Release the pages and unlock the extent, we will flush 1432 * them out later 1433 */ 1434 io_ctl_drop_pages(io_ctl); 1435 io_ctl_free(io_ctl); 1436 1437 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1438 i_size_read(inode) - 1, &cached_state); 1439 1440 /* 1441 * at this point the pages are under IO and we're happy, 1442 * The caller is responsible for waiting on them and updating 1443 * the cache and the inode 1444 */ 1445 io_ctl->entries = entries; 1446 io_ctl->bitmaps = bitmaps; 1447 1448 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1449 if (ret) 1450 goto out; 1451 1452 return 0; 1453 1454 out_nospc_locked: 1455 cleanup_bitmap_list(&bitmap_list); 1456 spin_unlock(&ctl->tree_lock); 1457 mutex_unlock(&ctl->cache_writeout_mutex); 1458 1459 out_nospc: 1460 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1461 1462 out_unlock: 1463 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1464 up_write(&block_group->data_rwsem); 1465 1466 out: 1467 io_ctl->inode = NULL; 1468 io_ctl_free(io_ctl); 1469 if (ret) { 1470 invalidate_inode_pages2(inode->i_mapping); 1471 BTRFS_I(inode)->generation = 0; 1472 } 1473 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1474 if (must_iput) 1475 iput(inode); 1476 return ret; 1477 } 1478 1479 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1480 struct btrfs_block_group *block_group, 1481 struct btrfs_path *path) 1482 { 1483 struct btrfs_fs_info *fs_info = trans->fs_info; 1484 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1485 struct inode *inode; 1486 int ret = 0; 1487 1488 spin_lock(&block_group->lock); 1489 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1490 spin_unlock(&block_group->lock); 1491 return 0; 1492 } 1493 spin_unlock(&block_group->lock); 1494 1495 inode = lookup_free_space_inode(block_group, path); 1496 if (IS_ERR(inode)) 1497 return 0; 1498 1499 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1500 block_group, &block_group->io_ctl, trans); 1501 if (ret) { 1502 btrfs_debug(fs_info, 1503 "failed to write free space cache for block group %llu error %d", 1504 block_group->start, ret); 1505 spin_lock(&block_group->lock); 1506 block_group->disk_cache_state = BTRFS_DC_ERROR; 1507 spin_unlock(&block_group->lock); 1508 1509 block_group->io_ctl.inode = NULL; 1510 iput(inode); 1511 } 1512 1513 /* 1514 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1515 * to wait for IO and put the inode 1516 */ 1517 1518 return ret; 1519 } 1520 1521 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1522 u64 offset) 1523 { 1524 ASSERT(offset >= bitmap_start); 1525 offset -= bitmap_start; 1526 return (unsigned long)(div_u64(offset, unit)); 1527 } 1528 1529 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1530 { 1531 return (unsigned long)(div_u64(bytes, unit)); 1532 } 1533 1534 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1535 u64 offset) 1536 { 1537 u64 bitmap_start; 1538 u64 bytes_per_bitmap; 1539 1540 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1541 bitmap_start = offset - ctl->start; 1542 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1543 bitmap_start *= bytes_per_bitmap; 1544 bitmap_start += ctl->start; 1545 1546 return bitmap_start; 1547 } 1548 1549 static int tree_insert_offset(struct rb_root *root, u64 offset, 1550 struct rb_node *node, int bitmap) 1551 { 1552 struct rb_node **p = &root->rb_node; 1553 struct rb_node *parent = NULL; 1554 struct btrfs_free_space *info; 1555 1556 while (*p) { 1557 parent = *p; 1558 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1559 1560 if (offset < info->offset) { 1561 p = &(*p)->rb_left; 1562 } else if (offset > info->offset) { 1563 p = &(*p)->rb_right; 1564 } else { 1565 /* 1566 * we could have a bitmap entry and an extent entry 1567 * share the same offset. If this is the case, we want 1568 * the extent entry to always be found first if we do a 1569 * linear search through the tree, since we want to have 1570 * the quickest allocation time, and allocating from an 1571 * extent is faster than allocating from a bitmap. So 1572 * if we're inserting a bitmap and we find an entry at 1573 * this offset, we want to go right, or after this entry 1574 * logically. If we are inserting an extent and we've 1575 * found a bitmap, we want to go left, or before 1576 * logically. 1577 */ 1578 if (bitmap) { 1579 if (info->bitmap) { 1580 WARN_ON_ONCE(1); 1581 return -EEXIST; 1582 } 1583 p = &(*p)->rb_right; 1584 } else { 1585 if (!info->bitmap) { 1586 WARN_ON_ONCE(1); 1587 return -EEXIST; 1588 } 1589 p = &(*p)->rb_left; 1590 } 1591 } 1592 } 1593 1594 rb_link_node(node, parent, p); 1595 rb_insert_color(node, root); 1596 1597 return 0; 1598 } 1599 1600 /* 1601 * This is a little subtle. We *only* have ->max_extent_size set if we actually 1602 * searched through the bitmap and figured out the largest ->max_extent_size, 1603 * otherwise it's 0. In the case that it's 0 we don't want to tell the 1604 * allocator the wrong thing, we want to use the actual real max_extent_size 1605 * we've found already if it's larger, or we want to use ->bytes. 1606 * 1607 * This matters because find_free_space() will skip entries who's ->bytes is 1608 * less than the required bytes. So if we didn't search down this bitmap, we 1609 * may pick some previous entry that has a smaller ->max_extent_size than we 1610 * have. For example, assume we have two entries, one that has 1611 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set 1612 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will 1613 * call into find_free_space(), and return with max_extent_size == 4K, because 1614 * that first bitmap entry had ->max_extent_size set, but the second one did 1615 * not. If instead we returned 8K we'd come in searching for 8K, and find the 1616 * 8K contiguous range. 1617 * 1618 * Consider the other case, we have 2 8K chunks in that second entry and still 1619 * don't have ->max_extent_size set. We'll return 16K, and the next time the 1620 * allocator comes in it'll fully search our second bitmap, and this time it'll 1621 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the 1622 * right allocation the next loop through. 1623 */ 1624 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry) 1625 { 1626 if (entry->bitmap && entry->max_extent_size) 1627 return entry->max_extent_size; 1628 return entry->bytes; 1629 } 1630 1631 /* 1632 * We want the largest entry to be leftmost, so this is inverted from what you'd 1633 * normally expect. 1634 */ 1635 static bool entry_less(struct rb_node *node, const struct rb_node *parent) 1636 { 1637 const struct btrfs_free_space *entry, *exist; 1638 1639 entry = rb_entry(node, struct btrfs_free_space, bytes_index); 1640 exist = rb_entry(parent, struct btrfs_free_space, bytes_index); 1641 return get_max_extent_size(exist) < get_max_extent_size(entry); 1642 } 1643 1644 /* 1645 * searches the tree for the given offset. 1646 * 1647 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1648 * want a section that has at least bytes size and comes at or after the given 1649 * offset. 1650 */ 1651 static struct btrfs_free_space * 1652 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1653 u64 offset, int bitmap_only, int fuzzy) 1654 { 1655 struct rb_node *n = ctl->free_space_offset.rb_node; 1656 struct btrfs_free_space *entry = NULL, *prev = NULL; 1657 1658 /* find entry that is closest to the 'offset' */ 1659 while (n) { 1660 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1661 prev = entry; 1662 1663 if (offset < entry->offset) 1664 n = n->rb_left; 1665 else if (offset > entry->offset) 1666 n = n->rb_right; 1667 else 1668 break; 1669 1670 entry = NULL; 1671 } 1672 1673 if (bitmap_only) { 1674 if (!entry) 1675 return NULL; 1676 if (entry->bitmap) 1677 return entry; 1678 1679 /* 1680 * bitmap entry and extent entry may share same offset, 1681 * in that case, bitmap entry comes after extent entry. 1682 */ 1683 n = rb_next(n); 1684 if (!n) 1685 return NULL; 1686 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1687 if (entry->offset != offset) 1688 return NULL; 1689 1690 WARN_ON(!entry->bitmap); 1691 return entry; 1692 } else if (entry) { 1693 if (entry->bitmap) { 1694 /* 1695 * if previous extent entry covers the offset, 1696 * we should return it instead of the bitmap entry 1697 */ 1698 n = rb_prev(&entry->offset_index); 1699 if (n) { 1700 prev = rb_entry(n, struct btrfs_free_space, 1701 offset_index); 1702 if (!prev->bitmap && 1703 prev->offset + prev->bytes > offset) 1704 entry = prev; 1705 } 1706 } 1707 return entry; 1708 } 1709 1710 if (!prev) 1711 return NULL; 1712 1713 /* find last entry before the 'offset' */ 1714 entry = prev; 1715 if (entry->offset > offset) { 1716 n = rb_prev(&entry->offset_index); 1717 if (n) { 1718 entry = rb_entry(n, struct btrfs_free_space, 1719 offset_index); 1720 ASSERT(entry->offset <= offset); 1721 } else { 1722 if (fuzzy) 1723 return entry; 1724 else 1725 return NULL; 1726 } 1727 } 1728 1729 if (entry->bitmap) { 1730 n = rb_prev(&entry->offset_index); 1731 if (n) { 1732 prev = rb_entry(n, struct btrfs_free_space, 1733 offset_index); 1734 if (!prev->bitmap && 1735 prev->offset + prev->bytes > offset) 1736 return prev; 1737 } 1738 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1739 return entry; 1740 } else if (entry->offset + entry->bytes > offset) 1741 return entry; 1742 1743 if (!fuzzy) 1744 return NULL; 1745 1746 while (1) { 1747 n = rb_next(&entry->offset_index); 1748 if (!n) 1749 return NULL; 1750 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1751 if (entry->bitmap) { 1752 if (entry->offset + BITS_PER_BITMAP * 1753 ctl->unit > offset) 1754 break; 1755 } else { 1756 if (entry->offset + entry->bytes > offset) 1757 break; 1758 } 1759 } 1760 return entry; 1761 } 1762 1763 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1764 struct btrfs_free_space *info, 1765 bool update_stat) 1766 { 1767 rb_erase(&info->offset_index, &ctl->free_space_offset); 1768 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); 1769 ctl->free_extents--; 1770 1771 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1772 ctl->discardable_extents[BTRFS_STAT_CURR]--; 1773 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; 1774 } 1775 1776 if (update_stat) 1777 ctl->free_space -= info->bytes; 1778 } 1779 1780 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1781 struct btrfs_free_space *info) 1782 { 1783 int ret = 0; 1784 1785 ASSERT(info->bytes || info->bitmap); 1786 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1787 &info->offset_index, (info->bitmap != NULL)); 1788 if (ret) 1789 return ret; 1790 1791 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); 1792 1793 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1794 ctl->discardable_extents[BTRFS_STAT_CURR]++; 1795 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 1796 } 1797 1798 ctl->free_space += info->bytes; 1799 ctl->free_extents++; 1800 return ret; 1801 } 1802 1803 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl, 1804 struct btrfs_free_space *info) 1805 { 1806 ASSERT(info->bitmap); 1807 1808 /* 1809 * If our entry is empty it's because we're on a cluster and we don't 1810 * want to re-link it into our ctl bytes index. 