xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 206a81c1)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_key key;
44 	struct btrfs_key location;
45 	struct btrfs_disk_key disk_key;
46 	struct btrfs_free_space_header *header;
47 	struct extent_buffer *leaf;
48 	struct inode *inode = NULL;
49 	int ret;
50 
51 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 	key.offset = offset;
53 	key.type = 0;
54 
55 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 	if (ret < 0)
57 		return ERR_PTR(ret);
58 	if (ret > 0) {
59 		btrfs_release_path(path);
60 		return ERR_PTR(-ENOENT);
61 	}
62 
63 	leaf = path->nodes[0];
64 	header = btrfs_item_ptr(leaf, path->slots[0],
65 				struct btrfs_free_space_header);
66 	btrfs_free_space_key(leaf, header, &disk_key);
67 	btrfs_disk_key_to_cpu(&location, &disk_key);
68 	btrfs_release_path(path);
69 
70 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 	if (!inode)
72 		return ERR_PTR(-ENOENT);
73 	if (IS_ERR(inode))
74 		return inode;
75 	if (is_bad_inode(inode)) {
76 		iput(inode);
77 		return ERR_PTR(-ENOENT);
78 	}
79 
80 	mapping_set_gfp_mask(inode->i_mapping,
81 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		btrfs_info(root->fs_info,
108 			"Old style space inode found, converting.");
109 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
110 			BTRFS_INODE_NODATACOW;
111 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
112 	}
113 
114 	if (!block_group->iref) {
115 		block_group->inode = igrab(inode);
116 		block_group->iref = 1;
117 	}
118 	spin_unlock(&block_group->lock);
119 
120 	return inode;
121 }
122 
123 static int __create_free_space_inode(struct btrfs_root *root,
124 				     struct btrfs_trans_handle *trans,
125 				     struct btrfs_path *path,
126 				     u64 ino, u64 offset)
127 {
128 	struct btrfs_key key;
129 	struct btrfs_disk_key disk_key;
130 	struct btrfs_free_space_header *header;
131 	struct btrfs_inode_item *inode_item;
132 	struct extent_buffer *leaf;
133 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
134 	int ret;
135 
136 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
137 	if (ret)
138 		return ret;
139 
140 	/* We inline crc's for the free disk space cache */
141 	if (ino != BTRFS_FREE_INO_OBJECTID)
142 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
143 
144 	leaf = path->nodes[0];
145 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
146 				    struct btrfs_inode_item);
147 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
148 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
149 			     sizeof(*inode_item));
150 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
151 	btrfs_set_inode_size(leaf, inode_item, 0);
152 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
153 	btrfs_set_inode_uid(leaf, inode_item, 0);
154 	btrfs_set_inode_gid(leaf, inode_item, 0);
155 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
156 	btrfs_set_inode_flags(leaf, inode_item, flags);
157 	btrfs_set_inode_nlink(leaf, inode_item, 1);
158 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_block_group(leaf, inode_item, offset);
160 	btrfs_mark_buffer_dirty(leaf);
161 	btrfs_release_path(path);
162 
163 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
164 	key.offset = offset;
165 	key.type = 0;
166 
167 	ret = btrfs_insert_empty_item(trans, root, path, &key,
168 				      sizeof(struct btrfs_free_space_header));
169 	if (ret < 0) {
170 		btrfs_release_path(path);
171 		return ret;
172 	}
173 	leaf = path->nodes[0];
174 	header = btrfs_item_ptr(leaf, path->slots[0],
175 				struct btrfs_free_space_header);
176 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
177 	btrfs_set_free_space_key(leaf, header, &disk_key);
178 	btrfs_mark_buffer_dirty(leaf);
179 	btrfs_release_path(path);
180 
181 	return 0;
182 }
183 
184 int create_free_space_inode(struct btrfs_root *root,
185 			    struct btrfs_trans_handle *trans,
186 			    struct btrfs_block_group_cache *block_group,
187 			    struct btrfs_path *path)
188 {
189 	int ret;
190 	u64 ino;
191 
192 	ret = btrfs_find_free_objectid(root, &ino);
193 	if (ret < 0)
194 		return ret;
195 
196 	return __create_free_space_inode(root, trans, path, ino,
197 					 block_group->key.objectid);
198 }
199 
200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
201 				       struct btrfs_block_rsv *rsv)
202 {
203 	u64 needed_bytes;
204 	int ret;
205 
206 	/* 1 for slack space, 1 for updating the inode */
207 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
208 		btrfs_calc_trans_metadata_size(root, 1);
209 
210 	spin_lock(&rsv->lock);
211 	if (rsv->reserved < needed_bytes)
212 		ret = -ENOSPC;
213 	else
214 		ret = 0;
215 	spin_unlock(&rsv->lock);
216 	return ret;
217 }
218 
219 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
220 				    struct btrfs_trans_handle *trans,
221 				    struct inode *inode)
222 {
223 	int ret = 0;
224 
225 	btrfs_i_size_write(inode, 0);
226 	truncate_pagecache(inode, 0);
227 
228 	/*
229 	 * We don't need an orphan item because truncating the free space cache
230 	 * will never be split across transactions.
231 	 */
232 	ret = btrfs_truncate_inode_items(trans, root, inode,
233 					 0, BTRFS_EXTENT_DATA_KEY);
234 	if (ret) {
235 		btrfs_abort_transaction(trans, root, ret);
236 		return ret;
237 	}
238 
239 	ret = btrfs_update_inode(trans, root, inode);
240 	if (ret)
241 		btrfs_abort_transaction(trans, root, ret);
242 
243 	return ret;
244 }
245 
246 static int readahead_cache(struct inode *inode)
247 {
248 	struct file_ra_state *ra;
249 	unsigned long last_index;
250 
251 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
252 	if (!ra)
253 		return -ENOMEM;
254 
255 	file_ra_state_init(ra, inode->i_mapping);
256 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
257 
258 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
259 
260 	kfree(ra);
261 
262 	return 0;
263 }
264 
265 struct io_ctl {
266 	void *cur, *orig;
267 	struct page *page;
268 	struct page **pages;
269 	struct btrfs_root *root;
270 	unsigned long size;
271 	int index;
272 	int num_pages;
273 	unsigned check_crcs:1;
274 };
275 
276 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
277 		       struct btrfs_root *root)
278 {
279 	memset(io_ctl, 0, sizeof(struct io_ctl));
280 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
281 		PAGE_CACHE_SHIFT;
282 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
283 				GFP_NOFS);
284 	if (!io_ctl->pages)
285 		return -ENOMEM;
286 	io_ctl->root = root;
287 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
288 		io_ctl->check_crcs = 1;
289 	return 0;
290 }
291 
292 static void io_ctl_free(struct io_ctl *io_ctl)
293 {
294 	kfree(io_ctl->pages);
295 }
296 
297 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
298 {
299 	if (io_ctl->cur) {
300 		kunmap(io_ctl->page);
301 		io_ctl->cur = NULL;
302 		io_ctl->orig = NULL;
303 	}
304 }
305 
306 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
307 {
308 	ASSERT(io_ctl->index < io_ctl->num_pages);
309 	io_ctl->page = io_ctl->pages[io_ctl->index++];
310 	io_ctl->cur = kmap(io_ctl->page);
311 	io_ctl->orig = io_ctl->cur;
312 	io_ctl->size = PAGE_CACHE_SIZE;
313 	if (clear)
314 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
315 }
316 
317 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
318 {
319 	int i;
320 
321 	io_ctl_unmap_page(io_ctl);
322 
323 	for (i = 0; i < io_ctl->num_pages; i++) {
324 		if (io_ctl->pages[i]) {
325 			ClearPageChecked(io_ctl->pages[i]);
326 			unlock_page(io_ctl->pages[i]);
327 			page_cache_release(io_ctl->pages[i]);
328 		}
329 	}
330 }
331 
332 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
333 				int uptodate)
334 {
335 	struct page *page;
336 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
337 	int i;
338 
339 	for (i = 0; i < io_ctl->num_pages; i++) {
340 		page = find_or_create_page(inode->i_mapping, i, mask);
341 		if (!page) {
342 			io_ctl_drop_pages(io_ctl);
343 			return -ENOMEM;
344 		}
345 		io_ctl->pages[i] = page;
346 		if (uptodate && !PageUptodate(page)) {
347 			btrfs_readpage(NULL, page);
348 			lock_page(page);
349 			if (!PageUptodate(page)) {
350 				btrfs_err(BTRFS_I(inode)->root->fs_info,
351 					   "error reading free space cache");
352 				io_ctl_drop_pages(io_ctl);
353 				return -EIO;
354 			}
355 		}
356 	}
357 
358 	for (i = 0; i < io_ctl->num_pages; i++) {
359 		clear_page_dirty_for_io(io_ctl->pages[i]);
360 		set_page_extent_mapped(io_ctl->pages[i]);
361 	}
362 
363 	return 0;
364 }
365 
366 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
367 {
368 	__le64 *val;
369 
370 	io_ctl_map_page(io_ctl, 1);
371 
372 	/*
373 	 * Skip the csum areas.  If we don't check crcs then we just have a
374 	 * 64bit chunk at the front of the first page.
375 	 */
376 	if (io_ctl->check_crcs) {
377 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
378 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
379 	} else {
380 		io_ctl->cur += sizeof(u64);
381 		io_ctl->size -= sizeof(u64) * 2;
382 	}
383 
384 	val = io_ctl->cur;
385 	*val = cpu_to_le64(generation);
386 	io_ctl->cur += sizeof(u64);
387 }
388 
389 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
390 {
391 	__le64 *gen;
392 
393 	/*
394 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
395 	 * chunk at the front of the first page.
396 	 */
397 	if (io_ctl->check_crcs) {
398 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
399 		io_ctl->size -= sizeof(u64) +
400 			(sizeof(u32) * io_ctl->num_pages);
401 	} else {
402 		io_ctl->cur += sizeof(u64);
403 		io_ctl->size -= sizeof(u64) * 2;
404 	}
405 
406 	gen = io_ctl->cur;
407 	if (le64_to_cpu(*gen) != generation) {
408 		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
409 				   "(%Lu) does not match inode (%Lu)\n", *gen,
410 				   generation);
411 		io_ctl_unmap_page(io_ctl);
412 		return -EIO;
413 	}
414 	io_ctl->cur += sizeof(u64);
415 	return 0;
416 }
417 
418 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
419 {
420 	u32 *tmp;
421 	u32 crc = ~(u32)0;
422 	unsigned offset = 0;
423 
424 	if (!io_ctl->check_crcs) {
425 		io_ctl_unmap_page(io_ctl);
426 		return;
427 	}
428 
429 	if (index == 0)
430 		offset = sizeof(u32) * io_ctl->num_pages;
431 
432 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
433 			      PAGE_CACHE_SIZE - offset);
434 	btrfs_csum_final(crc, (char *)&crc);
435 	io_ctl_unmap_page(io_ctl);
436 	tmp = kmap(io_ctl->pages[0]);
437 	tmp += index;
438 	*tmp = crc;
439 	kunmap(io_ctl->pages[0]);
440 }
441 
442 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
443 {
444 	u32 *tmp, val;
445 	u32 crc = ~(u32)0;
446 	unsigned offset = 0;
447 
448 	if (!io_ctl->check_crcs) {
449 		io_ctl_map_page(io_ctl, 0);
450 		return 0;
451 	}
452 
453 	if (index == 0)
454 		offset = sizeof(u32) * io_ctl->num_pages;
455 
456 	tmp = kmap(io_ctl->pages[0]);
457 	tmp += index;
458 	val = *tmp;
459 	kunmap(io_ctl->pages[0]);
460 
461 	io_ctl_map_page(io_ctl, 0);
462 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
463 			      PAGE_CACHE_SIZE - offset);
464 	btrfs_csum_final(crc, (char *)&crc);
465 	if (val != crc) {
466 		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
467 				   "space cache\n");
468 		io_ctl_unmap_page(io_ctl);
469 		return -EIO;
470 	}
471 
472 	return 0;
473 }
474 
475 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
476 			    void *bitmap)
477 {
478 	struct btrfs_free_space_entry *entry;
479 
480 	if (!io_ctl->cur)
481 		return -ENOSPC;
482 
483 	entry = io_ctl->cur;
484 	entry->offset = cpu_to_le64(offset);
485 	entry->bytes = cpu_to_le64(bytes);
486 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
487 		BTRFS_FREE_SPACE_EXTENT;
488 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
489 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
490 
491 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
492 		return 0;
493 
494 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
495 
496 	/* No more pages to map */
497 	if (io_ctl->index >= io_ctl->num_pages)
498 		return 0;
499 
500 	/* map the next page */
501 	io_ctl_map_page(io_ctl, 1);
502 	return 0;
503 }
504 
505 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
506 {
507 	if (!io_ctl->cur)
508 		return -ENOSPC;
509 
510 	/*
511 	 * If we aren't at the start of the current page, unmap this one and
512 	 * map the next one if there is any left.
