xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 19c233b7)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31 
32 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
33 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
34 
35 struct btrfs_trim_range {
36 	u64 start;
37 	u64 bytes;
38 	struct list_head list;
39 };
40 
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 			   struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 			      struct btrfs_free_space *info);
45 
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 					       struct btrfs_path *path,
48 					       u64 offset)
49 {
50 	struct btrfs_key key;
51 	struct btrfs_key location;
52 	struct btrfs_disk_key disk_key;
53 	struct btrfs_free_space_header *header;
54 	struct extent_buffer *leaf;
55 	struct inode *inode = NULL;
56 	int ret;
57 
58 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 	key.offset = offset;
60 	key.type = 0;
61 
62 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 	if (ret < 0)
64 		return ERR_PTR(ret);
65 	if (ret > 0) {
66 		btrfs_release_path(path);
67 		return ERR_PTR(-ENOENT);
68 	}
69 
70 	leaf = path->nodes[0];
71 	header = btrfs_item_ptr(leaf, path->slots[0],
72 				struct btrfs_free_space_header);
73 	btrfs_free_space_key(leaf, header, &disk_key);
74 	btrfs_disk_key_to_cpu(&location, &disk_key);
75 	btrfs_release_path(path);
76 
77 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 	if (!inode)
79 		return ERR_PTR(-ENOENT);
80 	if (IS_ERR(inode))
81 		return inode;
82 	if (is_bad_inode(inode)) {
83 		iput(inode);
84 		return ERR_PTR(-ENOENT);
85 	}
86 
87 	mapping_set_gfp_mask(inode->i_mapping,
88 			mapping_gfp_mask(inode->i_mapping) &
89 			~(__GFP_FS | __GFP_HIGHMEM));
90 
91 	return inode;
92 }
93 
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 				      struct btrfs_block_group_cache
96 				      *block_group, struct btrfs_path *path)
97 {
98 	struct inode *inode = NULL;
99 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 
101 	spin_lock(&block_group->lock);
102 	if (block_group->inode)
103 		inode = igrab(block_group->inode);
104 	spin_unlock(&block_group->lock);
105 	if (inode)
106 		return inode;
107 
108 	inode = __lookup_free_space_inode(root, path,
109 					  block_group->key.objectid);
110 	if (IS_ERR(inode))
111 		return inode;
112 
113 	spin_lock(&block_group->lock);
114 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 		btrfs_info(root->fs_info,
116 			"Old style space inode found, converting.");
117 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 			BTRFS_INODE_NODATACOW;
119 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 	}
121 
122 	if (!block_group->iref) {
123 		block_group->inode = igrab(inode);
124 		block_group->iref = 1;
125 	}
126 	spin_unlock(&block_group->lock);
127 
128 	return inode;
129 }
130 
131 static int __create_free_space_inode(struct btrfs_root *root,
132 				     struct btrfs_trans_handle *trans,
133 				     struct btrfs_path *path,
134 				     u64 ino, u64 offset)
135 {
136 	struct btrfs_key key;
137 	struct btrfs_disk_key disk_key;
138 	struct btrfs_free_space_header *header;
139 	struct btrfs_inode_item *inode_item;
140 	struct extent_buffer *leaf;
141 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 	int ret;
143 
144 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 	if (ret)
146 		return ret;
147 
148 	/* We inline crc's for the free disk space cache */
149 	if (ino != BTRFS_FREE_INO_OBJECTID)
150 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151 
152 	leaf = path->nodes[0];
153 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 				    struct btrfs_inode_item);
155 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 			     sizeof(*inode_item));
158 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_size(leaf, inode_item, 0);
160 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 	btrfs_set_inode_uid(leaf, inode_item, 0);
162 	btrfs_set_inode_gid(leaf, inode_item, 0);
163 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 	btrfs_set_inode_flags(leaf, inode_item, flags);
165 	btrfs_set_inode_nlink(leaf, inode_item, 1);
166 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 	btrfs_set_inode_block_group(leaf, inode_item, offset);
168 	btrfs_mark_buffer_dirty(leaf);
169 	btrfs_release_path(path);
170 
171 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 	key.offset = offset;
173 	key.type = 0;
174 	ret = btrfs_insert_empty_item(trans, root, path, &key,
175 				      sizeof(struct btrfs_free_space_header));
176 	if (ret < 0) {
177 		btrfs_release_path(path);
178 		return ret;
179 	}
180 
181 	leaf = path->nodes[0];
182 	header = btrfs_item_ptr(leaf, path->slots[0],
183 				struct btrfs_free_space_header);
184 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 	btrfs_set_free_space_key(leaf, header, &disk_key);
186 	btrfs_mark_buffer_dirty(leaf);
187 	btrfs_release_path(path);
188 
189 	return 0;
190 }
191 
192 int create_free_space_inode(struct btrfs_root *root,
193 			    struct btrfs_trans_handle *trans,
194 			    struct btrfs_block_group_cache *block_group,
195 			    struct btrfs_path *path)
196 {
197 	int ret;
198 	u64 ino;
199 
200 	ret = btrfs_find_free_objectid(root, &ino);
201 	if (ret < 0)
202 		return ret;
203 
204 	return __create_free_space_inode(root, trans, path, ino,
205 					 block_group->key.objectid);
206 }
207 
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 				       struct btrfs_block_rsv *rsv)
210 {
211 	u64 needed_bytes;
212 	int ret;
213 
214 	/* 1 for slack space, 1 for updating the inode */
215 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 		btrfs_calc_trans_metadata_size(root, 1);
217 
218 	spin_lock(&rsv->lock);
219 	if (rsv->reserved < needed_bytes)
220 		ret = -ENOSPC;
221 	else
222 		ret = 0;
223 	spin_unlock(&rsv->lock);
224 	return ret;
225 }
226 
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 				    struct btrfs_trans_handle *trans,
229 				    struct btrfs_block_group_cache *block_group,
230 				    struct inode *inode)
231 {
232 	int ret = 0;
233 	struct btrfs_path *path = btrfs_alloc_path();
234 	bool locked = false;
235 
236 	if (!path) {
237 		ret = -ENOMEM;
238 		goto fail;
239 	}
240 
241 	if (block_group) {
242 		locked = true;
243 		mutex_lock(&trans->transaction->cache_write_mutex);
244 		if (!list_empty(&block_group->io_list)) {
245 			list_del_init(&block_group->io_list);
246 
247 			btrfs_wait_cache_io(root, trans, block_group,
248 					    &block_group->io_ctl, path,
249 					    block_group->key.objectid);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 	}
261 	btrfs_free_path(path);
262 
263 	btrfs_i_size_write(inode, 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We don't need an orphan item because truncating the free space cache
268 	 * will never be split across transactions.
269 	 * We don't need to check for -EAGAIN because we're a free space
270 	 * cache inode
271 	 */
272 	ret = btrfs_truncate_inode_items(trans, root, inode,
273 					 0, BTRFS_EXTENT_DATA_KEY);
274 	if (ret)
275 		goto fail;
276 
277 	ret = btrfs_update_inode(trans, root, inode);
278 
279 fail:
280 	if (locked)
281 		mutex_unlock(&trans->transaction->cache_write_mutex);
282 	if (ret)
283 		btrfs_abort_transaction(trans, root, ret);
284 
285 	return ret;
286 }
287 
288 static int readahead_cache(struct inode *inode)
289 {
290 	struct file_ra_state *ra;
291 	unsigned long last_index;
292 
293 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
294 	if (!ra)
295 		return -ENOMEM;
296 
297 	file_ra_state_init(ra, inode->i_mapping);
298 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
299 
300 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
301 
302 	kfree(ra);
303 
304 	return 0;
305 }
306 
307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308 		       struct btrfs_root *root, int write)
309 {
310 	int num_pages;
311 	int check_crcs = 0;
312 
313 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
314 
315 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
316 		check_crcs = 1;
317 
318 	/* Make sure we can fit our crcs into the first page */
319 	if (write && check_crcs &&
320 	    (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
321 		return -ENOSPC;
322 
323 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324 
325 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326 	if (!io_ctl->pages)
327 		return -ENOMEM;
328 
329 	io_ctl->num_pages = num_pages;
330 	io_ctl->root = root;
331 	io_ctl->check_crcs = check_crcs;
332 	io_ctl->inode = inode;
333 
334 	return 0;
335 }
336 
337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 {
339 	kfree(io_ctl->pages);
340 	io_ctl->pages = NULL;
341 }
342 
343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 {
345 	if (io_ctl->cur) {
346 		io_ctl->cur = NULL;
347 		io_ctl->orig = NULL;
348 	}
349 }
350 
351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352 {
353 	ASSERT(io_ctl->index < io_ctl->num_pages);
354 	io_ctl->page = io_ctl->pages[io_ctl->index++];
355 	io_ctl->cur = page_address(io_ctl->page);
356 	io_ctl->orig = io_ctl->cur;
357 	io_ctl->size = PAGE_CACHE_SIZE;
358 	if (clear)
359 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
360 }
361 
362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 {
364 	int i;
365 
366 	io_ctl_unmap_page(io_ctl);
367 
368 	for (i = 0; i < io_ctl->num_pages; i++) {
369 		if (io_ctl->pages[i]) {
370 			ClearPageChecked(io_ctl->pages[i]);
371 			unlock_page(io_ctl->pages[i]);
372 			page_cache_release(io_ctl->pages[i]);
373 		}
374 	}
375 }
376 
377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 				int uptodate)
379 {
380 	struct page *page;
381 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
382 	int i;
383 
384 	for (i = 0; i < io_ctl->num_pages; i++) {
385 		page = find_or_create_page(inode->i_mapping, i, mask);
386 		if (!page) {
387 			io_ctl_drop_pages(io_ctl);
388 			return -ENOMEM;
389 		}
390 		io_ctl->pages[i] = page;
391 		if (uptodate && !PageUptodate(page)) {
392 			btrfs_readpage(NULL, page);
393 			lock_page(page);
394 			if (!PageUptodate(page)) {
395 				btrfs_err(BTRFS_I(inode)->root->fs_info,
396 					   "error reading free space cache");
397 				io_ctl_drop_pages(io_ctl);
398 				return -EIO;
399 			}
400 		}
401 	}
402 
403 	for (i = 0; i < io_ctl->num_pages; i++) {
404 		clear_page_dirty_for_io(io_ctl->pages[i]);
405 		set_page_extent_mapped(io_ctl->pages[i]);
406 	}
407 
408 	return 0;
409 }
410 
411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412 {
413 	__le64 *val;
414 
415 	io_ctl_map_page(io_ctl, 1);
416 
417 	/*
418 	 * Skip the csum areas.  If we don't check crcs then we just have a
419 	 * 64bit chunk at the front of the first page.
420 	 */
421 	if (io_ctl->check_crcs) {
422 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
423 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
424 	} else {
425 		io_ctl->cur += sizeof(u64);
426 		io_ctl->size -= sizeof(u64) * 2;
427 	}
428 
429 	val = io_ctl->cur;
430 	*val = cpu_to_le64(generation);
431 	io_ctl->cur += sizeof(u64);
432 }
433 
434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435 {
436 	__le64 *gen;
437 
438 	/*
439 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
440 	 * chunk at the front of the first page.
441 	 */
442 	if (io_ctl->check_crcs) {
443 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444 		io_ctl->size -= sizeof(u64) +
445 			(sizeof(u32) * io_ctl->num_pages);
446 	} else {
447 		io_ctl->cur += sizeof(u64);
448 		io_ctl->size -= sizeof(u64) * 2;
449 	}
450 
451 	gen = io_ctl->cur;
452 	if (le64_to_cpu(*gen) != generation) {
453 		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
454 				   "(%Lu) does not match inode (%Lu)\n", *gen,
455 				   generation);
456 		io_ctl_unmap_page(io_ctl);
457 		return -EIO;
458 	}
459 	io_ctl->cur += sizeof(u64);
460 	return 0;
461 }
462 
463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 {
465 	u32 *tmp;
466 	u32 crc = ~(u32)0;
467 	unsigned offset = 0;
468 
469 	if (!io_ctl->check_crcs) {
470 		io_ctl_unmap_page(io_ctl);
471 		return;
472 	}
473 
474 	if (index == 0)
475 		offset = sizeof(u32) * io_ctl->num_pages;
476 
477 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478 			      PAGE_CACHE_SIZE - offset);
479 	btrfs_csum_final(crc, (char *)&crc);
480 	io_ctl_unmap_page(io_ctl);
481 	tmp = page_address(io_ctl->pages[0]);
482 	tmp += index;
483 	*tmp = crc;
484 }
485 
486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 {
488 	u32 *tmp, val;
489 	u32 crc = ~(u32)0;
490 	unsigned offset = 0;
491 
492 	if (!io_ctl->check_crcs) {
493 		io_ctl_map_page(io_ctl, 0);
494 		return 0;
495 	}
496 
497 	if (index == 0)
498 		offset = sizeof(u32) * io_ctl->num_pages;
499 
500 	tmp = page_address(io_ctl->pages[0]);
501 	tmp += index;
502 	val = *tmp;
503 
504 	io_ctl_map_page(io_ctl, 0);
505 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506 			      PAGE_CACHE_SIZE - offset);
507 	btrfs_csum_final(crc, (char *)&crc);
508 	if (val != crc) {
509 		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
510 				   "space cache\n");
511 		io_ctl_unmap_page(io_ctl);
512 		return -EIO;
513 	}
514 
515 	return 0;
516 }
517 
518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519 			    void *bitmap)
520 {
521 	struct btrfs_free_space_entry *entry;
522 
523 	if (!io_ctl->cur)
524 		return -ENOSPC;
525 
526 	entry = io_ctl->cur;
527 	entry->offset = cpu_to_le64(offset);
528 	entry->bytes = cpu_to_le64(bytes);
529 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
530 		BTRFS_FREE_SPACE_EXTENT;
531 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
532 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
533 
534 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
535 		return 0;
536 
537 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 
539 	/* No more pages to map */
540 	if (io_ctl->index >= io_ctl->num_pages)
541 		return 0;
542 
543 	/* map the next page */
544 	io_ctl_map_page(io_ctl, 1);
545 	return 0;
546 }
547 
548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 {
550 	if (!io_ctl->cur)
551 		return -ENOSPC;
552 
553 	/*
554 	 * If we aren't at the start of the current page, unmap this one and
555 	 * map the next one if there is any left.
