xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 2bdd5238)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "misc.h"
15 #include "ctree.h"
16 #include "free-space-cache.h"
17 #include "transaction.h"
18 #include "disk-io.h"
19 #include "extent_io.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 #include "discard.h"
25 
26 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
28 #define FORCE_EXTENT_THRESHOLD	SZ_1M
29 
30 struct btrfs_trim_range {
31 	u64 start;
32 	u64 bytes;
33 	struct list_head list;
34 };
35 
36 static int link_free_space(struct btrfs_free_space_ctl *ctl,
37 			   struct btrfs_free_space *info);
38 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
39 			      struct btrfs_free_space *info);
40 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
41 			 struct btrfs_free_space *bitmap_info, u64 *offset,
42 			 u64 *bytes, bool for_alloc);
43 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
44 			struct btrfs_free_space *bitmap_info);
45 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
46 			      struct btrfs_free_space *info, u64 offset,
47 			      u64 bytes);
48 
49 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
50 					       struct btrfs_path *path,
51 					       u64 offset)
52 {
53 	struct btrfs_fs_info *fs_info = root->fs_info;
54 	struct btrfs_key key;
55 	struct btrfs_key location;
56 	struct btrfs_disk_key disk_key;
57 	struct btrfs_free_space_header *header;
58 	struct extent_buffer *leaf;
59 	struct inode *inode = NULL;
60 	unsigned nofs_flag;
61 	int ret;
62 
63 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
64 	key.offset = offset;
65 	key.type = 0;
66 
67 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
68 	if (ret < 0)
69 		return ERR_PTR(ret);
70 	if (ret > 0) {
71 		btrfs_release_path(path);
72 		return ERR_PTR(-ENOENT);
73 	}
74 
75 	leaf = path->nodes[0];
76 	header = btrfs_item_ptr(leaf, path->slots[0],
77 				struct btrfs_free_space_header);
78 	btrfs_free_space_key(leaf, header, &disk_key);
79 	btrfs_disk_key_to_cpu(&location, &disk_key);
80 	btrfs_release_path(path);
81 
82 	/*
83 	 * We are often under a trans handle at this point, so we need to make
84 	 * sure NOFS is set to keep us from deadlocking.
85 	 */
86 	nofs_flag = memalloc_nofs_save();
87 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
88 	btrfs_release_path(path);
89 	memalloc_nofs_restore(nofs_flag);
90 	if (IS_ERR(inode))
91 		return inode;
92 
93 	mapping_set_gfp_mask(inode->i_mapping,
94 			mapping_gfp_constraint(inode->i_mapping,
95 			~(__GFP_FS | __GFP_HIGHMEM)));
96 
97 	return inode;
98 }
99 
100 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
101 		struct btrfs_path *path)
102 {
103 	struct btrfs_fs_info *fs_info = block_group->fs_info;
104 	struct inode *inode = NULL;
105 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
106 
107 	spin_lock(&block_group->lock);
108 	if (block_group->inode)
109 		inode = igrab(block_group->inode);
110 	spin_unlock(&block_group->lock);
111 	if (inode)
112 		return inode;
113 
114 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
115 					  block_group->start);
116 	if (IS_ERR(inode))
117 		return inode;
118 
119 	spin_lock(&block_group->lock);
120 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
121 		btrfs_info(fs_info, "Old style space inode found, converting.");
122 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
123 			BTRFS_INODE_NODATACOW;
124 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
125 	}
126 
127 	if (!block_group->iref) {
128 		block_group->inode = igrab(inode);
129 		block_group->iref = 1;
130 	}
131 	spin_unlock(&block_group->lock);
132 
133 	return inode;
134 }
135 
136 static int __create_free_space_inode(struct btrfs_root *root,
137 				     struct btrfs_trans_handle *trans,
138 				     struct btrfs_path *path,
139 				     u64 ino, u64 offset)
140 {
141 	struct btrfs_key key;
142 	struct btrfs_disk_key disk_key;
143 	struct btrfs_free_space_header *header;
144 	struct btrfs_inode_item *inode_item;
145 	struct extent_buffer *leaf;
146 	/* We inline CRCs for the free disk space cache */
147 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
148 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
149 	int ret;
150 
151 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
152 	if (ret)
153 		return ret;
154 
155 	leaf = path->nodes[0];
156 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 				    struct btrfs_inode_item);
158 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 			     sizeof(*inode_item));
161 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 	btrfs_set_inode_size(leaf, inode_item, 0);
163 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 	btrfs_set_inode_uid(leaf, inode_item, 0);
165 	btrfs_set_inode_gid(leaf, inode_item, 0);
166 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167 	btrfs_set_inode_flags(leaf, inode_item, flags);
168 	btrfs_set_inode_nlink(leaf, inode_item, 1);
169 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170 	btrfs_set_inode_block_group(leaf, inode_item, offset);
171 	btrfs_mark_buffer_dirty(leaf);
172 	btrfs_release_path(path);
173 
174 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175 	key.offset = offset;
176 	key.type = 0;
177 	ret = btrfs_insert_empty_item(trans, root, path, &key,
178 				      sizeof(struct btrfs_free_space_header));
179 	if (ret < 0) {
180 		btrfs_release_path(path);
181 		return ret;
182 	}
183 
184 	leaf = path->nodes[0];
185 	header = btrfs_item_ptr(leaf, path->slots[0],
186 				struct btrfs_free_space_header);
187 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 	btrfs_set_free_space_key(leaf, header, &disk_key);
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_release_path(path);
191 
192 	return 0;
193 }
194 
195 int create_free_space_inode(struct btrfs_trans_handle *trans,
196 			    struct btrfs_block_group *block_group,
197 			    struct btrfs_path *path)
198 {
199 	int ret;
200 	u64 ino;
201 
202 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
203 	if (ret < 0)
204 		return ret;
205 
206 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207 					 ino, block_group->start);
208 }
209 
210 /*
211  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
212  * handles lookup, otherwise it takes ownership and iputs the inode.
213  * Don't reuse an inode pointer after passing it into this function.
214  */
215 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
216 				  struct inode *inode,
217 				  struct btrfs_block_group *block_group)
218 {
219 	struct btrfs_path *path;
220 	struct btrfs_key key;
221 	int ret = 0;
222 
223 	path = btrfs_alloc_path();
224 	if (!path)
225 		return -ENOMEM;
226 
227 	if (!inode)
228 		inode = lookup_free_space_inode(block_group, path);
229 	if (IS_ERR(inode)) {
230 		if (PTR_ERR(inode) != -ENOENT)
231 			ret = PTR_ERR(inode);
232 		goto out;
233 	}
234 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
235 	if (ret) {
236 		btrfs_add_delayed_iput(inode);
237 		goto out;
238 	}
239 	clear_nlink(inode);
240 	/* One for the block groups ref */
241 	spin_lock(&block_group->lock);
242 	if (block_group->iref) {
243 		block_group->iref = 0;
244 		block_group->inode = NULL;
245 		spin_unlock(&block_group->lock);
246 		iput(inode);
247 	} else {
248 		spin_unlock(&block_group->lock);
249 	}
250 	/* One for the lookup ref */
251 	btrfs_add_delayed_iput(inode);
252 
253 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
254 	key.type = 0;
255 	key.offset = block_group->start;
256 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
257 				-1, 1);
258 	if (ret) {
259 		if (ret > 0)
260 			ret = 0;
261 		goto out;
262 	}
263 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
264 out:
265 	btrfs_free_path(path);
266 	return ret;
267 }
268 
269 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
270 				       struct btrfs_block_rsv *rsv)
271 {
272 	u64 needed_bytes;
273 	int ret;
274 
275 	/* 1 for slack space, 1 for updating the inode */
276 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
277 		btrfs_calc_metadata_size(fs_info, 1);
278 
279 	spin_lock(&rsv->lock);
280 	if (rsv->reserved < needed_bytes)
281 		ret = -ENOSPC;
282 	else
283 		ret = 0;
284 	spin_unlock(&rsv->lock);
285 	return ret;
286 }
287 
288 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
289 				    struct btrfs_block_group *block_group,
290 				    struct inode *inode)
291 {
292 	struct btrfs_root *root = BTRFS_I(inode)->root;
293 	int ret = 0;
294 	bool locked = false;
295 
296 	if (block_group) {
297 		struct btrfs_path *path = btrfs_alloc_path();
298 
299 		if (!path) {
300 			ret = -ENOMEM;
301 			goto fail;
302 		}
303 		locked = true;
304 		mutex_lock(&trans->transaction->cache_write_mutex);
305 		if (!list_empty(&block_group->io_list)) {
306 			list_del_init(&block_group->io_list);
307 
308 			btrfs_wait_cache_io(trans, block_group, path);
309 			btrfs_put_block_group(block_group);
310 		}
311 
312 		/*
313 		 * now that we've truncated the cache away, its no longer
314 		 * setup or written
315 		 */
316 		spin_lock(&block_group->lock);
317 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
318 		spin_unlock(&block_group->lock);
319 		btrfs_free_path(path);
320 	}
321 
322 	btrfs_i_size_write(BTRFS_I(inode), 0);
323 	truncate_pagecache(inode, 0);
324 
325 	/*
326 	 * We skip the throttling logic for free space cache inodes, so we don't
327 	 * need to check for -EAGAIN.
328 	 */
329 	ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
330 					 0, BTRFS_EXTENT_DATA_KEY, NULL);
331 	if (ret)
332 		goto fail;
333 
334 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
335 
336 fail:
337 	if (locked)
338 		mutex_unlock(&trans->transaction->cache_write_mutex);
339 	if (ret)
340 		btrfs_abort_transaction(trans, ret);
341 
342 	return ret;
343 }
344 
345 static void readahead_cache(struct inode *inode)
346 {
347 	struct file_ra_state ra;
348 	unsigned long last_index;
349 
350 	file_ra_state_init(&ra, inode->i_mapping);
351 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
352 
353 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
354 }
355 
356 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
357 		       int write)
358 {
359 	int num_pages;
360 
361 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
362 
363 	/* Make sure we can fit our crcs and generation into the first page */
364 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
365 		return -ENOSPC;
366 
367 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
368 
369 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
370 	if (!io_ctl->pages)
371 		return -ENOMEM;
372 
373 	io_ctl->num_pages = num_pages;
374 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
375 	io_ctl->inode = inode;
376 
377 	return 0;
378 }
379 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
380 
381 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
382 {
383 	kfree(io_ctl->pages);
384 	io_ctl->pages = NULL;
385 }
386 
387 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
388 {
389 	if (io_ctl->cur) {
390 		io_ctl->cur = NULL;
391 		io_ctl->orig = NULL;
392 	}
393 }
394 
395 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
396 {
397 	ASSERT(io_ctl->index < io_ctl->num_pages);
398 	io_ctl->page = io_ctl->pages[io_ctl->index++];
399 	io_ctl->cur = page_address(io_ctl->page);
400 	io_ctl->orig = io_ctl->cur;
401 	io_ctl->size = PAGE_SIZE;
402 	if (clear)
403 		clear_page(io_ctl->cur);
404 }
405 
406 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
407 {
408 	int i;
409 
410 	io_ctl_unmap_page(io_ctl);
411 
412 	for (i = 0; i < io_ctl->num_pages; i++) {
413 		if (io_ctl->pages[i]) {
414 			ClearPageChecked(io_ctl->pages[i]);
415 			unlock_page(io_ctl->pages[i]);
416 			put_page(io_ctl->pages[i]);
417 		}
418 	}
419 }
420 
421 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
422 {
423 	struct page *page;
424 	struct inode *inode = io_ctl->inode;
425 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
426 	int i;
427 
428 	for (i = 0; i < io_ctl->num_pages; i++) {
429 		int ret;
430 
431 		page = find_or_create_page(inode->i_mapping, i, mask);
432 		if (!page) {
433 			io_ctl_drop_pages(io_ctl);
434 			return -ENOMEM;
435 		}
436 
437 		ret = set_page_extent_mapped(page);
438 		if (ret < 0) {
439 			unlock_page(page);
440 			put_page(page);
441 			io_ctl_drop_pages(io_ctl);
442 			return ret;
443 		}
444 
445 		io_ctl->pages[i] = page;
446 		if (uptodate && !PageUptodate(page)) {
447 			btrfs_readpage(NULL, page);
448 			lock_page(page);
449 			if (page->mapping != inode->i_mapping) {
450 				btrfs_err(BTRFS_I(inode)->root->fs_info,
451 					  "free space cache page truncated");
452 				io_ctl_drop_pages(io_ctl);
453 				return -EIO;
454 			}
455 			if (!PageUptodate(page)) {
456 				btrfs_err(BTRFS_I(inode)->root->fs_info,
457 					   "error reading free space cache");
458 				io_ctl_drop_pages(io_ctl);
459 				return -EIO;
460 			}
461 		}
462 	}
463 
464 	for (i = 0; i < io_ctl->num_pages; i++)
465 		clear_page_dirty_for_io(io_ctl->pages[i]);
466 
467 	return 0;
468 }
469 
470 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
471 {
472 	io_ctl_map_page(io_ctl, 1);
473 
474 	/*
475 	 * Skip the csum areas.  If we don't check crcs then we just have a
476 	 * 64bit chunk at the front of the first page.
477 	 */
478 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
479 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
480 
481 	put_unaligned_le64(generation, io_ctl->cur);
482 	io_ctl->cur += sizeof(u64);
483 }
484 
485 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
486 {
487 	u64 cache_gen;
488 
489 	/*
490 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
491 	 * chunk at the front of the first page.
492 	 */
493 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
494 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
495 
496 	cache_gen = get_unaligned_le64(io_ctl->cur);
497 	if (cache_gen != generation) {
498 		btrfs_err_rl(io_ctl->fs_info,
499 			"space cache generation (%llu) does not match inode (%llu)",
500 				cache_gen, generation);
501 		io_ctl_unmap_page(io_ctl);
502 		return -EIO;
503 	}
504 	io_ctl->cur += sizeof(u64);
505 	return 0;
506 }
507 
508 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
509 {
510 	u32 *tmp;
511 	u32 crc = ~(u32)0;
512 	unsigned offset = 0;
513 
514 	if (index == 0)
515 		offset = sizeof(u32) * io_ctl->num_pages;
516 
517 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
518 	btrfs_crc32c_final(crc, (u8 *)&crc);
519 	io_ctl_unmap_page(io_ctl);
520 	tmp = page_address(io_ctl->pages[0]);
521 	tmp += index;
522 	*tmp = crc;
523 }
524 
525 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
526 {
527 	u32 *tmp, val;
528 	u32 crc = ~(u32)0;
529 	unsigned offset = 0;
530 
531 	if (index == 0)
532 		offset = sizeof(u32) * io_ctl->num_pages;
533 
534 	tmp = page_address(io_ctl->pages[0]);
535 	tmp += index;
536 	val = *tmp;
537 
538 	io_ctl_map_page(io_ctl, 0);
539 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
540 	btrfs_crc32c_final(crc, (u8 *)&crc);
541 	if (val != crc) {
542 		btrfs_err_rl(io_ctl->fs_info,
543 			"csum mismatch on free space cache");
544 		io_ctl_unmap_page(io_ctl);
545 		return -EIO;
546 	}
547 
548 	return 0;
549 }
550 
551 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
552 			    void *bitmap)
553 {
554 	struct btrfs_free_space_entry *entry;
555 
556 	if (!io_ctl->cur)
557 		return -ENOSPC;
558 
559 	entry = io_ctl->cur;
560 	put_unaligned_le64(offset, &entry->offset);
561 	put_unaligned_le64(bytes, &entry->bytes);
562 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
563 		BTRFS_FREE_SPACE_EXTENT;
564 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
565 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
566 
567 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
568 		return 0;
569 
570 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
571 
572 	/* No more pages to map */
573 	if (io_ctl->index >= io_ctl->num_pages)
574 		return 0;
575 
576 	/* map the next page */
577 	io_ctl_map_page(io_ctl, 1);
578 	return 0;
579 }
580 
581 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
582 {
583 	if (!io_ctl->cur)
584 		return -ENOSPC;
585 
586 	/*
587 	 * If we aren't at the start of the current page, unmap this one and
588 	 * map the next one if there is any left.