513 	 */
514 	if (io_ctl->cur != io_ctl->orig) {
515 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
516 		if (io_ctl->index >= io_ctl->num_pages)
517 			return -ENOSPC;
518 		io_ctl_map_page(io_ctl, 0);
519 	}
520 
521 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
522 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
523 	if (io_ctl->index < io_ctl->num_pages)
524 		io_ctl_map_page(io_ctl, 0);
525 	return 0;
526 }
527 
528 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
529 {
530 	/*
531 	 * If we're not on the boundary we know we've modified the page and we
532 	 * need to crc the page.
533 	 */
534 	if (io_ctl->cur != io_ctl->orig)
535 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 	else
537 		io_ctl_unmap_page(io_ctl);
538 
539 	while (io_ctl->index < io_ctl->num_pages) {
540 		io_ctl_map_page(io_ctl, 1);
541 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
542 	}
543 }
544 
545 static int io_ctl_read_entry(struct io_ctl *io_ctl,
546 			    struct btrfs_free_space *entry, u8 *type)
547 {
548 	struct btrfs_free_space_entry *e;
549 	int ret;
550 
551 	if (!io_ctl->cur) {
552 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
553 		if (ret)
554 			return ret;
555 	}
556 
557 	e = io_ctl->cur;
558 	entry->offset = le64_to_cpu(e->offset);
559 	entry->bytes = le64_to_cpu(e->bytes);
560 	*type = e->type;
561 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
562 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
563 
564 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
565 		return 0;
566 
567 	io_ctl_unmap_page(io_ctl);
568 
569 	return 0;
570 }
571 
572 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
573 			      struct btrfs_free_space *entry)
574 {
575 	int ret;
576 
577 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
578 	if (ret)
579 		return ret;
580 
581 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
582 	io_ctl_unmap_page(io_ctl);
583 
584 	return 0;
585 }
586 
587 /*
588  * Since we attach pinned extents after the fact we can have contiguous sections
589  * of free space that are split up in entries.  This poses a problem with the
590  * tree logging stuff since it could have allocated across what appears to be 2
591  * entries since we would have merged the entries when adding the pinned extents
592  * back to the free space cache.  So run through the space cache that we just
593  * loaded and merge contiguous entries.  This will make the log replay stuff not
594  * blow up and it will make for nicer allocator behavior.
595  */
596 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
597 {
598 	struct btrfs_free_space *e, *prev = NULL;
599 	struct rb_node *n;
600 
601 again:
602 	spin_lock(&ctl->tree_lock);
603 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
604 		e = rb_entry(n, struct btrfs_free_space, offset_index);
605 		if (!prev)
606 			goto next;
607 		if (e->bitmap || prev->bitmap)
608 			goto next;
609 		if (prev->offset + prev->bytes == e->offset) {
610 			unlink_free_space(ctl, prev);
611 			unlink_free_space(ctl, e);
612 			prev->bytes += e->bytes;
613 			kmem_cache_free(btrfs_free_space_cachep, e);
614 			link_free_space(ctl, prev);
615 			prev = NULL;
616 			spin_unlock(&ctl->tree_lock);
617 			goto again;
618 		}
619 next:
620 		prev = e;
621 	}
622 	spin_unlock(&ctl->tree_lock);
623 }
624 
625 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
626 				   struct btrfs_free_space_ctl *ctl,
627 				   struct btrfs_path *path, u64 offset)
628 {
629 	struct btrfs_free_space_header *header;
630 	struct extent_buffer *leaf;
631 	struct io_ctl io_ctl;
632 	struct btrfs_key key;
633 	struct btrfs_free_space *e, *n;
634 	struct list_head bitmaps;
635 	u64 num_entries;
636 	u64 num_bitmaps;
637 	u64 generation;
638 	u8 type;
639 	int ret = 0;
640 
641 	INIT_LIST_HEAD(&bitmaps);
642 
643 	/* Nothing in the space cache, goodbye */
644 	if (!i_size_read(inode))
645 		return 0;
646 
647 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
648 	key.offset = offset;
649 	key.type = 0;
650 
651 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
652 	if (ret < 0)
653 		return 0;
654 	else if (ret > 0) {
655 		btrfs_release_path(path);
656 		return 0;
657 	}
658 
659 	ret = -1;
660 
661 	leaf = path->nodes[0];
662 	header = btrfs_item_ptr(leaf, path->slots[0],
663 				struct btrfs_free_space_header);
664 	num_entries = btrfs_free_space_entries(leaf, header);
665 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
666 	generation = btrfs_free_space_generation(leaf, header);
667 	btrfs_release_path(path);
668 
669 	if (BTRFS_I(inode)->generation != generation) {
670 		btrfs_err(root->fs_info,
671 			"free space inode generation (%llu) "
672 			"did not match free space cache generation (%llu)",
673 			BTRFS_I(inode)->generation, generation);
674 		return 0;
675 	}
676 
677 	if (!num_entries)
678 		return 0;
679 
680 	ret = io_ctl_init(&io_ctl, inode, root);
681 	if (ret)
682 		return ret;
683 
684 	ret = readahead_cache(inode);
685 	if (ret)
686 		goto out;
687 
688 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
689 	if (ret)
690 		goto out;
691 
692 	ret = io_ctl_check_crc(&io_ctl, 0);
693 	if (ret)
694 		goto free_cache;
695 
696 	ret = io_ctl_check_generation(&io_ctl, generation);
697 	if (ret)
698 		goto free_cache;
699 
700 	while (num_entries) {
701 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
702 				      GFP_NOFS);
703 		if (!e)
704 			goto free_cache;
705 
706 		ret = io_ctl_read_entry(&io_ctl, e, &type);
707 		if (ret) {
708 			kmem_cache_free(btrfs_free_space_cachep, e);
709 			goto free_cache;
710 		}
711 
712 		if (!e->bytes) {
713 			kmem_cache_free(btrfs_free_space_cachep, e);
714 			goto free_cache;
715 		}
716 
717 		if (type == BTRFS_FREE_SPACE_EXTENT) {
718 			spin_lock(&ctl->tree_lock);
719 			ret = link_free_space(ctl, e);
720 			spin_unlock(&ctl->tree_lock);
721 			if (ret) {
722 				btrfs_err(root->fs_info,
723 					"Duplicate entries in free space cache, dumping");
724 				kmem_cache_free(btrfs_free_space_cachep, e);
725 				goto free_cache;
726 			}
727 		} else {
728 			ASSERT(num_bitmaps);
729 			num_bitmaps--;
730 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
731 			if (!e->bitmap) {
732 				kmem_cache_free(
733 					btrfs_free_space_cachep, e);
734 				goto free_cache;
735 			}
736 			spin_lock(&ctl->tree_lock);
737 			ret = link_free_space(ctl, e);
738 			ctl->total_bitmaps++;
739 			ctl->op->recalc_thresholds(ctl);
740 			spin_unlock(&ctl->tree_lock);
741 			if (ret) {
742 				btrfs_err(root->fs_info,
743 					"Duplicate entries in free space cache, dumping");
744 				kmem_cache_free(btrfs_free_space_cachep, e);
745 				goto free_cache;
746 			}
747 			list_add_tail(&e->list, &bitmaps);
748 		}
749 
750 		num_entries--;
751 	}
752 
753 	io_ctl_unmap_page(&io_ctl);
754 
755 	/*
756 	 * We add the bitmaps at the end of the entries in order that
757 	 * the bitmap entries are added to the cache.
758 	 */
759 	list_for_each_entry_safe(e, n, &bitmaps, list) {
760 		list_del_init(&e->list);
761 		ret = io_ctl_read_bitmap(&io_ctl, e);
762 		if (ret)
763 			goto free_cache;
764 	}
765 
766 	io_ctl_drop_pages(&io_ctl);
767 	merge_space_tree(ctl);
768 	ret = 1;
769 out:
770 	io_ctl_free(&io_ctl);
771 	return ret;
772 free_cache:
773 	io_ctl_drop_pages(&io_ctl);
774 	__btrfs_remove_free_space_cache(ctl);
775 	goto out;
776 }
777 
778 int load_free_space_cache(struct btrfs_fs_info *fs_info,
779 			  struct btrfs_block_group_cache *block_group)
780 {
781 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
782 	struct btrfs_root *root = fs_info->tree_root;
783 	struct inode *inode;
784 	struct btrfs_path *path;
785 	int ret = 0;
786 	bool matched;
787 	u64 used = btrfs_block_group_used(&block_group->item);
788 
789 	/*
790 	 * If this block group has been marked to be cleared for one reason or
791 	 * another then we can't trust the on disk cache, so just return.