556 	 */
557 	if (io_ctl->cur != io_ctl->orig) {
558 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559 		if (io_ctl->index >= io_ctl->num_pages)
560 			return -ENOSPC;
561 		io_ctl_map_page(io_ctl, 0);
562 	}
563 
564 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
565 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566 	if (io_ctl->index < io_ctl->num_pages)
567 		io_ctl_map_page(io_ctl, 0);
568 	return 0;
569 }
570 
571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572 {
573 	/*
574 	 * If we're not on the boundary we know we've modified the page and we
575 	 * need to crc the page.
576 	 */
577 	if (io_ctl->cur != io_ctl->orig)
578 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
579 	else
580 		io_ctl_unmap_page(io_ctl);
581 
582 	while (io_ctl->index < io_ctl->num_pages) {
583 		io_ctl_map_page(io_ctl, 1);
584 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585 	}
586 }
587 
588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589 			    struct btrfs_free_space *entry, u8 *type)
590 {
591 	struct btrfs_free_space_entry *e;
592 	int ret;
593 
594 	if (!io_ctl->cur) {
595 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
596 		if (ret)
597 			return ret;
598 	}
599 
600 	e = io_ctl->cur;
601 	entry->offset = le64_to_cpu(e->offset);
602 	entry->bytes = le64_to_cpu(e->bytes);
603 	*type = e->type;
604 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
605 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
606 
607 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608 		return 0;
609 
610 	io_ctl_unmap_page(io_ctl);
611 
612 	return 0;
613 }
614 
615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616 			      struct btrfs_free_space *entry)
617 {
618 	int ret;
619 
620 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
621 	if (ret)
622 		return ret;
623 
624 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
625 	io_ctl_unmap_page(io_ctl);
626 
627 	return 0;
628 }
629 
630 /*
631  * Since we attach pinned extents after the fact we can have contiguous sections
632  * of free space that are split up in entries.  This poses a problem with the
633  * tree logging stuff since it could have allocated across what appears to be 2
634  * entries since we would have merged the entries when adding the pinned extents
635  * back to the free space cache.  So run through the space cache that we just
636  * loaded and merge contiguous entries.  This will make the log replay stuff not
637  * blow up and it will make for nicer allocator behavior.
638  */
639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
640 {
641 	struct btrfs_free_space *e, *prev = NULL;
642 	struct rb_node *n;
643 
644 again:
645 	spin_lock(&ctl->tree_lock);
646 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
647 		e = rb_entry(n, struct btrfs_free_space, offset_index);
648 		if (!prev)
649 			goto next;
650 		if (e->bitmap || prev->bitmap)
651 			goto next;
652 		if (prev->offset + prev->bytes == e->offset) {
653 			unlink_free_space(ctl, prev);
654 			unlink_free_space(ctl, e);
655 			prev->bytes += e->bytes;
656 			kmem_cache_free(btrfs_free_space_cachep, e);
657 			link_free_space(ctl, prev);
658 			prev = NULL;
659 			spin_unlock(&ctl->tree_lock);
660 			goto again;
661 		}
662 next:
663 		prev = e;
664 	}
665 	spin_unlock(&ctl->tree_lock);
666 }
667 
668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
669 				   struct btrfs_free_space_ctl *ctl,
670 				   struct btrfs_path *path, u64 offset)
671 {
672 	struct btrfs_free_space_header *header;
673 	struct extent_buffer *leaf;
674 	struct btrfs_io_ctl io_ctl;
675 	struct btrfs_key key;
676 	struct btrfs_free_space *e, *n;
677 	LIST_HEAD(bitmaps);
678 	u64 num_entries;
679 	u64 num_bitmaps;
680 	u64 generation;
681 	u8 type;
682 	int ret = 0;
683 
684 	/* Nothing in the space cache, goodbye */
685 	if (!i_size_read(inode))
686 		return 0;
687 
688 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689 	key.offset = offset;
690 	key.type = 0;
691 
692 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693 	if (ret < 0)
694 		return 0;
695 	else if (ret > 0) {
696 		btrfs_release_path(path);
697 		return 0;
698 	}
699 
700 	ret = -1;
701 
702 	leaf = path->nodes[0];
703 	header = btrfs_item_ptr(leaf, path->slots[0],
704 				struct btrfs_free_space_header);
705 	num_entries = btrfs_free_space_entries(leaf, header);
706 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 	generation = btrfs_free_space_generation(leaf, header);
708 	btrfs_release_path(path);
709 
710 	if (!BTRFS_I(inode)->generation) {
711 		btrfs_info(root->fs_info,
712 			   "The free space cache file (%llu) is invalid. skip it\n",
713 			   offset);
714 		return 0;
715 	}
716 
717 	if (BTRFS_I(inode)->generation != generation) {
718 		btrfs_err(root->fs_info,
719 			"free space inode generation (%llu) "
720 			"did not match free space cache generation (%llu)",
721 			BTRFS_I(inode)->generation, generation);
722 		return 0;
723 	}
724 
725 	if (!num_entries)
726 		return 0;
727 
728 	ret = io_ctl_init(&io_ctl, inode, root, 0);
729 	if (ret)
730 		return ret;
731 
732 	ret = readahead_cache(inode);
733 	if (ret)
734 		goto out;
735 
736 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
737 	if (ret)
738 		goto out;
739 
740 	ret = io_ctl_check_crc(&io_ctl, 0);
741 	if (ret)
742 		goto free_cache;
743 
744 	ret = io_ctl_check_generation(&io_ctl, generation);
745 	if (ret)
746 		goto free_cache;
747 
748 	while (num_entries) {
749 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
750 				      GFP_NOFS);
751 		if (!e)
752 			goto free_cache;
753 
754 		ret = io_ctl_read_entry(&io_ctl, e, &type);
755 		if (ret) {
756 			kmem_cache_free(btrfs_free_space_cachep, e);
757 			goto free_cache;
758 		}
759 
760 		if (!e->bytes) {
761 			kmem_cache_free(btrfs_free_space_cachep, e);
762 			goto free_cache;
763 		}
764 
765 		if (type == BTRFS_FREE_SPACE_EXTENT) {
766 			spin_lock(&ctl->tree_lock);
767 			ret = link_free_space(ctl, e);
768 			spin_unlock(&ctl->tree_lock);
769 			if (ret) {
770 				btrfs_err(root->fs_info,
771 					"Duplicate entries in free space cache, dumping");
772 				kmem_cache_free(btrfs_free_space_cachep, e);
773 				goto free_cache;
774 			}
775 		} else {
776 			ASSERT(num_bitmaps);
777 			num_bitmaps--;
778 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
779 			if (!e->bitmap) {
780 				kmem_cache_free(
781 					btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 			spin_lock(&ctl->tree_lock);
785 			ret = link_free_space(ctl, e);
786 			ctl->total_bitmaps++;
787 			ctl->op->recalc_thresholds(ctl);
788 			spin_unlock(&ctl->tree_lock);
789 			if (ret) {
790 				btrfs_err(root->fs_info,
791 					"Duplicate entries in free space cache, dumping");
792 				kmem_cache_free(btrfs_free_space_cachep, e);
793 				goto free_cache;
794 			}
795 			list_add_tail(&e->list, &bitmaps);
796 		}
797 
798 		num_entries--;
799 	}
800 
801 	io_ctl_unmap_page(&io_ctl);
802 
803 	/*
804 	 * We add the bitmaps at the end of the entries in order that
805 	 * the bitmap entries are added to the cache.
806 	 */
807 	list_for_each_entry_safe(e, n, &bitmaps, list) {
808 		list_del_init(&e->list);
809 		ret = io_ctl_read_bitmap(&io_ctl, e);
810 		if (ret)
811 			goto free_cache;
812 	}
813 
814 	io_ctl_drop_pages(&io_ctl);
815 	merge_space_tree(ctl);
816 	ret = 1;
817 out:
818 	io_ctl_free(&io_ctl);
819 	return ret;
820 free_cache:
821 	io_ctl_drop_pages(&io_ctl);
822 	__btrfs_remove_free_space_cache(ctl);
823 	goto out;
824 }
825 
826 int load_free_space_cache(struct btrfs_fs_info *fs_info,
827 			  struct btrfs_block_group_cache *block_group)
828 {
829 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
830 	struct btrfs_root *root = fs_info->tree_root;
831 	struct inode *inode;
832 	struct btrfs_path *path;
833 	int ret = 0;
834 	bool matched;
835 	u64 used = btrfs_block_group_used(&block_group->item);
836 
837 	/*
838 	 * If this block group has been marked to be cleared for one reason or
839 	 * another then we can't trust the on disk cache, so just return.
840 	 */
841 	spin_lock(&block_group->lock);
842 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
843 		spin_unlock(&block_group->lock);
844 		return 0;
845 	}
846 	spin_unlock(&block_group->lock);
847 
848 	path = btrfs_alloc_path();
849 	if (!path)
850 		return 0;
851 	path->search_commit_root = 1;
852 	path->skip_locking = 1;
853 
854 	inode = lookup_free_space_inode(root, block_group, path);
855 	if (IS_ERR(inode)) {
856 		btrfs_free_path(path);
857 		return 0;
858 	}
859 
860 	/* We may have converted the inode and made the cache invalid. */
861 	spin_lock(&block_group->lock);
862 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
863 		spin_unlock(&block_group->lock);
864 		btrfs_free_path(path);
865 		goto out;
866 	}
867 	spin_unlock(&block_group->lock);
868 
869 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
870 				      path, block_group->key.objectid);
871 	btrfs_free_path(path);
872 	if (ret <= 0)
873 		goto out;
874 
875 	spin_lock(&ctl->tree_lock);
876 	matched = (ctl->free_space == (block_group->key.offset - used -
877 				       block_group->bytes_super));
878 	spin_unlock(&ctl->tree_lock);
879 
880 	if (!matched) {
881 		__btrfs_remove_free_space_cache(ctl);
882 		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
883 			block_group->key.objectid);
884 		ret = -1;
885 	}
886 out:
887 	if (ret < 0) {
888 		/* This cache is bogus, make sure it gets cleared */
889 		spin_lock(&block_group->lock);
890 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
891 		spin_unlock(&block_group->lock);
892 		ret = 0;
893 
894 		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
895 			block_group->key.objectid);
896 	}
897 
898 	iput(inode);
899 	return ret;
900 }
901 
902 static noinline_for_stack
903 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
904 			      struct btrfs_free_space_ctl *ctl,
905 			      struct btrfs_block_group_cache *block_group,
906 			      int *entries, int *bitmaps,
907 			      struct list_head *bitmap_list)
908 {
909 	int ret;
910 	struct btrfs_free_cluster *cluster = NULL;
911 	struct btrfs_free_cluster *cluster_locked = NULL;
912 	struct rb_node *node = rb_first(&ctl->free_space_offset);
913 	struct btrfs_trim_range *trim_entry;
914 
915 	/* Get the cluster for this block_group if it exists */
916 	if (block_group && !list_empty(&block_group->cluster_list)) {
917 		cluster = list_entry(block_group->cluster_list.next,
918 				     struct btrfs_free_cluster,
919 				     block_group_list);
920 	}
921 
922 	if (!node && cluster) {
923 		cluster_locked = cluster;
924 		spin_lock(&cluster_locked->lock);
925 		node = rb_first(&cluster->root);
926 		cluster = NULL;
927 	}
928 
929 	/* Write out the extent entries */
930 	while (node) {
931 		struct btrfs_free_space *e;
932 
933 		e = rb_entry(node, struct btrfs_free_space, offset_index);
934 		*entries += 1;
935 
936 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
937 				       e->bitmap);
938 		if (ret)
939 			goto fail;
940 
941 		if (e->bitmap) {
942 			list_add_tail(&e->list, bitmap_list);
943 			*bitmaps += 1;
944 		}
945 		node = rb_next(node);
946 		if (!node && cluster) {
947 			node = rb_first(&cluster->root);
948 			cluster_locked = cluster;
949 			spin_lock(&cluster_locked->lock);
950 			cluster = NULL;
951 		}
952 	}
953 	if (cluster_locked) {
954 		spin_unlock(&cluster_locked->lock);
955 		cluster_locked = NULL;
956 	}
957 
958 	/*
959 	 * Make sure we don't miss any range that was removed from our rbtree
960 	 * because trimming is running. Otherwise after a umount+mount (or crash
961 	 * after committing the transaction) we would leak free space and get
962 	 * an inconsistent free space cache report from fsck.
