1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "ctree.h" 15 #include "free-space-cache.h" 16 #include "transaction.h" 17 #include "disk-io.h" 18 #include "extent_io.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "space-info.h" 22 #include "delalloc-space.h" 23 #include "block-group.h" 24 #include "discard.h" 25 26 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 27 #define MAX_CACHE_BYTES_PER_GIG SZ_64K 28 #define FORCE_EXTENT_THRESHOLD SZ_1M 29 30 struct btrfs_trim_range { 31 u64 start; 32 u64 bytes; 33 struct list_head list; 34 }; 35 36 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *bitmap_info); 38 static int link_free_space(struct btrfs_free_space_ctl *ctl, 39 struct btrfs_free_space *info); 40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 41 struct btrfs_free_space *info); 42 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 43 struct btrfs_trans_handle *trans, 44 struct btrfs_io_ctl *io_ctl, 45 struct btrfs_path *path); 46 47 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 48 struct btrfs_path *path, 49 u64 offset) 50 { 51 struct btrfs_fs_info *fs_info = root->fs_info; 52 struct btrfs_key key; 53 struct btrfs_key location; 54 struct btrfs_disk_key disk_key; 55 struct btrfs_free_space_header *header; 56 struct extent_buffer *leaf; 57 struct inode *inode = NULL; 58 unsigned nofs_flag; 59 int ret; 60 61 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 62 key.offset = offset; 63 key.type = 0; 64 65 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 66 if (ret < 0) 67 return ERR_PTR(ret); 68 if (ret > 0) { 69 btrfs_release_path(path); 70 return ERR_PTR(-ENOENT); 71 } 72 73 leaf = path->nodes[0]; 74 header = btrfs_item_ptr(leaf, path->slots[0], 75 struct btrfs_free_space_header); 76 btrfs_free_space_key(leaf, header, &disk_key); 77 btrfs_disk_key_to_cpu(&location, &disk_key); 78 btrfs_release_path(path); 79 80 /* 81 * We are often under a trans handle at this point, so we need to make 82 * sure NOFS is set to keep us from deadlocking. 83 */ 84 nofs_flag = memalloc_nofs_save(); 85 inode = btrfs_iget_path(fs_info->sb, &location, root, path); 86 btrfs_release_path(path); 87 memalloc_nofs_restore(nofs_flag); 88 if (IS_ERR(inode)) 89 return inode; 90 91 mapping_set_gfp_mask(inode->i_mapping, 92 mapping_gfp_constraint(inode->i_mapping, 93 ~(__GFP_FS | __GFP_HIGHMEM))); 94 95 return inode; 96 } 97 98 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 99 struct btrfs_path *path) 100 { 101 struct btrfs_fs_info *fs_info = block_group->fs_info; 102 struct inode *inode = NULL; 103 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 104 105 spin_lock(&block_group->lock); 106 if (block_group->inode) 107 inode = igrab(block_group->inode); 108 spin_unlock(&block_group->lock); 109 if (inode) 110 return inode; 111 112 inode = __lookup_free_space_inode(fs_info->tree_root, path, 113 block_group->start); 114 if (IS_ERR(inode)) 115 return inode; 116 117 spin_lock(&block_group->lock); 118 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 119 btrfs_info(fs_info, "Old style space inode found, converting."); 120 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 121 BTRFS_INODE_NODATACOW; 122 block_group->disk_cache_state = BTRFS_DC_CLEAR; 123 } 124 125 if (!block_group->iref) { 126 block_group->inode = igrab(inode); 127 block_group->iref = 1; 128 } 129 spin_unlock(&block_group->lock); 130 131 return inode; 132 } 133 134 static int __create_free_space_inode(struct btrfs_root *root, 135 struct btrfs_trans_handle *trans, 136 struct btrfs_path *path, 137 u64 ino, u64 offset) 138 { 139 struct btrfs_key key; 140 struct btrfs_disk_key disk_key; 141 struct btrfs_free_space_header *header; 142 struct btrfs_inode_item *inode_item; 143 struct extent_buffer *leaf; 144 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 145 int ret; 146 147 ret = btrfs_insert_empty_inode(trans, root, path, ino); 148 if (ret) 149 return ret; 150 151 /* We inline crc's for the free disk space cache */ 152 if (ino != BTRFS_FREE_INO_OBJECTID) 153 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 154 155 leaf = path->nodes[0]; 156 inode_item = btrfs_item_ptr(leaf, path->slots[0], 157 struct btrfs_inode_item); 158 btrfs_item_key(leaf, &disk_key, path->slots[0]); 159 memzero_extent_buffer(leaf, (unsigned long)inode_item, 160 sizeof(*inode_item)); 161 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 162 btrfs_set_inode_size(leaf, inode_item, 0); 163 btrfs_set_inode_nbytes(leaf, inode_item, 0); 164 btrfs_set_inode_uid(leaf, inode_item, 0); 165 btrfs_set_inode_gid(leaf, inode_item, 0); 166 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 167 btrfs_set_inode_flags(leaf, inode_item, flags); 168 btrfs_set_inode_nlink(leaf, inode_item, 1); 169 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 170 btrfs_set_inode_block_group(leaf, inode_item, offset); 171 btrfs_mark_buffer_dirty(leaf); 172 btrfs_release_path(path); 173 174 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 175 key.offset = offset; 176 key.type = 0; 177 ret = btrfs_insert_empty_item(trans, root, path, &key, 178 sizeof(struct btrfs_free_space_header)); 179 if (ret < 0) { 180 btrfs_release_path(path); 181 return ret; 182 } 183 184 leaf = path->nodes[0]; 185 header = btrfs_item_ptr(leaf, path->slots[0], 186 struct btrfs_free_space_header); 187 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 188 btrfs_set_free_space_key(leaf, header, &disk_key); 189 btrfs_mark_buffer_dirty(leaf); 190 btrfs_release_path(path); 191 192 return 0; 193 } 194 195 int create_free_space_inode(struct btrfs_trans_handle *trans, 196 struct btrfs_block_group *block_group, 197 struct btrfs_path *path) 198 { 199 int ret; 200 u64 ino; 201 202 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino); 203 if (ret < 0) 204 return ret; 205 206 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 207 ino, block_group->start); 208 } 209 210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 211 struct btrfs_block_rsv *rsv) 212 { 213 u64 needed_bytes; 214 int ret; 215 216 /* 1 for slack space, 1 for updating the inode */ 217 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 218 btrfs_calc_metadata_size(fs_info, 1); 219 220 spin_lock(&rsv->lock); 221 if (rsv->reserved < needed_bytes) 222 ret = -ENOSPC; 223 else 224 ret = 0; 225 spin_unlock(&rsv->lock); 226 return ret; 227 } 228 229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 230 struct btrfs_block_group *block_group, 231 struct inode *inode) 232 { 233 struct btrfs_root *root = BTRFS_I(inode)->root; 234 int ret = 0; 235 bool locked = false; 236 237 if (block_group) { 238 struct btrfs_path *path = btrfs_alloc_path(); 239 240 if (!path) { 241 ret = -ENOMEM; 242 goto fail; 243 } 244 locked = true; 245 mutex_lock(&trans->transaction->cache_write_mutex); 246 if (!list_empty(&block_group->io_list)) { 247 list_del_init(&block_group->io_list); 248 249 btrfs_wait_cache_io(trans, block_group, path); 250 btrfs_put_block_group(block_group); 251 } 252 253 /* 254 * now that we've truncated the cache away, its no longer 255 * setup or written 256 */ 257 spin_lock(&block_group->lock); 258 block_group->disk_cache_state = BTRFS_DC_CLEAR; 259 spin_unlock(&block_group->lock); 260 btrfs_free_path(path); 261 } 262 263 btrfs_i_size_write(BTRFS_I(inode), 0); 264 truncate_pagecache(inode, 0); 265 266 /* 267 * We skip the throttling logic for free space cache inodes, so we don't 268 * need to check for -EAGAIN. 269 */ 270 ret = btrfs_truncate_inode_items(trans, root, inode, 271 0, BTRFS_EXTENT_DATA_KEY); 272 if (ret) 273 goto fail; 274 275 ret = btrfs_update_inode(trans, root, inode); 276 277 fail: 278 if (locked) 279 mutex_unlock(&trans->transaction->cache_write_mutex); 280 if (ret) 281 btrfs_abort_transaction(trans, ret); 282 283 return ret; 284 } 285 286 static void readahead_cache(struct inode *inode) 287 { 288 struct file_ra_state *ra; 289 unsigned long last_index; 290 291 ra = kzalloc(sizeof(*ra), GFP_NOFS); 292 if (!ra) 293 return; 294 295 file_ra_state_init(ra, inode->i_mapping); 296 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 297 298 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 299 300 kfree(ra); 301 } 302 303 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 304 int write) 305 { 306 int num_pages; 307 int check_crcs = 0; 308 309 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 310 311 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) 312 check_crcs = 1; 313 314 /* Make sure we can fit our crcs and generation into the first page */ 315 if (write && check_crcs && 316 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 317 return -ENOSPC; 318 319 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 320 321 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 322 if (!io_ctl->pages) 323 return -ENOMEM; 324 325 io_ctl->num_pages = num_pages; 326 io_ctl->fs_info = btrfs_sb(inode->i_sb); 327 io_ctl->check_crcs = check_crcs; 328 io_ctl->inode = inode; 329 330 return 0; 331 } 332 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 333 334 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 335 { 336 kfree(io_ctl->pages); 337 io_ctl->pages = NULL; 338 } 339 340 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 341 { 342 if (io_ctl->cur) { 343 io_ctl->cur = NULL; 344 io_ctl->orig = NULL; 345 } 346 } 347 348 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 349 { 350 ASSERT(io_ctl->index < io_ctl->num_pages); 351 io_ctl->page = io_ctl->pages[io_ctl->index++]; 352 io_ctl->cur = page_address(io_ctl->page); 353 io_ctl->orig = io_ctl->cur; 354 io_ctl->size = PAGE_SIZE; 355 if (clear) 356 clear_page(io_ctl->cur); 357 } 358 359 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 360 { 361 int i; 362 363 io_ctl_unmap_page(io_ctl); 364 365 for (i = 0; i < io_ctl->num_pages; i++) { 366 if (io_ctl->pages[i]) { 367 ClearPageChecked(io_ctl->pages[i]); 368 unlock_page(io_ctl->pages[i]); 369 put_page(io_ctl->pages[i]); 370 } 371 } 372 } 373 374 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, 375 int uptodate) 376 { 377 struct page *page; 378 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 379 int i; 380 381 for (i = 0; i < io_ctl->num_pages; i++) { 382 page = find_or_create_page(inode->i_mapping, i, mask); 383 if (!page) { 384 io_ctl_drop_pages(io_ctl); 385 return -ENOMEM; 386 } 387 io_ctl->pages[i] = page; 388 if (uptodate && !PageUptodate(page)) { 389 btrfs_readpage(NULL, page); 390 lock_page(page); 391 if (page->mapping != inode->i_mapping) { 392 btrfs_err(BTRFS_I(inode)->root->fs_info, 393 "free space cache page truncated"); 394 io_ctl_drop_pages(io_ctl); 395 return -EIO; 396 } 397 if (!PageUptodate(page)) { 398 btrfs_err(BTRFS_I(inode)->root->fs_info, 399 "error reading free space cache"); 400 io_ctl_drop_pages(io_ctl); 401 return -EIO; 402 } 403 } 404 } 405 406 for (i = 0; i < io_ctl->num_pages; i++) { 407 clear_page_dirty_for_io(io_ctl->pages[i]); 408 set_page_extent_mapped(io_ctl->pages[i]); 409 } 410 411 return 0; 412 } 413 414 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 415 { 416 __le64 *val; 417 418 io_ctl_map_page(io_ctl, 1); 419 420 /* 421 * Skip the csum areas. If we don't check crcs then we just have a 422 * 64bit chunk at the front of the first page. 423 */ 424 if (io_ctl->check_crcs) { 425 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 426 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 427 } else { 428 io_ctl->cur += sizeof(u64); 429 io_ctl->size -= sizeof(u64) * 2; 430 } 431 432 val = io_ctl->cur; 433 *val = cpu_to_le64(generation); 434 io_ctl->cur += sizeof(u64); 435 } 436 437 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 438 { 439 __le64 *gen; 440 441 /* 442 * Skip the crc area. If we don't check crcs then we just have a 64bit 443 * chunk at the front of the first page. 444 */ 445 if (io_ctl->check_crcs) { 446 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 447 io_ctl->size -= sizeof(u64) + 448 (sizeof(u32) * io_ctl->num_pages); 449 } else { 450 io_ctl->cur += sizeof(u64); 451 io_ctl->size -= sizeof(u64) * 2; 452 } 453 454 gen = io_ctl->cur; 455 if (le64_to_cpu(*gen) != generation) { 456 btrfs_err_rl(io_ctl->fs_info, 457 "space cache generation (%llu) does not match inode (%llu)", 458 *gen, generation); 459 io_ctl_unmap_page(io_ctl); 460 return -EIO; 461 } 462 io_ctl->cur += sizeof(u64); 463 return 0; 464 } 465 466 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 467 { 468 u32 *tmp; 469 u32 crc = ~(u32)0; 470 unsigned offset = 0; 471 472 if (!io_ctl->check_crcs) { 473 io_ctl_unmap_page(io_ctl); 474 return; 475 } 476 477 if (index == 0) 478 offset = sizeof(u32) * io_ctl->num_pages; 479 480 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 481 btrfs_crc32c_final(crc, (u8 *)&crc); 482 io_ctl_unmap_page(io_ctl); 483 tmp = page_address(io_ctl->pages[0]); 484 tmp += index; 485 *tmp = crc; 486 } 487 488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 489 { 490 u32 *tmp, val; 491 u32 crc = ~(u32)0; 492 unsigned offset = 0; 493 494 if (!io_ctl->check_crcs) { 495 io_ctl_map_page(io_ctl, 0); 496 return 0; 497 } 498 499 if (index == 0) 500 offset = sizeof(u32) * io_ctl->num_pages; 501 502 tmp = page_address(io_ctl->pages[0]); 503 tmp += index; 504 val = *tmp; 505 506 io_ctl_map_page(io_ctl, 0); 507 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 508 btrfs_crc32c_final(crc, (u8 *)&crc); 509 if (val != crc) { 510 btrfs_err_rl(io_ctl->fs_info, 511 "csum mismatch on free space cache"); 512 io_ctl_unmap_page(io_ctl); 513 return -EIO; 514 } 515 516 return 0; 517 } 518 519 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 520 void *bitmap) 521 { 522 struct btrfs_free_space_entry *entry; 523 524 if (!io_ctl->cur) 525 return -ENOSPC; 526 527 entry = io_ctl->cur; 528 entry->offset = cpu_to_le64(offset); 529 entry->bytes = cpu_to_le64(bytes); 530 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 531 BTRFS_FREE_SPACE_EXTENT; 532 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 533 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 534 535 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 536 return 0; 537 538 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 539 540 /* No more pages to map */ 541 if (io_ctl->index >= io_ctl->num_pages) 542 return 0; 543 544 /* map the next page */ 545 io_ctl_map_page(io_ctl, 1); 546 return 0; 547 } 548 549 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 550 { 551 if (!io_ctl->cur) 552 return -ENOSPC; 553 554 /* 555 * If we aren't at the start of the current page, unmap this one and 556 * map the next one if there is any left. 557 */ 558 if (io_ctl->cur != io_ctl->orig) { 559 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 560 if (io_ctl->index >= io_ctl->num_pages) 561 return -ENOSPC; 562 io_ctl_map_page(io_ctl, 0); 563 } 564 565 copy_page(io_ctl->cur, bitmap); 566 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 567 if (io_ctl->index < io_ctl->num_pages) 568 io_ctl_map_page(io_ctl, 0); 569 return 0; 570 } 571 572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 573 { 574 /* 575 * If we're not on the boundary we know we've modified the page and we 576 * need to crc the page. 577 */ 578 if (io_ctl->cur != io_ctl->orig) 579 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 580 else 581 io_ctl_unmap_page(io_ctl); 582 583 while (io_ctl->index < io_ctl->num_pages) { 584 io_ctl_map_page(io_ctl, 1); 585 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 586 } 587 } 588 589 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 590 struct btrfs_free_space *entry, u8 *type) 591 { 592 struct btrfs_free_space_entry *e; 593 int ret; 594 595 if (!io_ctl->cur) { 596 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 597 if (ret) 598 return ret; 599 } 600 601 e = io_ctl->cur; 602 entry->offset = le64_to_cpu(e->offset); 603 entry->bytes = le64_to_cpu(e->bytes); 604 *type = e->type; 605 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 606 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 607 608 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 609 return 0; 610 611 io_ctl_unmap_page(io_ctl); 612 613 return 0; 614 } 615 616 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 617 struct btrfs_free_space *entry) 618 { 619 int ret; 620 621 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 622 if (ret) 623 return ret; 624 625 copy_page(entry->bitmap, io_ctl->cur); 626 io_ctl_unmap_page(io_ctl); 627 628 return 0; 629 } 630 631 /* 632 * Since we attach pinned extents after the fact we can have contiguous sections 633 * of free space that are split up in entries. This poses a problem with the 634 * tree logging stuff since it could have allocated across what appears to be 2 635 * entries since we would have merged the entries when adding the pinned extents 636 * back to the free space cache. So run through the space cache that we just 637 * loaded and merge contiguous entries. This will make the log replay stuff not 638 * blow up and it will make for nicer allocator behavior. 