792 	 */
793 	spin_lock(&block_group->lock);
794 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
795 		spin_unlock(&block_group->lock);
796 		return 0;
797 	}
798 	spin_unlock(&block_group->lock);
799 
800 	path = btrfs_alloc_path();
801 	if (!path)
802 		return 0;
803 	path->search_commit_root = 1;
804 	path->skip_locking = 1;
805 
806 	inode = lookup_free_space_inode(root, block_group, path);
807 	if (IS_ERR(inode)) {
808 		btrfs_free_path(path);
809 		return 0;
810 	}
811 
812 	/* We may have converted the inode and made the cache invalid. */
813 	spin_lock(&block_group->lock);
814 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
815 		spin_unlock(&block_group->lock);
816 		btrfs_free_path(path);
817 		goto out;
818 	}
819 	spin_unlock(&block_group->lock);
820 
821 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
822 				      path, block_group->key.objectid);
823 	btrfs_free_path(path);
824 	if (ret <= 0)
825 		goto out;
826 
827 	spin_lock(&ctl->tree_lock);
828 	matched = (ctl->free_space == (block_group->key.offset - used -
829 				       block_group->bytes_super));
830 	spin_unlock(&ctl->tree_lock);
831 
832 	if (!matched) {
833 		__btrfs_remove_free_space_cache(ctl);
834 		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
835 			block_group->key.objectid);
836 		ret = -1;
837 	}
838 out:
839 	if (ret < 0) {
840 		/* This cache is bogus, make sure it gets cleared */
841 		spin_lock(&block_group->lock);
842 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
843 		spin_unlock(&block_group->lock);
844 		ret = 0;
845 
846 		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
847 			block_group->key.objectid);
848 	}
849 
850 	iput(inode);
851 	return ret;
852 }
853 
854 static noinline_for_stack
855 int write_cache_extent_entries(struct io_ctl *io_ctl,
856 			      struct btrfs_free_space_ctl *ctl,
857 			      struct btrfs_block_group_cache *block_group,
858 			      int *entries, int *bitmaps,
859 			      struct list_head *bitmap_list)
860 {
861 	int ret;
862 	struct btrfs_free_cluster *cluster = NULL;
863 	struct rb_node *node = rb_first(&ctl->free_space_offset);
864 
865 	/* Get the cluster for this block_group if it exists */
866 	if (block_group && !list_empty(&block_group->cluster_list)) {
867 		cluster = list_entry(block_group->cluster_list.next,
868 				     struct btrfs_free_cluster,
869 				     block_group_list);
870 	}
871 
872 	if (!node && cluster) {
873 		node = rb_first(&cluster->root);
874 		cluster = NULL;
875 	}
876 
877 	/* Write out the extent entries */
878 	while (node) {
879 		struct btrfs_free_space *e;
880 
881 		e = rb_entry(node, struct btrfs_free_space, offset_index);
882 		*entries += 1;
883 
884 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
885 				       e->bitmap);
886 		if (ret)
887 			goto fail;
888 
889 		if (e->bitmap) {
890 			list_add_tail(&e->list, bitmap_list);
891 			*bitmaps += 1;
892 		}
893 		node = rb_next(node);
894 		if (!node && cluster) {
895 			node = rb_first(&cluster->root);
896 			cluster = NULL;
897 		}
898 	}
899 	return 0;
900 fail:
901 	return -ENOSPC;
902 }
903 
904 static noinline_for_stack int
905 update_cache_item(struct btrfs_trans_handle *trans,
906 		  struct btrfs_root *root,
907 		  struct inode *inode,
908 		  struct btrfs_path *path, u64 offset,
909 		  int entries, int bitmaps)
910 {
911 	struct btrfs_key key;
912 	struct btrfs_free_space_header *header;
913 	struct extent_buffer *leaf;
914 	int ret;
915 
916 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
917 	key.offset = offset;
918 	key.type = 0;
919 
920 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
921 	if (ret < 0) {
922 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
923 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
924 				 GFP_NOFS);
925 		goto fail;
926 	}
927 	leaf = path->nodes[0];
928 	if (ret > 0) {
929 		struct btrfs_key found_key;
930 		ASSERT(path->slots[0]);
931 		path->slots[0]--;
932 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
933 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
934 		    found_key.offset != offset) {
935 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
936 					 inode->i_size - 1,
937 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
938 					 NULL, GFP_NOFS);
939 			btrfs_release_path(path);
940 			goto fail;
941 		}
942 	}
943 
944 	BTRFS_I(inode)->generation = trans->transid;
945 	header = btrfs_item_ptr(leaf, path->slots[0],
946 				struct btrfs_free_space_header);
947 	btrfs_set_free_space_entries(leaf, header, entries);
948 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
949 	btrfs_set_free_space_generation(leaf, header, trans->transid);
950 	btrfs_mark_buffer_dirty(leaf);
951 	btrfs_release_path(path);
952 
953 	return 0;
954 
955 fail:
956 	return -1;
957 }
958 
959 static noinline_for_stack int
960 add_ioctl_entries(struct btrfs_root *root,
961 		  struct inode *inode,
962 		  struct btrfs_block_group_cache *block_group,
963 		  struct io_ctl *io_ctl,
964 		  struct extent_state **cached_state,
965 		  struct list_head *bitmap_list,
966 		  int *entries)
967 {
968 	u64 start, extent_start, extent_end, len;
969 	struct list_head *pos, *n;
970 	struct extent_io_tree *unpin = NULL;
971 	int ret;
972 
973 	/*
974 	 * We want to add any pinned extents to our free space cache
975 	 * so we don't leak the space
976 	 *
977 	 * We shouldn't have switched the pinned extents yet so this is the
978 	 * right one
979 	 */
980 	unpin = root->fs_info->pinned_extents;
981 
982 	if (block_group)
983 		start = block_group->key.objectid;
984 
985 	while (block_group && (start < block_group->key.objectid +
986 			       block_group->key.offset)) {
987 		ret = find_first_extent_bit(unpin, start,
988 					    &extent_start, &extent_end,
989 					    EXTENT_DIRTY, NULL);
990 		if (ret) {
991 			ret = 0;
992 			break;
993 		}
994 
995 		/* This pinned extent is out of our range */
996 		if (extent_start >= block_group->key.objectid +
997 		    block_group->key.offset)
998 			break;
999 
1000 		extent_start = max(extent_start, start);
1001 		extent_end = min(block_group->key.objectid +
1002 				 block_group->key.offset, extent_end + 1);
1003 		len = extent_end - extent_start;
1004 
1005 		*entries += 1;
1006 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1007 		if (ret)
1008 			goto out_nospc;
1009 
1010 		start = extent_end;
1011 	}
1012 
1013 	/* Write out the bitmaps */
1014 	list_for_each_safe(pos, n, bitmap_list) {
1015 		struct btrfs_free_space *entry =
1016 			list_entry(pos, struct btrfs_free_space, list);
1017 
1018 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1019 		if (ret)
1020 			goto out_nospc;
1021 		list_del_init(&entry->list);
1022 	}
1023 
1024 	/* Zero out the rest of the pages just to make sure */
1025 	io_ctl_zero_remaining_pages(io_ctl);
1026 
1027 	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1028 				0, i_size_read(inode), cached_state);
1029 	io_ctl_drop_pages(io_ctl);
1030 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1031 			     i_size_read(inode) - 1, cached_state, GFP_NOFS);
1032 
1033 	if (ret)
1034 		goto fail;
1035 
1036 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1037 	if (ret) {
1038 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1039 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1040 				 GFP_NOFS);
1041 		goto fail;
1042 	}
1043 	return 0;
1044 
1045 fail:
1046 	return -1;
1047 
1048 out_nospc:
1049 	return -ENOSPC;
1050 }
1051 
1052 static void noinline_for_stack
1053 cleanup_write_cache_enospc(struct inode *inode,
1054 			   struct io_ctl *io_ctl,
1055 			   struct extent_state **cached_state,
1056 			   struct list_head *bitmap_list)
1057 {
1058 	struct list_head *pos, *n;
1059 	list_for_each_safe(pos, n, bitmap_list) {
1060 		struct btrfs_free_space *entry =
1061 			list_entry(pos, struct btrfs_free_space, list);
1062 		list_del_init(&entry->list);
1063 	}
1064 	io_ctl_drop_pages(io_ctl);
1065 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1066 			     i_size_read(inode) - 1, cached_state,
1067 			     GFP_NOFS);
1068 }
1069 
1070 /**
1071  * __btrfs_write_out_cache - write out cached info to an inode
1072  * @root - the root the inode belongs to
1073  * @ctl - the free space cache we are going to write out
1074  * @block_group - the block_group for this cache if it belongs to a block_group
1075  * @trans - the trans handle
1076  * @path - the path to use
1077  * @offset - the offset for the key we'll insert
1078  *
1079  * This function writes out a free space cache struct to disk for quick recovery
1080  * on mount.  This will return 0 if it was successfull in writing the cache out,
1081  * and -1 if it was not.
1082  */
1083 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1084 				   struct btrfs_free_space_ctl *ctl,
1085 				   struct btrfs_block_group_cache *block_group,
1086 				   struct btrfs_trans_handle *trans,
1087 				   struct btrfs_path *path, u64 offset)
1088 {
1089 	struct extent_state *cached_state = NULL;
1090 	struct io_ctl io_ctl;
1091 	struct list_head bitmap_list;
1092 	int entries = 0;
1093 	int bitmaps = 0;
1094 	int ret;
1095 	int err = -1;
1096 
1097 	INIT_LIST_HEAD(&bitmap_list);
1098 
1099 	if (!i_size_read(inode))
1100 		return -1;
1101 
1102 	ret = io_ctl_init(&io_ctl, inode, root);
1103 	if (ret)
1104 		return -1;
1105 
1106 	/* Lock all pages first so we can lock the extent safely. */
1107 	io_ctl_prepare_pages(&io_ctl, inode, 0);
1108 
1109 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1110 			 0, &cached_state);
1111 
1112 
1113 	/* Make sure we can fit our crcs into the first page */
1114 	if (io_ctl.check_crcs &&
1115 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
1116 		goto out_nospc;
1117 
1118 	io_ctl_set_generation(&io_ctl, trans->transid);
1119 
1120 	ret = write_cache_extent_entries(&io_ctl, ctl,
1121 					 block_group, &entries, &bitmaps,
1122 					 &bitmap_list);
1123 	if (ret)
1124 		goto out_nospc;
1125 
1126 	ret = add_ioctl_entries(root, inode, block_group, &io_ctl,
1127 				&cached_state, &bitmap_list, &entries);
1128 
1129 	if (ret == -ENOSPC)
1130 		goto out_nospc;
1131 	else if (ret)
1132 		goto out;
1133 
1134 	err = update_cache_item(trans, root, inode, path, offset,
1135 				entries, bitmaps);
1136 
1137 out:
1138 	io_ctl_free(&io_ctl);
1139 	if (err) {
1140 		invalidate_inode_pages2(inode->i_mapping);
1141 		BTRFS_I(inode)->generation = 0;
1142 	}
1143 	btrfs_update_inode(trans, root, inode);
1144 	return err;
1145 
1146 out_nospc:
1147 
1148 	cleanup_write_cache_enospc(inode, &io_ctl, &cached_state, &bitmap_list);
1149 	goto out;
1150 }
1151 
1152 int btrfs_write_out_cache(struct btrfs_root *root,
1153 			  struct btrfs_trans_handle *trans,
1154 			  struct btrfs_block_group_cache *block_group,
1155 			  struct btrfs_path *path)
1156 {
1157 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1158 	struct inode *inode;
1159 	int ret = 0;
1160 
1161 	root = root->fs_info->tree_root;
1162 
1163 	spin_lock(&block_group->lock);
1164 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1165 		spin_unlock(&block_group->lock);
1166 		return 0;
1167 	}
1168 	spin_unlock(&block_group->lock);
1169 
1170 	inode = lookup_free_space_inode(root, block_group, path);
1171 	if (IS_ERR(inode))
1172 		return 0;
1173 
1174 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1175 				      path, block_group->key.objectid);
1176 	if (ret) {
1177 		spin_lock(&block_group->lock);
1178 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1179 		spin_unlock(&block_group->lock);
1180 		ret = 0;
1181 #ifdef DEBUG
1182 		btrfs_err(root->fs_info,
1183 			"failed to write free space cache for block group %llu",
1184 			block_group->key.objectid);
1185 #endif
1186 	}
1187 
1188 	iput(inode);
1189 	return ret;
1190 }
1191 
1192 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1193 					  u64 offset)
1194 {
1195 	ASSERT(offset >= bitmap_start);
1196 	offset -= bitmap_start;
1197 	return (unsigned long)(div_u64(offset, unit));
1198 }
1199 
1200 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1201 {
1202 	return (unsigned long)(div_u64(bytes, unit));
1203 }
1204 
1205 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1206 				   u64 offset)
1207 {
1208 	u64 bitmap_start;
1209 	u64 bytes_per_bitmap;
1210 
1211 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1212 	bitmap_start = offset - ctl->start;
1213 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1214 	bitmap_start *= bytes_per_bitmap;
1215 	bitmap_start += ctl->start;
1216 
1217 	return bitmap_start;
1218 }
1219 
1220 static int tree_insert_offset(struct rb_root *root, u64 offset,
1221 			      struct rb_node *node, int bitmap)
1222 {
1223 	struct rb_node **p = &root->rb_node;
1224 	struct rb_node *parent = NULL;
1225 	struct btrfs_free_space *info;
1226 
1227 	while (*p) {
1228 		parent = *p;
1229 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1230 
1231 		if (offset < info->offset) {
1232 			p = &(*p)->rb_left;
1233 		} else if (offset > info->offset) {
1234 			p = &(*p)->rb_right;
1235 		} else {
1236 			/*
1237 			 * we could have a bitmap entry and an extent entry
1238 			 * share the same offset.  If this is the case, we want
1239 			 * the extent entry to always be found first if we do a
1240 			 * linear search through the tree, since we want to have
1241 			 * the quickest allocation time, and allocating from an
1242 			 * extent is faster than allocating from a bitmap.  So
1243 			 * if we're inserting a bitmap and we find an entry at
1244 			 * this offset, we want to go right, or after this entry
1245 			 * logically.  If we are inserting an extent and we've
1246 			 * found a bitmap, we want to go left, or before
1247 			 * logically.