1811 */ 1812 if (RB_EMPTY_NODE(&info->bytes_index)) 1813 return; 1814 1815 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); 1816 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); 1817 } 1818 1819 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1820 struct btrfs_free_space *info, 1821 u64 offset, u64 bytes, bool update_stat) 1822 { 1823 unsigned long start, count, end; 1824 int extent_delta = -1; 1825 1826 start = offset_to_bit(info->offset, ctl->unit, offset); 1827 count = bytes_to_bits(bytes, ctl->unit); 1828 end = start + count; 1829 ASSERT(end <= BITS_PER_BITMAP); 1830 1831 bitmap_clear(info->bitmap, start, count); 1832 1833 info->bytes -= bytes; 1834 if (info->max_extent_size > ctl->unit) 1835 info->max_extent_size = 0; 1836 1837 relink_bitmap_entry(ctl, info); 1838 1839 if (start && test_bit(start - 1, info->bitmap)) 1840 extent_delta++; 1841 1842 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1843 extent_delta++; 1844 1845 info->bitmap_extents += extent_delta; 1846 if (!btrfs_free_space_trimmed(info)) { 1847 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1848 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 1849 } 1850 1851 if (update_stat) 1852 ctl->free_space -= bytes; 1853 } 1854 1855 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1856 struct btrfs_free_space *info, u64 offset, 1857 u64 bytes) 1858 { 1859 unsigned long start, count, end; 1860 int extent_delta = 1; 1861 1862 start = offset_to_bit(info->offset, ctl->unit, offset); 1863 count = bytes_to_bits(bytes, ctl->unit); 1864 end = start + count; 1865 ASSERT(end <= BITS_PER_BITMAP); 1866 1867 bitmap_set(info->bitmap, start, count); 1868 1869 /* 1870 * We set some bytes, we have no idea what the max extent size is 1871 * anymore. 1872 */ 1873 info->max_extent_size = 0; 1874 info->bytes += bytes; 1875 ctl->free_space += bytes; 1876 1877 relink_bitmap_entry(ctl, info); 1878 1879 if (start && test_bit(start - 1, info->bitmap)) 1880 extent_delta--; 1881 1882 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1883 extent_delta--; 1884 1885 info->bitmap_extents += extent_delta; 1886 if (!btrfs_free_space_trimmed(info)) { 1887 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1888 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; 1889 } 1890 } 1891 1892 /* 1893 * If we can not find suitable extent, we will use bytes to record 1894 * the size of the max extent. 1895 */ 1896 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1897 struct btrfs_free_space *bitmap_info, u64 *offset, 1898 u64 *bytes, bool for_alloc) 1899 { 1900 unsigned long found_bits = 0; 1901 unsigned long max_bits = 0; 1902 unsigned long bits, i; 1903 unsigned long next_zero; 1904 unsigned long extent_bits; 1905 1906 /* 1907 * Skip searching the bitmap if we don't have a contiguous section that 1908 * is large enough for this allocation. 1909 */ 1910 if (for_alloc && 1911 bitmap_info->max_extent_size && 1912 bitmap_info->max_extent_size < *bytes) { 1913 *bytes = bitmap_info->max_extent_size; 1914 return -1; 1915 } 1916 1917 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1918 max_t(u64, *offset, bitmap_info->offset)); 1919 bits = bytes_to_bits(*bytes, ctl->unit); 1920 1921 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1922 if (for_alloc && bits == 1) { 1923 found_bits = 1; 1924 break; 1925 } 1926 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1927 BITS_PER_BITMAP, i); 1928 extent_bits = next_zero - i; 1929 if (extent_bits >= bits) { 1930 found_bits = extent_bits; 1931 break; 1932 } else if (extent_bits > max_bits) { 1933 max_bits = extent_bits; 1934 } 1935 i = next_zero; 1936 } 1937 1938 if (found_bits) { 1939 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1940 *bytes = (u64)(found_bits) * ctl->unit; 1941 return 0; 1942 } 1943 1944 *bytes = (u64)(max_bits) * ctl->unit; 1945 bitmap_info->max_extent_size = *bytes; 1946 relink_bitmap_entry(ctl, bitmap_info); 1947 return -1; 1948 } 1949 1950 /* Cache the size of the max extent in bytes */ 1951 static struct btrfs_free_space * 1952 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1953 unsigned long align, u64 *max_extent_size, bool use_bytes_index) 1954 { 1955 struct btrfs_free_space *entry; 1956 struct rb_node *node; 1957 u64 tmp; 1958 u64 align_off; 1959 int ret; 1960 1961 if (!ctl->free_space_offset.rb_node) 1962 goto out; 1963 again: 1964 if (use_bytes_index) { 1965 node = rb_first_cached(&ctl->free_space_bytes); 1966 } else { 1967 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 1968 0, 1); 1969 if (!entry) 1970 goto out; 1971 node = &entry->offset_index; 1972 } 1973 1974 for (; node; node = rb_next(node)) { 1975 if (use_bytes_index) 1976 entry = rb_entry(node, struct btrfs_free_space, 1977 bytes_index); 1978 else 1979 entry = rb_entry(node, struct btrfs_free_space, 1980 offset_index); 1981 1982 /* 1983 * If we are using the bytes index then all subsequent entries 1984 * in this tree are going to be < bytes, so simply set the max 1985 * extent size and exit the loop. 1986 * 1987 * If we're using the offset index then we need to keep going 1988 * through the rest of the tree. 1989 */ 1990 if (entry->bytes < *bytes) { 1991 *max_extent_size = max(get_max_extent_size(entry), 1992 *max_extent_size); 1993 if (use_bytes_index) 1994 break; 1995 continue; 1996 } 1997 1998 /* make sure the space returned is big enough 1999 * to match our requested alignment 2000 */ 2001 if (*bytes >= align) { 2002 tmp = entry->offset - ctl->start + align - 1; 2003 tmp = div64_u64(tmp, align); 2004 tmp = tmp * align + ctl->start; 2005 align_off = tmp - entry->offset; 2006 } else { 2007 align_off = 0; 2008 tmp = entry->offset; 2009 } 2010 2011 /* 2012 * We don't break here if we're using the bytes index because we 2013 * may have another entry that has the correct alignment that is 2014 * the right size, so we don't want to miss that possibility. 2015 * At worst this adds another loop through the logic, but if we 2016 * broke here we could prematurely ENOSPC. 2017 */ 2018 if (entry->bytes < *bytes + align_off) { 2019 *max_extent_size = max(get_max_extent_size(entry), 2020 *max_extent_size); 2021 continue; 2022 } 2023 2024 if (entry->bitmap) { 2025 struct rb_node *old_next = rb_next(node); 2026 u64 size = *bytes; 2027 2028 ret = search_bitmap(ctl, entry, &tmp, &size, true); 2029 if (!ret) { 2030 *offset = tmp; 2031 *bytes = size; 2032 return entry; 2033 } else { 2034 *max_extent_size = 2035 max(get_max_extent_size(entry), 2036 *max_extent_size); 2037 } 2038 2039 /* 2040 * The bitmap may have gotten re-arranged in the space 2041 * index here because the max_extent_size may have been 2042 * updated. Start from the beginning again if this 2043 * happened. 2044 */ 2045 if (use_bytes_index && old_next != rb_next(node)) 2046 goto again; 2047 continue; 2048 } 2049 2050 *offset = tmp; 2051 *bytes = entry->bytes - align_off; 2052 return entry; 2053 } 2054 out: 2055 return NULL; 2056 } 2057 2058 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 2059 struct btrfs_free_space *info, u64 offset) 2060 { 2061 info->offset = offset_to_bitmap(ctl, offset); 2062 info->bytes = 0; 2063 info->bitmap_extents = 0; 2064 INIT_LIST_HEAD(&info->list); 2065 link_free_space(ctl, info); 2066 ctl->total_bitmaps++; 2067 recalculate_thresholds(ctl); 2068 } 2069 2070 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 2071 struct btrfs_free_space *bitmap_info) 2072 { 2073 /* 2074 * Normally when this is called, the bitmap is completely empty. However, 2075 * if we are blowing up the free space cache for one reason or another 2076 * via __btrfs_remove_free_space_cache(), then it may not be freed and 2077 * we may leave stats on the table. 2078 */ 2079 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { 2080 ctl->discardable_extents[BTRFS_STAT_CURR] -= 2081 bitmap_info->bitmap_extents; 2082 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; 2083 2084 } 2085 unlink_free_space(ctl, bitmap_info, true); 2086 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 2087 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 2088 ctl->total_bitmaps--; 2089 recalculate_thresholds(ctl); 2090 } 2091 2092 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 2093 struct btrfs_free_space *bitmap_info, 2094 u64 *offset, u64 *bytes) 2095 { 2096 u64 end; 2097 u64 search_start, search_bytes; 2098 int ret; 2099 2100 again: 2101 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 2102 2103 /* 2104 * We need to search for bits in this bitmap. We could only cover some 2105 * of the extent in this bitmap thanks to how we add space, so we need 2106 * to search for as much as it as we can and clear that amount, and then 2107 * go searching for the next bit. 2108 */ 2109 search_start = *offset; 2110 search_bytes = ctl->unit; 2111 search_bytes = min(search_bytes, end - search_start + 1); 2112 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 2113 false); 2114 if (ret < 0 || search_start != *offset) 2115 return -EINVAL; 2116 2117 /* We may have found more bits than what we need */ 2118 search_bytes = min(search_bytes, *bytes); 2119 2120 /* Cannot clear past the end of the bitmap */ 2121 search_bytes = min(search_bytes, end - search_start + 1); 2122 2123 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true); 2124 *offset += search_bytes; 2125 *bytes -= search_bytes; 2126 2127 if (*bytes) { 2128 struct rb_node *next = rb_next(&bitmap_info->offset_index); 2129 if (!bitmap_info->bytes) 2130 free_bitmap(ctl, bitmap_info); 2131 2132 /* 2133 * no entry after this bitmap, but we still have bytes to 2134 * remove, so something has gone wrong. 2135 */ 2136 if (!next) 2137 return -EINVAL; 2138 2139 bitmap_info = rb_entry(next, struct btrfs_free_space, 2140 offset_index); 2141 2142 /* 2143 * if the next entry isn't a bitmap we need to return to let the 2144 * extent stuff do its work. 2145 */ 2146 if (!bitmap_info->bitmap) 2147 return -EAGAIN; 2148 2149 /* 2150 * Ok the next item is a bitmap, but it may not actually hold 2151 * the information for the rest of this free space stuff, so 2152 * look for it, and if we don't find it return so we can try 2153 * everything over again. 