639 */ 640 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 641 { 642 struct btrfs_free_space *e, *prev = NULL; 643 struct rb_node *n; 644 645 again: 646 spin_lock(&ctl->tree_lock); 647 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 648 e = rb_entry(n, struct btrfs_free_space, offset_index); 649 if (!prev) 650 goto next; 651 if (e->bitmap || prev->bitmap) 652 goto next; 653 if (prev->offset + prev->bytes == e->offset) { 654 unlink_free_space(ctl, prev); 655 unlink_free_space(ctl, e); 656 prev->bytes += e->bytes; 657 kmem_cache_free(btrfs_free_space_cachep, e); 658 link_free_space(ctl, prev); 659 prev = NULL; 660 spin_unlock(&ctl->tree_lock); 661 goto again; 662 } 663 next: 664 prev = e; 665 } 666 spin_unlock(&ctl->tree_lock); 667 } 668 669 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 670 struct btrfs_free_space_ctl *ctl, 671 struct btrfs_path *path, u64 offset) 672 { 673 struct btrfs_fs_info *fs_info = root->fs_info; 674 struct btrfs_free_space_header *header; 675 struct extent_buffer *leaf; 676 struct btrfs_io_ctl io_ctl; 677 struct btrfs_key key; 678 struct btrfs_free_space *e, *n; 679 LIST_HEAD(bitmaps); 680 u64 num_entries; 681 u64 num_bitmaps; 682 u64 generation; 683 u8 type; 684 int ret = 0; 685 686 /* Nothing in the space cache, goodbye */ 687 if (!i_size_read(inode)) 688 return 0; 689 690 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 691 key.offset = offset; 692 key.type = 0; 693 694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 695 if (ret < 0) 696 return 0; 697 else if (ret > 0) { 698 btrfs_release_path(path); 699 return 0; 700 } 701 702 ret = -1; 703 704 leaf = path->nodes[0]; 705 header = btrfs_item_ptr(leaf, path->slots[0], 706 struct btrfs_free_space_header); 707 num_entries = btrfs_free_space_entries(leaf, header); 708 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 709 generation = btrfs_free_space_generation(leaf, header); 710 btrfs_release_path(path); 711 712 if (!BTRFS_I(inode)->generation) { 713 btrfs_info(fs_info, 714 "the free space cache file (%llu) is invalid, skip it", 715 offset); 716 return 0; 717 } 718 719 if (BTRFS_I(inode)->generation != generation) { 720 btrfs_err(fs_info, 721 "free space inode generation (%llu) did not match free space cache generation (%llu)", 722 BTRFS_I(inode)->generation, generation); 723 return 0; 724 } 725 726 if (!num_entries) 727 return 0; 728 729 ret = io_ctl_init(&io_ctl, inode, 0); 730 if (ret) 731 return ret; 732 733 readahead_cache(inode); 734 735 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 736 if (ret) 737 goto out; 738 739 ret = io_ctl_check_crc(&io_ctl, 0); 740 if (ret) 741 goto free_cache; 742 743 ret = io_ctl_check_generation(&io_ctl, generation); 744 if (ret) 745 goto free_cache; 746 747 while (num_entries) { 748 e = kmem_cache_zalloc(btrfs_free_space_cachep, 749 GFP_NOFS); 750 if (!e) 751 goto free_cache; 752 753 ret = io_ctl_read_entry(&io_ctl, e, &type); 754 if (ret) { 755 kmem_cache_free(btrfs_free_space_cachep, e); 756 goto free_cache; 757 } 758 759 /* 760 * Sync discard ensures that the free space cache is always 761 * trimmed. So when reading this in, the state should reflect 762 * that. We also do this for async as a stop gap for lack of 763 * persistence. 764 */ 765 if (btrfs_test_opt(fs_info, DISCARD_SYNC) || 766 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 767 e->trim_state = BTRFS_TRIM_STATE_TRIMMED; 768 769 if (!e->bytes) { 770 kmem_cache_free(btrfs_free_space_cachep, e); 771 goto free_cache; 772 } 773 774 if (type == BTRFS_FREE_SPACE_EXTENT) { 775 spin_lock(&ctl->tree_lock); 776 ret = link_free_space(ctl, e); 777 spin_unlock(&ctl->tree_lock); 778 if (ret) { 779 btrfs_err(fs_info, 780 "Duplicate entries in free space cache, dumping"); 781 kmem_cache_free(btrfs_free_space_cachep, e); 782 goto free_cache; 783 } 784 } else { 785 ASSERT(num_bitmaps); 786 num_bitmaps--; 787 e->bitmap = kmem_cache_zalloc( 788 btrfs_free_space_bitmap_cachep, GFP_NOFS); 789 if (!e->bitmap) { 790 kmem_cache_free( 791 btrfs_free_space_cachep, e); 792 goto free_cache; 793 } 794 spin_lock(&ctl->tree_lock); 795 ret = link_free_space(ctl, e); 796 ctl->total_bitmaps++; 797 ctl->op->recalc_thresholds(ctl); 798 spin_unlock(&ctl->tree_lock); 799 if (ret) { 800 btrfs_err(fs_info, 801 "Duplicate entries in free space cache, dumping"); 802 kmem_cache_free(btrfs_free_space_cachep, e); 803 goto free_cache; 804 } 805 list_add_tail(&e->list, &bitmaps); 806 } 807 808 num_entries--; 809 } 810 811 io_ctl_unmap_page(&io_ctl); 812 813 /* 814 * We add the bitmaps at the end of the entries in order that 815 * the bitmap entries are added to the cache. 816 */ 817 list_for_each_entry_safe(e, n, &bitmaps, list) { 818 list_del_init(&e->list); 819 ret = io_ctl_read_bitmap(&io_ctl, e); 820 if (ret) 821 goto free_cache; 822 e->bitmap_extents = count_bitmap_extents(ctl, e); 823 if (!btrfs_free_space_trimmed(e)) { 824 ctl->discardable_extents[BTRFS_STAT_CURR] += 825 e->bitmap_extents; 826 ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes; 827 } 828 } 829 830 io_ctl_drop_pages(&io_ctl); 831 merge_space_tree(ctl); 832 ret = 1; 833 out: 834 btrfs_discard_update_discardable(ctl->private, ctl); 835 io_ctl_free(&io_ctl); 836 return ret; 837 free_cache: 838 io_ctl_drop_pages(&io_ctl); 839 __btrfs_remove_free_space_cache(ctl); 840 goto out; 841 } 842 843 int load_free_space_cache(struct btrfs_block_group *block_group) 844 { 845 struct btrfs_fs_info *fs_info = block_group->fs_info; 846 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 847 struct inode *inode; 848 struct btrfs_path *path; 849 int ret = 0; 850 bool matched; 851 u64 used = block_group->used; 852 853 /* 854 * If this block group has been marked to be cleared for one reason or 855 * another then we can't trust the on disk cache, so just return. 856 */ 857 spin_lock(&block_group->lock); 858 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 859 spin_unlock(&block_group->lock); 860 return 0; 861 } 862 spin_unlock(&block_group->lock); 863 864 path = btrfs_alloc_path(); 865 if (!path) 866 return 0; 867 path->search_commit_root = 1; 868 path->skip_locking = 1; 869 870 /* 871 * We must pass a path with search_commit_root set to btrfs_iget in 872 * order to avoid a deadlock when allocating extents for the tree root. 873 * 874 * When we are COWing an extent buffer from the tree root, when looking 875 * for a free extent, at extent-tree.c:find_free_extent(), we can find 876 * block group without its free space cache loaded. When we find one 877 * we must load its space cache which requires reading its free space 878 * cache's inode item from the root tree. If this inode item is located 879 * in the same leaf that we started COWing before, then we end up in 880 * deadlock on the extent buffer (trying to read lock it when we 881 * previously write locked it). 882 * 883 * It's safe to read the inode item using the commit root because 884 * block groups, once loaded, stay in memory forever (until they are 885 * removed) as well as their space caches once loaded. New block groups 886 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 887 * we will never try to read their inode item while the fs is mounted. 888 */ 889 inode = lookup_free_space_inode(block_group, path); 890 if (IS_ERR(inode)) { 891 btrfs_free_path(path); 892 return 0; 893 } 894 895 /* We may have converted the inode and made the cache invalid. */ 896 spin_lock(&block_group->lock); 897 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 898 spin_unlock(&block_group->lock); 899 btrfs_free_path(path); 900 goto out; 901 } 902 spin_unlock(&block_group->lock); 903 904 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 905 path, block_group->start); 906 btrfs_free_path(path); 907 if (ret <= 0) 908 goto out; 909 910 spin_lock(&ctl->tree_lock); 911 matched = (ctl->free_space == (block_group->length - used - 912 block_group->bytes_super)); 913 spin_unlock(&ctl->tree_lock); 914 915 if (!matched) { 916 __btrfs_remove_free_space_cache(ctl); 917 btrfs_warn(fs_info, 918 "block group %llu has wrong amount of free space", 919 block_group->start); 920 ret = -1; 921 } 922 out: 923 if (ret < 0) { 924 /* This cache is bogus, make sure it gets cleared */ 925 spin_lock(&block_group->lock); 926 block_group->disk_cache_state = BTRFS_DC_CLEAR; 927 spin_unlock(&block_group->lock); 928 ret = 0; 929 930 btrfs_warn(fs_info, 931 "failed to load free space cache for block group %llu, rebuilding it now", 932 block_group->start); 933 } 934 935 iput(inode); 936 return ret; 937 } 938 939 static noinline_for_stack 940 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 941 struct btrfs_free_space_ctl *ctl, 942 struct btrfs_block_group *block_group, 943 int *entries, int *bitmaps, 944 struct list_head *bitmap_list) 945 { 946 int ret; 947 struct btrfs_free_cluster *cluster = NULL; 948 struct btrfs_free_cluster *cluster_locked = NULL; 949 struct rb_node *node = rb_first(&ctl->free_space_offset); 950 struct btrfs_trim_range *trim_entry; 951 952 /* Get the cluster for this block_group if it exists */ 953 if (block_group && !list_empty(&block_group->cluster_list)) { 954 cluster = list_entry(block_group->cluster_list.next, 955 struct btrfs_free_cluster, 956 block_group_list); 957 } 958 959 if (!node && cluster) { 960 cluster_locked = cluster; 961 spin_lock(&cluster_locked->lock); 962 node = rb_first(&cluster->root); 963 cluster = NULL; 964 } 965 966 /* Write out the extent entries */ 967 while (node) { 968 struct btrfs_free_space *e; 969 970 e = rb_entry(node, struct btrfs_free_space, offset_index); 971 *entries += 1; 972 973 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 974 e->bitmap); 975 if (ret) 976 goto fail; 977 978 if (e->bitmap) { 979 list_add_tail(&e->list, bitmap_list); 980 *bitmaps += 1; 981 } 982 node = rb_next(node); 983 if (!node && cluster) { 984 node = rb_first(&cluster->root); 985 cluster_locked = cluster; 986 spin_lock(&cluster_locked->lock); 987 cluster = NULL; 988 } 989 } 990 if (cluster_locked) { 991 spin_unlock(&cluster_locked->lock); 992 cluster_locked = NULL; 993 } 994 995 /* 996 * Make sure we don't miss any range that was removed from our rbtree 997 * because trimming is running. Otherwise after a umount+mount (or crash 998 * after committing the transaction) we would leak free space and get 999 * an inconsistent free space cache report from fsck. 1000 */ 1001 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 1002 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 1003 trim_entry->bytes, NULL); 1004 if (ret) 1005 goto fail; 1006 *entries += 1; 1007 } 1008 1009 return 0; 1010 fail: 1011 if (cluster_locked) 1012 spin_unlock(&cluster_locked->lock); 1013 return -ENOSPC; 1014 } 1015 1016 static noinline_for_stack int 1017 update_cache_item(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, 1019 struct inode *inode, 1020 struct btrfs_path *path, u64 offset, 1021 int entries, int bitmaps) 1022 { 1023 struct btrfs_key key; 1024 struct btrfs_free_space_header *header; 1025 struct extent_buffer *leaf; 1026 int ret; 1027 1028 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1029 key.offset = offset; 1030 key.type = 0; 1031 1032 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1033 if (ret < 0) { 1034 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1035 EXTENT_DELALLOC, 0, 0, NULL); 1036 goto fail; 1037 } 1038 leaf = path->nodes[0]; 1039 if (ret > 0) { 1040 struct btrfs_key found_key; 1041 ASSERT(path->slots[0]); 1042 path->slots[0]--; 1043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1044 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1045 found_key.offset != offset) { 1046 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1047 inode->i_size - 1, EXTENT_DELALLOC, 0, 1048 0, NULL); 1049 btrfs_release_path(path); 1050 goto fail; 1051 } 1052 } 1053 1054 BTRFS_I(inode)->generation = trans->transid; 1055 header = btrfs_item_ptr(leaf, path->slots[0], 1056 struct btrfs_free_space_header); 1057 btrfs_set_free_space_entries(leaf, header, entries); 1058 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1059 btrfs_set_free_space_generation(leaf, header, trans->transid); 1060 btrfs_mark_buffer_dirty(leaf); 1061 btrfs_release_path(path); 1062 1063 return 0; 1064 1065 fail: 1066 return -1; 1067 } 1068 1069 static noinline_for_stack int write_pinned_extent_entries( 1070 struct btrfs_block_group *block_group, 1071 struct btrfs_io_ctl *io_ctl, 1072 int *entries) 1073 { 1074 u64 start, extent_start, extent_end, len; 1075 struct extent_io_tree *unpin = NULL; 1076 int ret; 1077 1078 if (!block_group) 1079 return 0; 1080 1081 /* 1082 * We want to add any pinned extents to our free space cache 1083 * so we don't leak the space 1084 * 1085 * We shouldn't have switched the pinned extents yet so this is the 1086 * right one 1087 */ 1088 unpin = block_group->fs_info->pinned_extents; 1089 1090 start = block_group->start; 1091 1092 while (start < block_group->start + block_group->length) { 1093 ret = find_first_extent_bit(unpin, start, 1094 &extent_start, &extent_end, 1095 EXTENT_DIRTY, NULL); 1096 if (ret) 1097 