963 	 */
964 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
965 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
966 				       trim_entry->bytes, NULL);
967 		if (ret)
968 			goto fail;
969 		*entries += 1;
970 	}
971 
972 	return 0;
973 fail:
974 	if (cluster_locked)
975 		spin_unlock(&cluster_locked->lock);
976 	return -ENOSPC;
977 }
978 
979 static noinline_for_stack int
980 update_cache_item(struct btrfs_trans_handle *trans,
981 		  struct btrfs_root *root,
982 		  struct inode *inode,
983 		  struct btrfs_path *path, u64 offset,
984 		  int entries, int bitmaps)
985 {
986 	struct btrfs_key key;
987 	struct btrfs_free_space_header *header;
988 	struct extent_buffer *leaf;
989 	int ret;
990 
991 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
992 	key.offset = offset;
993 	key.type = 0;
994 
995 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
996 	if (ret < 0) {
997 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
998 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
999 				 GFP_NOFS);
1000 		goto fail;
1001 	}
1002 	leaf = path->nodes[0];
1003 	if (ret > 0) {
1004 		struct btrfs_key found_key;
1005 		ASSERT(path->slots[0]);
1006 		path->slots[0]--;
1007 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1008 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1009 		    found_key.offset != offset) {
1010 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1011 					 inode->i_size - 1,
1012 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1013 					 NULL, GFP_NOFS);
1014 			btrfs_release_path(path);
1015 			goto fail;
1016 		}
1017 	}
1018 
1019 	BTRFS_I(inode)->generation = trans->transid;
1020 	header = btrfs_item_ptr(leaf, path->slots[0],
1021 				struct btrfs_free_space_header);
1022 	btrfs_set_free_space_entries(leaf, header, entries);
1023 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1024 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1025 	btrfs_mark_buffer_dirty(leaf);
1026 	btrfs_release_path(path);
1027 
1028 	return 0;
1029 
1030 fail:
1031 	return -1;
1032 }
1033 
1034 static noinline_for_stack int
1035 write_pinned_extent_entries(struct btrfs_root *root,
1036 			    struct btrfs_block_group_cache *block_group,
1037 			    struct btrfs_io_ctl *io_ctl,
1038 			    int *entries)
1039 {
1040 	u64 start, extent_start, extent_end, len;
1041 	struct extent_io_tree *unpin = NULL;
1042 	int ret;
1043 
1044 	if (!block_group)
1045 		return 0;
1046 
1047 	/*
1048 	 * We want to add any pinned extents to our free space cache
1049 	 * so we don't leak the space
1050 	 *
1051 	 * We shouldn't have switched the pinned extents yet so this is the
1052 	 * right one
1053 	 */
1054 	unpin = root->fs_info->pinned_extents;
1055 
1056 	start = block_group->key.objectid;
1057 
1058 	while (start < block_group->key.objectid + block_group->key.offset) {
1059 		ret = find_first_extent_bit(unpin, start,
1060 					    &extent_start, &extent_end,
1061 					    EXTENT_DIRTY, NULL);
1062 		if (ret)
1063 			return 0;
1064 
1065 		/* This pinned extent is out of our range */
1066 		if (extent_start >= block_group->key.objectid +
1067 		    block_group->key.offset)
1068 			return 0;
1069 
1070 		extent_start = max(extent_start, start);
1071 		extent_end = min(block_group->key.objectid +
1072 				 block_group->key.offset, extent_end + 1);
1073 		len = extent_end - extent_start;
1074 
1075 		*entries += 1;
1076 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1077 		if (ret)
1078 			return -ENOSPC;
1079 
1080 		start = extent_end;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 static noinline_for_stack int
1087 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1088 {
1089 	struct list_head *pos, *n;
1090 	int ret;
1091 
1092 	/* Write out the bitmaps */
1093 	list_for_each_safe(pos, n, bitmap_list) {
1094 		struct btrfs_free_space *entry =
1095 			list_entry(pos, struct btrfs_free_space, list);
1096 
1097 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1098 		if (ret)
1099 			return -ENOSPC;
1100 		list_del_init(&entry->list);
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static int flush_dirty_cache(struct inode *inode)
1107 {
1108 	int ret;
1109 
1110 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1111 	if (ret)
1112 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1113 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1114 				 GFP_NOFS);
1115 
1116 	return ret;
1117 }
1118 
1119 static void noinline_for_stack
1120 cleanup_bitmap_list(struct list_head *bitmap_list)
1121 {
1122 	struct list_head *pos, *n;
1123 
1124 	list_for_each_safe(pos, n, bitmap_list) {
1125 		struct btrfs_free_space *entry =
1126 			list_entry(pos, struct btrfs_free_space, list);
1127 		list_del_init(&entry->list);
1128 	}
1129 }
1130 
1131 static void noinline_for_stack
1132 cleanup_write_cache_enospc(struct inode *inode,
1133 			   struct btrfs_io_ctl *io_ctl,
1134 			   struct extent_state **cached_state,
1135 			   struct list_head *bitmap_list)
1136 {
1137 	io_ctl_drop_pages(io_ctl);
1138 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139 			     i_size_read(inode) - 1, cached_state,
1140 			     GFP_NOFS);
1141 }
1142 
1143 int btrfs_wait_cache_io(struct btrfs_root *root,
1144 			struct btrfs_trans_handle *trans,
1145 			struct btrfs_block_group_cache *block_group,
1146 			struct btrfs_io_ctl *io_ctl,
1147 			struct btrfs_path *path, u64 offset)
1148 {
1149 	int ret;
1150 	struct inode *inode = io_ctl->inode;
1151 
1152 	if (!inode)
1153 		return 0;
1154 
1155 	if (block_group)
1156 		root = root->fs_info->tree_root;
1157 
1158 	/* Flush the dirty pages in the cache file. */
1159 	ret = flush_dirty_cache(inode);
1160 	if (ret)
1161 		goto out;
1162 
1163 	/* Update the cache item to tell everyone this cache file is valid. */
1164 	ret = update_cache_item(trans, root, inode, path, offset,
1165 				io_ctl->entries, io_ctl->bitmaps);
1166 out:
1167 	io_ctl_free(io_ctl);
1168 	if (ret) {
1169 		invalidate_inode_pages2(inode->i_mapping);
1170 		BTRFS_I(inode)->generation = 0;
1171 		if (block_group) {
1172 #ifdef DEBUG
1173 			btrfs_err(root->fs_info,
1174 				"failed to write free space cache for block group %llu",
1175 				block_group->key.objectid);
1176 #endif
1177 		}
1178 	}
1179 	btrfs_update_inode(trans, root, inode);
1180 
1181 	if (block_group) {
1182 		/* the dirty list is protected by the dirty_bgs_lock */
1183 		spin_lock(&trans->transaction->dirty_bgs_lock);
1184 
1185 		/* the disk_cache_state is protected by the block group lock */
1186 		spin_lock(&block_group->lock);
1187 
1188 		/*
1189 		 * only mark this as written if we didn't get put back on
1190 		 * the dirty list while waiting for IO.   Otherwise our
1191 		 * cache state won't be right, and we won't get written again
1192 		 */
1193 		if (!ret && list_empty(&block_group->dirty_list))
1194 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1195 		else if (ret)
1196 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1197 
1198 		spin_unlock(&block_group->lock);
1199 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1200 		io_ctl->inode = NULL;
1201 		iput(inode);
1202 	}
1203 
1204 	return ret;
1205 
1206 }
1207 
1208 /**
1209  * __btrfs_write_out_cache - write out cached info to an inode
1210  * @root - the root the inode belongs to
1211  * @ctl - the free space cache we are going to write out
1212  * @block_group - the block_group for this cache if it belongs to a block_group
1213  * @trans - the trans handle
1214  * @path - the path to use
1215  * @offset - the offset for the key we'll insert
1216  *
1217  * This function writes out a free space cache struct to disk for quick recovery
1218  * on mount.  This will return 0 if it was successfull in writing the cache out,
1219  * or an errno if it was not.
1220  */
1221 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1222 				   struct btrfs_free_space_ctl *ctl,
1223 				   struct btrfs_block_group_cache *block_group,
1224 				   struct btrfs_io_ctl *io_ctl,
1225 				   struct btrfs_trans_handle *trans,
1226 				   struct btrfs_path *path, u64 offset)
1227 {
1228 	struct extent_state *cached_state = NULL;
1229 	LIST_HEAD(bitmap_list);
1230 	int entries = 0;
1231 	int bitmaps = 0;
1232 	int ret;
1233 	int must_iput = 0;
1234 
1235 	if (!i_size_read(inode))
1236 		return -EIO;
1237 
1238 	WARN_ON(io_ctl->pages);
1239 	ret = io_ctl_init(io_ctl, inode, root, 1);
1240 	if (ret)
1241 		return ret;
1242 
1243 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1244 		down_write(&block_group->data_rwsem);
1245 		spin_lock(&block_group->lock);
1246 		if (block_group->delalloc_bytes) {
1247 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1248 			spin_unlock(&block_group->lock);
1249 			up_write(&block_group->data_rwsem);
1250 			BTRFS_I(inode)->generation = 0;
1251 			ret = 0;
1252 			must_iput = 1;
1253 			goto out;
1254 		}
1255 		spin_unlock(&block_group->lock);
1256 	}
1257 
1258 	/* Lock all pages first so we can lock the extent safely. */
1259 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1260 	if (ret)
1261 		goto out;
1262 
1263 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1264 			 0, &cached_state);
1265 
1266 	io_ctl_set_generation(io_ctl, trans->transid);
1267 
1268 	mutex_lock(&ctl->cache_writeout_mutex);
1269 	/* Write out the extent entries in the free space cache */
1270 	spin_lock(&ctl->tree_lock);
1271 	ret = write_cache_extent_entries(io_ctl, ctl,
1272 					 block_group, &entries, &bitmaps,
1273 					 &bitmap_list);
1274 	if (ret)
1275 		goto out_nospc_locked;
1276 
1277 	/*
1278 	 * Some spaces that are freed in the current transaction are pinned,
1279 	 * they will be added into free space cache after the transaction is
1280 	 * committed, we shouldn't lose them.
1281 	 *
1282 	 * If this changes while we are working we'll get added back to
1283 	 * the dirty list and redo it.  No locking needed
1284 	 */
1285 	ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1286 	if (ret)
1287 		goto out_nospc_locked;
1288 
1289 	/*
1290 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1291 	 * locked while doing it because a concurrent trim can be manipulating
1292 	 * or freeing the bitmap.
1293 	 */
1294 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1295 	spin_unlock(&ctl->tree_lock);
1296 	mutex_unlock(&ctl->cache_writeout_mutex);
1297 	if (ret)
1298 		goto out_nospc;
1299 
1300 	/* Zero out the rest of the pages just to make sure */
1301 	io_ctl_zero_remaining_pages(io_ctl);
1302 
1303 	/* Everything is written out, now we dirty the pages in the file. */
1304 	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1305 				0, i_size_read(inode), &cached_state);
1306 	if (ret)
1307 		goto out_nospc;
1308 
1309 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1310 		up_write(&block_group->data_rwsem);
1311 	/*
1312 	 * Release the pages and unlock the extent, we will flush
1313 	 * them out later
1314 	 */
1315 	io_ctl_drop_pages(io_ctl);
1316 
1317 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1318 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1319 
1320 	/*
1321 	 * at this point the pages are under IO and we're happy,
1322 	 * The caller is responsible for waiting on them and updating the
1323 	 * the cache and the inode
1324 	 */
1325 	io_ctl->entries = entries;
1326 	io_ctl->bitmaps = bitmaps;
1327 
1328 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1329 	if (ret)
1330 		goto out;
1331 
1332 	return 0;
1333 
1334 out:
1335 	io_ctl->inode = NULL;
1336 	io_ctl_free(io_ctl);
1337 	if (ret) {
1338 		invalidate_inode_pages2(inode->i_mapping);
1339 		BTRFS_I(inode)->generation = 0;
1340 	}
1341 	btrfs_update_inode(trans, root, inode);
1342 	if (must_iput)
1343 		iput(inode);
1344 	return ret;
1345 
1346 out_nospc_locked:
1347 	cleanup_bitmap_list(&bitmap_list);
1348 	spin_unlock(&ctl->tree_lock);
1349 	mutex_unlock(&ctl->cache_writeout_mutex);
1350 
1351 out_nospc:
1352 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1353 
1354 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1355 		up_write(&block_group->data_rwsem);
1356 
1357 	goto out;
1358 }
1359 
1360 int btrfs_write_out_cache(struct btrfs_root *root,
1361 			  struct btrfs_trans_handle *trans,
1362 			  struct btrfs_block_group_cache *block_group,
1363 			  struct btrfs_path *path)
1364 {
1365 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1366 	struct inode *inode;
1367 	int ret = 0;
1368 
1369 	root = root->fs_info->tree_root;
1370 
1371 	spin_lock(&block_group->lock);
1372 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1373 		spin_unlock(&block_group->lock);
1374 		return 0;
1375 	}
1376 	spin_unlock(&block_group->lock);
1377 
1378 	inode = lookup_free_space_inode(root, block_group, path);
1379 	if (IS_ERR(inode))
1380 		return 0;
1381 
1382 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1383 				      &block_group->io_ctl, trans,
1384 				      path, block_group->key.objectid);
1385 	if (ret) {
1386 #ifdef DEBUG
1387 		btrfs_err(root->fs_info,
1388 			"failed to write free space cache for block group %llu",
1389 			block_group->key.objectid);
1390 #endif
1391 		spin_lock(&block_group->lock);
1392 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1393 		spin_unlock(&block_group->lock);
1394 
1395 		block_group->io_ctl.inode = NULL;
1396 		iput(inode);
1397 	}
1398 
1399 	/*
1400 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1401 	 * to wait for IO and put the inode
1402 	 */
1403 
1404 	return ret;
1405 }
1406 
1407 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1408 					  u64 offset)
1409 {
1410 	ASSERT(offset >= bitmap_start);
1411 	offset -= bitmap_start;
1412 	return (unsigned long)(div_u64(offset, unit));
1413 }
1414 
1415 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1416 {
1417 	return (unsigned long)(div_u64(bytes, unit));
1418 }
1419 
1420 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1421 				   u64 offset)
1422 {
1423 	u64 bitmap_start;
1424 	u32 bytes_per_bitmap;
1425 
1426 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1427 	bitmap_start = offset - ctl->start;
1428 	bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
1429 	bitmap_start *= bytes_per_bitmap;
1430 	bitmap_start += ctl->start;
1431 
1432 	return bitmap_start;
1433 }
1434 
1435 static int tree_insert_offset(struct rb_root *root, u64 offset,
1436 			      struct rb_node *node, int bitmap)
1437 {
1438 	struct rb_node **p = &root->rb_node;
1439 	struct rb_node *parent = NULL;
1440 	struct btrfs_free_space *info;
1441 
1442 	while (*p) {
1443 		parent = *p;
1444 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1445 
1446 		if (offset < info->offset) {
1447 			p = &(*p)->rb_left;
1448 		} else if (offset > info->offset) {
1449 			p = &(*p)->rb_right;
1450 		} else {
1451 			/*
1452 			 * we could have a bitmap entry and an extent entry
1453 			 * share the same offset.  If this is the case, we want
1454 			 * the extent entry to always be found first if we do a
1455 			 * linear search through the tree, since we want to have
1456 			 * the quickest allocation time, and allocating from an
1457 			 * extent is faster than allocating from a bitmap.  So
1458 			 * if we're inserting a bitmap and we find an entry at
1459 			 * this offset, we want to go right, or after this entry
1460 			 * logically.  If we are inserting an extent and we've
1461 			 * found a bitmap, we want to go left, or before
1462 			 * logically.
