xref: /openbmc/linux/fs/btrfs/free-space-cache.c (revision 174cd4b1)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31 
32 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
34 
35 struct btrfs_trim_range {
36 	u64 start;
37 	u64 bytes;
38 	struct list_head list;
39 };
40 
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 			   struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 			      struct btrfs_free_space *info);
45 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
46 			     struct btrfs_trans_handle *trans,
47 			     struct btrfs_io_ctl *io_ctl,
48 			     struct btrfs_path *path);
49 
50 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
51 					       struct btrfs_path *path,
52 					       u64 offset)
53 {
54 	struct btrfs_fs_info *fs_info = root->fs_info;
55 	struct btrfs_key key;
56 	struct btrfs_key location;
57 	struct btrfs_disk_key disk_key;
58 	struct btrfs_free_space_header *header;
59 	struct extent_buffer *leaf;
60 	struct inode *inode = NULL;
61 	int ret;
62 
63 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
64 	key.offset = offset;
65 	key.type = 0;
66 
67 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
68 	if (ret < 0)
69 		return ERR_PTR(ret);
70 	if (ret > 0) {
71 		btrfs_release_path(path);
72 		return ERR_PTR(-ENOENT);
73 	}
74 
75 	leaf = path->nodes[0];
76 	header = btrfs_item_ptr(leaf, path->slots[0],
77 				struct btrfs_free_space_header);
78 	btrfs_free_space_key(leaf, header, &disk_key);
79 	btrfs_disk_key_to_cpu(&location, &disk_key);
80 	btrfs_release_path(path);
81 
82 	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
83 	if (IS_ERR(inode))
84 		return inode;
85 	if (is_bad_inode(inode)) {
86 		iput(inode);
87 		return ERR_PTR(-ENOENT);
88 	}
89 
90 	mapping_set_gfp_mask(inode->i_mapping,
91 			mapping_gfp_constraint(inode->i_mapping,
92 			~(__GFP_FS | __GFP_HIGHMEM)));
93 
94 	return inode;
95 }
96 
97 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
98 				      struct btrfs_block_group_cache
99 				      *block_group, struct btrfs_path *path)
100 {
101 	struct inode *inode = NULL;
102 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
103 
104 	spin_lock(&block_group->lock);
105 	if (block_group->inode)
106 		inode = igrab(block_group->inode);
107 	spin_unlock(&block_group->lock);
108 	if (inode)
109 		return inode;
110 
111 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
112 					  block_group->key.objectid);
113 	if (IS_ERR(inode))
114 		return inode;
115 
116 	spin_lock(&block_group->lock);
117 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
118 		btrfs_info(fs_info, "Old style space inode found, converting.");
119 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
120 			BTRFS_INODE_NODATACOW;
121 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
122 	}
123 
124 	if (!block_group->iref) {
125 		block_group->inode = igrab(inode);
126 		block_group->iref = 1;
127 	}
128 	spin_unlock(&block_group->lock);
129 
130 	return inode;
131 }
132 
133 static int __create_free_space_inode(struct btrfs_root *root,
134 				     struct btrfs_trans_handle *trans,
135 				     struct btrfs_path *path,
136 				     u64 ino, u64 offset)
137 {
138 	struct btrfs_key key;
139 	struct btrfs_disk_key disk_key;
140 	struct btrfs_free_space_header *header;
141 	struct btrfs_inode_item *inode_item;
142 	struct extent_buffer *leaf;
143 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
144 	int ret;
145 
146 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
147 	if (ret)
148 		return ret;
149 
150 	/* We inline crc's for the free disk space cache */
151 	if (ino != BTRFS_FREE_INO_OBJECTID)
152 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
153 
154 	leaf = path->nodes[0];
155 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
156 				    struct btrfs_inode_item);
157 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
158 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
159 			     sizeof(*inode_item));
160 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
161 	btrfs_set_inode_size(leaf, inode_item, 0);
162 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
163 	btrfs_set_inode_uid(leaf, inode_item, 0);
164 	btrfs_set_inode_gid(leaf, inode_item, 0);
165 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
166 	btrfs_set_inode_flags(leaf, inode_item, flags);
167 	btrfs_set_inode_nlink(leaf, inode_item, 1);
168 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
169 	btrfs_set_inode_block_group(leaf, inode_item, offset);
170 	btrfs_mark_buffer_dirty(leaf);
171 	btrfs_release_path(path);
172 
173 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
174 	key.offset = offset;
175 	key.type = 0;
176 	ret = btrfs_insert_empty_item(trans, root, path, &key,
177 				      sizeof(struct btrfs_free_space_header));
178 	if (ret < 0) {
179 		btrfs_release_path(path);
180 		return ret;
181 	}
182 
183 	leaf = path->nodes[0];
184 	header = btrfs_item_ptr(leaf, path->slots[0],
185 				struct btrfs_free_space_header);
186 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
187 	btrfs_set_free_space_key(leaf, header, &disk_key);
188 	btrfs_mark_buffer_dirty(leaf);
189 	btrfs_release_path(path);
190 
191 	return 0;
192 }
193 
194 int create_free_space_inode(struct btrfs_fs_info *fs_info,
195 			    struct btrfs_trans_handle *trans,
196 			    struct btrfs_block_group_cache *block_group,
197 			    struct btrfs_path *path)
198 {
199 	int ret;
200 	u64 ino;
201 
202 	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
203 	if (ret < 0)
204 		return ret;
205 
206 	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
207 					 block_group->key.objectid);
208 }
209 
210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211 				       struct btrfs_block_rsv *rsv)
212 {
213 	u64 needed_bytes;
214 	int ret;
215 
216 	/* 1 for slack space, 1 for updating the inode */
217 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
218 		btrfs_calc_trans_metadata_size(fs_info, 1);
219 
220 	spin_lock(&rsv->lock);
221 	if (rsv->reserved < needed_bytes)
222 		ret = -ENOSPC;
223 	else
224 		ret = 0;
225 	spin_unlock(&rsv->lock);
226 	return ret;
227 }
228 
229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230 				    struct btrfs_block_group_cache *block_group,
231 				    struct inode *inode)
232 {
233 	struct btrfs_root *root = BTRFS_I(inode)->root;
234 	int ret = 0;
235 	bool locked = false;
236 
237 	if (block_group) {
238 		struct btrfs_path *path = btrfs_alloc_path();
239 
240 		if (!path) {
241 			ret = -ENOMEM;
242 			goto fail;
243 		}
244 		locked = true;
245 		mutex_lock(&trans->transaction->cache_write_mutex);
246 		if (!list_empty(&block_group->io_list)) {
247 			list_del_init(&block_group->io_list);
248 
249 			btrfs_wait_cache_io(trans, block_group, path);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 		btrfs_free_path(path);
261 	}
262 
263 	btrfs_i_size_write(inode, 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We don't need an orphan item because truncating the free space cache
268 	 * will never be split across transactions.