return 0; 1098 1099 /* This pinned extent is out of our range */ 1100 if (extent_start >= block_group->start + block_group->length) 1101 return 0; 1102 1103 extent_start = max(extent_start, start); 1104 extent_end = min(block_group->start + block_group->length, 1105 extent_end + 1); 1106 len = extent_end - extent_start; 1107 1108 *entries += 1; 1109 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1110 if (ret) 1111 return -ENOSPC; 1112 1113 start = extent_end; 1114 } 1115 1116 return 0; 1117 } 1118 1119 static noinline_for_stack int 1120 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1121 { 1122 struct btrfs_free_space *entry, *next; 1123 int ret; 1124 1125 /* Write out the bitmaps */ 1126 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1127 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1128 if (ret) 1129 return -ENOSPC; 1130 list_del_init(&entry->list); 1131 } 1132 1133 return 0; 1134 } 1135 1136 static int flush_dirty_cache(struct inode *inode) 1137 { 1138 int ret; 1139 1140 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1141 if (ret) 1142 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1143 EXTENT_DELALLOC, 0, 0, NULL); 1144 1145 return ret; 1146 } 1147 1148 static void noinline_for_stack 1149 cleanup_bitmap_list(struct list_head *bitmap_list) 1150 { 1151 struct btrfs_free_space *entry, *next; 1152 1153 list_for_each_entry_safe(entry, next, bitmap_list, list) 1154 list_del_init(&entry->list); 1155 } 1156 1157 static void noinline_for_stack 1158 cleanup_write_cache_enospc(struct inode *inode, 1159 struct btrfs_io_ctl *io_ctl, 1160 struct extent_state **cached_state) 1161 { 1162 io_ctl_drop_pages(io_ctl); 1163 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1164 i_size_read(inode) - 1, cached_state); 1165 } 1166 1167 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1168 struct btrfs_trans_handle *trans, 1169 struct btrfs_block_group *block_group, 1170 struct btrfs_io_ctl *io_ctl, 1171 struct btrfs_path *path, u64 offset) 1172 { 1173 int ret; 1174 struct inode *inode = io_ctl->inode; 1175 1176 if (!inode) 1177 return 0; 1178 1179 /* Flush the dirty pages in the cache file. */ 1180 ret = flush_dirty_cache(inode); 1181 if (ret) 1182 goto out; 1183 1184 /* Update the cache item to tell everyone this cache file is valid. */ 1185 ret = update_cache_item(trans, root, inode, path, offset, 1186 io_ctl->entries, io_ctl->bitmaps); 1187 out: 1188 io_ctl_free(io_ctl); 1189 if (ret) { 1190 invalidate_inode_pages2(inode->i_mapping); 1191 BTRFS_I(inode)->generation = 0; 1192 if (block_group) { 1193 #ifdef DEBUG 1194 btrfs_err(root->fs_info, 1195 "failed to write free space cache for block group %llu", 1196 block_group->start); 1197 #endif 1198 } 1199 } 1200 btrfs_update_inode(trans, root, inode); 1201 1202 if (block_group) { 1203 /* the dirty list is protected by the dirty_bgs_lock */ 1204 spin_lock(&trans->transaction->dirty_bgs_lock); 1205 1206 /* the disk_cache_state is protected by the block group lock */ 1207 spin_lock(&block_group->lock); 1208 1209 /* 1210 * only mark this as written if we didn't get put back on 1211 * the dirty list while waiting for IO. Otherwise our 1212 * cache state won't be right, and we won't get written again 1213 */ 1214 if (!ret && list_empty(&block_group->dirty_list)) 1215 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1216 else if (ret) 1217 block_group->disk_cache_state = BTRFS_DC_ERROR; 1218 1219 spin_unlock(&block_group->lock); 1220 spin_unlock(&trans->transaction->dirty_bgs_lock); 1221 io_ctl->inode = NULL; 1222 iput(inode); 1223 } 1224 1225 return ret; 1226 1227 } 1228 1229 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 1230 struct btrfs_trans_handle *trans, 1231 struct btrfs_io_ctl *io_ctl, 1232 struct btrfs_path *path) 1233 { 1234 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); 1235 } 1236 1237 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1238 struct btrfs_block_group *block_group, 1239 struct btrfs_path *path) 1240 { 1241 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1242 block_group, &block_group->io_ctl, 1243 path, block_group->start); 1244 } 1245 1246 /** 1247 * __btrfs_write_out_cache - write out cached info to an inode 1248 * @root - the root the inode belongs to 1249 * @ctl - the free space cache we are going to write out 1250 * @block_group - the block_group for this cache if it belongs to a block_group 1251 * @trans - the trans handle 1252 * 1253 * This function writes out a free space cache struct to disk for quick recovery 1254 * on mount. This will return 0 if it was successful in writing the cache out, 1255 * or an errno if it was not. 1256 */ 1257 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1258 struct btrfs_free_space_ctl *ctl, 1259 struct btrfs_block_group *block_group, 1260 struct btrfs_io_ctl *io_ctl, 1261 struct btrfs_trans_handle *trans) 1262 { 1263 struct extent_state *cached_state = NULL; 1264 LIST_HEAD(bitmap_list); 1265 int entries = 0; 1266 int bitmaps = 0; 1267 int ret; 1268 int must_iput = 0; 1269 1270 if (!i_size_read(inode)) 1271 return -EIO; 1272 1273 WARN_ON(io_ctl->pages); 1274 ret = io_ctl_init(io_ctl, inode, 1); 1275 if (ret) 1276 return ret; 1277 1278 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1279 down_write(&block_group->data_rwsem); 1280 spin_lock(&block_group->lock); 1281 if (block_group->delalloc_bytes) { 1282 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1283 spin_unlock(&block_group->lock); 1284 up_write(&block_group->data_rwsem); 1285 BTRFS_I(inode)->generation = 0; 1286 ret = 0; 1287 must_iput = 1; 1288 goto out; 1289 } 1290 spin_unlock(&block_group->lock); 1291 } 1292 1293 /* Lock all pages first so we can lock the extent safely. */ 1294 ret = io_ctl_prepare_pages(io_ctl, inode, 0); 1295 if (ret) 1296 goto out_unlock; 1297 1298 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1299 &cached_state); 1300 1301 io_ctl_set_generation(io_ctl, trans->transid); 1302 1303 mutex_lock(&ctl->cache_writeout_mutex); 1304 /* Write out the extent entries in the free space cache */ 1305 spin_lock(&ctl->tree_lock); 1306 ret = write_cache_extent_entries(io_ctl, ctl, 1307 block_group, &entries, &bitmaps, 1308 &bitmap_list); 1309 if (ret) 1310 goto out_nospc_locked; 1311 1312 /* 1313 * Some spaces that are freed in the current transaction are pinned, 1314 * they will be added into free space cache after the transaction is 1315 * committed, we shouldn't lose them. 1316 * 1317 * If this changes while we are working we'll get added back to 1318 * the dirty list and redo it. No locking needed 1319 */ 1320 ret = write_pinned_extent_entries(block_group, io_ctl, &entries); 1321 if (ret) 1322 goto out_nospc_locked; 1323 1324 /* 1325 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1326 * locked while doing it because a concurrent trim can be manipulating 1327 * or freeing the bitmap. 1328 */ 1329 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1330 spin_unlock(&ctl->tree_lock); 1331 mutex_unlock(&ctl->cache_writeout_mutex); 1332 if (ret) 1333 goto out_nospc; 1334 1335 /* Zero out the rest of the pages just to make sure */ 1336 io_ctl_zero_remaining_pages(io_ctl); 1337 1338 /* Everything is written out, now we dirty the pages in the file. */ 1339 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, 1340 i_size_read(inode), &cached_state); 1341 if (ret) 1342 goto out_nospc; 1343 1344 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1345 up_write(&block_group->data_rwsem); 1346 /* 1347 * Release the pages and unlock the extent, we will flush 1348 * them out later 1349 */ 1350 io_ctl_drop_pages(io_ctl); 1351 1352 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1353 i_size_read(inode) - 1, &cached_state); 1354 1355 /* 1356 * at this point the pages are under IO and we're happy, 1357 * The caller is responsible for waiting on them and updating the 1358 * the cache and the inode 1359 */ 1360 io_ctl->entries = entries; 1361 io_ctl->bitmaps = bitmaps; 1362 1363 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1364 if (ret) 1365 goto out; 1366 1367 return 0; 1368 1369 out: 1370 io_ctl->inode = NULL; 1371 io_ctl_free(io_ctl); 1372 if (ret) { 1373 invalidate_inode_pages2(inode->i_mapping); 1374 BTRFS_I(inode)->generation = 0; 1375 } 1376 btrfs_update_inode(trans, root, inode); 1377 if (must_iput) 1378 iput(inode); 1379 return ret; 1380 1381 out_nospc_locked: 1382 cleanup_bitmap_list(&bitmap_list); 1383 spin_unlock(&ctl->tree_lock); 1384 mutex_unlock(&ctl->cache_writeout_mutex); 1385 1386 out_nospc: 1387 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1388 1389 out_unlock: 1390 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1391 up_write(&block_group->data_rwsem); 1392 1393 goto out; 1394 } 1395 1396 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1397 struct btrfs_block_group *block_group, 1398 struct btrfs_path *path) 1399 { 1400 struct btrfs_fs_info *fs_info = trans->fs_info; 1401 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1402 struct inode *inode; 1403 int ret = 0; 1404 1405 spin_lock(&block_group->lock); 1406 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1407 spin_unlock(&block_group->lock); 1408 return 0; 1409 } 1410 spin_unlock(&block_group->lock); 1411 1412 inode = lookup_free_space_inode(block_group, path); 1413 if (IS_ERR(inode)) 1414 return 0; 1415 1416 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1417 block_group, &block_group->io_ctl, trans); 1418 if (ret) { 1419 #ifdef DEBUG 1420 btrfs_err(fs_info, 1421 "failed to write free space cache for block group %llu", 1422 block_group->start); 1423 #endif 1424 spin_lock(&block_group->lock); 1425 block_group->disk_cache_state = BTRFS_DC_ERROR; 1426 spin_unlock(&block_group->lock); 1427 1428 block_group->io_ctl.inode = NULL; 1429 iput(inode); 1430 } 1431 1432 /* 1433 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1434 * to wait for IO and put the inode 1435 */ 1436 1437 return ret; 1438 } 1439 1440 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1441 u64 offset) 1442 { 1443 ASSERT(offset >= bitmap_start); 1444 offset -= bitmap_start; 1445 return (unsigned long)(div_u64(offset, unit)); 1446 } 1447 1448 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1449 { 1450 return (unsigned long)(div_u64(bytes, unit)); 1451 } 1452 1453 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1454 u64 offset) 1455 { 1456 u64 bitmap_start; 1457 u64 bytes_per_bitmap; 1458 1459 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1460 bitmap_start = offset - ctl->start; 1461 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1462 bitmap_start *= bytes_per_bitmap; 1463 bitmap_start += ctl->start; 1464 1465 return bitmap_start; 1466 } 1467 1468 static int tree_insert_offset(struct rb_root *root, u64 offset, 1469 struct rb_node *node, int bitmap) 1470 { 1471 struct rb_node **p = &root->rb_node; 1472 struct rb_node *parent = NULL; 1473 struct btrfs_free_space *info; 1474 1475 while (*p) { 1476 parent = *p; 1477 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1478 1479 if (offset < info->offset) { 1480 p = &(*p)->rb_left; 1481 } else if (offset > info->offset) { 1482 p = &(*p)->rb_right; 1483 } else { 1484 /* 1485 * we could have a bitmap entry and an extent entry 1486 * share the same offset. If this is the case, we want 1487 * the extent entry to always be found first if we do a 1488 * linear search through the tree, since we want to have 1489 * the quickest allocation time, and allocating from an 1490 * extent is faster than allocating from a bitmap. So 1491 * if we're inserting a bitmap and we find an entry at 1492 * this offset, we want to go right, or after this entry 1493 * logically. If we are inserting an extent and we've 1494 * found a bitmap, we want to go left, or before 1495 * logically. 1496 */ 1497 if (bitmap) { 1498 if (info->bitmap) { 1499 WARN_ON_ONCE(1); 1500 return -EEXIST; 1501 } 1502 p = &(*p)->rb_right; 1503 } else { 1504 if (!info->bitmap) { 1505 WARN_ON_ONCE(1); 1506 return -EEXIST; 1507 } 1508 p = &(*p)->rb_left; 1509 } 1510 } 1511 } 1512 1513 rb_link_node(node, parent, p); 1514 rb_insert_color(node, root); 1515 1516 return 0; 1517 } 1518 1519 /* 1520 * searches the tree for the given offset. 1521 * 1522 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1523 * want a section that has at least bytes size and comes at or after the given 1524 * offset. 1525 */ 1526 static struct btrfs_free_space * 1527 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1528 u64 offset, int bitmap_only, int fuzzy) 1529 { 1530 struct rb_node *n = ctl->free_space_offset.rb_node; 1531 struct btrfs_free_space *entry, *prev = NULL; 1532 1533 /* find entry that is closest to the 'offset' */ 1534 while (1) { 1535 if (!n) { 1536 entry = NULL; 1537 break; 1538 } 1539 1540 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1541 prev = entry; 1542 1543 if (offset < entry->offset) 1544 n = n->rb_left; 1545 else if (offset > entry->offset) 1546 n = n->rb_right; 1547 else 1548 break; 1549 } 1550 1551 if (bitmap_only) { 1552 if (!entry) 1553 return NULL; 1554 if (entry->bitmap) 1555 return entry; 1556 1557 /* 1558 * bitmap entry and extent entry may share same offset, 1559 * in that case, bitmap entry comes after extent entry. 