1463 			 */
1464 			if (bitmap) {
1465 				if (info->bitmap) {
1466 					WARN_ON_ONCE(1);
1467 					return -EEXIST;
1468 				}
1469 				p = &(*p)->rb_right;
1470 			} else {
1471 				if (!info->bitmap) {
1472 					WARN_ON_ONCE(1);
1473 					return -EEXIST;
1474 				}
1475 				p = &(*p)->rb_left;
1476 			}
1477 		}
1478 	}
1479 
1480 	rb_link_node(node, parent, p);
1481 	rb_insert_color(node, root);
1482 
1483 	return 0;
1484 }
1485 
1486 /*
1487  * searches the tree for the given offset.
1488  *
1489  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1490  * want a section that has at least bytes size and comes at or after the given
1491  * offset.
1492  */
1493 static struct btrfs_free_space *
1494 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1495 		   u64 offset, int bitmap_only, int fuzzy)
1496 {
1497 	struct rb_node *n = ctl->free_space_offset.rb_node;
1498 	struct btrfs_free_space *entry, *prev = NULL;
1499 
1500 	/* find entry that is closest to the 'offset' */
1501 	while (1) {
1502 		if (!n) {
1503 			entry = NULL;
1504 			break;
1505 		}
1506 
1507 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1508 		prev = entry;
1509 
1510 		if (offset < entry->offset)
1511 			n = n->rb_left;
1512 		else if (offset > entry->offset)
1513 			n = n->rb_right;
1514 		else
1515 			break;
1516 	}
1517 
1518 	if (bitmap_only) {
1519 		if (!entry)
1520 			return NULL;
1521 		if (entry->bitmap)
1522 			return entry;
1523 
1524 		/*
1525 		 * bitmap entry and extent entry may share same offset,
1526 		 * in that case, bitmap entry comes after extent entry.
1527 		 */
1528 		n = rb_next(n);
1529 		if (!n)
1530 			return NULL;
1531 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1532 		if (entry->offset != offset)
1533 			return NULL;
1534 
1535 		WARN_ON(!entry->bitmap);
1536 		return entry;
1537 	} else if (entry) {
1538 		if (entry->bitmap) {
1539 			/*
1540 			 * if previous extent entry covers the offset,
1541 			 * we should return it instead of the bitmap entry
1542 			 */
1543 			n = rb_prev(&entry->offset_index);
1544 			if (n) {
1545 				prev = rb_entry(n, struct btrfs_free_space,
1546 						offset_index);
1547 				if (!prev->bitmap &&
1548 				    prev->offset + prev->bytes > offset)
1549 					entry = prev;
1550 			}
1551 		}
1552 		return entry;
1553 	}
1554 
1555 	if (!prev)
1556 		return NULL;
1557 
1558 	/* find last entry before the 'offset' */
1559 	entry = prev;
1560 	if (entry->offset > offset) {
1561 		n = rb_prev(&entry->offset_index);
1562 		if (n) {
1563 			entry = rb_entry(n, struct btrfs_free_space,
1564 					offset_index);
1565 			ASSERT(entry->offset <= offset);
1566 		} else {
1567 			if (fuzzy)
1568 				return entry;
1569 			else
1570 				return NULL;
1571 		}
1572 	}
1573 
1574 	if (entry->bitmap) {
1575 		n = rb_prev(&entry->offset_index);
1576 		if (n) {
1577 			prev = rb_entry(n, struct btrfs_free_space,
1578 					offset_index);
1579 			if (!prev->bitmap &&
1580 			    prev->offset + prev->bytes > offset)
1581 				return prev;
1582 		}
1583 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1584 			return entry;
1585 	} else if (entry->offset + entry->bytes > offset)
1586 		return entry;
1587 
1588 	if (!fuzzy)
1589 		return NULL;
1590 
1591 	while (1) {
1592 		if (entry->bitmap) {
1593 			if (entry->offset + BITS_PER_BITMAP *
1594 			    ctl->unit > offset)
1595 				break;
1596 		} else {
1597 			if (entry->offset + entry->bytes > offset)
1598 				break;
1599 		}
1600 
1601 		n = rb_next(&entry->offset_index);
1602 		if (!n)
1603 			return NULL;
1604 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1605 	}
1606 	return entry;
1607 }
1608 
1609 static inline void
1610 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1611 		    struct btrfs_free_space *info)
1612 {
1613 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1614 	ctl->free_extents--;
1615 }
1616 
1617 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1618 			      struct btrfs_free_space *info)
1619 {
1620 	__unlink_free_space(ctl, info);
1621 	ctl->free_space -= info->bytes;
1622 }
1623 
1624 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1625 			   struct btrfs_free_space *info)
1626 {
1627 	int ret = 0;
1628 
1629 	ASSERT(info->bytes || info->bitmap);
1630 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1631 				 &info->offset_index, (info->bitmap != NULL));
1632 	if (ret)
1633 		return ret;
1634 
1635 	ctl->free_space += info->bytes;
1636 	ctl->free_extents++;
1637 	return ret;
1638 }
1639 
1640 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1641 {
1642 	struct btrfs_block_group_cache *block_group = ctl->private;
1643 	u64 max_bytes;
1644 	u64 bitmap_bytes;
1645 	u64 extent_bytes;
1646 	u64 size = block_group->key.offset;
1647 	u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1648 	u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
1649 
1650 	max_bitmaps = max_t(u32, max_bitmaps, 1);
1651 
1652 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1653 
1654 	/*
1655 	 * The goal is to keep the total amount of memory used per 1gb of space
1656 	 * at or below 32k, so we need to adjust how much memory we allow to be
1657 	 * used by extent based free space tracking
1658 	 */
1659 	if (size < 1024 * 1024 * 1024)
1660 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1661 	else
1662 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1663 			div_u64(size, 1024 * 1024 * 1024);
1664 
1665 	/*
1666 	 * we want to account for 1 more bitmap than what we have so we can make
1667 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1668 	 * we add more bitmaps.
1669 	 */
1670 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1671 
1672 	if (bitmap_bytes >= max_bytes) {
1673 		ctl->extents_thresh = 0;
1674 		return;
1675 	}
1676 
1677 	/*
1678 	 * we want the extent entry threshold to always be at most 1/2 the max
1679 	 * bytes we can have, or whatever is less than that.
1680 	 */
1681 	extent_bytes = max_bytes - bitmap_bytes;
1682 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1683 
1684 	ctl->extents_thresh =
1685 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1686 }
1687 
1688 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1689 				       struct btrfs_free_space *info,
1690 				       u64 offset, u64 bytes)
1691 {
1692 	unsigned long start, count;
1693 
1694 	start = offset_to_bit(info->offset, ctl->unit, offset);
1695 	count = bytes_to_bits(bytes, ctl->unit);
1696 	ASSERT(start + count <= BITS_PER_BITMAP);
1697 
1698 	bitmap_clear(info->bitmap, start, count);
1699 
1700 	info->bytes -= bytes;
1701 }
1702 
1703 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1704 			      struct btrfs_free_space *info, u64 offset,
1705 			      u64 bytes)
1706 {
1707 	__bitmap_clear_bits(ctl, info, offset, bytes);
1708 	ctl->free_space -= bytes;
1709 }
1710 
1711 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1712 			    struct btrfs_free_space *info, u64 offset,
1713 			    u64 bytes)
1714 {
1715 	unsigned long start, count;
1716 
1717 	start = offset_to_bit(info->offset, ctl->unit, offset);
1718 	count = bytes_to_bits(bytes, ctl->unit);
1719 	ASSERT(start + count <= BITS_PER_BITMAP);
1720 
1721 	bitmap_set(info->bitmap, start, count);
1722 
1723 	info->bytes += bytes;
1724 	ctl->free_space += bytes;
1725 }
1726 
1727 /*
1728  * If we can not find suitable extent, we will use bytes to record
1729  * the size of the max extent.
1730  */
1731 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1732 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1733 			 u64 *bytes)
1734 {
1735 	unsigned long found_bits = 0;
1736 	unsigned long max_bits = 0;
1737 	unsigned long bits, i;
1738 	unsigned long next_zero;
1739 	unsigned long extent_bits;
1740 
1741 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1742 			  max_t(u64, *offset, bitmap_info->offset));
1743 	bits = bytes_to_bits(*bytes, ctl->unit);
1744 
1745 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1746 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1747 					       BITS_PER_BITMAP, i);
1748 		extent_bits = next_zero - i;
1749 		if (extent_bits >= bits) {
1750 			found_bits = extent_bits;
1751 			break;
1752 		} else if (extent_bits > max_bits) {
1753 			max_bits = extent_bits;
1754 		}
1755 		i = next_zero;
1756 	}
1757 
1758 	if (found_bits) {
1759 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1760 		*bytes = (u64)(found_bits) * ctl->unit;
1761 		return 0;
1762 	}
1763 
1764 	*bytes = (u64)(max_bits) * ctl->unit;
1765 	return -1;
1766 }
1767 
1768 /* Cache the size of the max extent in bytes */
1769 static struct btrfs_free_space *
1770 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1771 		unsigned long align, u64 *max_extent_size)
1772 {
1773 	struct btrfs_free_space *entry;
1774 	struct rb_node *node;
1775 	u64 tmp;
1776 	u64 align_off;
1777 	int ret;
1778 
1779 	if (!ctl->free_space_offset.rb_node)
1780 		goto out;
1781 
1782 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1783 	if (!entry)
1784 		goto out;
1785 
1786 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1787 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1788 		if (entry->bytes < *bytes) {
1789 			if (entry->bytes > *max_extent_size)
1790 				*max_extent_size = entry->bytes;
1791 			continue;
1792 		}
1793 
1794 		/* make sure the space returned is big enough
1795 		 * to match our requested alignment
1796 		 */
1797 		if (*bytes >= align) {
1798 			tmp = entry->offset - ctl->start + align - 1;
1799 			tmp = div64_u64(tmp, align);
1800 			tmp = tmp * align + ctl->start;
1801 			align_off = tmp - entry->offset;
1802 		} else {
1803 			align_off = 0;
1804 			tmp = entry->offset;
1805 		}
1806 
1807 		if (entry->bytes < *bytes + align_off) {
1808 			if (entry->bytes > *max_extent_size)
1809 				*max_extent_size = entry->bytes;
1810 			continue;
1811 		}
1812 
1813 		if (entry->bitmap) {
1814 			u64 size = *bytes;
1815 
1816 			ret = search_bitmap(ctl, entry, &tmp, &size);
1817 			if (!ret) {
1818 				*offset = tmp;
1819 				*bytes = size;
1820 				return entry;
1821 			} else if (size > *max_extent_size) {
1822 				*max_extent_size = size;
1823 			}
1824 			continue;
1825 		}
1826 
1827 		*offset = tmp;
1828 		*bytes = entry->bytes - align_off;
1829 		return entry;
1830 	}
1831 out:
1832 	return NULL;
1833 }
1834 
1835 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1836 			   struct btrfs_free_space *info, u64 offset)
1837 {
1838 	info->offset = offset_to_bitmap(ctl, offset);
1839 	info->bytes = 0;
1840 	INIT_LIST_HEAD(&info->list);
1841 	link_free_space(ctl, info);
1842 	ctl->total_bitmaps++;
1843 
1844 	ctl->op->recalc_thresholds(ctl);
1845 }
1846 
1847 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1848 			struct btrfs_free_space *bitmap_info)
1849 {
1850 	unlink_free_space(ctl, bitmap_info);
1851 	kfree(bitmap_info->bitmap);
1852 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1853 	ctl->total_bitmaps--;
1854 	ctl->op->recalc_thresholds(ctl);
1855 }
1856 
1857 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1858 			      struct btrfs_free_space *bitmap_info,
1859 			      u64 *offset, u64 *bytes)
1860 {
1861 	u64 end;
1862 	u64 search_start, search_bytes;
1863 	int ret;
1864 
1865 again:
1866 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1867 
1868 	/*
1869 	 * We need to search for bits in this bitmap.  We could only cover some
1870 	 * of the extent in this bitmap thanks to how we add space, so we need
1871 	 * to search for as much as it as we can and clear that amount, and then
1872 	 * go searching for the next bit.
1873 	 */
1874 	search_start = *offset;
1875 	search_bytes = ctl->unit;
1876 	search_bytes = min(search_bytes, end - search_start + 1);
1877 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1878 	if (ret < 0 || search_start != *offset)
1879 		return -EINVAL;
1880 
1881 	/* We may have found more bits than what we need */
1882 	search_bytes = min(search_bytes, *bytes);
1883 
1884 	/* Cannot clear past the end of the bitmap */
1885 	search_bytes = min(search_bytes, end - search_start + 1);
1886 
1887 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1888 	*offset += search_bytes;
1889 	*bytes -= search_bytes;
1890 
1891 	if (*bytes) {
1892 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1893 		if (!bitmap_info->bytes)
1894 			free_bitmap(ctl, bitmap_info);
1895 
1896 		/*
1897 		 * no entry after this bitmap, but we still have bytes to
1898 		 * remove, so something has gone wrong.