1248 			 */
1249 			if (bitmap) {
1250 				if (info->bitmap) {
1251 					WARN_ON_ONCE(1);
1252 					return -EEXIST;
1253 				}
1254 				p = &(*p)->rb_right;
1255 			} else {
1256 				if (!info->bitmap) {
1257 					WARN_ON_ONCE(1);
1258 					return -EEXIST;
1259 				}
1260 				p = &(*p)->rb_left;
1261 			}
1262 		}
1263 	}
1264 
1265 	rb_link_node(node, parent, p);
1266 	rb_insert_color(node, root);
1267 
1268 	return 0;
1269 }
1270 
1271 /*
1272  * searches the tree for the given offset.
1273  *
1274  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1275  * want a section that has at least bytes size and comes at or after the given
1276  * offset.
1277  */
1278 static struct btrfs_free_space *
1279 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1280 		   u64 offset, int bitmap_only, int fuzzy)
1281 {
1282 	struct rb_node *n = ctl->free_space_offset.rb_node;
1283 	struct btrfs_free_space *entry, *prev = NULL;
1284 
1285 	/* find entry that is closest to the 'offset' */
1286 	while (1) {
1287 		if (!n) {
1288 			entry = NULL;
1289 			break;
1290 		}
1291 
1292 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1293 		prev = entry;
1294 
1295 		if (offset < entry->offset)
1296 			n = n->rb_left;
1297 		else if (offset > entry->offset)
1298 			n = n->rb_right;
1299 		else
1300 			break;
1301 	}
1302 
1303 	if (bitmap_only) {
1304 		if (!entry)
1305 			return NULL;
1306 		if (entry->bitmap)
1307 			return entry;
1308 
1309 		/*
1310 		 * bitmap entry and extent entry may share same offset,
1311 		 * in that case, bitmap entry comes after extent entry.
1312 		 */
1313 		n = rb_next(n);
1314 		if (!n)
1315 			return NULL;
1316 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1317 		if (entry->offset != offset)
1318 			return NULL;
1319 
1320 		WARN_ON(!entry->bitmap);
1321 		return entry;
1322 	} else if (entry) {
1323 		if (entry->bitmap) {
1324 			/*
1325 			 * if previous extent entry covers the offset,
1326 			 * we should return it instead of the bitmap entry
1327 			 */
1328 			n = rb_prev(&entry->offset_index);
1329 			if (n) {
1330 				prev = rb_entry(n, struct btrfs_free_space,
1331 						offset_index);
1332 				if (!prev->bitmap &&
1333 				    prev->offset + prev->bytes > offset)
1334 					entry = prev;
1335 			}
1336 		}
1337 		return entry;
1338 	}
1339 
1340 	if (!prev)
1341 		return NULL;
1342 
1343 	/* find last entry before the 'offset' */
1344 	entry = prev;
1345 	if (entry->offset > offset) {
1346 		n = rb_prev(&entry->offset_index);
1347 		if (n) {
1348 			entry = rb_entry(n, struct btrfs_free_space,
1349 					offset_index);
1350 			ASSERT(entry->offset <= offset);
1351 		} else {
1352 			if (fuzzy)
1353 				return entry;
1354 			else
1355 				return NULL;
1356 		}
1357 	}
1358 
1359 	if (entry->bitmap) {
1360 		n = rb_prev(&entry->offset_index);
1361 		if (n) {
1362 			prev = rb_entry(n, struct btrfs_free_space,
1363 					offset_index);
1364 			if (!prev->bitmap &&
1365 			    prev->offset + prev->bytes > offset)
1366 				return prev;
1367 		}
1368 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1369 			return entry;
1370 	} else if (entry->offset + entry->bytes > offset)
1371 		return entry;
1372 
1373 	if (!fuzzy)
1374 		return NULL;
1375 
1376 	while (1) {
1377 		if (entry->bitmap) {
1378 			if (entry->offset + BITS_PER_BITMAP *
1379 			    ctl->unit > offset)
1380 				break;
1381 		} else {
1382 			if (entry->offset + entry->bytes > offset)
1383 				break;
1384 		}
1385 
1386 		n = rb_next(&entry->offset_index);
1387 		if (!n)
1388 			return NULL;
1389 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1390 	}
1391 	return entry;
1392 }
1393 
1394 static inline void
1395 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1396 		    struct btrfs_free_space *info)
1397 {
1398 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1399 	ctl->free_extents--;
1400 }
1401 
1402 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1403 			      struct btrfs_free_space *info)
1404 {
1405 	__unlink_free_space(ctl, info);
1406 	ctl->free_space -= info->bytes;
1407 }
1408 
1409 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1410 			   struct btrfs_free_space *info)
1411 {
1412 	int ret = 0;
1413 
1414 	ASSERT(info->bytes || info->bitmap);
1415 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1416 				 &info->offset_index, (info->bitmap != NULL));
1417 	if (ret)
1418 		return ret;
1419 
1420 	ctl->free_space += info->bytes;
1421 	ctl->free_extents++;
1422 	return ret;
1423 }
1424 
1425 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1426 {
1427 	struct btrfs_block_group_cache *block_group = ctl->private;
1428 	u64 max_bytes;
1429 	u64 bitmap_bytes;
1430 	u64 extent_bytes;
1431 	u64 size = block_group->key.offset;
1432 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1433 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1434 
1435 	max_bitmaps = max(max_bitmaps, 1);
1436 
1437 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1438 
1439 	/*
1440 	 * The goal is to keep the total amount of memory used per 1gb of space
1441 	 * at or below 32k, so we need to adjust how much memory we allow to be
1442 	 * used by extent based free space tracking
1443 	 */
1444 	if (size < 1024 * 1024 * 1024)
1445 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1446 	else
1447 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1448 			div64_u64(size, 1024 * 1024 * 1024);
1449 
1450 	/*
1451 	 * we want to account for 1 more bitmap than what we have so we can make
1452 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1453 	 * we add more bitmaps.
1454 	 */
1455 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1456 
1457 	if (bitmap_bytes >= max_bytes) {
1458 		ctl->extents_thresh = 0;
1459 		return;
1460 	}
1461 
1462 	/*
1463 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1464 	 * bytes we can have, or whatever is less than that.
1465 	 */
1466 	extent_bytes = max_bytes - bitmap_bytes;
1467 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1468 
1469 	ctl->extents_thresh =
1470 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1471 }
1472 
1473 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1474 				       struct btrfs_free_space *info,
1475 				       u64 offset, u64 bytes)
1476 {
1477 	unsigned long start, count;
1478 
1479 	start = offset_to_bit(info->offset, ctl->unit, offset);
1480 	count = bytes_to_bits(bytes, ctl->unit);
1481 	ASSERT(start + count <= BITS_PER_BITMAP);
1482 
1483 	bitmap_clear(info->bitmap, start, count);
1484 
1485 	info->bytes -= bytes;
1486 }
1487 
1488 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1489 			      struct btrfs_free_space *info, u64 offset,
1490 			      u64 bytes)
1491 {
1492 	__bitmap_clear_bits(ctl, info, offset, bytes);
1493 	ctl->free_space -= bytes;
1494 }
1495 
1496 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1497 			    struct btrfs_free_space *info, u64 offset,
1498 			    u64 bytes)
1499 {
1500 	unsigned long start, count;
1501 
1502 	start = offset_to_bit(info->offset, ctl->unit, offset);
1503 	count = bytes_to_bits(bytes, ctl->unit);
1504 	ASSERT(start + count <= BITS_PER_BITMAP);
1505 
1506 	bitmap_set(info->bitmap, start, count);
1507 
1508 	info->bytes += bytes;
1509 	ctl->free_space += bytes;
1510 }
1511 
1512 /*
1513  * If we can not find suitable extent, we will use bytes to record
1514  * the size of the max extent.
1515  */
1516 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1517 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1518 			 u64 *bytes)
1519 {
1520 	unsigned long found_bits = 0;
1521 	unsigned long max_bits = 0;
1522 	unsigned long bits, i;
1523 	unsigned long next_zero;
1524 	unsigned long extent_bits;
1525 
1526 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1527 			  max_t(u64, *offset, bitmap_info->offset));
1528 	bits = bytes_to_bits(*bytes, ctl->unit);
1529 
1530 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1531 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1532 					       BITS_PER_BITMAP, i);
1533 		extent_bits = next_zero - i;
1534 		if (extent_bits >= bits) {
1535 			found_bits = extent_bits;
1536 			break;
1537 		} else if (extent_bits > max_bits) {
1538 			max_bits = extent_bits;
1539 		}
1540 		i = next_zero;
1541 	}
1542 
1543 	if (found_bits) {
1544 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1545 		*bytes = (u64)(found_bits) * ctl->unit;
1546 		return 0;
1547 	}
1548 
1549 	*bytes = (u64)(max_bits) * ctl->unit;
1550 	return -1;
1551 }
1552 
1553 /* Cache the size of the max extent in bytes */
1554 static struct btrfs_free_space *
1555 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1556 		unsigned long align, u64 *max_extent_size)
1557 {
1558 	struct btrfs_free_space *entry;
1559 	struct rb_node *node;
1560 	u64 tmp;
1561 	u64 align_off;
1562 	int ret;
1563 
1564 	if (!ctl->free_space_offset.rb_node)
1565 		goto out;
1566 
1567 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1568 	if (!entry)
1569 		goto out;
1570 
1571 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1572 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1573 		if (entry->bytes < *bytes) {
1574 			if (entry->bytes > *max_extent_size)
1575 				*max_extent_size = entry->bytes;
1576 			continue;
1577 		}
1578 
1579 		/* make sure the space returned is big enough
1580 		 * to match our requested alignment
1581 		 */
1582 		if (*bytes >= align) {
1583 			tmp = entry->offset - ctl->start + align - 1;
1584 			do_div(tmp, align);
1585 			tmp = tmp * align + ctl->start;
1586 			align_off = tmp - entry->offset;
1587 		} else {
1588 			align_off = 0;
1589 			tmp = entry->offset;
1590 		}
1591 
1592 		if (entry->bytes < *bytes + align_off) {
1593 			if (entry->bytes > *max_extent_size)
1594 				*max_extent_size = entry->bytes;
1595 			continue;
1596 		}
1597 
1598 		if (entry->bitmap) {
1599 			u64 size = *bytes;
1600 
1601 			ret = search_bitmap(ctl, entry, &tmp, &size);
1602 			if (!ret) {
1603 				*offset = tmp;
1604 				*bytes = size;
1605 				return entry;
1606 			} else if (size > *max_extent_size) {
1607 				*max_extent_size = size;
1608 			}
1609 			continue;
1610 		}
1611 
1612 		*offset = tmp;
1613 		*bytes = entry->bytes - align_off;
1614 		return entry;
1615 	}
1616 out:
1617 	return NULL;
1618 }
1619 
1620 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1621 			   struct btrfs_free_space *info, u64 offset)
1622 {
1623 	info->offset = offset_to_bitmap(ctl, offset);
1624 	info->bytes = 0;
1625 	INIT_LIST_HEAD(&info->list);
1626 	link_free_space(ctl, info);
1627 	ctl->total_bitmaps++;
1628 
1629 	ctl->op->recalc_thresholds(ctl);
1630 }
1631 
1632 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1633 			struct btrfs_free_space *bitmap_info)
1634 {
1635 	unlink_free_space(ctl, bitmap_info);
1636 	kfree(bitmap_info->bitmap);
1637 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1638 	ctl->total_bitmaps--;
1639 	ctl->op->recalc_thresholds(ctl);
1640 }
1641 
1642 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1643 			      struct btrfs_free_space *bitmap_info,
1644 			      u64 *offset, u64 *bytes)
1645 {
1646 	u64 end;
1647 	u64 search_start, search_bytes;
1648 	int ret;
1649 
1650 again:
1651 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1652 
1653 	/*
1654 	 * We need to search for bits in this bitmap.  We could only cover some
1655 	 * of the extent in this bitmap thanks to how we add space, so we need
1656 	 * to search for as much as it as we can and clear that amount, and then
1657 	 * go searching for the next bit.
