1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "ctree.h" 15 #include "free-space-cache.h" 16 #include "transaction.h" 17 #include "disk-io.h" 18 #include "extent_io.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "space-info.h" 22 #include "delalloc-space.h" 23 #include "block-group.h" 24 25 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 26 #define MAX_CACHE_BYTES_PER_GIG SZ_32K 27 28 struct btrfs_trim_range { 29 u64 start; 30 u64 bytes; 31 struct list_head list; 32 }; 33 34 static int link_free_space(struct btrfs_free_space_ctl *ctl, 35 struct btrfs_free_space *info); 36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *info); 38 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 39 struct btrfs_trans_handle *trans, 40 struct btrfs_io_ctl *io_ctl, 41 struct btrfs_path *path); 42 43 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 44 struct btrfs_path *path, 45 u64 offset) 46 { 47 struct btrfs_fs_info *fs_info = root->fs_info; 48 struct btrfs_key key; 49 struct btrfs_key location; 50 struct btrfs_disk_key disk_key; 51 struct btrfs_free_space_header *header; 52 struct extent_buffer *leaf; 53 struct inode *inode = NULL; 54 unsigned nofs_flag; 55 int ret; 56 57 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 58 key.offset = offset; 59 key.type = 0; 60 61 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 62 if (ret < 0) 63 return ERR_PTR(ret); 64 if (ret > 0) { 65 btrfs_release_path(path); 66 return ERR_PTR(-ENOENT); 67 } 68 69 leaf = path->nodes[0]; 70 header = btrfs_item_ptr(leaf, path->slots[0], 71 struct btrfs_free_space_header); 72 btrfs_free_space_key(leaf, header, &disk_key); 73 btrfs_disk_key_to_cpu(&location, &disk_key); 74 btrfs_release_path(path); 75 76 /* 77 * We are often under a trans handle at this point, so we need to make 78 * sure NOFS is set to keep us from deadlocking. 79 */ 80 nofs_flag = memalloc_nofs_save(); 81 inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path); 82 btrfs_release_path(path); 83 memalloc_nofs_restore(nofs_flag); 84 if (IS_ERR(inode)) 85 return inode; 86 87 mapping_set_gfp_mask(inode->i_mapping, 88 mapping_gfp_constraint(inode->i_mapping, 89 ~(__GFP_FS | __GFP_HIGHMEM))); 90 91 return inode; 92 } 93 94 struct inode *lookup_free_space_inode( 95 struct btrfs_block_group_cache *block_group, 96 struct btrfs_path *path) 97 { 98 struct btrfs_fs_info *fs_info = block_group->fs_info; 99 struct inode *inode = NULL; 100 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 101 102 spin_lock(&block_group->lock); 103 if (block_group->inode) 104 inode = igrab(block_group->inode); 105 spin_unlock(&block_group->lock); 106 if (inode) 107 return inode; 108 109 inode = __lookup_free_space_inode(fs_info->tree_root, path, 110 block_group->key.objectid); 111 if (IS_ERR(inode)) 112 return inode; 113 114 spin_lock(&block_group->lock); 115 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 116 btrfs_info(fs_info, "Old style space inode found, converting."); 117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 118 BTRFS_INODE_NODATACOW; 119 block_group->disk_cache_state = BTRFS_DC_CLEAR; 120 } 121 122 if (!block_group->iref) { 123 block_group->inode = igrab(inode); 124 block_group->iref = 1; 125 } 126 spin_unlock(&block_group->lock); 127 128 return inode; 129 } 130 131 static int __create_free_space_inode(struct btrfs_root *root, 132 struct btrfs_trans_handle *trans, 133 struct btrfs_path *path, 134 u64 ino, u64 offset) 135 { 136 struct btrfs_key key; 137 struct btrfs_disk_key disk_key; 138 struct btrfs_free_space_header *header; 139 struct btrfs_inode_item *inode_item; 140 struct extent_buffer *leaf; 141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 142 int ret; 143 144 ret = btrfs_insert_empty_inode(trans, root, path, ino); 145 if (ret) 146 return ret; 147 148 /* We inline crc's for the free disk space cache */ 149 if (ino != BTRFS_FREE_INO_OBJECTID) 150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 151 152 leaf = path->nodes[0]; 153 inode_item = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_inode_item); 155 btrfs_item_key(leaf, &disk_key, path->slots[0]); 156 memzero_extent_buffer(leaf, (unsigned long)inode_item, 157 sizeof(*inode_item)); 158 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 159 btrfs_set_inode_size(leaf, inode_item, 0); 160 btrfs_set_inode_nbytes(leaf, inode_item, 0); 161 btrfs_set_inode_uid(leaf, inode_item, 0); 162 btrfs_set_inode_gid(leaf, inode_item, 0); 163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 164 btrfs_set_inode_flags(leaf, inode_item, flags); 165 btrfs_set_inode_nlink(leaf, inode_item, 1); 166 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 167 btrfs_set_inode_block_group(leaf, inode_item, offset); 168 btrfs_mark_buffer_dirty(leaf); 169 btrfs_release_path(path); 170 171 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 172 key.offset = offset; 173 key.type = 0; 174 ret = btrfs_insert_empty_item(trans, root, path, &key, 175 sizeof(struct btrfs_free_space_header)); 176 if (ret < 0) { 177 btrfs_release_path(path); 178 return ret; 179 } 180 181 leaf = path->nodes[0]; 182 header = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_free_space_header); 184 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 185 btrfs_set_free_space_key(leaf, header, &disk_key); 186 btrfs_mark_buffer_dirty(leaf); 187 btrfs_release_path(path); 188 189 return 0; 190 } 191 192 int create_free_space_inode(struct btrfs_trans_handle *trans, 193 struct btrfs_block_group_cache *block_group, 194 struct btrfs_path *path) 195 { 196 int ret; 197 u64 ino; 198 199 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino); 200 if (ret < 0) 201 return ret; 202 203 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 204 ino, block_group->key.objectid); 205 } 206 207 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 208 struct btrfs_block_rsv *rsv) 209 { 210 u64 needed_bytes; 211 int ret; 212 213 /* 1 for slack space, 1 for updating the inode */ 214 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 215 btrfs_calc_metadata_size(fs_info, 1); 216 217 spin_lock(&rsv->lock); 218 if (rsv->reserved < needed_bytes) 219 ret = -ENOSPC; 220 else 221 ret = 0; 222 spin_unlock(&rsv->lock); 223 return ret; 224 } 225 226 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 227 struct btrfs_block_group_cache *block_group, 228 struct inode *inode) 229 { 230 struct btrfs_root *root = BTRFS_I(inode)->root; 231 int ret = 0; 232 bool locked = false; 233 234 if (block_group) { 235 struct btrfs_path *path = btrfs_alloc_path(); 236 237 if (!path) { 238 ret = -ENOMEM; 239 goto fail; 240 } 241 locked = true; 242 mutex_lock(&trans->transaction->cache_write_mutex); 243 if (!list_empty(&block_group->io_list)) { 244 list_del_init(&block_group->io_list); 245 246 btrfs_wait_cache_io(trans, block_group, path); 247 btrfs_put_block_group(block_group); 248 } 249 250 /* 251 * now that we've truncated the cache away, its no longer 252 * setup or written 253 */ 254 spin_lock(&block_group->lock); 255 block_group->disk_cache_state = BTRFS_DC_CLEAR; 256 spin_unlock(&block_group->lock); 257 btrfs_free_path(path); 258 } 259 260 btrfs_i_size_write(BTRFS_I(inode), 0); 261 truncate_pagecache(inode, 0); 262 263 /* 264 * We skip the throttling logic for free space cache inodes, so we don't 265 * need to check for -EAGAIN. 266 */ 267 ret = btrfs_truncate_inode_items(trans, root, inode, 268 0, BTRFS_EXTENT_DATA_KEY); 269 if (ret) 270 goto fail; 271 272 ret = btrfs_update_inode(trans, root, inode); 273 274 fail: 275 if (locked) 276 mutex_unlock(&trans->transaction->cache_write_mutex); 277 if (ret) 278 btrfs_abort_transaction(trans, ret); 279 280 return ret; 281 } 282 283 static void readahead_cache(struct inode *inode) 284 { 285 struct file_ra_state *ra; 286 unsigned long last_index; 287 288 ra = kzalloc(sizeof(*ra), GFP_NOFS); 289 if (!ra) 290 return; 291 292 file_ra_state_init(ra, inode->i_mapping); 293 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 294 295 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 296 297 kfree(ra); 298 } 299 300 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 301 int write) 302 { 303 int num_pages; 304 int check_crcs = 0; 305 306 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 307 308 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) 309 check_crcs = 1; 310 311 /* Make sure we can fit our crcs and generation into the first page */ 312 if (write && check_crcs && 313 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 314 return -ENOSPC; 315 316 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 317 318 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 319 if (!io_ctl->pages) 320 return -ENOMEM; 321 322 io_ctl->num_pages = num_pages; 323 io_ctl->fs_info = btrfs_sb(inode->i_sb); 324 io_ctl->check_crcs = check_crcs; 325 io_ctl->inode = inode; 326 327 return 0; 328 } 329 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 330 331 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 332 { 333 kfree(io_ctl->pages); 334 io_ctl->pages = NULL; 335 } 336 337 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 338 { 339 if (io_ctl->cur) { 340 io_ctl->cur = NULL; 341 io_ctl->orig = NULL; 342 } 343 } 344 345 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 346 { 347 ASSERT(io_ctl->index < io_ctl->num_pages); 348 io_ctl->page = io_ctl->pages[io_ctl->index++]; 349 io_ctl->cur = page_address(io_ctl->page); 350 io_ctl->orig = io_ctl->cur; 351 io_ctl->size = PAGE_SIZE; 352 if (clear) 353 clear_page(io_ctl->cur); 354 } 355 356 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 357 { 358 int i; 359 360 io_ctl_unmap_page(io_ctl); 361 362 for (i = 0; i < io_ctl->num_pages; i++) { 363 if (io_ctl->pages[i]) { 364 ClearPageChecked(io_ctl->pages[i]); 365 unlock_page(io_ctl->pages[i]); 366 put_page(io_ctl->pages[i]); 367 } 368 } 369 } 370 371 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, 372 int uptodate) 373 { 374 struct page *page; 375 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 376 int i; 377 378 for (i = 0; i < io_ctl->num_pages; i++) { 379 page = find_or_create_page(inode->i_mapping, i, mask); 380 if (!page) { 381 io_ctl_drop_pages(io_ctl); 382 return -ENOMEM; 383 } 384 io_ctl->pages[i] = page; 385 if (uptodate && !PageUptodate(page)) { 386 btrfs_readpage(NULL, page); 387 lock_page(page); 388 if (!PageUptodate(page)) { 389 btrfs_err(BTRFS_I(inode)->root->fs_info, 390 "error reading free space cache"); 391 io_ctl_drop_pages(io_ctl); 392 return -EIO; 393 } 394 } 395 } 396 397 for (i = 0; i < io_ctl->num_pages; i++) { 398 clear_page_dirty_for_io(io_ctl->pages[i]); 399 set_page_extent_mapped(io_ctl->pages[i]); 400 } 401 402 return 0; 403 } 404 405 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 406 { 407 __le64 *val; 408 409 io_ctl_map_page(io_ctl, 1); 410 411 /* 412 * Skip the csum areas. If we don't check crcs then we just have a 413 * 64bit chunk at the front of the first page. 414 */ 415 if (io_ctl->check_crcs) { 416 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 417 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 418 } else { 419 io_ctl->cur += sizeof(u64); 420 io_ctl->size -= sizeof(u64) * 2; 421 } 422 423 val = io_ctl->cur; 424 *val = cpu_to_le64(generation); 425 io_ctl->cur += sizeof(u64); 426 } 427 428 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 429 { 430 __le64 *gen; 431 432 /* 433 * Skip the crc area. If we don't check crcs then we just have a 64bit 434 * chunk at the front of the first page. 435 */ 436 if (io_ctl->check_crcs) { 437 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 438 io_ctl->size -= sizeof(u64) + 439 (sizeof(u32) * io_ctl->num_pages); 440 } else { 441 io_ctl->cur += sizeof(u64); 442 io_ctl->size -= sizeof(u64) * 2; 443 } 444 445 gen = io_ctl->cur; 446 if (le64_to_cpu(*gen) != generation) { 447 btrfs_err_rl(io_ctl->fs_info, 448 "space cache generation (%llu) does not match inode (%llu)", 449 *gen, generation); 450 io_ctl_unmap_page(io_ctl); 451 return -EIO; 452 } 453 io_ctl->cur += sizeof(u64); 454 return 0; 455 } 456 457 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 458 { 459 u32 *tmp; 460 u32 crc = ~(u32)0; 461 unsigned offset = 0; 462 463 if (!io_ctl->check_crcs) { 464 io_ctl_unmap_page(io_ctl); 465 return; 466 } 467 468 if (index == 0) 469 offset = sizeof(u32) * io_ctl->num_pages; 470 471 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 472 btrfs_crc32c_final(crc, (u8 *)&crc); 473 io_ctl_unmap_page(io_ctl); 474 tmp = page_address(io_ctl->pages[0]); 475 tmp += index; 476 *tmp = crc; 477 } 478 479 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 480 { 481 u32 *tmp, val; 482 u32 crc = ~(u32)0; 483 unsigned offset = 0; 484 485 if (!io_ctl->check_crcs) { 486 io_ctl_map_page(io_ctl, 0); 487 return 0; 488 } 489 490 if (index == 0) 491 offset = sizeof(u32) * io_ctl->num_pages; 492 493 tmp = page_address(io_ctl->pages[0]); 494 tmp += index; 495 val = *tmp; 496 497 io_ctl_map_page(io_ctl, 0); 498 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 499 