1899 		 */
1900 		if (!next)
1901 			return -EINVAL;
1902 
1903 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1904 				       offset_index);
1905 
1906 		/*
1907 		 * if the next entry isn't a bitmap we need to return to let the
1908 		 * extent stuff do its work.
1909 		 */
1910 		if (!bitmap_info->bitmap)
1911 			return -EAGAIN;
1912 
1913 		/*
1914 		 * Ok the next item is a bitmap, but it may not actually hold
1915 		 * the information for the rest of this free space stuff, so
1916 		 * look for it, and if we don't find it return so we can try
1917 		 * everything over again.
1918 		 */
1919 		search_start = *offset;
1920 		search_bytes = ctl->unit;
1921 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1922 				    &search_bytes);
1923 		if (ret < 0 || search_start != *offset)
1924 			return -EAGAIN;
1925 
1926 		goto again;
1927 	} else if (!bitmap_info->bytes)
1928 		free_bitmap(ctl, bitmap_info);
1929 
1930 	return 0;
1931 }
1932 
1933 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1934 			       struct btrfs_free_space *info, u64 offset,
1935 			       u64 bytes)
1936 {
1937 	u64 bytes_to_set = 0;
1938 	u64 end;
1939 
1940 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1941 
1942 	bytes_to_set = min(end - offset, bytes);
1943 
1944 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1945 
1946 	return bytes_to_set;
1947 
1948 }
1949 
1950 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1951 		      struct btrfs_free_space *info)
1952 {
1953 	struct btrfs_block_group_cache *block_group = ctl->private;
1954 
1955 	/*
1956 	 * If we are below the extents threshold then we can add this as an
1957 	 * extent, and don't have to deal with the bitmap
1958 	 */
1959 	if (ctl->free_extents < ctl->extents_thresh) {
1960 		/*
1961 		 * If this block group has some small extents we don't want to
1962 		 * use up all of our free slots in the cache with them, we want
1963 		 * to reserve them to larger extents, however if we have plent
1964 		 * of cache left then go ahead an dadd them, no sense in adding
1965 		 * the overhead of a bitmap if we don't have to.
1966 		 */
1967 		if (info->bytes <= block_group->sectorsize * 4) {
1968 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1969 				return false;
1970 		} else {
1971 			return false;
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * The original block groups from mkfs can be really small, like 8
1977 	 * megabytes, so don't bother with a bitmap for those entries.  However
1978 	 * some block groups can be smaller than what a bitmap would cover but
1979 	 * are still large enough that they could overflow the 32k memory limit,
1980 	 * so allow those block groups to still be allowed to have a bitmap
1981 	 * entry.
1982 	 */
1983 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1984 		return false;
1985 
1986 	return true;
1987 }
1988 
1989 static struct btrfs_free_space_op free_space_op = {
1990 	.recalc_thresholds	= recalculate_thresholds,
1991 	.use_bitmap		= use_bitmap,
1992 };
1993 
1994 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1995 			      struct btrfs_free_space *info)
1996 {
1997 	struct btrfs_free_space *bitmap_info;
1998 	struct btrfs_block_group_cache *block_group = NULL;
1999 	int added = 0;
2000 	u64 bytes, offset, bytes_added;
2001 	int ret;
2002 
2003 	bytes = info->bytes;
2004 	offset = info->offset;
2005 
2006 	if (!ctl->op->use_bitmap(ctl, info))
2007 		return 0;
2008 
2009 	if (ctl->op == &free_space_op)
2010 		block_group = ctl->private;
2011 again:
2012 	/*
2013 	 * Since we link bitmaps right into the cluster we need to see if we
2014 	 * have a cluster here, and if so and it has our bitmap we need to add
2015 	 * the free space to that bitmap.
2016 	 */
2017 	if (block_group && !list_empty(&block_group->cluster_list)) {
2018 		struct btrfs_free_cluster *cluster;
2019 		struct rb_node *node;
2020 		struct btrfs_free_space *entry;
2021 
2022 		cluster = list_entry(block_group->cluster_list.next,
2023 				     struct btrfs_free_cluster,
2024 				     block_group_list);
2025 		spin_lock(&cluster->lock);
2026 		node = rb_first(&cluster->root);
2027 		if (!node) {
2028 			spin_unlock(&cluster->lock);
2029 			goto no_cluster_bitmap;
2030 		}
2031 
2032 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2033 		if (!entry->bitmap) {
2034 			spin_unlock(&cluster->lock);
2035 			goto no_cluster_bitmap;
2036 		}
2037 
2038 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2039 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2040 							  offset, bytes);
2041 			bytes -= bytes_added;
2042 			offset += bytes_added;
2043 		}
2044 		spin_unlock(&cluster->lock);
2045 		if (!bytes) {
2046 			ret = 1;
2047 			goto out;
2048 		}
2049 	}
2050 
2051 no_cluster_bitmap:
2052 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2053 					 1, 0);
2054 	if (!bitmap_info) {
2055 		ASSERT(added == 0);
2056 		goto new_bitmap;
2057 	}
2058 
2059 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2060 	bytes -= bytes_added;
2061 	offset += bytes_added;
2062 	added = 0;
2063 
2064 	if (!bytes) {
2065 		ret = 1;
2066 		goto out;
2067 	} else
2068 		goto again;
2069 
2070 new_bitmap:
2071 	if (info && info->bitmap) {
2072 		add_new_bitmap(ctl, info, offset);
2073 		added = 1;
2074 		info = NULL;
2075 		goto again;
2076 	} else {
2077 		spin_unlock(&ctl->tree_lock);
2078 
2079 		/* no pre-allocated info, allocate a new one */
2080 		if (!info) {
2081 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2082 						 GFP_NOFS);
2083 			if (!info) {
2084 				spin_lock(&ctl->tree_lock);
2085 				ret = -ENOMEM;
2086 				goto out;
2087 			}
2088 		}
2089 
2090 		/* allocate the bitmap */
2091 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
2092 		spin_lock(&ctl->tree_lock);
2093 		if (!info->bitmap) {
2094 			ret = -ENOMEM;
2095 			goto out;
2096 		}
2097 		goto again;
2098 	}
2099 
2100 out:
2101 	if (info) {
2102 		if (info->bitmap)
2103 			kfree(info->bitmap);
2104 		kmem_cache_free(btrfs_free_space_cachep, info);
2105 	}
2106 
2107 	return ret;
2108 }
2109 
2110 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2111 			  struct btrfs_free_space *info, bool update_stat)
2112 {
2113 	struct btrfs_free_space *left_info;
2114 	struct btrfs_free_space *right_info;
2115 	bool merged = false;
2116 	u64 offset = info->offset;
2117 	u64 bytes = info->bytes;
2118 
2119 	/*
2120 	 * first we want to see if there is free space adjacent to the range we
2121 	 * are adding, if there is remove that struct and add a new one to
2122 	 * cover the entire range
2123 	 */
2124 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2125 	if (right_info && rb_prev(&right_info->offset_index))
2126 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2127 				     struct btrfs_free_space, offset_index);
2128 	else
2129 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2130 
2131 	if (right_info && !right_info->bitmap) {
2132 		if (update_stat)
2133 			unlink_free_space(ctl, right_info);
2134 		else
2135 			__unlink_free_space(ctl, right_info);
2136 		info->bytes += right_info->bytes;
2137 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2138 		merged = true;
2139 	}
2140 
2141 	if (left_info && !left_info->bitmap &&
2142 	    left_info->offset + left_info->bytes == offset) {
2143 		if (update_stat)
2144 			unlink_free_space(ctl, left_info);
2145 		else
2146 			__unlink_free_space(ctl, left_info);
2147 		info->offset = left_info->offset;
2148 		info->bytes += left_info->bytes;
2149 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2150 		merged = true;
2151 	}
2152 
2153 	return merged;
2154 }
2155 
2156 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2157 				     struct btrfs_free_space *info,
2158 				     bool update_stat)
2159 {
2160 	struct btrfs_free_space *bitmap;
2161 	unsigned long i;
2162 	unsigned long j;
2163 	const u64 end = info->offset + info->bytes;
2164 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2165 	u64 bytes;
2166 
2167 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2168 	if (!bitmap)
2169 		return false;
2170 
2171 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2172 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2173 	if (j == i)
2174 		return false;
2175 	bytes = (j - i) * ctl->unit;
2176 	info->bytes += bytes;
2177 
2178 	if (update_stat)
2179 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2180 	else
2181 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2182 
2183 	if (!bitmap->bytes)
2184 		free_bitmap(ctl, bitmap);
2185 
2186 	return true;
2187 }
2188 
2189 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2190 				       struct btrfs_free_space *info,
2191 				       bool update_stat)
2192 {
2193 	struct btrfs_free_space *bitmap;
2194 	u64 bitmap_offset;
2195 	unsigned long i;
2196 	unsigned long j;
2197 	unsigned long prev_j;
2198 	u64 bytes;
2199 
2200 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2201 	/* If we're on a boundary, try the previous logical bitmap. */
2202 	if (bitmap_offset == info->offset) {
2203 		if (info->offset == 0)
2204 			return false;
2205 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2206 	}
2207 
2208 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2209 	if (!bitmap)
2210 		return false;
2211 
2212 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2213 	j = 0;
2214 	prev_j = (unsigned long)-1;
2215 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2216 		if (j > i)
2217 			break;
2218 		prev_j = j;
2219 	}
2220 	if (prev_j == i)
2221 		return false;
2222 
2223 	if (prev_j == (unsigned long)-1)
2224 		bytes = (i + 1) * ctl->unit;
2225 	else
2226 		bytes = (i - prev_j) * ctl->unit;
2227 
2228 	info->offset -= bytes;
2229 	info->bytes += bytes;
2230 
2231 	if (update_stat)
2232 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2233 	else
2234 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2235 
2236 	if (!bitmap->bytes)
2237 		free_bitmap(ctl, bitmap);
2238 
2239 	return true;
2240 }
2241 
2242 /*
2243  * We prefer always to allocate from extent entries, both for clustered and
2244  * non-clustered allocation requests. So when attempting to add a new extent
2245  * entry, try to see if there's adjacent free space in bitmap entries, and if
2246  * there is, migrate that space from the bitmaps to the extent.
2247  * Like this we get better chances of satisfying space allocation requests
2248  * because we attempt to satisfy them based on a single cache entry, and never
2249  * on 2 or more entries - even if the entries represent a contiguous free space
2250  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2251  * ends).
2252  */
2253 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2254 			      struct btrfs_free_space *info,
2255 			      bool update_stat)
2256 {
2257 	/*
2258 	 * Only work with disconnected entries, as we can change their offset,
2259 	 * and must be extent entries.
2260 	 */
2261 	ASSERT(!info->bitmap);
2262 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2263 
2264 	if (ctl->total_bitmaps > 0) {
2265 		bool stole_end;
2266 		bool stole_front = false;
2267 
2268 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2269 		if (ctl->total_bitmaps > 0)
2270 			stole_front = steal_from_bitmap_to_front(ctl, info,
2271 								 update_stat);
2272 
2273 		if (stole_end || stole_front)
2274 			try_merge_free_space(ctl, info, update_stat);
2275 	}
2276 }
2277 
2278 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2279 			   u64 offset, u64 bytes)
2280 {
2281 	struct btrfs_free_space *info;
2282 	int ret = 0;
2283 
2284 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2285 	if (!info)
2286 		return -ENOMEM;
2287 
2288 	info->offset = offset;
2289 	info->bytes = bytes;
2290 	RB_CLEAR_NODE(&info->offset_index);
2291 
2292 	spin_lock(&ctl->tree_lock);
2293 
2294 	if (try_merge_free_space(ctl, info, true))
2295 		goto link;
2296 
2297 	/*
2298 	 * There was no extent directly to the left or right of this new
2299 	 * extent then we know we're going to have to allocate a new extent, so
2300 	 * before we do that see if we need to drop this into a bitmap
2301 	 */
2302 	ret = insert_into_bitmap(ctl, info);
2303 	if (ret < 0) {
2304 		goto out;
2305 	} else if (ret) {
2306 		ret = 0;
2307 		goto out;
2308 	}
2309 link:
2310 	/*
2311 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2312 	 * going to add the new free space to existing bitmap entries - because
2313 	 * that would mean unnecessary work that would be reverted. Therefore
2314 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2315 	 */
2316 	steal_from_bitmap(ctl, info, true);
2317 
2318 	ret = link_free_space(ctl, info);
2319 	if (ret)
2320 		kmem_cache_free(btrfs_free_space_cachep, info);
2321 out:
2322 	spin_unlock(&ctl->tree_lock);
2323 
2324 	if (ret) {
2325 		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2326 		ASSERT(ret != -EEXIST);
2327 	}
2328 
2329 	return ret;
2330 }
2331 
2332 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2333 			    u64 offset, u64 bytes)
2334 {
2335 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2336 	struct btrfs_free_space *info;
2337 	int ret;
2338 	bool re_search = false;
2339 
2340 	spin_lock(&ctl->tree_lock);
2341 
2342 again:
2343 	ret = 0;
2344 	if (!bytes)
2345 		goto out_lock;
2346 
2347 	info = tree_search_offset(ctl, offset, 0, 0);
2348 	if (!info) {
2349 		/*
2350 		 * oops didn't find an extent that matched the space we wanted
2351 		 * to remove, look for a bitmap instead
2352 		 */
2353 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2354 					  1, 0);
2355 		if (!info) {
2356 			/*
2357 			 * If we found a partial bit of our free space in a
2358 			 * bitmap but then couldn't find the other part this may
2359 			 * be a problem, so WARN about it.