2154 */ 2155 search_start = *offset; 2156 search_bytes = ctl->unit; 2157 ret = search_bitmap(ctl, bitmap_info, &search_start, 2158 &search_bytes, false); 2159 if (ret < 0 || search_start != *offset) 2160 return -EAGAIN; 2161 2162 goto again; 2163 } else if (!bitmap_info->bytes) 2164 free_bitmap(ctl, bitmap_info); 2165 2166 return 0; 2167 } 2168 2169 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 2170 struct btrfs_free_space *info, u64 offset, 2171 u64 bytes, enum btrfs_trim_state trim_state) 2172 { 2173 u64 bytes_to_set = 0; 2174 u64 end; 2175 2176 /* 2177 * This is a tradeoff to make bitmap trim state minimal. We mark the 2178 * whole bitmap untrimmed if at any point we add untrimmed regions. 2179 */ 2180 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { 2181 if (btrfs_free_space_trimmed(info)) { 2182 ctl->discardable_extents[BTRFS_STAT_CURR] += 2183 info->bitmap_extents; 2184 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 2185 } 2186 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2187 } 2188 2189 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 2190 2191 bytes_to_set = min(end - offset, bytes); 2192 2193 bitmap_set_bits(ctl, info, offset, bytes_to_set); 2194 2195 return bytes_to_set; 2196 2197 } 2198 2199 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 2200 struct btrfs_free_space *info) 2201 { 2202 struct btrfs_block_group *block_group = ctl->block_group; 2203 struct btrfs_fs_info *fs_info = block_group->fs_info; 2204 bool forced = false; 2205 2206 #ifdef CONFIG_BTRFS_DEBUG 2207 if (btrfs_should_fragment_free_space(block_group)) 2208 forced = true; 2209 #endif 2210 2211 /* This is a way to reclaim large regions from the bitmaps. */ 2212 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) 2213 return false; 2214 2215 /* 2216 * If we are below the extents threshold then we can add this as an 2217 * extent, and don't have to deal with the bitmap 2218 */ 2219 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2220 /* 2221 * If this block group has some small extents we don't want to 2222 * use up all of our free slots in the cache with them, we want 2223 * to reserve them to larger extents, however if we have plenty 2224 * of cache left then go ahead an dadd them, no sense in adding 2225 * the overhead of a bitmap if we don't have to. 2226 */ 2227 if (info->bytes <= fs_info->sectorsize * 8) { 2228 if (ctl->free_extents * 3 <= ctl->extents_thresh) 2229 return false; 2230 } else { 2231 return false; 2232 } 2233 } 2234 2235 /* 2236 * The original block groups from mkfs can be really small, like 8 2237 * megabytes, so don't bother with a bitmap for those entries. However 2238 * some block groups can be smaller than what a bitmap would cover but 2239 * are still large enough that they could overflow the 32k memory limit, 2240 * so allow those block groups to still be allowed to have a bitmap 2241 * entry. 2242 */ 2243 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2244 return false; 2245 2246 return true; 2247 } 2248 2249 static const struct btrfs_free_space_op free_space_op = { 2250 .use_bitmap = use_bitmap, 2251 }; 2252 2253 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2254 struct btrfs_free_space *info) 2255 { 2256 struct btrfs_free_space *bitmap_info; 2257 struct btrfs_block_group *block_group = NULL; 2258 int added = 0; 2259 u64 bytes, offset, bytes_added; 2260 enum btrfs_trim_state trim_state; 2261 int ret; 2262 2263 bytes = info->bytes; 2264 offset = info->offset; 2265 trim_state = info->trim_state; 2266 2267 if (!ctl->op->use_bitmap(ctl, info)) 2268 return 0; 2269 2270 if (ctl->op == &free_space_op) 2271 block_group = ctl->block_group; 2272 again: 2273 /* 2274 * Since we link bitmaps right into the cluster we need to see if we 2275 * have a cluster here, and if so and it has our bitmap we need to add 2276 * the free space to that bitmap. 2277 */ 2278 if (block_group && !list_empty(&block_group->cluster_list)) { 2279 struct btrfs_free_cluster *cluster; 2280 struct rb_node *node; 2281 struct btrfs_free_space *entry; 2282 2283 cluster = list_entry(block_group->cluster_list.next, 2284 struct btrfs_free_cluster, 2285 block_group_list); 2286 spin_lock(&cluster->lock); 2287 node = rb_first(&cluster->root); 2288 if (!node) { 2289 spin_unlock(&cluster->lock); 2290 goto no_cluster_bitmap; 2291 } 2292 2293 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2294 if (!entry->bitmap) { 2295 spin_unlock(&cluster->lock); 2296 goto no_cluster_bitmap; 2297 } 2298 2299 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2300 bytes_added = add_bytes_to_bitmap(ctl, entry, offset, 2301 bytes, trim_state); 2302 bytes -= bytes_added; 2303 offset += bytes_added; 2304 } 2305 spin_unlock(&cluster->lock); 2306 if (!bytes) { 2307 ret = 1; 2308 goto out; 2309 } 2310 } 2311 2312 no_cluster_bitmap: 2313 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2314 1, 0); 2315 if (!bitmap_info) { 2316 ASSERT(added == 0); 2317 goto new_bitmap; 2318 } 2319 2320 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 2321 trim_state); 2322 bytes -= bytes_added; 2323 offset += bytes_added; 2324 added = 0; 2325 2326 if (!bytes) { 2327 ret = 1; 2328 goto out; 2329 } else 2330 goto again; 2331 2332 new_bitmap: 2333 if (info && info->bitmap) { 2334 add_new_bitmap(ctl, info, offset); 2335 added = 1; 2336 info = NULL; 2337 goto again; 2338 } else { 2339 spin_unlock(&ctl->tree_lock); 2340 2341 /* no pre-allocated info, allocate a new one */ 2342 if (!info) { 2343 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2344 GFP_NOFS); 2345 if (!info) { 2346 spin_lock(&ctl->tree_lock); 2347 ret = -ENOMEM; 2348 goto out; 2349 } 2350 } 2351 2352 /* allocate the bitmap */ 2353 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2354 GFP_NOFS); 2355 info->trim_state = BTRFS_TRIM_STATE_TRIMMED; 2356 spin_lock(&ctl->tree_lock); 2357 if (!info->bitmap) { 2358 ret = -ENOMEM; 2359 goto out; 2360 } 2361 goto again; 2362 } 2363 2364 out: 2365 if (info) { 2366 if (info->bitmap) 2367 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2368 info->bitmap); 2369 kmem_cache_free(btrfs_free_space_cachep, info); 2370 } 2371 2372 return ret; 2373 } 2374 2375 /* 2376 * Free space merging rules: 2377 * 1) Merge trimmed areas together 2378 * 2) Let untrimmed areas coalesce with trimmed areas 2379 * 3) Always pull neighboring regions from bitmaps 2380 * 2381 * The above rules are for when we merge free space based on btrfs_trim_state. 2382 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the 2383 * same reason: to promote larger extent regions which makes life easier for 2384 * find_free_extent(). Rule 2 enables coalescing based on the common path 2385 * being returning free space from btrfs_finish_extent_commit(). So when free 2386 * space is trimmed, it will prevent aggregating trimmed new region and 2387 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents 2388 * and provide find_free_extent() with the largest extents possible hoping for 2389 * the reuse path. 2390 */ 2391 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2392 struct btrfs_free_space *info, bool update_stat) 2393 { 2394 struct btrfs_free_space *left_info = NULL; 2395 struct btrfs_free_space *right_info; 2396 bool merged = false; 2397 u64 offset = info->offset; 2398 u64 bytes = info->bytes; 2399 const bool is_trimmed = btrfs_free_space_trimmed(info); 2400 2401 /* 2402 * first we want to see if there is free space adjacent to the range we 2403 * are adding, if there is remove that struct and add a new one to 2404 * cover the entire range 2405 */ 2406 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2407 if (right_info && rb_prev(&right_info->offset_index)) 2408 left_info = rb_entry(rb_prev(&right_info->offset_index), 2409 struct btrfs_free_space, offset_index); 2410 else if (!right_info) 2411 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2412 2413 /* See try_merge_free_space() comment. */ 2414 if (right_info && !right_info->bitmap && 2415 (!is_trimmed || btrfs_free_space_trimmed(right_info))) { 2416 unlink_free_space(ctl, right_info, update_stat); 2417 info->bytes += right_info->bytes; 2418 kmem_cache_free(btrfs_free_space_cachep, right_info); 2419 merged = true; 2420 } 2421 2422 /* See try_merge_free_space() comment. */ 2423 if (left_info && !left_info->bitmap && 2424 left_info->offset + left_info->bytes == offset && 2425 (!is_trimmed || btrfs_free_space_trimmed(left_info))) { 2426 unlink_free_space(ctl, left_info, update_stat); 2427 info->offset = left_info->offset; 2428 info->bytes += left_info->bytes; 2429 kmem_cache_free(btrfs_free_space_cachep, left_info); 2430 merged = true; 2431 } 2432 2433 return merged; 2434 } 2435 2436 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2437 struct btrfs_free_space *info, 2438 bool update_stat) 2439 { 2440 struct btrfs_free_space *bitmap; 2441 unsigned long i; 2442 unsigned long j; 2443 const u64 end = info->offset + info->bytes; 2444 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2445 u64 bytes; 2446 2447 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2448 if (!bitmap) 2449 return false; 2450 2451 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2452 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2453 if (j == i) 2454 return false; 2455 bytes = (j - i) * ctl->unit; 2456 info->bytes += bytes; 2457 2458 /* See try_merge_free_space() comment. */ 2459 if (!btrfs_free_space_trimmed(bitmap)) 2460 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2461 2462 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat); 2463 2464 if (!bitmap->bytes) 2465 free_bitmap(ctl, bitmap); 2466 2467 return true; 2468 } 2469 2470 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2471 struct btrfs_free_space *info, 2472 bool update_stat) 2473 { 2474 struct btrfs_free_space *bitmap; 2475 u64 bitmap_offset; 2476 unsigned long i; 2477 unsigned long j; 2478 unsigned long prev_j; 2479 u64 bytes; 2480 2481 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2482 /* If we're on a boundary, try the previous logical bitmap. */ 2483 if (bitmap_offset == info->offset) { 2484 if (info->offset == 0) 2485 return false; 2486 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2487 } 2488 2489 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2490 if (!bitmap) 2491 return false; 2492 2493 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2494 j = 0; 2495 prev_j = (unsigned long)-1; 2496 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2497 if (j > i) 2498 break; 2499 prev_j = j; 2500 } 2501 if (prev_j == i) 2502 return false; 2503 2504 if (prev_j == (unsigned long)-1) 2505 bytes = (i + 1) * ctl->unit; 2506 else 2507 bytes = (i - prev_j) * ctl->unit; 2508 2509 info->offset -= bytes; 2510 info->bytes += bytes; 2511 2512 /* See try_merge_free_space() comment. */ 2513 if (!btrfs_free_space_trimmed(bitmap)) 2514 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2515 2516 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat); 2517 2518 if (!bitmap->bytes) 2519 free_bitmap(ctl, bitmap); 2520 2521 return true; 2522 } 2523 2524 /* 2525 * We prefer always to allocate from extent entries, both for clustered and 2526 * non-clustered allocation requests. So when attempting to add a new extent 2527 * entry, try to see if there's adjacent free space in bitmap entries, and if 2528 * there is, migrate that space from the bitmaps to the extent. 