269 	 * We don't need to check for -EAGAIN because we're a free space
270 	 * cache inode
271 	 */
272 	ret = btrfs_truncate_inode_items(trans, root, inode,
273 					 0, BTRFS_EXTENT_DATA_KEY);
274 	if (ret)
275 		goto fail;
276 
277 	ret = btrfs_update_inode(trans, root, inode);
278 
279 fail:
280 	if (locked)
281 		mutex_unlock(&trans->transaction->cache_write_mutex);
282 	if (ret)
283 		btrfs_abort_transaction(trans, ret);
284 
285 	return ret;
286 }
287 
288 static void readahead_cache(struct inode *inode)
289 {
290 	struct file_ra_state *ra;
291 	unsigned long last_index;
292 
293 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
294 	if (!ra)
295 		return;
296 
297 	file_ra_state_init(ra, inode->i_mapping);
298 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
299 
300 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
301 
302 	kfree(ra);
303 }
304 
305 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
306 		       int write)
307 {
308 	int num_pages;
309 	int check_crcs = 0;
310 
311 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
312 
313 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
314 		check_crcs = 1;
315 
316 	/* Make sure we can fit our crcs into the first page */
317 	if (write && check_crcs &&
318 	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
319 		return -ENOSPC;
320 
321 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
322 
323 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
324 	if (!io_ctl->pages)
325 		return -ENOMEM;
326 
327 	io_ctl->num_pages = num_pages;
328 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
329 	io_ctl->check_crcs = check_crcs;
330 	io_ctl->inode = inode;
331 
332 	return 0;
333 }
334 
335 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
336 {
337 	kfree(io_ctl->pages);
338 	io_ctl->pages = NULL;
339 }
340 
341 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
342 {
343 	if (io_ctl->cur) {
344 		io_ctl->cur = NULL;
345 		io_ctl->orig = NULL;
346 	}
347 }
348 
349 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
350 {
351 	ASSERT(io_ctl->index < io_ctl->num_pages);
352 	io_ctl->page = io_ctl->pages[io_ctl->index++];
353 	io_ctl->cur = page_address(io_ctl->page);
354 	io_ctl->orig = io_ctl->cur;
355 	io_ctl->size = PAGE_SIZE;
356 	if (clear)
357 		memset(io_ctl->cur, 0, PAGE_SIZE);
358 }
359 
360 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
361 {
362 	int i;
363 
364 	io_ctl_unmap_page(io_ctl);
365 
366 	for (i = 0; i < io_ctl->num_pages; i++) {
367 		if (io_ctl->pages[i]) {
368 			ClearPageChecked(io_ctl->pages[i]);
369 			unlock_page(io_ctl->pages[i]);
370 			put_page(io_ctl->pages[i]);
371 		}
372 	}
373 }
374 
375 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
376 				int uptodate)
377 {
378 	struct page *page;
379 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
380 	int i;
381 
382 	for (i = 0; i < io_ctl->num_pages; i++) {
383 		page = find_or_create_page(inode->i_mapping, i, mask);
384 		if (!page) {
385 			io_ctl_drop_pages(io_ctl);
386 			return -ENOMEM;
387 		}
388 		io_ctl->pages[i] = page;
389 		if (uptodate && !PageUptodate(page)) {
390 			btrfs_readpage(NULL, page);
391 			lock_page(page);
392 			if (!PageUptodate(page)) {
393 				btrfs_err(BTRFS_I(inode)->root->fs_info,
394 					   "error reading free space cache");
395 				io_ctl_drop_pages(io_ctl);
396 				return -EIO;
397 			}
398 		}
399 	}
400 
401 	for (i = 0; i < io_ctl->num_pages; i++) {
402 		clear_page_dirty_for_io(io_ctl->pages[i]);
403 		set_page_extent_mapped(io_ctl->pages[i]);
404 	}
405 
406 	return 0;
407 }
408 
409 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
410 {
411 	__le64 *val;
412 
413 	io_ctl_map_page(io_ctl, 1);
414 
415 	/*
416 	 * Skip the csum areas.  If we don't check crcs then we just have a
417 	 * 64bit chunk at the front of the first page.
418 	 */
419 	if (io_ctl->check_crcs) {
420 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
421 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
422 	} else {
423 		io_ctl->cur += sizeof(u64);
424 		io_ctl->size -= sizeof(u64) * 2;
425 	}
426 
427 	val = io_ctl->cur;
428 	*val = cpu_to_le64(generation);
429 	io_ctl->cur += sizeof(u64);
430 }
431 
432 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
433 {
434 	__le64 *gen;
435 
436 	/*
437 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
438 	 * chunk at the front of the first page.
439 	 */
440 	if (io_ctl->check_crcs) {
441 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
442 		io_ctl->size -= sizeof(u64) +
443 			(sizeof(u32) * io_ctl->num_pages);
444 	} else {
445 		io_ctl->cur += sizeof(u64);
446 		io_ctl->size -= sizeof(u64) * 2;
447 	}
448 
449 	gen = io_ctl->cur;
450 	if (le64_to_cpu(*gen) != generation) {
451 		btrfs_err_rl(io_ctl->fs_info,
452 			"space cache generation (%llu) does not match inode (%llu)",
453 				*gen, generation);
454 		io_ctl_unmap_page(io_ctl);
455 		return -EIO;
456 	}
457 	io_ctl->cur += sizeof(u64);
458 	return 0;
459 }
460 
461 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
462 {
463 	u32 *tmp;
464 	u32 crc = ~(u32)0;
465 	unsigned offset = 0;
466 
467 	if (!io_ctl->check_crcs) {
468 		io_ctl_unmap_page(io_ctl);
469 		return;
470 	}
471 
472 	if (index == 0)
473 		offset = sizeof(u32) * io_ctl->num_pages;
474 
475 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
476 			      PAGE_SIZE - offset);
477 	btrfs_csum_final(crc, (u8 *)&crc);
478 	io_ctl_unmap_page(io_ctl);
479 	tmp = page_address(io_ctl->pages[0]);
480 	tmp += index;
481 	*tmp = crc;
482 }
483 
484 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
485 {
486 	u32 *tmp, val;
487 	u32 crc = ~(u32)0;
488 	unsigned offset = 0;
489 
490 	if (!io_ctl->check_crcs) {
491 		io_ctl_map_page(io_ctl, 0);
492 		return 0;
493 	}
494 
495 	if (index == 0)
496 		offset = sizeof(u32) * io_ctl->num_pages;
497 
498 	tmp = page_address(io_ctl->pages[0]);
499 	tmp += index;
500 	val = *tmp;
501 
502 	io_ctl_map_page(io_ctl, 0);
503 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
504 			      PAGE_SIZE - offset);
505 	btrfs_csum_final(crc, (u8 *)&crc);
506 	if (val != crc) {
507 		btrfs_err_rl(io_ctl->fs_info,
508 			"csum mismatch on free space cache");
509 		io_ctl_unmap_page(io_ctl);
510 		return -EIO;
511 	}
512 
513 	return 0;
514 }
515 
516 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
517 			    void *bitmap)
518 {
519 	struct btrfs_free_space_entry *entry;
520 
521 	if (!io_ctl->cur)
522 		return -ENOSPC;
523 
524 	entry = io_ctl->cur;
525 	entry->offset = cpu_to_le64(offset);
526 	entry->bytes = cpu_to_le64(bytes);
527 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
528 		BTRFS_FREE_SPACE_EXTENT;
529 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
530 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
531 
532 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
533 		return 0;
534 
535 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 
537 	/* No more pages to map */
538 	if (io_ctl->index >= io_ctl->num_pages)
539 		return 0;
540 
541 	/* map the next page */
542 	io_ctl_map_page(io_ctl, 1);
543 	return 0;
544 }
545 
546 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
547 {
548 	if (!io_ctl->cur)
549 		return -ENOSPC;
550 
551 	/*
552 	 * If we aren't at the start of the current page, unmap this one and
553 	 * map the next one if there is any left.