2360 			 */
2361 			WARN_ON(re_search);
2362 			goto out_lock;
2363 		}
2364 	}
2365 
2366 	re_search = false;
2367 	if (!info->bitmap) {
2368 		unlink_free_space(ctl, info);
2369 		if (offset == info->offset) {
2370 			u64 to_free = min(bytes, info->bytes);
2371 
2372 			info->bytes -= to_free;
2373 			info->offset += to_free;
2374 			if (info->bytes) {
2375 				ret = link_free_space(ctl, info);
2376 				WARN_ON(ret);
2377 			} else {
2378 				kmem_cache_free(btrfs_free_space_cachep, info);
2379 			}
2380 
2381 			offset += to_free;
2382 			bytes -= to_free;
2383 			goto again;
2384 		} else {
2385 			u64 old_end = info->bytes + info->offset;
2386 
2387 			info->bytes = offset - info->offset;
2388 			ret = link_free_space(ctl, info);
2389 			WARN_ON(ret);
2390 			if (ret)
2391 				goto out_lock;
2392 
2393 			/* Not enough bytes in this entry to satisfy us */
2394 			if (old_end < offset + bytes) {
2395 				bytes -= old_end - offset;
2396 				offset = old_end;
2397 				goto again;
2398 			} else if (old_end == offset + bytes) {
2399 				/* all done */
2400 				goto out_lock;
2401 			}
2402 			spin_unlock(&ctl->tree_lock);
2403 
2404 			ret = btrfs_add_free_space(block_group, offset + bytes,
2405 						   old_end - (offset + bytes));
2406 			WARN_ON(ret);
2407 			goto out;
2408 		}
2409 	}
2410 
2411 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2412 	if (ret == -EAGAIN) {
2413 		re_search = true;
2414 		goto again;
2415 	}
2416 out_lock:
2417 	spin_unlock(&ctl->tree_lock);
2418 out:
2419 	return ret;
2420 }
2421 
2422 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2423 			   u64 bytes)
2424 {
2425 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2426 	struct btrfs_free_space *info;
2427 	struct rb_node *n;
2428 	int count = 0;
2429 
2430 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2431 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2432 		if (info->bytes >= bytes && !block_group->ro)
2433 			count++;
2434 		btrfs_crit(block_group->fs_info,
2435 			   "entry offset %llu, bytes %llu, bitmap %s",
2436 			   info->offset, info->bytes,
2437 		       (info->bitmap) ? "yes" : "no");
2438 	}
2439 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2440 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2441 	btrfs_info(block_group->fs_info,
2442 		   "%d blocks of free space at or bigger than bytes is", count);
2443 }
2444 
2445 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2446 {
2447 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2448 
2449 	spin_lock_init(&ctl->tree_lock);
2450 	ctl->unit = block_group->sectorsize;
2451 	ctl->start = block_group->key.objectid;
2452 	ctl->private = block_group;
2453 	ctl->op = &free_space_op;
2454 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2455 	mutex_init(&ctl->cache_writeout_mutex);
2456 
2457 	/*
2458 	 * we only want to have 32k of ram per block group for keeping
2459 	 * track of free space, and if we pass 1/2 of that we want to
2460 	 * start converting things over to using bitmaps
2461 	 */
2462 	ctl->extents_thresh = ((1024 * 32) / 2) /
2463 				sizeof(struct btrfs_free_space);
2464 }
2465 
2466 /*
2467  * for a given cluster, put all of its extents back into the free
2468  * space cache.  If the block group passed doesn't match the block group
2469  * pointed to by the cluster, someone else raced in and freed the
2470  * cluster already.  In that case, we just return without changing anything
2471  */
2472 static int
2473 __btrfs_return_cluster_to_free_space(
2474 			     struct btrfs_block_group_cache *block_group,
2475 			     struct btrfs_free_cluster *cluster)
2476 {
2477 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2478 	struct btrfs_free_space *entry;
2479 	struct rb_node *node;
2480 
2481 	spin_lock(&cluster->lock);
2482 	if (cluster->block_group != block_group)
2483 		goto out;
2484 
2485 	cluster->block_group = NULL;
2486 	cluster->window_start = 0;
2487 	list_del_init(&cluster->block_group_list);
2488 
2489 	node = rb_first(&cluster->root);
2490 	while (node) {
2491 		bool bitmap;
2492 
2493 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2494 		node = rb_next(&entry->offset_index);
2495 		rb_erase(&entry->offset_index, &cluster->root);
2496 		RB_CLEAR_NODE(&entry->offset_index);
2497 
2498 		bitmap = (entry->bitmap != NULL);
2499 		if (!bitmap) {
2500 			try_merge_free_space(ctl, entry, false);
2501 			steal_from_bitmap(ctl, entry, false);
2502 		}
2503 		tree_insert_offset(&ctl->free_space_offset,
2504 				   entry->offset, &entry->offset_index, bitmap);
2505 	}
2506 	cluster->root = RB_ROOT;
2507 
2508 out:
2509 	spin_unlock(&cluster->lock);
2510 	btrfs_put_block_group(block_group);
2511 	return 0;
2512 }
2513 
2514 static void __btrfs_remove_free_space_cache_locked(
2515 				struct btrfs_free_space_ctl *ctl)
2516 {
2517 	struct btrfs_free_space *info;
2518 	struct rb_node *node;
2519 
2520 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2521 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2522 		if (!info->bitmap) {
2523 			unlink_free_space(ctl, info);
2524 			kmem_cache_free(btrfs_free_space_cachep, info);
2525 		} else {
2526 			free_bitmap(ctl, info);
2527 		}
2528 
2529 		cond_resched_lock(&ctl->tree_lock);
2530 	}
2531 }
2532 
2533 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2534 {
2535 	spin_lock(&ctl->tree_lock);
2536 	__btrfs_remove_free_space_cache_locked(ctl);
2537 	spin_unlock(&ctl->tree_lock);
2538 }
2539 
2540 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2541 {
2542 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2543 	struct btrfs_free_cluster *cluster;
2544 	struct list_head *head;
2545 
2546 	spin_lock(&ctl->tree_lock);
2547 	while ((head = block_group->cluster_list.next) !=
2548 	       &block_group->cluster_list) {
2549 		cluster = list_entry(head, struct btrfs_free_cluster,
2550 				     block_group_list);
2551 
2552 		WARN_ON(cluster->block_group != block_group);
2553 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2554 
2555 		cond_resched_lock(&ctl->tree_lock);
2556 	}
2557 	__btrfs_remove_free_space_cache_locked(ctl);
2558 	spin_unlock(&ctl->tree_lock);
2559 
2560 }
2561 
2562 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2563 			       u64 offset, u64 bytes, u64 empty_size,
2564 			       u64 *max_extent_size)
2565 {
2566 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2567 	struct btrfs_free_space *entry = NULL;
2568 	u64 bytes_search = bytes + empty_size;
2569 	u64 ret = 0;
2570 	u64 align_gap = 0;
2571 	u64 align_gap_len = 0;
2572 
2573 	spin_lock(&ctl->tree_lock);
2574 	entry = find_free_space(ctl, &offset, &bytes_search,
2575 				block_group->full_stripe_len, max_extent_size);
2576 	if (!entry)
2577 		goto out;
2578 
2579 	ret = offset;
2580 	if (entry->bitmap) {
2581 		bitmap_clear_bits(ctl, entry, offset, bytes);
2582 		if (!entry->bytes)
2583 			free_bitmap(ctl, entry);
2584 	} else {
2585 		unlink_free_space(ctl, entry);
2586 		align_gap_len = offset - entry->offset;
2587 		align_gap = entry->offset;
2588 
2589 		entry->offset = offset + bytes;
2590 		WARN_ON(entry->bytes < bytes + align_gap_len);
2591 
2592 		entry->bytes -= bytes + align_gap_len;
2593 		if (!entry->bytes)
2594 			kmem_cache_free(btrfs_free_space_cachep, entry);
2595 		else
2596 			link_free_space(ctl, entry);
2597 	}
2598 out:
2599 	spin_unlock(&ctl->tree_lock);
2600 
2601 	if (align_gap_len)
2602 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2603 	return ret;
2604 }
2605 
2606 /*
2607  * given a cluster, put all of its extents back into the free space
2608  * cache.  If a block group is passed, this function will only free
2609  * a cluster that belongs to the passed block group.
2610  *
2611  * Otherwise, it'll get a reference on the block group pointed to by the
2612  * cluster and remove the cluster from it.
2613  */
2614 int btrfs_return_cluster_to_free_space(
2615 			       struct btrfs_block_group_cache *block_group,
2616 			       struct btrfs_free_cluster *cluster)
2617 {
2618 	struct btrfs_free_space_ctl *ctl;
2619 	int ret;
2620 
2621 	/* first, get a safe pointer to the block group */
2622 	spin_lock(&cluster->lock);
2623 	if (!block_group) {
2624 		block_group = cluster->block_group;
2625 		if (!block_group) {
2626 			spin_unlock(&cluster->lock);
2627 			return 0;
2628 		}
2629 	} else if (cluster->block_group != block_group) {
2630 		/* someone else has already freed it don't redo their work */
2631 		spin_unlock(&cluster->lock);
2632 		return 0;
2633 	}
2634 	atomic_inc(&block_group->count);
2635 	spin_unlock(&cluster->lock);
2636 
2637 	ctl = block_group->free_space_ctl;
2638 
2639 	/* now return any extents the cluster had on it */
2640 	spin_lock(&ctl->tree_lock);
2641 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2642 	spin_unlock(&ctl->tree_lock);
2643 
2644 	/* finally drop our ref */
2645 	btrfs_put_block_group(block_group);
2646 	return ret;
2647 }
2648 
2649 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2650 				   struct btrfs_free_cluster *cluster,
2651 				   struct btrfs_free_space *entry,
2652 				   u64 bytes, u64 min_start,
2653 				   u64 *max_extent_size)
2654 {
2655 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2656 	int err;
2657 	u64 search_start = cluster->window_start;
2658 	u64 search_bytes = bytes;
2659 	u64 ret = 0;
2660 
2661 	search_start = min_start;
2662 	search_bytes = bytes;
2663 
2664 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2665 	if (err) {
2666 		if (search_bytes > *max_extent_size)
2667 			*max_extent_size = search_bytes;
2668 		return 0;
2669 	}
2670 
2671 	ret = search_start;
2672 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2673 
2674 	return ret;
2675 }
2676 
2677 /*
2678  * given a cluster, try to allocate 'bytes' from it, returns 0
2679  * if it couldn't find anything suitably large, or a logical disk offset
2680  * if things worked out
2681  */
2682 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2683 			     struct btrfs_free_cluster *cluster, u64 bytes,
2684 			     u64 min_start, u64 *max_extent_size)
2685 {
2686 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2687 	struct btrfs_free_space *entry = NULL;
2688 	struct rb_node *node;
2689 	u64 ret = 0;
2690 
2691 	spin_lock(&cluster->lock);
2692 	if (bytes > cluster->max_size)
2693 		goto out;
2694 
2695 	if (cluster->block_group != block_group)
2696 		goto out;
2697 
2698 	node = rb_first(&cluster->root);
2699 	if (!node)
2700 		goto out;
2701 
2702 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2703 	while (1) {
2704 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2705 			*max_extent_size = entry->bytes;
2706 
2707 		if (entry->bytes < bytes ||
2708 		    (!entry->bitmap && entry->offset < min_start)) {
2709 			node = rb_next(&entry->offset_index);
2710 			if (!node)
2711 				break;
2712 			entry = rb_entry(node, struct btrfs_free_space,
2713 					 offset_index);
2714 			continue;
2715 		}
2716 
2717 		if (entry->bitmap) {
2718 			ret = btrfs_alloc_from_bitmap(block_group,
2719 						      cluster, entry, bytes,
2720 						      cluster->window_start,
2721 						      max_extent_size);
2722 			if (ret == 0) {
2723 				node = rb_next(&entry->offset_index);
2724 				if (!node)
2725 					break;
2726 				entry = rb_entry(node, struct btrfs_free_space,
2727 						 offset_index);
2728 				continue;
2729 			}
2730 			cluster->window_start += bytes;
2731 		} else {
2732 			ret = entry->offset;
2733 
2734 			entry->offset += bytes;
2735 			entry->bytes -= bytes;
2736 		}
2737 
2738 		if (entry->bytes == 0)
2739 			rb_erase(&entry->offset_index, &cluster->root);
2740 		break;
2741 	}
2742 out:
2743 	spin_unlock(&cluster->lock);
2744 
2745 	if (!ret)
2746 		return 0;
2747 
2748 	spin_lock(&ctl->tree_lock);
2749 
2750 	ctl->free_space -= bytes;
2751 	if (entry->bytes == 0) {
2752 		ctl->free_extents--;
2753 		if (entry->bitmap) {
2754 			kfree(entry->bitmap);
2755 			ctl->total_bitmaps--;
2756 			ctl->op->recalc_thresholds(ctl);
2757 		}
2758 		kmem_cache_free(btrfs_free_space_cachep, entry);
2759 	}
2760 
2761 	spin_unlock(&ctl->tree_lock);
2762 
2763 	return ret;
2764 }
2765 
2766 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2767 				struct btrfs_free_space *entry,
2768 				struct btrfs_free_cluster *cluster,
2769 				u64 offset, u64 bytes,
2770 				u64 cont1_bytes, u64 min_bytes)
2771 {
2772 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2773 	unsigned long next_zero;
2774 	unsigned long i;
2775 	unsigned long want_bits;
2776 	unsigned long min_bits;
2777 	unsigned long found_bits;
2778 	unsigned long start = 0;
2779 	unsigned long total_found = 0;
2780 	int ret;
2781 
2782 	i = offset_to_bit(entry->offset, ctl->unit,
2783 			  max_t(u64, offset, entry->offset));
2784 	want_bits = bytes_to_bits(bytes, ctl->unit);
2785 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2786 
2787 again:
2788 	found_bits = 0;
2789 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2790 		next_zero = find_next_zero_bit(entry->bitmap,
2791 					       BITS_PER_BITMAP, i);
2792 		if (next_zero - i >= min_bits) {
2793 			found_bits = next_zero - i;
2794 			break;
2795 		}
2796 		i = next_zero;
2797 	}
2798 
2799 	if (!found_bits)
2800 		return -ENOSPC;
2801 
2802 	if (!total_found) {
2803 		start = i;
2804 		cluster->max_size = 0;
2805 	}
2806 
2807 	total_found += found_bits;
2808 
2809 	if (cluster->max_size < found_bits * ctl->unit)
2810 		cluster->max_size = found_bits * ctl->unit;
2811 
2812 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2813 		i = next_zero + 1;
2814 		goto again;
2815 	}
2816 
2817 	cluster->window_start = start * ctl->unit + entry->offset;
2818 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2819 	ret = tree_insert_offset(&cluster->root, entry->offset,
2820 				 &entry->offset_index, 1);
2821 	ASSERT(!ret); /* -EEXIST; Logic error */
2822 
2823 	trace_btrfs_setup_cluster(block_group, cluster,
2824 				  total_found * ctl->unit, 1);
2825 	return 0;
2826 }
2827 
2828 /*
2829  * This searches the block group for just extents to fill the cluster with.