2529 * Like this we get better chances of satisfying space allocation requests 2530 * because we attempt to satisfy them based on a single cache entry, and never 2531 * on 2 or more entries - even if the entries represent a contiguous free space 2532 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2533 * ends). 2534 */ 2535 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2536 struct btrfs_free_space *info, 2537 bool update_stat) 2538 { 2539 /* 2540 * Only work with disconnected entries, as we can change their offset, 2541 * and must be extent entries. 2542 */ 2543 ASSERT(!info->bitmap); 2544 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2545 2546 if (ctl->total_bitmaps > 0) { 2547 bool stole_end; 2548 bool stole_front = false; 2549 2550 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2551 if (ctl->total_bitmaps > 0) 2552 stole_front = steal_from_bitmap_to_front(ctl, info, 2553 update_stat); 2554 2555 if (stole_end || stole_front) 2556 try_merge_free_space(ctl, info, update_stat); 2557 } 2558 } 2559 2560 int __btrfs_add_free_space(struct btrfs_block_group *block_group, 2561 u64 offset, u64 bytes, 2562 enum btrfs_trim_state trim_state) 2563 { 2564 struct btrfs_fs_info *fs_info = block_group->fs_info; 2565 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2566 struct btrfs_free_space *info; 2567 int ret = 0; 2568 u64 filter_bytes = bytes; 2569 2570 ASSERT(!btrfs_is_zoned(fs_info)); 2571 2572 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2573 if (!info) 2574 return -ENOMEM; 2575 2576 info->offset = offset; 2577 info->bytes = bytes; 2578 info->trim_state = trim_state; 2579 RB_CLEAR_NODE(&info->offset_index); 2580 RB_CLEAR_NODE(&info->bytes_index); 2581 2582 spin_lock(&ctl->tree_lock); 2583 2584 if (try_merge_free_space(ctl, info, true)) 2585 goto link; 2586 2587 /* 2588 * There was no extent directly to the left or right of this new 2589 * extent then we know we're going to have to allocate a new extent, so 2590 * before we do that see if we need to drop this into a bitmap 2591 */ 2592 ret = insert_into_bitmap(ctl, info); 2593 if (ret < 0) { 2594 goto out; 2595 } else if (ret) { 2596 ret = 0; 2597 goto out; 2598 } 2599 link: 2600 /* 2601 * Only steal free space from adjacent bitmaps if we're sure we're not 2602 * going to add the new free space to existing bitmap entries - because 2603 * that would mean unnecessary work that would be reverted. Therefore 2604 * attempt to steal space from bitmaps if we're adding an extent entry. 2605 */ 2606 steal_from_bitmap(ctl, info, true); 2607 2608 filter_bytes = max(filter_bytes, info->bytes); 2609 2610 ret = link_free_space(ctl, info); 2611 if (ret) 2612 kmem_cache_free(btrfs_free_space_cachep, info); 2613 out: 2614 btrfs_discard_update_discardable(block_group); 2615 spin_unlock(&ctl->tree_lock); 2616 2617 if (ret) { 2618 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2619 ASSERT(ret != -EEXIST); 2620 } 2621 2622 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { 2623 btrfs_discard_check_filter(block_group, filter_bytes); 2624 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 2625 } 2626 2627 return ret; 2628 } 2629 2630 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group, 2631 u64 bytenr, u64 size, bool used) 2632 { 2633 struct btrfs_fs_info *fs_info = block_group->fs_info; 2634 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2635 u64 offset = bytenr - block_group->start; 2636 u64 to_free, to_unusable; 2637 const int bg_reclaim_threshold = READ_ONCE(fs_info->bg_reclaim_threshold); 2638 bool initial = (size == block_group->length); 2639 u64 reclaimable_unusable; 2640 2641 WARN_ON(!initial && offset + size > block_group->zone_capacity); 2642 2643 spin_lock(&ctl->tree_lock); 2644 if (!used) 2645 to_free = size; 2646 else if (initial) 2647 to_free = block_group->zone_capacity; 2648 else if (offset >= block_group->alloc_offset) 2649 to_free = size; 2650 else if (offset + size <= block_group->alloc_offset) 2651 to_free = 0; 2652 else 2653 to_free = offset + size - block_group->alloc_offset; 2654 to_unusable = size - to_free; 2655 2656 ctl->free_space += to_free; 2657 /* 2658 * If the block group is read-only, we should account freed space into 2659 * bytes_readonly. 2660 */ 2661 if (!block_group->ro) 2662 block_group->zone_unusable += to_unusable; 2663 spin_unlock(&ctl->tree_lock); 2664 if (!used) { 2665 spin_lock(&block_group->lock); 2666 block_group->alloc_offset -= size; 2667 spin_unlock(&block_group->lock); 2668 } 2669 2670 reclaimable_unusable = block_group->zone_unusable - 2671 (block_group->length - block_group->zone_capacity); 2672 /* All the region is now unusable. Mark it as unused and reclaim */ 2673 if (block_group->zone_unusable == block_group->length) { 2674 btrfs_mark_bg_unused(block_group); 2675 } else if (bg_reclaim_threshold && 2676 reclaimable_unusable >= 2677 div_factor_fine(block_group->zone_capacity, 2678 bg_reclaim_threshold)) { 2679 btrfs_mark_bg_to_reclaim(block_group); 2680 } 2681 2682 return 0; 2683 } 2684 2685 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2686 u64 bytenr, u64 size) 2687 { 2688 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2689 2690 if (btrfs_is_zoned(block_group->fs_info)) 2691 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2692 true); 2693 2694 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) 2695 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2696 2697 return __btrfs_add_free_space(block_group, bytenr, size, trim_state); 2698 } 2699 2700 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group, 2701 u64 bytenr, u64 size) 2702 { 2703 if (btrfs_is_zoned(block_group->fs_info)) 2704 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2705 false); 2706 2707 return btrfs_add_free_space(block_group, bytenr, size); 2708 } 2709 2710 /* 2711 * This is a subtle distinction because when adding free space back in general, 2712 * we want it to be added as untrimmed for async. But in the case where we add 2713 * it on loading of a block group, we want to consider it trimmed. 2714 */ 2715 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, 2716 u64 bytenr, u64 size) 2717 { 2718 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2719 2720 if (btrfs_is_zoned(block_group->fs_info)) 2721 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2722 true); 2723 2724 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || 2725 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 2726 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2727 2728 return __btrfs_add_free_space(block_group, bytenr, size, trim_state); 2729 } 2730 2731 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2732 u64 offset, u64 bytes) 2733 { 2734 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2735 struct btrfs_free_space *info; 2736 int ret; 2737 bool re_search = false; 2738 2739 if (btrfs_is_zoned(block_group->fs_info)) { 2740 /* 2741 * This can happen with conventional zones when replaying log. 2742 * Since the allocation info of tree-log nodes are not recorded 2743 * to the extent-tree, calculate_alloc_pointer() failed to 2744 * advance the allocation pointer after last allocated tree log 2745 * node blocks. 2746 * 2747 * This function is called from 2748 * btrfs_pin_extent_for_log_replay() when replaying the log. 2749 * Advance the pointer not to overwrite the tree-log nodes. 2750 */ 2751 if (block_group->start + block_group->alloc_offset < 2752 offset + bytes) { 2753 block_group->alloc_offset = 2754 offset + bytes - block_group->start; 2755 } 2756 return 0; 2757 } 2758 2759 spin_lock(&ctl->tree_lock); 2760 2761 again: 2762 ret = 0; 2763 if (!bytes) 2764 goto out_lock; 2765 2766 info = tree_search_offset(ctl, offset, 0, 0); 2767 if (!info) { 2768 /* 2769 * oops didn't find an extent that matched the space we wanted 2770 * to remove, look for a bitmap instead 2771 */ 2772 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2773 1, 0); 2774 if (!info) { 2775 /* 2776 * If we found a partial bit of our free space in a 2777 * bitmap but then couldn't find the other part this may 2778 * be a problem, so WARN about it. 2779 */ 2780 WARN_ON(re_search); 2781 goto out_lock; 2782 } 2783 } 2784 2785 re_search = false; 2786 if (!info->bitmap) { 2787 unlink_free_space(ctl, info, true); 2788 if (offset == info->offset) { 2789 u64 to_free = min(bytes, info->bytes); 2790 2791 info->bytes -= to_free; 2792 info->offset += to_free; 2793 if (info->bytes) { 2794 ret = link_free_space(ctl, info); 2795 WARN_ON(ret); 2796 } else { 2797 kmem_cache_free(btrfs_free_space_cachep, info); 2798 } 2799 2800 offset += to_free; 2801 bytes -= to_free; 2802 goto again; 2803 } else { 2804 u64 old_end = info->bytes + info->offset; 2805 2806 info->bytes = offset - info->offset; 2807 ret = link_free_space(ctl, info); 2808 WARN_ON(ret); 2809 if (ret) 2810 goto out_lock; 2811 2812 /* Not enough bytes in this entry to satisfy us */ 2813 if (old_end < offset + bytes) { 2814 bytes -= old_end - offset; 2815 offset = old_end; 2816 goto again; 2817 } else if (old_end == offset + bytes) { 2818 /* all done */ 2819 goto out_lock; 2820 } 2821 spin_unlock(&ctl->tree_lock); 2822 2823 ret = __btrfs_add_free_space(block_group, 2824 offset + bytes, 2825 old_end - (offset + bytes), 2826 info->trim_state); 2827 WARN_ON(ret); 2828 goto out; 2829 } 2830 } 2831 2832 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2833 if (ret == -EAGAIN) { 2834 re_search = true; 2835 goto again; 2836 } 2837 out_lock: 2838 btrfs_discard_update_discardable(block_group); 2839 spin_unlock(&ctl->tree_lock); 2840 out: 2841 return ret; 2842 } 2843 2844 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2845 u64 bytes) 2846 { 2847 struct btrfs_fs_info *fs_info = block_group->fs_info; 2848 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2849 struct btrfs_free_space *info; 2850 struct rb_node *n; 2851 int count = 0; 2852 2853 /* 2854 * Zoned btrfs does not use free space tree and cluster. Just print 2855 * out the free space after the allocation offset. 