554 	 */
555 	if (io_ctl->cur != io_ctl->orig) {
556 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
557 		if (io_ctl->index >= io_ctl->num_pages)
558 			return -ENOSPC;
559 		io_ctl_map_page(io_ctl, 0);
560 	}
561 
562 	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
563 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
564 	if (io_ctl->index < io_ctl->num_pages)
565 		io_ctl_map_page(io_ctl, 0);
566 	return 0;
567 }
568 
569 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
570 {
571 	/*
572 	 * If we're not on the boundary we know we've modified the page and we
573 	 * need to crc the page.
574 	 */
575 	if (io_ctl->cur != io_ctl->orig)
576 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
577 	else
578 		io_ctl_unmap_page(io_ctl);
579 
580 	while (io_ctl->index < io_ctl->num_pages) {
581 		io_ctl_map_page(io_ctl, 1);
582 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
583 	}
584 }
585 
586 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
587 			    struct btrfs_free_space *entry, u8 *type)
588 {
589 	struct btrfs_free_space_entry *e;
590 	int ret;
591 
592 	if (!io_ctl->cur) {
593 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
594 		if (ret)
595 			return ret;
596 	}
597 
598 	e = io_ctl->cur;
599 	entry->offset = le64_to_cpu(e->offset);
600 	entry->bytes = le64_to_cpu(e->bytes);
601 	*type = e->type;
602 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
603 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
604 
605 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
606 		return 0;
607 
608 	io_ctl_unmap_page(io_ctl);
609 
610 	return 0;
611 }
612 
613 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
614 			      struct btrfs_free_space *entry)
615 {
616 	int ret;
617 
618 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
619 	if (ret)
620 		return ret;
621 
622 	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
623 	io_ctl_unmap_page(io_ctl);
624 
625 	return 0;
626 }
627 
628 /*
629  * Since we attach pinned extents after the fact we can have contiguous sections
630  * of free space that are split up in entries.  This poses a problem with the
631  * tree logging stuff since it could have allocated across what appears to be 2
632  * entries since we would have merged the entries when adding the pinned extents
633  * back to the free space cache.  So run through the space cache that we just
634  * loaded and merge contiguous entries.  This will make the log replay stuff not
635  * blow up and it will make for nicer allocator behavior.
636  */
637 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
638 {
639 	struct btrfs_free_space *e, *prev = NULL;
640 	struct rb_node *n;
641 
642 again:
643 	spin_lock(&ctl->tree_lock);
644 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
645 		e = rb_entry(n, struct btrfs_free_space, offset_index);
646 		if (!prev)
647 			goto next;
648 		if (e->bitmap || prev->bitmap)
649 			goto next;
650 		if (prev->offset + prev->bytes == e->offset) {
651 			unlink_free_space(ctl, prev);
652 			unlink_free_space(ctl, e);
653 			prev->bytes += e->bytes;
654 			kmem_cache_free(btrfs_free_space_cachep, e);
655 			link_free_space(ctl, prev);
656 			prev = NULL;
657 			spin_unlock(&ctl->tree_lock);
658 			goto again;
659 		}
660 next:
661 		prev = e;
662 	}
663 	spin_unlock(&ctl->tree_lock);
664 }
665 
666 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
667 				   struct btrfs_free_space_ctl *ctl,
668 				   struct btrfs_path *path, u64 offset)
669 {
670 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
671 	struct btrfs_free_space_header *header;
672 	struct extent_buffer *leaf;
673 	struct btrfs_io_ctl io_ctl;
674 	struct btrfs_key key;
675 	struct btrfs_free_space *e, *n;
676 	LIST_HEAD(bitmaps);
677 	u64 num_entries;
678 	u64 num_bitmaps;
679 	u64 generation;
680 	u8 type;
681 	int ret = 0;
682 
683 	/* Nothing in the space cache, goodbye */
684 	if (!i_size_read(inode))
685 		return 0;
686 
687 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
688 	key.offset = offset;
689 	key.type = 0;
690 
691 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
692 	if (ret < 0)
693 		return 0;
694 	else if (ret > 0) {
695 		btrfs_release_path(path);
696 		return 0;
697 	}
698 
699 	ret = -1;
700 
701 	leaf = path->nodes[0];
702 	header = btrfs_item_ptr(leaf, path->slots[0],
703 				struct btrfs_free_space_header);
704 	num_entries = btrfs_free_space_entries(leaf, header);
705 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
706 	generation = btrfs_free_space_generation(leaf, header);
707 	btrfs_release_path(path);
708 
709 	if (!BTRFS_I(inode)->generation) {
710 		btrfs_info(fs_info,
711 			   "The free space cache file (%llu) is invalid. skip it\n",
712 			   offset);
713 		return 0;
714 	}
715 
716 	if (BTRFS_I(inode)->generation != generation) {
717 		btrfs_err(fs_info,
718 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
719 			  BTRFS_I(inode)->generation, generation);
720 		return 0;
721 	}
722 
723 	if (!num_entries)
724 		return 0;
725 
726 	ret = io_ctl_init(&io_ctl, inode, 0);
727 	if (ret)
728 		return ret;
729 
730 	readahead_cache(inode);
731 
732 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
733 	if (ret)
734 		goto out;
735 
736 	ret = io_ctl_check_crc(&io_ctl, 0);
737 	if (ret)
738 		goto free_cache;
739 
740 	ret = io_ctl_check_generation(&io_ctl, generation);
741 	if (ret)
742 		goto free_cache;
743 
744 	while (num_entries) {
745 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
746 				      GFP_NOFS);
747 		if (!e)
748 			goto free_cache;
749 
750 		ret = io_ctl_read_entry(&io_ctl, e, &type);
751 		if (ret) {
752 			kmem_cache_free(btrfs_free_space_cachep, e);
753 			goto free_cache;
754 		}
755 
756 		if (!e->bytes) {
757 			kmem_cache_free(btrfs_free_space_cachep, e);
758 			goto free_cache;
759 		}
760 
761 		if (type == BTRFS_FREE_SPACE_EXTENT) {