589 	 */
590 	if (io_ctl->cur != io_ctl->orig) {
591 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
592 		if (io_ctl->index >= io_ctl->num_pages)
593 			return -ENOSPC;
594 		io_ctl_map_page(io_ctl, 0);
595 	}
596 
597 	copy_page(io_ctl->cur, bitmap);
598 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
599 	if (io_ctl->index < io_ctl->num_pages)
600 		io_ctl_map_page(io_ctl, 0);
601 	return 0;
602 }
603 
604 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
605 {
606 	/*
607 	 * If we're not on the boundary we know we've modified the page and we
608 	 * need to crc the page.
609 	 */
610 	if (io_ctl->cur != io_ctl->orig)
611 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
612 	else
613 		io_ctl_unmap_page(io_ctl);
614 
615 	while (io_ctl->index < io_ctl->num_pages) {
616 		io_ctl_map_page(io_ctl, 1);
617 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
618 	}
619 }
620 
621 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
622 			    struct btrfs_free_space *entry, u8 *type)
623 {
624 	struct btrfs_free_space_entry *e;
625 	int ret;
626 
627 	if (!io_ctl->cur) {
628 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
629 		if (ret)
630 			return ret;
631 	}
632 
633 	e = io_ctl->cur;
634 	entry->offset = get_unaligned_le64(&e->offset);
635 	entry->bytes = get_unaligned_le64(&e->bytes);
636 	*type = e->type;
637 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
638 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
639 
640 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
641 		return 0;
642 
643 	io_ctl_unmap_page(io_ctl);
644 
645 	return 0;
646 }
647 
648 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
649 			      struct btrfs_free_space *entry)
650 {
651 	int ret;
652 
653 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
654 	if (ret)
655 		return ret;
656 
657 	copy_page(entry->bitmap, io_ctl->cur);
658 	io_ctl_unmap_page(io_ctl);
659 
660 	return 0;
661 }
662 
663 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
664 {
665 	struct btrfs_block_group *block_group = ctl->private;
666 	u64 max_bytes;
667 	u64 bitmap_bytes;
668 	u64 extent_bytes;
669 	u64 size = block_group->length;
670 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
671 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
672 
673 	max_bitmaps = max_t(u64, max_bitmaps, 1);
674 
675 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
676 
677 	/*
678 	 * We are trying to keep the total amount of memory used per 1GiB of
679 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
680 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
681 	 * bitmaps, we may end up using more memory than this.
682 	 */
683 	if (size < SZ_1G)
684 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
685 	else
686 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
687 
688 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
689 
690 	/*
691 	 * we want the extent entry threshold to always be at most 1/2 the max
692 	 * bytes we can have, or whatever is less than that.
693 	 */
694 	extent_bytes = max_bytes - bitmap_bytes;
695 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
696 
697 	ctl->extents_thresh =
698 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
699 }
700 
701 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
702 				   struct btrfs_free_space_ctl *ctl,
703 				   struct btrfs_path *path, u64 offset)
704 {
705 	struct btrfs_fs_info *fs_info = root->fs_info;
706 	struct btrfs_free_space_header *header;
707 	struct extent_buffer *leaf;
708 	struct btrfs_io_ctl io_ctl;
709 	struct btrfs_key key;
710 	struct btrfs_free_space *e, *n;
711 	LIST_HEAD(bitmaps);
712 	u64 num_entries;
713 	u64 num_bitmaps;
714 	u64 generation;
715 	u8 type;
716 	int ret = 0;
717 
718 	/* Nothing in the space cache, goodbye */
719 	if (!i_size_read(inode))
720 		return 0;
721 
722 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
723 	key.offset = offset;
724 	key.type = 0;
725 
726 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
727 	if (ret < 0)
728 		return 0;
729 	else if (ret > 0) {
730 		btrfs_release_path(path);
731 		return 0;
732 	}
733 
734 	ret = -1;
735 
736 	leaf = path->nodes[0];
737 	header = btrfs_item_ptr(leaf, path->slots[0],
738 				struct btrfs_free_space_header);
739 	num_entries = btrfs_free_space_entries(leaf, header);
740 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
741 	generation = btrfs_free_space_generation(leaf, header);
742 	btrfs_release_path(path);
743 
744 	if (!BTRFS_I(inode)->generation) {
745 		btrfs_info(fs_info,
746 			   "the free space cache file (%llu) is invalid, skip it",
747 			   offset);
748 		return 0;
749 	}
750 
751 	if (BTRFS_I(inode)->generation != generation) {
752 		btrfs_err(fs_info,
753 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
754 			  BTRFS_I(inode)->generation, generation);
755 		return 0;
756 	}
757 
758 	if (!num_entries)
759 		return 0;
760 
761 	ret = io_ctl_init(&io_ctl, inode, 0);
762 	if (ret)
763 		return ret;
764 
765 	readahead_cache(inode);
766 
767 	ret = io_ctl_prepare_pages(&io_ctl, true);
768 	if (ret)
769 		goto out;
770 
771 	ret = io_ctl_check_crc(&io_ctl, 0);
772 	if (ret)
773 		goto free_cache;
774 
775 	ret = io_ctl_check_generation(&io_ctl, generation);
776 	if (ret)
777 		goto free_cache;
778 
779 	while (num_entries) {
780 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
781 				      GFP_NOFS);
782 		if (!e) {
783 			ret = -ENOMEM;
784 			goto free_cache;
785 		}
786 
787 		ret = io_ctl_read_entry(&io_ctl, e, &type);
788 		if (ret) {
789 			kmem_cache_free(btrfs_free_space_cachep, e);
790 			goto free_cache;
791 		}
792 
793 		if (!e->bytes) {
794 			ret = -1;
795 			kmem_cache_free(btrfs_free_space_cachep, e);
796 			goto free_cache;
797 		}
798 
799 		if (type == BTRFS_FREE_SPACE_EXTENT) {
800 			spin_lock(&ctl->tree_lock);
801 			ret = link_free_space(ctl, e);
802 			spin_unlock(&ctl->tree_lock);
803 			if (ret) {
804 				btrfs_err(fs_info,
805 					"Duplicate entries in free space cache, dumping");
806 				kmem_cache_free(btrfs_free_space_cachep, e);
807 				goto free_cache;
808 			}
809 		} else {
810 			ASSERT(num_bitmaps);
811 			num_bitmaps--;
812 			e->bitmap = kmem_cache_zalloc(
813 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
814 			if (!e->bitmap) {
815 				ret = -ENOMEM;
816 				kmem_cache_free(
817 					btrfs_free_space_cachep, e);
818 				goto free_cache;
819 			}
820 			spin_lock(&ctl->tree_lock);
821 			ret = link_free_space(ctl, e);
822 			ctl->total_bitmaps++;
823 			recalculate_thresholds(ctl);
824 			spin_unlock(&ctl->tree_lock);
825 			if (ret) {
826 				btrfs_err(fs_info,
827 					"Duplicate entries in free space cache, dumping");
828 				kmem_cache_free(btrfs_free_space_cachep, e);
829 				goto free_cache;
830 			}
831 			list_add_tail(&e->list, &bitmaps);
832 		}
833 
834 		num_entries--;
835 	}
836 
837 	io_ctl_unmap_page(&io_ctl);
838 
839 	/*
840 	 * We add the bitmaps at the end of the entries in order that
841 	 * the bitmap entries are added to the cache.
842 	 */
843 	list_for_each_entry_safe(e, n, &bitmaps, list) {
844 		list_del_init(&e->list);
845 		ret = io_ctl_read_bitmap(&io_ctl, e);
846 		if (ret)
847 			goto free_cache;
848 	}
849 
850 	io_ctl_drop_pages(&io_ctl);
851 	ret = 1;
852 out:
853 	io_ctl_free(&io_ctl);
854 	return ret;
855 free_cache:
856 	io_ctl_drop_pages(&io_ctl);
857 	__btrfs_remove_free_space_cache(ctl);
858 	goto out;
859 }
860 
861 static int copy_free_space_cache(struct btrfs_block_group *block_group,
862 				 struct btrfs_free_space_ctl *ctl)
863 {
864 	struct btrfs_free_space *info;
865 	struct rb_node *n;
866 	int ret = 0;
867 
868 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
869 		info = rb_entry(n, struct btrfs_free_space, offset_index);
870 		if (!info->bitmap) {
871 			unlink_free_space(ctl, info);
872 			ret = btrfs_add_free_space(block_group, info->offset,
873 						   info->bytes);
874 			kmem_cache_free(btrfs_free_space_cachep, info);
875 		} else {
876 			u64 offset = info->offset;
877 			u64 bytes = ctl->unit;
878 
879 			while (search_bitmap(ctl, info, &offset, &bytes,
880 					     false) == 0) {
881 				ret = btrfs_add_free_space(block_group, offset,
882 							   bytes);
883 				if (ret)
884 					break;
885 				bitmap_clear_bits(ctl, info, offset, bytes);
886 				offset = info->offset;
887 				bytes = ctl->unit;
888 			}
889 			free_bitmap(ctl, info);
890 		}
891 		cond_resched();
892 	}
893 	return ret;
894 }
895 
896 int load_free_space_cache(struct btrfs_block_group *block_group)
897 {
898 	struct btrfs_fs_info *fs_info = block_group->fs_info;
899 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
900 	struct btrfs_free_space_ctl tmp_ctl = {};
901 	struct inode *inode;
902 	struct btrfs_path *path;
903 	int ret = 0;
904 	bool matched;
905 	u64 used = block_group->used;
906 
907 	/*
908 	 * Because we could potentially discard our loaded free space, we want
909 	 * to load everything into a temporary structure first, and then if it's
910 	 * valid copy it all into the actual free space ctl.
911 	 */
912 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
913 
914 	/*
915 	 * If this block group has been marked to be cleared for one reason or
916 	 * another then we can't trust the on disk cache, so just return.
917 	 */
918 	spin_lock(&block_group->lock);
919 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
920 		spin_unlock(&block_group->lock);
921 		return 0;
922 	}
923 	spin_unlock(&block_group->lock);
924 
925 	path = btrfs_alloc_path();
926 	if (!path)
927 		return 0;
928 	path->search_commit_root = 1;
929 	path->skip_locking = 1;
930 
931 	/*
932 	 * We must pass a path with search_commit_root set to btrfs_iget in
933 	 * order to avoid a deadlock when allocating extents for the tree root.
934 	 *
935 	 * When we are COWing an extent buffer from the tree root, when looking
936 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
937 	 * block group without its free space cache loaded. When we find one
938 	 * we must load its space cache which requires reading its free space
939 	 * cache's inode item from the root tree. If this inode item is located
940 	 * in the same leaf that we started COWing before, then we end up in
941 	 * deadlock on the extent buffer (trying to read lock it when we
942 	 * previously write locked it).
943 	 *
944 	 * It's safe to read the inode item using the commit root because
945 	 * block groups, once loaded, stay in memory forever (until they are
946 	 * removed) as well as their space caches once loaded. New block groups
947 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
948 	 * we will never try to read their inode item while the fs is mounted.
949 	 */
950 	inode = lookup_free_space_inode(block_group, path);
951 	if (IS_ERR(inode)) {
952 		btrfs_free_path(path);
953 		return 0;
954 	}
955 
956 	/* We may have converted the inode and made the cache invalid. */
957 	spin_lock(&block_group->lock);
958 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
959 		spin_unlock(&block_group->lock);
960 		btrfs_free_path(path);
961 		goto out;
962 	}
963 	spin_unlock(&block_group->lock);
964 
965 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
966 				      path, block_group->start);
967 	btrfs_free_path(path);
968 	if (ret <= 0)
969 		goto out;
970 
971 	matched = (tmp_ctl.free_space == (block_group->length - used -
972 					  block_group->bytes_super));
973 
974 	if (matched) {
975 		ret = copy_free_space_cache(block_group, &tmp_ctl);
976 		/*
977 		 * ret == 1 means we successfully loaded the free space cache,
978 		 * so we need to re-set it here.
979 		 */
980 		if (ret == 0)
981 			ret = 1;
982 	} else {
983 		__btrfs_remove_free_space_cache(&tmp_ctl);
984 		btrfs_warn(fs_info,
985 			   "block group %llu has wrong amount of free space",
986 			   block_group->start);
987 		ret = -1;
988 	}
989 out:
990 	if (ret < 0) {
991 		/* This cache is bogus, make sure it gets cleared */
992 		spin_lock(&block_group->lock);
993 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
994 		spin_unlock(&block_group->lock);
995 		ret = 0;
996 
997 		btrfs_warn(fs_info,
998 			   "failed to load free space cache for block group %llu, rebuilding it now",
999 			   block_group->start);
1000 	}
1001 
1002 	spin_lock(&ctl->tree_lock);
1003 	btrfs_discard_update_discardable(block_group);
1004 	spin_unlock(&ctl->tree_lock);
1005 	iput(inode);
1006 	return ret;
1007 }
1008 
1009 static noinline_for_stack
1010 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1011 			      struct btrfs_free_space_ctl *ctl,
1012 			      struct btrfs_block_group *block_group,
1013 			      int *entries, int *bitmaps,
1014 			      struct list_head *bitmap_list)
1015 {
1016 	int ret;
1017 	struct btrfs_free_cluster *cluster = NULL;
1018 	struct btrfs_free_cluster *cluster_locked = NULL;
1019 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1020 	struct btrfs_trim_range *trim_entry;
1021 
1022 	/* Get the cluster for this block_group if it exists */
1023 	if (block_group && !list_empty(&block_group->cluster_list)) {
1024 		cluster = list_entry(block_group->cluster_list.next,
1025 				     struct btrfs_free_cluster,
1026 				     block_group_list);
1027 	}
1028 
1029 	if (!node && cluster) {
1030 		cluster_locked = cluster;
1031 		spin_lock(&cluster_locked->lock);
1032 		node = rb_first(&cluster->root);
1033 		cluster = NULL;
1034 	}
1035 
1036 	/* Write out the extent entries */
1037 	while (node) {
1038 		struct btrfs_free_space *e;
1039 
1040 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1041 		*entries += 1;
1042 
1043 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1044 				       e->bitmap);
1045 		if (ret)
1046 			goto fail;
1047 
1048 		if (e->bitmap) {
1049 			list_add_tail(&e->list, bitmap_list);
1050 			*bitmaps += 1;
1051 		}
1052 		node = rb_next(node);
1053 		if (!node && cluster) {
1054 			node = rb_first(&cluster->root);
1055 			cluster_locked = cluster;
1056 			spin_lock(&cluster_locked->lock);
1057 			cluster = NULL;
1058 		}
1059 	}
1060 	if (cluster_locked) {
1061 		spin_unlock(&cluster_locked->lock);
1062 		cluster_locked = NULL;
1063 	}
1064 
1065 	/*
1066 	 * Make sure we don't miss any range that was removed from our rbtree
1067 	 * because trimming is running. Otherwise after a umount+mount (or crash
1068 	 * after committing the transaction) we would leak free space and get
1069 	 * an inconsistent free space cache report from fsck.