1560 */ 1561 n = rb_next(n); 1562 if (!n) 1563 return NULL; 1564 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1565 if (entry->offset != offset) 1566 return NULL; 1567 1568 WARN_ON(!entry->bitmap); 1569 return entry; 1570 } else if (entry) { 1571 if (entry->bitmap) { 1572 /* 1573 * if previous extent entry covers the offset, 1574 * we should return it instead of the bitmap entry 1575 */ 1576 n = rb_prev(&entry->offset_index); 1577 if (n) { 1578 prev = rb_entry(n, struct btrfs_free_space, 1579 offset_index); 1580 if (!prev->bitmap && 1581 prev->offset + prev->bytes > offset) 1582 entry = prev; 1583 } 1584 } 1585 return entry; 1586 } 1587 1588 if (!prev) 1589 return NULL; 1590 1591 /* find last entry before the 'offset' */ 1592 entry = prev; 1593 if (entry->offset > offset) { 1594 n = rb_prev(&entry->offset_index); 1595 if (n) { 1596 entry = rb_entry(n, struct btrfs_free_space, 1597 offset_index); 1598 ASSERT(entry->offset <= offset); 1599 } else { 1600 if (fuzzy) 1601 return entry; 1602 else 1603 return NULL; 1604 } 1605 } 1606 1607 if (entry->bitmap) { 1608 n = rb_prev(&entry->offset_index); 1609 if (n) { 1610 prev = rb_entry(n, struct btrfs_free_space, 1611 offset_index); 1612 if (!prev->bitmap && 1613 prev->offset + prev->bytes > offset) 1614 return prev; 1615 } 1616 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1617 return entry; 1618 } else if (entry->offset + entry->bytes > offset) 1619 return entry; 1620 1621 if (!fuzzy) 1622 return NULL; 1623 1624 while (1) { 1625 if (entry->bitmap) { 1626 if (entry->offset + BITS_PER_BITMAP * 1627 ctl->unit > offset) 1628 break; 1629 } else { 1630 if (entry->offset + entry->bytes > offset) 1631 break; 1632 } 1633 1634 n = rb_next(&entry->offset_index); 1635 if (!n) 1636 return NULL; 1637 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1638 } 1639 return entry; 1640 } 1641 1642 static inline void 1643 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1644 struct btrfs_free_space *info) 1645 { 1646 rb_erase(&info->offset_index, &ctl->free_space_offset); 1647 ctl->free_extents--; 1648 1649 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1650 ctl->discardable_extents[BTRFS_STAT_CURR]--; 1651 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; 1652 } 1653 } 1654 1655 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1656 struct btrfs_free_space *info) 1657 { 1658 __unlink_free_space(ctl, info); 1659 ctl->free_space -= info->bytes; 1660 } 1661 1662 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1663 struct btrfs_free_space *info) 1664 { 1665 int ret = 0; 1666 1667 ASSERT(info->bytes || info->bitmap); 1668 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1669 &info->offset_index, (info->bitmap != NULL)); 1670 if (ret) 1671 return ret; 1672 1673 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1674 ctl->discardable_extents[BTRFS_STAT_CURR]++; 1675 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 1676 } 1677 1678 ctl->free_space += info->bytes; 1679 ctl->free_extents++; 1680 return ret; 1681 } 1682 1683 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1684 { 1685 struct btrfs_block_group *block_group = ctl->private; 1686 u64 max_bytes; 1687 u64 bitmap_bytes; 1688 u64 extent_bytes; 1689 u64 size = block_group->length; 1690 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1691 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1692 1693 max_bitmaps = max_t(u64, max_bitmaps, 1); 1694 1695 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1696 1697 /* 1698 * We are trying to keep the total amount of memory used per 1GiB of 1699 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation 1700 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of 1701 * bitmaps, we may end up using more memory than this. 1702 */ 1703 if (size < SZ_1G) 1704 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1705 else 1706 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1707 1708 bitmap_bytes = ctl->total_bitmaps * ctl->unit; 1709 1710 /* 1711 * we want the extent entry threshold to always be at most 1/2 the max 1712 * bytes we can have, or whatever is less than that. 1713 */ 1714 extent_bytes = max_bytes - bitmap_bytes; 1715 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1716 1717 ctl->extents_thresh = 1718 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1719 } 1720 1721 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1722 struct btrfs_free_space *info, 1723 u64 offset, u64 bytes) 1724 { 1725 unsigned long start, count, end; 1726 int extent_delta = -1; 1727 1728 start = offset_to_bit(info->offset, ctl->unit, offset); 1729 count = bytes_to_bits(bytes, ctl->unit); 1730 end = start + count; 1731 ASSERT(end <= BITS_PER_BITMAP); 1732 1733 bitmap_clear(info->bitmap, start, count); 1734 1735 info->bytes -= bytes; 1736 if (info->max_extent_size > ctl->unit) 1737 info->max_extent_size = 0; 1738 1739 if (start && test_bit(start - 1, info->bitmap)) 1740 extent_delta++; 1741 1742 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1743 extent_delta++; 1744 1745 info->bitmap_extents += extent_delta; 1746 if (!btrfs_free_space_trimmed(info)) { 1747 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1748 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 1749 } 1750 } 1751 1752 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1753 struct btrfs_free_space *info, u64 offset, 1754 u64 bytes) 1755 { 1756 __bitmap_clear_bits(ctl, info, offset, bytes); 1757 ctl->free_space -= bytes; 1758 } 1759 1760 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1761 struct btrfs_free_space *info, u64 offset, 1762 u64 bytes) 1763 { 1764 unsigned long start, count, end; 1765 int extent_delta = 1; 1766 1767 start = offset_to_bit(info->offset, ctl->unit, offset); 1768 count = bytes_to_bits(bytes, ctl->unit); 1769 end = start + count; 1770 ASSERT(end <= BITS_PER_BITMAP); 1771 1772 bitmap_set(info->bitmap, start, count); 1773 1774 info->bytes += bytes; 1775 ctl->free_space += bytes; 1776 1777 if (start && test_bit(start - 1, info->bitmap)) 1778 extent_delta--; 1779 1780 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1781 extent_delta--; 1782 1783 info->bitmap_extents += extent_delta; 1784 if (!btrfs_free_space_trimmed(info)) { 1785 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1786 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; 1787 } 1788 } 1789 1790 /* 1791 * If we can not find suitable extent, we will use bytes to record 1792 * the size of the max extent. 1793 */ 1794 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1795 struct btrfs_free_space *bitmap_info, u64 *offset, 1796 u64 *bytes, bool for_alloc) 1797 { 1798 unsigned long found_bits = 0; 1799 unsigned long max_bits = 0; 1800 unsigned long bits, i; 1801 unsigned long next_zero; 1802 unsigned long extent_bits; 1803 1804 /* 1805 * Skip searching the bitmap if we don't have a contiguous section that 1806 * is large enough for this allocation. 1807 */ 1808 if (for_alloc && 1809 bitmap_info->max_extent_size && 1810 bitmap_info->max_extent_size < *bytes) { 1811 *bytes = bitmap_info->max_extent_size; 1812 return -1; 1813 } 1814 1815 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1816 max_t(u64, *offset, bitmap_info->offset)); 1817 bits = bytes_to_bits(*bytes, ctl->unit); 1818 1819 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1820 if (for_alloc && bits == 1) { 1821 found_bits = 1; 1822 break; 1823 } 1824 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1825 BITS_PER_BITMAP, i); 1826 extent_bits = next_zero - i; 1827 if (extent_bits >= bits) { 1828 found_bits = extent_bits; 1829 break; 1830 } else if (extent_bits > max_bits) { 1831 max_bits = extent_bits; 1832 } 1833 i = next_zero; 1834 } 1835 1836 if (found_bits) { 1837 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1838 *bytes = (u64)(found_bits) * ctl->unit; 1839 return 0; 1840 } 1841 1842 *bytes = (u64)(max_bits) * ctl->unit; 1843 bitmap_info->max_extent_size = *bytes; 1844 return -1; 1845 } 1846 1847 static inline u64 get_max_extent_size(struct btrfs_free_space *entry) 1848 { 1849 if (entry->bitmap) 1850 return entry->max_extent_size; 1851 return entry->bytes; 1852 } 1853 1854 /* Cache the size of the max extent in bytes */ 1855 static struct btrfs_free_space * 1856 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1857 unsigned long align, u64 *max_extent_size) 1858 { 1859 struct btrfs_free_space *entry; 1860 struct rb_node *node; 1861 u64 tmp; 1862 u64 align_off; 1863 int ret; 1864 1865 if (!ctl->free_space_offset.rb_node) 1866 goto out; 1867 1868 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1869 if (!entry) 1870 goto out; 1871 1872 for (node = &entry->offset_index; node; node = rb_next(node)) { 1873 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1874 if (entry->bytes < *bytes) { 1875 *max_extent_size = max(get_max_extent_size(entry), 1876 *max_extent_size); 1877 continue; 1878 } 1879 1880 /* make sure the space returned is big enough 1881 * to match our requested alignment 1882 */ 1883 if (*bytes >= align) { 1884 tmp = entry->offset - ctl->start + align - 1; 1885 tmp = div64_u64(tmp, align); 1886 tmp = tmp * align + ctl->start; 1887 align_off = tmp - entry->offset; 1888 } else { 1889 align_off = 0; 1890 tmp = entry->offset; 1891 } 1892 1893 if (entry->bytes < *bytes + align_off) { 1894 *max_extent_size = max(get_max_extent_size(entry), 1895 *max_extent_size); 1896 continue; 1897 } 1898 1899 if (entry->bitmap) { 1900 u64 size = *bytes; 1901 1902 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1903 if (!ret) { 1904 *offset = tmp; 1905 *bytes = size; 1906 return entry; 1907 } else { 1908 *max_extent_size = 1909 max(get_max_extent_size(entry), 1910 *max_extent_size); 1911 } 1912 continue; 1913 } 1914 1915 *offset = tmp; 1916 *bytes = entry->bytes - align_off; 1917 return entry; 1918 } 1919 out: 1920 return NULL; 1921 } 1922 1923 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl, 1924 struct btrfs_free_space *bitmap_info) 1925 { 1926 struct btrfs_block_group *block_group = ctl->private; 1927 u64 bytes = bitmap_info->bytes; 1928 unsigned int rs, re; 1929 int count = 0; 1930 1931 if (!block_group || !bytes) 1932 return count; 1933 1934 bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0, 1935 BITS_PER_BITMAP) { 1936 bytes -= (rs - re) * ctl->unit; 1937 count++; 1938 1939 if (!bytes) 1940 break; 1941 } 1942 1943 return count; 1944 } 1945 1946 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1947 struct btrfs_free_space *info, u64 offset) 1948 { 1949 info->offset = offset_to_bitmap(ctl, offset); 1950 info->bytes = 0; 1951 info->bitmap_extents = 0; 1952 INIT_LIST_HEAD(&info->list); 1953 link_free_space(ctl, info); 1954 ctl->total_bitmaps++; 1955 1956 ctl->op->recalc_thresholds(ctl); 1957 } 1958 1959 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1960 struct btrfs_free_space *bitmap_info) 1961 { 1962 /* 1963 * Normally when this is called, the bitmap is completely empty. However, 1964 * if we are blowing up the free space cache for one reason or another 1965 * via __btrfs_remove_free_space_cache(), then it may not be freed and 1966 * we may leave stats on the table. 1967 */ 1968 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { 1969 ctl->discardable_extents[BTRFS_STAT_CURR] -= 1970 bitmap_info->bitmap_extents; 1971 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; 1972 1973 } 1974 unlink_free_space(ctl, bitmap_info); 1975 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 1976 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1977 ctl->total_bitmaps--; 1978 ctl->op->recalc_thresholds(ctl); 1979 } 1980 1981 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1982 struct btrfs_free_space *bitmap_info, 1983 u64 *offset, u64 *bytes) 1984 { 1985 u64 end; 1986 u64 search_start, search_bytes; 1987 int ret; 1988 1989 again: 1990 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1991 1992 /* 1993 * We need to search for bits in this bitmap. We could only cover some 1994 * of the extent in this bitmap thanks to how we add space, so we need 1995 * to search for as much as it as we can and clear that amount, and then 1996 * go searching for the next bit. 1997 */ 1998 search_start = *offset; 1999 search_bytes = ctl->unit; 2000 search_bytes = min(search_bytes, end - search_start + 1); 2001 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 2002 false); 2003 if (ret < 0 || search_start != *offset) 2004 return -EINVAL; 2005 2006 /* We may have found more bits than what we need */ 2007 search_bytes = min(search_bytes, *bytes); 2008 2009 /* Cannot clear past the end of the bitmap */ 2010 search_bytes = min(search_bytes, end - search_start + 1); 2011 2012 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 2013 *offset += search_bytes; 2014 *bytes -= search_bytes; 2015 2016 if (*bytes) { 2017 struct rb_node *next = rb_next(&bitmap_info->offset_index); 2018 if (!bitmap_info->bytes) 2019 free_bitmap(ctl, bitmap_info); 2020 2021 /* 2022 * no entry after this bitmap, but we still have bytes to 2023 * remove, so something has gone wrong. 2024 */ 2025 if (!next) 2026 return -EINVAL; 2027 2028 bitmap_info = rb_entry(next, struct btrfs_free_space, 2029 offset_index); 2030 2031 /* 2032 * if the next entry isn't a bitmap we need to return to let the 2033 * extent stuff do its work. 2034 */ 2035 if (!bitmap_info->bitmap) 2036 return -EAGAIN; 2037 2038 /* 2039 * Ok the next item is a bitmap, but it may not actually hold 2040 * the information for the rest of this free space stuff, so 2041 * look for it, and if we don't find it return so we can try 2042 * everything over again. 2043 */ 2044 search_start = *offset; 2045 search_bytes = ctl->unit; 2046 ret = search_bitmap(ctl, bitmap_info, &search_start, 2047 &search_bytes, false); 2048 if (ret < 0 || search_start != *offset) 2049 return -EAGAIN; 2050 2051 goto again; 2052 } else if (!bitmap_info->bytes) 2053 free_bitmap(ctl, bitmap_info); 2054 2055 return 0; 2056 } 2057 2058 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 2059 struct btrfs_free_space *info, u64 offset, 2060 u64 bytes, enum btrfs_trim_state trim_state) 2061 { 2062 u64 bytes_to_set = 0; 2063 u64 end; 2064 2065 /* 2066 * This is a tradeoff to make bitmap trim state minimal. We mark the 2067 * whole bitmap untrimmed if at any point we add untrimmed regions. 2068 */ 2069 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { 2070 if (btrfs_free_space_trimmed(info)) { 2071 ctl->discardable_extents[BTRFS_STAT_CURR] += 2072 info->bitmap_extents; 2073 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 2074 } 2075 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2076 } 2077 2078 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 2079 2080 bytes_to_set = min(end - offset, bytes); 2081 2082 bitmap_set_bits(ctl, info, offset, bytes_to_set); 2083 2084 /* 2085 * We set some bytes, we have no idea what the max extent size is 2086 * anymore. 2087 */ 2088 info->max_extent_size = 0; 2089 2090 return bytes_to_set; 2091 2092 } 2093 2094 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 2095 struct btrfs_free_space *info) 2096 { 2097 struct btrfs_block_group *block_group = ctl->private; 2098 struct btrfs_fs_info *fs_info = block_group->fs_info; 2099 bool forced = false; 2100 2101 #ifdef CONFIG_BTRFS_DEBUG 2102 if (btrfs_should_fragment_free_space(block_group)) 2103 forced = true; 2104 #endif 2105 2106 /* This is a way to reclaim large regions from the bitmaps. */ 2107 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) 2108 return false; 2109 2110 /* 2111 * If we are below the extents threshold then we can add this as an 2112 * extent, and don't have to deal with the bitmap 2113 */ 2114 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2115 /* 2116 * If this block group has some small extents we don't want to 2117 * use up all of our free slots in the cache with them, we want 2118 * to reserve them to larger extents, however if we have plenty 2119 * of cache left then go ahead an dadd them, no sense in adding 2120 * the overhead of a bitmap if we don't have to. 2121 */ 2122 if (info->bytes <= fs_info->sectorsize * 8) { 2123 if (ctl->free_extents * 3 <= ctl->extents_thresh) 2124 return false; 2125 } else { 2126 return false; 2127 } 2128 } 2129 2130 /* 2131 * The original block groups from mkfs can be really small, like 8 2132 * megabytes, so don't bother with a bitmap for those entries. However 2133 * some block groups can be smaller than what a bitmap would cover but 2134 * are still large enough that they could overflow the 32k memory limit, 2135 * so allow those block groups to still be allowed to have a bitmap 2136 * entry. 