762 			spin_lock(&ctl->tree_lock);
763 			ret = link_free_space(ctl, e);
764 			spin_unlock(&ctl->tree_lock);
765 			if (ret) {
766 				btrfs_err(fs_info,
767 					"Duplicate entries in free space cache, dumping");
768 				kmem_cache_free(btrfs_free_space_cachep, e);
769 				goto free_cache;
770 			}
771 		} else {
772 			ASSERT(num_bitmaps);
773 			num_bitmaps--;
774 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
775 			if (!e->bitmap) {
776 				kmem_cache_free(
777 					btrfs_free_space_cachep, e);
778 				goto free_cache;
779 			}
780 			spin_lock(&ctl->tree_lock);
781 			ret = link_free_space(ctl, e);
782 			ctl->total_bitmaps++;
783 			ctl->op->recalc_thresholds(ctl);
784 			spin_unlock(&ctl->tree_lock);
785 			if (ret) {
786 				btrfs_err(fs_info,
787 					"Duplicate entries in free space cache, dumping");
788 				kmem_cache_free(btrfs_free_space_cachep, e);
789 				goto free_cache;
790 			}
791 			list_add_tail(&e->list, &bitmaps);
792 		}
793 
794 		num_entries--;
795 	}
796 
797 	io_ctl_unmap_page(&io_ctl);
798 
799 	/*
800 	 * We add the bitmaps at the end of the entries in order that
801 	 * the bitmap entries are added to the cache.
802 	 */
803 	list_for_each_entry_safe(e, n, &bitmaps, list) {
804 		list_del_init(&e->list);
805 		ret = io_ctl_read_bitmap(&io_ctl, e);
806 		if (ret)
807 			goto free_cache;
808 	}
809 
810 	io_ctl_drop_pages(&io_ctl);
811 	merge_space_tree(ctl);
812 	ret = 1;
813 out:
814 	io_ctl_free(&io_ctl);
815 	return ret;
816 free_cache:
817 	io_ctl_drop_pages(&io_ctl);
818 	__btrfs_remove_free_space_cache(ctl);
819 	goto out;
820 }
821 
822 int load_free_space_cache(struct btrfs_fs_info *fs_info,
823 			  struct btrfs_block_group_cache *block_group)
824 {
825 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
826 	struct inode *inode;
827 	struct btrfs_path *path;
828 	int ret = 0;
829 	bool matched;
830 	u64 used = btrfs_block_group_used(&block_group->item);
831 
832 	/*
833 	 * If this block group has been marked to be cleared for one reason or
834 	 * another then we can't trust the on disk cache, so just return.
835 	 */
836 	spin_lock(&block_group->lock);
837 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
838 		spin_unlock(&block_group->lock);
839 		return 0;
840 	}
841 	spin_unlock(&block_group->lock);
842 
843 	path = btrfs_alloc_path();
844 	if (!path)
845 		return 0;
846 	path->search_commit_root = 1;
847 	path->skip_locking = 1;
848 
849 	inode = lookup_free_space_inode(fs_info, block_group, path);
850 	if (IS_ERR(inode)) {
851 		btrfs_free_path(path);
852 		return 0;
853 	}
854 
855 	/* We may have converted the inode and made the cache invalid. */
856 	spin_lock(&block_group->lock);
857 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
858 		spin_unlock(&block_group->lock);
859 		btrfs_free_path(path);
860 		goto out;
861 	}
862 	spin_unlock(&block_group->lock);
863 
864 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
865 				      path, block_group->key.objectid);
866 	btrfs_free_path(path);
867 	if (ret <= 0)
868 		goto out;
869 
870 	spin_lock(&ctl->tree_lock);
871 	matched = (ctl->free_space == (block_group->key.offset - used -
872 				       block_group->bytes_super));
873 	spin_unlock(&ctl->tree_lock);
874 
875 	if (!matched) {
876 		__btrfs_remove_free_space_cache(ctl);
877 		btrfs_warn(fs_info,
878 			   "block group %llu has wrong amount of free space",
879 			   block_group->key.objectid);
880 		ret = -1;
881 	}
882 out:
883 	if (ret < 0) {
884 		/* This cache is bogus, make sure it gets cleared */
885 		spin_lock(&block_group->lock);
886 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
887 		spin_unlock(&block_group->lock);
888 		ret = 0;
889 
890 		btrfs_warn(fs_info,
891 			   "failed to load free space cache for block group %llu, rebuilding it now",
892 			   block_group->key.objectid);
893 	}
894 
895 	iput(inode);
896 	return ret;
897 }
898 
899 static noinline_for_stack
900 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
901 			      struct btrfs_free_space_ctl *ctl,
902 			      struct btrfs_block_group_cache *block_group,
903 			      int *entries, int *bitmaps,
904 			      struct list_head *bitmap_list)
905 {
906 	int ret;
907 	struct btrfs_free_cluster *cluster = NULL;
908 	struct btrfs_free_cluster *cluster_locked = NULL;
909 	struct rb_node *node = rb_first(&ctl->free_space_offset);
910 	struct btrfs_trim_range *trim_entry;
911 
912 	/* Get the cluster for this block_group if it exists */
913 	if (block_group && !list_empty(&block_group->cluster_list)) {
914 		cluster = list_entry(block_group->cluster_list.next,
915 				     struct btrfs_free_cluster,
916 				     block_group_list);
917 	}
918 
919 	if (!node && cluster) {
920 		cluster_locked = cluster;
921 		spin_lock(&cluster_locked->lock);
922 		node = rb_first(&cluster->root);
923 		cluster = NULL;
924 	}
925 
926 	/* Write out the extent entries */
927 	while (node) {
928 		struct btrfs_free_space *e;
929 
930 		e = rb_entry(node, struct btrfs_free_space, offset_index);
931 		*entries += 1;
932 
933 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
934 				       e->bitmap);
935 		if (ret)
936 			goto fail;
937 
938 		if (e->bitmap) {
939 			list_add_tail(&e->list, bitmap_list);
940 			*bitmaps += 1;
941 		}
942 		node = rb_next(node);
943 		if (!node && cluster) {
944 			node = rb_first(&cluster->root);
945 			cluster_locked = cluster;
946 			spin_lock(&cluster_locked->lock);
947 			cluster = NULL;
948 		}
949 	}
950 	if (cluster_locked) {
951 		spin_unlock(&cluster_locked->lock);
952 		cluster_locked = NULL;
953 	}
954 
955 	/*
956 	 * Make sure we don't miss any range that was removed from our rbtree
957 	 * because trimming is running. Otherwise after a umount+mount (or crash
958 	 * after committing the transaction) we would leak free space and get
959 	 * an inconsistent free space cache report from fsck.