1658 	 */
1659 	search_start = *offset;
1660 	search_bytes = ctl->unit;
1661 	search_bytes = min(search_bytes, end - search_start + 1);
1662 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1663 	if (ret < 0 || search_start != *offset)
1664 		return -EINVAL;
1665 
1666 	/* We may have found more bits than what we need */
1667 	search_bytes = min(search_bytes, *bytes);
1668 
1669 	/* Cannot clear past the end of the bitmap */
1670 	search_bytes = min(search_bytes, end - search_start + 1);
1671 
1672 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1673 	*offset += search_bytes;
1674 	*bytes -= search_bytes;
1675 
1676 	if (*bytes) {
1677 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1678 		if (!bitmap_info->bytes)
1679 			free_bitmap(ctl, bitmap_info);
1680 
1681 		/*
1682 		 * no entry after this bitmap, but we still have bytes to
1683 		 * remove, so something has gone wrong.
1684 		 */
1685 		if (!next)
1686 			return -EINVAL;
1687 
1688 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1689 				       offset_index);
1690 
1691 		/*
1692 		 * if the next entry isn't a bitmap we need to return to let the
1693 		 * extent stuff do its work.
1694 		 */
1695 		if (!bitmap_info->bitmap)
1696 			return -EAGAIN;
1697 
1698 		/*
1699 		 * Ok the next item is a bitmap, but it may not actually hold
1700 		 * the information for the rest of this free space stuff, so
1701 		 * look for it, and if we don't find it return so we can try
1702 		 * everything over again.
1703 		 */
1704 		search_start = *offset;
1705 		search_bytes = ctl->unit;
1706 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1707 				    &search_bytes);
1708 		if (ret < 0 || search_start != *offset)
1709 			return -EAGAIN;
1710 
1711 		goto again;
1712 	} else if (!bitmap_info->bytes)
1713 		free_bitmap(ctl, bitmap_info);
1714 
1715 	return 0;
1716 }
1717 
1718 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1719 			       struct btrfs_free_space *info, u64 offset,
1720 			       u64 bytes)
1721 {
1722 	u64 bytes_to_set = 0;
1723 	u64 end;
1724 
1725 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1726 
1727 	bytes_to_set = min(end - offset, bytes);
1728 
1729 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1730 
1731 	return bytes_to_set;
1732 
1733 }
1734 
1735 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1736 		      struct btrfs_free_space *info)
1737 {
1738 	struct btrfs_block_group_cache *block_group = ctl->private;
1739 
1740 	/*
1741 	 * If we are below the extents threshold then we can add this as an
1742 	 * extent, and don't have to deal with the bitmap
1743 	 */
1744 	if (ctl->free_extents < ctl->extents_thresh) {
1745 		/*
1746 		 * If this block group has some small extents we don't want to
1747 		 * use up all of our free slots in the cache with them, we want
1748 		 * to reserve them to larger extents, however if we have plent
1749 		 * of cache left then go ahead an dadd them, no sense in adding
1750 		 * the overhead of a bitmap if we don't have to.
1751 		 */
1752 		if (info->bytes <= block_group->sectorsize * 4) {
1753 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1754 				return false;
1755 		} else {
1756 			return false;
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * The original block groups from mkfs can be really small, like 8
1762 	 * megabytes, so don't bother with a bitmap for those entries.  However
1763 	 * some block groups can be smaller than what a bitmap would cover but
1764 	 * are still large enough that they could overflow the 32k memory limit,
1765 	 * so allow those block groups to still be allowed to have a bitmap
1766 	 * entry.
1767 	 */
1768 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1769 		return false;
1770 
1771 	return true;
1772 }
1773 
1774 static struct btrfs_free_space_op free_space_op = {
1775 	.recalc_thresholds	= recalculate_thresholds,
1776 	.use_bitmap		= use_bitmap,
1777 };
1778 
1779 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1780 			      struct btrfs_free_space *info)
1781 {
1782 	struct btrfs_free_space *bitmap_info;
1783 	struct btrfs_block_group_cache *block_group = NULL;
1784 	int added = 0;
1785 	u64 bytes, offset, bytes_added;
1786 	int ret;
1787 
1788 	bytes = info->bytes;
1789 	offset = info->offset;
1790 
1791 	if (!ctl->op->use_bitmap(ctl, info))
1792 		return 0;
1793 
1794 	if (ctl->op == &free_space_op)
1795 		block_group = ctl->private;
1796 again:
1797 	/*
1798 	 * Since we link bitmaps right into the cluster we need to see if we
1799 	 * have a cluster here, and if so and it has our bitmap we need to add
1800 	 * the free space to that bitmap.
1801 	 */
1802 	if (block_group && !list_empty(&block_group->cluster_list)) {
1803 		struct btrfs_free_cluster *cluster;
1804 		struct rb_node *node;
1805 		struct btrfs_free_space *entry;
1806 
1807 		cluster = list_entry(block_group->cluster_list.next,
1808 				     struct btrfs_free_cluster,
1809 				     block_group_list);
1810 		spin_lock(&cluster->lock);
1811 		node = rb_first(&cluster->root);
1812 		if (!node) {
1813 			spin_unlock(&cluster->lock);
1814 			goto no_cluster_bitmap;
1815 		}
1816 
1817 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1818 		if (!entry->bitmap) {
1819 			spin_unlock(&cluster->lock);
1820 			goto no_cluster_bitmap;
1821 		}
1822 
1823 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1824 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1825 							  offset, bytes);
1826 			bytes -= bytes_added;
1827 			offset += bytes_added;
1828 		}
1829 		spin_unlock(&cluster->lock);
1830 		if (!bytes) {
1831 			ret = 1;
1832 			goto out;
1833 		}
1834 	}
1835 
1836 no_cluster_bitmap:
1837 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1838 					 1, 0);
1839 	if (!bitmap_info) {
1840 		ASSERT(added == 0);
1841 		goto new_bitmap;
1842 	}
1843 
1844 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1845 	bytes -= bytes_added;
1846 	offset += bytes_added;
1847 	added = 0;
1848 
1849 	if (!bytes) {
1850 		ret = 1;
1851 		goto out;
1852 	} else
1853 		goto again;
1854 
1855 new_bitmap:
1856 	if (info && info->bitmap) {
1857 		add_new_bitmap(ctl, info, offset);
1858 		added = 1;
1859 		info = NULL;
1860 		goto again;
1861 	} else {
1862 		spin_unlock(&ctl->tree_lock);
1863 
1864 		/* no pre-allocated info, allocate a new one */
1865 		if (!info) {
1866 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1867 						 GFP_NOFS);
1868 			if (!info) {
1869 				spin_lock(&ctl->tree_lock);
1870 				ret = -ENOMEM;
1871 				goto out;
1872 			}
1873 		}
1874 
1875 		/* allocate the bitmap */
1876 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1877 		spin_lock(&ctl->tree_lock);
1878 		if (!info->bitmap) {
1879 			ret = -ENOMEM;
1880 			goto out;
1881 		}
1882 		goto again;
1883 	}
1884 
1885 out:
1886 	if (info) {
1887 		if (info->bitmap)
1888 			kfree(info->bitmap);
1889 		kmem_cache_free(btrfs_free_space_cachep, info);
1890 	}
1891 
1892 	return ret;
1893 }
1894 
1895 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1896 			  struct btrfs_free_space *info, bool update_stat)
1897 {
1898 	struct btrfs_free_space *left_info;
1899 	struct btrfs_free_space *right_info;
1900 	bool merged = false;
1901 	u64 offset = info->offset;
1902 	u64 bytes = info->bytes;
1903 
1904 	/*
1905 	 * first we want to see if there is free space adjacent to the range we
1906 	 * are adding, if there is remove that struct and add a new one to
1907 	 * cover the entire range
1908 	 */
1909 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1910 	if (right_info && rb_prev(&right_info->offset_index))
1911 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1912 				     struct btrfs_free_space, offset_index);
1913 	else
1914 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1915 
1916 	if (right_info && !right_info->bitmap) {
1917 		if (update_stat)
1918 			unlink_free_space(ctl, right_info);
1919 		else
1920 			__unlink_free_space(ctl, right_info);
1921 		info->bytes += right_info->bytes;
1922 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1923 		merged = true;
1924 	}
1925 
1926 	if (left_info && !left_info->bitmap &&
1927 	    left_info->offset + left_info->bytes == offset) {
1928 		if (update_stat)
1929 			unlink_free_space(ctl, left_info);
1930 		else
1931 			__unlink_free_space(ctl, left_info);
1932 		info->offset = left_info->offset;
1933 		info->bytes += left_info->bytes;
1934 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1935 		merged = true;
1936 	}
1937 
1938 	return merged;
1939 }
1940 
1941 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1942 			   u64 offset, u64 bytes)
1943 {
1944 	struct btrfs_free_space *info;
1945 	int ret = 0;
1946 
1947 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1948 	if (!info)
1949 		return -ENOMEM;
1950 
1951 	info->offset = offset;
1952 	info->bytes = bytes;
1953 
1954 	spin_lock(&ctl->tree_lock);
1955 
1956 	if (try_merge_free_space(ctl, info, true))
1957 		goto link;
1958 
1959 	/*
1960 	 * There was no extent directly to the left or right of this new
1961 	 * extent then we know we're going to have to allocate a new extent, so
1962 	 * before we do that see if we need to drop this into a bitmap
1963 	 */
1964 	ret = insert_into_bitmap(ctl, info);
1965 	if (ret < 0) {
1966 		goto out;
1967 	} else if (ret) {
1968 		ret = 0;
1969 		goto out;
1970 	}
1971 link:
1972 	ret = link_free_space(ctl, info);
1973 	if (ret)
1974 		kmem_cache_free(btrfs_free_space_cachep, info);
1975 out:
1976 	spin_unlock(&ctl->tree_lock);
1977 
1978 	if (ret) {
1979 		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
1980 		ASSERT(ret != -EEXIST);
1981 	}
1982 
1983 	return ret;
1984 }
1985 
1986 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1987 			    u64 offset, u64 bytes)
1988 {
1989 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1990 	struct btrfs_free_space *info;
1991 	int ret;
1992 	bool re_search = false;
1993 
1994 	spin_lock(&ctl->tree_lock);
1995 
1996 again:
1997 	ret = 0;
1998 	if (!bytes)
1999 		goto out_lock;
2000 
2001 	info = tree_search_offset(ctl, offset, 0, 0);
2002 	if (!info) {
2003 		/*
2004 		 * oops didn't find an extent that matched the space we wanted
2005 		 * to remove, look for a bitmap instead
2006 		 */
2007 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2008 					  1, 0);
2009 		if (!info) {
2010 			/*
2011 			 * If we found a partial bit of our free space in a
2012 			 * bitmap but then couldn't find the other part this may
2013 			 * be a problem, so WARN about it.