1070 	 */
1071 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1072 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1073 				       trim_entry->bytes, NULL);
1074 		if (ret)
1075 			goto fail;
1076 		*entries += 1;
1077 	}
1078 
1079 	return 0;
1080 fail:
1081 	if (cluster_locked)
1082 		spin_unlock(&cluster_locked->lock);
1083 	return -ENOSPC;
1084 }
1085 
1086 static noinline_for_stack int
1087 update_cache_item(struct btrfs_trans_handle *trans,
1088 		  struct btrfs_root *root,
1089 		  struct inode *inode,
1090 		  struct btrfs_path *path, u64 offset,
1091 		  int entries, int bitmaps)
1092 {
1093 	struct btrfs_key key;
1094 	struct btrfs_free_space_header *header;
1095 	struct extent_buffer *leaf;
1096 	int ret;
1097 
1098 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1099 	key.offset = offset;
1100 	key.type = 0;
1101 
1102 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1103 	if (ret < 0) {
1104 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1105 				 EXTENT_DELALLOC, 0, 0, NULL);
1106 		goto fail;
1107 	}
1108 	leaf = path->nodes[0];
1109 	if (ret > 0) {
1110 		struct btrfs_key found_key;
1111 		ASSERT(path->slots[0]);
1112 		path->slots[0]--;
1113 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1114 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1115 		    found_key.offset != offset) {
1116 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1117 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1118 					 0, NULL);
1119 			btrfs_release_path(path);
1120 			goto fail;
1121 		}
1122 	}
1123 
1124 	BTRFS_I(inode)->generation = trans->transid;
1125 	header = btrfs_item_ptr(leaf, path->slots[0],
1126 				struct btrfs_free_space_header);
1127 	btrfs_set_free_space_entries(leaf, header, entries);
1128 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1129 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1130 	btrfs_mark_buffer_dirty(leaf);
1131 	btrfs_release_path(path);
1132 
1133 	return 0;
1134 
1135 fail:
1136 	return -1;
1137 }
1138 
1139 static noinline_for_stack int write_pinned_extent_entries(
1140 			    struct btrfs_trans_handle *trans,
1141 			    struct btrfs_block_group *block_group,
1142 			    struct btrfs_io_ctl *io_ctl,
1143 			    int *entries)
1144 {
1145 	u64 start, extent_start, extent_end, len;
1146 	struct extent_io_tree *unpin = NULL;
1147 	int ret;
1148 
1149 	if (!block_group)
1150 		return 0;
1151 
1152 	/*
1153 	 * We want to add any pinned extents to our free space cache
1154 	 * so we don't leak the space
1155 	 *
1156 	 * We shouldn't have switched the pinned extents yet so this is the
1157 	 * right one
1158 	 */
1159 	unpin = &trans->transaction->pinned_extents;
1160 
1161 	start = block_group->start;
1162 
1163 	while (start < block_group->start + block_group->length) {
1164 		ret = find_first_extent_bit(unpin, start,
1165 					    &extent_start, &extent_end,
1166 					    EXTENT_DIRTY, NULL);
1167 		if (ret)
1168 			return 0;
1169 
1170 		/* This pinned extent is out of our range */
1171 		if (extent_start >= block_group->start + block_group->length)
1172 			return 0;
1173 
1174 		extent_start = max(extent_start, start);
1175 		extent_end = min(block_group->start + block_group->length,
1176 				 extent_end + 1);
1177 		len = extent_end - extent_start;
1178 
1179 		*entries += 1;
1180 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1181 		if (ret)
1182 			return -ENOSPC;
1183 
1184 		start = extent_end;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static noinline_for_stack int
1191 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1192 {
1193 	struct btrfs_free_space *entry, *next;
1194 	int ret;
1195 
1196 	/* Write out the bitmaps */
1197 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1198 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1199 		if (ret)
1200 			return -ENOSPC;
1201 		list_del_init(&entry->list);
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static int flush_dirty_cache(struct inode *inode)
1208 {
1209 	int ret;
1210 
1211 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1212 	if (ret)
1213 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1214 				 EXTENT_DELALLOC, 0, 0, NULL);
1215 
1216 	return ret;
1217 }
1218 
1219 static void noinline_for_stack
1220 cleanup_bitmap_list(struct list_head *bitmap_list)
1221 {
1222 	struct btrfs_free_space *entry, *next;
1223 
1224 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1225 		list_del_init(&entry->list);
1226 }
1227 
1228 static void noinline_for_stack
1229 cleanup_write_cache_enospc(struct inode *inode,
1230 			   struct btrfs_io_ctl *io_ctl,
1231 			   struct extent_state **cached_state)
1232 {
1233 	io_ctl_drop_pages(io_ctl);
1234 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1235 			     i_size_read(inode) - 1, cached_state);
1236 }
1237 
1238 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1239 				 struct btrfs_trans_handle *trans,
1240 				 struct btrfs_block_group *block_group,
1241 				 struct btrfs_io_ctl *io_ctl,
1242 				 struct btrfs_path *path, u64 offset)
1243 {
1244 	int ret;
1245 	struct inode *inode = io_ctl->inode;
1246 
1247 	if (!inode)
1248 		return 0;
1249 
1250 	/* Flush the dirty pages in the cache file. */
1251 	ret = flush_dirty_cache(inode);
1252 	if (ret)
1253 		goto out;
1254 
1255 	/* Update the cache item to tell everyone this cache file is valid. */
1256 	ret = update_cache_item(trans, root, inode, path, offset,
1257 				io_ctl->entries, io_ctl->bitmaps);
1258 out:
1259 	if (ret) {
1260 		invalidate_inode_pages2(inode->i_mapping);
1261 		BTRFS_I(inode)->generation = 0;
1262 		if (block_group)
1263 			btrfs_debug(root->fs_info,
1264 	  "failed to write free space cache for block group %llu error %d",
1265 				  block_group->start, ret);
1266 	}
1267 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1268 
1269 	if (block_group) {
1270 		/* the dirty list is protected by the dirty_bgs_lock */
1271 		spin_lock(&trans->transaction->dirty_bgs_lock);
1272 
1273 		/* the disk_cache_state is protected by the block group lock */
1274 		spin_lock(&block_group->lock);
1275 
1276 		/*
1277 		 * only mark this as written if we didn't get put back on
1278 		 * the dirty list while waiting for IO.   Otherwise our
1279 		 * cache state won't be right, and we won't get written again
1280 		 */
1281 		if (!ret && list_empty(&block_group->dirty_list))
1282 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1283 		else if (ret)
1284 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1285 
1286 		spin_unlock(&block_group->lock);
1287 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1288 		io_ctl->inode = NULL;
1289 		iput(inode);
1290 	}
1291 
1292 	return ret;
1293 
1294 }
1295 
1296 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1297 			struct btrfs_block_group *block_group,
1298 			struct btrfs_path *path)
1299 {
1300 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1301 				     block_group, &block_group->io_ctl,
1302 				     path, block_group->start);
1303 }
1304 
1305 /**
1306  * Write out cached info to an inode
1307  *
1308  * @root:        root the inode belongs to
1309  * @inode:       freespace inode we are writing out
1310  * @ctl:         free space cache we are going to write out
1311  * @block_group: block_group for this cache if it belongs to a block_group
1312  * @io_ctl:      holds context for the io
1313  * @trans:       the trans handle
1314  *
1315  * This function writes out a free space cache struct to disk for quick recovery
1316  * on mount.  This will return 0 if it was successful in writing the cache out,
1317  * or an errno if it was not.
1318  */
1319 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1320 				   struct btrfs_free_space_ctl *ctl,
1321 				   struct btrfs_block_group *block_group,
1322 				   struct btrfs_io_ctl *io_ctl,
1323 				   struct btrfs_trans_handle *trans)
1324 {
1325 	struct extent_state *cached_state = NULL;
1326 	LIST_HEAD(bitmap_list);
1327 	int entries = 0;
1328 	int bitmaps = 0;
1329 	int ret;
1330 	int must_iput = 0;
1331 
1332 	if (!i_size_read(inode))
1333 		return -EIO;
1334 
1335 	WARN_ON(io_ctl->pages);
1336 	ret = io_ctl_init(io_ctl, inode, 1);
1337 	if (ret)
1338 		return ret;
1339 
1340 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1341 		down_write(&block_group->data_rwsem);
1342 		spin_lock(&block_group->lock);
1343 		if (block_group->delalloc_bytes) {
1344 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1345 			spin_unlock(&block_group->lock);
1346 			up_write(&block_group->data_rwsem);
1347 			BTRFS_I(inode)->generation = 0;
1348 			ret = 0;
1349 			must_iput = 1;
1350 			goto out;
1351 		}
1352 		spin_unlock(&block_group->lock);
1353 	}
1354 
1355 	/* Lock all pages first so we can lock the extent safely. */
1356 	ret = io_ctl_prepare_pages(io_ctl, false);
1357 	if (ret)
1358 		goto out_unlock;
1359 
1360 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1361 			 &cached_state);
1362 
1363 	io_ctl_set_generation(io_ctl, trans->transid);
1364 
1365 	mutex_lock(&ctl->cache_writeout_mutex);
1366 	/* Write out the extent entries in the free space cache */
1367 	spin_lock(&ctl->tree_lock);
1368 	ret = write_cache_extent_entries(io_ctl, ctl,
1369 					 block_group, &entries, &bitmaps,
1370 					 &bitmap_list);
1371 	if (ret)
1372 		goto out_nospc_locked;
1373 
1374 	/*
1375 	 * Some spaces that are freed in the current transaction are pinned,
1376 	 * they will be added into free space cache after the transaction is
1377 	 * committed, we shouldn't lose them.
1378 	 *
1379 	 * If this changes while we are working we'll get added back to
1380 	 * the dirty list and redo it.  No locking needed
1381 	 */
1382 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1383 	if (ret)
1384 		goto out_nospc_locked;
1385 
1386 	/*
1387 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1388 	 * locked while doing it because a concurrent trim can be manipulating
1389 	 * or freeing the bitmap.
1390 	 */
1391 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1392 	spin_unlock(&ctl->tree_lock);
1393 	mutex_unlock(&ctl->cache_writeout_mutex);
1394 	if (ret)
1395 		goto out_nospc;
1396 
1397 	/* Zero out the rest of the pages just to make sure */
1398 	io_ctl_zero_remaining_pages(io_ctl);
1399 
1400 	/* Everything is written out, now we dirty the pages in the file. */
1401 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1402 				io_ctl->num_pages, 0, i_size_read(inode),
1403 				&cached_state, false);
1404 	if (ret)
1405 		goto out_nospc;
1406 
1407 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1408 		up_write(&block_group->data_rwsem);
1409 	/*
1410 	 * Release the pages and unlock the extent, we will flush
1411 	 * them out later
1412 	 */
1413 	io_ctl_drop_pages(io_ctl);
1414 	io_ctl_free(io_ctl);
1415 
1416 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1417 			     i_size_read(inode) - 1, &cached_state);
1418 
1419 	/*
1420 	 * at this point the pages are under IO and we're happy,
1421 	 * The caller is responsible for waiting on them and updating
1422 	 * the cache and the inode
1423 	 */
1424 	io_ctl->entries = entries;
1425 	io_ctl->bitmaps = bitmaps;
1426 
1427 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1428 	if (ret)
1429 		goto out;
1430 
1431 	return 0;
1432 
1433 out_nospc_locked:
1434 	cleanup_bitmap_list(&bitmap_list);
1435 	spin_unlock(&ctl->tree_lock);
1436 	mutex_unlock(&ctl->cache_writeout_mutex);
1437 
1438 out_nospc:
1439 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1440 
1441 out_unlock:
1442 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1443 		up_write(&block_group->data_rwsem);
1444 
1445 out:
1446 	io_ctl->inode = NULL;
1447 	io_ctl_free(io_ctl);
1448 	if (ret) {
1449 		invalidate_inode_pages2(inode->i_mapping);
1450 		BTRFS_I(inode)->generation = 0;
1451 	}
1452 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1453 	if (must_iput)
1454 		iput(inode);
1455 	return ret;
1456 }
1457 
1458 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1459 			  struct btrfs_block_group *block_group,
1460 			  struct btrfs_path *path)
1461 {
1462 	struct btrfs_fs_info *fs_info = trans->fs_info;
1463 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1464 	struct inode *inode;
1465 	int ret = 0;
1466 
1467 	spin_lock(&block_group->lock);
1468 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1469 		spin_unlock(&block_group->lock);
1470 		return 0;
1471 	}
1472 	spin_unlock(&block_group->lock);
1473 
1474 	inode = lookup_free_space_inode(block_group, path);
1475 	if (IS_ERR(inode))
1476 		return 0;
1477 
1478 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1479 				block_group, &block_group->io_ctl, trans);
1480 	if (ret) {
1481 		btrfs_debug(fs_info,
1482 	  "failed to write free space cache for block group %llu error %d",
1483 			  block_group->start, ret);
1484 		spin_lock(&block_group->lock);
1485 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1486 		spin_unlock(&block_group->lock);
1487 
1488 		block_group->io_ctl.inode = NULL;
1489 		iput(inode);
1490 	}
1491 
1492 	/*
1493 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1494 	 * to wait for IO and put the inode
1495 	 */
1496 
1497 	return ret;
1498 }
1499 
1500 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1501 					  u64 offset)
1502 {
1503 	ASSERT(offset >= bitmap_start);
1504 	offset -= bitmap_start;
1505 	return (unsigned long)(div_u64(offset, unit));
1506 }
1507 
1508 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1509 {
1510 	return (unsigned long)(div_u64(bytes, unit));
1511 }
1512 
1513 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1514 				   u64 offset)
1515 {
1516 	u64 bitmap_start;
1517 	u64 bytes_per_bitmap;
1518 
1519 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1520 	bitmap_start = offset - ctl->start;
1521 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1522 	bitmap_start *= bytes_per_bitmap;
1523 	bitmap_start += ctl->start;
1524 
1525 	return bitmap_start;
1526 }
1527 
1528 static int tree_insert_offset(struct rb_root *root, u64 offset,
1529 			      struct rb_node *node, int bitmap)
1530 {
1531 	struct rb_node **p = &root->rb_node;
1532 	struct rb_node *parent = NULL;
1533 	struct btrfs_free_space *info;
1534 
1535 	while (*p) {
1536 		parent = *p;
1537 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1538 
1539 		if (offset < info->offset) {
1540 			p = &(*p)->rb_left;
1541 		} else if (offset > info->offset) {
1542 			p = &(*p)->rb_right;
1543 		} else {
1544 			/*
1545 			 * we could have a bitmap entry and an extent entry
1546 			 * share the same offset.  If this is the case, we want
1547 			 * the extent entry to always be found first if we do a
1548 			 * linear search through the tree, since we want to have
1549 			 * the quickest allocation time, and allocating from an
1550 			 * extent is faster than allocating from a bitmap.  So
1551 			 * if we're inserting a bitmap and we find an entry at
1552 			 * this offset, we want to go right, or after this entry
1553 			 * logically.  If we are inserting an extent and we've
1554 			 * found a bitmap, we want to go left, or before
1555 			 * logically.
1556 			 */
1557 			if (bitmap) {
1558 				if (info->bitmap) {
1559 					WARN_ON_ONCE(1);
1560 					return -EEXIST;
1561 				}
1562 				p = &(*p)->rb_right;
1563 			} else {
1564 				if (!info->bitmap) {
1565 					WARN_ON_ONCE(1);
1566 					return -EEXIST;
1567 				}
1568 				p = &(*p)->rb_left;
1569 			}
1570 		}
1571 	}
1572 
1573 	rb_link_node(node, parent, p);
1574 	rb_insert_color(node, root);
1575 
1576 	return 0;
1577 }
1578 
1579 /*
1580  * searches the tree for the given offset.
1581  *
1582  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1583  * want a section that has at least bytes size and comes at or after the given
1584  * offset.