960 	 */
961 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
962 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
963 				       trim_entry->bytes, NULL);
964 		if (ret)
965 			goto fail;
966 		*entries += 1;
967 	}
968 
969 	return 0;
970 fail:
971 	if (cluster_locked)
972 		spin_unlock(&cluster_locked->lock);
973 	return -ENOSPC;
974 }
975 
976 static noinline_for_stack int
977 update_cache_item(struct btrfs_trans_handle *trans,
978 		  struct btrfs_root *root,
979 		  struct inode *inode,
980 		  struct btrfs_path *path, u64 offset,
981 		  int entries, int bitmaps)
982 {
983 	struct btrfs_key key;
984 	struct btrfs_free_space_header *header;
985 	struct extent_buffer *leaf;
986 	int ret;
987 
988 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
989 	key.offset = offset;
990 	key.type = 0;
991 
992 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
993 	if (ret < 0) {
994 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
995 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
996 				 GFP_NOFS);
997 		goto fail;
998 	}
999 	leaf = path->nodes[0];
1000 	if (ret > 0) {
1001 		struct btrfs_key found_key;
1002 		ASSERT(path->slots[0]);
1003 		path->slots[0]--;
1004 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1005 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1006 		    found_key.offset != offset) {
1007 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1008 					 inode->i_size - 1,
1009 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1010 					 NULL, GFP_NOFS);
1011 			btrfs_release_path(path);
1012 			goto fail;
1013 		}
1014 	}
1015 
1016 	BTRFS_I(inode)->generation = trans->transid;
1017 	header = btrfs_item_ptr(leaf, path->slots[0],
1018 				struct btrfs_free_space_header);
1019 	btrfs_set_free_space_entries(leaf, header, entries);
1020 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1021 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1022 	btrfs_mark_buffer_dirty(leaf);
1023 	btrfs_release_path(path);
1024 
1025 	return 0;
1026 
1027 fail:
1028 	return -1;
1029 }
1030 
1031 static noinline_for_stack int
1032 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1033 			    struct btrfs_block_group_cache *block_group,
1034 			    struct btrfs_io_ctl *io_ctl,
1035 			    int *entries)
1036 {
1037 	u64 start, extent_start, extent_end, len;
1038 	struct extent_io_tree *unpin = NULL;
1039 	int ret;
1040 
1041 	if (!block_group)
1042 		return 0;
1043 
1044 	/*
1045 	 * We want to add any pinned extents to our free space cache
1046 	 * so we don't leak the space
1047 	 *
1048 	 * We shouldn't have switched the pinned extents yet so this is the
1049 	 * right one
1050 	 */
1051 	unpin = fs_info->pinned_extents;
1052 
1053 	start = block_group->key.objectid;
1054 
1055 	while (start < block_group->key.objectid + block_group->key.offset) {
1056 		ret = find_first_extent_bit(unpin, start,
1057 					    &extent_start, &extent_end,
1058 					    EXTENT_DIRTY, NULL);
1059 		if (ret)
1060 			return 0;
1061 
1062 		/* This pinned extent is out of our range */
1063 		if (extent_start >= block_group->key.objectid +
1064 		    block_group->key.offset)
1065 			return 0;
1066 
1067 		extent_start = max(extent_start, start);
1068 		extent_end = min(block_group->key.objectid +
1069 				 block_group->key.offset, extent_end + 1);
1070 		len = extent_end - extent_start;
1071 
1072 		*entries += 1;
1073 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1074 		if (ret)
1075 			return -ENOSPC;
1076 
1077 		start = extent_end;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static noinline_for_stack int
1084 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1085 {
1086 	struct btrfs_free_space *entry, *next;
1087 	int ret;
1088 
1089 	/* Write out the bitmaps */
1090 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1091 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1092 		if (ret)
1093 			return -ENOSPC;
1094 		list_del_init(&entry->list);
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 static int flush_dirty_cache(struct inode *inode)
1101 {
1102 	int ret;
1103 
1104 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1105 	if (ret)
1106 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1107 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1108 				 GFP_NOFS);
1109 
1110 	return ret;
1111 }
1112 
1113 static void noinline_for_stack
1114 cleanup_bitmap_list(struct list_head *bitmap_list)
1115 {
1116 	struct btrfs_free_space *entry, *next;
1117 
1118 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1119 		list_del_init(&entry->list);
1120 }
1121 
1122 static void noinline_for_stack
1123 cleanup_write_cache_enospc(struct inode *inode,
1124 			   struct btrfs_io_ctl *io_ctl,
1125 			   struct extent_state **cached_state)
1126 {
1127 	io_ctl_drop_pages(io_ctl);
1128 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1129 			     i_size_read(inode) - 1, cached_state,
1130 			     GFP_NOFS);
1131 }
1132 
1133 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1134 				 struct btrfs_trans_handle *trans,
1135 				 struct btrfs_block_group_cache *block_group,
1136 				 struct btrfs_io_ctl *io_ctl,
1137 				 struct btrfs_path *path, u64 offset)
1138 {
1139 	int ret;
1140 	struct inode *inode = io_ctl->inode;
1141 	struct btrfs_fs_info *fs_info;
1142 
1143 	if (!inode)
1144 		return 0;
1145 
1146 	fs_info = btrfs_sb(inode->i_sb);
1147 
1148 	/* Flush the dirty pages in the cache file. */
1149 	ret = flush_dirty_cache(inode);
1150 	if (ret)
1151 		goto out;
1152 
1153 	/* Update the cache item to tell everyone this cache file is valid. */
1154 	ret = update_cache_item(trans, root, inode, path, offset,
1155 				io_ctl->entries, io_ctl->bitmaps);
1156 out:
1157 	io_ctl_free(io_ctl);
1158 	if (ret) {
1159 		invalidate_inode_pages2(inode->i_mapping);
1160 		BTRFS_I(inode)->generation = 0;
1161 		if (block_group) {
1162 #ifdef DEBUG
1163 			btrfs_err(fs_info,
1164 				  "failed to write free space cache for block group %llu",
1165 				  block_group->key.objectid);
1166 #endif
1167 		}
1168 	}
1169 	btrfs_update_inode(trans, root, inode);
1170 
1171 	if (block_group) {
1172 		/* the dirty list is protected by the dirty_bgs_lock */
1173 		spin_lock(&trans->transaction->dirty_bgs_lock);
1174 
1175 		/* the disk_cache_state is protected by the block group lock */
1176 		spin_lock(&block_group->lock);
1177 
1178 		/*
1179 		 * only mark this as written if we didn't get put back on
1180 		 * the dirty list while waiting for IO.   Otherwise our
1181 		 * cache state won't be right, and we won't get written again
1182 		 */
1183 		if (!ret && list_empty(&block_group->dirty_list))
1184 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1185 		else if (ret)
1186 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1187 
1188 		spin_unlock(&block_group->lock);
1189 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1190 		io_ctl->inode = NULL;
1191 		iput(inode);
1192 	}
1193 
1194 	return ret;
1195 
1196 }
1197 
1198 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1199 				    struct btrfs_trans_handle *trans,
1200 				    struct btrfs_io_ctl *io_ctl,
1201 				    struct btrfs_path *path)
1202 {
1203 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1204 }
1205 
1206 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1207 			struct btrfs_block_group_cache *block_group,
1208 			struct btrfs_path *path)
1209 {
1210 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1211 				     block_group, &block_group->io_ctl,
1212 				     path, block_group->key.objectid);
1213 }
1214 
1215 /**
1216  * __btrfs_write_out_cache - write out cached info to an inode
1217  * @root - the root the inode belongs to
1218  * @ctl - the free space cache we are going to write out
1219  * @block_group - the block_group for this cache if it belongs to a block_group
1220  * @trans - the trans handle
1221  *
1222  * This function writes out a free space cache struct to disk for quick recovery
1223  * on mount.  This will return 0 if it was successful in writing the cache out,
1224  * or an errno if it was not.