2014 			 */
2015 			WARN_ON(re_search);
2016 			goto out_lock;
2017 		}
2018 	}
2019 
2020 	re_search = false;
2021 	if (!info->bitmap) {
2022 		unlink_free_space(ctl, info);
2023 		if (offset == info->offset) {
2024 			u64 to_free = min(bytes, info->bytes);
2025 
2026 			info->bytes -= to_free;
2027 			info->offset += to_free;
2028 			if (info->bytes) {
2029 				ret = link_free_space(ctl, info);
2030 				WARN_ON(ret);
2031 			} else {
2032 				kmem_cache_free(btrfs_free_space_cachep, info);
2033 			}
2034 
2035 			offset += to_free;
2036 			bytes -= to_free;
2037 			goto again;
2038 		} else {
2039 			u64 old_end = info->bytes + info->offset;
2040 
2041 			info->bytes = offset - info->offset;
2042 			ret = link_free_space(ctl, info);
2043 			WARN_ON(ret);
2044 			if (ret)
2045 				goto out_lock;
2046 
2047 			/* Not enough bytes in this entry to satisfy us */
2048 			if (old_end < offset + bytes) {
2049 				bytes -= old_end - offset;
2050 				offset = old_end;
2051 				goto again;
2052 			} else if (old_end == offset + bytes) {
2053 				/* all done */
2054 				goto out_lock;
2055 			}
2056 			spin_unlock(&ctl->tree_lock);
2057 
2058 			ret = btrfs_add_free_space(block_group, offset + bytes,
2059 						   old_end - (offset + bytes));
2060 			WARN_ON(ret);
2061 			goto out;
2062 		}
2063 	}
2064 
2065 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2066 	if (ret == -EAGAIN) {
2067 		re_search = true;
2068 		goto again;
2069 	}
2070 out_lock:
2071 	spin_unlock(&ctl->tree_lock);
2072 out:
2073 	return ret;
2074 }
2075 
2076 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2077 			   u64 bytes)
2078 {
2079 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2080 	struct btrfs_free_space *info;
2081 	struct rb_node *n;
2082 	int count = 0;
2083 
2084 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2085 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2086 		if (info->bytes >= bytes && !block_group->ro)
2087 			count++;
2088 		btrfs_crit(block_group->fs_info,
2089 			   "entry offset %llu, bytes %llu, bitmap %s",
2090 			   info->offset, info->bytes,
2091 		       (info->bitmap) ? "yes" : "no");
2092 	}
2093 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2094 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2095 	btrfs_info(block_group->fs_info,
2096 		   "%d blocks of free space at or bigger than bytes is", count);
2097 }
2098 
2099 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2100 {
2101 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2102 
2103 	spin_lock_init(&ctl->tree_lock);
2104 	ctl->unit = block_group->sectorsize;
2105 	ctl->start = block_group->key.objectid;
2106 	ctl->private = block_group;
2107 	ctl->op = &free_space_op;
2108 
2109 	/*
2110 	 * we only want to have 32k of ram per block group for keeping
2111 	 * track of free space, and if we pass 1/2 of that we want to
2112 	 * start converting things over to using bitmaps
2113 	 */
2114 	ctl->extents_thresh = ((1024 * 32) / 2) /
2115 				sizeof(struct btrfs_free_space);
2116 }
2117 
2118 /*
2119  * for a given cluster, put all of its extents back into the free
2120  * space cache.  If the block group passed doesn't match the block group
2121  * pointed to by the cluster, someone else raced in and freed the
2122  * cluster already.  In that case, we just return without changing anything
2123  */
2124 static int
2125 __btrfs_return_cluster_to_free_space(
2126 			     struct btrfs_block_group_cache *block_group,
2127 			     struct btrfs_free_cluster *cluster)
2128 {
2129 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2130 	struct btrfs_free_space *entry;
2131 	struct rb_node *node;
2132 
2133 	spin_lock(&cluster->lock);
2134 	if (cluster->block_group != block_group)
2135 		goto out;
2136 
2137 	cluster->block_group = NULL;
2138 	cluster->window_start = 0;
2139 	list_del_init(&cluster->block_group_list);
2140 
2141 	node = rb_first(&cluster->root);
2142 	while (node) {
2143 		bool bitmap;
2144 
2145 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2146 		node = rb_next(&entry->offset_index);
2147 		rb_erase(&entry->offset_index, &cluster->root);
2148 
2149 		bitmap = (entry->bitmap != NULL);
2150 		if (!bitmap)
2151 			try_merge_free_space(ctl, entry, false);
2152 		tree_insert_offset(&ctl->free_space_offset,
2153 				   entry->offset, &entry->offset_index, bitmap);
2154 	}
2155 	cluster->root = RB_ROOT;
2156 
2157 out:
2158 	spin_unlock(&cluster->lock);
2159 	btrfs_put_block_group(block_group);
2160 	return 0;
2161 }
2162 
2163 static void __btrfs_remove_free_space_cache_locked(
2164 				struct btrfs_free_space_ctl *ctl)
2165 {
2166 	struct btrfs_free_space *info;
2167 	struct rb_node *node;
2168 
2169 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2170 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2171 		if (!info->bitmap) {
2172 			unlink_free_space(ctl, info);
2173 			kmem_cache_free(btrfs_free_space_cachep, info);
2174 		} else {
2175 			free_bitmap(ctl, info);
2176 		}
2177 		if (need_resched()) {
2178 			spin_unlock(&ctl->tree_lock);
2179 			cond_resched();
2180 			spin_lock(&ctl->tree_lock);
2181 		}
2182 	}
2183 }
2184 
2185 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2186 {
2187 	spin_lock(&ctl->tree_lock);
2188 	__btrfs_remove_free_space_cache_locked(ctl);
2189 	spin_unlock(&ctl->tree_lock);
2190 }
2191 
2192 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2193 {
2194 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2195 	struct btrfs_free_cluster *cluster;
2196 	struct list_head *head;
2197 
2198 	spin_lock(&ctl->tree_lock);
2199 	while ((head = block_group->cluster_list.next) !=
2200 	       &block_group->cluster_list) {
2201 		cluster = list_entry(head, struct btrfs_free_cluster,
2202 				     block_group_list);
2203 
2204 		WARN_ON(cluster->block_group != block_group);
2205 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2206 		if (need_resched()) {
2207 			spin_unlock(&ctl->tree_lock);
2208 			cond_resched();
2209 			spin_lock(&ctl->tree_lock);
2210 		}
2211 	}
2212 	__btrfs_remove_free_space_cache_locked(ctl);
2213 	spin_unlock(&ctl->tree_lock);
2214 
2215 }
2216 
2217 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2218 			       u64 offset, u64 bytes, u64 empty_size,
2219 			       u64 *max_extent_size)
2220 {
2221 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2222 	struct btrfs_free_space *entry = NULL;
2223 	u64 bytes_search = bytes + empty_size;
2224 	u64 ret = 0;
2225 	u64 align_gap = 0;
2226 	u64 align_gap_len = 0;
2227 
2228 	spin_lock(&ctl->tree_lock);
2229 	entry = find_free_space(ctl, &offset, &bytes_search,
2230 				block_group->full_stripe_len, max_extent_size);
2231 	if (!entry)
2232 		goto out;
2233 
2234 	ret = offset;
2235 	if (entry->bitmap) {
2236 		bitmap_clear_bits(ctl, entry, offset, bytes);
2237 		if (!entry->bytes)
2238 			free_bitmap(ctl, entry);
2239 	} else {
2240 		unlink_free_space(ctl, entry);
2241 		align_gap_len = offset - entry->offset;
2242 		align_gap = entry->offset;
2243 
2244 		entry->offset = offset + bytes;
2245 		WARN_ON(entry->bytes < bytes + align_gap_len);
2246 
2247 		entry->bytes -= bytes + align_gap_len;
2248 		if (!entry->bytes)
2249 			kmem_cache_free(btrfs_free_space_cachep, entry);
2250 		else
2251 			link_free_space(ctl, entry);
2252 	}
2253 out:
2254 	spin_unlock(&ctl->tree_lock);
2255 
2256 	if (align_gap_len)
2257 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2258 	return ret;
2259 }
2260 
2261 /*
2262  * given a cluster, put all of its extents back into the free space
2263  * cache.  If a block group is passed, this function will only free
2264  * a cluster that belongs to the passed block group.
2265  *
2266  * Otherwise, it'll get a reference on the block group pointed to by the
2267  * cluster and remove the cluster from it.
2268  */
2269 int btrfs_return_cluster_to_free_space(
2270 			       struct btrfs_block_group_cache *block_group,
2271 			       struct btrfs_free_cluster *cluster)
2272 {
2273 	struct btrfs_free_space_ctl *ctl;
2274 	int ret;
2275 
2276 	/* first, get a safe pointer to the block group */
2277 	spin_lock(&cluster->lock);
2278 	if (!block_group) {
2279 		block_group = cluster->block_group;
2280 		if (!block_group) {
2281 			spin_unlock(&cluster->lock);
2282 			return 0;
2283 		}
2284 	} else if (cluster->block_group != block_group) {
2285 		/* someone else has already freed it don't redo their work */
2286 		spin_unlock(&cluster->lock);
2287 		return 0;
2288 	}
2289 	atomic_inc(&block_group->count);
2290 	spin_unlock(&cluster->lock);
2291 
2292 	ctl = block_group->free_space_ctl;
2293 
2294 	/* now return any extents the cluster had on it */
2295 	spin_lock(&ctl->tree_lock);
2296 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2297 	spin_unlock(&ctl->tree_lock);
2298 
2299 	/* finally drop our ref */
2300 	btrfs_put_block_group(block_group);
2301 	return ret;
2302 }
2303 
2304 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2305 				   struct btrfs_free_cluster *cluster,
2306 				   struct btrfs_free_space *entry,
2307 				   u64 bytes, u64 min_start,
2308 				   u64 *max_extent_size)
2309 {
2310 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2311 	int err;
2312 	u64 search_start = cluster->window_start;
2313 	u64 search_bytes = bytes;
2314 	u64 ret = 0;
2315 
2316 	search_start = min_start;
2317 	search_bytes = bytes;
2318 
2319 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2320 	if (err) {
2321 		if (search_bytes > *max_extent_size)
2322 			*max_extent_size = search_bytes;
2323 		return 0;
2324 	}
2325 
2326 	ret = search_start;
2327 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2328 
2329 	return ret;
2330 }
2331 
2332 /*
2333  * given a cluster, try to allocate 'bytes' from it, returns 0
2334  * if it couldn't find anything suitably large, or a logical disk offset
2335  * if things worked out
2336  */
2337 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2338 			     struct btrfs_free_cluster *cluster, u64 bytes,
2339 			     u64 min_start, u64 *max_extent_size)
2340 {
2341 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2342 	struct btrfs_free_space *entry = NULL;
2343 	struct rb_node *node;
2344 	u64 ret = 0;
2345 
2346 	spin_lock(&cluster->lock);
2347 	if (bytes > cluster->max_size)
2348 		goto out;
2349 
2350 	if (cluster->block_group != block_group)
2351 		goto out;
2352 
2353 	node = rb_first(&cluster->root);
2354 	if (!node)
2355 		goto out;
2356 
2357 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2358 	while (1) {
2359 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2360 			*max_extent_size = entry->bytes;
2361 
2362 		if (entry->bytes < bytes ||
2363 		    (!entry->bitmap && entry->offset < min_start)) {
2364 			node = rb_next(&entry->offset_index);
2365 			if (!node)
2366 				break;
2367 			entry = rb_entry(node, struct btrfs_free_space,
2368 					 offset_index);
2369 			continue;
2370 		}
2371 
2372 		if (entry->bitmap) {
2373 			ret = btrfs_alloc_from_bitmap(block_group,
2374 						      cluster, entry, bytes,
2375 						      cluster->window_start,
2376 						      max_extent_size);
2377 			if (ret == 0) {
2378 				node = rb_next(&entry->offset_index);
2379 				if (!node)
2380 					break;
2381 				entry = rb_entry(node, struct btrfs_free_space,
2382 						 offset_index);
2383 				continue;
2384 			}
2385 			cluster->window_start += bytes;
2386 		} else {
2387 			ret = entry->offset;
2388 
2389 			entry->offset += bytes;
2390 			entry->bytes -= bytes;
2391 		}
2392 
2393 		if (entry->bytes == 0)
2394 			rb_erase(&entry->offset_index, &cluster->root);
2395 		break;
2396 	}
2397 out:
2398 	spin_unlock(&cluster->lock);
2399 
2400 	if (!ret)
2401 		return 0;
2402 
2403 	spin_lock(&ctl->tree_lock);
2404 
2405 	ctl->free_space -= bytes;
2406 	if (entry->bytes == 0) {
2407 		ctl->free_extents--;
2408 		if (entry->bitmap) {
2409 			kfree(entry->bitmap);
2410 			ctl->total_bitmaps--;
2411 			ctl->op->recalc_thresholds(ctl);
2412 		}
2413 		kmem_cache_free(btrfs_free_space_cachep, entry);
2414 	}
2415 
2416 	spin_unlock(&ctl->tree_lock);
2417 
2418 	return ret;
2419 }
2420 
2421 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2422 				struct btrfs_free_space *entry,
2423 				struct btrfs_free_cluster *cluster,
2424 				u64 offset, u64 bytes,
2425 				u64 cont1_bytes, u64 min_bytes)
2426 {
2427 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2428 	unsigned long next_zero;
2429 	unsigned long i;
2430 	unsigned long want_bits;
2431 	unsigned long min_bits;
2432 	unsigned long found_bits;
2433 	unsigned long start = 0;
2434 	unsigned long total_found = 0;
2435 	int ret;
2436 
2437 	i = offset_to_bit(entry->offset, ctl->unit,
2438 			  max_t(u64, offset, entry->offset));
2439 	want_bits = bytes_to_bits(bytes, ctl->unit);
2440 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2441 
2442 again:
2443 	found_bits = 0;
2444 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2445 		next_zero = find_next_zero_bit(entry->bitmap,
2446 					       BITS_PER_BITMAP, i);
2447 		if (next_zero - i >= min_bits) {
2448 			found_bits = next_zero - i;
2449 			break;
2450 		}
2451 		i = next_zero;
2452 	}
2453 
2454 	if (!found_bits)
2455 		return -ENOSPC;
2456 
2457 	if (!total_found) {
2458 		start = i;
2459 		cluster->max_size = 0;
2460 	}
2461 
2462 	total_found += found_bits;
2463 
2464 	if (cluster->max_size < found_bits * ctl->unit)
2465 		cluster->max_size = found_bits * ctl->unit;
2466 
2467 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2468 		i = next_zero + 1;
2469 		goto again;
2470 	}
2471 
2472 	cluster->window_start = start * ctl->unit + entry->offset;
2473 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2474 	ret = tree_insert_offset(&cluster->root, entry->offset,
2475 				 &entry->offset_index, 1);
2476 	ASSERT(!ret); /* -EEXIST; Logic error */
2477 
2478 	trace_btrfs_setup_cluster(block_group, cluster,
2479 				  total_found * ctl->unit, 1);
2480 	return 0;
2481 }
2482 
2483 /*
2484  * This searches the block group for just extents to fill the cluster with.