2137 */ 2138 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2139 return false; 2140 2141 return true; 2142 } 2143 2144 static const struct btrfs_free_space_op free_space_op = { 2145 .recalc_thresholds = recalculate_thresholds, 2146 .use_bitmap = use_bitmap, 2147 }; 2148 2149 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2150 struct btrfs_free_space *info) 2151 { 2152 struct btrfs_free_space *bitmap_info; 2153 struct btrfs_block_group *block_group = NULL; 2154 int added = 0; 2155 u64 bytes, offset, bytes_added; 2156 enum btrfs_trim_state trim_state; 2157 int ret; 2158 2159 bytes = info->bytes; 2160 offset = info->offset; 2161 trim_state = info->trim_state; 2162 2163 if (!ctl->op->use_bitmap(ctl, info)) 2164 return 0; 2165 2166 if (ctl->op == &free_space_op) 2167 block_group = ctl->private; 2168 again: 2169 /* 2170 * Since we link bitmaps right into the cluster we need to see if we 2171 * have a cluster here, and if so and it has our bitmap we need to add 2172 * the free space to that bitmap. 2173 */ 2174 if (block_group && !list_empty(&block_group->cluster_list)) { 2175 struct btrfs_free_cluster *cluster; 2176 struct rb_node *node; 2177 struct btrfs_free_space *entry; 2178 2179 cluster = list_entry(block_group->cluster_list.next, 2180 struct btrfs_free_cluster, 2181 block_group_list); 2182 spin_lock(&cluster->lock); 2183 node = rb_first(&cluster->root); 2184 if (!node) { 2185 spin_unlock(&cluster->lock); 2186 goto no_cluster_bitmap; 2187 } 2188 2189 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2190 if (!entry->bitmap) { 2191 spin_unlock(&cluster->lock); 2192 goto no_cluster_bitmap; 2193 } 2194 2195 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2196 bytes_added = add_bytes_to_bitmap(ctl, entry, offset, 2197 bytes, trim_state); 2198 bytes -= bytes_added; 2199 offset += bytes_added; 2200 } 2201 spin_unlock(&cluster->lock); 2202 if (!bytes) { 2203 ret = 1; 2204 goto out; 2205 } 2206 } 2207 2208 no_cluster_bitmap: 2209 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2210 1, 0); 2211 if (!bitmap_info) { 2212 ASSERT(added == 0); 2213 goto new_bitmap; 2214 } 2215 2216 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 2217 trim_state); 2218 bytes -= bytes_added; 2219 offset += bytes_added; 2220 added = 0; 2221 2222 if (!bytes) { 2223 ret = 1; 2224 goto out; 2225 } else 2226 goto again; 2227 2228 new_bitmap: 2229 if (info && info->bitmap) { 2230 add_new_bitmap(ctl, info, offset); 2231 added = 1; 2232 info = NULL; 2233 goto again; 2234 } else { 2235 spin_unlock(&ctl->tree_lock); 2236 2237 /* no pre-allocated info, allocate a new one */ 2238 if (!info) { 2239 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2240 GFP_NOFS); 2241 if (!info) { 2242 spin_lock(&ctl->tree_lock); 2243 ret = -ENOMEM; 2244 goto out; 2245 } 2246 } 2247 2248 /* allocate the bitmap */ 2249 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2250 GFP_NOFS); 2251 info->trim_state = BTRFS_TRIM_STATE_TRIMMED; 2252 spin_lock(&ctl->tree_lock); 2253 if (!info->bitmap) { 2254 ret = -ENOMEM; 2255 goto out; 2256 } 2257 goto again; 2258 } 2259 2260 out: 2261 if (info) { 2262 if (info->bitmap) 2263 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2264 info->bitmap); 2265 kmem_cache_free(btrfs_free_space_cachep, info); 2266 } 2267 2268 return ret; 2269 } 2270 2271 /* 2272 * Free space merging rules: 2273 * 1) Merge trimmed areas together 2274 * 2) Let untrimmed areas coalesce with trimmed areas 2275 * 3) Always pull neighboring regions from bitmaps 2276 * 2277 * The above rules are for when we merge free space based on btrfs_trim_state. 2278 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the 2279 * same reason: to promote larger extent regions which makes life easier for 2280 * find_free_extent(). Rule 2 enables coalescing based on the common path 2281 * being returning free space from btrfs_finish_extent_commit(). So when free 2282 * space is trimmed, it will prevent aggregating trimmed new region and 2283 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents 2284 * and provide find_free_extent() with the largest extents possible hoping for 2285 * the reuse path. 2286 */ 2287 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2288 struct btrfs_free_space *info, bool update_stat) 2289 { 2290 struct btrfs_free_space *left_info; 2291 struct btrfs_free_space *right_info; 2292 bool merged = false; 2293 u64 offset = info->offset; 2294 u64 bytes = info->bytes; 2295 const bool is_trimmed = btrfs_free_space_trimmed(info); 2296 2297 /* 2298 * first we want to see if there is free space adjacent to the range we 2299 * are adding, if there is remove that struct and add a new one to 2300 * cover the entire range 2301 */ 2302 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2303 if (right_info && rb_prev(&right_info->offset_index)) 2304 left_info = rb_entry(rb_prev(&right_info->offset_index), 2305 struct btrfs_free_space, offset_index); 2306 else 2307 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2308 2309 /* See try_merge_free_space() comment. */ 2310 if (right_info && !right_info->bitmap && 2311 (!is_trimmed || btrfs_free_space_trimmed(right_info))) { 2312 if (update_stat) 2313 unlink_free_space(ctl, right_info); 2314 else 2315 __unlink_free_space(ctl, right_info); 2316 info->bytes += right_info->bytes; 2317 kmem_cache_free(btrfs_free_space_cachep, right_info); 2318 merged = true; 2319 } 2320 2321 /* See try_merge_free_space() comment. */ 2322 if (left_info && !left_info->bitmap && 2323 left_info->offset + left_info->bytes == offset && 2324 (!is_trimmed || btrfs_free_space_trimmed(left_info))) { 2325 if (update_stat) 2326 unlink_free_space(ctl, left_info); 2327 else 2328 __unlink_free_space(ctl, left_info); 2329 info->offset = left_info->offset; 2330 info->bytes += left_info->bytes; 2331 kmem_cache_free(btrfs_free_space_cachep, left_info); 2332 merged = true; 2333 } 2334 2335 return merged; 2336 } 2337 2338 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2339 struct btrfs_free_space *info, 2340 bool update_stat) 2341 { 2342 struct btrfs_free_space *bitmap; 2343 unsigned long i; 2344 unsigned long j; 2345 const u64 end = info->offset + info->bytes; 2346 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2347 u64 bytes; 2348 2349 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2350 if (!bitmap) 2351 return false; 2352 2353 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2354 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2355 if (j == i) 2356 return false; 2357 bytes = (j - i) * ctl->unit; 2358 info->bytes += bytes; 2359 2360 /* See try_merge_free_space() comment. */ 2361 if (!btrfs_free_space_trimmed(bitmap)) 2362 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2363 2364 if (update_stat) 2365 bitmap_clear_bits(ctl, bitmap, end, bytes); 2366 else 2367 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2368 2369 if (!bitmap->bytes) 2370 free_bitmap(ctl, bitmap); 2371 2372 return true; 2373 } 2374 2375 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2376 struct btrfs_free_space *info, 2377 bool update_stat) 2378 { 2379 struct btrfs_free_space *bitmap; 2380 u64 bitmap_offset; 2381 unsigned long i; 2382 unsigned long j; 2383 unsigned long prev_j; 2384 u64 bytes; 2385 2386 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2387 /* If we're on a boundary, try the previous logical bitmap. */ 2388 if (bitmap_offset == info->offset) { 2389 if (info->offset == 0) 2390 return false; 2391 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2392 } 2393 2394 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2395 if (!bitmap) 2396 return false; 2397 2398 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2399 j = 0; 2400 prev_j = (unsigned long)-1; 2401 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2402 if (j > i) 2403 break; 2404 prev_j = j; 2405 } 2406 if (prev_j == i) 2407 return false; 2408 2409 if (prev_j == (unsigned long)-1) 2410 bytes = (i + 1) * ctl->unit; 2411 else 2412 bytes = (i - prev_j) * ctl->unit; 2413 2414 info->offset -= bytes; 2415 info->bytes += bytes; 2416 2417 /* See try_merge_free_space() comment. */ 2418 if (!btrfs_free_space_trimmed(bitmap)) 2419 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2420 2421 if (update_stat) 2422 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2423 else 2424 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2425 2426 if (!bitmap->bytes) 2427 free_bitmap(ctl, bitmap); 2428 2429 return true; 2430 } 2431 2432 /* 2433 * We prefer always to allocate from extent entries, both for clustered and 2434 * non-clustered allocation requests. So when attempting to add a new extent 2435 * entry, try to see if there's adjacent free space in bitmap entries, and if 2436 * there is, migrate that space from the bitmaps to the extent. 2437 * Like this we get better chances of satisfying space allocation requests 2438 * because we attempt to satisfy them based on a single cache entry, and never 2439 * on 2 or more entries - even if the entries represent a contiguous free space 2440 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2441 * ends). 2442 */ 2443 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2444 struct btrfs_free_space *info, 2445 bool update_stat) 2446 { 2447 /* 2448 * Only work with disconnected entries, as we can change their offset, 2449 * and must be extent entries. 2450 */ 2451 ASSERT(!info->bitmap); 2452 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2453 2454 if (ctl->total_bitmaps > 0) { 2455 bool stole_end; 2456 bool stole_front = false; 2457 2458 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2459 if (ctl->total_bitmaps > 0) 2460 stole_front = steal_from_bitmap_to_front(ctl, info, 2461 update_stat); 2462 2463 if (stole_end || stole_front) 2464 try_merge_free_space(ctl, info, update_stat); 2465 } 2466 } 2467 2468 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, 2469 struct btrfs_free_space_ctl *ctl, 2470 u64 offset, u64 bytes, 2471 enum btrfs_trim_state trim_state) 2472 { 2473 struct btrfs_block_group *block_group = ctl->private; 2474 struct btrfs_free_space *info; 2475 int ret = 0; 2476 u64 filter_bytes = bytes; 2477 2478 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2479 if (!info) 2480 return -ENOMEM; 2481 2482 info->offset = offset; 2483 info->bytes = bytes; 2484 info->trim_state = trim_state; 2485 RB_CLEAR_NODE(&info->offset_index); 2486 2487 spin_lock(&ctl->tree_lock); 2488 2489 if (try_merge_free_space(ctl, info, true)) 2490 goto link; 2491 2492 /* 2493 * There was no extent directly to the left or right of this new 2494 * extent then we know we're going to have to allocate a new extent, so 2495 * before we do that see if we need to drop this into a bitmap 2496 */ 2497 ret = insert_into_bitmap(ctl, info); 2498 if (ret < 0) { 2499 goto out; 2500 } else if (ret) { 2501 ret = 0; 2502 goto out; 2503 } 2504 link: 2505 /* 2506 * Only steal free space from adjacent bitmaps if we're sure we're not 2507 * going to add the new free space to existing bitmap entries - because 2508 * that would mean unnecessary work that would be reverted. Therefore 2509 * attempt to steal space from bitmaps if we're adding an extent entry. 2510 */ 2511 steal_from_bitmap(ctl, info, true); 2512 2513 filter_bytes = max(filter_bytes, info->bytes); 2514 2515 ret = link_free_space(ctl, info); 2516 if (ret) 2517 kmem_cache_free(btrfs_free_space_cachep, info); 2518 out: 2519 btrfs_discard_update_discardable(block_group, ctl); 2520 spin_unlock(&ctl->tree_lock); 2521 2522 if (ret) { 2523 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2524 ASSERT(ret != -EEXIST); 2525 } 2526 2527 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { 2528 btrfs_discard_check_filter(block_group, filter_bytes); 2529 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 2530 } 2531 2532 return ret; 2533 } 2534 2535 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2536 u64 bytenr, u64 size) 2537 { 2538 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2539 2540 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) 2541 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2542 2543 return __btrfs_add_free_space(block_group->fs_info, 2544 block_group->free_space_ctl, 2545 bytenr, size, trim_state); 2546 } 2547 2548 /* 2549 * This is a subtle distinction because when adding free space back in general, 2550 * we want it to be added as untrimmed for async. But in the case where we add 2551 * it on loading of a block group, we want to consider it trimmed. 2552 */ 2553 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, 2554 u64 bytenr, u64 size) 2555 { 2556 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2557 2558 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || 2559 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 2560 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2561 2562 return __btrfs_add_free_space(block_group->fs_info, 2563 block_group->free_space_ctl, 2564 bytenr, size, trim_state); 2565 } 2566 2567 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2568 u64 offset, u64 bytes) 2569 { 2570 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2571 struct btrfs_free_space *info; 2572 int ret; 2573 bool re_search = false; 2574 2575 spin_lock(&ctl->tree_lock); 2576 2577 again: 2578 ret = 0; 2579 if (!bytes) 2580 goto out_lock; 2581 2582 info = tree_search_offset(ctl, offset, 0, 0); 2583 if (!info) { 2584 /* 2585 * oops didn't find an extent that matched the space we wanted 2586 * to remove, look for a bitmap instead 2587 */ 2588 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2589 1, 0); 2590 if (!info) { 2591 /* 2592 * If we found a partial bit of our free space in a 2593 * bitmap but then couldn't find the other part this may 2594 * be a problem, so WARN about it. 2595 */ 2596 WARN_ON(re_search); 2597 goto out_lock; 2598 } 2599 } 2600 2601 re_search = false; 2602 if (!info->bitmap) { 2603 unlink_free_space(ctl, info); 2604 if (offset == info->offset) { 2605 u64 to_free = min(bytes, info->bytes); 2606 2607 info->bytes -= to_free; 2608 info->offset += to_free; 2609 if (info->bytes) { 2610 ret = link_free_space(ctl, info); 2611 WARN_ON(ret); 2612 } else { 2613 kmem_cache_free(btrfs_free_space_cachep, info); 2614 } 2615 2616 offset += to_free; 2617 bytes -= to_free; 2618 goto again; 2619 } else { 2620 u64 old_end = info->bytes + info->offset; 2621 2622 info->bytes = offset - info->offset; 2623 ret = link_free_space(ctl, info); 2624 WARN_ON(ret); 2625 if (ret) 2626 goto out_lock; 2627 2628 /* Not enough bytes in this entry to satisfy us */ 2629 if (old_end < offset + bytes) { 2630 bytes -= old_end - offset; 2631 offset = old_end; 2632 goto again; 2633 } else if (old_end == offset + bytes) { 2634 /* all done */ 2635 goto out_lock; 2636 } 2637 spin_unlock(&ctl->tree_lock); 2638 2639 ret = __btrfs_add_free_space(block_group->fs_info, ctl, 2640 offset + bytes, 2641 old_end - (offset + bytes), 2642 info->trim_state); 2643 WARN_ON(ret); 2644 goto out; 2645 } 2646 } 2647 2648 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2649 if (ret == -EAGAIN) { 2650 re_search = true; 2651 goto again; 2652 } 2653 out_lock: 2654 btrfs_discard_update_discardable(block_group, ctl); 2655 spin_unlock(&ctl->tree_lock); 2656 