1225  */
1226 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1227 				   struct btrfs_free_space_ctl *ctl,
1228 				   struct btrfs_block_group_cache *block_group,
1229 				   struct btrfs_io_ctl *io_ctl,
1230 				   struct btrfs_trans_handle *trans)
1231 {
1232 	struct btrfs_fs_info *fs_info = root->fs_info;
1233 	struct extent_state *cached_state = NULL;
1234 	LIST_HEAD(bitmap_list);
1235 	int entries = 0;
1236 	int bitmaps = 0;
1237 	int ret;
1238 	int must_iput = 0;
1239 
1240 	if (!i_size_read(inode))
1241 		return -EIO;
1242 
1243 	WARN_ON(io_ctl->pages);
1244 	ret = io_ctl_init(io_ctl, inode, 1);
1245 	if (ret)
1246 		return ret;
1247 
1248 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1249 		down_write(&block_group->data_rwsem);
1250 		spin_lock(&block_group->lock);
1251 		if (block_group->delalloc_bytes) {
1252 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1253 			spin_unlock(&block_group->lock);
1254 			up_write(&block_group->data_rwsem);
1255 			BTRFS_I(inode)->generation = 0;
1256 			ret = 0;
1257 			must_iput = 1;
1258 			goto out;
1259 		}
1260 		spin_unlock(&block_group->lock);
1261 	}
1262 
1263 	/* Lock all pages first so we can lock the extent safely. */
1264 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1265 	if (ret)
1266 		goto out;
1267 
1268 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1269 			 &cached_state);
1270 
1271 	io_ctl_set_generation(io_ctl, trans->transid);
1272 
1273 	mutex_lock(&ctl->cache_writeout_mutex);
1274 	/* Write out the extent entries in the free space cache */
1275 	spin_lock(&ctl->tree_lock);
1276 	ret = write_cache_extent_entries(io_ctl, ctl,
1277 					 block_group, &entries, &bitmaps,
1278 					 &bitmap_list);
1279 	if (ret)
1280 		goto out_nospc_locked;
1281 
1282 	/*
1283 	 * Some spaces that are freed in the current transaction are pinned,
1284 	 * they will be added into free space cache after the transaction is
1285 	 * committed, we shouldn't lose them.
1286 	 *
1287 	 * If this changes while we are working we'll get added back to
1288 	 * the dirty list and redo it.  No locking needed
1289 	 */
1290 	ret = write_pinned_extent_entries(fs_info, block_group,
1291 					  io_ctl, &entries);
1292 	if (ret)
1293 		goto out_nospc_locked;
1294 
1295 	/*
1296 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1297 	 * locked while doing it because a concurrent trim can be manipulating
1298 	 * or freeing the bitmap.
1299 	 */
1300 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1301 	spin_unlock(&ctl->tree_lock);
1302 	mutex_unlock(&ctl->cache_writeout_mutex);
1303 	if (ret)
1304 		goto out_nospc;
1305 
1306 	/* Zero out the rest of the pages just to make sure */
1307 	io_ctl_zero_remaining_pages(io_ctl);
1308 
1309 	/* Everything is written out, now we dirty the pages in the file. */
1310 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1311 				i_size_read(inode), &cached_state);
1312 	if (ret)
1313 		goto out_nospc;
1314 
1315 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1316 		up_write(&block_group->data_rwsem);
1317 	/*
1318 	 * Release the pages and unlock the extent, we will flush
1319 	 * them out later
1320 	 */
1321 	io_ctl_drop_pages(io_ctl);
1322 
1323 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1324 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1325 
1326 	/*
1327 	 * at this point the pages are under IO and we're happy,
1328 	 * The caller is responsible for waiting on them and updating the
1329 	 * the cache and the inode
1330 	 */
1331 	io_ctl->entries = entries;
1332 	io_ctl->bitmaps = bitmaps;
1333 
1334 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1335 	if (ret)
1336 		goto out;
1337 
1338 	return 0;
1339 
1340 out:
1341 	io_ctl->inode = NULL;
1342 	io_ctl_free(io_ctl);
1343 	if (ret) {
1344 		invalidate_inode_pages2(inode->i_mapping);
1345 		BTRFS_I(inode)->generation = 0;
1346 	}
1347 	btrfs_update_inode(trans, root, inode);
1348 	if (must_iput)
1349 		iput(inode);
1350 	return ret;
1351 
1352 out_nospc_locked:
1353 	cleanup_bitmap_list(&bitmap_list);
1354 	spin_unlock(&ctl->tree_lock);
1355 	mutex_unlock(&ctl->cache_writeout_mutex);
1356 
1357 out_nospc:
1358 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1359 
1360 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1361 		up_write(&block_group->data_rwsem);
1362 
1363 	goto out;
1364 }
1365 
1366 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1367 			  struct btrfs_trans_handle *trans,
1368 			  struct btrfs_block_group_cache *block_group,
1369 			  struct btrfs_path *path)
1370 {