btrfs_crc32c_final(crc, (u8 *)&crc); 500 if (val != crc) { 501 btrfs_err_rl(io_ctl->fs_info, 502 "csum mismatch on free space cache"); 503 io_ctl_unmap_page(io_ctl); 504 return -EIO; 505 } 506 507 return 0; 508 } 509 510 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 511 void *bitmap) 512 { 513 struct btrfs_free_space_entry *entry; 514 515 if (!io_ctl->cur) 516 return -ENOSPC; 517 518 entry = io_ctl->cur; 519 entry->offset = cpu_to_le64(offset); 520 entry->bytes = cpu_to_le64(bytes); 521 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 522 BTRFS_FREE_SPACE_EXTENT; 523 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 524 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 525 526 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 527 return 0; 528 529 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 530 531 /* No more pages to map */ 532 if (io_ctl->index >= io_ctl->num_pages) 533 return 0; 534 535 /* map the next page */ 536 io_ctl_map_page(io_ctl, 1); 537 return 0; 538 } 539 540 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 541 { 542 if (!io_ctl->cur) 543 return -ENOSPC; 544 545 /* 546 * If we aren't at the start of the current page, unmap this one and 547 * map the next one if there is any left. 548 */ 549 if (io_ctl->cur != io_ctl->orig) { 550 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 551 if (io_ctl->index >= io_ctl->num_pages) 552 return -ENOSPC; 553 io_ctl_map_page(io_ctl, 0); 554 } 555 556 copy_page(io_ctl->cur, bitmap); 557 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 558 if (io_ctl->index < io_ctl->num_pages) 559 io_ctl_map_page(io_ctl, 0); 560 return 0; 561 } 562 563 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 564 { 565 /* 566 * If we're not on the boundary we know we've modified the page and we 567 * need to crc the page. 568 */ 569 if (io_ctl->cur != io_ctl->orig) 570 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 571 else 572 io_ctl_unmap_page(io_ctl); 573 574 while (io_ctl->index < io_ctl->num_pages) { 575 io_ctl_map_page(io_ctl, 1); 576 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 577 } 578 } 579 580 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 581 struct btrfs_free_space *entry, u8 *type) 582 { 583 struct btrfs_free_space_entry *e; 584 int ret; 585 586 if (!io_ctl->cur) { 587 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 588 if (ret) 589 return ret; 590 } 591 592 e = io_ctl->cur; 593 entry->offset = le64_to_cpu(e->offset); 594 entry->bytes = le64_to_cpu(e->bytes); 595 *type = e->type; 596 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 597 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 598 599 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 600 return 0; 601 602 io_ctl_unmap_page(io_ctl); 603 604 return 0; 605 } 606 607 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 608 struct btrfs_free_space *entry) 609 { 610 int ret; 611 612 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 613 if (ret) 614 return ret; 615 616 copy_page(entry->bitmap, io_ctl->cur); 617 io_ctl_unmap_page(io_ctl); 618 619 return 0; 620 } 621 622 /* 623 * Since we attach pinned extents after the fact we can have contiguous sections 624 * of free space that are split up in entries. This poses a problem with the 625 * tree logging stuff since it could have allocated across what appears to be 2 626 * entries since we would have merged the entries when adding the pinned extents 627 * back to the free space cache. So run through the space cache that we just 628 * loaded and merge contiguous entries. This will make the log replay stuff not 629 * blow up and it will make for nicer allocator behavior. 630 */ 631 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 632 { 633 struct btrfs_free_space *e, *prev = NULL; 634 struct rb_node *n; 635 636 again: 637 spin_lock(&ctl->tree_lock); 638 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 639 e = rb_entry(n, struct btrfs_free_space, offset_index); 640 if (!prev) 641 goto next; 642 if (e->bitmap || prev->bitmap) 643 goto next; 644 if (prev->offset + prev->bytes == e->offset) { 645 unlink_free_space(ctl, prev); 646 unlink_free_space(ctl, e); 647 prev->bytes += e->bytes; 648 kmem_cache_free(btrfs_free_space_cachep, e); 649 link_free_space(ctl, prev); 650 prev = NULL; 651 spin_unlock(&ctl->tree_lock); 652 goto again; 653 } 654 next: 655 prev = e; 656 } 657 spin_unlock(&ctl->tree_lock); 658 } 659 660 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 661 struct btrfs_free_space_ctl *ctl, 662 struct btrfs_path *path, u64 offset) 663 { 664 struct btrfs_fs_info *fs_info = root->fs_info; 665 struct btrfs_free_space_header *header; 666 struct extent_buffer *leaf; 667 struct btrfs_io_ctl io_ctl; 668 struct btrfs_key key; 669 struct btrfs_free_space *e, *n; 670 LIST_HEAD(bitmaps); 671 u64 num_entries; 672 u64 num_bitmaps; 673 u64 generation; 674 u8 type; 675 int ret = 0; 676 677 /* Nothing in the space cache, goodbye */ 678 if (!i_size_read(inode)) 679 return 0; 680 681 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 682 key.offset = offset; 683 key.type = 0; 684 685 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 686 if (ret < 0) 687 return 0; 688 else if (ret > 0) { 689 btrfs_release_path(path); 690 return 0; 691 } 692 693 ret = -1; 694 695 leaf = path->nodes[0]; 696 header = btrfs_item_ptr(leaf, path->slots[0], 697 struct btrfs_free_space_header); 698 num_entries = btrfs_free_space_entries(leaf, header); 699 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 700 generation = btrfs_free_space_generation(leaf, header); 701 btrfs_release_path(path); 702 703 if (!BTRFS_I(inode)->generation) { 704 btrfs_info(fs_info, 705 "the free space cache file (%llu) is invalid, skip it", 706 offset); 707 return 0; 708 } 709 710 if (BTRFS_I(inode)->generation != generation) { 711 btrfs_err(fs_info, 712 "free space inode generation (%llu) did not match free space cache generation (%llu)", 713 BTRFS_I(inode)->generation, generation); 714 return 0; 715 } 716 717 if (!num_entries) 718 return 0; 719 720 ret = io_ctl_init(&io_ctl, inode, 0); 721 if (ret) 722 return ret; 723 724 readahead_cache(inode); 725 726 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 727 if (ret) 728 goto out; 729 730 ret = io_ctl_check_crc(&io_ctl, 0); 731 if (ret) 732 goto free_cache; 733 734 ret = io_ctl_check_generation(&io_ctl, generation); 735 if (ret) 736 goto free_cache; 737 738 while (num_entries) { 739 e = kmem_cache_zalloc(btrfs_free_space_cachep, 740 GFP_NOFS); 741 if (!e) 742 goto free_cache; 743 744 ret = io_ctl_read_entry(&io_ctl, e, &type); 745 if (ret) { 746 kmem_cache_free(btrfs_free_space_cachep, e); 747 goto free_cache; 748 } 749 750 if (!e->bytes) { 751 kmem_cache_free(btrfs_free_space_cachep, e); 752 goto free_cache; 753 } 754 755 if (type == BTRFS_FREE_SPACE_EXTENT) { 756 spin_lock(&ctl->tree_lock); 757 ret = link_free_space(ctl, e); 758 spin_unlock(&ctl->tree_lock); 759 if (ret) { 760 btrfs_err(fs_info, 761 "Duplicate entries in free space cache, dumping"); 762 kmem_cache_free(btrfs_free_space_cachep, e); 763 goto free_cache; 764 } 765 } else { 766 ASSERT(num_bitmaps); 767 num_bitmaps--; 768 e->bitmap = kmem_cache_zalloc( 769 btrfs_free_space_bitmap_cachep, GFP_NOFS); 770 if (!e->bitmap) { 771 kmem_cache_free( 772 btrfs_free_space_cachep, e); 773 goto free_cache; 774 } 775 spin_lock(&ctl->tree_lock); 776 ret = link_free_space(ctl, e); 777 ctl->total_bitmaps++; 778 ctl->op->recalc_thresholds(ctl); 779 spin_unlock(&ctl->tree_lock); 780 if (ret) { 781 btrfs_err(fs_info, 782 "Duplicate entries in free space cache, dumping"); 783 kmem_cache_free(btrfs_free_space_cachep, e); 784 goto free_cache; 785 } 786 list_add_tail(&e->list, &bitmaps); 787 } 788 789 num_entries--; 790 } 791 792 io_ctl_unmap_page(&io_ctl); 793 794 /* 795 * We add the bitmaps at the end of the entries in order that 796 * the bitmap entries are added to the cache. 797 */ 798 list_for_each_entry_safe(e, n, &bitmaps, list) { 799 list_del_init(&e->list); 800 ret = io_ctl_read_bitmap(&io_ctl, e); 801 if (ret) 802 goto free_cache; 803 } 804 805 io_ctl_drop_pages(&io_ctl); 806 merge_space_tree(ctl); 807 ret = 1; 808 out: 809 io_ctl_free(&io_ctl); 810 return ret; 811 free_cache: 812 io_ctl_drop_pages(&io_ctl); 813 __btrfs_remove_free_space_cache(ctl); 814 goto out; 815 } 816 817 int load_free_space_cache(struct btrfs_block_group_cache *block_group) 818 { 819 struct btrfs_fs_info *fs_info = block_group->fs_info; 820 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 821 struct inode *inode; 822 struct btrfs_path *path; 823 int ret = 0; 824 bool matched; 825 u64 used = btrfs_block_group_used(&block_group->item); 826 827 /* 828 * If this block group has been marked to be cleared for one reason or 829 * another then we can't trust the on disk cache, so just return. 830 */ 831 spin_lock(&block_group->lock); 832 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 833 spin_unlock(&block_group->lock); 834 return 0; 835 } 836 spin_unlock(&block_group->lock); 837 838 path = btrfs_alloc_path(); 839 if (!path) 840 return 0; 841 path->search_commit_root = 1; 842 path->skip_locking = 1; 843 844 /* 845 * We must pass a path with search_commit_root set to btrfs_iget in 846 * order to avoid a deadlock when allocating extents for the tree root. 847 * 848 * When we are COWing an extent buffer from the tree root, when looking 849 * for a free extent, at extent-tree.c:find_free_extent(), we can find 850 * block group without its free space cache loaded. When we find one 851 * we must load its space cache which requires reading its free space 852 * cache's inode item from the root tree. If this inode item is located 853 * in the same leaf that we started COWing before, then we end up in 854 * deadlock on the extent buffer (trying to read lock it when we 855 * previously write locked it). 856 * 857 * It's safe to read the inode item using the commit root because 858 * block groups, once loaded, stay in memory forever (until they are 859 * removed) as well as their space caches once loaded. New block groups 860 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 861 * we will never try to read their inode item while the fs is mounted. 862 */ 863 inode = lookup_free_space_inode(block_group, path); 864 if (IS_ERR(inode)) { 865 btrfs_free_path(path); 866 return 0; 867 } 868 869 /* We may have converted the inode and made the cache invalid. */ 870 spin_lock(&block_group->lock); 871 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 872 spin_unlock(&block_group->lock); 873 btrfs_free_path(path); 874 goto out; 875 } 876 spin_unlock(&block_group->lock); 877 878 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 879 path, block_group->key.objectid); 880 btrfs_free_path(path); 881 if (ret <= 0) 882 goto out; 883 884 spin_lock(&ctl->tree_lock); 885 matched = (ctl->free_space == (block_group->key.offset - used - 886 block_group->bytes_super)); 887 spin_unlock(&ctl->tree_lock); 888 889 if (!matched) { 890 __btrfs_remove_free_space_cache(ctl); 891 btrfs_warn(fs_info, 892 "block group %llu has wrong amount of free space", 893 block_group->key.objectid); 894 ret = -1; 895 } 896 out: 897 if (ret < 0) { 898 /* This cache is bogus, make sure it gets cleared */ 899 spin_lock(&block_group->lock); 900 block_group->disk_cache_state = BTRFS_DC_CLEAR; 901 spin_unlock(&block_group->lock); 902 ret = 0; 903 904 btrfs_warn(fs_info, 905 "failed to load free space cache for block group %llu, rebuilding it now", 906 block_group->key.objectid); 907 } 908 909 iput(inode); 910 return ret; 911 } 912 913 static noinline_for_stack 914 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 915 struct btrfs_free_space_ctl *ctl, 916 struct btrfs_block_group_cache *block_group, 917 int *entries, int *bitmaps, 918 struct list_head *bitmap_list) 919 { 920 int ret; 921 struct btrfs_free_cluster *cluster = NULL; 922 struct btrfs_free_cluster *cluster_locked = NULL; 923 struct rb_node *node = rb_first(&ctl->free_space_offset); 924 struct btrfs_trim_range *trim_entry; 925 926 /* Get the cluster for this block_group if it exists */ 927 if (block_group && !list_empty(&block_group->cluster_list)) { 928 cluster = list_entry(block_group->cluster_list.next, 929 struct btrfs_free_cluster, 930 block_group_list); 931 } 932 933 if (!node && cluster) { 934 cluster_locked = cluster; 935 spin_lock(&cluster_locked->lock); 936 node = rb_first(&cluster->root); 937 cluster = NULL; 938 } 939 940 /* Write out the extent entries */ 941 while (node) { 942 struct btrfs_free_space *e; 943 944 e = rb_entry(node, struct btrfs_free_space, offset_index); 945 *entries += 1; 946 947 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 948 e->bitmap); 949 if (ret) 950 goto fail; 951 952 if (e->bitmap) { 953 list_add_tail(&e->list, bitmap_list); 954 *bitmaps += 1; 955 } 956 node = rb_next(node); 957 if (!node && cluster) { 958 node = rb_first(&cluster->root); 959 cluster_locked = cluster; 960 spin_lock(&cluster_locked->lock); 961 cluster = NULL; 962 } 963 } 964 if (cluster_locked) { 