2856 */ 2857 if (btrfs_is_zoned(fs_info)) { 2858 btrfs_info(fs_info, "free space %llu active %d", 2859 block_group->zone_capacity - block_group->alloc_offset, 2860 block_group->zone_is_active); 2861 return; 2862 } 2863 2864 spin_lock(&ctl->tree_lock); 2865 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2866 info = rb_entry(n, struct btrfs_free_space, offset_index); 2867 if (info->bytes >= bytes && !block_group->ro) 2868 count++; 2869 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2870 info->offset, info->bytes, 2871 (info->bitmap) ? "yes" : "no"); 2872 } 2873 spin_unlock(&ctl->tree_lock); 2874 btrfs_info(fs_info, "block group has cluster?: %s", 2875 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2876 btrfs_info(fs_info, 2877 "%d blocks of free space at or bigger than bytes is", count); 2878 } 2879 2880 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group, 2881 struct btrfs_free_space_ctl *ctl) 2882 { 2883 struct btrfs_fs_info *fs_info = block_group->fs_info; 2884 2885 spin_lock_init(&ctl->tree_lock); 2886 ctl->unit = fs_info->sectorsize; 2887 ctl->start = block_group->start; 2888 ctl->block_group = block_group; 2889 ctl->op = &free_space_op; 2890 ctl->free_space_bytes = RB_ROOT_CACHED; 2891 INIT_LIST_HEAD(&ctl->trimming_ranges); 2892 mutex_init(&ctl->cache_writeout_mutex); 2893 2894 /* 2895 * we only want to have 32k of ram per block group for keeping 2896 * track of free space, and if we pass 1/2 of that we want to 2897 * start converting things over to using bitmaps 2898 */ 2899 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2900 } 2901 2902 /* 2903 * for a given cluster, put all of its extents back into the free 2904 * space cache. If the block group passed doesn't match the block group 2905 * pointed to by the cluster, someone else raced in and freed the 2906 * cluster already. In that case, we just return without changing anything 2907 */ 2908 static void __btrfs_return_cluster_to_free_space( 2909 struct btrfs_block_group *block_group, 2910 struct btrfs_free_cluster *cluster) 2911 { 2912 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2913 struct btrfs_free_space *entry; 2914 struct rb_node *node; 2915 2916 spin_lock(&cluster->lock); 2917 if (cluster->block_group != block_group) { 2918 spin_unlock(&cluster->lock); 2919 return; 2920 } 2921 2922 cluster->block_group = NULL; 2923 cluster->window_start = 0; 2924 list_del_init(&cluster->block_group_list); 2925 2926 node = rb_first(&cluster->root); 2927 while (node) { 2928 bool bitmap; 2929 2930 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2931 node = rb_next(&entry->offset_index); 2932 rb_erase(&entry->offset_index, &cluster->root); 2933 RB_CLEAR_NODE(&entry->offset_index); 2934 2935 bitmap = (entry->bitmap != NULL); 2936 if (!bitmap) { 2937 /* Merging treats extents as if they were new */ 2938 if (!btrfs_free_space_trimmed(entry)) { 2939 ctl->discardable_extents[BTRFS_STAT_CURR]--; 2940 ctl->discardable_bytes[BTRFS_STAT_CURR] -= 2941 entry->bytes; 2942 } 2943 2944 try_merge_free_space(ctl, entry, false); 2945 steal_from_bitmap(ctl, entry, false); 2946 2947 /* As we insert directly, update these statistics */ 2948 if (!btrfs_free_space_trimmed(entry)) { 2949 ctl->discardable_extents[BTRFS_STAT_CURR]++; 2950 ctl->discardable_bytes[BTRFS_STAT_CURR] += 2951 entry->bytes; 2952 } 2953 } 2954 tree_insert_offset(&ctl->free_space_offset, 2955 entry->offset, &entry->offset_index, bitmap); 2956 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes, 2957 entry_less); 2958 } 2959 cluster->root = RB_ROOT; 2960 spin_unlock(&cluster->lock); 2961 btrfs_put_block_group(block_group); 2962 } 2963 2964 static void __btrfs_remove_free_space_cache_locked( 2965 struct btrfs_free_space_ctl *ctl) 2966 { 2967 struct btrfs_free_space *info; 2968 struct rb_node *node; 2969 2970 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2971 info = rb_entry(node, struct btrfs_free_space, offset_index); 2972 if (!info->bitmap) { 2973 unlink_free_space(ctl, info, true); 2974 kmem_cache_free(btrfs_free_space_cachep, info); 2975 } else { 2976 free_bitmap(ctl, info); 2977 } 2978 2979 cond_resched_lock(&ctl->tree_lock); 2980 } 2981 } 2982 2983 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2984 { 2985 spin_lock(&ctl->tree_lock); 2986 __btrfs_remove_free_space_cache_locked(ctl); 2987 if (ctl->block_group) 2988 btrfs_discard_update_discardable(ctl->block_group); 2989 spin_unlock(&ctl->tree_lock); 2990 } 2991 2992 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 2993 { 2994 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2995 struct btrfs_free_cluster *cluster; 2996 struct list_head *head; 2997 2998 spin_lock(&ctl->tree_lock); 2999 while ((head = block_group->cluster_list.next) != 3000 &block_group->cluster_list) { 3001 cluster = list_entry(head, struct btrfs_free_cluster, 3002 block_group_list); 3003 3004 WARN_ON(cluster->block_group != block_group); 3005 __btrfs_return_cluster_to_free_space(block_group, cluster); 3006 3007 cond_resched_lock(&ctl->tree_lock); 3008 } 3009 __btrfs_remove_free_space_cache_locked(ctl); 3010 btrfs_discard_update_discardable(block_group); 3011 spin_unlock(&ctl->tree_lock); 3012 3013 } 3014 3015 /** 3016 * btrfs_is_free_space_trimmed - see if everything is trimmed 3017 * @block_group: block_group of interest 3018 * 3019 * Walk @block_group's free space rb_tree to determine if everything is trimmed. 3020 */ 3021 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) 3022 { 3023 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3024 struct btrfs_free_space *info; 3025 struct rb_node *node; 3026 bool ret = true; 3027 3028 spin_lock(&ctl->tree_lock); 3029 node = rb_first(&ctl->free_space_offset); 3030 3031 while (node) { 3032 info = rb_entry(node, struct btrfs_free_space, offset_index); 3033 3034 if (!btrfs_free_space_trimmed(info)) { 3035 ret = false; 3036 break; 3037 } 3038 3039 node = rb_next(node); 3040 } 3041 3042 spin_unlock(&ctl->tree_lock); 3043 return ret; 3044 } 3045 3046 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 3047 u64 offset, u64 bytes, u64 empty_size, 3048 u64 *max_extent_size) 3049 { 3050 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3051 struct btrfs_discard_ctl *discard_ctl = 3052 &block_group->fs_info->discard_ctl; 3053 struct btrfs_free_space *entry = NULL; 3054 u64 bytes_search = bytes + empty_size; 3055 u64 ret = 0; 3056 u64 align_gap = 0; 3057 u64 align_gap_len = 0; 3058 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3059 bool use_bytes_index = (offset == block_group->start); 3060 3061 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3062 3063 spin_lock(&ctl->tree_lock); 3064 entry = find_free_space(ctl, &offset, &bytes_search, 3065 block_group->full_stripe_len, max_extent_size, 3066 use_bytes_index); 3067 if (!entry) 3068 goto out; 3069 3070 ret = offset; 3071 if (entry->bitmap) { 3072 bitmap_clear_bits(ctl, entry, offset, bytes, true); 3073 3074 if (!btrfs_free_space_trimmed(entry)) 3075 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3076 3077 if (!entry->bytes) 3078 free_bitmap(ctl, entry); 3079 } else { 3080 unlink_free_space(ctl, entry, true); 3081 align_gap_len = offset - entry->offset; 3082 align_gap = entry->offset; 3083 align_gap_trim_state = entry->trim_state; 3084 3085 if (!btrfs_free_space_trimmed(entry)) 3086 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3087 3088 entry->offset = offset + bytes; 3089 WARN_ON(entry->bytes < bytes + align_gap_len); 3090 3091 entry->bytes -= bytes + align_gap_len; 3092 if (!entry->bytes) 3093 kmem_cache_free(btrfs_free_space_cachep, entry); 3094 else 3095 link_free_space(ctl, entry); 3096 } 3097 out: 3098 btrfs_discard_update_discardable(block_group); 3099 spin_unlock(&ctl->tree_lock); 3100 3101 if (align_gap_len) 3102 __btrfs_add_free_space(block_group, align_gap, align_gap_len, 3103 align_gap_trim_state); 3104 return ret; 3105 } 3106 3107 /* 3108 * given a cluster, put all of its extents back into the free space 3109 * cache. If a block group is passed, this function will only free 3110 * a cluster that belongs to the passed block group. 3111 * 3112 * Otherwise, it'll get a reference on the block group pointed to by the 3113 * cluster and remove the cluster from it. 3114 */ 3115 void btrfs_return_cluster_to_free_space( 3116 struct btrfs_block_group *block_group, 3117 struct btrfs_free_cluster *cluster) 3118 { 3119 struct btrfs_free_space_ctl *ctl; 3120 3121 /* first, get a safe pointer to the block group */ 3122 spin_lock(&cluster->lock); 3123 if (!block_group) { 3124 block_group = cluster->block_group; 3125 if (!block_group) { 3126 spin_unlock(&cluster->lock); 3127 return; 3128 } 3129 } else if (cluster->block_group != block_group) { 3130 /* someone else has already freed it don't redo their work */ 3131 spin_unlock(&cluster->lock); 3132 return; 3133 } 3134 btrfs_get_block_group(block_group); 3135 spin_unlock(&cluster->lock); 3136 3137 ctl = block_group->free_space_ctl; 3138 3139 /* now return any extents the cluster had on it */ 3140 spin_lock(&ctl->tree_lock); 3141 __btrfs_return_cluster_to_free_space(block_group, cluster); 3142 spin_unlock(&ctl->tree_lock); 3143 3144 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); 3145 3146 /* finally drop our ref */ 3147 btrfs_put_block_group(block_group); 3148 } 3149 3150 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 3151 struct btrfs_free_cluster *cluster, 3152 struct btrfs_free_space *entry, 3153 u64 bytes, u64 min_start, 3154 u64 *max_extent_size) 3155 { 3156 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3157 int err; 3158 u64 search_start = cluster->window_start; 3159 u64 search_bytes = bytes; 3160 u64 ret = 0; 3161 3162 search_start = min_start; 3163 search_bytes = bytes; 3164 3165 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 3166 if (err) { 3167 *max_extent_size = max(get_max_extent_size(entry), 3168 *max_extent_size); 3169 return 0; 3170 } 3171 3172 ret = search_start; 3173 bitmap_clear_bits(ctl, entry, ret, bytes, false); 3174 3175 return ret; 3176 } 3177 3178 /* 3179 * given a cluster, try to allocate 'bytes' from it, returns 0 3180 * if it couldn't find anything suitably large, or a logical disk offset 3181 * if