1371 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1372 	struct inode *inode;
1373 	int ret = 0;
1374 
1375 	spin_lock(&block_group->lock);
1376 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1377 		spin_unlock(&block_group->lock);
1378 		return 0;
1379 	}
1380 	spin_unlock(&block_group->lock);
1381 
1382 	inode = lookup_free_space_inode(fs_info, block_group, path);
1383 	if (IS_ERR(inode))
1384 		return 0;
1385 
1386 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1387 				block_group, &block_group->io_ctl, trans);
1388 	if (ret) {
1389 #ifdef DEBUG
1390 		btrfs_err(fs_info,
1391 			  "failed to write free space cache for block group %llu",
1392 			  block_group->key.objectid);
1393 #endif
1394 		spin_lock(&block_group->lock);
1395 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1396 		spin_unlock(&block_group->lock);
1397 
1398 		block_group->io_ctl.inode = NULL;
1399 		iput(inode);
1400 	}
1401 
1402 	/*
1403 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1404 	 * to wait for IO and put the inode
1405 	 */
1406 
1407 	return ret;
1408 }
1409 
1410 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1411 					  u64 offset)
1412 {
1413 	ASSERT(offset >= bitmap_start);
1414 	offset -= bitmap_start;
1415 	return (unsigned long)(div_u64(offset, unit));
1416 }
1417 
1418 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1419 {
1420 	return (unsigned long)(div_u64(bytes, unit));
1421 }
1422 
1423 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1424 				   u64 offset)
1425 {
1426 	u64 bitmap_start;
1427 	u64 bytes_per_bitmap;
1428 
1429 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1430 	bitmap_start = offset - ctl->start;
1431 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1432 	bitmap_start *= bytes_per_bitmap;
1433 	bitmap_start += ctl->start;
1434 
1435 	return bitmap_start;
1436 }
1437 
1438 static int tree_insert_offset(struct rb_root *root, u64 offset,
1439 			      struct rb_node *node, int bitmap)
1440 {
1441 	struct rb_node **p = &root->rb_node;
1442 	struct rb_node *parent = NULL;
1443 	struct btrfs_free_space *info;
1444 
1445 	while (*p) {
1446 		parent = *p;
1447 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1448 
1449 		if (offset < info->offset) {
1450 			p = &(*p)->rb_left;
1451 		} else if (offset > info->offset) {
1452 			p = &(*p)->rb_right;
1453 		} else {
1454 			/*
1455 			 * we could have a bitmap entry and an extent entry
1456 			 * share the same offset.  If this is the case, we want
1457 			 * the extent entry to always be found first if we do a
1458 			 * linear search through the tree, since we want to have
1459 			 * the quickest allocation time, and allocating from an
1460 			 * extent is faster than allocating from a bitmap.  So
1461 			 * if we're inserting a bitmap and we find an entry at
1462 			 * this offset, we want to go right, or after this entry
1463 			 * logically.  If we are inserting an extent and we've
1464 			 * found a bitmap, we want to go left, or before
1465 			 * logically.
1466 			 */
1467 			if (bitmap) {
1468 				if (info->bitmap) {
1469 					WARN_ON_ONCE(1);
1470 					return -EEXIST;
1471 				}
1472 				p = &(*p)->rb_right;
1473 			} else {
1474 				if (!info->bitmap) {
1475 					WARN_ON_ONCE(1);
1476 					return -EEXIST;
1477 				}
1478 				p = &(*p)->rb_left;
1479 			}
1480 		}
1481 	}
1482 
1483 	rb_link_node(node, parent, p);
1484 	rb_insert_color(node, root);
1485 
1486 	return 0;
1487 }
1488 
1489 /*
1490  * searches the tree for the given offset.
1491  *
1492  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1493  * want a section that has at least bytes size and comes at or after the given
1494  * offset.
1495  */
1496 static struct btrfs_free_space *
1497 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1498 		   u64 offset, int bitmap_only, int fuzzy)
1499 {
1500 	struct rb_node *n = ctl->free_space_offset.rb_node;
1501 	struct btrfs_free_space *entry, *prev = NULL;
1502 
1503 	/* find entry that is closest to the 'offset' */
1504 	while (1) {
1505 		if (!n) {
1506 			entry = NULL;
1507 			break;
1508 		}
1509 
1510 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1511 		prev = entry;
1512 
1513 		if (offset < entry->offset)
1514 			n = n->rb_left;
1515 		else if (offset > entry->offset)
1516 			n = n->rb_right;
1517 		else
1518 			break;
1519 	}
1520 
1521 	if (bitmap_only) {
1522 		if (!entry)
1523 			return NULL;
1524 		if (entry->bitmap)
1525 			return entry;
1526 
1527 		/*
1528 		 * bitmap entry and extent entry may share same offset,
1529 		 * in that case, bitmap entry comes after extent entry.