965 spin_unlock(&cluster_locked->lock); 966 cluster_locked = NULL; 967 } 968 969 /* 970 * Make sure we don't miss any range that was removed from our rbtree 971 * because trimming is running. Otherwise after a umount+mount (or crash 972 * after committing the transaction) we would leak free space and get 973 * an inconsistent free space cache report from fsck. 974 */ 975 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 976 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 977 trim_entry->bytes, NULL); 978 if (ret) 979 goto fail; 980 *entries += 1; 981 } 982 983 return 0; 984 fail: 985 if (cluster_locked) 986 spin_unlock(&cluster_locked->lock); 987 return -ENOSPC; 988 } 989 990 static noinline_for_stack int 991 update_cache_item(struct btrfs_trans_handle *trans, 992 struct btrfs_root *root, 993 struct inode *inode, 994 struct btrfs_path *path, u64 offset, 995 int entries, int bitmaps) 996 { 997 struct btrfs_key key; 998 struct btrfs_free_space_header *header; 999 struct extent_buffer *leaf; 1000 int ret; 1001 1002 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1003 key.offset = offset; 1004 key.type = 0; 1005 1006 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1007 if (ret < 0) { 1008 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1009 EXTENT_DELALLOC, 0, 0, NULL); 1010 goto fail; 1011 } 1012 leaf = path->nodes[0]; 1013 if (ret > 0) { 1014 struct btrfs_key found_key; 1015 ASSERT(path->slots[0]); 1016 path->slots[0]--; 1017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1018 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1019 found_key.offset != offset) { 1020 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1021 inode->i_size - 1, EXTENT_DELALLOC, 0, 1022 0, NULL); 1023 btrfs_release_path(path); 1024 goto fail; 1025 } 1026 } 1027 1028 BTRFS_I(inode)->generation = trans->transid; 1029 header = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_free_space_header); 1031 btrfs_set_free_space_entries(leaf, header, entries); 1032 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1033 btrfs_set_free_space_generation(leaf, header, trans->transid); 1034 btrfs_mark_buffer_dirty(leaf); 1035 btrfs_release_path(path); 1036 1037 return 0; 1038 1039 fail: 1040 return -1; 1041 } 1042 1043 static noinline_for_stack int write_pinned_extent_entries( 1044 struct btrfs_block_group_cache *block_group, 1045 struct btrfs_io_ctl *io_ctl, 1046 int *entries) 1047 { 1048 u64 start, extent_start, extent_end, len; 1049 struct extent_io_tree *unpin = NULL; 1050 int ret; 1051 1052 if (!block_group) 1053 return 0; 1054 1055 /* 1056 * We want to add any pinned extents to our free space cache 1057 * so we don't leak the space 1058 * 1059 * We shouldn't have switched the pinned extents yet so this is the 1060 * right one 1061 */ 1062 unpin = block_group->fs_info->pinned_extents; 1063 1064 start = block_group->key.objectid; 1065 1066 while (start < block_group->key.objectid + block_group->key.offset) { 1067 ret = find_first_extent_bit(unpin, start, 1068 &extent_start, &extent_end, 1069 EXTENT_DIRTY, NULL); 1070 if (ret) 1071 return 0; 1072 1073 /* This pinned extent is out of our range */ 1074 if (extent_start >= block_group->key.objectid + 1075 block_group->key.offset) 1076 return 0; 1077 1078 extent_start = max(extent_start, start); 1079 extent_end = min(block_group->key.objectid + 1080 block_group->key.offset, extent_end + 1); 1081 len = extent_end - extent_start; 1082 1083 *entries += 1; 1084 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1085 if (ret) 1086 return -ENOSPC; 1087 1088 start = extent_end; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static noinline_for_stack int 1095 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1096 { 1097 struct btrfs_free_space *entry, *next; 1098 int ret; 1099 1100 /* Write out the bitmaps */ 1101 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1102 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1103 if (ret) 1104 return -ENOSPC; 1105 list_del_init(&entry->list); 1106 } 1107 1108 return 0; 1109 } 1110 1111 static int flush_dirty_cache(struct inode *inode) 1112 { 1113 int ret; 1114 1115 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1116 if (ret) 1117 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1118 EXTENT_DELALLOC, 0, 0, NULL); 1119 1120 return ret; 1121 } 1122 1123 static void noinline_for_stack 1124 cleanup_bitmap_list(struct list_head *bitmap_list) 1125 { 1126 struct btrfs_free_space *entry, *next; 1127 1128 list_for_each_entry_safe(entry, next, bitmap_list, list) 1129 list_del_init(&entry->list); 1130 } 1131 1132 static void noinline_for_stack 1133 cleanup_write_cache_enospc(struct inode *inode, 1134 struct btrfs_io_ctl *io_ctl, 1135 struct extent_state **cached_state) 1136 { 1137 io_ctl_drop_pages(io_ctl); 1138 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1139 i_size_read(inode) - 1, cached_state); 1140 } 1141 1142 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1143 struct btrfs_trans_handle *trans, 1144 struct btrfs_block_group_cache *block_group, 1145 struct btrfs_io_ctl *io_ctl, 1146 struct btrfs_path *path, u64 offset) 1147 { 1148 int ret; 1149 struct inode *inode = io_ctl->inode; 1150 1151 if (!inode) 1152 return 0; 1153 1154 /* Flush the dirty pages in the cache file. */ 1155 ret = flush_dirty_cache(inode); 1156 if (ret) 1157 goto out; 1158 1159 /* Update the cache item to tell everyone this cache file is valid. */ 1160 ret = update_cache_item(trans, root, inode, path, offset, 1161 io_ctl->entries, io_ctl->bitmaps); 1162 out: 1163 io_ctl_free(io_ctl); 1164 if (ret) { 1165 invalidate_inode_pages2(inode->i_mapping); 1166 BTRFS_I(inode)->generation = 0; 1167 if (block_group) { 1168 #ifdef DEBUG 1169 btrfs_err(root->fs_info, 1170 "failed to write free space cache for block group %llu", 1171 block_group->key.objectid); 1172 #endif 1173 } 1174 } 1175 btrfs_update_inode(trans, root, inode); 1176 1177 if (block_group) { 1178 /* the dirty list is protected by the dirty_bgs_lock */ 1179 spin_lock(&trans->transaction->dirty_bgs_lock); 1180 1181 /* the disk_cache_state is protected by the block group lock */ 1182 spin_lock(&block_group->lock); 1183 1184 /* 1185 * only mark this as written if we didn't get put back on 1186 * the dirty list while waiting for IO. Otherwise our 1187 * cache state won't be right, and we won't get written again 1188 */ 1189 if (!ret && list_empty(&block_group->dirty_list)) 1190 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1191 else if (ret) 1192 block_group->disk_cache_state = BTRFS_DC_ERROR; 1193 1194 spin_unlock(&block_group->lock); 1195 spin_unlock(&trans->transaction->dirty_bgs_lock); 1196 io_ctl->inode = NULL; 1197 iput(inode); 1198 } 1199 1200 return ret; 1201 1202 } 1203 1204 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 1205 struct btrfs_trans_handle *trans, 1206 struct btrfs_io_ctl *io_ctl, 1207 struct btrfs_path *path) 1208 { 1209 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); 1210 } 1211 1212 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1213 struct btrfs_block_group_cache *block_group, 1214 struct btrfs_path *path) 1215 { 1216 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1217 block_group, &block_group->io_ctl, 1218 path, block_group->key.objectid); 1219 } 1220 1221 /** 1222 * __btrfs_write_out_cache - write out cached info to an inode 1223 * @root - the root the inode belongs to 1224 * @ctl - the free space cache we are going to write out 1225 * @block_group - the block_group for this cache if it belongs to a block_group 1226 * @trans - the trans handle 1227 * 1228 * This function writes out a free space cache struct to disk for quick recovery 1229 * on mount. This will return 0 if it was successful in writing the cache out, 1230 * or an errno if it was not. 1231 */ 1232 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1233 struct btrfs_free_space_ctl *ctl, 1234 struct btrfs_block_group_cache *block_group, 1235 struct btrfs_io_ctl *io_ctl, 1236 struct btrfs_trans_handle *trans) 1237 { 1238 struct extent_state *cached_state = NULL; 1239 LIST_HEAD(bitmap_list); 1240 int entries = 0; 1241 int bitmaps = 0; 1242 int ret; 1243 int must_iput = 0; 1244 1245 if (!i_size_read(inode)) 1246 return -EIO; 1247 1248 WARN_ON(io_ctl->pages); 1249 ret = io_ctl_init(io_ctl, inode, 1); 1250 if (ret) 1251 return ret; 1252 1253 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1254 down_write(&block_group->data_rwsem); 1255 spin_lock(&block_group->lock); 1256 if (block_group->delalloc_bytes) { 1257 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1258 spin_unlock(&block_group->lock); 1259 up_write(&block_group->data_rwsem); 1260 BTRFS_I(inode)->generation = 0; 1261 ret = 0; 1262 must_iput = 1; 1263 goto out; 1264 } 1265 spin_unlock(&block_group->lock); 1266 } 1267 1268 /* Lock all pages first so we can lock the extent safely. */ 1269 ret = io_ctl_prepare_pages(io_ctl, inode, 0); 1270 if (ret) 1271 goto out_unlock; 1272 1273 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1274 &cached_state); 1275 1276 io_ctl_set_generation(io_ctl, trans->transid); 1277 1278 mutex_lock(&ctl->cache_writeout_mutex); 1279 /* Write out the extent entries in the free space cache */ 1280 spin_lock(&ctl->tree_lock); 1281 ret = write_cache_extent_entries(io_ctl, ctl, 1282 block_group, &entries, &bitmaps, 1283 &bitmap_list); 1284 if (ret) 1285 goto out_nospc_locked; 1286 1287 /* 1288 * Some spaces that are freed in the current transaction are pinned, 1289 * they will be added into free space cache after the transaction is 1290 * committed, we shouldn't lose them. 1291 * 1292 * If this changes while we are working we'll get added back to 1293 * the dirty list and redo it. No locking needed 1294 */ 1295 ret = write_pinned_extent_entries(block_group, io_ctl, &entries); 1296 if (ret) 1297 goto out_nospc_locked; 1298 1299 /* 1300 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1301 * locked while doing it because a concurrent trim can be manipulating 1302 * or freeing the bitmap. 1303 */ 1304 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1305 spin_unlock(&ctl->tree_lock); 1306 mutex_unlock(&ctl->cache_writeout_mutex); 1307 if (ret) 1308 goto out_nospc; 1309 1310 /* Zero out the rest of the pages just to make sure */ 1311 io_ctl_zero_remaining_pages(io_ctl); 1312 1313 /* Everything is written out, now we dirty the pages in the file. */ 1314 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, 1315 i_size_read(inode), &cached_state); 1316 if (ret) 1317 goto out_nospc; 1318 1319 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1320 up_write(&block_group->data_rwsem); 1321 /* 1322 * Release the pages and unlock the extent, we will flush 1323 * them out later 1324 */ 1325 io_ctl_drop_pages(io_ctl); 1326 1327 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1328 i_size_read(inode) - 1, &cached_state); 1329 1330 /* 1331 * at this point the pages are under IO and we're happy, 1332 * The caller is responsible for waiting on them and updating the 1333 * the cache and the inode 1334 */ 1335 io_ctl->entries = entries; 1336 io_ctl->bitmaps = bitmaps; 1337 1338 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1339 if (ret) 1340 goto out; 1341 1342 return 0; 1343 1344 out: 1345 io_ctl->inode = NULL; 1346 io_ctl_free(io_ctl); 1347 if (ret) { 1348 invalidate_inode_pages2(inode->i_mapping); 1349 BTRFS_I(inode)->generation = 0; 1350 } 1351 btrfs_update_inode(trans, root, inode); 1352 if (must_iput) 1353 iput(inode); 1354 return ret; 1355 1356 out_nospc_locked: 1357 cleanup_bitmap_list(&bitmap_list); 1358 spin_unlock(&ctl->tree_lock); 1359 mutex_unlock(&ctl->cache_writeout_mutex); 1360 1361 out_nospc: 1362 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1363 1364 out_unlock: 1365 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1366 up_write(&block_group->data_rwsem); 1367 1368 goto out; 1369 } 1370 1371 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1372 struct btrfs_block_group_cache *block_group, 1373 struct btrfs_path *path) 1374 { 1375 struct btrfs_fs_info *fs_info = trans->fs_info; 1376 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1377 struct inode *inode; 1378 int ret = 0; 1379 1380 spin_lock(&block_group->lock); 1381 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1382 spin_unlock(&block_group->lock); 1383 return 0; 1384 } 1385 spin_unlock(&block_group->lock); 1386 1387 inode = lookup_free_space_inode(block_group, path); 1388 if (IS_ERR(inode)) 1389 return 0; 1390 1391 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1392 block_group, &block_group->io_ctl, trans); 1393 if (ret) { 1394 #ifdef DEBUG 1395 btrfs_err(fs_info, 1396 "failed to write free space cache for block group %llu", 1397 block_group->key.objectid); 1398 #endif 1399 spin_lock(&block_group->lock); 1400 block_group->disk_cache_state = BTRFS_DC_ERROR; 1401 spin_unlock(&block_group->lock); 1402 1403 block_group->io_ctl.inode = NULL; 1404 iput(inode); 1405 } 1406 1407 /* 1408 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1409 * to wait for IO and put the inode 1410 */ 1411 1412 return ret; 1413 } 1414 1415 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1416 u64 offset) 1417 { 1418 ASSERT(offset >= bitmap_start); 1419 offset -= bitmap_start; 1420 return (unsigned long)(div_u64(offset, unit)); 1421 } 1422 1423 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1424 { 1425 return (unsigned long)(div_u64(bytes, unit)); 1426 } 1427 1428 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1429 u64 offset) 1430 { 1431 u64 bitmap_start; 1432 u64 bytes_per_bitmap; 1433 1434 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1435 bitmap_start = offset - ctl->start; 1436 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1437 bitmap_start *= bytes_per_bitmap; 1438 bitmap_start += ctl->start; 1439 1440 return bitmap_start; 1441 } 1442 1443 static int tree_insert_offset(struct rb_root *root, u64 offset, 1444 struct rb_node *node, int bitmap) 1445 { 1446 struct rb_node **p = &root->rb_node; 1447 struct rb_node *parent = NULL; 1448 struct btrfs_free_space *info; 1449 1450 while (*p) { 1451 parent = *p; 1452 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1453 1454 if (offset < info->offset) { 1455 p = &(*p)->rb_left; 1456 } else if (offset > info->offset) { 1457 p = &(*p)->rb_right; 1458 } else { 1459 /* 1460 * we could have a bitmap entry and an extent entry 1461 * share the same offset. If this is the case, we want 1462 * the extent entry to always be found first if we do a 1463 * linear search through the tree, since we want to have 1464 * the quickest allocation time, and allocating from an 1465 * extent is faster than allocating from a bitmap. So 1466 * if we're inserting a bitmap and we find an entry at 1467 * this offset, we want to go right, or after this entry 1468 * logically. If we are inserting an extent and we've 1469 * found a bitmap, we want to go left, or before 1470 * logically. 