1585  */
1586 static struct btrfs_free_space *
1587 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1588 		   u64 offset, int bitmap_only, int fuzzy)
1589 {
1590 	struct rb_node *n = ctl->free_space_offset.rb_node;
1591 	struct btrfs_free_space *entry, *prev = NULL;
1592 
1593 	/* find entry that is closest to the 'offset' */
1594 	while (1) {
1595 		if (!n) {
1596 			entry = NULL;
1597 			break;
1598 		}
1599 
1600 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1601 		prev = entry;
1602 
1603 		if (offset < entry->offset)
1604 			n = n->rb_left;
1605 		else if (offset > entry->offset)
1606 			n = n->rb_right;
1607 		else
1608 			break;
1609 	}
1610 
1611 	if (bitmap_only) {
1612 		if (!entry)
1613 			return NULL;
1614 		if (entry->bitmap)
1615 			return entry;
1616 
1617 		/*
1618 		 * bitmap entry and extent entry may share same offset,
1619 		 * in that case, bitmap entry comes after extent entry.
1620 		 */
1621 		n = rb_next(n);
1622 		if (!n)
1623 			return NULL;
1624 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1625 		if (entry->offset != offset)
1626 			return NULL;
1627 
1628 		WARN_ON(!entry->bitmap);
1629 		return entry;
1630 	} else if (entry) {
1631 		if (entry->bitmap) {
1632 			/*
1633 			 * if previous extent entry covers the offset,
1634 			 * we should return it instead of the bitmap entry
1635 			 */
1636 			n = rb_prev(&entry->offset_index);
1637 			if (n) {
1638 				prev = rb_entry(n, struct btrfs_free_space,
1639 						offset_index);
1640 				if (!prev->bitmap &&
1641 				    prev->offset + prev->bytes > offset)
1642 					entry = prev;
1643 			}
1644 		}
1645 		return entry;
1646 	}
1647 
1648 	if (!prev)
1649 		return NULL;
1650 
1651 	/* find last entry before the 'offset' */
1652 	entry = prev;
1653 	if (entry->offset > offset) {
1654 		n = rb_prev(&entry->offset_index);
1655 		if (n) {
1656 			entry = rb_entry(n, struct btrfs_free_space,
1657 					offset_index);
1658 			ASSERT(entry->offset <= offset);
1659 		} else {
1660 			if (fuzzy)
1661 				return entry;
1662 			else
1663 				return NULL;
1664 		}
1665 	}
1666 
1667 	if (entry->bitmap) {
1668 		n = rb_prev(&entry->offset_index);
1669 		if (n) {
1670 			prev = rb_entry(n, struct btrfs_free_space,
1671 					offset_index);
1672 			if (!prev->bitmap &&
1673 			    prev->offset + prev->bytes > offset)
1674 				return prev;
1675 		}
1676 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1677 			return entry;
1678 	} else if (entry->offset + entry->bytes > offset)
1679 		return entry;
1680 
1681 	if (!fuzzy)
1682 		return NULL;
1683 
1684 	while (1) {
1685 		if (entry->bitmap) {
1686 			if (entry->offset + BITS_PER_BITMAP *
1687 			    ctl->unit > offset)
1688 				break;
1689 		} else {
1690 			if (entry->offset + entry->bytes > offset)
1691 				break;
1692 		}
1693 
1694 		n = rb_next(&entry->offset_index);
1695 		if (!n)
1696 			return NULL;
1697 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1698 	}
1699 	return entry;
1700 }
1701 
1702 static inline void
1703 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1704 		    struct btrfs_free_space *info)
1705 {
1706 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1707 	ctl->free_extents--;
1708 
1709 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1710 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1711 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1712 	}
1713 }
1714 
1715 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1716 			      struct btrfs_free_space *info)
1717 {
1718 	__unlink_free_space(ctl, info);
1719 	ctl->free_space -= info->bytes;
1720 }
1721 
1722 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1723 			   struct btrfs_free_space *info)
1724 {
1725 	int ret = 0;
1726 
1727 	ASSERT(info->bytes || info->bitmap);
1728 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1729 				 &info->offset_index, (info->bitmap != NULL));
1730 	if (ret)
1731 		return ret;
1732 
1733 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1734 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1735 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1736 	}
1737 
1738 	ctl->free_space += info->bytes;
1739 	ctl->free_extents++;
1740 	return ret;
1741 }
1742 
1743 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1744 				       struct btrfs_free_space *info,
1745 				       u64 offset, u64 bytes)
1746 {
1747 	unsigned long start, count, end;
1748 	int extent_delta = -1;
1749 
1750 	start = offset_to_bit(info->offset, ctl->unit, offset);
1751 	count = bytes_to_bits(bytes, ctl->unit);
1752 	end = start + count;
1753 	ASSERT(end <= BITS_PER_BITMAP);
1754 
1755 	bitmap_clear(info->bitmap, start, count);
1756 
1757 	info->bytes -= bytes;
1758 	if (info->max_extent_size > ctl->unit)
1759 		info->max_extent_size = 0;
1760 
1761 	if (start && test_bit(start - 1, info->bitmap))
1762 		extent_delta++;
1763 
1764 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1765 		extent_delta++;
1766 
1767 	info->bitmap_extents += extent_delta;
1768 	if (!btrfs_free_space_trimmed(info)) {
1769 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1770 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1771 	}
1772 }
1773 
1774 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1775 			      struct btrfs_free_space *info, u64 offset,
1776 			      u64 bytes)
1777 {
1778 	__bitmap_clear_bits(ctl, info, offset, bytes);
1779 	ctl->free_space -= bytes;
1780 }
1781 
1782 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1783 			    struct btrfs_free_space *info, u64 offset,
1784 			    u64 bytes)
1785 {
1786 	unsigned long start, count, end;
1787 	int extent_delta = 1;
1788 
1789 	start = offset_to_bit(info->offset, ctl->unit, offset);
1790 	count = bytes_to_bits(bytes, ctl->unit);
1791 	end = start + count;
1792 	ASSERT(end <= BITS_PER_BITMAP);
1793 
1794 	bitmap_set(info->bitmap, start, count);
1795 
1796 	info->bytes += bytes;
1797 	ctl->free_space += bytes;
1798 
1799 	if (start && test_bit(start - 1, info->bitmap))
1800 		extent_delta--;
1801 
1802 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1803 		extent_delta--;
1804 
1805 	info->bitmap_extents += extent_delta;
1806 	if (!btrfs_free_space_trimmed(info)) {
1807 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1808 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1809 	}
1810 }
1811 
1812 /*
1813  * If we can not find suitable extent, we will use bytes to record
1814  * the size of the max extent.
1815  */
1816 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1817 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1818 			 u64 *bytes, bool for_alloc)
1819 {
1820 	unsigned long found_bits = 0;
1821 	unsigned long max_bits = 0;
1822 	unsigned long bits, i;
1823 	unsigned long next_zero;
1824 	unsigned long extent_bits;
1825 
1826 	/*
1827 	 * Skip searching the bitmap if we don't have a contiguous section that
1828 	 * is large enough for this allocation.
1829 	 */
1830 	if (for_alloc &&
1831 	    bitmap_info->max_extent_size &&
1832 	    bitmap_info->max_extent_size < *bytes) {
1833 		*bytes = bitmap_info->max_extent_size;
1834 		return -1;
1835 	}
1836 
1837 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1838 			  max_t(u64, *offset, bitmap_info->offset));
1839 	bits = bytes_to_bits(*bytes, ctl->unit);
1840 
1841 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1842 		if (for_alloc && bits == 1) {
1843 			found_bits = 1;
1844 			break;
1845 		}
1846 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1847 					       BITS_PER_BITMAP, i);
1848 		extent_bits = next_zero - i;
1849 		if (extent_bits >= bits) {
1850 			found_bits = extent_bits;
1851 			break;
1852 		} else if (extent_bits > max_bits) {
1853 			max_bits = extent_bits;
1854 		}
1855 		i = next_zero;
1856 	}
1857 
1858 	if (found_bits) {
1859 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1860 		*bytes = (u64)(found_bits) * ctl->unit;
1861 		return 0;
1862 	}
1863 
1864 	*bytes = (u64)(max_bits) * ctl->unit;
1865 	bitmap_info->max_extent_size = *bytes;
1866 	return -1;
1867 }
1868 
1869 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1870 {
1871 	if (entry->bitmap)
1872 		return entry->max_extent_size;
1873 	return entry->bytes;
1874 }
1875 
1876 /* Cache the size of the max extent in bytes */
1877 static struct btrfs_free_space *
1878 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1879 		unsigned long align, u64 *max_extent_size)
1880 {
1881 	struct btrfs_free_space *entry;
1882 	struct rb_node *node;
1883 	u64 tmp;
1884 	u64 align_off;
1885 	int ret;
1886 
1887 	if (!ctl->free_space_offset.rb_node)
1888 		goto out;
1889 
1890 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1891 	if (!entry)
1892 		goto out;
1893 
1894 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1895 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1896 		if (entry->bytes < *bytes) {
1897 			*max_extent_size = max(get_max_extent_size(entry),
1898 					       *max_extent_size);
1899 			continue;
1900 		}
1901 
1902 		/* make sure the space returned is big enough
1903 		 * to match our requested alignment
1904 		 */
1905 		if (*bytes >= align) {
1906 			tmp = entry->offset - ctl->start + align - 1;
1907 			tmp = div64_u64(tmp, align);
1908 			tmp = tmp * align + ctl->start;
1909 			align_off = tmp - entry->offset;
1910 		} else {
1911 			align_off = 0;
1912 			tmp = entry->offset;
1913 		}
1914 
1915 		if (entry->bytes < *bytes + align_off) {
1916 			*max_extent_size = max(get_max_extent_size(entry),
1917 					       *max_extent_size);
1918 			continue;
1919 		}
1920 
1921 		if (entry->bitmap) {
1922 			u64 size = *bytes;
1923 
1924 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1925 			if (!ret) {
1926 				*offset = tmp;
1927 				*bytes = size;
1928 				return entry;
1929 			} else {
1930 				*max_extent_size =
1931 					max(get_max_extent_size(entry),
1932 					    *max_extent_size);
1933 			}
1934 			continue;
1935 		}
1936 
1937 		*offset = tmp;
1938 		*bytes = entry->bytes - align_off;
1939 		return entry;
1940 	}
1941 out:
1942 	return NULL;
1943 }
1944 
1945 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1946 			   struct btrfs_free_space *info, u64 offset)
1947 {
1948 	info->offset = offset_to_bitmap(ctl, offset);
1949 	info->bytes = 0;
1950 	info->bitmap_extents = 0;
1951 	INIT_LIST_HEAD(&info->list);
1952 	link_free_space(ctl, info);
1953 	ctl->total_bitmaps++;
1954 	recalculate_thresholds(ctl);
1955 }
1956 
1957 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1958 			struct btrfs_free_space *bitmap_info)
1959 {
1960 	/*
1961 	 * Normally when this is called, the bitmap is completely empty. However,
1962 	 * if we are blowing up the free space cache for one reason or another
1963 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1964 	 * we may leave stats on the table.
1965 	 */
1966 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1967 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1968 			bitmap_info->bitmap_extents;
1969 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1970 
1971 	}
1972 	unlink_free_space(ctl, bitmap_info);
1973 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1974 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1975 	ctl->total_bitmaps--;
1976 	recalculate_thresholds(ctl);
1977 }
1978 
1979 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1980 			      struct btrfs_free_space *bitmap_info,
1981 			      u64 *offset, u64 *bytes)
1982 {
1983 	u64 end;
1984 	u64 search_start, search_bytes;
1985 	int ret;
1986 
1987 again:
1988 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1989 
1990 	/*
1991 	 * We need to search for bits in this bitmap.  We could only cover some
1992 	 * of the extent in this bitmap thanks to how we add space, so we need
1993 	 * to search for as much as it as we can and clear that amount, and then
1994 	 * go searching for the next bit.
1995 	 */
1996 	search_start = *offset;
1997 	search_bytes = ctl->unit;
1998 	search_bytes = min(search_bytes, end - search_start + 1);
1999 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2000 			    false);
2001 	if (ret < 0 || search_start != *offset)
2002 		return -EINVAL;
2003 
2004 	/* We may have found more bits than what we need */
2005 	search_bytes = min(search_bytes, *bytes);
2006 
2007 	/* Cannot clear past the end of the bitmap */
2008 	search_bytes = min(search_bytes, end - search_start + 1);
2009 
2010 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2011 	*offset += search_bytes;
2012 	*bytes -= search_bytes;
2013 
2014 	if (*bytes) {
2015 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2016 		if (!bitmap_info->bytes)
2017 			free_bitmap(ctl, bitmap_info);
2018 
2019 		/*
2020 		 * no entry after this bitmap, but we still have bytes to
2021 		 * remove, so something has gone wrong.
2022 		 */
2023 		if (!next)
2024 			return -EINVAL;
2025 
2026 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2027 				       offset_index);
2028 
2029 		/*
2030 		 * if the next entry isn't a bitmap we need to return to let the
2031 		 * extent stuff do its work.
2032 		 */
2033 		if (!bitmap_info->bitmap)
2034 			return -EAGAIN;
2035 
2036 		/*
2037 		 * Ok the next item is a bitmap, but it may not actually hold
2038 		 * the information for the rest of this free space stuff, so
2039 		 * look for it, and if we don't find it return so we can try
2040 		 * everything over again.
2041 		 */
2042 		search_start = *offset;
2043 		search_bytes = ctl->unit;
2044 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2045 				    &search_bytes, false);
2046 		if (ret < 0 || search_start != *offset)
2047 			return -EAGAIN;
2048 
2049 		goto again;
2050 	} else if (!bitmap_info->bytes)
2051 		free_bitmap(ctl, bitmap_info);
2052 
2053 	return 0;
2054 }
2055 
2056 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2057 			       struct btrfs_free_space *info, u64 offset,
2058 			       u64 bytes, enum btrfs_trim_state trim_state)
2059 {
2060 	u64 bytes_to_set = 0;
2061 	u64 end;
2062 
2063 	/*
2064 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2065 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2066 	 */
2067 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2068 		if (btrfs_free_space_trimmed(info)) {
2069 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2070 				info->bitmap_extents;
2071 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2072 		}
2073 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2074 	}
2075 
2076 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2077 
2078 	bytes_to_set = min(end - offset, bytes);
2079 
2080 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2081 
2082 	/*
2083 	 * We set some bytes, we have no idea what the max extent size is
2084 	 * anymore.
2085 	 */
2086 	info->max_extent_size = 0;
2087 
2088 	return bytes_to_set;
2089 
2090 }
2091 
2092 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2093 		      struct btrfs_free_space *info)
2094 {
2095 	struct btrfs_block_group *block_group = ctl->private;
2096 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2097 	bool forced = false;
2098 
2099 #ifdef CONFIG_BTRFS_DEBUG
2100 	if (btrfs_should_fragment_free_space(block_group))
2101 		forced = true;
2102 #endif
2103 
2104 	/* This is a way to reclaim large regions from the bitmaps. */
2105 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2106 		return false;
2107 
2108 	/*
2109 	 * If we are below the extents threshold then we can add this as an
2110 	 * extent, and don't have to deal with the bitmap
2111 	 */
2112 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2113 		/*
2114 		 * If this block group has some small extents we don't want to
2115 		 * use up all of our free slots in the cache with them, we want
2116 		 * to reserve them to larger extents, however if we have plenty
2117 		 * of cache left then go ahead an dadd them, no sense in adding
2118 		 * the overhead of a bitmap if we don't have to.
2119 		 */
2120 		if (info->bytes <= fs_info->sectorsize * 8) {
2121 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2122 				return false;
2123 		} else {
2124 			return false;
2125 		}
2126 	}
2127 
2128 	/*
2129 	 * The original block groups from mkfs can be really small, like 8
2130 	 * megabytes, so don't bother with a bitmap for those entries.  However
2131 	 * some block groups can be smaller than what a bitmap would cover but
2132 	 * are still large enough that they could overflow the 32k memory limit,
2133 	 * so allow those block groups to still be allowed to have a bitmap
2134 	 * entry.