out: 2657 return ret; 2658 } 2659 2660 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2661 u64 bytes) 2662 { 2663 struct btrfs_fs_info *fs_info = block_group->fs_info; 2664 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2665 struct btrfs_free_space *info; 2666 struct rb_node *n; 2667 int count = 0; 2668 2669 spin_lock(&ctl->tree_lock); 2670 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2671 info = rb_entry(n, struct btrfs_free_space, offset_index); 2672 if (info->bytes >= bytes && !block_group->ro) 2673 count++; 2674 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2675 info->offset, info->bytes, 2676 (info->bitmap) ? "yes" : "no"); 2677 } 2678 spin_unlock(&ctl->tree_lock); 2679 btrfs_info(fs_info, "block group has cluster?: %s", 2680 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2681 btrfs_info(fs_info, 2682 "%d blocks of free space at or bigger than bytes is", count); 2683 } 2684 2685 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group) 2686 { 2687 struct btrfs_fs_info *fs_info = block_group->fs_info; 2688 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2689 2690 spin_lock_init(&ctl->tree_lock); 2691 ctl->unit = fs_info->sectorsize; 2692 ctl->start = block_group->start; 2693 ctl->private = block_group; 2694 ctl->op = &free_space_op; 2695 INIT_LIST_HEAD(&ctl->trimming_ranges); 2696 mutex_init(&ctl->cache_writeout_mutex); 2697 2698 /* 2699 * we only want to have 32k of ram per block group for keeping 2700 * track of free space, and if we pass 1/2 of that we want to 2701 * start converting things over to using bitmaps 2702 */ 2703 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2704 } 2705 2706 /* 2707 * for a given cluster, put all of its extents back into the free 2708 * space cache. If the block group passed doesn't match the block group 2709 * pointed to by the cluster, someone else raced in and freed the 2710 * cluster already. In that case, we just return without changing anything 2711 */ 2712 static int 2713 __btrfs_return_cluster_to_free_space( 2714 struct btrfs_block_group *block_group, 2715 struct btrfs_free_cluster *cluster) 2716 { 2717 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2718 struct btrfs_free_space *entry; 2719 struct rb_node *node; 2720 2721 spin_lock(&cluster->lock); 2722 if (cluster->block_group != block_group) 2723 goto out; 2724 2725 cluster->block_group = NULL; 2726 cluster->window_start = 0; 2727 list_del_init(&cluster->block_group_list); 2728 2729 node = rb_first(&cluster->root); 2730 while (node) { 2731 bool bitmap; 2732 2733 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2734 node = rb_next(&entry->offset_index); 2735 rb_erase(&entry->offset_index, &cluster->root); 2736 RB_CLEAR_NODE(&entry->offset_index); 2737 2738 bitmap = (entry->bitmap != NULL); 2739 if (!bitmap) { 2740 /* Merging treats extents as if they were new */ 2741 if (!btrfs_free_space_trimmed(entry)) { 2742 ctl->discardable_extents[BTRFS_STAT_CURR]--; 2743 ctl->discardable_bytes[BTRFS_STAT_CURR] -= 2744 entry->bytes; 2745 } 2746 2747 try_merge_free_space(ctl, entry, false); 2748 steal_from_bitmap(ctl, entry, false); 2749 2750 /* As we insert directly, update these statistics */ 2751 if (!btrfs_free_space_trimmed(entry)) { 2752 ctl->discardable_extents[BTRFS_STAT_CURR]++; 2753 ctl->discardable_bytes[BTRFS_STAT_CURR] += 2754 entry->bytes; 2755 } 2756 } 2757 tree_insert_offset(&ctl->free_space_offset, 2758 entry->offset, &entry->offset_index, bitmap); 2759 } 2760 cluster->root = RB_ROOT; 2761 2762 out: 2763 spin_unlock(&cluster->lock); 2764 btrfs_put_block_group(block_group); 2765 return 0; 2766 } 2767 2768 static void __btrfs_remove_free_space_cache_locked( 2769 struct btrfs_free_space_ctl *ctl) 2770 { 2771 struct btrfs_free_space *info; 2772 struct rb_node *node; 2773 2774 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2775 info = rb_entry(node, struct btrfs_free_space, offset_index); 2776 if (!info->bitmap) { 2777 unlink_free_space(ctl, info); 2778 kmem_cache_free(btrfs_free_space_cachep, info); 2779 } else { 2780 free_bitmap(ctl, info); 2781 } 2782 2783 cond_resched_lock(&ctl->tree_lock); 2784 } 2785 } 2786 2787 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2788 { 2789 spin_lock(&ctl->tree_lock); 2790 __btrfs_remove_free_space_cache_locked(ctl); 2791 if (ctl->private) 2792 btrfs_discard_update_discardable(ctl->private, ctl); 2793 spin_unlock(&ctl->tree_lock); 2794 } 2795 2796 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 2797 { 2798 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2799 struct btrfs_free_cluster *cluster; 2800 struct list_head *head; 2801 2802 spin_lock(&ctl->tree_lock); 2803 while ((head = block_group->cluster_list.next) != 2804 &block_group->cluster_list) { 2805 cluster = list_entry(head, struct btrfs_free_cluster, 2806 block_group_list); 2807 2808 WARN_ON(cluster->block_group != block_group); 2809 __btrfs_return_cluster_to_free_space(block_group, cluster); 2810 2811 cond_resched_lock(&ctl->tree_lock); 2812 } 2813 __btrfs_remove_free_space_cache_locked(ctl); 2814 btrfs_discard_update_discardable(block_group, ctl); 2815 spin_unlock(&ctl->tree_lock); 2816 2817 } 2818 2819 /** 2820 * btrfs_is_free_space_trimmed - see if everything is trimmed 2821 * @block_group: block_group of interest 2822 * 2823 * Walk @block_group's free space rb_tree to determine if everything is trimmed. 2824 */ 2825 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) 2826 { 2827 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2828 struct btrfs_free_space *info; 2829 struct rb_node *node; 2830 bool ret = true; 2831 2832 spin_lock(&ctl->tree_lock); 2833 node = rb_first(&ctl->free_space_offset); 2834 2835 while (node) { 2836 info = rb_entry(node, struct btrfs_free_space, offset_index); 2837 2838 if (!btrfs_free_space_trimmed(info)) { 2839 ret = false; 2840 break; 2841 } 2842 2843 node = rb_next(node); 2844 } 2845 2846 spin_unlock(&ctl->tree_lock); 2847 return ret; 2848 } 2849 2850 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 2851 u64 offset, u64 bytes, u64 empty_size, 2852 u64 *max_extent_size) 2853 { 2854 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2855 struct btrfs_discard_ctl *discard_ctl = 2856 &block_group->fs_info->discard_ctl; 2857 struct btrfs_free_space *entry = NULL; 2858 u64 bytes_search = bytes + empty_size; 2859 u64 ret = 0; 2860 u64 align_gap = 0; 2861 u64 align_gap_len = 0; 2862 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2863 2864 spin_lock(&ctl->tree_lock); 2865 entry = find_free_space(ctl, &offset, &bytes_search, 2866 block_group->full_stripe_len, max_extent_size); 2867 if (!entry) 2868 goto out; 2869 2870 ret = offset; 2871 if (entry->bitmap) { 2872 bitmap_clear_bits(ctl, entry, offset, bytes); 2873 2874 if (!btrfs_free_space_trimmed(entry)) 2875 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 2876 2877 if (!entry->bytes) 2878 free_bitmap(ctl, entry); 2879 } else { 2880 unlink_free_space(ctl, entry); 2881 align_gap_len = offset - entry->offset; 2882 align_gap = entry->offset; 2883 align_gap_trim_state = entry->trim_state; 2884 2885 if (!btrfs_free_space_trimmed(entry)) 2886 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 2887 2888 entry->offset = offset + bytes; 2889 WARN_ON(entry->bytes < bytes + align_gap_len); 2890 2891 entry->bytes -= bytes + align_gap_len; 2892 if (!entry->bytes) 2893 kmem_cache_free(btrfs_free_space_cachep, entry); 2894 else 2895 link_free_space(ctl, entry); 2896 } 2897 out: 2898 btrfs_discard_update_discardable(block_group, ctl); 2899 spin_unlock(&ctl->tree_lock); 2900 2901 if (align_gap_len) 2902 __btrfs_add_free_space(block_group->fs_info, ctl, 2903 align_gap, align_gap_len, 2904 align_gap_trim_state); 2905 return ret; 2906 } 2907 2908 /* 2909 * given a cluster, put all of its extents back into the free space 2910 * cache. If a block group is passed, this function will only free 2911 * a cluster that belongs to the passed block group. 2912 * 2913 * Otherwise, it'll get a reference on the block group pointed to by the 2914 * cluster and remove the cluster from it. 2915 */ 2916 int btrfs_return_cluster_to_free_space( 2917 struct btrfs_block_group *block_group, 2918 struct btrfs_free_cluster *cluster) 2919 { 2920 struct btrfs_free_space_ctl *ctl; 2921 int ret; 2922 2923 /* first, get a safe pointer to the block group */ 2924 spin_lock(&cluster->lock); 2925 if (!block_group) { 2926 block_group = cluster->block_group; 2927 if (!block_group) { 2928 spin_unlock(&cluster->lock); 2929 return 0; 2930 } 2931 } else if (cluster->block_group != block_group) { 2932 /* someone else has already freed it don't redo their work */ 2933 spin_unlock(&cluster->lock); 2934 return 0; 2935 } 2936 atomic_inc(&block_group->count); 2937 spin_unlock(&cluster->lock); 2938 2939 ctl = block_group->free_space_ctl; 2940 2941 /* now return any extents the cluster had on it */ 2942 spin_lock(&ctl->tree_lock); 2943 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2944 spin_unlock(&ctl->tree_lock); 2945 2946 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); 2947 2948 /* finally drop our ref */ 2949 btrfs_put_block_group(block_group); 2950 return ret; 2951 } 2952 2953 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 2954 struct btrfs_free_cluster *cluster, 2955 struct btrfs_free_space *entry, 2956 u64 bytes, u64 min_start, 2957 u64 *max_extent_size) 2958 { 2959 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2960 int err; 2961 u64 search_start = cluster->window_start; 2962 u64 search_bytes = bytes; 2963 u64 ret = 0; 2964 2965 search_start = min_start; 2966 search_bytes = bytes; 2967 2968 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2969 if (err) { 2970 *max_extent_size = max(get_max_extent_size(entry), 2971 *max_extent_size); 2972 return 0; 2973 } 2974 2975 ret = search_start; 2976 __bitmap_clear_bits(ctl, entry, ret, bytes); 2977 2978 return ret; 2979 } 2980 2981 /* 2982 * given a cluster, try to allocate 'bytes' from it, returns 0 2983 * if it couldn't find anything suitably large, or a logical disk offset 2984 * if things worked out 2985 */ 2986 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 2987 struct btrfs_free_cluster *cluster, u64 bytes, 2988 u64 min_start, u64 *max_extent_size) 2989 { 2990 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2991 struct btrfs_discard_ctl *discard_ctl = 2992 &block_group->fs_info->discard_ctl; 2993 struct btrfs_free_space *entry = NULL; 2994 struct rb_node *node; 2995 u64 ret = 0; 2996 2997 spin_lock(&cluster->lock); 2998 if (bytes > cluster->max_size) 2999 goto out; 3000 3001 if (cluster->block_group != block_group) 3002 goto out; 3003 3004 node = rb_first(&cluster->root); 3005 if (!node) 3006 goto out; 3007 3008 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3009 while (1) { 3010 if (entry->bytes < bytes) 3011 *max_extent_size = max(get_max_extent_size(entry), 3012 *max_extent_size); 3013 3014 if (entry->bytes < bytes || 3015 (!entry->bitmap && entry->offset < min_start)) { 3016 node = rb_next(&entry->offset_index); 3017 if (!node) 3018 break; 3019 entry = rb_entry(node, struct btrfs_free_space, 3020 offset_index); 3021 continue; 3022 } 3023 3024 if (entry->bitmap) { 3025 ret = btrfs_alloc_from_bitmap(block_group, 3026 cluster, entry, bytes, 3027 cluster->window_start, 3028 max_extent_size); 3029 if (ret == 0) { 3030 node = rb_next(&entry->offset_index); 3031 if (!node) 3032 break; 3033 entry = rb_entry(node, struct btrfs_free_space, 3034 offset_index); 3035 continue; 3036 } 3037 cluster->window_start += bytes; 3038 } else { 3039 ret = entry->offset; 3040 3041 entry->offset += bytes; 3042 entry->bytes -= bytes; 3043 } 3044 3045 if (entry->bytes == 0) 3046 rb_erase(&entry->offset_index, &cluster->root); 3047 break; 3048 } 3049 out: 3050 spin_unlock(&cluster->lock); 3051 3052 if (!ret) 3053 return 0; 3054 3055 spin_lock(&ctl->tree_lock); 3056 3057 if (!btrfs_free_space_trimmed(entry)) 3058 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3059 3060 ctl->free_space -= bytes; 3061 if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) 3062 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 3063 if (entry->bytes == 0) { 3064 ctl->free_extents--; 3065 if (entry->bitmap) { 3066 kmem_cache_free(btrfs_free_space_bitmap_cachep, 3067 entry->bitmap); 3068 ctl->total_bitmaps--; 3069 ctl->op->recalc_thresholds(ctl); 3070 } else if (!btrfs_free_space_trimmed(entry)) { 3071 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3072 } 3073 kmem_cache_free(btrfs_free_space_cachep, entry); 3074 } 3075 3076 spin_unlock(&ctl->tree_lock); 3077 3078 return ret; 3079 } 3080 3081 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 3082 struct btrfs_free_space *entry, 3083 struct btrfs_free_cluster *cluster, 3084 u64 offset, u64 bytes, 3085 u64 cont1_bytes, u64 min_bytes) 3086 { 3087 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3088 unsigned long next_zero; 3089 unsigned long i; 3090 unsigned long want_bits; 3091 unsigned long min_bits; 3092 unsigned long found_bits; 3093 unsigned long max_bits = 0; 3094 unsigned long start = 0; 3095 unsigned long total_found = 0; 3096 int ret; 3097 3098 i = offset_to_bit(entry->offset, ctl->unit, 3099 max_t(u64, offset, entry->offset)); 3100 want_bits = bytes_to_bits(bytes, ctl->unit); 3101 min_bits = bytes_to_bits(min_bytes, ctl->unit); 3102 3103 /* 3104 * Don't bother looking for a cluster in this bitmap if it's heavily 3105 * fragmented. 3106 */ 3107 if (entry->max_extent_size && 3108 entry->max_extent_size < cont1_bytes) 3109 return -ENOSPC; 3110 again: 3111 found_bits = 0; 3112 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 3113 next_zero = find_next_zero_bit(entry->bitmap, 3114 BITS_PER_BITMAP, i); 3115 if (next_zero - i >= min_bits) { 3116 found_bits = next_zero - i; 3117 if (found_bits > max_bits) 3118 max_bits = found_bits; 3119 break; 3120 } 3121 if (next_zero - i > max_bits) 3122 max_bits = next_zero - i; 3123 i = next_zero; 3124 } 3125 3126 if (!found_bits) { 3127 entry->max_extent_size = (u64)max_bits * ctl->unit; 3128 return -ENOSPC; 3129 } 3130 3131 if (!total_found) { 3132 start = i; 3133 cluster->max_size = 0; 3134 } 3135 3136 total_found += found_bits; 3137 3138 if (cluster->max_size < found_bits * ctl->unit) 3139 cluster->max_size = found_bits * ctl->unit; 3140 3141 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 3142 i = next_zero + 1; 3143 goto again; 3144 } 3145 3146 cluster->window_start = start * ctl->unit + entry->offset; 3147 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3148 ret = tree_insert_offset(&cluster->root, entry->offset, 3149 &entry->offset_index, 1); 3150 ASSERT(!ret); /* -EEXIST; Logic error */ 3151 3152 trace_btrfs_setup_cluster(block_group, cluster, 3153 total_found * ctl->unit, 1); 3154 return 0; 3155 } 3156 3157 /* 3158 * This searches the block group for just extents to fill the cluster with. 3159 * Try to find a cluster with at least bytes total bytes, at least one 3160 * extent of cont1_bytes, and other clusters of at least min_bytes. 