1471 */ 1472 if (bitmap) { 1473 if (info->bitmap) { 1474 WARN_ON_ONCE(1); 1475 return -EEXIST; 1476 } 1477 p = &(*p)->rb_right; 1478 } else { 1479 if (!info->bitmap) { 1480 WARN_ON_ONCE(1); 1481 return -EEXIST; 1482 } 1483 p = &(*p)->rb_left; 1484 } 1485 } 1486 } 1487 1488 rb_link_node(node, parent, p); 1489 rb_insert_color(node, root); 1490 1491 return 0; 1492 } 1493 1494 /* 1495 * searches the tree for the given offset. 1496 * 1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1498 * want a section that has at least bytes size and comes at or after the given 1499 * offset. 1500 */ 1501 static struct btrfs_free_space * 1502 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1503 u64 offset, int bitmap_only, int fuzzy) 1504 { 1505 struct rb_node *n = ctl->free_space_offset.rb_node; 1506 struct btrfs_free_space *entry, *prev = NULL; 1507 1508 /* find entry that is closest to the 'offset' */ 1509 while (1) { 1510 if (!n) { 1511 entry = NULL; 1512 break; 1513 } 1514 1515 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1516 prev = entry; 1517 1518 if (offset < entry->offset) 1519 n = n->rb_left; 1520 else if (offset > entry->offset) 1521 n = n->rb_right; 1522 else 1523 break; 1524 } 1525 1526 if (bitmap_only) { 1527 if (!entry) 1528 return NULL; 1529 if (entry->bitmap) 1530 return entry; 1531 1532 /* 1533 * bitmap entry and extent entry may share same offset, 1534 * in that case, bitmap entry comes after extent entry. 1535 */ 1536 n = rb_next(n); 1537 if (!n) 1538 return NULL; 1539 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1540 if (entry->offset != offset) 1541 return NULL; 1542 1543 WARN_ON(!entry->bitmap); 1544 return entry; 1545 } else if (entry) { 1546 if (entry->bitmap) { 1547 /* 1548 * if previous extent entry covers the offset, 1549 * we should return it instead of the bitmap entry 1550 */ 1551 n = rb_prev(&entry->offset_index); 1552 if (n) { 1553 prev = rb_entry(n, struct btrfs_free_space, 1554 offset_index); 1555 if (!prev->bitmap && 1556 prev->offset + prev->bytes > offset) 1557 entry = prev; 1558 } 1559 } 1560 return entry; 1561 } 1562 1563 if (!prev) 1564 return NULL; 1565 1566 /* find last entry before the 'offset' */ 1567 entry = prev; 1568 if (entry->offset > offset) { 1569 n = rb_prev(&entry->offset_index); 1570 if (n) { 1571 entry = rb_entry(n, struct btrfs_free_space, 1572 offset_index); 1573 ASSERT(entry->offset <= offset); 1574 } else { 1575 if (fuzzy) 1576 return entry; 1577 else 1578 return NULL; 1579 } 1580 } 1581 1582 if (entry->bitmap) { 1583 n = rb_prev(&entry->offset_index); 1584 if (n) { 1585 prev = rb_entry(n, struct btrfs_free_space, 1586 offset_index); 1587 if (!prev->bitmap && 1588 prev->offset + prev->bytes > offset) 1589 return prev; 1590 } 1591 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1592 return entry; 1593 } else if (entry->offset + entry->bytes > offset) 1594 return entry; 1595 1596 if (!fuzzy) 1597 return NULL; 1598 1599 while (1) { 1600 if (entry->bitmap) { 1601 if (entry->offset + BITS_PER_BITMAP * 1602 ctl->unit > offset) 1603 break; 1604 } else { 1605 if (entry->offset + entry->bytes > offset) 1606 break; 1607 } 1608 1609 n = rb_next(&entry->offset_index); 1610 if (!n) 1611 return NULL; 1612 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1613 } 1614 return entry; 1615 } 1616 1617 static inline void 1618 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1619 struct btrfs_free_space *info) 1620 { 1621 rb_erase(&info->offset_index, &ctl->free_space_offset); 1622 ctl->free_extents--; 1623 } 1624 1625 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1626 struct btrfs_free_space *info) 1627 { 1628 __unlink_free_space(ctl, info); 1629 ctl->free_space -= info->bytes; 1630 } 1631 1632 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1633 struct btrfs_free_space *info) 1634 { 1635 int ret = 0; 1636 1637 ASSERT(info->bytes || info->bitmap); 1638 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1639 &info->offset_index, (info->bitmap != NULL)); 1640 if (ret) 1641 return ret; 1642 1643 ctl->free_space += info->bytes; 1644 ctl->free_extents++; 1645 return ret; 1646 } 1647 1648 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1649 { 1650 struct btrfs_block_group_cache *block_group = ctl->private; 1651 u64 max_bytes; 1652 u64 bitmap_bytes; 1653 u64 extent_bytes; 1654 u64 size = block_group->key.offset; 1655 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1656 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1657 1658 max_bitmaps = max_t(u64, max_bitmaps, 1); 1659 1660 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1661 1662 /* 1663 * The goal is to keep the total amount of memory used per 1gb of space 1664 * at or below 32k, so we need to adjust how much memory we allow to be 1665 * used by extent based free space tracking 1666 */ 1667 if (size < SZ_1G) 1668 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1669 else 1670 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1671 1672 /* 1673 * we want to account for 1 more bitmap than what we have so we can make 1674 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1675 * we add more bitmaps. 1676 */ 1677 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit; 1678 1679 if (bitmap_bytes >= max_bytes) { 1680 ctl->extents_thresh = 0; 1681 return; 1682 } 1683 1684 /* 1685 * we want the extent entry threshold to always be at most 1/2 the max 1686 * bytes we can have, or whatever is less than that. 1687 */ 1688 extent_bytes = max_bytes - bitmap_bytes; 1689 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1690 1691 ctl->extents_thresh = 1692 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1693 } 1694 1695 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1696 struct btrfs_free_space *info, 1697 u64 offset, u64 bytes) 1698 { 1699 unsigned long start, count; 1700 1701 start = offset_to_bit(info->offset, ctl->unit, offset); 1702 count = bytes_to_bits(bytes, ctl->unit); 1703 ASSERT(start + count <= BITS_PER_BITMAP); 1704 1705 bitmap_clear(info->bitmap, start, count); 1706 1707 info->bytes -= bytes; 1708 if (info->max_extent_size > ctl->unit) 1709 info->max_extent_size = 0; 1710 } 1711 1712 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1713 struct btrfs_free_space *info, u64 offset, 1714 u64 bytes) 1715 { 1716 __bitmap_clear_bits(ctl, info, offset, bytes); 1717 ctl->free_space -= bytes; 1718 } 1719 1720 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1721 struct btrfs_free_space *info, u64 offset, 1722 u64 bytes) 1723 { 1724 unsigned long start, count; 1725 1726 start = offset_to_bit(info->offset, ctl->unit, offset); 1727 count = bytes_to_bits(bytes, ctl->unit); 1728 ASSERT(start + count <= BITS_PER_BITMAP); 1729 1730 bitmap_set(info->bitmap, start, count); 1731 1732 info->bytes += bytes; 1733 ctl->free_space += bytes; 1734 } 1735 1736 /* 1737 * If we can not find suitable extent, we will use bytes to record 1738 * the size of the max extent. 1739 */ 1740 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1741 struct btrfs_free_space *bitmap_info, u64 *offset, 1742 u64 *bytes, bool for_alloc) 1743 { 1744 unsigned long found_bits = 0; 1745 unsigned long max_bits = 0; 1746 unsigned long bits, i; 1747 unsigned long next_zero; 1748 unsigned long extent_bits; 1749 1750 /* 1751 * Skip searching the bitmap if we don't have a contiguous section that 1752 * is large enough for this allocation. 1753 */ 1754 if (for_alloc && 1755 bitmap_info->max_extent_size && 1756 bitmap_info->max_extent_size < *bytes) { 1757 *bytes = bitmap_info->max_extent_size; 1758 return -1; 1759 } 1760 1761 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1762 max_t(u64, *offset, bitmap_info->offset)); 1763 bits = bytes_to_bits(*bytes, ctl->unit); 1764 1765 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1766 if (for_alloc && bits == 1) { 1767 found_bits = 1; 1768 break; 1769 } 1770 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1771 BITS_PER_BITMAP, i); 1772 extent_bits = next_zero - i; 1773 if (extent_bits >= bits) { 1774 found_bits = extent_bits; 1775 break; 1776 } else if (extent_bits > max_bits) { 1777 max_bits = extent_bits; 1778 } 1779 i = next_zero; 1780 } 1781 1782 if (found_bits) { 1783 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1784 *bytes = (u64)(found_bits) * ctl->unit; 1785 return 0; 1786 } 1787 1788 *bytes = (u64)(max_bits) * ctl->unit; 1789 bitmap_info->max_extent_size = *bytes; 1790 return -1; 1791 } 1792 1793 static inline u64 get_max_extent_size(struct btrfs_free_space *entry) 1794 { 1795 if (entry->bitmap) 1796 return entry->max_extent_size; 1797 return entry->bytes; 1798 } 1799 1800 /* Cache the size of the max extent in bytes */ 1801 static struct btrfs_free_space * 1802 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1803 unsigned long align, u64 *max_extent_size) 1804 { 1805 struct btrfs_free_space *entry; 1806 struct rb_node *node; 1807 u64 tmp; 1808 u64 align_off; 1809 int ret; 1810 1811 if (!ctl->free_space_offset.rb_node) 1812 goto out; 1813 1814 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1815 if (!entry) 1816 goto out; 1817 1818 for (node = &entry->offset_index; node; node = rb_next(node)) { 1819 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1820 if (entry->bytes < *bytes) { 1821 *max_extent_size = max(get_max_extent_size(entry), 1822 *max_extent_size); 1823 continue; 1824 } 1825 1826 /* make sure the space returned is big enough 1827 * to match our requested alignment 1828 */ 1829 if (*bytes >= align) { 1830 tmp = entry->offset - ctl->start + align - 1; 1831 tmp = div64_u64(tmp, align); 1832 tmp = tmp * align + ctl->start; 1833 align_off = tmp - entry->offset; 1834 } else { 1835 align_off = 0; 1836 tmp = entry->offset; 1837 } 1838 1839 if (entry->bytes < *bytes + align_off) { 1840 *max_extent_size = max(get_max_extent_size(entry), 1841 *max_extent_size); 1842 continue; 1843 } 1844 1845 if (entry->bitmap) { 1846 u64 size = *bytes; 1847 1848 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1849 if (!ret) { 1850 *offset = tmp; 1851 *bytes = size; 1852 return entry; 1853 } else { 1854 *max_extent_size = 1855 max(get_max_extent_size(entry), 1856 *max_extent_size); 1857 } 1858 continue; 1859 } 1860 1861 *offset = tmp; 1862 *bytes = entry->bytes - align_off; 1863 return entry; 1864 } 1865 out: 1866 return NULL; 1867 } 1868 1869 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1870 struct btrfs_free_space *info, u64 offset) 1871 { 1872 info->offset = offset_to_bitmap(ctl, offset); 1873 info->bytes = 0; 1874 INIT_LIST_HEAD(&info->list); 1875 link_free_space(ctl, info); 1876 ctl->total_bitmaps++; 1877 1878 ctl->op->recalc_thresholds(ctl); 1879 } 1880 1881 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1882 struct btrfs_free_space *bitmap_info) 1883 { 1884 unlink_free_space(ctl, bitmap_info); 1885 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 1886 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1887 ctl->total_bitmaps--; 1888 ctl->op->recalc_thresholds(ctl); 1889 } 1890 1891 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1892 struct btrfs_free_space *bitmap_info, 1893 u64 *offset, u64 *bytes) 1894 { 1895 u64 end; 1896 u64 search_start, search_bytes; 1897 int ret; 1898 1899 again: 1900 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1901 1902 /* 1903 * We need to search for bits in this bitmap. We could only cover some 1904 * of the extent in this bitmap thanks to how we add space, so we need 1905 * to search for as much as it as we can and clear that amount, and then 1906 * go searching for the next bit. 1907 */ 1908 search_start = *offset; 1909 search_bytes = ctl->unit; 1910 search_bytes = min(search_bytes, end - search_start + 1); 1911 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 1912 false); 1913 if (ret < 0 || search_start != *offset) 1914 return -EINVAL; 1915 1916 /* We may have found more bits than what we need */ 1917 search_bytes = min(search_bytes, *bytes); 1918 1919 /* Cannot clear past the end of the bitmap */ 1920 search_bytes = min(search_bytes, end - search_start + 1); 1921 1922 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1923 *offset += search_bytes; 1924 *bytes -= search_bytes; 1925 1926 if (*bytes) { 1927 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1928 if (!bitmap_info->bytes) 1929 free_bitmap(ctl, bitmap_info); 1930 1931 /* 1932 * no entry after this bitmap, but we still have bytes to 1933 * remove, so something has gone wrong. 