2135 	 */
2136 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2137 		return false;
2138 
2139 	return true;
2140 }
2141 
2142 static const struct btrfs_free_space_op free_space_op = {
2143 	.use_bitmap		= use_bitmap,
2144 };
2145 
2146 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2147 			      struct btrfs_free_space *info)
2148 {
2149 	struct btrfs_free_space *bitmap_info;
2150 	struct btrfs_block_group *block_group = NULL;
2151 	int added = 0;
2152 	u64 bytes, offset, bytes_added;
2153 	enum btrfs_trim_state trim_state;
2154 	int ret;
2155 
2156 	bytes = info->bytes;
2157 	offset = info->offset;
2158 	trim_state = info->trim_state;
2159 
2160 	if (!ctl->op->use_bitmap(ctl, info))
2161 		return 0;
2162 
2163 	if (ctl->op == &free_space_op)
2164 		block_group = ctl->private;
2165 again:
2166 	/*
2167 	 * Since we link bitmaps right into the cluster we need to see if we
2168 	 * have a cluster here, and if so and it has our bitmap we need to add
2169 	 * the free space to that bitmap.
2170 	 */
2171 	if (block_group && !list_empty(&block_group->cluster_list)) {
2172 		struct btrfs_free_cluster *cluster;
2173 		struct rb_node *node;
2174 		struct btrfs_free_space *entry;
2175 
2176 		cluster = list_entry(block_group->cluster_list.next,
2177 				     struct btrfs_free_cluster,
2178 				     block_group_list);
2179 		spin_lock(&cluster->lock);
2180 		node = rb_first(&cluster->root);
2181 		if (!node) {
2182 			spin_unlock(&cluster->lock);
2183 			goto no_cluster_bitmap;
2184 		}
2185 
2186 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2187 		if (!entry->bitmap) {
2188 			spin_unlock(&cluster->lock);
2189 			goto no_cluster_bitmap;
2190 		}
2191 
2192 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2193 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2194 							  bytes, trim_state);
2195 			bytes -= bytes_added;
2196 			offset += bytes_added;
2197 		}
2198 		spin_unlock(&cluster->lock);
2199 		if (!bytes) {
2200 			ret = 1;
2201 			goto out;
2202 		}
2203 	}
2204 
2205 no_cluster_bitmap:
2206 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2207 					 1, 0);
2208 	if (!bitmap_info) {
2209 		ASSERT(added == 0);
2210 		goto new_bitmap;
2211 	}
2212 
2213 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2214 					  trim_state);
2215 	bytes -= bytes_added;
2216 	offset += bytes_added;
2217 	added = 0;
2218 
2219 	if (!bytes) {
2220 		ret = 1;
2221 		goto out;
2222 	} else
2223 		goto again;
2224 
2225 new_bitmap:
2226 	if (info && info->bitmap) {
2227 		add_new_bitmap(ctl, info, offset);
2228 		added = 1;
2229 		info = NULL;
2230 		goto again;
2231 	} else {
2232 		spin_unlock(&ctl->tree_lock);
2233 
2234 		/* no pre-allocated info, allocate a new one */
2235 		if (!info) {
2236 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2237 						 GFP_NOFS);
2238 			if (!info) {
2239 				spin_lock(&ctl->tree_lock);
2240 				ret = -ENOMEM;
2241 				goto out;
2242 			}
2243 		}
2244 
2245 		/* allocate the bitmap */
2246 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2247 						 GFP_NOFS);
2248 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2249 		spin_lock(&ctl->tree_lock);
2250 		if (!info->bitmap) {
2251 			ret = -ENOMEM;
2252 			goto out;
2253 		}
2254 		goto again;
2255 	}
2256 
2257 out:
2258 	if (info) {
2259 		if (info->bitmap)
2260 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2261 					info->bitmap);
2262 		kmem_cache_free(btrfs_free_space_cachep, info);
2263 	}
2264 
2265 	return ret;
2266 }
2267 
2268 /*
2269  * Free space merging rules:
2270  *  1) Merge trimmed areas together
2271  *  2) Let untrimmed areas coalesce with trimmed areas
2272  *  3) Always pull neighboring regions from bitmaps
2273  *
2274  * The above rules are for when we merge free space based on btrfs_trim_state.
2275  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2276  * same reason: to promote larger extent regions which makes life easier for
2277  * find_free_extent().  Rule 2 enables coalescing based on the common path
2278  * being returning free space from btrfs_finish_extent_commit().  So when free
2279  * space is trimmed, it will prevent aggregating trimmed new region and
2280  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2281  * and provide find_free_extent() with the largest extents possible hoping for
2282  * the reuse path.
2283  */
2284 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2285 			  struct btrfs_free_space *info, bool update_stat)
2286 {
2287 	struct btrfs_free_space *left_info = NULL;
2288 	struct btrfs_free_space *right_info;
2289 	bool merged = false;
2290 	u64 offset = info->offset;
2291 	u64 bytes = info->bytes;
2292 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2293 
2294 	/*
2295 	 * first we want to see if there is free space adjacent to the range we
2296 	 * are adding, if there is remove that struct and add a new one to
2297 	 * cover the entire range
2298 	 */
2299 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2300 	if (right_info && rb_prev(&right_info->offset_index))
2301 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2302 				     struct btrfs_free_space, offset_index);
2303 	else if (!right_info)
2304 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2305 
2306 	/* See try_merge_free_space() comment. */
2307 	if (right_info && !right_info->bitmap &&
2308 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2309 		if (update_stat)
2310 			unlink_free_space(ctl, right_info);
2311 		else
2312 			__unlink_free_space(ctl, right_info);
2313 		info->bytes += right_info->bytes;
2314 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2315 		merged = true;
2316 	}
2317 
2318 	/* See try_merge_free_space() comment. */
2319 	if (left_info && !left_info->bitmap &&
2320 	    left_info->offset + left_info->bytes == offset &&
2321 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2322 		if (update_stat)
2323 			unlink_free_space(ctl, left_info);
2324 		else
2325 			__unlink_free_space(ctl, left_info);
2326 		info->offset = left_info->offset;
2327 		info->bytes += left_info->bytes;
2328 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2329 		merged = true;
2330 	}
2331 
2332 	return merged;
2333 }
2334 
2335 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2336 				     struct btrfs_free_space *info,
2337 				     bool update_stat)
2338 {
2339 	struct btrfs_free_space *bitmap;
2340 	unsigned long i;
2341 	unsigned long j;
2342 	const u64 end = info->offset + info->bytes;
2343 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2344 	u64 bytes;
2345 
2346 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2347 	if (!bitmap)
2348 		return false;
2349 
2350 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2351 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2352 	if (j == i)
2353 		return false;
2354 	bytes = (j - i) * ctl->unit;
2355 	info->bytes += bytes;
2356 
2357 	/* See try_merge_free_space() comment. */
2358 	if (!btrfs_free_space_trimmed(bitmap))
2359 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2360 
2361 	if (update_stat)
2362 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2363 	else
2364 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2365 
2366 	if (!bitmap->bytes)
2367 		free_bitmap(ctl, bitmap);
2368 
2369 	return true;
2370 }
2371 
2372 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2373 				       struct btrfs_free_space *info,
2374 				       bool update_stat)
2375 {
2376 	struct btrfs_free_space *bitmap;
2377 	u64 bitmap_offset;
2378 	unsigned long i;
2379 	unsigned long j;
2380 	unsigned long prev_j;
2381 	u64 bytes;
2382 
2383 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2384 	/* If we're on a boundary, try the previous logical bitmap. */
2385 	if (bitmap_offset == info->offset) {
2386 		if (info->offset == 0)
2387 			return false;
2388 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2389 	}
2390 
2391 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2392 	if (!bitmap)
2393 		return false;
2394 
2395 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2396 	j = 0;
2397 	prev_j = (unsigned long)-1;
2398 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2399 		if (j > i)
2400 			break;
2401 		prev_j = j;
2402 	}
2403 	if (prev_j == i)
2404 		return false;
2405 
2406 	if (prev_j == (unsigned long)-1)
2407 		bytes = (i + 1) * ctl->unit;
2408 	else
2409 		bytes = (i - prev_j) * ctl->unit;
2410 
2411 	info->offset -= bytes;
2412 	info->bytes += bytes;
2413 
2414 	/* See try_merge_free_space() comment. */
2415 	if (!btrfs_free_space_trimmed(bitmap))
2416 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2417 
2418 	if (update_stat)
2419 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2420 	else
2421 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2422 
2423 	if (!bitmap->bytes)
2424 		free_bitmap(ctl, bitmap);
2425 
2426 	return true;
2427 }
2428 
2429 /*
2430  * We prefer always to allocate from extent entries, both for clustered and
2431  * non-clustered allocation requests. So when attempting to add a new extent
2432  * entry, try to see if there's adjacent free space in bitmap entries, and if
2433  * there is, migrate that space from the bitmaps to the extent.
2434  * Like this we get better chances of satisfying space allocation requests
2435  * because we attempt to satisfy them based on a single cache entry, and never
2436  * on 2 or more entries - even if the entries represent a contiguous free space
2437  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2438  * ends).
2439  */
2440 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2441 			      struct btrfs_free_space *info,
2442 			      bool update_stat)
2443 {
2444 	/*
2445 	 * Only work with disconnected entries, as we can change their offset,
2446 	 * and must be extent entries.
2447 	 */
2448 	ASSERT(!info->bitmap);
2449 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2450 
2451 	if (ctl->total_bitmaps > 0) {
2452 		bool stole_end;
2453 		bool stole_front = false;
2454 
2455 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2456 		if (ctl->total_bitmaps > 0)
2457 			stole_front = steal_from_bitmap_to_front(ctl, info,
2458 								 update_stat);
2459 
2460 		if (stole_end || stole_front)
2461 			try_merge_free_space(ctl, info, update_stat);
2462 	}
2463 }
2464 
2465 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2466 			   struct btrfs_free_space_ctl *ctl,
2467 			   u64 offset, u64 bytes,
2468 			   enum btrfs_trim_state trim_state)
2469 {
2470 	struct btrfs_block_group *block_group = ctl->private;
2471 	struct btrfs_free_space *info;
2472 	int ret = 0;
2473 	u64 filter_bytes = bytes;
2474 
2475 	ASSERT(!btrfs_is_zoned(fs_info));
2476 
2477 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2478 	if (!info)
2479 		return -ENOMEM;
2480 
2481 	info->offset = offset;
2482 	info->bytes = bytes;
2483 	info->trim_state = trim_state;
2484 	RB_CLEAR_NODE(&info->offset_index);
2485 
2486 	spin_lock(&ctl->tree_lock);
2487 
2488 	if (try_merge_free_space(ctl, info, true))
2489 		goto link;
2490 
2491 	/*
2492 	 * There was no extent directly to the left or right of this new
2493 	 * extent then we know we're going to have to allocate a new extent, so
2494 	 * before we do that see if we need to drop this into a bitmap
2495 	 */
2496 	ret = insert_into_bitmap(ctl, info);
2497 	if (ret < 0) {
2498 		goto out;
2499 	} else if (ret) {
2500 		ret = 0;
2501 		goto out;
2502 	}
2503 link:
2504 	/*
2505 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2506 	 * going to add the new free space to existing bitmap entries - because
2507 	 * that would mean unnecessary work that would be reverted. Therefore
2508 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2509 	 */
2510 	steal_from_bitmap(ctl, info, true);
2511 
2512 	filter_bytes = max(filter_bytes, info->bytes);
2513 
2514 	ret = link_free_space(ctl, info);
2515 	if (ret)
2516 		kmem_cache_free(btrfs_free_space_cachep, info);
2517 out:
2518 	btrfs_discard_update_discardable(block_group);
2519 	spin_unlock(&ctl->tree_lock);
2520 
2521 	if (ret) {
2522 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2523 		ASSERT(ret != -EEXIST);
2524 	}
2525 
2526 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2527 		btrfs_discard_check_filter(block_group, filter_bytes);
2528 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2529 	}
2530 
2531 	return ret;
2532 }
2533 
2534 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2535 					u64 bytenr, u64 size, bool used)
2536 {
2537 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2538 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539 	u64 offset = bytenr - block_group->start;
2540 	u64 to_free, to_unusable;
2541 	const int bg_reclaim_threshold = READ_ONCE(fs_info->bg_reclaim_threshold);
2542 
2543 	spin_lock(&ctl->tree_lock);
2544 	if (!used)
2545 		to_free = size;
2546 	else if (offset >= block_group->alloc_offset)
2547 		to_free = size;
2548 	else if (offset + size <= block_group->alloc_offset)
2549 		to_free = 0;
2550 	else
2551 		to_free = offset + size - block_group->alloc_offset;
2552 	to_unusable = size - to_free;
2553 
2554 	ctl->free_space += to_free;
2555 	/*
2556 	 * If the block group is read-only, we should account freed space into
2557 	 * bytes_readonly.
2558 	 */
2559 	if (!block_group->ro)
2560 		block_group->zone_unusable += to_unusable;
2561 	spin_unlock(&ctl->tree_lock);
2562 	if (!used) {
2563 		spin_lock(&block_group->lock);
2564 		block_group->alloc_offset -= size;
2565 		spin_unlock(&block_group->lock);
2566 	}
2567 
2568 	/* All the region is now unusable. Mark it as unused and reclaim */
2569 	if (block_group->zone_unusable == block_group->length) {
2570 		btrfs_mark_bg_unused(block_group);
2571 	} else if (bg_reclaim_threshold &&
2572 		   block_group->zone_unusable >=
2573 		   div_factor_fine(block_group->length, bg_reclaim_threshold)) {
2574 		btrfs_mark_bg_to_reclaim(block_group);
2575 	}
2576 
2577 	return 0;
2578 }
2579 
2580 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2581 			 u64 bytenr, u64 size)
2582 {
2583 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2584 
2585 	if (btrfs_is_zoned(block_group->fs_info))
2586 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2587 						    true);
2588 
2589 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2590 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2591 
2592 	return __btrfs_add_free_space(block_group->fs_info,
2593 				      block_group->free_space_ctl,
2594 				      bytenr, size, trim_state);
2595 }
2596 
2597 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2598 				u64 bytenr, u64 size)
2599 {
2600 	if (btrfs_is_zoned(block_group->fs_info))
2601 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2602 						    false);
2603 
2604 	return btrfs_add_free_space(block_group, bytenr, size);
2605 }
2606 
2607 /*
2608  * This is a subtle distinction because when adding free space back in general,
2609  * we want it to be added as untrimmed for async. But in the case where we add
2610  * it on loading of a block group, we want to consider it trimmed.
2611  */
2612 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2613 				       u64 bytenr, u64 size)
2614 {
2615 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2616 
2617 	if (btrfs_is_zoned(block_group->fs_info))
2618 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2619 						    true);
2620 
2621 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2622 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2623 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2624 
2625 	return __btrfs_add_free_space(block_group->fs_info,
2626 				      block_group->free_space_ctl,
2627 				      bytenr, size, trim_state);
2628 }
2629 
2630 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2631 			    u64 offset, u64 bytes)
2632 {
2633 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2634 	struct btrfs_free_space *info;
2635 	int ret;
2636 	bool re_search = false;
2637 
2638 	if (btrfs_is_zoned(block_group->fs_info)) {
2639 		/*
2640 		 * This can happen with conventional zones when replaying log.
2641 		 * Since the allocation info of tree-log nodes are not recorded
2642 		 * to the extent-tree, calculate_alloc_pointer() failed to
2643 		 * advance the allocation pointer after last allocated tree log
2644 		 * node blocks.
2645 		 *
2646 		 * This function is called from
2647 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2648 		 * Advance the pointer not to overwrite the tree-log nodes.