3161 */ 3162 static noinline int 3163 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 3164 struct btrfs_free_cluster *cluster, 3165 struct list_head *bitmaps, u64 offset, u64 bytes, 3166 u64 cont1_bytes, u64 min_bytes) 3167 { 3168 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3169 struct btrfs_free_space *first = NULL; 3170 struct btrfs_free_space *entry = NULL; 3171 struct btrfs_free_space *last; 3172 struct rb_node *node; 3173 u64 window_free; 3174 u64 max_extent; 3175 u64 total_size = 0; 3176 3177 entry = tree_search_offset(ctl, offset, 0, 1); 3178 if (!entry) 3179 return -ENOSPC; 3180 3181 /* 3182 * We don't want bitmaps, so just move along until we find a normal 3183 * extent entry. 3184 */ 3185 while (entry->bitmap || entry->bytes < min_bytes) { 3186 if (entry->bitmap && list_empty(&entry->list)) 3187 list_add_tail(&entry->list, bitmaps); 3188 node = rb_next(&entry->offset_index); 3189 if (!node) 3190 return -ENOSPC; 3191 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3192 } 3193 3194 window_free = entry->bytes; 3195 max_extent = entry->bytes; 3196 first = entry; 3197 last = entry; 3198 3199 for (node = rb_next(&entry->offset_index); node; 3200 node = rb_next(&entry->offset_index)) { 3201 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3202 3203 if (entry->bitmap) { 3204 if (list_empty(&entry->list)) 3205 list_add_tail(&entry->list, bitmaps); 3206 continue; 3207 } 3208 3209 if (entry->bytes < min_bytes) 3210 continue; 3211 3212 last = entry; 3213 window_free += entry->bytes; 3214 if (entry->bytes > max_extent) 3215 max_extent = entry->bytes; 3216 } 3217 3218 if (window_free < bytes || max_extent < cont1_bytes) 3219 return -ENOSPC; 3220 3221 cluster->window_start = first->offset; 3222 3223 node = &first->offset_index; 3224 3225 /* 3226 * now we've found our entries, pull them out of the free space 3227 * cache and put them into the cluster rbtree 3228 */ 3229 do { 3230 int ret; 3231 3232 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3233 node = rb_next(&entry->offset_index); 3234 if (entry->bitmap || entry->bytes < min_bytes) 3235 continue; 3236 3237 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3238 ret = tree_insert_offset(&cluster->root, entry->offset, 3239 &entry->offset_index, 0); 3240 total_size += entry->bytes; 3241 ASSERT(!ret); /* -EEXIST; Logic error */ 3242 } while (node && entry != last); 3243 3244 cluster->max_size = max_extent; 3245 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 3246 return 0; 3247 } 3248 3249 /* 3250 * This specifically looks for bitmaps that may work in the cluster, we assume 3251 * that we have already failed to find extents that will work. 3252 */ 3253 static noinline int 3254 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3255 struct btrfs_free_cluster *cluster, 3256 struct list_head *bitmaps, u64 offset, u64 bytes, 3257 u64 cont1_bytes, u64 min_bytes) 3258 { 3259 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3260 struct btrfs_free_space *entry = NULL; 3261 int ret = -ENOSPC; 3262 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3263 3264 if (ctl->total_bitmaps == 0) 3265 return -ENOSPC; 3266 3267 /* 3268 * The bitmap that covers offset won't be in the list unless offset 3269 * is just its start offset. 3270 */ 3271 if (!list_empty(bitmaps)) 3272 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3273 3274 if (!entry || entry->offset != bitmap_offset) { 3275 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3276 if (entry && list_empty(&entry->list)) 3277 list_add(&entry->list, bitmaps); 3278 } 3279 3280 list_for_each_entry(entry, bitmaps, list) { 3281 if (entry->bytes < bytes) 3282 continue; 3283 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3284 bytes, cont1_bytes, min_bytes); 3285 if (!ret) 3286 return 0; 3287 } 3288 3289 /* 3290 * The bitmaps list has all the bitmaps that record free space 3291 * starting after offset, so no more search is required. 3292 */ 3293 return -ENOSPC; 3294 } 3295 3296 /* 3297 * here we try to find a cluster of blocks in a block group. The goal 3298 * is to find at least bytes+empty_size. 3299 * We might not find them all in one contiguous area. 3300 * 3301 * returns zero and sets up cluster if things worked out, otherwise 3302 * it returns -enospc 3303 */ 3304 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3305 struct btrfs_free_cluster *cluster, 3306 u64 offset, u64 bytes, u64 empty_size) 3307 { 3308 struct btrfs_fs_info *fs_info = block_group->fs_info; 3309 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3310 struct btrfs_free_space *entry, *tmp; 3311 LIST_HEAD(bitmaps); 3312 u64 min_bytes; 3313 u64 cont1_bytes; 3314 int ret; 3315 3316 /* 3317 * Choose the minimum extent size we'll require for this 3318 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3319 * For metadata, allow allocates with smaller extents. For 3320 * data, keep it dense. 3321 */ 3322 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3323 cont1_bytes = min_bytes = bytes + empty_size; 3324 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3325 cont1_bytes = bytes; 3326 min_bytes = fs_info->sectorsize; 3327 } else { 3328 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3329 min_bytes = fs_info->sectorsize; 3330 } 3331 3332 spin_lock(&ctl->tree_lock); 3333 3334 /* 3335 * If we know we don't have enough space to make a cluster don't even 3336 * bother doing all the work to try and find one. 3337 */ 3338 if (ctl->free_space < bytes) { 3339 spin_unlock(&ctl->tree_lock); 3340 return -ENOSPC; 3341 } 3342 3343 spin_lock(&cluster->lock); 3344 3345 /* someone already found a cluster, hooray */ 3346 if (cluster->block_group) { 3347 ret = 0; 3348 goto out; 3349 } 3350 3351 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3352 min_bytes); 3353 3354 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3355 bytes + empty_size, 3356 cont1_bytes, min_bytes); 3357 if (ret) 3358 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3359 offset, bytes + empty_size, 3360 cont1_bytes, min_bytes); 3361 3362 /* Clear our temporary list */ 3363 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3364 list_del_init(&entry->list); 3365 3366 if (!ret) { 3367 atomic_inc(&block_group->count); 3368 list_add_tail(&cluster->block_group_list, 3369 &block_group->cluster_list); 3370 cluster->block_group = block_group; 3371 } else { 3372 trace_btrfs_failed_cluster_setup(block_group); 3373 } 3374 out: 3375 spin_unlock(&cluster->lock); 3376 spin_unlock(&ctl->tree_lock); 3377 3378 return ret; 3379 } 3380 3381 /* 3382 * simple code to zero out a cluster 3383 */ 3384 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3385 { 3386 spin_lock_init(&cluster->lock); 3387 spin_lock_init(&cluster->refill_lock); 3388 cluster->root = RB_ROOT; 3389 cluster->max_size = 0; 3390 cluster->fragmented = false; 3391 INIT_LIST_HEAD(&cluster->block_group_list); 3392 cluster->block_group = NULL; 3393 } 3394 3395 static int do_trimming(struct btrfs_block_group *block_group, 3396 u64 *total_trimmed, u64 start, u64 bytes, 3397 u64 reserved_start, u64 reserved_bytes, 3398 enum btrfs_trim_state reserved_trim_state, 3399 struct btrfs_trim_range *trim_entry) 3400 { 3401 struct btrfs_space_info *space_info = block_group->space_info; 3402 struct btrfs_fs_info *fs_info = block_group->fs_info; 3403 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3404 int ret; 3405 int update = 0; 3406 const u64 end = start + bytes; 3407 const u64 reserved_end = reserved_start + reserved_bytes; 3408 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3409 u64 trimmed = 0; 3410 3411 spin_lock(&space_info->lock); 3412 spin_lock(&block_group->lock); 3413 if (!block_group->ro) { 3414 block_group->reserved += reserved_bytes; 3415 space_info->bytes_reserved += reserved_bytes; 3416 update = 1; 3417 } 3418 spin_unlock(&block_group->lock); 3419 spin_unlock(&space_info->lock); 3420 3421 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3422 if (!ret) { 3423 *total_trimmed += trimmed; 3424 trim_state = BTRFS_TRIM_STATE_TRIMMED; 3425 } 3426 3427 mutex_lock(&ctl->cache_writeout_mutex); 3428 if (reserved_start < start) 3429 __btrfs_add_free_space(fs_info, ctl, reserved_start, 3430 start - reserved_start, 3431 reserved_trim_state); 3432 if (start + bytes < reserved_start + reserved_bytes) 3433 __btrfs_add_free_space(fs_info, ctl, end, reserved_end - end, 3434 reserved_trim_state); 3435 __btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state); 3436 list_del(&trim_entry->list); 3437 mutex_unlock(&ctl->cache_writeout_mutex); 3438 3439 if (update) { 3440 spin_lock(&space_info->lock); 3441 spin_lock(&block_group->lock); 3442 if (block_group->ro) 3443 space_info->bytes_readonly += reserved_bytes; 3444 block_group->reserved -= reserved_bytes; 3445 space_info->bytes_reserved -= reserved_bytes; 3446 spin_unlock(&block_group->lock); 3447 spin_unlock(&space_info->lock); 3448 } 3449 3450 return ret; 3451 } 3452 3453 /* 3454 * If @async is set, then we will trim 1 region and return. 3455 */ 3456 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3457 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3458 bool async) 3459 { 3460 struct btrfs_discard_ctl *discard_ctl = 3461 &block_group->fs_info->discard_ctl; 3462 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3463 struct btrfs_free_space *entry; 3464 struct rb_node *node; 3465 int ret = 0; 3466 u64 extent_start; 3467 u64 extent_bytes; 3468 enum btrfs_trim_state extent_trim_state; 3469 u64 bytes; 3470 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3471 3472 while (start < end) { 3473 struct btrfs_trim_range trim_entry; 3474 3475 mutex_lock(&ctl->cache_writeout_mutex); 3476 spin_lock(&ctl->tree_lock); 3477 3478 if (ctl->free_space < minlen) 3479 goto out_unlock; 3480 3481 entry = tree_search_offset(ctl, start, 0, 1); 3482 if (!entry) 3483 goto out_unlock; 3484 3485 /* Skip bitmaps and if async, already trimmed entries */ 3486 while (entry->bitmap || 3487 (async && btrfs_free_space_trimmed(entry))) { 3488 node = rb_next(&entry->offset_index); 3489 if (!node) 3490 goto out_unlock; 3491 entry = rb_entry(node, struct btrfs_free_space, 3492 offset_index); 3493 } 3494 3495 if (entry->offset >= end) 3496 goto out_unlock; 3497 3498 extent_start = entry->offset; 3499 extent_bytes = entry->bytes; 3500 extent_trim_state = entry->trim_state; 3501 if (async) { 3502 start = entry->offset; 3503 bytes = entry->bytes; 3504 if (bytes < minlen) { 3505 spin_unlock(&ctl->tree_lock); 3506 mutex_unlock(&ctl->cache_writeout_mutex); 3507 goto next; 3508 } 3509 unlink_free_space(ctl, entry); 3510 /* 3511 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3512 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim 3513 * X when we come back around. So trim it now. 3514 */ 3515 if (max_discard_size && 3516 bytes >= (max_discard_size + 3517 BTRFS_ASYNC_DISCARD_MIN_FILTER)) { 3518 bytes = max_discard_size; 3519 extent_bytes = max_discard_size; 3520 entry->offset += max_discard_size; 3521 entry->bytes -= max_discard_size; 3522 link_free_space(ctl, entry); 3523 } else { 3524 kmem_cache_free(btrfs_free_space_cachep, entry); 3525 } 3526 } else { 3527 start = max(start, extent_start); 3528 bytes = min(extent_start + extent_bytes, end) - start; 3529 if (bytes < minlen) { 3530 spin_unlock(&ctl->tree_lock); 3531 mutex_unlock(&ctl->cache_writeout_mutex); 3532 goto next; 3533 } 3534 3535 unlink_free_space(ctl, entry); 3536 kmem_cache_free(btrfs_free_space_cachep, entry); 3537 } 3538 3539 spin_unlock(&ctl->tree_lock); 3540 trim_entry.start = extent_start; 3541 trim_entry.bytes = extent_bytes; 3542 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3543 mutex_unlock(&ctl->cache_writeout_mutex); 3544 3545 ret = do_trimming(block_group, total_trimmed, start, bytes, 3546 extent_start, extent_bytes, extent_trim_state, 3547 &trim_entry); 3548 if (ret) { 3549 block_group->discard_cursor = start + bytes; 3550 break; 3551 } 3552 next: 3553 start += bytes; 3554 block_group->discard_cursor = start; 3555 if (async && *total_trimmed) 3556 break; 3557 3558 if (fatal_signal_pending(current)) { 3559 ret = -ERESTARTSYS; 3560 break; 3561 } 3562 3563 cond_resched(); 3564 } 3565 3566 return ret; 3567 3568 out_unlock: 3569 block_group->discard_cursor = btrfs_block_group_end(block_group); 3570 spin_unlock(&ctl->tree_lock); 3571 mutex_unlock(&ctl->cache_writeout_mutex); 3572 3573 return ret; 3574 } 3575 3576 /* 3577 * If we break out of trimming a bitmap prematurely, we should reset the 3578 * trimming bit. In a rather contrieved case, it's possible to race here so 3579 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. 3580 * 3581 * start = start of bitmap 3582 * end = near end of bitmap 3583 * 3584 * Thread 1: Thread 2: 3585 * trim_bitmaps(start) 3586 * trim_bitmaps(end) 3587 * end_trimming_bitmap() 3588 * reset_trimming_bitmap() 3589 */ 3590 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) 3591 { 3592 struct btrfs_free_space *entry; 3593 3594 spin_lock(&ctl->tree_lock); 3595 entry = tree_search_offset(ctl, offset, 1, 0); 3596 if (entry) { 3597 if (btrfs_free_space_trimmed(entry)) { 3598 ctl->discardable_extents[BTRFS_STAT_CURR] += 3599 entry->bitmap_extents; 3600 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; 3601 } 3602 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3603 } 3604 3605 spin_unlock(&ctl->tree_lock); 3606 } 3607 3608 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, 3609 struct btrfs_free_space *entry) 3610 { 3611 if (btrfs_free_space_trimming_bitmap(entry)) { 3612 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; 3613 ctl->discardable_extents[BTRFS_STAT_CURR] -= 3614 entry->bitmap_extents; 3615 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; 3616 } 3617 } 3618 3619 /* 3620 * If @async is set, then we will trim 1 region and return. 3621 */ 3622 static int trim_bitmaps(struct btrfs_block_group *block_group, 3623 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3624 u64 maxlen, bool async) 3625 { 3626 struct btrfs_discard_ctl *discard_ctl = 3627 &block_group->fs_info->discard_ctl; 3628 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3629 struct btrfs_free_space *entry; 3630 int ret = 0; 3631 int ret2; 3632 u64 bytes; 3633 u64 offset = offset_to_bitmap(ctl, start); 3634 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3635 3636 while (offset < end) { 3637 bool next_bitmap = false; 3638 struct btrfs_trim_range trim_entry; 3639 3640 mutex_lock(&ctl->cache_writeout_mutex); 3641 spin_lock(&ctl->tree_lock); 3642 3643 if (ctl->free_space < minlen) { 3644 block_group->discard_cursor = 3645 btrfs_block_group_end(block_group); 3646 spin_unlock(&ctl->tree_lock); 3647 mutex_unlock(&ctl->cache_writeout_mutex); 3648 break; 3649 } 3650 3651 entry = tree_search_offset(ctl, offset, 1, 0); 3652 /* 3653 * Bitmaps are marked trimmed lossily now to prevent constant 3654 * discarding of the same bitmap (the reason why we are bound 3655 * by the filters). So, retrim the block group bitmaps when we 3656 * are preparing to punt to the unused_bgs list. This uses 3657 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED 3658 * which is the only discard index which sets minlen to 0. 