1934 */ 1935 if (!next) 1936 return -EINVAL; 1937 1938 bitmap_info = rb_entry(next, struct btrfs_free_space, 1939 offset_index); 1940 1941 /* 1942 * if the next entry isn't a bitmap we need to return to let the 1943 * extent stuff do its work. 1944 */ 1945 if (!bitmap_info->bitmap) 1946 return -EAGAIN; 1947 1948 /* 1949 * Ok the next item is a bitmap, but it may not actually hold 1950 * the information for the rest of this free space stuff, so 1951 * look for it, and if we don't find it return so we can try 1952 * everything over again. 1953 */ 1954 search_start = *offset; 1955 search_bytes = ctl->unit; 1956 ret = search_bitmap(ctl, bitmap_info, &search_start, 1957 &search_bytes, false); 1958 if (ret < 0 || search_start != *offset) 1959 return -EAGAIN; 1960 1961 goto again; 1962 } else if (!bitmap_info->bytes) 1963 free_bitmap(ctl, bitmap_info); 1964 1965 return 0; 1966 } 1967 1968 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1969 struct btrfs_free_space *info, u64 offset, 1970 u64 bytes) 1971 { 1972 u64 bytes_to_set = 0; 1973 u64 end; 1974 1975 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1976 1977 bytes_to_set = min(end - offset, bytes); 1978 1979 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1980 1981 /* 1982 * We set some bytes, we have no idea what the max extent size is 1983 * anymore. 1984 */ 1985 info->max_extent_size = 0; 1986 1987 return bytes_to_set; 1988 1989 } 1990 1991 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1992 struct btrfs_free_space *info) 1993 { 1994 struct btrfs_block_group_cache *block_group = ctl->private; 1995 struct btrfs_fs_info *fs_info = block_group->fs_info; 1996 bool forced = false; 1997 1998 #ifdef CONFIG_BTRFS_DEBUG 1999 if (btrfs_should_fragment_free_space(block_group)) 2000 forced = true; 2001 #endif 2002 2003 /* 2004 * If we are below the extents threshold then we can add this as an 2005 * extent, and don't have to deal with the bitmap 2006 */ 2007 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2008 /* 2009 * If this block group has some small extents we don't want to 2010 * use up all of our free slots in the cache with them, we want 2011 * to reserve them to larger extents, however if we have plenty 2012 * of cache left then go ahead an dadd them, no sense in adding 2013 * the overhead of a bitmap if we don't have to. 2014 */ 2015 if (info->bytes <= fs_info->sectorsize * 4) { 2016 if (ctl->free_extents * 2 <= ctl->extents_thresh) 2017 return false; 2018 } else { 2019 return false; 2020 } 2021 } 2022 2023 /* 2024 * The original block groups from mkfs can be really small, like 8 2025 * megabytes, so don't bother with a bitmap for those entries. However 2026 * some block groups can be smaller than what a bitmap would cover but 2027 * are still large enough that they could overflow the 32k memory limit, 2028 * so allow those block groups to still be allowed to have a bitmap 2029 * entry. 2030 */ 2031 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) 2032 return false; 2033 2034 return true; 2035 } 2036 2037 static const struct btrfs_free_space_op free_space_op = { 2038 .recalc_thresholds = recalculate_thresholds, 2039 .use_bitmap = use_bitmap, 2040 }; 2041 2042 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2043 struct btrfs_free_space *info) 2044 { 2045 struct btrfs_free_space *bitmap_info; 2046 struct btrfs_block_group_cache *block_group = NULL; 2047 int added = 0; 2048 u64 bytes, offset, bytes_added; 2049 int ret; 2050 2051 bytes = info->bytes; 2052 offset = info->offset; 2053 2054 if (!ctl->op->use_bitmap(ctl, info)) 2055 return 0; 2056 2057 if (ctl->op == &free_space_op) 2058 block_group = ctl->private; 2059 again: 2060 /* 2061 * Since we link bitmaps right into the cluster we need to see if we 2062 * have a cluster here, and if so and it has our bitmap we need to add 2063 * the free space to that bitmap. 2064 */ 2065 if (block_group && !list_empty(&block_group->cluster_list)) { 2066 struct btrfs_free_cluster *cluster; 2067 struct rb_node *node; 2068 struct btrfs_free_space *entry; 2069 2070 cluster = list_entry(block_group->cluster_list.next, 2071 struct btrfs_free_cluster, 2072 block_group_list); 2073 spin_lock(&cluster->lock); 2074 node = rb_first(&cluster->root); 2075 if (!node) { 2076 spin_unlock(&cluster->lock); 2077 goto no_cluster_bitmap; 2078 } 2079 2080 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2081 if (!entry->bitmap) { 2082 spin_unlock(&cluster->lock); 2083 goto no_cluster_bitmap; 2084 } 2085 2086 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2087 bytes_added = add_bytes_to_bitmap(ctl, entry, 2088 offset, bytes); 2089 bytes -= bytes_added; 2090 offset += bytes_added; 2091 } 2092 spin_unlock(&cluster->lock); 2093 if (!bytes) { 2094 ret = 1; 2095 goto out; 2096 } 2097 } 2098 2099 no_cluster_bitmap: 2100 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2101 1, 0); 2102 if (!bitmap_info) { 2103 ASSERT(added == 0); 2104 goto new_bitmap; 2105 } 2106 2107 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 2108 bytes -= bytes_added; 2109 offset += bytes_added; 2110 added = 0; 2111 2112 if (!bytes) { 2113 ret = 1; 2114 goto out; 2115 } else 2116 goto again; 2117 2118 new_bitmap: 2119 if (info && info->bitmap) { 2120 add_new_bitmap(ctl, info, offset); 2121 added = 1; 2122 info = NULL; 2123 goto again; 2124 } else { 2125 spin_unlock(&ctl->tree_lock); 2126 2127 /* no pre-allocated info, allocate a new one */ 2128 if (!info) { 2129 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2130 GFP_NOFS); 2131 if (!info) { 2132 spin_lock(&ctl->tree_lock); 2133 ret = -ENOMEM; 2134 goto out; 2135 } 2136 } 2137 2138 /* allocate the bitmap */ 2139 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2140 GFP_NOFS); 2141 spin_lock(&ctl->tree_lock); 2142 if (!info->bitmap) { 2143 ret = -ENOMEM; 2144 goto out; 2145 } 2146 goto again; 2147 } 2148 2149 out: 2150 if (info) { 2151 if (info->bitmap) 2152 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2153 info->bitmap); 2154 kmem_cache_free(btrfs_free_space_cachep, info); 2155 } 2156 2157 return ret; 2158 } 2159 2160 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2161 struct btrfs_free_space *info, bool update_stat) 2162 { 2163 struct btrfs_free_space *left_info; 2164 struct btrfs_free_space *right_info; 2165 bool merged = false; 2166 u64 offset = info->offset; 2167 u64 bytes = info->bytes; 2168 2169 /* 2170 * first we want to see if there is free space adjacent to the range we 2171 * are adding, if there is remove that struct and add a new one to 2172 * cover the entire range 2173 */ 2174 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2175 if (right_info && rb_prev(&right_info->offset_index)) 2176 left_info = rb_entry(rb_prev(&right_info->offset_index), 2177 struct btrfs_free_space, offset_index); 2178 else 2179 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2180 2181 if (right_info && !right_info->bitmap) { 2182 if (update_stat) 2183 unlink_free_space(ctl, right_info); 2184 else 2185 __unlink_free_space(ctl, right_info); 2186 info->bytes += right_info->bytes; 2187 kmem_cache_free(btrfs_free_space_cachep, right_info); 2188 merged = true; 2189 } 2190 2191 if (left_info && !left_info->bitmap && 2192 left_info->offset + left_info->bytes == offset) { 2193 if (update_stat) 2194 unlink_free_space(ctl, left_info); 2195 else 2196 __unlink_free_space(ctl, left_info); 2197 info->offset = left_info->offset; 2198 info->bytes += left_info->bytes; 2199 kmem_cache_free(btrfs_free_space_cachep, left_info); 2200 merged = true; 2201 } 2202 2203 return merged; 2204 } 2205 2206 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2207 struct btrfs_free_space *info, 2208 bool update_stat) 2209 { 2210 struct btrfs_free_space *bitmap; 2211 unsigned long i; 2212 unsigned long j; 2213 const u64 end = info->offset + info->bytes; 2214 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2215 u64 bytes; 2216 2217 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2218 if (!bitmap) 2219 return false; 2220 2221 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2222 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2223 if (j == i) 2224 return false; 2225 bytes = (j - i) * ctl->unit; 2226 info->bytes += bytes; 2227 2228 if (update_stat) 2229 bitmap_clear_bits(ctl, bitmap, end, bytes); 2230 else 2231 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2232 2233 if (!bitmap->bytes) 2234 free_bitmap(ctl, bitmap); 2235 2236 return true; 2237 } 2238 2239 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2240 struct btrfs_free_space *info, 2241 bool update_stat) 2242 { 2243 struct btrfs_free_space *bitmap; 2244 u64 bitmap_offset; 2245 unsigned long i; 2246 unsigned long j; 2247 unsigned long prev_j; 2248 u64 bytes; 2249 2250 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2251 /* If we're on a boundary, try the previous logical bitmap. */ 2252 if (bitmap_offset == info->offset) { 2253 if (info->offset == 0) 2254 return false; 2255 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2256 } 2257 2258 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2259 if (!bitmap) 2260 return false; 2261 2262 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2263 j = 0; 2264 prev_j = (unsigned long)-1; 2265 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2266 if (j > i) 2267 break; 2268 prev_j = j; 2269 } 2270 if (prev_j == i) 2271 return false; 2272 2273 if (prev_j == (unsigned long)-1) 2274 bytes = (i + 1) * ctl->unit; 2275 else 2276 bytes = (i - prev_j) * ctl->unit; 2277 2278 info->offset -= bytes; 2279 info->bytes += bytes; 2280 2281 if (update_stat) 2282 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2283 else 2284 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2285 2286 if (!bitmap->bytes) 2287 free_bitmap(ctl, bitmap); 2288 2289 return true; 2290 } 2291 2292 /* 2293 * We prefer always to allocate from extent entries, both for clustered and 2294 * non-clustered allocation requests. So when attempting to add a new extent 2295 * entry, try to see if there's adjacent free space in bitmap entries, and if 2296 * there is, migrate that space from the bitmaps to the extent. 2297 * Like this we get better chances of satisfying space allocation requests 2298 * because we attempt to satisfy them based on a single cache entry, and never 2299 * on 2 or more entries - even if the entries represent a contiguous free space 2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2301 * ends). 2302 */ 2303 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2304 struct btrfs_free_space *info, 2305 bool update_stat) 2306 { 2307 /* 2308 * Only work with disconnected entries, as we can change their offset, 2309 * and must be extent entries. 2310 */ 2311 ASSERT(!info->bitmap); 2312 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2313 2314 if (ctl->total_bitmaps > 0) { 2315 bool stole_end; 2316 bool stole_front = false; 2317 2318 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2319 if (ctl->total_bitmaps > 0) 2320 stole_front = steal_from_bitmap_to_front(ctl, info, 2321 update_stat); 2322 2323 if (stole_end || stole_front) 2324 try_merge_free_space(ctl, info, update_stat); 2325 } 2326 } 2327 2328 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, 2329 struct btrfs_free_space_ctl *ctl, 2330 u64 offset, u64 bytes) 2331 { 2332 struct btrfs_free_space *info; 2333 int ret = 0; 2334 2335 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2336 if (!info) 2337 return -ENOMEM; 2338 2339 info->offset = offset; 2340 info->bytes = bytes; 2341 RB_CLEAR_NODE(&info->offset_index); 2342 2343 spin_lock(&ctl->tree_lock); 2344 2345 if (try_merge_free_space(ctl, info, true)) 2346 goto link; 2347 2348 /* 2349 * There was no extent directly to the left or right of this new 2350 * extent then we know we're going to have to allocate a new extent, so 2351 * before we do that see if we need to drop this into a bitmap 2352 */ 2353 ret = insert_into_bitmap(ctl, info); 2354 if (ret < 0) { 2355 goto out; 2356 } else if (ret) { 2357 ret = 0; 2358 goto out; 2359 } 2360 link: 2361 /* 2362 * Only steal free space from adjacent bitmaps if we're sure we're not 2363 * going to add the new free space to existing bitmap entries - because 2364 * that would mean unnecessary work that would be reverted. Therefore 2365 * attempt to steal space from bitmaps if we're adding an extent entry. 