2649 		 */
2650 		if (block_group->start + block_group->alloc_offset <
2651 		    offset + bytes) {
2652 			block_group->alloc_offset =
2653 				offset + bytes - block_group->start;
2654 		}
2655 		return 0;
2656 	}
2657 
2658 	spin_lock(&ctl->tree_lock);
2659 
2660 again:
2661 	ret = 0;
2662 	if (!bytes)
2663 		goto out_lock;
2664 
2665 	info = tree_search_offset(ctl, offset, 0, 0);
2666 	if (!info) {
2667 		/*
2668 		 * oops didn't find an extent that matched the space we wanted
2669 		 * to remove, look for a bitmap instead
2670 		 */
2671 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2672 					  1, 0);
2673 		if (!info) {
2674 			/*
2675 			 * If we found a partial bit of our free space in a
2676 			 * bitmap but then couldn't find the other part this may
2677 			 * be a problem, so WARN about it.
2678 			 */
2679 			WARN_ON(re_search);
2680 			goto out_lock;
2681 		}
2682 	}
2683 
2684 	re_search = false;
2685 	if (!info->bitmap) {
2686 		unlink_free_space(ctl, info);
2687 		if (offset == info->offset) {
2688 			u64 to_free = min(bytes, info->bytes);
2689 
2690 			info->bytes -= to_free;
2691 			info->offset += to_free;
2692 			if (info->bytes) {
2693 				ret = link_free_space(ctl, info);
2694 				WARN_ON(ret);
2695 			} else {
2696 				kmem_cache_free(btrfs_free_space_cachep, info);
2697 			}
2698 
2699 			offset += to_free;
2700 			bytes -= to_free;
2701 			goto again;
2702 		} else {
2703 			u64 old_end = info->bytes + info->offset;
2704 
2705 			info->bytes = offset - info->offset;
2706 			ret = link_free_space(ctl, info);
2707 			WARN_ON(ret);
2708 			if (ret)
2709 				goto out_lock;
2710 
2711 			/* Not enough bytes in this entry to satisfy us */
2712 			if (old_end < offset + bytes) {
2713 				bytes -= old_end - offset;
2714 				offset = old_end;
2715 				goto again;
2716 			} else if (old_end == offset + bytes) {
2717 				/* all done */
2718 				goto out_lock;
2719 			}
2720 			spin_unlock(&ctl->tree_lock);
2721 
2722 			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2723 						     offset + bytes,
2724 						     old_end - (offset + bytes),
2725 						     info->trim_state);
2726 			WARN_ON(ret);
2727 			goto out;
2728 		}
2729 	}
2730 
2731 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2732 	if (ret == -EAGAIN) {
2733 		re_search = true;
2734 		goto again;
2735 	}
2736 out_lock:
2737 	btrfs_discard_update_discardable(block_group);
2738 	spin_unlock(&ctl->tree_lock);
2739 out:
2740 	return ret;
2741 }
2742 
2743 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2744 			   u64 bytes)
2745 {
2746 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2747 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2748 	struct btrfs_free_space *info;
2749 	struct rb_node *n;
2750 	int count = 0;
2751 
2752 	/*
2753 	 * Zoned btrfs does not use free space tree and cluster. Just print
2754 	 * out the free space after the allocation offset.
2755 	 */
2756 	if (btrfs_is_zoned(fs_info)) {
2757 		btrfs_info(fs_info, "free space %llu",
2758 			   block_group->length - block_group->alloc_offset);
2759 		return;
2760 	}
2761 
2762 	spin_lock(&ctl->tree_lock);
2763 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2764 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2765 		if (info->bytes >= bytes && !block_group->ro)
2766 			count++;
2767 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2768 			   info->offset, info->bytes,
2769 		       (info->bitmap) ? "yes" : "no");
2770 	}
2771 	spin_unlock(&ctl->tree_lock);
2772 	btrfs_info(fs_info, "block group has cluster?: %s",
2773 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2774 	btrfs_info(fs_info,
2775 		   "%d blocks of free space at or bigger than bytes is", count);
2776 }
2777 
2778 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2779 			       struct btrfs_free_space_ctl *ctl)
2780 {
2781 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2782 
2783 	spin_lock_init(&ctl->tree_lock);
2784 	ctl->unit = fs_info->sectorsize;
2785 	ctl->start = block_group->start;
2786 	ctl->private = block_group;
2787 	ctl->op = &free_space_op;
2788 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2789 	mutex_init(&ctl->cache_writeout_mutex);
2790 
2791 	/*
2792 	 * we only want to have 32k of ram per block group for keeping
2793 	 * track of free space, and if we pass 1/2 of that we want to
2794 	 * start converting things over to using bitmaps
2795 	 */
2796 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2797 }
2798 
2799 /*
2800  * for a given cluster, put all of its extents back into the free
2801  * space cache.  If the block group passed doesn't match the block group
2802  * pointed to by the cluster, someone else raced in and freed the
2803  * cluster already.  In that case, we just return without changing anything
2804  */
2805 static void __btrfs_return_cluster_to_free_space(
2806 			     struct btrfs_block_group *block_group,
2807 			     struct btrfs_free_cluster *cluster)
2808 {
2809 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2810 	struct btrfs_free_space *entry;
2811 	struct rb_node *node;
2812 
2813 	spin_lock(&cluster->lock);
2814 	if (cluster->block_group != block_group) {
2815 		spin_unlock(&cluster->lock);
2816 		return;
2817 	}
2818 
2819 	cluster->block_group = NULL;
2820 	cluster->window_start = 0;
2821 	list_del_init(&cluster->block_group_list);
2822 
2823 	node = rb_first(&cluster->root);
2824 	while (node) {
2825 		bool bitmap;
2826 
2827 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2828 		node = rb_next(&entry->offset_index);
2829 		rb_erase(&entry->offset_index, &cluster->root);
2830 		RB_CLEAR_NODE(&entry->offset_index);
2831 
2832 		bitmap = (entry->bitmap != NULL);
2833 		if (!bitmap) {
2834 			/* Merging treats extents as if they were new */
2835 			if (!btrfs_free_space_trimmed(entry)) {
2836 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2837 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2838 					entry->bytes;
2839 			}
2840 
2841 			try_merge_free_space(ctl, entry, false);
2842 			steal_from_bitmap(ctl, entry, false);
2843 
2844 			/* As we insert directly, update these statistics */
2845 			if (!btrfs_free_space_trimmed(entry)) {
2846 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2847 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2848 					entry->bytes;
2849 			}
2850 		}
2851 		tree_insert_offset(&ctl->free_space_offset,
2852 				   entry->offset, &entry->offset_index, bitmap);
2853 	}
2854 	cluster->root = RB_ROOT;
2855 	spin_unlock(&cluster->lock);
2856 	btrfs_put_block_group(block_group);
2857 }
2858 
2859 static void __btrfs_remove_free_space_cache_locked(
2860 				struct btrfs_free_space_ctl *ctl)
2861 {
2862 	struct btrfs_free_space *info;
2863 	struct rb_node *node;
2864 
2865 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2866 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2867 		if (!info->bitmap) {
2868 			unlink_free_space(ctl, info);
2869 			kmem_cache_free(btrfs_free_space_cachep, info);
2870 		} else {
2871 			free_bitmap(ctl, info);
2872 		}
2873 
2874 		cond_resched_lock(&ctl->tree_lock);
2875 	}
2876 }
2877 
2878 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2879 {
2880 	spin_lock(&ctl->tree_lock);
2881 	__btrfs_remove_free_space_cache_locked(ctl);
2882 	if (ctl->private)
2883 		btrfs_discard_update_discardable(ctl->private);
2884 	spin_unlock(&ctl->tree_lock);
2885 }
2886 
2887 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2888 {
2889 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2890 	struct btrfs_free_cluster *cluster;
2891 	struct list_head *head;
2892 
2893 	spin_lock(&ctl->tree_lock);
2894 	while ((head = block_group->cluster_list.next) !=
2895 	       &block_group->cluster_list) {
2896 		cluster = list_entry(head, struct btrfs_free_cluster,
2897 				     block_group_list);
2898 
2899 		WARN_ON(cluster->block_group != block_group);
2900 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2901 
2902 		cond_resched_lock(&ctl->tree_lock);
2903 	}
2904 	__btrfs_remove_free_space_cache_locked(ctl);
2905 	btrfs_discard_update_discardable(block_group);
2906 	spin_unlock(&ctl->tree_lock);
2907 
2908 }
2909 
2910 /**
2911  * btrfs_is_free_space_trimmed - see if everything is trimmed
2912  * @block_group: block_group of interest
2913  *
2914  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2915  */
2916 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2917 {
2918 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2919 	struct btrfs_free_space *info;
2920 	struct rb_node *node;
2921 	bool ret = true;
2922 
2923 	spin_lock(&ctl->tree_lock);
2924 	node = rb_first(&ctl->free_space_offset);
2925 
2926 	while (node) {
2927 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2928 
2929 		if (!btrfs_free_space_trimmed(info)) {
2930 			ret = false;
2931 			break;
2932 		}
2933 
2934 		node = rb_next(node);
2935 	}
2936 
2937 	spin_unlock(&ctl->tree_lock);
2938 	return ret;
2939 }
2940 
2941 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2942 			       u64 offset, u64 bytes, u64 empty_size,
2943 			       u64 *max_extent_size)
2944 {
2945 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2946 	struct btrfs_discard_ctl *discard_ctl =
2947 					&block_group->fs_info->discard_ctl;
2948 	struct btrfs_free_space *entry = NULL;
2949 	u64 bytes_search = bytes + empty_size;
2950 	u64 ret = 0;
2951 	u64 align_gap = 0;
2952 	u64 align_gap_len = 0;
2953 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2954 
2955 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
2956 
2957 	spin_lock(&ctl->tree_lock);
2958 	entry = find_free_space(ctl, &offset, &bytes_search,
2959 				block_group->full_stripe_len, max_extent_size);
2960 	if (!entry)
2961 		goto out;
2962 
2963 	ret = offset;
2964 	if (entry->bitmap) {
2965 		bitmap_clear_bits(ctl, entry, offset, bytes);
2966 
2967 		if (!btrfs_free_space_trimmed(entry))
2968 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2969 
2970 		if (!entry->bytes)
2971 			free_bitmap(ctl, entry);
2972 	} else {
2973 		unlink_free_space(ctl, entry);
2974 		align_gap_len = offset - entry->offset;
2975 		align_gap = entry->offset;
2976 		align_gap_trim_state = entry->trim_state;
2977 
2978 		if (!btrfs_free_space_trimmed(entry))
2979 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2980 
2981 		entry->offset = offset + bytes;
2982 		WARN_ON(entry->bytes < bytes + align_gap_len);
2983 
2984 		entry->bytes -= bytes + align_gap_len;
2985 		if (!entry->bytes)
2986 			kmem_cache_free(btrfs_free_space_cachep, entry);
2987 		else
2988 			link_free_space(ctl, entry);
2989 	}
2990 out:
2991 	btrfs_discard_update_discardable(block_group);
2992 	spin_unlock(&ctl->tree_lock);
2993 
2994 	if (align_gap_len)
2995 		__btrfs_add_free_space(block_group->fs_info, ctl,
2996 				       align_gap, align_gap_len,
2997 				       align_gap_trim_state);
2998 	return ret;
2999 }
3000 
3001 /*
3002  * given a cluster, put all of its extents back into the free space
3003  * cache.  If a block group is passed, this function will only free
3004  * a cluster that belongs to the passed block group.
3005  *
3006  * Otherwise, it'll get a reference on the block group pointed to by the
3007  * cluster and remove the cluster from it.
3008  */
3009 void btrfs_return_cluster_to_free_space(
3010 			       struct btrfs_block_group *block_group,
3011 			       struct btrfs_free_cluster *cluster)
3012 {
3013 	struct btrfs_free_space_ctl *ctl;
3014 
3015 	/* first, get a safe pointer to the block group */
3016 	spin_lock(&cluster->lock);
3017 	if (!block_group) {
3018 		block_group = cluster->block_group;
3019 		if (!block_group) {
3020 			spin_unlock(&cluster->lock);
3021 			return;
3022 		}
3023 	} else if (cluster->block_group != block_group) {
3024 		/* someone else has already freed it don't redo their work */
3025 		spin_unlock(&cluster->lock);
3026 		return;
3027 	}
3028 	btrfs_get_block_group(block_group);
3029 	spin_unlock(&cluster->lock);
3030 
3031 	ctl = block_group->free_space_ctl;
3032 
3033 	/* now return any extents the cluster had on it */
3034 	spin_lock(&ctl->tree_lock);
3035 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3036 	spin_unlock(&ctl->tree_lock);
3037 
3038 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3039 
3040 	/* finally drop our ref */
3041 	btrfs_put_block_group(block_group);
3042 }
3043 
3044 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3045 				   struct btrfs_free_cluster *cluster,
3046 				   struct btrfs_free_space *entry,
3047 				   u64 bytes, u64 min_start,
3048 				   u64 *max_extent_size)
3049 {
3050 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3051 	int err;
3052 	u64 search_start = cluster->window_start;
3053 	u64 search_bytes = bytes;
3054 	u64 ret = 0;
3055 
3056 	search_start = min_start;
3057 	search_bytes = bytes;
3058 
3059 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3060 	if (err) {
3061 		*max_extent_size = max(get_max_extent_size(entry),
3062 				       *max_extent_size);
3063 		return 0;
3064 	}
3065 
3066 	ret = search_start;
3067 	__bitmap_clear_bits(ctl, entry, ret, bytes);
3068 
3069 	return ret;
3070 }
3071 
3072 /*
3073  * given a cluster, try to allocate 'bytes' from it, returns 0
3074  * if it couldn't find anything suitably large, or a logical disk offset
3075  * if things worked out
3076  */
3077 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3078 			     struct btrfs_free_cluster *cluster, u64 bytes,
3079 			     u64 min_start, u64 *max_extent_size)
3080 {
3081 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3082 	struct btrfs_discard_ctl *discard_ctl =
3083 					&block_group->fs_info->discard_ctl;
3084 	struct btrfs_free_space *entry = NULL;
3085 	struct rb_node *node;
3086 	u64 ret = 0;
3087 
3088 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3089 
3090 	spin_lock(&cluster->lock);
3091 	if (bytes > cluster->max_size)
3092 		goto out;
3093 
3094 	if (cluster->block_group != block_group)
3095 		goto out;
3096 
3097 	node = rb_first(&cluster->root);
3098 	if (!node)
3099 		goto out;
3100 
3101 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3102 	while (1) {
3103 		if (entry->bytes < bytes)
3104 			*max_extent_size = max(get_max_extent_size(entry),
3105 					       *max_extent_size);
3106 
3107 		if (entry->bytes < bytes ||
3108 		    (!entry->bitmap && entry->offset < min_start)) {
3109 			node = rb_next(&entry->offset_index);
3110 			if (!node)
3111 				break;
3112 			entry = rb_entry(node, struct btrfs_free_space,
3113 					 offset_index);
3114 			continue;
3115 		}
3116 
3117 		if (entry->bitmap) {
3118 			ret = btrfs_alloc_from_bitmap(block_group,
3119 						      cluster, entry, bytes,
3120 						      cluster->window_start,
3121 						      max_extent_size);
3122 			if (ret == 0) {
3123 				node = rb_next(&entry->offset_index);
3124 				if (!node)
3125 					break;
3126 				entry = rb_entry(node, struct btrfs_free_space,
3127 						 offset_index);
3128 				continue;
3129 			}
3130 			cluster->window_start += bytes;
3131 		} else {
3132 			ret = entry->offset;
3133 
3134 			entry->offset += bytes;
3135 			entry->bytes -= bytes;
3136 		}
3137 
3138 		break;
3139 	}
3140 out:
3141 	spin_unlock(&cluster->lock);
3142 
3143 	if (!ret)
3144 		return 0;
3145 
3146 	spin_lock(&ctl->tree_lock);
3147 
3148 	if (!btrfs_free_space_trimmed(entry))
3149 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3150 
3151 	ctl->free_space -= bytes;
3152 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3153 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3154 
3155 	spin_lock(&cluster->lock);
3156 	if (entry->bytes == 0) {
3157 		rb_erase(&entry->offset_index, &cluster->root);
3158 		ctl->free_extents--;
3159 		if (entry->bitmap) {
3160 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3161 					entry->bitmap);
3162 			ctl->total_bitmaps--;
3163 			recalculate_thresholds(ctl);
3164 		} else if (!btrfs_free_space_trimmed(entry)) {
3165 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3166 		}
3167 		kmem_cache_free(btrfs_free_space_cachep, entry);
3168 	}
3169 
3170 	spin_unlock(&cluster->lock);
3171 	spin_unlock(&ctl->tree_lock);
3172 
3173 	return ret;
3174 }
3175 
3176 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3177 				struct btrfs_free_space *entry,
3178 				struct btrfs_free_cluster *cluster,
3179 				u64 offset, u64 bytes,
3180 				u64 cont1_bytes, u64 min_bytes)
3181 {
3182 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3183 	unsigned long next_zero;
3184 	unsigned long i;
3185 	unsigned long want_bits;
3186 	unsigned long min_bits;
3187 	unsigned long found_bits;
3188 	unsigned long max_bits = 0;
3189 	unsigned long start = 0;
3190 	unsigned long total_found = 0;
3191 	int ret;
3192 
3193 	i = offset_to_bit(entry->offset, ctl->unit,
3194 			  max_t(u64, offset, entry->offset));
3195 	want_bits = bytes_to_bits(bytes, ctl->unit);
3196 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3197 
3198 	/*
3199 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3200 	 * fragmented.