3659 */ 3660 if (!entry || (async && minlen && start == offset && 3661 btrfs_free_space_trimmed(entry))) { 3662 spin_unlock(&ctl->tree_lock); 3663 mutex_unlock(&ctl->cache_writeout_mutex); 3664 next_bitmap = true; 3665 goto next; 3666 } 3667 3668 /* 3669 * Async discard bitmap trimming begins at by setting the start 3670 * to be key.objectid and the offset_to_bitmap() aligns to the 3671 * start of the bitmap. This lets us know we are fully 3672 * scanning the bitmap rather than only some portion of it. 3673 */ 3674 if (start == offset) 3675 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; 3676 3677 bytes = minlen; 3678 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3679 if (ret2 || start >= end) { 3680 /* 3681 * We lossily consider a bitmap trimmed if we only skip 3682 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. 3683 */ 3684 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) 3685 end_trimming_bitmap(ctl, entry); 3686 else 3687 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3688 spin_unlock(&ctl->tree_lock); 3689 mutex_unlock(&ctl->cache_writeout_mutex); 3690 next_bitmap = true; 3691 goto next; 3692 } 3693 3694 /* 3695 * We already trimmed a region, but are using the locking above 3696 * to reset the trim_state. 3697 */ 3698 if (async && *total_trimmed) { 3699 spin_unlock(&ctl->tree_lock); 3700 mutex_unlock(&ctl->cache_writeout_mutex); 3701 goto out; 3702 } 3703 3704 bytes = min(bytes, end - start); 3705 if (bytes < minlen || (async && maxlen && bytes > maxlen)) { 3706 spin_unlock(&ctl->tree_lock); 3707 mutex_unlock(&ctl->cache_writeout_mutex); 3708 goto next; 3709 } 3710 3711 /* 3712 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3713 * If X < @minlen, we won't trim X when we come back around. 3714 * So trim it now. We differ here from trimming extents as we 3715 * don't keep individual state per bit. 3716 */ 3717 if (async && 3718 max_discard_size && 3719 bytes > (max_discard_size + minlen)) 3720 bytes = max_discard_size; 3721 3722 bitmap_clear_bits(ctl, entry, start, bytes); 3723 if (entry->bytes == 0) 3724 free_bitmap(ctl, entry); 3725 3726 spin_unlock(&ctl->tree_lock); 3727 trim_entry.start = start; 3728 trim_entry.bytes = bytes; 3729 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3730 mutex_unlock(&ctl->cache_writeout_mutex); 3731 3732 ret = do_trimming(block_group, total_trimmed, start, bytes, 3733 start, bytes, 0, &trim_entry); 3734 if (ret) { 3735 reset_trimming_bitmap(ctl, offset); 3736 block_group->discard_cursor = 3737 btrfs_block_group_end(block_group); 3738 break; 3739 } 3740 next: 3741 if (next_bitmap) { 3742 offset += BITS_PER_BITMAP * ctl->unit; 3743 start = offset; 3744 } else { 3745 start += bytes; 3746 } 3747 block_group->discard_cursor = start; 3748 3749 if (fatal_signal_pending(current)) { 3750 if (start != offset) 3751 reset_trimming_bitmap(ctl, offset); 3752 ret = -ERESTARTSYS; 3753 break; 3754 } 3755 3756 cond_resched(); 3757 } 3758 3759 if (offset >= end) 3760 block_group->discard_cursor = end; 3761 3762 out: 3763 return ret; 3764 } 3765 3766 void btrfs_get_block_group_trimming(struct btrfs_block_group *cache) 3767 { 3768 atomic_inc(&cache->trimming); 3769 } 3770 3771 void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group) 3772 { 3773 struct btrfs_fs_info *fs_info = block_group->fs_info; 3774 struct extent_map_tree *em_tree; 3775 struct extent_map *em; 3776 bool cleanup; 3777 3778 spin_lock(&block_group->lock); 3779 cleanup = (atomic_dec_and_test(&block_group->trimming) && 3780 block_group->removed); 3781 spin_unlock(&block_group->lock); 3782 3783 if (cleanup) { 3784 mutex_lock(&fs_info->chunk_mutex); 3785 em_tree = &fs_info->mapping_tree; 3786 write_lock(&em_tree->lock); 3787 em = lookup_extent_mapping(em_tree, block_group->start, 3788 1); 3789 BUG_ON(!em); /* logic error, can't happen */ 3790 remove_extent_mapping(em_tree, em); 3791 write_unlock(&em_tree->lock); 3792 mutex_unlock(&fs_info->chunk_mutex); 3793 3794 /* once for us and once for the tree */ 3795 free_extent_map(em); 3796 free_extent_map(em); 3797 3798 /* 3799 * We've left one free space entry and other tasks trimming 3800 * this block group have left 1 entry each one. Free them. 3801 */ 3802 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3803 } 3804 } 3805 3806 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 3807 u64 *trimmed, u64 start, u64 end, u64 minlen) 3808 { 3809 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3810 int ret; 3811 u64 rem = 0; 3812 3813 *trimmed = 0; 3814 3815 spin_lock(&block_group->lock); 3816 if (block_group->removed) { 3817 spin_unlock(&block_group->lock); 3818 return 0; 3819 } 3820 btrfs_get_block_group_trimming(block_group); 3821 spin_unlock(&block_group->lock); 3822 3823 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); 3824 if (ret) 3825 goto out; 3826 3827 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); 3828 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); 3829 /* If we ended in the middle of a bitmap, reset the trimming flag */ 3830 if (rem) 3831 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); 3832 out: 3833 btrfs_put_block_group_trimming(block_group); 3834 return ret; 3835 } 3836 3837 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, 3838 u64 *trimmed, u64 start, u64 end, u64 minlen, 3839 bool async) 3840 { 3841 int ret; 3842 3843 *trimmed = 0; 3844 3845 spin_lock(&block_group->lock); 3846 if (block_group->removed) { 3847 spin_unlock(&block_group->lock); 3848 return 0; 3849 } 3850 btrfs_get_block_group_trimming(block_group); 3851 spin_unlock(&block_group->lock); 3852 3853 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); 3854 btrfs_put_block_group_trimming(block_group); 3855 3856 return ret; 3857 } 3858 3859 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, 3860 u64 *trimmed, u64 start, u64 end, u64 minlen, 3861 u64 maxlen, bool async) 3862 { 3863 int ret; 3864 3865 *trimmed = 0; 3866 3867 spin_lock(&block_group->lock); 3868 if (block_group->removed) { 3869 spin_unlock(&block_group->lock); 3870 return 0; 3871 } 3872 btrfs_get_block_group_trimming(block_group); 3873 spin_unlock(&block_group->lock); 3874 3875 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, 3876 async); 3877 3878 btrfs_put_block_group_trimming(block_group); 3879 3880 return ret; 3881 } 3882 3883 /* 3884 * Find the left-most item in the cache tree, and then return the 3885 * smallest inode number in the item. 3886 * 3887 * Note: the returned inode number may not be the smallest one in 3888 * the tree, if the left-most item is a bitmap. 3889 */ 3890 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3891 { 3892 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3893 struct btrfs_free_space *entry = NULL; 3894 u64 ino = 0; 3895 3896 spin_lock(&ctl->tree_lock); 3897 3898 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3899 goto out; 3900 3901 entry = rb_entry(rb_first(&ctl->free_space_offset), 3902 struct btrfs_free_space, offset_index); 3903 3904 if (!entry->bitmap) { 3905 ino = entry->offset; 3906 3907 unlink_free_space(ctl, entry); 3908 entry->offset++; 3909 entry->bytes--; 3910 if (!entry->bytes) 3911 kmem_cache_free(btrfs_free_space_cachep, entry); 3912 else 3913 link_free_space(ctl, entry); 3914 } else { 3915 u64 offset = 0; 3916 u64 count = 1; 3917 int ret; 3918 3919 ret = search_bitmap(ctl, entry, &offset, &count, true); 3920 /* Logic error; Should be empty if it can't find anything */ 3921 ASSERT(!ret); 3922 3923 ino = offset; 3924 bitmap_clear_bits(ctl, entry, offset, 1); 3925 if (entry->bytes == 0) 3926 free_bitmap(ctl, entry); 3927 } 3928 out: 3929 spin_unlock(&ctl->tree_lock); 3930 3931 return ino; 3932 } 3933 3934 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3935 struct btrfs_path *path) 3936 { 3937 struct inode *inode = NULL; 3938 3939 spin_lock(&root->ino_cache_lock); 3940 if (root->ino_cache_inode) 3941 inode = igrab(root->ino_cache_inode); 3942 spin_unlock(&root->ino_cache_lock); 3943 if (inode) 3944 return inode; 3945 3946 inode = __lookup_free_space_inode(root, path, 0); 3947 if (IS_ERR(inode)) 3948 return inode; 3949 3950 spin_lock(&root->ino_cache_lock); 3951 if (!btrfs_fs_closing(root->fs_info)) 3952 root->ino_cache_inode = igrab(inode); 3953 spin_unlock(&root->ino_cache_lock); 3954 3955 return inode; 3956 } 3957 3958 int create_free_ino_inode(struct btrfs_root *root, 3959 struct btrfs_trans_handle *trans, 3960 struct btrfs_path *path) 3961 { 3962 return __create_free_space_inode(root, trans, path, 3963 BTRFS_FREE_INO_OBJECTID, 0); 3964 } 3965 3966 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3967 { 3968 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3969 struct btrfs_path *path; 3970 struct inode *inode; 3971 int ret = 0; 3972 u64 root_gen = btrfs_root_generation(&root->root_item); 3973 3974 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3975 return 0; 3976 3977 /* 3978 * If we're unmounting then just return, since this does a search on the 3979 * normal root and not the commit root and we could deadlock. 3980 */ 3981 if (btrfs_fs_closing(fs_info)) 3982 return 0; 3983 3984 path = btrfs_alloc_path(); 3985 if (!path) 3986 return 0; 3987 3988 inode = lookup_free_ino_inode(root, path); 3989 if (IS_ERR(inode)) 3990 goto out; 3991 3992 if (root_gen != BTRFS_I(inode)->generation) 3993 goto out_put; 3994 3995 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3996 3997 if (ret < 0) 3998 btrfs_err(fs_info, 3999 "failed to load free ino cache for root %llu", 4000 root->root_key.objectid); 4001 out_put: 4002 iput(inode); 4003 out: 4004 btrfs_free_path(path); 4005 return ret; 4006 } 4007 4008 int btrfs_write_out_ino_cache(struct btrfs_root *root, 4009 struct btrfs_trans_handle *trans, 4010 struct btrfs_path *path, 4011 struct inode *inode) 4012 { 4013 struct btrfs_fs_info *fs_info = root->fs_info; 4014 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 4015 int ret; 4016 struct btrfs_io_ctl io_ctl; 4017 bool release_metadata = true; 4018 4019 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 4020 return 0; 4021 4022 memset(&io_ctl, 0, sizeof(io_ctl)); 4023 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); 4024 if (!ret) { 4025 /* 4026 * At this point writepages() didn't error out, so our metadata 4027 * reservation is released when the writeback finishes, at 4028 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 4029 * with or without an error. 4030 */ 4031 release_metadata = false; 4032 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); 4033 } 4034 4035 if (ret) { 4036 if (release_metadata) 4037 btrfs_delalloc_release_metadata(BTRFS_I(inode), 4038 inode->i_size, true); 4039 #ifdef DEBUG 4040 btrfs_err(fs_info, 4041 "failed to write free ino cache for root %llu", 4042 root->root_key.objectid); 4043 #endif 4044 } 4045 4046 return ret; 4047 } 4048 4049 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4050 /* 4051 * Use this if you need to make a bitmap or extent entry specifically, it 4052 * doesn't do any of the merging that add_free_space does, this acts a lot like 4053 * how the free space cache loading stuff works, so you can get really weird 4054 * configurations. 4055 */ 4056 int test_add_free_space_entry(struct btrfs_block_group *cache, 4057 u64 offset, u64 bytes, bool bitmap) 4058 { 4059 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4060 struct btrfs_free_space *info = NULL, *bitmap_info; 4061 void *map = NULL; 4062 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; 4063 u64 bytes_added; 4064 int ret; 4065 4066 again: 4067 if (!info) { 4068 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 4069 if (!info) 4070 return -ENOMEM; 4071 } 4072 4073 if (!bitmap) { 4074 spin_lock(&ctl->tree_lock); 4075 info->offset = offset; 4076 info->bytes = bytes; 4077 info->max_extent_size = 0; 4078 ret = link_free_space(ctl, info); 4079 spin_unlock(&ctl->tree_lock); 4080 if (ret) 4081 kmem_cache_free(btrfs_free_space_cachep, info); 4082 return ret; 4083 } 4084 4085 if (!map) { 4086 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 4087 if (!map) { 4088 kmem_cache_free(btrfs_free_space_cachep, info); 4089 return -ENOMEM; 4090 } 4091 } 4092 4093 spin_lock(&ctl->tree_lock); 4094 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4095 1, 0); 4096 if (!bitmap_info) { 4097 info->bitmap = map; 4098 map = NULL; 4099 add_new_bitmap(ctl, info, offset); 4100 bitmap_info = info; 4101 info = NULL; 4102 } 4103 4104 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 4105 trim_state); 4106 4107 bytes -= bytes_added; 4108 offset += bytes_added; 4109 spin_unlock(&ctl->tree_lock); 4110 4111 if (bytes) 4112 goto again; 4113 4114 if (info) 4115 kmem_cache_free(btrfs_free_space_cachep, info); 4116 if (map) 4117 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 4118 return 0; 4119 } 4120 4121 /* 4122 * Checks to see if the given range is in the free space cache. This is really 4123 * just used to check the absence of space, so if there is free space in the 4124 * range at all we will return 1. 4125 */ 4126 int test_check_exists(struct btrfs_block_group *cache, 4127 u64 offset, u64 bytes) 4128 { 4129 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4130 struct btrfs_free_space *info; 4131 int ret = 0; 4132 4133 spin_lock(&ctl->tree_lock); 4134 info = tree_search_offset(ctl, offset, 0, 0); 4135 if (!info) { 4136 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4137 1, 0); 4138 if (!info) 4139 goto out; 4140 } 4141 4142 have_info: 4143 if (info->bitmap) { 4144 u64 bit_off, bit_bytes; 4145 struct rb_node *n; 4146 struct btrfs_free_space *tmp; 4147 4148 bit_off = offset; 4149 bit_bytes = ctl->unit; 4150 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 4151 if (!ret) { 4152 if (bit_off == offset) { 4153 ret = 1; 4154 goto out; 4155 } else if (bit_off > offset && 4156 offset + bytes > bit_off) { 4157 ret = 1; 4158 goto out; 4159 } 4160 } 4161 4162 n = rb_prev(&info->offset_index); 4163 while (n) { 4164 tmp = rb_entry(n, struct btrfs_free_space, 4165 offset_index); 4166 if (tmp->offset + tmp->bytes < offset) 4167 break; 4168 if (offset + bytes < tmp->offset) { 4169 n = rb_prev(&tmp->offset_index); 4170 continue; 4171 } 4172 info = tmp; 4173 goto have_info; 4174 } 4175 4176 n = rb_next(&info->offset_index); 4177 while (n) { 4178 tmp = rb_entry(n, struct btrfs_free_space, 4179 offset_index); 4180 if (offset + bytes < tmp->offset) 4181 break; 4182 if (tmp->offset + tmp->bytes < offset) { 4183 n = rb_next(&tmp->offset_index); 4184 continue; 4185 } 4186 info = tmp; 4187 goto have_info; 4188 } 4189 4190 ret = 0; 4191 goto out; 4192 } 4193 4194 if (info->offset == offset) { 4195 ret = 1; 4196 goto out; 4197 } 4198 4199 if (offset > info->offset && offset < info->offset + info->bytes) 4200 ret = 1; 4201 out: 4202 spin_unlock(&ctl->tree_lock); 4203 return ret; 4204 } 4205 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 4206