2366 */ 2367 steal_from_bitmap(ctl, info, true); 2368 2369 ret = link_free_space(ctl, info); 2370 if (ret) 2371 kmem_cache_free(btrfs_free_space_cachep, info); 2372 out: 2373 spin_unlock(&ctl->tree_lock); 2374 2375 if (ret) { 2376 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2377 ASSERT(ret != -EEXIST); 2378 } 2379 2380 return ret; 2381 } 2382 2383 int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, 2384 u64 bytenr, u64 size) 2385 { 2386 return __btrfs_add_free_space(block_group->fs_info, 2387 block_group->free_space_ctl, 2388 bytenr, size); 2389 } 2390 2391 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 2392 u64 offset, u64 bytes) 2393 { 2394 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2395 struct btrfs_free_space *info; 2396 int ret; 2397 bool re_search = false; 2398 2399 spin_lock(&ctl->tree_lock); 2400 2401 again: 2402 ret = 0; 2403 if (!bytes) 2404 goto out_lock; 2405 2406 info = tree_search_offset(ctl, offset, 0, 0); 2407 if (!info) { 2408 /* 2409 * oops didn't find an extent that matched the space we wanted 2410 * to remove, look for a bitmap instead 2411 */ 2412 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2413 1, 0); 2414 if (!info) { 2415 /* 2416 * If we found a partial bit of our free space in a 2417 * bitmap but then couldn't find the other part this may 2418 * be a problem, so WARN about it. 2419 */ 2420 WARN_ON(re_search); 2421 goto out_lock; 2422 } 2423 } 2424 2425 re_search = false; 2426 if (!info->bitmap) { 2427 unlink_free_space(ctl, info); 2428 if (offset == info->offset) { 2429 u64 to_free = min(bytes, info->bytes); 2430 2431 info->bytes -= to_free; 2432 info->offset += to_free; 2433 if (info->bytes) { 2434 ret = link_free_space(ctl, info); 2435 WARN_ON(ret); 2436 } else { 2437 kmem_cache_free(btrfs_free_space_cachep, info); 2438 } 2439 2440 offset += to_free; 2441 bytes -= to_free; 2442 goto again; 2443 } else { 2444 u64 old_end = info->bytes + info->offset; 2445 2446 info->bytes = offset - info->offset; 2447 ret = link_free_space(ctl, info); 2448 WARN_ON(ret); 2449 if (ret) 2450 goto out_lock; 2451 2452 /* Not enough bytes in this entry to satisfy us */ 2453 if (old_end < offset + bytes) { 2454 bytes -= old_end - offset; 2455 offset = old_end; 2456 goto again; 2457 } else if (old_end == offset + bytes) { 2458 /* all done */ 2459 goto out_lock; 2460 } 2461 spin_unlock(&ctl->tree_lock); 2462 2463 ret = btrfs_add_free_space(block_group, offset + bytes, 2464 old_end - (offset + bytes)); 2465 WARN_ON(ret); 2466 goto out; 2467 } 2468 } 2469 2470 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2471 if (ret == -EAGAIN) { 2472 re_search = true; 2473 goto again; 2474 } 2475 out_lock: 2476 spin_unlock(&ctl->tree_lock); 2477 out: 2478 return ret; 2479 } 2480 2481 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 2482 u64 bytes) 2483 { 2484 struct btrfs_fs_info *fs_info = block_group->fs_info; 2485 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2486 struct btrfs_free_space *info; 2487 struct rb_node *n; 2488 int count = 0; 2489 2490 spin_lock(&ctl->tree_lock); 2491 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2492 info = rb_entry(n, struct btrfs_free_space, offset_index); 2493 if (info->bytes >= bytes && !block_group->ro) 2494 count++; 2495 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2496 info->offset, info->bytes, 2497 (info->bitmap) ? "yes" : "no"); 2498 } 2499 spin_unlock(&ctl->tree_lock); 2500 btrfs_info(fs_info, "block group has cluster?: %s", 2501 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2502 btrfs_info(fs_info, 2503 "%d blocks of free space at or bigger than bytes is", count); 2504 } 2505 2506 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 2507 { 2508 struct btrfs_fs_info *fs_info = block_group->fs_info; 2509 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2510 2511 spin_lock_init(&ctl->tree_lock); 2512 ctl->unit = fs_info->sectorsize; 2513 ctl->start = block_group->key.objectid; 2514 ctl->private = block_group; 2515 ctl->op = &free_space_op; 2516 INIT_LIST_HEAD(&ctl->trimming_ranges); 2517 mutex_init(&ctl->cache_writeout_mutex); 2518 2519 /* 2520 * we only want to have 32k of ram per block group for keeping 2521 * track of free space, and if we pass 1/2 of that we want to 2522 * start converting things over to using bitmaps 2523 */ 2524 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2525 } 2526 2527 /* 2528 * for a given cluster, put all of its extents back into the free 2529 * space cache. If the block group passed doesn't match the block group 2530 * pointed to by the cluster, someone else raced in and freed the 2531 * cluster already. In that case, we just return without changing anything 2532 */ 2533 static int 2534 __btrfs_return_cluster_to_free_space( 2535 struct btrfs_block_group_cache *block_group, 2536 struct btrfs_free_cluster *cluster) 2537 { 2538 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2539 struct btrfs_free_space *entry; 2540 struct rb_node *node; 2541 2542 spin_lock(&cluster->lock); 2543 if (cluster->block_group != block_group) 2544 goto out; 2545 2546 cluster->block_group = NULL; 2547 cluster->window_start = 0; 2548 list_del_init(&cluster->block_group_list); 2549 2550 node = rb_first(&cluster->root); 2551 while (node) { 2552 bool bitmap; 2553 2554 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2555 node = rb_next(&entry->offset_index); 2556 rb_erase(&entry->offset_index, &cluster->root); 2557 RB_CLEAR_NODE(&entry->offset_index); 2558 2559 bitmap = (entry->bitmap != NULL); 2560 if (!bitmap) { 2561 try_merge_free_space(ctl, entry, false); 2562 steal_from_bitmap(ctl, entry, false); 2563 } 2564 tree_insert_offset(&ctl->free_space_offset, 2565 entry->offset, &entry->offset_index, bitmap); 2566 } 2567 cluster->root = RB_ROOT; 2568 2569 out: 2570 spin_unlock(&cluster->lock); 2571 btrfs_put_block_group(block_group); 2572 return 0; 2573 } 2574 2575 static void __btrfs_remove_free_space_cache_locked( 2576 struct btrfs_free_space_ctl *ctl) 2577 { 2578 struct btrfs_free_space *info; 2579 struct rb_node *node; 2580 2581 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2582 info = rb_entry(node, struct btrfs_free_space, offset_index); 2583 if (!info->bitmap) { 2584 unlink_free_space(ctl, info); 2585 kmem_cache_free(btrfs_free_space_cachep, info); 2586 } else { 2587 free_bitmap(ctl, info); 2588 } 2589 2590 cond_resched_lock(&ctl->tree_lock); 2591 } 2592 } 2593 2594 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2595 { 2596 spin_lock(&ctl->tree_lock); 2597 __btrfs_remove_free_space_cache_locked(ctl); 2598 spin_unlock(&ctl->tree_lock); 2599 } 2600 2601 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2602 { 2603 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2604 struct btrfs_free_cluster *cluster; 2605 struct list_head *head; 2606 2607 spin_lock(&ctl->tree_lock); 2608 while ((head = block_group->cluster_list.next) != 2609 &block_group->cluster_list) { 2610 cluster = list_entry(head, struct btrfs_free_cluster, 2611 block_group_list); 2612 2613 WARN_ON(cluster->block_group != block_group); 2614 __btrfs_return_cluster_to_free_space(block_group, cluster); 2615 2616 cond_resched_lock(&ctl->tree_lock); 2617 } 2618 __btrfs_remove_free_space_cache_locked(ctl); 2619 spin_unlock(&ctl->tree_lock); 2620 2621 } 2622 2623 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2624 u64 offset, u64 bytes, u64 empty_size, 2625 u64 *max_extent_size) 2626 { 2627 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2628 struct btrfs_free_space *entry = NULL; 2629 u64 bytes_search = bytes + empty_size; 2630 u64 ret = 0; 2631 u64 align_gap = 0; 2632 u64 align_gap_len = 0; 2633 2634 spin_lock(&ctl->tree_lock); 2635 entry = find_free_space(ctl, &offset, &bytes_search, 2636 block_group->full_stripe_len, max_extent_size); 2637 if (!entry) 2638 goto out; 2639 2640 ret = offset; 2641 if (entry->bitmap) { 2642 bitmap_clear_bits(ctl, entry, offset, bytes); 2643 if (!entry->bytes) 2644 free_bitmap(ctl, entry); 2645 } else { 2646 unlink_free_space(ctl, entry); 2647 align_gap_len = offset - entry->offset; 2648 align_gap = entry->offset; 2649 2650 entry->offset = offset + bytes; 2651 WARN_ON(entry->bytes < bytes + align_gap_len); 2652 2653 entry->bytes -= bytes + align_gap_len; 2654 if (!entry->bytes) 2655 kmem_cache_free(btrfs_free_space_cachep, entry); 2656 else 2657 link_free_space(ctl, entry); 2658 } 2659 out: 2660 spin_unlock(&ctl->tree_lock); 2661 2662 if (align_gap_len) 2663 __btrfs_add_free_space(block_group->fs_info, ctl, 2664 align_gap, align_gap_len); 2665 return ret; 2666 } 2667 2668 /* 2669 * given a cluster, put all of its extents back into the free space 2670 * cache. If a block group is passed, this function will only free 2671 * a cluster that belongs to the passed block group. 2672 * 2673 * Otherwise, it'll get a reference on the block group pointed to by the 2674 * cluster and remove the cluster from it. 2675 */ 2676 int btrfs_return_cluster_to_free_space( 2677 struct btrfs_block_group_cache *block_group, 2678 struct btrfs_free_cluster *cluster) 2679 { 2680 struct btrfs_free_space_ctl *ctl; 2681 int ret; 2682 2683 /* first, get a safe pointer to the block group */ 2684 spin_lock(&cluster->lock); 2685 if (!block_group) { 2686 block_group = cluster->block_group; 2687 if (!block_group) { 2688 spin_unlock(&cluster->lock); 2689 return 0; 2690 } 2691 } else if (cluster->block_group != block_group) { 2692 /* someone else has already freed it don't redo their work */ 2693 spin_unlock(&cluster->lock); 2694 return 0; 2695 } 2696 atomic_inc(&block_group->count); 2697 spin_unlock(&cluster->lock); 2698 2699 ctl = block_group->free_space_ctl; 2700 2701 /* now return any extents the cluster had on it */ 2702 spin_lock(&ctl->tree_lock); 2703 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2704 spin_unlock(&ctl->tree_lock); 2705 2706 /* finally drop our ref */ 2707 btrfs_put_block_group(block_group); 2708 return ret; 2709 } 2710 2711 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2712 struct btrfs_free_cluster *cluster, 2713 struct btrfs_free_space *entry, 2714 u64 bytes, u64 min_start, 2715 u64 *max_extent_size) 2716 { 2717 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2718 int err; 2719 u64 search_start = cluster->window_start; 2720 u64 search_bytes = bytes; 2721 u64 ret = 0; 2722 2723 search_start = min_start; 2724 search_bytes = bytes; 2725 2726 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2727 if (err) { 2728 *max_extent_size = max(get_max_extent_size(entry), 2729 *max_extent_size); 2730 return 0; 2731 } 2732 2733 ret = search_start; 2734 __bitmap_clear_bits(ctl, entry, ret, bytes); 2735 2736 return ret; 2737 } 2738 2739 /* 2740 * given a cluster, try to allocate 'bytes' from it, returns 0 2741 * if it couldn't find anything suitably large, or a logical disk offset 2742 * if things worked out 2743 */ 2744 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2745 struct btrfs_free_cluster *cluster, u64 bytes, 2746 u64 min_start, u64 *max_extent_size) 2747 { 2748 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2749 struct btrfs_free_space *entry = NULL; 2750 struct rb_node *node; 2751 u64 ret = 0; 2752 2753 spin_lock(&cluster->lock); 2754 if (bytes > cluster->max_size) 2755 goto out; 2756 2757 if (cluster->block_group != block_group) 2758 goto out; 2759 2760 node = rb_first(&cluster->root); 2761 if (!node) 2762 goto out; 2763 2764 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2765 while (1) { 2766 if (entry->bytes < bytes) 2767 *max_extent_size = max(get_max_extent_size(entry), 2768 *max_extent_size); 2769 2770 if (entry->bytes < bytes || 2771 (!entry->bitmap && entry->offset < min_start)) { 2772 node = rb_next(&entry->offset_index); 2773 if (!node) 2774 break; 2775 entry = rb_entry(node, struct btrfs_free_space, 2776 offset_index); 2777 continue; 2778 } 2779 2780 if (entry->bitmap) { 2781 ret = btrfs_alloc_from_bitmap(block_group, 2782 cluster, entry, bytes, 2783 cluster->window_start, 2784 max_extent_size); 2785 if (ret == 0) { 2786 node = rb_next(&entry->offset_index); 2787 if (!node) 2788 break; 2789 entry = rb_entry(node, struct btrfs_free_space, 2790 offset_index); 2791 continue; 2792 } 2793 cluster->window_start += bytes; 2794 } else { 2795 ret = entry->offset; 2796 2797 entry->offset += bytes; 2798 entry->bytes -= bytes; 2799 } 2800 2801 if (entry->bytes == 0) 2802 rb_erase(&entry->offset_index, &cluster->root); 2803 break; 2804 } 2805 out: 2806 spin_unlock(&cluster->lock); 2807 2808 if (!ret) 2809 return 0; 2810 2811 spin_lock(&ctl->tree_lock); 2812 2813 ctl->free_space -= bytes; 2814 if (entry->bytes == 0) { 2815 ctl->free_extents--; 2816 if (entry->bitmap) { 2817 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2818 entry->bitmap); 2819 ctl->total_bitmaps--; 2820 ctl->op->recalc_thresholds(ctl); 2821 } 2822 kmem_cache_free(btrfs_free_space_cachep, entry); 2823 } 2824 2825 spin_unlock(&ctl->tree_lock); 2826 2827 return ret; 2828 } 2829 2830 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2831 struct btrfs_free_space *entry, 2832 struct btrfs_free_cluster *cluster, 2833 u64 offset, u64 bytes, 2834 u64 cont1_bytes, u64 min_bytes) 2835 { 2836 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2837 unsigned long next_zero; 2838 unsigned long i; 2839 unsigned long want_bits; 2840 unsigned long min_bits; 2841 unsigned long found_bits; 2842 unsigned long max_bits = 0; 2843 unsigned long start = 0; 2844 unsigned long total_found = 0; 2845 int ret; 2846 2847 i = offset_to_bit(entry->offset, ctl->unit, 2848 max_t(u64, offset, entry->offset)); 2849 want_bits = bytes_to_bits(bytes, ctl->unit); 2850 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2851 2852 /* 2853 * Don't bother looking for a cluster in this bitmap if it's heavily 2854 * fragmented. 