3201 	 */
3202 	if (entry->max_extent_size &&
3203 	    entry->max_extent_size < cont1_bytes)
3204 		return -ENOSPC;
3205 again:
3206 	found_bits = 0;
3207 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3208 		next_zero = find_next_zero_bit(entry->bitmap,
3209 					       BITS_PER_BITMAP, i);
3210 		if (next_zero - i >= min_bits) {
3211 			found_bits = next_zero - i;
3212 			if (found_bits > max_bits)
3213 				max_bits = found_bits;
3214 			break;
3215 		}
3216 		if (next_zero - i > max_bits)
3217 			max_bits = next_zero - i;
3218 		i = next_zero;
3219 	}
3220 
3221 	if (!found_bits) {
3222 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3223 		return -ENOSPC;
3224 	}
3225 
3226 	if (!total_found) {
3227 		start = i;
3228 		cluster->max_size = 0;
3229 	}
3230 
3231 	total_found += found_bits;
3232 
3233 	if (cluster->max_size < found_bits * ctl->unit)
3234 		cluster->max_size = found_bits * ctl->unit;
3235 
3236 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3237 		i = next_zero + 1;
3238 		goto again;
3239 	}
3240 
3241 	cluster->window_start = start * ctl->unit + entry->offset;
3242 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3243 	ret = tree_insert_offset(&cluster->root, entry->offset,
3244 				 &entry->offset_index, 1);
3245 	ASSERT(!ret); /* -EEXIST; Logic error */
3246 
3247 	trace_btrfs_setup_cluster(block_group, cluster,
3248 				  total_found * ctl->unit, 1);
3249 	return 0;
3250 }
3251 
3252 /*
3253  * This searches the block group for just extents to fill the cluster with.
3254  * Try to find a cluster with at least bytes total bytes, at least one
3255  * extent of cont1_bytes, and other clusters of at least min_bytes.
3256  */
3257 static noinline int
3258 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3259 			struct btrfs_free_cluster *cluster,
3260 			struct list_head *bitmaps, u64 offset, u64 bytes,
3261 			u64 cont1_bytes, u64 min_bytes)
3262 {
3263 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3264 	struct btrfs_free_space *first = NULL;
3265 	struct btrfs_free_space *entry = NULL;
3266 	struct btrfs_free_space *last;
3267 	struct rb_node *node;
3268 	u64 window_free;
3269 	u64 max_extent;
3270 	u64 total_size = 0;
3271 
3272 	entry = tree_search_offset(ctl, offset, 0, 1);
3273 	if (!entry)
3274 		return -ENOSPC;
3275 
3276 	/*
3277 	 * We don't want bitmaps, so just move along until we find a normal
3278 	 * extent entry.
3279 	 */
3280 	while (entry->bitmap || entry->bytes < min_bytes) {
3281 		if (entry->bitmap && list_empty(&entry->list))
3282 			list_add_tail(&entry->list, bitmaps);
3283 		node = rb_next(&entry->offset_index);
3284 		if (!node)
3285 			return -ENOSPC;
3286 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3287 	}
3288 
3289 	window_free = entry->bytes;
3290 	max_extent = entry->bytes;
3291 	first = entry;
3292 	last = entry;
3293 
3294 	for (node = rb_next(&entry->offset_index); node;
3295 	     node = rb_next(&entry->offset_index)) {
3296 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3297 
3298 		if (entry->bitmap) {
3299 			if (list_empty(&entry->list))
3300 				list_add_tail(&entry->list, bitmaps);
3301 			continue;
3302 		}
3303 
3304 		if (entry->bytes < min_bytes)
3305 			continue;
3306 
3307 		last = entry;
3308 		window_free += entry->bytes;
3309 		if (entry->bytes > max_extent)
3310 			max_extent = entry->bytes;
3311 	}
3312 
3313 	if (window_free < bytes || max_extent < cont1_bytes)
3314 		return -ENOSPC;
3315 
3316 	cluster->window_start = first->offset;
3317 
3318 	node = &first->offset_index;
3319 
3320 	/*
3321 	 * now we've found our entries, pull them out of the free space
3322 	 * cache and put them into the cluster rbtree
3323 	 */
3324 	do {
3325 		int ret;
3326 
3327 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3328 		node = rb_next(&entry->offset_index);
3329 		if (entry->bitmap || entry->bytes < min_bytes)
3330 			continue;
3331 
3332 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3333 		ret = tree_insert_offset(&cluster->root, entry->offset,
3334 					 &entry->offset_index, 0);
3335 		total_size += entry->bytes;
3336 		ASSERT(!ret); /* -EEXIST; Logic error */
3337 	} while (node && entry != last);
3338 
3339 	cluster->max_size = max_extent;
3340 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3341 	return 0;
3342 }
3343 
3344 /*
3345  * This specifically looks for bitmaps that may work in the cluster, we assume
3346  * that we have already failed to find extents that will work.
3347  */
3348 static noinline int
3349 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3350 		     struct btrfs_free_cluster *cluster,
3351 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3352 		     u64 cont1_bytes, u64 min_bytes)
3353 {
3354 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3355 	struct btrfs_free_space *entry = NULL;
3356 	int ret = -ENOSPC;
3357 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3358 
3359 	if (ctl->total_bitmaps == 0)
3360 		return -ENOSPC;
3361 
3362 	/*
3363 	 * The bitmap that covers offset won't be in the list unless offset
3364 	 * is just its start offset.
3365 	 */
3366 	if (!list_empty(bitmaps))
3367 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3368 
3369 	if (!entry || entry->offset != bitmap_offset) {
3370 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3371 		if (entry && list_empty(&entry->list))
3372 			list_add(&entry->list, bitmaps);
3373 	}
3374 
3375 	list_for_each_entry(entry, bitmaps, list) {
3376 		if (entry->bytes < bytes)
3377 			continue;
3378 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3379 					   bytes, cont1_bytes, min_bytes);
3380 		if (!ret)
3381 			return 0;
3382 	}
3383 
3384 	/*
3385 	 * The bitmaps list has all the bitmaps that record free space
3386 	 * starting after offset, so no more search is required.
3387 	 */
3388 	return -ENOSPC;
3389 }
3390 
3391 /*
3392  * here we try to find a cluster of blocks in a block group.  The goal
3393  * is to find at least bytes+empty_size.
3394  * We might not find them all in one contiguous area.
3395  *
3396  * returns zero and sets up cluster if things worked out, otherwise
3397  * it returns -enospc
3398  */
3399 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3400 			     struct btrfs_free_cluster *cluster,
3401 			     u64 offset, u64 bytes, u64 empty_size)
3402 {
3403 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3404 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3405 	struct btrfs_free_space *entry, *tmp;
3406 	LIST_HEAD(bitmaps);
3407 	u64 min_bytes;
3408 	u64 cont1_bytes;
3409 	int ret;
3410 
3411 	/*
3412 	 * Choose the minimum extent size we'll require for this
3413 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3414 	 * For metadata, allow allocates with smaller extents.  For
3415 	 * data, keep it dense.
3416 	 */
3417 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3418 		cont1_bytes = min_bytes = bytes + empty_size;
3419 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3420 		cont1_bytes = bytes;
3421 		min_bytes = fs_info->sectorsize;
3422 	} else {
3423 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3424 		min_bytes = fs_info->sectorsize;
3425 	}
3426 
3427 	spin_lock(&ctl->tree_lock);
3428 
3429 	/*
3430 	 * If we know we don't have enough space to make a cluster don't even
3431 	 * bother doing all the work to try and find one.
3432 	 */
3433 	if (ctl->free_space < bytes) {
3434 		spin_unlock(&ctl->tree_lock);
3435 		return -ENOSPC;
3436 	}
3437 
3438 	spin_lock(&cluster->lock);
3439 
3440 	/* someone already found a cluster, hooray */
3441 	if (cluster->block_group) {
3442 		ret = 0;
3443 		goto out;
3444 	}
3445 
3446 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3447 				 min_bytes);
3448 
3449 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3450 				      bytes + empty_size,
3451 				      cont1_bytes, min_bytes);
3452 	if (ret)
3453 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3454 					   offset, bytes + empty_size,
3455 					   cont1_bytes, min_bytes);
3456 
3457 	/* Clear our temporary list */
3458 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3459 		list_del_init(&entry->list);
3460 
3461 	if (!ret) {
3462 		btrfs_get_block_group(block_group);
3463 		list_add_tail(&cluster->block_group_list,
3464 			      &block_group->cluster_list);
3465 		cluster->block_group = block_group;
3466 	} else {
3467 		trace_btrfs_failed_cluster_setup(block_group);
3468 	}
3469 out:
3470 	spin_unlock(&cluster->lock);
3471 	spin_unlock(&ctl->tree_lock);
3472 
3473 	return ret;
3474 }
3475 
3476 /*
3477  * simple code to zero out a cluster
3478  */
3479 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3480 {
3481 	spin_lock_init(&cluster->lock);
3482 	spin_lock_init(&cluster->refill_lock);
3483 	cluster->root = RB_ROOT;
3484 	cluster->max_size = 0;
3485 	cluster->fragmented = false;
3486 	INIT_LIST_HEAD(&cluster->block_group_list);
3487 	cluster->block_group = NULL;
3488 }
3489 
3490 static int do_trimming(struct btrfs_block_group *block_group,
3491 		       u64 *total_trimmed, u64 start, u64 bytes,
3492 		       u64 reserved_start, u64 reserved_bytes,
3493 		       enum btrfs_trim_state reserved_trim_state,
3494 		       struct btrfs_trim_range *trim_entry)
3495 {
3496 	struct btrfs_space_info *space_info = block_group->space_info;
3497 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3498 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3499 	int ret;
3500 	int update = 0;
3501 	const u64 end = start + bytes;
3502 	const u64 reserved_end = reserved_start + reserved_bytes;
3503 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3504 	u64 trimmed = 0;
3505 
3506 	spin_lock(&space_info->lock);
3507 	spin_lock(&block_group->lock);
3508 	if (!block_group->ro) {
3509 		block_group->reserved += reserved_bytes;
3510 		space_info->bytes_reserved += reserved_bytes;
3511 		update = 1;
3512 	}
3513 	spin_unlock(&block_group->lock);
3514 	spin_unlock(&space_info->lock);
3515 
3516 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3517 	if (!ret) {
3518 		*total_trimmed += trimmed;
3519 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3520 	}
3521 
3522 	mutex_lock(&ctl->cache_writeout_mutex);
3523 	if (reserved_start < start)
3524 		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3525 				       start - reserved_start,
3526 				       reserved_trim_state);
3527 	if (start + bytes < reserved_start + reserved_bytes)
3528 		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3529 				       reserved_trim_state);
3530 	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3531 	list_del(&trim_entry->list);
3532 	mutex_unlock(&ctl->cache_writeout_mutex);
3533 
3534 	if (update) {
3535 		spin_lock(&space_info->lock);
3536 		spin_lock(&block_group->lock);
3537 		if (block_group->ro)
3538 			space_info->bytes_readonly += reserved_bytes;
3539 		block_group->reserved -= reserved_bytes;
3540 		space_info->bytes_reserved -= reserved_bytes;
3541 		spin_unlock(&block_group->lock);
3542 		spin_unlock(&space_info->lock);
3543 	}
3544 
3545 	return ret;
3546 }
3547 
3548 /*
3549  * If @async is set, then we will trim 1 region and return.
3550  */
3551 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3552 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3553 			  bool async)
3554 {
3555 	struct btrfs_discard_ctl *discard_ctl =
3556 					&block_group->fs_info->discard_ctl;
3557 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3558 	struct btrfs_free_space *entry;
3559 	struct rb_node *node;
3560 	int ret = 0;
3561 	u64 extent_start;
3562 	u64 extent_bytes;
3563 	enum btrfs_trim_state extent_trim_state;
3564 	u64 bytes;
3565 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3566 
3567 	while (start < end) {
3568 		struct btrfs_trim_range trim_entry;
3569 
3570 		mutex_lock(&ctl->cache_writeout_mutex);
3571 		spin_lock(&ctl->tree_lock);
3572 
3573 		if (ctl->free_space < minlen)
3574 			goto out_unlock;
3575 
3576 		entry = tree_search_offset(ctl, start, 0, 1);
3577 		if (!entry)
3578 			goto out_unlock;
3579 
3580 		/* Skip bitmaps and if async, already trimmed entries */
3581 		while (entry->bitmap ||
3582 		       (async && btrfs_free_space_trimmed(entry))) {
3583 			node = rb_next(&entry->offset_index);
3584 			if (!node)
3585 				goto out_unlock;
3586 			entry = rb_entry(node, struct btrfs_free_space,
3587 					 offset_index);
3588 		}
3589 
3590 		if (entry->offset >= end)
3591 			goto out_unlock;
3592 
3593 		extent_start = entry->offset;
3594 		extent_bytes = entry->bytes;
3595 		extent_trim_state = entry->trim_state;
3596 		if (async) {
3597 			start = entry->offset;
3598 			bytes = entry->bytes;
3599 			if (bytes < minlen) {
3600 				spin_unlock(&ctl->tree_lock);
3601 				mutex_unlock(&ctl->cache_writeout_mutex);
3602 				goto next;
3603 			}
3604 			unlink_free_space(ctl, entry);
3605 			/*
3606 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3607 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3608 			 * X when we come back around.  So trim it now.