things worked out 3182 */ 3183 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 3184 struct btrfs_free_cluster *cluster, u64 bytes, 3185 u64 min_start, u64 *max_extent_size) 3186 { 3187 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3188 struct btrfs_discard_ctl *discard_ctl = 3189 &block_group->fs_info->discard_ctl; 3190 struct btrfs_free_space *entry = NULL; 3191 struct rb_node *node; 3192 u64 ret = 0; 3193 3194 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3195 3196 spin_lock(&cluster->lock); 3197 if (bytes > cluster->max_size) 3198 goto out; 3199 3200 if (cluster->block_group != block_group) 3201 goto out; 3202 3203 node = rb_first(&cluster->root); 3204 if (!node) 3205 goto out; 3206 3207 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3208 while (1) { 3209 if (entry->bytes < bytes) 3210 *max_extent_size = max(get_max_extent_size(entry), 3211 *max_extent_size); 3212 3213 if (entry->bytes < bytes || 3214 (!entry->bitmap && entry->offset < min_start)) { 3215 node = rb_next(&entry->offset_index); 3216 if (!node) 3217 break; 3218 entry = rb_entry(node, struct btrfs_free_space, 3219 offset_index); 3220 continue; 3221 } 3222 3223 if (entry->bitmap) { 3224 ret = btrfs_alloc_from_bitmap(block_group, 3225 cluster, entry, bytes, 3226 cluster->window_start, 3227 max_extent_size); 3228 if (ret == 0) { 3229 node = rb_next(&entry->offset_index); 3230 if (!node) 3231 break; 3232 entry = rb_entry(node, struct btrfs_free_space, 3233 offset_index); 3234 continue; 3235 } 3236 cluster->window_start += bytes; 3237 } else { 3238 ret = entry->offset; 3239 3240 entry->offset += bytes; 3241 entry->bytes -= bytes; 3242 } 3243 3244 break; 3245 } 3246 out: 3247 spin_unlock(&cluster->lock); 3248 3249 if (!ret) 3250 return 0; 3251 3252 spin_lock(&ctl->tree_lock); 3253 3254 if (!btrfs_free_space_trimmed(entry)) 3255 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3256 3257 ctl->free_space -= bytes; 3258 if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) 3259 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 3260 3261 spin_lock(&cluster->lock); 3262 if (entry->bytes == 0) { 3263 rb_erase(&entry->offset_index, &cluster->root); 3264 ctl->free_extents--; 3265 if (entry->bitmap) { 3266 kmem_cache_free(btrfs_free_space_bitmap_cachep, 3267 entry->bitmap); 3268 ctl->total_bitmaps--; 3269 recalculate_thresholds(ctl); 3270 } else if (!btrfs_free_space_trimmed(entry)) { 3271 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3272 } 3273 kmem_cache_free(btrfs_free_space_cachep, entry); 3274 } 3275 3276 spin_unlock(&cluster->lock); 3277 spin_unlock(&ctl->tree_lock); 3278 3279 return ret; 3280 } 3281 3282 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 3283 struct btrfs_free_space *entry, 3284 struct btrfs_free_cluster *cluster, 3285 u64 offset, u64 bytes, 3286 u64 cont1_bytes, u64 min_bytes) 3287 { 3288 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3289 unsigned long next_zero; 3290 unsigned long i; 3291 unsigned long want_bits; 3292 unsigned long min_bits; 3293 unsigned long found_bits; 3294 unsigned long max_bits = 0; 3295 unsigned long start = 0; 3296 unsigned long total_found = 0; 3297 int ret; 3298 3299 i = offset_to_bit(entry->offset, ctl->unit, 3300 max_t(u64, offset, entry->offset)); 3301 want_bits = bytes_to_bits(bytes, ctl->unit); 3302 min_bits = bytes_to_bits(min_bytes, ctl->unit); 3303 3304 /* 3305 * Don't bother looking for a cluster in this bitmap if it's heavily 3306 * fragmented. 3307 */ 3308 if (entry->max_extent_size && 3309 entry->max_extent_size < cont1_bytes) 3310 return -ENOSPC; 3311 again: 3312 found_bits = 0; 3313 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 3314 next_zero = find_next_zero_bit(entry->bitmap, 3315 BITS_PER_BITMAP, i); 3316 if (next_zero - i >= min_bits) { 3317 found_bits = next_zero - i; 3318 if (found_bits > max_bits) 3319 max_bits = found_bits; 3320 break; 3321 } 3322 if (next_zero - i > max_bits) 3323 max_bits = next_zero - i; 3324 i = next_zero; 3325 } 3326 3327 if (!found_bits) { 3328 entry->max_extent_size = (u64)max_bits * ctl->unit; 3329 return -ENOSPC; 3330 } 3331 3332 if (!total_found) { 3333 start = i; 3334 cluster->max_size = 0; 3335 } 3336 3337 total_found += found_bits; 3338 3339 if (cluster->max_size < found_bits * ctl->unit) 3340 cluster->max_size = found_bits * ctl->unit; 3341 3342 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 3343 i = next_zero + 1; 3344 goto again; 3345 } 3346 3347 cluster->window_start = start * ctl->unit + entry->offset; 3348 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3349 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); 3350 3351 /* 3352 * We need to know if we're currently on the normal space index when we 3353 * manipulate the bitmap so that we know we need to remove and re-insert 3354 * it into the space_index tree. Clear the bytes_index node here so the 3355 * bitmap manipulation helpers know not to mess with the space_index 3356 * until this bitmap entry is added back into the normal cache. 3357 */ 3358 RB_CLEAR_NODE(&entry->bytes_index); 3359 3360 ret = tree_insert_offset(&cluster->root, entry->offset, 3361 &entry->offset_index, 1); 3362 ASSERT(!ret); /* -EEXIST; Logic error */ 3363 3364 trace_btrfs_setup_cluster(block_group, cluster, 3365 total_found * ctl->unit, 1); 3366 return 0; 3367 } 3368 3369 /* 3370 * This searches the block group for just extents to fill the cluster with. 3371 * Try to find a cluster with at least bytes total bytes, at least one 3372 * extent of cont1_bytes, and other clusters of at least min_bytes. 3373 */ 3374 static noinline int 3375 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 3376 struct btrfs_free_cluster *cluster, 3377 struct list_head *bitmaps, u64 offset, u64 bytes, 3378 u64 cont1_bytes, u64 min_bytes) 3379 { 3380 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3381 struct btrfs_free_space *first = NULL; 3382 struct btrfs_free_space *entry = NULL; 3383 struct btrfs_free_space *last; 3384 struct rb_node *node; 3385 u64 window_free; 3386 u64 max_extent; 3387 u64 total_size = 0; 3388 3389 entry = tree_search_offset(ctl, offset, 0, 1); 3390 if (!entry) 3391 return -ENOSPC; 3392 3393 /* 3394 * We don't want bitmaps, so just move along until we find a normal 3395 * extent entry. 3396 */ 3397 while (entry->bitmap || entry->bytes < min_bytes) { 3398 if (entry->bitmap && list_empty(&entry->list)) 3399 list_add_tail(&entry->list, bitmaps); 3400 node = rb_next(&entry->offset_index); 3401 if (!node) 3402 return -ENOSPC; 3403 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3404 } 3405 3406 window_free = entry->bytes; 3407 max_extent = entry->bytes; 3408 first = entry; 3409 last = entry; 3410 3411 for (node = rb_next(&entry->offset_index); node; 3412 node = rb_next(&entry->offset_index)) { 3413 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3414 3415 if (entry->bitmap) { 3416 if (list_empty(&entry->list)) 3417 list_add_tail(&entry->list, bitmaps); 3418 continue; 3419 } 3420 3421 if (entry->bytes < min_bytes) 3422 continue; 3423 3424 last = entry; 3425 window_free += entry->bytes; 3426 if (entry->bytes > max_extent) 3427 max_extent = entry->bytes; 3428 } 3429 3430 if (window_free < bytes || max_extent < cont1_bytes) 3431 return -ENOSPC; 3432 3433 cluster->window_start = first->offset; 3434 3435 node = &first->offset_index; 3436 3437 /* 3438 * now we've found our entries, pull them out of the free space 3439 * cache and put them into the cluster rbtree 3440 */ 3441 do { 3442 int ret; 3443 3444 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3445 node = rb_next(&entry->offset_index); 3446 if (entry->bitmap || entry->bytes < min_bytes) 3447 continue; 3448 3449 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3450 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); 3451 ret = tree_insert_offset(&cluster->root, entry->offset, 3452 &entry->offset_index, 0); 3453 total_size += entry->bytes; 3454 ASSERT(!ret); /* -EEXIST; Logic error */ 3455 } while (node && entry != last); 3456 3457 cluster->max_size = max_extent; 3458 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 3459 return 0; 3460 } 3461 3462 /* 3463 * This specifically looks for bitmaps that may work in the cluster, we assume 3464 * that we have already failed to find extents that will work. 3465 */ 3466 static noinline int 3467 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3468 struct btrfs_free_cluster *cluster, 3469 struct list_head *bitmaps, u64 offset, u64 bytes, 3470 u64 cont1_bytes, u64 min_bytes) 3471 { 3472 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3473 struct btrfs_free_space *entry = NULL; 3474 int ret = -ENOSPC; 3475 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3476 3477 if (ctl->total_bitmaps == 0) 3478 return -ENOSPC; 3479 3480 /* 3481 * The bitmap that covers offset won't be in the list unless offset 3482 * is just its start offset. 3483 */ 3484 if (!list_empty(bitmaps)) 3485 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3486 3487 if (!entry || entry->offset != bitmap_offset) { 3488 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3489 if (entry && list_empty(&entry->list)) 3490 list_add(&entry->list, bitmaps); 3491 } 3492 3493 list_for_each_entry(entry, bitmaps, list) { 3494 if (entry->bytes < bytes) 3495 continue; 3496 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3497 bytes, cont1_bytes, min_bytes); 3498 if (!ret) 3499 return 0; 3500 } 3501 3502 /* 3503 * The bitmaps list has all the bitmaps that record free space 3504 * starting after offset, so no more search is required. 3505 */ 3506 return -ENOSPC; 3507 } 3508 3509 /* 3510 * here we try to find a cluster of blocks in a block group. The goal 3511 * is to find at least bytes+empty_size. 3512 * We might not find them all in one contiguous area. 3513 * 3514 * returns zero and sets up cluster if things worked out, otherwise 3515 * it returns -enospc 3516 */ 3517 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3518 struct btrfs_free_cluster *cluster, 3519 u64 offset, u64 bytes, u64 empty_size) 3520 { 3521 struct btrfs_fs_info *fs_info = block_group->fs_info; 3522 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3523 struct btrfs_free_space *entry, *tmp; 3524 LIST_HEAD(bitmaps); 3525 u64 min_bytes; 3526 u64 cont1_bytes; 3527 int ret; 3528 3529 /* 3530 * Choose the minimum extent size we'll require for this 3531 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3532 * For metadata, allow allocates with smaller extents. For 3533 * data, keep it dense. 