2855 */ 2856 if (entry->max_extent_size && 2857 entry->max_extent_size < cont1_bytes) 2858 return -ENOSPC; 2859 again: 2860 found_bits = 0; 2861 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2862 next_zero = find_next_zero_bit(entry->bitmap, 2863 BITS_PER_BITMAP, i); 2864 if (next_zero - i >= min_bits) { 2865 found_bits = next_zero - i; 2866 if (found_bits > max_bits) 2867 max_bits = found_bits; 2868 break; 2869 } 2870 if (next_zero - i > max_bits) 2871 max_bits = next_zero - i; 2872 i = next_zero; 2873 } 2874 2875 if (!found_bits) { 2876 entry->max_extent_size = (u64)max_bits * ctl->unit; 2877 return -ENOSPC; 2878 } 2879 2880 if (!total_found) { 2881 start = i; 2882 cluster->max_size = 0; 2883 } 2884 2885 total_found += found_bits; 2886 2887 if (cluster->max_size < found_bits * ctl->unit) 2888 cluster->max_size = found_bits * ctl->unit; 2889 2890 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2891 i = next_zero + 1; 2892 goto again; 2893 } 2894 2895 cluster->window_start = start * ctl->unit + entry->offset; 2896 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2897 ret = tree_insert_offset(&cluster->root, entry->offset, 2898 &entry->offset_index, 1); 2899 ASSERT(!ret); /* -EEXIST; Logic error */ 2900 2901 trace_btrfs_setup_cluster(block_group, cluster, 2902 total_found * ctl->unit, 1); 2903 return 0; 2904 } 2905 2906 /* 2907 * This searches the block group for just extents to fill the cluster with. 2908 * Try to find a cluster with at least bytes total bytes, at least one 2909 * extent of cont1_bytes, and other clusters of at least min_bytes. 2910 */ 2911 static noinline int 2912 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2913 struct btrfs_free_cluster *cluster, 2914 struct list_head *bitmaps, u64 offset, u64 bytes, 2915 u64 cont1_bytes, u64 min_bytes) 2916 { 2917 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2918 struct btrfs_free_space *first = NULL; 2919 struct btrfs_free_space *entry = NULL; 2920 struct btrfs_free_space *last; 2921 struct rb_node *node; 2922 u64 window_free; 2923 u64 max_extent; 2924 u64 total_size = 0; 2925 2926 entry = tree_search_offset(ctl, offset, 0, 1); 2927 if (!entry) 2928 return -ENOSPC; 2929 2930 /* 2931 * We don't want bitmaps, so just move along until we find a normal 2932 * extent entry. 2933 */ 2934 while (entry->bitmap || entry->bytes < min_bytes) { 2935 if (entry->bitmap && list_empty(&entry->list)) 2936 list_add_tail(&entry->list, bitmaps); 2937 node = rb_next(&entry->offset_index); 2938 if (!node) 2939 return -ENOSPC; 2940 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2941 } 2942 2943 window_free = entry->bytes; 2944 max_extent = entry->bytes; 2945 first = entry; 2946 last = entry; 2947 2948 for (node = rb_next(&entry->offset_index); node; 2949 node = rb_next(&entry->offset_index)) { 2950 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2951 2952 if (entry->bitmap) { 2953 if (list_empty(&entry->list)) 2954 list_add_tail(&entry->list, bitmaps); 2955 continue; 2956 } 2957 2958 if (entry->bytes < min_bytes) 2959 continue; 2960 2961 last = entry; 2962 window_free += entry->bytes; 2963 if (entry->bytes > max_extent) 2964 max_extent = entry->bytes; 2965 } 2966 2967 if (window_free < bytes || max_extent < cont1_bytes) 2968 return -ENOSPC; 2969 2970 cluster->window_start = first->offset; 2971 2972 node = &first->offset_index; 2973 2974 /* 2975 * now we've found our entries, pull them out of the free space 2976 * cache and put them into the cluster rbtree 2977 */ 2978 do { 2979 int ret; 2980 2981 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2982 node = rb_next(&entry->offset_index); 2983 if (entry->bitmap || entry->bytes < min_bytes) 2984 continue; 2985 2986 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2987 ret = tree_insert_offset(&cluster->root, entry->offset, 2988 &entry->offset_index, 0); 2989 total_size += entry->bytes; 2990 ASSERT(!ret); /* -EEXIST; Logic error */ 2991 } while (node && entry != last); 2992 2993 cluster->max_size = max_extent; 2994 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2995 return 0; 2996 } 2997 2998 /* 2999 * This specifically looks for bitmaps that may work in the cluster, we assume 3000 * that we have already failed to find extents that will work. 3001 */ 3002 static noinline int 3003 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 3004 struct btrfs_free_cluster *cluster, 3005 struct list_head *bitmaps, u64 offset, u64 bytes, 3006 u64 cont1_bytes, u64 min_bytes) 3007 { 3008 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3009 struct btrfs_free_space *entry = NULL; 3010 int ret = -ENOSPC; 3011 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3012 3013 if (ctl->total_bitmaps == 0) 3014 return -ENOSPC; 3015 3016 /* 3017 * The bitmap that covers offset won't be in the list unless offset 3018 * is just its start offset. 3019 */ 3020 if (!list_empty(bitmaps)) 3021 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3022 3023 if (!entry || entry->offset != bitmap_offset) { 3024 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3025 if (entry && list_empty(&entry->list)) 3026 list_add(&entry->list, bitmaps); 3027 } 3028 3029 list_for_each_entry(entry, bitmaps, list) { 3030 if (entry->bytes < bytes) 3031 continue; 3032 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3033 bytes, cont1_bytes, min_bytes); 3034 if (!ret) 3035 return 0; 3036 } 3037 3038 /* 3039 * The bitmaps list has all the bitmaps that record free space 3040 * starting after offset, so no more search is required. 3041 */ 3042 return -ENOSPC; 3043 } 3044 3045 /* 3046 * here we try to find a cluster of blocks in a block group. The goal 3047 * is to find at least bytes+empty_size. 3048 * We might not find them all in one contiguous area. 3049 * 3050 * returns zero and sets up cluster if things worked out, otherwise 3051 * it returns -enospc 3052 */ 3053 int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group, 3054 struct btrfs_free_cluster *cluster, 3055 u64 offset, u64 bytes, u64 empty_size) 3056 { 3057 struct btrfs_fs_info *fs_info = block_group->fs_info; 3058 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3059 struct btrfs_free_space *entry, *tmp; 3060 LIST_HEAD(bitmaps); 3061 u64 min_bytes; 3062 u64 cont1_bytes; 3063 int ret; 3064 3065 /* 3066 * Choose the minimum extent size we'll require for this 3067 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3068 * For metadata, allow allocates with smaller extents. For 3069 * data, keep it dense. 3070 */ 3071 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3072 cont1_bytes = min_bytes = bytes + empty_size; 3073 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3074 cont1_bytes = bytes; 3075 min_bytes = fs_info->sectorsize; 3076 } else { 3077 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3078 min_bytes = fs_info->sectorsize; 3079 } 3080 3081 spin_lock(&ctl->tree_lock); 3082 3083 /* 3084 * If we know we don't have enough space to make a cluster don't even 3085 * bother doing all the work to try and find one. 3086 */ 3087 if (ctl->free_space < bytes) { 3088 spin_unlock(&ctl->tree_lock); 3089 return -ENOSPC; 3090 } 3091 3092 spin_lock(&cluster->lock); 3093 3094 /* someone already found a cluster, hooray */ 3095 if (cluster->block_group) { 3096 ret = 0; 3097 goto out; 3098 } 3099 3100 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3101 min_bytes); 3102 3103 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3104 bytes + empty_size, 3105 cont1_bytes, min_bytes); 3106 if (ret) 3107 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3108 offset, bytes + empty_size, 3109 cont1_bytes, min_bytes); 3110 3111 /* Clear our temporary list */ 3112 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3113 list_del_init(&entry->list); 3114 3115 if (!ret) { 3116 atomic_inc(&block_group->count); 3117 list_add_tail(&cluster->block_group_list, 3118 &block_group->cluster_list); 3119 cluster->block_group = block_group; 3120 } else { 3121 trace_btrfs_failed_cluster_setup(block_group); 3122 } 3123 out: 3124 spin_unlock(&cluster->lock); 3125 spin_unlock(&ctl->tree_lock); 3126 3127 return ret; 3128 } 3129 3130 /* 3131 * simple code to zero out a cluster 3132 */ 3133 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3134 { 3135 spin_lock_init(&cluster->lock); 3136 spin_lock_init(&cluster->refill_lock); 3137 cluster->root = RB_ROOT; 3138 cluster->max_size = 0; 3139 cluster->fragmented = false; 3140 INIT_LIST_HEAD(&cluster->block_group_list); 3141 cluster->block_group = NULL; 3142 } 3143 3144 static int do_trimming(struct btrfs_block_group_cache *block_group, 3145 u64 *total_trimmed, u64 start, u64 bytes, 3146 u64 reserved_start, u64 reserved_bytes, 3147 struct btrfs_trim_range *trim_entry) 3148 { 3149 struct btrfs_space_info *space_info = block_group->space_info; 3150 struct btrfs_fs_info *fs_info = block_group->fs_info; 3151 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3152 int ret; 3153 int update = 0; 3154 u64 trimmed = 0; 3155 3156 spin_lock(&space_info->lock); 3157 spin_lock(&block_group->lock); 3158 if (!block_group->ro) { 3159 block_group->reserved += reserved_bytes; 3160 space_info->bytes_reserved += reserved_bytes; 3161 update = 1; 3162 } 3163 spin_unlock(&block_group->lock); 3164 spin_unlock(&space_info->lock); 3165 3166 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3167 if (!ret) 3168 *total_trimmed += trimmed; 3169 3170 mutex_lock(&ctl->cache_writeout_mutex); 3171 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 3172 list_del(&trim_entry->list); 3173 mutex_unlock(&ctl->cache_writeout_mutex); 3174 3175 if (update) { 3176 spin_lock(&space_info->lock); 3177 spin_lock(&block_group->lock); 3178 if (block_group->ro) 3179 space_info->bytes_readonly += reserved_bytes; 3180 block_group->reserved -= reserved_bytes; 3181 space_info->bytes_reserved -= reserved_bytes; 3182 spin_unlock(&block_group->lock); 3183 spin_unlock(&space_info->lock); 3184 } 3185 3186 return ret; 3187 } 3188 3189 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 3190 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3191 { 3192 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3193 struct btrfs_free_space *entry; 3194 struct rb_node *node; 3195 int ret = 0; 3196 u64 extent_start; 3197 u64 extent_bytes; 3198 u64 bytes; 3199 3200 while (start < end) { 3201 struct btrfs_trim_range trim_entry; 3202 3203 mutex_lock(&ctl->cache_writeout_mutex); 3204 spin_lock(&ctl->tree_lock); 3205 3206 if (ctl->free_space < minlen) { 3207 spin_unlock(&ctl->tree_lock); 3208 mutex_unlock(&ctl->cache_writeout_mutex); 3209 break; 3210 } 3211 3212 entry = tree_search_offset(ctl, start, 0, 1); 3213 if (!entry) { 3214 spin_unlock(&ctl->tree_lock); 3215 mutex_unlock(&ctl->cache_writeout_mutex); 3216 break; 3217 } 3218 3219 /* skip bitmaps */ 3220 while (entry->bitmap) { 3221 node = rb_next(&entry->offset_index); 3222 if (!node) { 3223 spin_unlock(&ctl->tree_lock); 3224 mutex_unlock(&ctl->cache_writeout_mutex); 3225 goto out; 3226 } 3227 entry = rb_entry(node, struct btrfs_free_space, 3228 offset_index); 3229 } 3230 3231 if (entry->offset >= end) { 3232 spin_unlock(&ctl->tree_lock); 3233 mutex_unlock(&ctl->cache_writeout_mutex); 3234 break; 3235 } 3236 3237 extent_start = entry->offset; 3238 extent_bytes = entry->bytes; 3239 start = max(start, extent_start); 3240 bytes = min(extent_start + extent_bytes, end) - start; 3241 if (bytes < minlen) { 3242 spin_unlock(&ctl->tree_lock); 3243 mutex_unlock(&ctl->cache_writeout_mutex); 3244 goto next; 3245 } 3246 3247 unlink_free_space(ctl, entry); 3248 kmem_cache_free(btrfs_free_space_cachep, entry); 