3609 			 */
3610 			if (max_discard_size &&
3611 			    bytes >= (max_discard_size +
3612 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3613 				bytes = max_discard_size;
3614 				extent_bytes = max_discard_size;
3615 				entry->offset += max_discard_size;
3616 				entry->bytes -= max_discard_size;
3617 				link_free_space(ctl, entry);
3618 			} else {
3619 				kmem_cache_free(btrfs_free_space_cachep, entry);
3620 			}
3621 		} else {
3622 			start = max(start, extent_start);
3623 			bytes = min(extent_start + extent_bytes, end) - start;
3624 			if (bytes < minlen) {
3625 				spin_unlock(&ctl->tree_lock);
3626 				mutex_unlock(&ctl->cache_writeout_mutex);
3627 				goto next;
3628 			}
3629 
3630 			unlink_free_space(ctl, entry);
3631 			kmem_cache_free(btrfs_free_space_cachep, entry);
3632 		}
3633 
3634 		spin_unlock(&ctl->tree_lock);
3635 		trim_entry.start = extent_start;
3636 		trim_entry.bytes = extent_bytes;
3637 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3638 		mutex_unlock(&ctl->cache_writeout_mutex);
3639 
3640 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3641 				  extent_start, extent_bytes, extent_trim_state,
3642 				  &trim_entry);
3643 		if (ret) {
3644 			block_group->discard_cursor = start + bytes;
3645 			break;
3646 		}
3647 next:
3648 		start += bytes;
3649 		block_group->discard_cursor = start;
3650 		if (async && *total_trimmed)
3651 			break;
3652 
3653 		if (fatal_signal_pending(current)) {
3654 			ret = -ERESTARTSYS;
3655 			break;
3656 		}
3657 
3658 		cond_resched();
3659 	}
3660 
3661 	return ret;
3662 
3663 out_unlock:
3664 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3665 	spin_unlock(&ctl->tree_lock);
3666 	mutex_unlock(&ctl->cache_writeout_mutex);
3667 
3668 	return ret;
3669 }
3670 
3671 /*
3672  * If we break out of trimming a bitmap prematurely, we should reset the
3673  * trimming bit.  In a rather contrieved case, it's possible to race here so
3674  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3675  *
3676  * start = start of bitmap
3677  * end = near end of bitmap
3678  *
3679  * Thread 1:			Thread 2:
3680  * trim_bitmaps(start)
3681  *				trim_bitmaps(end)
3682  *				end_trimming_bitmap()
3683  * reset_trimming_bitmap()
3684  */
3685 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3686 {
3687 	struct btrfs_free_space *entry;
3688 
3689 	spin_lock(&ctl->tree_lock);
3690 	entry = tree_search_offset(ctl, offset, 1, 0);
3691 	if (entry) {
3692 		if (btrfs_free_space_trimmed(entry)) {
3693 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3694 				entry->bitmap_extents;
3695 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3696 		}
3697 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3698 	}
3699 
3700 	spin_unlock(&ctl->tree_lock);
3701 }
3702 
3703 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3704 				struct btrfs_free_space *entry)
3705 {
3706 	if (btrfs_free_space_trimming_bitmap(entry)) {
3707 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3708 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3709 			entry->bitmap_extents;
3710 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3711 	}
3712 }
3713 
3714 /*
3715  * If @async is set, then we will trim 1 region and return.
3716  */
3717 static int trim_bitmaps(struct btrfs_block_group *block_group,
3718 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3719 			u64 maxlen, bool async)
3720 {
3721 	struct btrfs_discard_ctl *discard_ctl =
3722 					&block_group->fs_info->discard_ctl;
3723 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3724 	struct btrfs_free_space *entry;
3725 	int ret = 0;
3726 	int ret2;
3727 	u64 bytes;
3728 	u64 offset = offset_to_bitmap(ctl, start);
3729 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3730 
3731 	while (offset < end) {
3732 		bool next_bitmap = false;
3733 		struct btrfs_trim_range trim_entry;
3734 
3735 		mutex_lock(&ctl->cache_writeout_mutex);
3736 		spin_lock(&ctl->tree_lock);
3737 
3738 		if (ctl->free_space < minlen) {
3739 			block_group->discard_cursor =
3740 				btrfs_block_group_end(block_group);
3741 			spin_unlock(&ctl->tree_lock);
3742 			mutex_unlock(&ctl->cache_writeout_mutex);
3743 			break;
3744 		}
3745 
3746 		entry = tree_search_offset(ctl, offset, 1, 0);
3747 		/*
3748 		 * Bitmaps are marked trimmed lossily now to prevent constant
3749 		 * discarding of the same bitmap (the reason why we are bound
3750 		 * by the filters).  So, retrim the block group bitmaps when we
3751 		 * are preparing to punt to the unused_bgs list.  This uses
3752 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3753 		 * which is the only discard index which sets minlen to 0.
3754 		 */
3755 		if (!entry || (async && minlen && start == offset &&
3756 			       btrfs_free_space_trimmed(entry))) {
3757 			spin_unlock(&ctl->tree_lock);
3758 			mutex_unlock(&ctl->cache_writeout_mutex);
3759 			next_bitmap = true;
3760 			goto next;
3761 		}
3762 
3763 		/*
3764 		 * Async discard bitmap trimming begins at by setting the start
3765 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3766 		 * start of the bitmap.  This lets us know we are fully
3767 		 * scanning the bitmap rather than only some portion of it.
3768 		 */
3769 		if (start == offset)
3770 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3771 
3772 		bytes = minlen;
3773 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3774 		if (ret2 || start >= end) {
3775 			/*
3776 			 * We lossily consider a bitmap trimmed if we only skip
3777 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3778 			 */
3779 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3780 				end_trimming_bitmap(ctl, entry);
3781 			else
3782 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3783 			spin_unlock(&ctl->tree_lock);
3784 			mutex_unlock(&ctl->cache_writeout_mutex);
3785 			next_bitmap = true;
3786 			goto next;
3787 		}
3788 
3789 		/*
3790 		 * We already trimmed a region, but are using the locking above
3791 		 * to reset the trim_state.
3792 		 */
3793 		if (async && *total_trimmed) {
3794 			spin_unlock(&ctl->tree_lock);
3795 			mutex_unlock(&ctl->cache_writeout_mutex);
3796 			goto out;
3797 		}
3798 
3799 		bytes = min(bytes, end - start);
3800 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3801 			spin_unlock(&ctl->tree_lock);
3802 			mutex_unlock(&ctl->cache_writeout_mutex);
3803 			goto next;
3804 		}
3805 
3806 		/*
3807 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3808 		 * If X < @minlen, we won't trim X when we come back around.
3809 		 * So trim it now.  We differ here from trimming extents as we
3810 		 * don't keep individual state per bit.
3811 		 */
3812 		if (async &&
3813 		    max_discard_size &&
3814 		    bytes > (max_discard_size + minlen))
3815 			bytes = max_discard_size;
3816 
3817 		bitmap_clear_bits(ctl, entry, start, bytes);
3818 		if (entry->bytes == 0)
3819 			free_bitmap(ctl, entry);
3820 
3821 		spin_unlock(&ctl->tree_lock);
3822 		trim_entry.start = start;
3823 		trim_entry.bytes = bytes;
3824 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3825 		mutex_unlock(&ctl->cache_writeout_mutex);
3826 
3827 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3828 				  start, bytes, 0, &trim_entry);
3829 		if (ret) {
3830 			reset_trimming_bitmap(ctl, offset);
3831 			block_group->discard_cursor =
3832 				btrfs_block_group_end(block_group);
3833 			break;
3834 		}
3835 next:
3836 		if (next_bitmap) {
3837 			offset += BITS_PER_BITMAP * ctl->unit;
3838 			start = offset;
3839 		} else {
3840 			start += bytes;
3841 		}
3842 		block_group->discard_cursor = start;
3843 
3844 		if (fatal_signal_pending(current)) {
3845 			if (start != offset)
3846 				reset_trimming_bitmap(ctl, offset);
3847 			ret = -ERESTARTSYS;
3848 			break;
3849 		}
3850 
3851 		cond_resched();
3852 	}
3853 
3854 	if (offset >= end)
3855 		block_group->discard_cursor = end;
3856 
3857 out:
3858 	return ret;
3859 }
3860 
3861 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3862 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3863 {
3864 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3865 	int ret;
3866 	u64 rem = 0;
3867 
3868 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3869 
3870 	*trimmed = 0;
3871 
3872 	spin_lock(&block_group->lock);
3873 	if (block_group->removed) {
3874 		spin_unlock(&block_group->lock);
3875 		return 0;
3876 	}
3877 	btrfs_freeze_block_group(block_group);
3878 	spin_unlock(&block_group->lock);
3879 
3880 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3881 	if (ret)
3882 		goto out;
3883 
3884 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3885 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3886 	/* If we ended in the middle of a bitmap, reset the trimming flag */
3887 	if (rem)
3888 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3889 out:
3890 	btrfs_unfreeze_block_group(block_group);
3891 	return ret;
3892 }
3893 
3894 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3895 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3896 				   bool async)
3897 {
3898 	int ret;
3899 
3900 	*trimmed = 0;
3901 
3902 	spin_lock(&block_group->lock);
3903 	if (block_group->removed) {
3904 		spin_unlock(&block_group->lock);
3905 		return 0;
3906 	}
3907 	btrfs_freeze_block_group(block_group);
3908 	spin_unlock(&block_group->lock);
3909 
3910 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3911 	btrfs_unfreeze_block_group(block_group);
3912 
3913 	return ret;
3914 }
3915 
3916 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3917 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3918 				   u64 maxlen, bool async)
3919 {
3920 	int ret;
3921 
3922 	*trimmed = 0;
3923 
3924 	spin_lock(&block_group->lock);
3925 	if (block_group->removed) {
3926 		spin_unlock(&block_group->lock);
3927 		return 0;
3928 	}
3929 	btrfs_freeze_block_group(block_group);
3930 	spin_unlock(&block_group->lock);
3931 
3932 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3933 			   async);
3934 
3935 	btrfs_unfreeze_block_group(block_group);
3936 
3937 	return ret;
3938 }
3939 
3940 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
3941 {
3942 	return btrfs_super_cache_generation(fs_info->super_copy);
3943 }
3944 
3945 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
3946 				       struct btrfs_trans_handle *trans)
3947 {
3948 	struct btrfs_block_group *block_group;
3949 	struct rb_node *node;
3950 	int ret = 0;
3951 
3952 	btrfs_info(fs_info, "cleaning free space cache v1");
3953 
3954 	node = rb_first(&fs_info->block_group_cache_tree);
3955 	while (node) {
3956 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
3957 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
3958 		if (ret)
3959 			goto out;
3960 		node = rb_next(node);
3961 	}
3962 out:
3963 	return ret;
3964 }
3965 
3966 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
3967 {
3968 	struct btrfs_trans_handle *trans;
3969 	int ret;
3970 
3971 	/*
3972 	 * update_super_roots will appropriately set or unset
3973 	 * super_copy->cache_generation based on SPACE_CACHE and
3974 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
3975 	 * transaction commit whether we are enabling space cache v1 and don't
3976 	 * have any other work to do, or are disabling it and removing free
3977 	 * space inodes.
3978 	 */
3979 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3980 	if (IS_ERR(trans))
3981 		return PTR_ERR(trans);
3982 
3983 	if (!active) {
3984 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3985 		ret = cleanup_free_space_cache_v1(fs_info, trans);
3986 		if (ret) {
3987 			btrfs_abort_transaction(trans, ret);
3988 			btrfs_end_transaction(trans);
3989 			goto out;
3990 		}
3991 	}
3992 
3993 	ret = btrfs_commit_transaction(trans);
3994 out:
3995 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3996 
3997 	return ret;
3998 }
3999 
4000 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4001 /*
4002  * Use this if you need to make a bitmap or extent entry specifically, it
4003  * doesn't do any of the merging that add_free_space does, this acts a lot like
4004  * how the free space cache loading stuff works, so you can get really weird
4005  * configurations.
4006  */
4007 int test_add_free_space_entry(struct btrfs_block_group *cache,
4008 			      u64 offset, u64 bytes, bool bitmap)
4009 {
4010 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4011 	struct btrfs_free_space *info = NULL, *bitmap_info;
4012 	void *map = NULL;
4013 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4014 	u64 bytes_added;
4015 	int ret;
4016 
4017 again:
4018 	if (!info) {
4019 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4020 		if (!info)
4021 			return -ENOMEM;
4022 	}
4023 
4024 	if (!bitmap) {
4025 		spin_lock(&ctl->tree_lock);
4026 		info->offset = offset;
4027 		info->bytes = bytes;
4028 		info->max_extent_size = 0;
4029 		ret = link_free_space(ctl, info);
4030 		spin_unlock(&ctl->tree_lock);
4031 		if (ret)
4032 			kmem_cache_free(btrfs_free_space_cachep, info);
4033 		return ret;
4034 	}
4035 
4036 	if (!map) {
4037 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4038 		if (!map) {
4039 			kmem_cache_free(btrfs_free_space_cachep, info);
4040 			return -ENOMEM;
4041 		}
4042 	}
4043 
4044 	spin_lock(&ctl->tree_lock);
4045 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4046 					 1, 0);
4047 	if (!bitmap_info) {
4048 		info->bitmap = map;
4049 		map = NULL;
4050 		add_new_bitmap(ctl, info, offset);
4051 		bitmap_info = info;
4052 		info = NULL;
4053 	}
4054 
4055 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4056 					  trim_state);
4057 
4058 	bytes -= bytes_added;
4059 	offset += bytes_added;
4060 	spin_unlock(&ctl->tree_lock);
4061 
4062 	if (bytes)
4063 		goto again;
4064 
4065 	if (info)
4066 		kmem_cache_free(btrfs_free_space_cachep, info);
4067 	if (map)
4068 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4069 	return 0;
4070 }
4071 
4072 /*
4073  * Checks to see if the given range is in the free space cache.  This is really
4074  * just used to check the absence of space, so if there is free space in the
4075  * range at all we will return 1.
4076  */
4077 int test_check_exists(struct btrfs_block_group *cache,
4078 		      u64 offset, u64 bytes)
4079 {
4080 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4081 	struct btrfs_free_space *info;
4082 	int ret = 0;
4083 
4084 	spin_lock(&ctl->tree_lock);
4085 	info = tree_search_offset(ctl, offset, 0, 0);
4086 	if (!info) {
4087 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4088 					  1, 0);
4089 		if (!info)
4090 			goto out;
4091 	}
4092 
4093 have_info:
4094 	if (info->bitmap) {
4095 		u64 bit_off, bit_bytes;
4096 		struct rb_node *n;
4097 		struct btrfs_free_space *tmp;
4098 
4099 		bit_off = offset;
4100 		bit_bytes = ctl->unit;
4101 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4102 		if (!ret) {
4103 			if (bit_off == offset) {
4104 				ret = 1;
4105 				goto out;
4106 			} else if (bit_off > offset &&
4107 				   offset + bytes > bit_off) {
4108 				ret = 1;
4109 				goto out;
4110 			}
4111 		}
4112 
4113 		n = rb_prev(&info->offset_index);
4114 		while (n) {
4115 			tmp = rb_entry(n, struct btrfs_free_space,
4116 				       offset_index);
4117 			if (tmp->offset + tmp->bytes < offset)
4118 				break;
4119 			if (offset + bytes < tmp->offset) {
4120 				n = rb_prev(&tmp->offset_index);
4121 				continue;
4122 			}
4123 			info = tmp;
4124 			goto have_info;
4125 		}
4126 
4127 		n = rb_next(&info->offset_index);
4128 		while (n) {
4129 			tmp = rb_entry(n, struct btrfs_free_space,
4130 				       offset_index);
4131 			if (offset + bytes < tmp->offset)
4132 				break;
4133 			if (tmp->offset + tmp->bytes < offset) {
4134 				n = rb_next(&tmp->offset_index);
4135 				continue;
4136 			}
4137 			info = tmp;
4138 			goto have_info;
4139 		}
4140 
4141 		ret = 0;
4142 		goto out;
4143 	}
4144 
4145 	if (info->offset == offset) {
4146 		ret = 1;
4147 		goto out;
4148 	}
4149 
4150 	if (offset > info->offset && offset < info->offset + info->bytes)
4151 		ret = 1;
4152 out:
4153 	spin_unlock(&ctl->tree_lock);
4154 	return ret;
4155 }
4156 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4157