3534 */ 3535 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3536 cont1_bytes = min_bytes = bytes + empty_size; 3537 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3538 cont1_bytes = bytes; 3539 min_bytes = fs_info->sectorsize; 3540 } else { 3541 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3542 min_bytes = fs_info->sectorsize; 3543 } 3544 3545 spin_lock(&ctl->tree_lock); 3546 3547 /* 3548 * If we know we don't have enough space to make a cluster don't even 3549 * bother doing all the work to try and find one. 3550 */ 3551 if (ctl->free_space < bytes) { 3552 spin_unlock(&ctl->tree_lock); 3553 return -ENOSPC; 3554 } 3555 3556 spin_lock(&cluster->lock); 3557 3558 /* someone already found a cluster, hooray */ 3559 if (cluster->block_group) { 3560 ret = 0; 3561 goto out; 3562 } 3563 3564 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3565 min_bytes); 3566 3567 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3568 bytes + empty_size, 3569 cont1_bytes, min_bytes); 3570 if (ret) 3571 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3572 offset, bytes + empty_size, 3573 cont1_bytes, min_bytes); 3574 3575 /* Clear our temporary list */ 3576 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3577 list_del_init(&entry->list); 3578 3579 if (!ret) { 3580 btrfs_get_block_group(block_group); 3581 list_add_tail(&cluster->block_group_list, 3582 &block_group->cluster_list); 3583 cluster->block_group = block_group; 3584 } else { 3585 trace_btrfs_failed_cluster_setup(block_group); 3586 } 3587 out: 3588 spin_unlock(&cluster->lock); 3589 spin_unlock(&ctl->tree_lock); 3590 3591 return ret; 3592 } 3593 3594 /* 3595 * simple code to zero out a cluster 3596 */ 3597 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3598 { 3599 spin_lock_init(&cluster->lock); 3600 spin_lock_init(&cluster->refill_lock); 3601 cluster->root = RB_ROOT; 3602 cluster->max_size = 0; 3603 cluster->fragmented = false; 3604 INIT_LIST_HEAD(&cluster->block_group_list); 3605 cluster->block_group = NULL; 3606 } 3607 3608 static int do_trimming(struct btrfs_block_group *block_group, 3609 u64 *total_trimmed, u64 start, u64 bytes, 3610 u64 reserved_start, u64 reserved_bytes, 3611 enum btrfs_trim_state reserved_trim_state, 3612 struct btrfs_trim_range *trim_entry) 3613 { 3614 struct btrfs_space_info *space_info = block_group->space_info; 3615 struct btrfs_fs_info *fs_info = block_group->fs_info; 3616 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3617 int ret; 3618 int update = 0; 3619 const u64 end = start + bytes; 3620 const u64 reserved_end = reserved_start + reserved_bytes; 3621 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3622 u64 trimmed = 0; 3623 3624 spin_lock(&space_info->lock); 3625 spin_lock(&block_group->lock); 3626 if (!block_group->ro) { 3627 block_group->reserved += reserved_bytes; 3628 space_info->bytes_reserved += reserved_bytes; 3629 update = 1; 3630 } 3631 spin_unlock(&block_group->lock); 3632 spin_unlock(&space_info->lock); 3633 3634 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3635 if (!ret) { 3636 *total_trimmed += trimmed; 3637 trim_state = BTRFS_TRIM_STATE_TRIMMED; 3638 } 3639 3640 mutex_lock(&ctl->cache_writeout_mutex); 3641 if (reserved_start < start) 3642 __btrfs_add_free_space(block_group, reserved_start, 3643 start - reserved_start, 3644 reserved_trim_state); 3645 if (start + bytes < reserved_start + reserved_bytes) 3646 __btrfs_add_free_space(block_group, end, reserved_end - end, 3647 reserved_trim_state); 3648 __btrfs_add_free_space(block_group, start, bytes, trim_state); 3649 list_del(&trim_entry->list); 3650 mutex_unlock(&ctl->cache_writeout_mutex); 3651 3652 if (update) { 3653 spin_lock(&space_info->lock); 3654 spin_lock(&block_group->lock); 3655 if (block_group->ro) 3656 space_info->bytes_readonly += reserved_bytes; 3657 block_group->reserved -= reserved_bytes; 3658 space_info->bytes_reserved -= reserved_bytes; 3659 spin_unlock(&block_group->lock); 3660 spin_unlock(&space_info->lock); 3661 } 3662 3663 return ret; 3664 } 3665 3666 /* 3667 * If @async is set, then we will trim 1 region and return. 3668 */ 3669 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3670 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3671 bool async) 3672 { 3673 struct btrfs_discard_ctl *discard_ctl = 3674 &block_group->fs_info->discard_ctl; 3675 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3676 struct btrfs_free_space *entry; 3677 struct rb_node *node; 3678 int ret = 0; 3679 u64 extent_start; 3680 u64 extent_bytes; 3681 enum btrfs_trim_state extent_trim_state; 3682 u64 bytes; 3683 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3684 3685 while (start < end) { 3686 struct btrfs_trim_range trim_entry; 3687 3688 mutex_lock(&ctl->cache_writeout_mutex); 3689 spin_lock(&ctl->tree_lock); 3690 3691 if (ctl->free_space < minlen) 3692 goto out_unlock; 3693 3694 entry = tree_search_offset(ctl, start, 0, 1); 3695 if (!entry) 3696 goto out_unlock; 3697 3698 /* Skip bitmaps and if async, already trimmed entries */ 3699 while (entry->bitmap || 3700 (async && btrfs_free_space_trimmed(entry))) { 3701 node = rb_next(&entry->offset_index); 3702 if (!node) 3703 goto out_unlock; 3704 entry = rb_entry(node, struct btrfs_free_space, 3705 offset_index); 3706 } 3707 3708 if (entry->offset >= end) 3709 goto out_unlock; 3710 3711 extent_start = entry->offset; 3712 extent_bytes = entry->bytes; 3713 extent_trim_state = entry->trim_state; 3714 if (async) { 3715 start = entry->offset; 3716 bytes = entry->bytes; 3717 if (bytes < minlen) { 3718 spin_unlock(&ctl->tree_lock); 3719 mutex_unlock(&ctl->cache_writeout_mutex); 3720 goto next; 3721 } 3722 unlink_free_space(ctl, entry, true); 3723 /* 3724 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3725 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim 3726 * X when we come back around. So trim it now. 3727 */ 3728 if (max_discard_size && 3729 bytes >= (max_discard_size + 3730 BTRFS_ASYNC_DISCARD_MIN_FILTER)) { 3731 bytes = max_discard_size; 3732 extent_bytes = max_discard_size; 3733 entry->offset += max_discard_size; 3734 entry->bytes -= max_discard_size; 3735 link_free_space(ctl, entry); 3736 } else { 3737 kmem_cache_free(btrfs_free_space_cachep, entry); 3738 } 3739 } else { 3740 start = max(start, extent_start); 3741 bytes = min(extent_start + extent_bytes, end) - start; 3742 if (bytes < minlen) { 3743 spin_unlock(&ctl->tree_lock); 3744 mutex_unlock(&ctl->cache_writeout_mutex); 3745 goto next; 3746 } 3747 3748 unlink_free_space(ctl, entry, true); 3749 kmem_cache_free(btrfs_free_space_cachep, entry); 3750 } 3751 3752 spin_unlock(&ctl->tree_lock); 3753 trim_entry.start = extent_start; 3754 trim_entry.bytes = extent_bytes; 3755 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3756 mutex_unlock(&ctl->cache_writeout_mutex); 3757 3758 ret = do_trimming(block_group, total_trimmed, start, bytes, 3759 extent_start, extent_bytes, extent_trim_state, 3760 &trim_entry); 3761 if (ret) { 3762 block_group->discard_cursor = start + bytes; 3763 break; 3764 } 3765 next: 3766 start += bytes; 3767 block_group->discard_cursor = start; 3768 if (async && *total_trimmed) 3769 break; 3770 3771 if (fatal_signal_pending(current)) { 3772 ret = -ERESTARTSYS; 3773 break; 3774 } 3775 3776 cond_resched(); 3777 } 3778 3779 return ret; 3780 3781 out_unlock: 3782 block_group->discard_cursor = btrfs_block_group_end(block_group); 3783 spin_unlock(&ctl->tree_lock); 3784 mutex_unlock(&ctl->cache_writeout_mutex); 3785 3786 return ret; 3787 } 3788 3789 /* 3790 * If we break out of trimming a bitmap prematurely, we should reset the 3791 * trimming bit. In a rather contrieved case, it's possible to race here so 3792 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. 3793 * 3794 * start = start of bitmap 3795 * end = near end of bitmap 3796 * 3797 * Thread 1: Thread 2: 3798 * trim_bitmaps(start) 3799 * trim_bitmaps(end) 3800 * end_trimming_bitmap() 3801 * reset_trimming_bitmap() 3802 */ 3803 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) 3804 { 3805 struct btrfs_free_space *entry; 3806 3807 spin_lock(&ctl->tree_lock); 3808 entry = tree_search_offset(ctl, offset, 1, 0); 3809 if (entry) { 3810 if (btrfs_free_space_trimmed(entry)) { 3811 ctl->discardable_extents[BTRFS_STAT_CURR] += 3812 entry->bitmap_extents; 3813 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; 3814 } 3815 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3816 } 3817 3818 spin_unlock(&ctl->tree_lock); 3819 } 3820 3821 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, 3822 struct btrfs_free_space *entry) 3823 { 3824 if (btrfs_free_space_trimming_bitmap(entry)) { 3825 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; 3826 ctl->discardable_extents[BTRFS_STAT_CURR] -= 3827 entry->bitmap_extents; 3828 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; 3829 } 3830 } 3831 3832 /* 3833 * If @async is set, then we will trim 1 region and return. 3834 */ 3835 static int trim_bitmaps(struct btrfs_block_group *block_group, 3836 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3837 u64 maxlen, bool async) 3838 { 3839 struct btrfs_discard_ctl *discard_ctl = 3840 &block_group->fs_info->discard_ctl; 3841 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3842 struct btrfs_free_space *entry; 3843 int ret = 0; 3844 int ret2; 3845 u64 bytes; 3846 u64 offset = offset_to_bitmap(ctl, start); 3847 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3848 3849 while (offset < end) { 3850 bool next_bitmap = false; 3851 struct btrfs_trim_range trim_entry; 3852 3853 mutex_lock(&ctl->cache_writeout_mutex); 3854 spin_lock(&ctl->tree_lock); 3855 3856 if (ctl->free_space < minlen) { 3857 block_group->discard_cursor = 3858 btrfs_block_group_end(block_group); 3859 spin_unlock(&ctl->tree_lock); 3860 mutex_unlock(&ctl->cache_writeout_mutex); 3861 break; 3862 } 3863 3864 entry = tree_search_offset(ctl, offset, 1, 0); 3865 /* 3866 * Bitmaps are marked trimmed lossily now to prevent constant 3867 * discarding of the same bitmap (the reason why we are bound 3868 * by the filters). So, retrim the block group bitmaps when we 3869 * are preparing to punt to the unused_bgs list. This uses 3870 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED 3871 * which is the only discard index which sets minlen to 0. 