2830  * Try to find a cluster with at least bytes total bytes, at least one
2831  * extent of cont1_bytes, and other clusters of at least min_bytes.
2832  */
2833 static noinline int
2834 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2835 			struct btrfs_free_cluster *cluster,
2836 			struct list_head *bitmaps, u64 offset, u64 bytes,
2837 			u64 cont1_bytes, u64 min_bytes)
2838 {
2839 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2840 	struct btrfs_free_space *first = NULL;
2841 	struct btrfs_free_space *entry = NULL;
2842 	struct btrfs_free_space *last;
2843 	struct rb_node *node;
2844 	u64 window_free;
2845 	u64 max_extent;
2846 	u64 total_size = 0;
2847 
2848 	entry = tree_search_offset(ctl, offset, 0, 1);
2849 	if (!entry)
2850 		return -ENOSPC;
2851 
2852 	/*
2853 	 * We don't want bitmaps, so just move along until we find a normal
2854 	 * extent entry.
2855 	 */
2856 	while (entry->bitmap || entry->bytes < min_bytes) {
2857 		if (entry->bitmap && list_empty(&entry->list))
2858 			list_add_tail(&entry->list, bitmaps);
2859 		node = rb_next(&entry->offset_index);
2860 		if (!node)
2861 			return -ENOSPC;
2862 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2863 	}
2864 
2865 	window_free = entry->bytes;
2866 	max_extent = entry->bytes;
2867 	first = entry;
2868 	last = entry;
2869 
2870 	for (node = rb_next(&entry->offset_index); node;
2871 	     node = rb_next(&entry->offset_index)) {
2872 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2873 
2874 		if (entry->bitmap) {
2875 			if (list_empty(&entry->list))
2876 				list_add_tail(&entry->list, bitmaps);
2877 			continue;
2878 		}
2879 
2880 		if (entry->bytes < min_bytes)
2881 			continue;
2882 
2883 		last = entry;
2884 		window_free += entry->bytes;
2885 		if (entry->bytes > max_extent)
2886 			max_extent = entry->bytes;
2887 	}
2888 
2889 	if (window_free < bytes || max_extent < cont1_bytes)
2890 		return -ENOSPC;
2891 
2892 	cluster->window_start = first->offset;
2893 
2894 	node = &first->offset_index;
2895 
2896 	/*
2897 	 * now we've found our entries, pull them out of the free space
2898 	 * cache and put them into the cluster rbtree
2899 	 */
2900 	do {
2901 		int ret;
2902 
2903 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2904 		node = rb_next(&entry->offset_index);
2905 		if (entry->bitmap || entry->bytes < min_bytes)
2906 			continue;
2907 
2908 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2909 		ret = tree_insert_offset(&cluster->root, entry->offset,
2910 					 &entry->offset_index, 0);
2911 		total_size += entry->bytes;
2912 		ASSERT(!ret); /* -EEXIST; Logic error */
2913 	} while (node && entry != last);
2914 
2915 	cluster->max_size = max_extent;
2916 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2917 	return 0;
2918 }
2919 
2920 /*
2921  * This specifically looks for bitmaps that may work in the cluster, we assume
2922  * that we have already failed to find extents that will work.
2923  */
2924 static noinline int
2925 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2926 		     struct btrfs_free_cluster *cluster,
2927 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2928 		     u64 cont1_bytes, u64 min_bytes)
2929 {
2930 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2931 	struct btrfs_free_space *entry;
2932 	int ret = -ENOSPC;
2933 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2934 
2935 	if (ctl->total_bitmaps == 0)
2936 		return -ENOSPC;
2937 
2938 	/*
2939 	 * The bitmap that covers offset won't be in the list unless offset
2940 	 * is just its start offset.
2941 	 */
2942 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2943 	if (entry->offset != bitmap_offset) {
2944 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2945 		if (entry && list_empty(&entry->list))
2946 			list_add(&entry->list, bitmaps);
2947 	}
2948 
2949 	list_for_each_entry(entry, bitmaps, list) {
2950 		if (entry->bytes < bytes)
2951 			continue;
2952 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2953 					   bytes, cont1_bytes, min_bytes);
2954 		if (!ret)
2955 			return 0;
2956 	}
2957 
2958 	/*
2959 	 * The bitmaps list has all the bitmaps that record free space
2960 	 * starting after offset, so no more search is required.
2961 	 */
2962 	return -ENOSPC;
2963 }
2964 
2965 /*
2966  * here we try to find a cluster of blocks in a block group.  The goal
2967  * is to find at least bytes+empty_size.
2968  * We might not find them all in one contiguous area.
2969  *
2970  * returns zero and sets up cluster if things worked out, otherwise
2971  * it returns -enospc
2972  */
2973 int btrfs_find_space_cluster(struct btrfs_root *root,
2974 			     struct btrfs_block_group_cache *block_group,
2975 			     struct btrfs_free_cluster *cluster,
2976 			     u64 offset, u64 bytes, u64 empty_size)
2977 {
2978 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979 	struct btrfs_free_space *entry, *tmp;
2980 	LIST_HEAD(bitmaps);
2981 	u64 min_bytes;
2982 	u64 cont1_bytes;
2983 	int ret;
2984 
2985 	/*
2986 	 * Choose the minimum extent size we'll require for this
2987 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2988 	 * For metadata, allow allocates with smaller extents.  For
2989 	 * data, keep it dense.
2990 	 */
2991 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2992 		cont1_bytes = min_bytes = bytes + empty_size;
2993 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2994 		cont1_bytes = bytes;
2995 		min_bytes = block_group->sectorsize;
2996 	} else {
2997 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2998 		min_bytes = block_group->sectorsize;
2999 	}
3000 
3001 	spin_lock(&ctl->tree_lock);
3002 
3003 	/*
3004 	 * If we know we don't have enough space to make a cluster don't even
3005 	 * bother doing all the work to try and find one.
3006 	 */
3007 	if (ctl->free_space < bytes) {
3008 		spin_unlock(&ctl->tree_lock);
3009 		return -ENOSPC;
3010 	}
3011 
3012 	spin_lock(&cluster->lock);
3013 
3014 	/* someone already found a cluster, hooray */
3015 	if (cluster->block_group) {
3016 		ret = 0;
3017 		goto out;
3018 	}
3019 
3020 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3021 				 min_bytes);
3022 
3023 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3024 				      bytes + empty_size,
3025 				      cont1_bytes, min_bytes);
3026 	if (ret)
3027 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3028 					   offset, bytes + empty_size,
3029 					   cont1_bytes, min_bytes);
3030 
3031 	/* Clear our temporary list */
3032 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3033 		list_del_init(&entry->list);
3034 
3035 	if (!ret) {
3036 		atomic_inc(&block_group->count);
3037 		list_add_tail(&cluster->block_group_list,
3038 			      &block_group->cluster_list);
3039 		cluster->block_group = block_group;
3040 	} else {
3041 		trace_btrfs_failed_cluster_setup(block_group);
3042 	}
3043 out:
3044 	spin_unlock(&cluster->lock);
3045 	spin_unlock(&ctl->tree_lock);
3046 
3047 	return ret;
3048 }
3049 
3050 /*
3051  * simple code to zero out a cluster
3052  */
3053 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3054 {
3055 	spin_lock_init(&cluster->lock);
3056 	spin_lock_init(&cluster->refill_lock);
3057 	cluster->root = RB_ROOT;
3058 	cluster->max_size = 0;
3059 	INIT_LIST_HEAD(&cluster->block_group_list);
3060 	cluster->block_group = NULL;
3061 }
3062 
3063 static int do_trimming(struct btrfs_block_group_cache *block_group,
3064 		       u64 *total_trimmed, u64 start, u64 bytes,
3065 		       u64 reserved_start, u64 reserved_bytes,
3066 		       struct btrfs_trim_range *trim_entry)
3067 {
3068 	struct btrfs_space_info *space_info = block_group->space_info;
3069 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3070 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3071 	int ret;
3072 	int update = 0;
3073 	u64 trimmed = 0;
3074 
3075 	spin_lock(&space_info->lock);
3076 	spin_lock(&block_group->lock);
3077 	if (!block_group->ro) {
3078 		block_group->reserved += reserved_bytes;
3079 		space_info->bytes_reserved += reserved_bytes;
3080 		update = 1;
3081 	}
3082 	spin_unlock(&block_group->lock);
3083 	spin_unlock(&space_info->lock);
3084 
3085 	ret = btrfs_discard_extent(fs_info->extent_root,
3086 				   start, bytes, &trimmed);
3087 	if (!ret)
3088 		*total_trimmed += trimmed;
3089 
3090 	mutex_lock(&ctl->cache_writeout_mutex);
3091 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3092 	list_del(&trim_entry->list);
3093 	mutex_unlock(&ctl->cache_writeout_mutex);
3094 
3095 	if (update) {
3096 		spin_lock(&space_info->lock);
3097 		spin_lock(&block_group->lock);
3098 		if (block_group->ro)
3099 			space_info->bytes_readonly += reserved_bytes;
3100 		block_group->reserved -= reserved_bytes;
3101 		space_info->bytes_reserved -= reserved_bytes;
3102 		spin_unlock(&space_info->lock);
3103 		spin_unlock(&block_group->lock);
3104 	}
3105 
3106 	return ret;
3107 }
3108 
3109 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3110 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3111 {
3112 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3113 	struct btrfs_free_space *entry;
3114 	struct rb_node *node;
3115 	int ret = 0;
3116 	u64 extent_start;
3117 	u64 extent_bytes;
3118 	u64 bytes;
3119 
3120 	while (start < end) {
3121 		struct btrfs_trim_range trim_entry;
3122 
3123 		mutex_lock(&ctl->cache_writeout_mutex);
3124 		spin_lock(&ctl->tree_lock);
3125 
3126 		if (ctl->free_space < minlen) {
3127 			spin_unlock(&ctl->tree_lock);
3128 			mutex_unlock(&ctl->cache_writeout_mutex);
3129 			break;
3130 		}
3131 
3132 		entry = tree_search_offset(ctl, start, 0, 1);
3133 		if (!entry) {
3134 			spin_unlock(&ctl->tree_lock);
3135 			mutex_unlock(&ctl->cache_writeout_mutex);
3136 			break;
3137 		}
3138 
3139 		/* skip bitmaps */
3140 		while (entry->bitmap) {
3141 			node = rb_next(&entry->offset_index);
3142 			if (!node) {
3143 				spin_unlock(&ctl->tree_lock);
3144 				mutex_unlock(&ctl->cache_writeout_mutex);
3145 				goto out;
3146 			}
3147 			entry = rb_entry(node, struct btrfs_free_space,
3148 					 offset_index);
3149 		}
3150 
3151 		if (entry->offset >= end) {
3152 			spin_unlock(&ctl->tree_lock);
3153 			mutex_unlock(&ctl->cache_writeout_mutex);
3154 			break;
3155 		}
3156 
3157 		extent_start = entry->offset;
3158 		extent_bytes = entry->bytes;
3159 		start = max(start, extent_start);
3160 		bytes = min(extent_start + extent_bytes, end) - start;
3161 		if (bytes < minlen) {
3162 			spin_unlock(&ctl->tree_lock);
3163 			mutex_unlock(&ctl->cache_writeout_mutex);
3164 			goto next;
3165 		}
3166 
3167 		unlink_free_space(ctl, entry);
3168 		kmem_cache_free(btrfs_free_space_cachep, entry);
3169 
3170 		spin_unlock(&ctl->tree_lock);
3171 		trim_entry.start = extent_start;
3172 		trim_entry.bytes = extent_bytes;
3173 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3174 		mutex_unlock(&ctl->cache_writeout_mutex);
3175 
3176 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3177 				  extent_start, extent_bytes, &trim_entry);
3178 		if (ret)
3179 			break;
3180 next:
3181 		start += bytes;
3182 
3183 		if (fatal_signal_pending(current)) {
3184 			ret = -ERESTARTSYS;
3185 			break;
3186 		}
3187 
3188 		cond_resched();
3189 	}
3190 out:
3191 	return ret;
3192 }
3193 
3194 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3195 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3196 {
3197 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3198 	struct btrfs_free_space *entry;
3199 	int ret = 0;
3200 	int ret2;
3201 	u64 bytes;
3202 	u64 offset = offset_to_bitmap(ctl, start);
3203 
3204 	while (offset < end) {
3205 		bool next_bitmap = false;
3206 		struct btrfs_trim_range trim_entry;
3207 
3208 		mutex_lock(&ctl->cache_writeout_mutex);
3209 		spin_lock(&ctl->tree_lock);
3210 
3211 		if (ctl->free_space < minlen) {
3212 			spin_unlock(&ctl->tree_lock);
3213 			mutex_unlock(&ctl->cache_writeout_mutex);
3214 			break;
3215 		}
3216 
3217 		entry = tree_search_offset(ctl, offset, 1, 0);
3218 		if (!entry) {
3219 			spin_unlock(&ctl->tree_lock);
3220 			mutex_unlock(&ctl->cache_writeout_mutex);
3221 			next_bitmap = true;
3222 			goto next;
3223 		}
3224 
3225 		bytes = minlen;
3226 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
3227 		if (ret2 || start >= end) {
3228 			spin_unlock(&ctl->tree_lock);
3229 			mutex_unlock(&ctl->cache_writeout_mutex);
3230 			next_bitmap = true;
3231 			goto next;
3232 		}
3233 
3234 		bytes = min(bytes, end - start);
3235 		if (bytes < minlen) {
3236 			spin_unlock(&ctl->tree_lock);
3237 			mutex_unlock(&ctl->cache_writeout_mutex);
3238 			goto next;
3239 		}
3240 
3241 		bitmap_clear_bits(ctl, entry, start, bytes);
3242 		if (entry->bytes == 0)
3243 			free_bitmap(ctl, entry);
3244 
3245 		spin_unlock(&ctl->tree_lock);
3246 		trim_entry.start = start;
3247 		trim_entry.bytes = bytes;
3248 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3249 		mutex_unlock(&ctl->cache_writeout_mutex);
3250 
3251 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3252 				  start, bytes, &trim_entry);
3253 		if (ret)
3254 			break;
3255 next:
3256 		if (next_bitmap) {
3257 			offset += BITS_PER_BITMAP * ctl->unit;
3258 		} else {
3259 			start += bytes;
3260 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3261 				offset += BITS_PER_BITMAP * ctl->unit;
3262 		}
3263 
3264 		if (fatal_signal_pending(current)) {
3265 			ret = -ERESTARTSYS;
3266 			break;
3267 		}
3268 
3269 		cond_resched();
3270 	}
3271 
3272 	return ret;
3273 }
3274 
3275 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3276 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3277 {
3278 	int ret;
3279 
3280 	*trimmed = 0;
3281 
3282 	spin_lock(&block_group->lock);
3283 	if (block_group->removed) {
3284 		spin_unlock(&block_group->lock);
3285 		return 0;
3286 	}
3287 	atomic_inc(&block_group->trimming);
3288 	spin_unlock(&block_group->lock);
3289 
3290 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3291 	if (ret)
3292 		goto out;
3293 
3294 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3295 out:
3296 	spin_lock(&block_group->lock);
3297 	if (atomic_dec_and_test(&block_group->trimming) &&
3298 	    block_group->removed) {
3299 		struct extent_map_tree *em_tree;
3300 		struct extent_map *em;
3301 
3302 		spin_unlock(&block_group->lock);
3303 
3304 		lock_chunks(block_group->fs_info->chunk_root);
3305 		em_tree = &block_group->fs_info->mapping_tree.map_tree;
3306 		write_lock(&em_tree->lock);
3307 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3308 					   1);
3309 		BUG_ON(!em); /* logic error, can't happen */
3310 		/*
3311 		 * remove_extent_mapping() will delete us from the pinned_chunks
3312 		 * list, which is protected by the chunk mutex.