3249 3250 spin_unlock(&ctl->tree_lock); 3251 trim_entry.start = extent_start; 3252 trim_entry.bytes = extent_bytes; 3253 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3254 mutex_unlock(&ctl->cache_writeout_mutex); 3255 3256 ret = do_trimming(block_group, total_trimmed, start, bytes, 3257 extent_start, extent_bytes, &trim_entry); 3258 if (ret) 3259 break; 3260 next: 3261 start += bytes; 3262 3263 if (fatal_signal_pending(current)) { 3264 ret = -ERESTARTSYS; 3265 break; 3266 } 3267 3268 cond_resched(); 3269 } 3270 out: 3271 return ret; 3272 } 3273 3274 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 3275 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3276 { 3277 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3278 struct btrfs_free_space *entry; 3279 int ret = 0; 3280 int ret2; 3281 u64 bytes; 3282 u64 offset = offset_to_bitmap(ctl, start); 3283 3284 while (offset < end) { 3285 bool next_bitmap = false; 3286 struct btrfs_trim_range trim_entry; 3287 3288 mutex_lock(&ctl->cache_writeout_mutex); 3289 spin_lock(&ctl->tree_lock); 3290 3291 if (ctl->free_space < minlen) { 3292 spin_unlock(&ctl->tree_lock); 3293 mutex_unlock(&ctl->cache_writeout_mutex); 3294 break; 3295 } 3296 3297 entry = tree_search_offset(ctl, offset, 1, 0); 3298 if (!entry) { 3299 spin_unlock(&ctl->tree_lock); 3300 mutex_unlock(&ctl->cache_writeout_mutex); 3301 next_bitmap = true; 3302 goto next; 3303 } 3304 3305 bytes = minlen; 3306 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3307 if (ret2 || start >= end) { 3308 spin_unlock(&ctl->tree_lock); 3309 mutex_unlock(&ctl->cache_writeout_mutex); 3310 next_bitmap = true; 3311 goto next; 3312 } 3313 3314 bytes = min(bytes, end - start); 3315 if (bytes < minlen) { 3316 spin_unlock(&ctl->tree_lock); 3317 mutex_unlock(&ctl->cache_writeout_mutex); 3318 goto next; 3319 } 3320 3321 bitmap_clear_bits(ctl, entry, start, bytes); 3322 if (entry->bytes == 0) 3323 free_bitmap(ctl, entry); 3324 3325 spin_unlock(&ctl->tree_lock); 3326 trim_entry.start = start; 3327 trim_entry.bytes = bytes; 3328 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3329 mutex_unlock(&ctl->cache_writeout_mutex); 3330 3331 ret = do_trimming(block_group, total_trimmed, start, bytes, 3332 start, bytes, &trim_entry); 3333 if (ret) 3334 break; 3335 next: 3336 if (next_bitmap) { 3337 offset += BITS_PER_BITMAP * ctl->unit; 3338 } else { 3339 start += bytes; 3340 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 3341 offset += BITS_PER_BITMAP * ctl->unit; 3342 } 3343 3344 if (fatal_signal_pending(current)) { 3345 ret = -ERESTARTSYS; 3346 break; 3347 } 3348 3349 cond_resched(); 3350 } 3351 3352 return ret; 3353 } 3354 3355 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache) 3356 { 3357 atomic_inc(&cache->trimming); 3358 } 3359 3360 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group) 3361 { 3362 struct btrfs_fs_info *fs_info = block_group->fs_info; 3363 struct extent_map_tree *em_tree; 3364 struct extent_map *em; 3365 bool cleanup; 3366 3367 spin_lock(&block_group->lock); 3368 cleanup = (atomic_dec_and_test(&block_group->trimming) && 3369 block_group->removed); 3370 spin_unlock(&block_group->lock); 3371 3372 if (cleanup) { 3373 mutex_lock(&fs_info->chunk_mutex); 3374 em_tree = &fs_info->mapping_tree; 3375 write_lock(&em_tree->lock); 3376 em = lookup_extent_mapping(em_tree, block_group->key.objectid, 3377 1); 3378 BUG_ON(!em); /* logic error, can't happen */ 3379 remove_extent_mapping(em_tree, em); 3380 write_unlock(&em_tree->lock); 3381 mutex_unlock(&fs_info->chunk_mutex); 3382 3383 /* once for us and once for the tree */ 3384 free_extent_map(em); 3385 free_extent_map(em); 3386 3387 /* 3388 * We've left one free space entry and other tasks trimming 3389 * this block group have left 1 entry each one. Free them. 3390 */ 3391 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3392 } 3393 } 3394 3395 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 3396 u64 *trimmed, u64 start, u64 end, u64 minlen) 3397 { 3398 int ret; 3399 3400 *trimmed = 0; 3401 3402 spin_lock(&block_group->lock); 3403 if (block_group->removed) { 3404 spin_unlock(&block_group->lock); 3405 return 0; 3406 } 3407 btrfs_get_block_group_trimming(block_group); 3408 spin_unlock(&block_group->lock); 3409 3410 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 3411 if (ret) 3412 goto out; 3413 3414 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 3415 out: 3416 btrfs_put_block_group_trimming(block_group); 3417 return ret; 3418 } 3419 3420 /* 3421 * Find the left-most item in the cache tree, and then return the 3422 * smallest inode number in the item. 3423 * 3424 * Note: the returned inode number may not be the smallest one in 3425 * the tree, if the left-most item is a bitmap. 3426 */ 3427 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3428 { 3429 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3430 struct btrfs_free_space *entry = NULL; 3431 u64 ino = 0; 3432 3433 spin_lock(&ctl->tree_lock); 3434 3435 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3436 goto out; 3437 3438 entry = rb_entry(rb_first(&ctl->free_space_offset), 3439 struct btrfs_free_space, offset_index); 3440 3441 if (!entry->bitmap) { 3442 ino = entry->offset; 3443 3444 unlink_free_space(ctl, entry); 3445 entry->offset++; 3446 entry->bytes--; 3447 if (!entry->bytes) 3448 kmem_cache_free(btrfs_free_space_cachep, entry); 3449 else 3450 link_free_space(ctl, entry); 3451 } else { 3452 u64 offset = 0; 3453 u64 count = 1; 3454 int ret; 3455 3456 ret = search_bitmap(ctl, entry, &offset, &count, true); 3457 /* Logic error; Should be empty if it can't find anything */ 3458 ASSERT(!ret); 3459 3460 ino = offset; 3461 bitmap_clear_bits(ctl, entry, offset, 1); 3462 if (entry->bytes == 0) 3463 free_bitmap(ctl, entry); 3464 } 3465 out: 3466 spin_unlock(&ctl->tree_lock); 3467 3468 return ino; 3469 } 3470 3471 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3472 struct btrfs_path *path) 3473 { 3474 struct inode *inode = NULL; 3475 3476 spin_lock(&root->ino_cache_lock); 3477 if (root->ino_cache_inode) 3478 inode = igrab(root->ino_cache_inode); 3479 spin_unlock(&root->ino_cache_lock); 3480 if (inode) 3481 return inode; 3482 3483 inode = __lookup_free_space_inode(root, path, 0); 3484 if (IS_ERR(inode)) 3485 return inode; 3486 3487 spin_lock(&root->ino_cache_lock); 3488 if (!btrfs_fs_closing(root->fs_info)) 3489 root->ino_cache_inode = igrab(inode); 3490 spin_unlock(&root->ino_cache_lock); 3491 3492 return inode; 3493 } 3494 3495 int create_free_ino_inode(struct btrfs_root *root, 3496 struct btrfs_trans_handle *trans, 3497 struct btrfs_path *path) 3498 { 3499 return __create_free_space_inode(root, trans, path, 3500 BTRFS_FREE_INO_OBJECTID, 0); 3501 } 3502 3503 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3504 { 3505 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3506 struct btrfs_path *path; 3507 struct inode *inode; 3508 int ret = 0; 3509 u64 root_gen = btrfs_root_generation(&root->root_item); 3510 3511 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3512 return 0; 3513 3514 /* 3515 * If we're unmounting then just return, since this does a search on the 3516 * normal root and not the commit root and we could deadlock. 3517 */ 3518 if (btrfs_fs_closing(fs_info)) 3519 return 0; 3520 3521 path = btrfs_alloc_path(); 3522 if (!path) 3523 return 0; 3524 3525 inode = lookup_free_ino_inode(root, path); 3526 if (IS_ERR(inode)) 3527 goto out; 3528 3529 if (root_gen != BTRFS_I(inode)->generation) 3530 goto out_put; 3531 3532 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3533 3534 if (ret < 0) 3535 btrfs_err(fs_info, 3536 "failed to load free ino cache for root %llu", 3537 root->root_key.objectid); 3538 out_put: 3539 iput(inode); 3540 out: 3541 btrfs_free_path(path); 3542 return ret; 3543 } 3544 3545 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3546 struct btrfs_trans_handle *trans, 3547 struct btrfs_path *path, 3548 struct inode *inode) 3549 { 3550 struct btrfs_fs_info *fs_info = root->fs_info; 3551 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3552 int ret; 3553 struct btrfs_io_ctl io_ctl; 3554 bool release_metadata = true; 3555 3556 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3557 return 0; 3558 3559 memset(&io_ctl, 0, sizeof(io_ctl)); 3560 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); 3561 if (!ret) { 3562 /* 3563 * At this point writepages() didn't error out, so our metadata 3564 * reservation is released when the writeback finishes, at 3565 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 3566 * with or without an error. 3567 */ 3568 release_metadata = false; 3569 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); 3570 } 3571 3572 if (ret) { 3573 if (release_metadata) 3574 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3575 inode->i_size, true); 3576 #ifdef DEBUG 3577 btrfs_err(fs_info, 3578 "failed to write free ino cache for root %llu", 3579 root->root_key.objectid); 3580 #endif 3581 } 3582 3583 return ret; 3584 } 3585 3586 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3587 /* 3588 * Use this if you need to make a bitmap or extent entry specifically, it 3589 * doesn't do any of the merging that add_free_space does, this acts a lot like 3590 * how the free space cache loading stuff works, so you can get really weird 3591 * configurations. 3592 */ 3593 int test_add_free_space_entry(struct btrfs_block_group_cache *cache, 3594 u64 offset, u64 bytes, bool bitmap) 3595 { 3596 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3597 struct btrfs_free_space *info = NULL, *bitmap_info; 3598 void *map = NULL; 3599 u64 bytes_added; 3600 int ret; 3601 3602 again: 3603 if (!info) { 3604 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3605 if (!info) 3606 return -ENOMEM; 3607 } 3608 3609 if (!bitmap) { 3610 spin_lock(&ctl->tree_lock); 3611 info->offset = offset; 3612 info->bytes = bytes; 3613 info->max_extent_size = 0; 3614 ret = link_free_space(ctl, info); 3615 spin_unlock(&ctl->tree_lock); 3616 if (ret) 3617 kmem_cache_free(btrfs_free_space_cachep, info); 3618 return ret; 3619 } 3620 3621 if (!map) { 3622 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 3623 if (!map) { 3624 kmem_cache_free(btrfs_free_space_cachep, info); 3625 return -ENOMEM; 3626 } 3627 } 3628 3629 spin_lock(&ctl->tree_lock); 3630 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3631 1, 0); 3632 if (!bitmap_info) { 3633 info->bitmap = map; 3634 map = NULL; 3635 add_new_bitmap(ctl, info, offset); 3636 bitmap_info = info; 3637 info = NULL; 3638 } 3639 3640 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3641 3642 bytes -= bytes_added; 3643 offset += bytes_added; 3644 spin_unlock(&ctl->tree_lock); 3645 3646 if (bytes) 3647 goto again; 3648 3649 if (info) 3650 kmem_cache_free(btrfs_free_space_cachep, info); 3651 if (map) 3652 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 3653 return 0; 3654 } 3655 3656 /* 3657 * Checks to see if the given range is in the free space cache. This is really 3658 * just used to check the absence of space, so if there is free space in the 3659 * range at all we will return 1. 3660 */ 3661 int test_check_exists(struct btrfs_block_group_cache *cache, 3662 u64 offset, u64 bytes) 3663 { 3664 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3665 struct btrfs_free_space *info; 3666 int ret = 0; 3667 3668 spin_lock(&ctl->tree_lock); 3669 info = tree_search_offset(ctl, offset, 0, 0); 3670 if (!info) { 3671 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3672 1, 0); 3673 if (!info) 3674 goto out; 3675 } 3676 3677 have_info: 3678 if (info->bitmap) { 3679 u64 bit_off, bit_bytes; 3680 struct rb_node *n; 3681 struct btrfs_free_space *tmp; 3682 3683 bit_off = offset; 3684 bit_bytes = ctl->unit; 3685 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 3686 if (!ret) { 3687 if (bit_off == offset) { 3688 ret = 1; 3689 goto out; 3690 } else if (bit_off > offset && 3691 offset + bytes > bit_off) { 3692 ret = 1; 3693 goto out; 3694 } 3695 } 3696 3697 n = rb_prev(&info->offset_index); 3698 while (n) { 3699 tmp = rb_entry(n, struct btrfs_free_space, 3700 offset_index); 3701 if (tmp->offset + tmp->bytes < offset) 3702 break; 3703 if (offset + bytes < tmp->offset) { 3704 n = rb_prev(&tmp->offset_index); 3705 continue; 3706 } 3707 info = tmp; 3708 goto have_info; 3709 } 3710 3711 n = rb_next(&info->offset_index); 3712 while (n) { 3713 tmp = rb_entry(n, struct btrfs_free_space, 3714 offset_index); 3715 if (offset + bytes < tmp->offset) 3716 break; 3717 if (tmp->offset + tmp->bytes < offset) { 3718 n = rb_next(&tmp->offset_index); 3719 continue; 3720 } 3721 info = tmp; 3722 goto have_info; 3723 } 3724 3725 ret = 0; 3726 goto out; 3727 } 3728 3729 if (info->offset == offset) { 3730 ret = 1; 3731 goto out; 3732 } 3733 3734 if (offset > info->offset && offset < info->offset + info->bytes) 3735 ret = 1; 3736 out: 3737 spin_unlock(&ctl->tree_lock); 3738 return ret; 3739 } 3740 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3741