2485  * Try to find a cluster with at least bytes total bytes, at least one
2486  * extent of cont1_bytes, and other clusters of at least min_bytes.
2487  */
2488 static noinline int
2489 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2490 			struct btrfs_free_cluster *cluster,
2491 			struct list_head *bitmaps, u64 offset, u64 bytes,
2492 			u64 cont1_bytes, u64 min_bytes)
2493 {
2494 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2495 	struct btrfs_free_space *first = NULL;
2496 	struct btrfs_free_space *entry = NULL;
2497 	struct btrfs_free_space *last;
2498 	struct rb_node *node;
2499 	u64 window_free;
2500 	u64 max_extent;
2501 	u64 total_size = 0;
2502 
2503 	entry = tree_search_offset(ctl, offset, 0, 1);
2504 	if (!entry)
2505 		return -ENOSPC;
2506 
2507 	/*
2508 	 * We don't want bitmaps, so just move along until we find a normal
2509 	 * extent entry.
2510 	 */
2511 	while (entry->bitmap || entry->bytes < min_bytes) {
2512 		if (entry->bitmap && list_empty(&entry->list))
2513 			list_add_tail(&entry->list, bitmaps);
2514 		node = rb_next(&entry->offset_index);
2515 		if (!node)
2516 			return -ENOSPC;
2517 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2518 	}
2519 
2520 	window_free = entry->bytes;
2521 	max_extent = entry->bytes;
2522 	first = entry;
2523 	last = entry;
2524 
2525 	for (node = rb_next(&entry->offset_index); node;
2526 	     node = rb_next(&entry->offset_index)) {
2527 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2528 
2529 		if (entry->bitmap) {
2530 			if (list_empty(&entry->list))
2531 				list_add_tail(&entry->list, bitmaps);
2532 			continue;
2533 		}
2534 
2535 		if (entry->bytes < min_bytes)
2536 			continue;
2537 
2538 		last = entry;
2539 		window_free += entry->bytes;
2540 		if (entry->bytes > max_extent)
2541 			max_extent = entry->bytes;
2542 	}
2543 
2544 	if (window_free < bytes || max_extent < cont1_bytes)
2545 		return -ENOSPC;
2546 
2547 	cluster->window_start = first->offset;
2548 
2549 	node = &first->offset_index;
2550 
2551 	/*
2552 	 * now we've found our entries, pull them out of the free space
2553 	 * cache and put them into the cluster rbtree
2554 	 */
2555 	do {
2556 		int ret;
2557 
2558 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2559 		node = rb_next(&entry->offset_index);
2560 		if (entry->bitmap || entry->bytes < min_bytes)
2561 			continue;
2562 
2563 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2564 		ret = tree_insert_offset(&cluster->root, entry->offset,
2565 					 &entry->offset_index, 0);
2566 		total_size += entry->bytes;
2567 		ASSERT(!ret); /* -EEXIST; Logic error */
2568 	} while (node && entry != last);
2569 
2570 	cluster->max_size = max_extent;
2571 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2572 	return 0;
2573 }
2574 
2575 /*
2576  * This specifically looks for bitmaps that may work in the cluster, we assume
2577  * that we have already failed to find extents that will work.
2578  */
2579 static noinline int
2580 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2581 		     struct btrfs_free_cluster *cluster,
2582 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2583 		     u64 cont1_bytes, u64 min_bytes)
2584 {
2585 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2586 	struct btrfs_free_space *entry;
2587 	int ret = -ENOSPC;
2588 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2589 
2590 	if (ctl->total_bitmaps == 0)
2591 		return -ENOSPC;
2592 
2593 	/*
2594 	 * The bitmap that covers offset won't be in the list unless offset
2595 	 * is just its start offset.
2596 	 */
2597 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2598 	if (entry->offset != bitmap_offset) {
2599 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2600 		if (entry && list_empty(&entry->list))
2601 			list_add(&entry->list, bitmaps);
2602 	}
2603 
2604 	list_for_each_entry(entry, bitmaps, list) {
2605 		if (entry->bytes < bytes)
2606 			continue;
2607 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2608 					   bytes, cont1_bytes, min_bytes);
2609 		if (!ret)
2610 			return 0;
2611 	}
2612 
2613 	/*
2614 	 * The bitmaps list has all the bitmaps that record free space
2615 	 * starting after offset, so no more search is required.
2616 	 */
2617 	return -ENOSPC;
2618 }
2619 
2620 /*
2621  * here we try to find a cluster of blocks in a block group.  The goal
2622  * is to find at least bytes+empty_size.
2623  * We might not find them all in one contiguous area.
2624  *
2625  * returns zero and sets up cluster if things worked out, otherwise
2626  * it returns -enospc
2627  */
2628 int btrfs_find_space_cluster(struct btrfs_root *root,
2629 			     struct btrfs_block_group_cache *block_group,
2630 			     struct btrfs_free_cluster *cluster,
2631 			     u64 offset, u64 bytes, u64 empty_size)
2632 {
2633 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2634 	struct btrfs_free_space *entry, *tmp;
2635 	LIST_HEAD(bitmaps);
2636 	u64 min_bytes;
2637 	u64 cont1_bytes;
2638 	int ret;
2639 
2640 	/*
2641 	 * Choose the minimum extent size we'll require for this
2642 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2643 	 * For metadata, allow allocates with smaller extents.  For
2644 	 * data, keep it dense.
2645 	 */
2646 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2647 		cont1_bytes = min_bytes = bytes + empty_size;
2648 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2649 		cont1_bytes = bytes;
2650 		min_bytes = block_group->sectorsize;
2651 	} else {
2652 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2653 		min_bytes = block_group->sectorsize;
2654 	}
2655 
2656 	spin_lock(&ctl->tree_lock);
2657 
2658 	/*
2659 	 * If we know we don't have enough space to make a cluster don't even
2660 	 * bother doing all the work to try and find one.
2661 	 */
2662 	if (ctl->free_space < bytes) {
2663 		spin_unlock(&ctl->tree_lock);
2664 		return -ENOSPC;
2665 	}
2666 
2667 	spin_lock(&cluster->lock);
2668 
2669 	/* someone already found a cluster, hooray */
2670 	if (cluster->block_group) {
2671 		ret = 0;
2672 		goto out;
2673 	}
2674 
2675 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2676 				 min_bytes);
2677 
2678 	INIT_LIST_HEAD(&bitmaps);
2679 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2680 				      bytes + empty_size,
2681 				      cont1_bytes, min_bytes);
2682 	if (ret)
2683 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2684 					   offset, bytes + empty_size,
2685 					   cont1_bytes, min_bytes);
2686 
2687 	/* Clear our temporary list */
2688 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2689 		list_del_init(&entry->list);
2690 
2691 	if (!ret) {
2692 		atomic_inc(&block_group->count);
2693 		list_add_tail(&cluster->block_group_list,
2694 			      &block_group->cluster_list);
2695 		cluster->block_group = block_group;
2696 	} else {
2697 		trace_btrfs_failed_cluster_setup(block_group);
2698 	}
2699 out:
2700 	spin_unlock(&cluster->lock);
2701 	spin_unlock(&ctl->tree_lock);
2702 
2703 	return ret;
2704 }
2705 
2706 /*
2707  * simple code to zero out a cluster
2708  */
2709 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2710 {
2711 	spin_lock_init(&cluster->lock);
2712 	spin_lock_init(&cluster->refill_lock);
2713 	cluster->root = RB_ROOT;
2714 	cluster->max_size = 0;
2715 	INIT_LIST_HEAD(&cluster->block_group_list);
2716 	cluster->block_group = NULL;
2717 }
2718 
2719 static int do_trimming(struct btrfs_block_group_cache *block_group,
2720 		       u64 *total_trimmed, u64 start, u64 bytes,
2721 		       u64 reserved_start, u64 reserved_bytes)
2722 {
2723 	struct btrfs_space_info *space_info = block_group->space_info;
2724 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2725 	int ret;
2726 	int update = 0;
2727 	u64 trimmed = 0;
2728 
2729 	spin_lock(&space_info->lock);
2730 	spin_lock(&block_group->lock);
2731 	if (!block_group->ro) {
2732 		block_group->reserved += reserved_bytes;
2733 		space_info->bytes_reserved += reserved_bytes;
2734 		update = 1;
2735 	}
2736 	spin_unlock(&block_group->lock);
2737 	spin_unlock(&space_info->lock);
2738 
2739 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2740 					 start, bytes, &trimmed);
2741 	if (!ret)
2742 		*total_trimmed += trimmed;
2743 
2744 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2745 
2746 	if (update) {
2747 		spin_lock(&space_info->lock);
2748 		spin_lock(&block_group->lock);
2749 		if (block_group->ro)
2750 			space_info->bytes_readonly += reserved_bytes;
2751 		block_group->reserved -= reserved_bytes;
2752 		space_info->bytes_reserved -= reserved_bytes;
2753 		spin_unlock(&space_info->lock);
2754 		spin_unlock(&block_group->lock);
2755 	}
2756 
2757 	return ret;
2758 }
2759 
2760 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2761 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2762 {
2763 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2764 	struct btrfs_free_space *entry;
2765 	struct rb_node *node;
2766 	int ret = 0;
2767 	u64 extent_start;
2768 	u64 extent_bytes;
2769 	u64 bytes;
2770 
2771 	while (start < end) {
2772 		spin_lock(&ctl->tree_lock);
2773 
2774 		if (ctl->free_space < minlen) {
2775 			spin_unlock(&ctl->tree_lock);
2776 			break;
2777 		}
2778 
2779 		entry = tree_search_offset(ctl, start, 0, 1);
2780 		if (!entry) {
2781 			spin_unlock(&ctl->tree_lock);
2782 			break;
2783 		}
2784 
2785 		/* skip bitmaps */
2786 		while (entry->bitmap) {
2787 			node = rb_next(&entry->offset_index);
2788 			if (!node) {
2789 				spin_unlock(&ctl->tree_lock);
2790 				goto out;
2791 			}
2792 			entry = rb_entry(node, struct btrfs_free_space,
2793 					 offset_index);
2794 		}
2795 
2796 		if (entry->offset >= end) {
2797 			spin_unlock(&ctl->tree_lock);
2798 			break;
2799 		}
2800 
2801 		extent_start = entry->offset;
2802 		extent_bytes = entry->bytes;
2803 		start = max(start, extent_start);
2804 		bytes = min(extent_start + extent_bytes, end) - start;
2805 		if (bytes < minlen) {
2806 			spin_unlock(&ctl->tree_lock);
2807 			goto next;
2808 		}
2809 
2810 		unlink_free_space(ctl, entry);
2811 		kmem_cache_free(btrfs_free_space_cachep, entry);
2812 
2813 		spin_unlock(&ctl->tree_lock);
2814 
2815 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2816 				  extent_start, extent_bytes);
2817 		if (ret)
2818 			break;
2819 next:
2820 		start += bytes;
2821 
2822 		if (fatal_signal_pending(current)) {
2823 			ret = -ERESTARTSYS;
2824 			break;
2825 		}
2826 
2827 		cond_resched();
2828 	}
2829 out:
2830 	return ret;
2831 }
2832 
2833 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2834 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2835 {
2836 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2837 	struct btrfs_free_space *entry;
2838 	int ret = 0;
2839 	int ret2;
2840 	u64 bytes;
2841 	u64 offset = offset_to_bitmap(ctl, start);
2842 
2843 	while (offset < end) {
2844 		bool next_bitmap = false;
2845 
2846 		spin_lock(&ctl->tree_lock);
2847 
2848 		if (ctl->free_space < minlen) {
2849 			spin_unlock(&ctl->tree_lock);
2850 			break;
2851 		}
2852 
2853 		entry = tree_search_offset(ctl, offset, 1, 0);
2854 		if (!entry) {
2855 			spin_unlock(&ctl->tree_lock);
2856 			next_bitmap = true;
2857 			goto next;
2858 		}
2859 
2860 		bytes = minlen;
2861 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2862 		if (ret2 || start >= end) {
2863 			spin_unlock(&ctl->tree_lock);
2864 			next_bitmap = true;
2865 			goto next;
2866 		}
2867 
2868 		bytes = min(bytes, end - start);
2869 		if (bytes < minlen) {
2870 			spin_unlock(&ctl->tree_lock);
2871 			goto next;
2872 		}
2873 
2874 		bitmap_clear_bits(ctl, entry, start, bytes);
2875 		if (entry->bytes == 0)
2876 			free_bitmap(ctl, entry);
2877 
2878 		spin_unlock(&ctl->tree_lock);
2879 
2880 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2881 				  start, bytes);
2882 		if (ret)
2883 			break;
2884 next:
2885 		if (next_bitmap) {
2886 			offset += BITS_PER_BITMAP * ctl->unit;
2887 		} else {
2888 			start += bytes;
2889 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2890 				offset += BITS_PER_BITMAP * ctl->unit;
2891 		}
2892 
2893 		if (fatal_signal_pending(current)) {
2894 			ret = -ERESTARTSYS;
2895 			break;
2896 		}
2897 
2898 		cond_resched();
2899 	}
2900 
2901 	return ret;
2902 }
2903 
2904 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2905 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2906 {
2907 	int ret;
2908 
2909 	*trimmed = 0;
2910 
2911 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2912 	if (ret)
2913 		return ret;
2914 
2915 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2916 
2917 	return ret;
2918 }
2919 
2920 /*
2921  * Find the left-most item in the cache tree, and then return the
2922  * smallest inode number in the item.