3313 		 */
3314 		remove_extent_mapping(em_tree, em);
3315 		write_unlock(&em_tree->lock);
3316 		unlock_chunks(block_group->fs_info->chunk_root);
3317 
3318 		/* once for us and once for the tree */
3319 		free_extent_map(em);
3320 		free_extent_map(em);
3321 
3322 		/*
3323 		 * We've left one free space entry and other tasks trimming
3324 		 * this block group have left 1 entry each one. Free them.
3325 		 */
3326 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3327 	} else {
3328 		spin_unlock(&block_group->lock);
3329 	}
3330 
3331 	return ret;
3332 }
3333 
3334 /*
3335  * Find the left-most item in the cache tree, and then return the
3336  * smallest inode number in the item.
3337  *
3338  * Note: the returned inode number may not be the smallest one in
3339  * the tree, if the left-most item is a bitmap.
3340  */
3341 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3342 {
3343 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3344 	struct btrfs_free_space *entry = NULL;
3345 	u64 ino = 0;
3346 
3347 	spin_lock(&ctl->tree_lock);
3348 
3349 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3350 		goto out;
3351 
3352 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3353 			 struct btrfs_free_space, offset_index);
3354 
3355 	if (!entry->bitmap) {
3356 		ino = entry->offset;
3357 
3358 		unlink_free_space(ctl, entry);
3359 		entry->offset++;
3360 		entry->bytes--;
3361 		if (!entry->bytes)
3362 			kmem_cache_free(btrfs_free_space_cachep, entry);
3363 		else
3364 			link_free_space(ctl, entry);
3365 	} else {
3366 		u64 offset = 0;
3367 		u64 count = 1;
3368 		int ret;
3369 
3370 		ret = search_bitmap(ctl, entry, &offset, &count);
3371 		/* Logic error; Should be empty if it can't find anything */
3372 		ASSERT(!ret);
3373 
3374 		ino = offset;
3375 		bitmap_clear_bits(ctl, entry, offset, 1);
3376 		if (entry->bytes == 0)
3377 			free_bitmap(ctl, entry);
3378 	}
3379 out:
3380 	spin_unlock(&ctl->tree_lock);
3381 
3382 	return ino;
3383 }
3384 
3385 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3386 				    struct btrfs_path *path)
3387 {
3388 	struct inode *inode = NULL;
3389 
3390 	spin_lock(&root->ino_cache_lock);
3391 	if (root->ino_cache_inode)
3392 		inode = igrab(root->ino_cache_inode);
3393 	spin_unlock(&root->ino_cache_lock);
3394 	if (inode)
3395 		return inode;
3396 
3397 	inode = __lookup_free_space_inode(root, path, 0);
3398 	if (IS_ERR(inode))
3399 		return inode;
3400 
3401 	spin_lock(&root->ino_cache_lock);
3402 	if (!btrfs_fs_closing(root->fs_info))
3403 		root->ino_cache_inode = igrab(inode);
3404 	spin_unlock(&root->ino_cache_lock);
3405 
3406 	return inode;
3407 }
3408 
3409 int create_free_ino_inode(struct btrfs_root *root,
3410 			  struct btrfs_trans_handle *trans,
3411 			  struct btrfs_path *path)
3412 {
3413 	return __create_free_space_inode(root, trans, path,
3414 					 BTRFS_FREE_INO_OBJECTID, 0);
3415 }
3416 
3417 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3418 {
3419 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3420 	struct btrfs_path *path;
3421 	struct inode *inode;
3422 	int ret = 0;
3423 	u64 root_gen = btrfs_root_generation(&root->root_item);
3424 
3425 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3426 		return 0;
3427 
3428 	/*
3429 	 * If we're unmounting then just return, since this does a search on the
3430 	 * normal root and not the commit root and we could deadlock.
3431 	 */
3432 	if (btrfs_fs_closing(fs_info))
3433 		return 0;
3434 
3435 	path = btrfs_alloc_path();
3436 	if (!path)
3437 		return 0;
3438 
3439 	inode = lookup_free_ino_inode(root, path);
3440 	if (IS_ERR(inode))
3441 		goto out;
3442 
3443 	if (root_gen != BTRFS_I(inode)->generation)
3444 		goto out_put;
3445 
3446 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3447 
3448 	if (ret < 0)
3449 		btrfs_err(fs_info,
3450 			"failed to load free ino cache for root %llu",
3451 			root->root_key.objectid);
3452 out_put:
3453 	iput(inode);
3454 out:
3455 	btrfs_free_path(path);
3456 	return ret;
3457 }
3458 
3459 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3460 			      struct btrfs_trans_handle *trans,
3461 			      struct btrfs_path *path,
3462 			      struct inode *inode)
3463 {
3464 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3465 	int ret;
3466 	struct btrfs_io_ctl io_ctl;
3467 	bool release_metadata = true;
3468 
3469 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3470 		return 0;
3471 
3472 	memset(&io_ctl, 0, sizeof(io_ctl));
3473 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3474 				      trans, path, 0);
3475 	if (!ret) {
3476 		/*
3477 		 * At this point writepages() didn't error out, so our metadata
3478 		 * reservation is released when the writeback finishes, at
3479 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3480 		 * with or without an error.
3481 		 */
3482 		release_metadata = false;
3483 		ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3484 	}
3485 
3486 	if (ret) {
3487 		if (release_metadata)
3488 			btrfs_delalloc_release_metadata(inode, inode->i_size);
3489 #ifdef DEBUG
3490 		btrfs_err(root->fs_info,
3491 			"failed to write free ino cache for root %llu",
3492 			root->root_key.objectid);
3493 #endif
3494 	}
3495 
3496 	return ret;
3497 }
3498 
3499 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3500 /*
3501  * Use this if you need to make a bitmap or extent entry specifically, it
3502  * doesn't do any of the merging that add_free_space does, this acts a lot like
3503  * how the free space cache loading stuff works, so you can get really weird
3504  * configurations.
3505  */
3506 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3507 			      u64 offset, u64 bytes, bool bitmap)
3508 {
3509 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3510 	struct btrfs_free_space *info = NULL, *bitmap_info;
3511 	void *map = NULL;
3512 	u64 bytes_added;
3513 	int ret;
3514 
3515 again:
3516 	if (!info) {
3517 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3518 		if (!info)
3519 			return -ENOMEM;
3520 	}
3521 
3522 	if (!bitmap) {
3523 		spin_lock(&ctl->tree_lock);
3524 		info->offset = offset;
3525 		info->bytes = bytes;
3526 		ret = link_free_space(ctl, info);
3527 		spin_unlock(&ctl->tree_lock);
3528 		if (ret)
3529 			kmem_cache_free(btrfs_free_space_cachep, info);
3530 		return ret;
3531 	}
3532 
3533 	if (!map) {
3534 		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3535 		if (!map) {
3536 			kmem_cache_free(btrfs_free_space_cachep, info);
3537 			return -ENOMEM;
3538 		}
3539 	}
3540 
3541 	spin_lock(&ctl->tree_lock);
3542 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3543 					 1, 0);
3544 	if (!bitmap_info) {
3545 		info->bitmap = map;
3546 		map = NULL;
3547 		add_new_bitmap(ctl, info, offset);
3548 		bitmap_info = info;
3549 		info = NULL;
3550 	}
3551 
3552 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3553 	bytes -= bytes_added;
3554 	offset += bytes_added;
3555 	spin_unlock(&ctl->tree_lock);
3556 
3557 	if (bytes)
3558 		goto again;
3559 
3560 	if (info)
3561 		kmem_cache_free(btrfs_free_space_cachep, info);
3562 	if (map)
3563 		kfree(map);
3564 	return 0;
3565 }
3566 
3567 /*
3568  * Checks to see if the given range is in the free space cache.  This is really
3569  * just used to check the absence of space, so if there is free space in the
3570  * range at all we will return 1.
3571  */
3572 int test_check_exists(struct btrfs_block_group_cache *cache,
3573 		      u64 offset, u64 bytes)
3574 {
3575 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3576 	struct btrfs_free_space *info;
3577 	int ret = 0;
3578 
3579 	spin_lock(&ctl->tree_lock);
3580 	info = tree_search_offset(ctl, offset, 0, 0);
3581 	if (!info) {
3582 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3583 					  1, 0);
3584 		if (!info)
3585 			goto out;
3586 	}
3587 
3588 have_info:
3589 	if (info->bitmap) {
3590 		u64 bit_off, bit_bytes;
3591 		struct rb_node *n;
3592 		struct btrfs_free_space *tmp;
3593 
3594 		bit_off = offset;
3595 		bit_bytes = ctl->unit;
3596 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3597 		if (!ret) {
3598 			if (bit_off == offset) {
3599 				ret = 1;
3600 				goto out;
3601 			} else if (bit_off > offset &&
3602 				   offset + bytes > bit_off) {
3603 				ret = 1;
3604 				goto out;
3605 			}
3606 		}
3607 
3608 		n = rb_prev(&info->offset_index);
3609 		while (n) {
3610 			tmp = rb_entry(n, struct btrfs_free_space,
3611 				       offset_index);
3612 			if (tmp->offset + tmp->bytes < offset)
3613 				break;
3614 			if (offset + bytes < tmp->offset) {
3615 				n = rb_prev(&info->offset_index);
3616 				continue;
3617 			}
3618 			info = tmp;
3619 			goto have_info;
3620 		}
3621 
3622 		n = rb_next(&info->offset_index);
3623 		while (n) {
3624 			tmp = rb_entry(n, struct btrfs_free_space,
3625 				       offset_index);
3626 			if (offset + bytes < tmp->offset)
3627 				break;
3628 			if (tmp->offset + tmp->bytes < offset) {
3629 				n = rb_next(&info->offset_index);
3630 				continue;
3631 			}
3632 			info = tmp;
3633 			goto have_info;
3634 		}
3635 
3636 		ret = 0;
3637 		goto out;
3638 	}
3639 
3640 	if (info->offset == offset) {
3641 		ret = 1;
3642 		goto out;
3643 	}
3644 
3645 	if (offset > info->offset && offset < info->offset + info->bytes)
3646 		ret = 1;
3647 out:
3648 	spin_unlock(&ctl->tree_lock);
3649 	return ret;
3650 }
3651 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3652