3872 */ 3873 if (!entry || (async && minlen && start == offset && 3874 btrfs_free_space_trimmed(entry))) { 3875 spin_unlock(&ctl->tree_lock); 3876 mutex_unlock(&ctl->cache_writeout_mutex); 3877 next_bitmap = true; 3878 goto next; 3879 } 3880 3881 /* 3882 * Async discard bitmap trimming begins at by setting the start 3883 * to be key.objectid and the offset_to_bitmap() aligns to the 3884 * start of the bitmap. This lets us know we are fully 3885 * scanning the bitmap rather than only some portion of it. 3886 */ 3887 if (start == offset) 3888 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; 3889 3890 bytes = minlen; 3891 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3892 if (ret2 || start >= end) { 3893 /* 3894 * We lossily consider a bitmap trimmed if we only skip 3895 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. 3896 */ 3897 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) 3898 end_trimming_bitmap(ctl, entry); 3899 else 3900 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3901 spin_unlock(&ctl->tree_lock); 3902 mutex_unlock(&ctl->cache_writeout_mutex); 3903 next_bitmap = true; 3904 goto next; 3905 } 3906 3907 /* 3908 * We already trimmed a region, but are using the locking above 3909 * to reset the trim_state. 3910 */ 3911 if (async && *total_trimmed) { 3912 spin_unlock(&ctl->tree_lock); 3913 mutex_unlock(&ctl->cache_writeout_mutex); 3914 goto out; 3915 } 3916 3917 bytes = min(bytes, end - start); 3918 if (bytes < minlen || (async && maxlen && bytes > maxlen)) { 3919 spin_unlock(&ctl->tree_lock); 3920 mutex_unlock(&ctl->cache_writeout_mutex); 3921 goto next; 3922 } 3923 3924 /* 3925 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3926 * If X < @minlen, we won't trim X when we come back around. 3927 * So trim it now. We differ here from trimming extents as we 3928 * don't keep individual state per bit. 3929 */ 3930 if (async && 3931 max_discard_size && 3932 bytes > (max_discard_size + minlen)) 3933 bytes = max_discard_size; 3934 3935 bitmap_clear_bits(ctl, entry, start, bytes, true); 3936 if (entry->bytes == 0) 3937 free_bitmap(ctl, entry); 3938 3939 spin_unlock(&ctl->tree_lock); 3940 trim_entry.start = start; 3941 trim_entry.bytes = bytes; 3942 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3943 mutex_unlock(&ctl->cache_writeout_mutex); 3944 3945 ret = do_trimming(block_group, total_trimmed, start, bytes, 3946 start, bytes, 0, &trim_entry); 3947 if (ret) { 3948 reset_trimming_bitmap(ctl, offset); 3949 block_group->discard_cursor = 3950 btrfs_block_group_end(block_group); 3951 break; 3952 } 3953 next: 3954 if (next_bitmap) { 3955 offset += BITS_PER_BITMAP * ctl->unit; 3956 start = offset; 3957 } else { 3958 start += bytes; 3959 } 3960 block_group->discard_cursor = start; 3961 3962 if (fatal_signal_pending(current)) { 3963 if (start != offset) 3964 reset_trimming_bitmap(ctl, offset); 3965 ret = -ERESTARTSYS; 3966 break; 3967 } 3968 3969 cond_resched(); 3970 } 3971 3972 if (offset >= end) 3973 block_group->discard_cursor = end; 3974 3975 out: 3976 return ret; 3977 } 3978 3979 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 3980 u64 *trimmed, u64 start, u64 end, u64 minlen) 3981 { 3982 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3983 int ret; 3984 u64 rem = 0; 3985 3986 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3987 3988 *trimmed = 0; 3989 3990 spin_lock(&block_group->lock); 3991 if (block_group->removed) { 3992 spin_unlock(&block_group->lock); 3993 return 0; 3994 } 3995 btrfs_freeze_block_group(block_group); 3996 spin_unlock(&block_group->lock); 3997 3998 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); 3999 if (ret) 4000 goto out; 4001 4002 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); 4003 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); 4004 /* If we ended in the middle of a bitmap, reset the trimming flag */ 4005 if (rem) 4006 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); 4007 out: 4008 btrfs_unfreeze_block_group(block_group); 4009 return ret; 4010 } 4011 4012 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, 4013 u64 *trimmed, u64 start, u64 end, u64 minlen, 4014 bool async) 4015 { 4016 int ret; 4017 4018 *trimmed = 0; 4019 4020 spin_lock(&block_group->lock); 4021 if (block_group->removed) { 4022 spin_unlock(&block_group->lock); 4023 return 0; 4024 } 4025 btrfs_freeze_block_group(block_group); 4026 spin_unlock(&block_group->lock); 4027 4028 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); 4029 btrfs_unfreeze_block_group(block_group); 4030 4031 return ret; 4032 } 4033 4034 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, 4035 u64 *trimmed, u64 start, u64 end, u64 minlen, 4036 u64 maxlen, bool async) 4037 { 4038 int ret; 4039 4040 *trimmed = 0; 4041 4042 spin_lock(&block_group->lock); 4043 if (block_group->removed) { 4044 spin_unlock(&block_group->lock); 4045 return 0; 4046 } 4047 btrfs_freeze_block_group(block_group); 4048 spin_unlock(&block_group->lock); 4049 4050 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, 4051 async); 4052 4053 btrfs_unfreeze_block_group(block_group); 4054 4055 return ret; 4056 } 4057 4058 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info) 4059 { 4060 return btrfs_super_cache_generation(fs_info->super_copy); 4061 } 4062 4063 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info, 4064 struct btrfs_trans_handle *trans) 4065 { 4066 struct btrfs_block_group *block_group; 4067 struct rb_node *node; 4068 int ret = 0; 4069 4070 btrfs_info(fs_info, "cleaning free space cache v1"); 4071 4072 node = rb_first(&fs_info->block_group_cache_tree); 4073 while (node) { 4074 block_group = rb_entry(node, struct btrfs_block_group, cache_node); 4075 ret = btrfs_remove_free_space_inode(trans, NULL, block_group); 4076 if (ret) 4077 goto out; 4078 node = rb_next(node); 4079 } 4080 out: 4081 return ret; 4082 } 4083 4084 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active) 4085 { 4086 struct btrfs_trans_handle *trans; 4087 int ret; 4088 4089 /* 4090 * update_super_roots will appropriately set or unset 4091 * super_copy->cache_generation based on SPACE_CACHE and 4092 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a 4093 * transaction commit whether we are enabling space cache v1 and don't 4094 * have any other work to do, or are disabling it and removing free 4095 * space inodes. 4096 */ 4097 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4098 if (IS_ERR(trans)) 4099 return PTR_ERR(trans); 4100 4101 if (!active) { 4102 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); 4103 ret = cleanup_free_space_cache_v1(fs_info, trans); 4104 if (ret) { 4105 btrfs_abort_transaction(trans, ret); 4106 btrfs_end_transaction(trans); 4107 goto out; 4108 } 4109 } 4110 4111 ret = btrfs_commit_transaction(trans); 4112 out: 4113 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); 4114 4115 return ret; 4116 } 4117 4118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4119 /* 4120 * Use this if you need to make a bitmap or extent entry specifically, it 4121 * doesn't do any of the merging that add_free_space does, this acts a lot like 4122 * how the free space cache loading stuff works, so you can get really weird 4123 * configurations. 4124 */ 4125 int test_add_free_space_entry(struct btrfs_block_group *cache, 4126 u64 offset, u64 bytes, bool bitmap) 4127 { 4128 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4129 struct btrfs_free_space *info = NULL, *bitmap_info; 4130 void *map = NULL; 4131 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; 4132 u64 bytes_added; 4133 int ret; 4134 4135 again: 4136 if (!info) { 4137 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 4138 if (!info) 4139 return -ENOMEM; 4140 } 4141 4142 if (!bitmap) { 4143 spin_lock(&ctl->tree_lock); 4144 info->offset = offset; 4145 info->bytes = bytes; 4146 info->max_extent_size = 0; 4147 ret = link_free_space(ctl, info); 4148 spin_unlock(&ctl->tree_lock); 4149 if (ret) 4150 kmem_cache_free(btrfs_free_space_cachep, info); 4151 return ret; 4152 } 4153 4154 if (!map) { 4155 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 4156 if (!map) { 4157 kmem_cache_free(btrfs_free_space_cachep, info); 4158 return -ENOMEM; 4159 } 4160 } 4161 4162 spin_lock(&ctl->tree_lock); 4163 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4164 1, 0); 4165 if (!bitmap_info) { 4166 info->bitmap = map; 4167 map = NULL; 4168 add_new_bitmap(ctl, info, offset); 4169 bitmap_info = info; 4170 info = NULL; 4171 } 4172 4173 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 4174 trim_state); 4175 4176 bytes -= bytes_added; 4177 offset += bytes_added; 4178 spin_unlock(&ctl->tree_lock); 4179 4180 if (bytes) 4181 goto again; 4182 4183 if (info) 4184 kmem_cache_free(btrfs_free_space_cachep, info); 4185 if (map) 4186 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 4187 return 0; 4188 } 4189 4190 /* 4191 * Checks to see if the given range is in the free space cache. This is really 4192 * just used to check the absence of space, so if there is free space in the 4193 * range at all we will return 1. 4194 */ 4195 int test_check_exists(struct btrfs_block_group *cache, 4196 u64 offset, u64 bytes) 4197 { 4198 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4199 struct btrfs_free_space *info; 4200 int ret = 0; 4201 4202 spin_lock(&ctl->tree_lock); 4203 info = tree_search_offset(ctl, offset, 0, 0); 4204 if (!info) { 4205 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4206 1, 0); 4207 if (!info) 4208 goto out; 4209 } 4210 4211 have_info: 4212 if (info->bitmap) { 4213 u64 bit_off, bit_bytes; 4214 struct rb_node *n; 4215 struct btrfs_free_space *tmp; 4216 4217 bit_off = offset; 4218 bit_bytes = ctl->unit; 4219 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 4220 if (!ret) { 4221 if (bit_off == offset) { 4222 ret = 1; 4223 goto out; 4224 } else if (bit_off > offset && 4225 offset + bytes > bit_off) { 4226 ret = 1; 4227 goto out; 4228 } 4229 } 4230 4231 n = rb_prev(&info->offset_index); 4232 while (n) { 4233 tmp = rb_entry(n, struct btrfs_free_space, 4234 offset_index); 4235 if (tmp->offset + tmp->bytes < offset) 4236 break; 4237 if (offset + bytes < tmp->offset) { 4238 n = rb_prev(&tmp->offset_index); 4239 continue; 4240 } 4241 info = tmp; 4242 goto have_info; 4243 } 4244 4245 n = rb_next(&info->offset_index); 4246 while (n) { 4247 tmp = rb_entry(n, struct btrfs_free_space, 4248 offset_index); 4249 if (offset + bytes < tmp->offset) 4250 break; 4251 if (tmp->offset + tmp->bytes < offset) { 4252 n = rb_next(&tmp->offset_index); 4253 continue; 4254 } 4255 info = tmp; 4256 goto have_info; 4257 } 4258 4259 ret = 0; 4260 goto out; 4261 } 4262 4263 if (info->offset == offset) { 4264 ret = 1; 4265 goto out; 4266 } 4267 4268 if (offset > info->offset && offset < info->offset + info->bytes) 4269 ret = 1; 4270 out: 4271 spin_unlock(&ctl->tree_lock); 4272 return ret; 4273 } 4274 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 4275