2923  *
2924  * Note: the returned inode number may not be the smallest one in
2925  * the tree, if the left-most item is a bitmap.
2926  */
2927 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2928 {
2929 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2930 	struct btrfs_free_space *entry = NULL;
2931 	u64 ino = 0;
2932 
2933 	spin_lock(&ctl->tree_lock);
2934 
2935 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2936 		goto out;
2937 
2938 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2939 			 struct btrfs_free_space, offset_index);
2940 
2941 	if (!entry->bitmap) {
2942 		ino = entry->offset;
2943 
2944 		unlink_free_space(ctl, entry);
2945 		entry->offset++;
2946 		entry->bytes--;
2947 		if (!entry->bytes)
2948 			kmem_cache_free(btrfs_free_space_cachep, entry);
2949 		else
2950 			link_free_space(ctl, entry);
2951 	} else {
2952 		u64 offset = 0;
2953 		u64 count = 1;
2954 		int ret;
2955 
2956 		ret = search_bitmap(ctl, entry, &offset, &count);
2957 		/* Logic error; Should be empty if it can't find anything */
2958 		ASSERT(!ret);
2959 
2960 		ino = offset;
2961 		bitmap_clear_bits(ctl, entry, offset, 1);
2962 		if (entry->bytes == 0)
2963 			free_bitmap(ctl, entry);
2964 	}
2965 out:
2966 	spin_unlock(&ctl->tree_lock);
2967 
2968 	return ino;
2969 }
2970 
2971 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2972 				    struct btrfs_path *path)
2973 {
2974 	struct inode *inode = NULL;
2975 
2976 	spin_lock(&root->cache_lock);
2977 	if (root->cache_inode)
2978 		inode = igrab(root->cache_inode);
2979 	spin_unlock(&root->cache_lock);
2980 	if (inode)
2981 		return inode;
2982 
2983 	inode = __lookup_free_space_inode(root, path, 0);
2984 	if (IS_ERR(inode))
2985 		return inode;
2986 
2987 	spin_lock(&root->cache_lock);
2988 	if (!btrfs_fs_closing(root->fs_info))
2989 		root->cache_inode = igrab(inode);
2990 	spin_unlock(&root->cache_lock);
2991 
2992 	return inode;
2993 }
2994 
2995 int create_free_ino_inode(struct btrfs_root *root,
2996 			  struct btrfs_trans_handle *trans,
2997 			  struct btrfs_path *path)
2998 {
2999 	return __create_free_space_inode(root, trans, path,
3000 					 BTRFS_FREE_INO_OBJECTID, 0);
3001 }
3002 
3003 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3004 {
3005 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3006 	struct btrfs_path *path;
3007 	struct inode *inode;
3008 	int ret = 0;
3009 	u64 root_gen = btrfs_root_generation(&root->root_item);
3010 
3011 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3012 		return 0;
3013 
3014 	/*
3015 	 * If we're unmounting then just return, since this does a search on the
3016 	 * normal root and not the commit root and we could deadlock.
3017 	 */
3018 	if (btrfs_fs_closing(fs_info))
3019 		return 0;
3020 
3021 	path = btrfs_alloc_path();
3022 	if (!path)
3023 		return 0;
3024 
3025 	inode = lookup_free_ino_inode(root, path);
3026 	if (IS_ERR(inode))
3027 		goto out;
3028 
3029 	if (root_gen != BTRFS_I(inode)->generation)
3030 		goto out_put;
3031 
3032 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3033 
3034 	if (ret < 0)
3035 		btrfs_err(fs_info,
3036 			"failed to load free ino cache for root %llu",
3037 			root->root_key.objectid);
3038 out_put:
3039 	iput(inode);
3040 out:
3041 	btrfs_free_path(path);
3042 	return ret;
3043 }
3044 
3045 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3046 			      struct btrfs_trans_handle *trans,
3047 			      struct btrfs_path *path,
3048 			      struct inode *inode)
3049 {
3050 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3051 	int ret;
3052 
3053 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3054 		return 0;
3055 
3056 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
3057 	if (ret) {
3058 		btrfs_delalloc_release_metadata(inode, inode->i_size);
3059 #ifdef DEBUG
3060 		btrfs_err(root->fs_info,
3061 			"failed to write free ino cache for root %llu",
3062 			root->root_key.objectid);
3063 #endif
3064 	}
3065 
3066 	return ret;
3067 }
3068 
3069 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3070 /*
3071  * Use this if you need to make a bitmap or extent entry specifically, it
3072  * doesn't do any of the merging that add_free_space does, this acts a lot like
3073  * how the free space cache loading stuff works, so you can get really weird
3074  * configurations.
3075  */
3076 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3077 			      u64 offset, u64 bytes, bool bitmap)
3078 {
3079 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3080 	struct btrfs_free_space *info = NULL, *bitmap_info;
3081 	void *map = NULL;
3082 	u64 bytes_added;
3083 	int ret;
3084 
3085 again:
3086 	if (!info) {
3087 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3088 		if (!info)
3089 			return -ENOMEM;
3090 	}
3091 
3092 	if (!bitmap) {
3093 		spin_lock(&ctl->tree_lock);
3094 		info->offset = offset;
3095 		info->bytes = bytes;
3096 		ret = link_free_space(ctl, info);
3097 		spin_unlock(&ctl->tree_lock);
3098 		if (ret)
3099 			kmem_cache_free(btrfs_free_space_cachep, info);
3100 		return ret;
3101 	}
3102 
3103 	if (!map) {
3104 		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3105 		if (!map) {
3106 			kmem_cache_free(btrfs_free_space_cachep, info);
3107 			return -ENOMEM;
3108 		}
3109 	}
3110 
3111 	spin_lock(&ctl->tree_lock);
3112 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3113 					 1, 0);
3114 	if (!bitmap_info) {
3115 		info->bitmap = map;
3116 		map = NULL;
3117 		add_new_bitmap(ctl, info, offset);
3118 		bitmap_info = info;
3119 	}
3120 
3121 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3122 	bytes -= bytes_added;
3123 	offset += bytes_added;
3124 	spin_unlock(&ctl->tree_lock);
3125 
3126 	if (bytes)
3127 		goto again;
3128 
3129 	if (map)
3130 		kfree(map);
3131 	return 0;
3132 }
3133 
3134 /*
3135  * Checks to see if the given range is in the free space cache.  This is really
3136  * just used to check the absence of space, so if there is free space in the
3137  * range at all we will return 1.
3138  */
3139 int test_check_exists(struct btrfs_block_group_cache *cache,
3140 		      u64 offset, u64 bytes)
3141 {
3142 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3143 	struct btrfs_free_space *info;
3144 	int ret = 0;
3145 
3146 	spin_lock(&ctl->tree_lock);
3147 	info = tree_search_offset(ctl, offset, 0, 0);
3148 	if (!info) {
3149 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3150 					  1, 0);
3151 		if (!info)
3152 			goto out;
3153 	}
3154 
3155 have_info:
3156 	if (info->bitmap) {
3157 		u64 bit_off, bit_bytes;
3158 		struct rb_node *n;
3159 		struct btrfs_free_space *tmp;
3160 
3161 		bit_off = offset;
3162 		bit_bytes = ctl->unit;
3163 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3164 		if (!ret) {
3165 			if (bit_off == offset) {
3166 				ret = 1;
3167 				goto out;
3168 			} else if (bit_off > offset &&
3169 				   offset + bytes > bit_off) {
3170 				ret = 1;
3171 				goto out;
3172 			}
3173 		}
3174 
3175 		n = rb_prev(&info->offset_index);
3176 		while (n) {
3177 			tmp = rb_entry(n, struct btrfs_free_space,
3178 				       offset_index);
3179 			if (tmp->offset + tmp->bytes < offset)
3180 				break;
3181 			if (offset + bytes < tmp->offset) {
3182 				n = rb_prev(&info->offset_index);
3183 				continue;
3184 			}
3185 			info = tmp;
3186 			goto have_info;
3187 		}
3188 
3189 		n = rb_next(&info->offset_index);
3190 		while (n) {
3191 			tmp = rb_entry(n, struct btrfs_free_space,
3192 				       offset_index);
3193 			if (offset + bytes < tmp->offset)
3194 				break;
3195 			if (tmp->offset + tmp->bytes < offset) {
3196 				n = rb_next(&info->offset_index);
3197 				continue;
3198 			}
3199 			info = tmp;
3200 			goto have_info;
3201 		}
3202 
3203 		goto out;
3204 	}
3205 
3206 	if (info->offset == offset) {
3207 		ret = 1;
3208 		goto out;
3209 	}
3210 
3211 	if (offset > info->offset && offset < info->offset + info->bytes)
3212 		ret = 1;
3213 out:
3214 	spin_unlock(&ctl->tree_lock);
3215 	return ret;
3216 }
3217 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3218