1530 		 */
1531 		n = rb_next(n);
1532 		if (!n)
1533 			return NULL;
1534 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1535 		if (entry->offset != offset)
1536 			return NULL;
1537 
1538 		WARN_ON(!entry->bitmap);
1539 		return entry;
1540 	} else if (entry) {
1541 		if (entry->bitmap) {
1542 			/*
1543 			 * if previous extent entry covers the offset,
1544 			 * we should return it instead of the bitmap entry
1545 			 */
1546 			n = rb_prev(&entry->offset_index);
1547 			if (n) {
1548 				prev = rb_entry(n, struct btrfs_free_space,
1549 						offset_index);
1550 				if (!prev->bitmap &&
1551 				    prev->offset + prev->bytes > offset)
1552 					entry = prev;
1553 			}
1554 		}
1555 		return entry;
1556 	}
1557 
1558 	if (!prev)
1559 		return NULL;
1560 
1561 	/* find last entry before the 'offset' */
1562 	entry = prev;
1563 	if (entry->offset > offset) {
1564 		n = rb_prev(&entry->offset_index);
1565 		if (n) {
1566 			entry = rb_entry(n, struct btrfs_free_space,
1567 					offset_index);
1568 			ASSERT(entry->offset <= offset);
1569 		} else {
1570 			if (fuzzy)
1571 				return entry;
1572 			else
1573 				return NULL;
1574 		}
1575 	}
1576 
1577 	if (entry->bitmap) {
1578 		n = rb_prev(&entry->offset_index);
1579 		if (n) {
1580 			prev = rb_entry(n, struct btrfs_free_space,
1581 					offset_index);
1582 			if (!prev->bitmap &&
1583 			    prev->offset + prev->bytes > offset)
1584 				return prev;
1585 		}
1586 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1587 			return entry;
1588 	} else if (entry->offset + entry->bytes > offset)
1589 		return entry;
1590 
1591 	if (!fuzzy)
1592 		return NULL;
1593 
1594 	while (1) {
1595 		if (entry->bitmap) {
1596 			if (entry->offset + BITS_PER_BITMAP *
1597 			    ctl->unit > offset)
1598 				break;
1599 		} else {
1600 			if (entry->offset + entry->bytes > offset)
1601 				break;
1602 		}
1603 
1604 		n = rb_next(&entry->offset_index);
1605 		if (!n)
1606 			return NULL;
1607 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1608 	}
1609 	return entry;
1610 }
1611 
1612 static inline void
1613 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1614 		    struct btrfs_free_space *info)
1615 {
1616 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1617 	ctl->free_extents--;
1618 }
1619 
1620 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1621 			      struct btrfs_free_space *info)
1622 {
1623 	__unlink_free_space(ctl, info);
1624 	ctl->free_space -= info->bytes;
1625 }
1626 
1627 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1628 			   struct btrfs_free_space *info)
1629 {
1630 	int ret = 0;
1631 
1632 	ASSERT(info->bytes || info->bitmap);
1633 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1634 				 &info->offset_index, (info->bitmap != NULL));
1635 	if (ret)
1636 		return ret;
1637 
1638 	ctl->free_space += info->bytes;
1639 	ctl->free_extents++;
1640 	return ret;
1641 }
1642 
1643 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1644 {
1645 	struct btrfs_block_group_cache *block_group = ctl->private;
1646 	u64 max_bytes;
1647 	u64 bitmap_bytes;
1648 	u64 extent_bytes;
1649 	u64 size = block_group->key.offset;
1650 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1651 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1652 
1653 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1654 
1655 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1656 
1657 	/*
1658 	 * The goal is to keep the total amount of memory used per 1gb of space
1659 	 * at or below 32k, so we need to adjust how much memory we allow to be
1660 	 * used by extent based free space tracking
1661 	 */
1662 	if (size < SZ_1G)
1663 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1664 	else
1665 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1666 
1667 	/*
1668 	 * we want to account for 1 more bitmap than what we have so we can make
1669 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1670 	 * we add more bitmaps.
1671 	 */
1672 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1673 
1674 	if (bitmap_bytes >= max_bytes) {
1675 		ctl->extents_thresh = 0;
1676 		return;
1677 	}
1678 
1679 	/*
1680 	 * we want the extent entry threshold to always be at most 1/2 the max
1681 	 * bytes we can have, or whatever is less than that.
1682 	 */
1683 	extent_bytes = max_bytes - bitmap_bytes;
1684 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1685 
1686 	ctl->extents_thresh =
1687 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1688 }
1689 
1690 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1691 				       struct btrfs_free_space *info,
1692 				       u64 offset, u64 bytes)
1693 {
1694 	unsigned long start, count;
1695 
1696 	start = offset_to_bit(info->offset, ctl->unit, offset);
1697 	count = bytes_to_bits(bytes, ctl->unit);
1698 	ASSERT(start + count <= BITS_PER_BITMAP);
1699 
1700 	bitmap_clear(info->bitmap, start, count);
1701 
1702 	info->bytes -= bytes;
1703 }
1704 
1705 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1706 			      struct btrfs_free_space *info, u64 offset,
1707 			      u64 bytes)
1708 {
1709 	__bitmap_clear_bits(ctl, info, offset, bytes);
1710 	ctl->free_space -= bytes;
1711 }
1712 
1713 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1714 			    struct btrfs_free_space *info, u64 offset,
1715 			    u64 bytes)
1716 {
1717 	unsigned long start, count;
1718 
1719 	start = offset_to_bit(info->offset, ctl->unit, offset);
1720 	count = bytes_to_bits(bytes, ctl->unit);
1721 	ASSERT(start + count <= BITS_PER_BITMAP);
1722 
1723 	bitmap_set(info->bitmap, start, count);
1724 
1725 	info->bytes += bytes;
1726 	ctl->free_space += bytes;
1727 }
1728 
1729 /*
1730  * If we can not find suitable extent, we will use bytes to record
1731  * the size of the max extent.
1732  */
1733 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1734 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1735 			 u64 *bytes, bool for_alloc)
1736 {
1737 	unsigned long found_bits = 0;
1738 	unsigned long max_bits = 0;
1739 	unsigned long bits, i;
1740 	unsigned long next_zero;
1741 	unsigned long extent_bits;
1742 
1743 	/*
1744 	 * Skip searching the bitmap if we don't have a contiguous section that
1745 	 * is large enough for this allocation.
1746 	 */
1747 	if (for_alloc &&
1748 	    bitmap_info->max_extent_size &&
1749 	    bitmap_info->max_extent_size < *bytes) {
1750 		*bytes = bitmap_info->max_extent_size;
1751 		return -1;
1752 	}
1753 
1754 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1755 			  max_t(u64, *offset, bitmap_info->offset));
1756 	bits = bytes_to_bits(*bytes, ctl->unit);
1757 
1758 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1759 		if (for_alloc && bits == 1) {
1760 			found_bits = 1;
1761 			break;
1762 		}
1763 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1764 					       BITS_PER_BITMAP, i);
1765 		extent_bits = next_zero - i;
1766 		if (extent_bits >= bits) {
1767 			found_bits = extent_bits;
1768 			break;
1769 		} else if (extent_bits > max_bits) {
1770 			max_bits = extent_bits;
1771 		}
1772 		i = next_zero;
1773 	}
1774 
1775 	if (found_bits) {
1776 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1777 		*bytes = (u64)(found_bits) * ctl->unit;
1778 		return 0;
1779 	}
1780 
1781 	*bytes = (u64)(max_bits) * ctl->unit;
1782 	bitmap_info->max_extent_size = *bytes;
1783 	return -1;
1784 }
1785 
1786 /* Cache the size of the max extent in bytes */
1787 static struct btrfs_free_space *
1788 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1789 		unsigned long align, u64 *max_extent_size)
1790 {
1791 	struct btrfs_free_space *entry;
1792 	struct rb_node *node;
1793 	u64 tmp;
1794 	u64 align_off;
1795 	int ret;
1796 
1797 	if (!ctl->free_space_offset.rb_node)
1798 		goto out;
1799 
1800 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1801 	if (!entry)
1802 		goto out;
1803 
1804 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1805 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1806 		if (entry->bytes < *bytes) {
1807 			if (entry->bytes > *max_extent_size)
1808 				*max_extent_size = entry->bytes;
1809 			continue;
1810 		}
1811 
1812 		/* make sure the space returned is big enough
1813 		 * to match our requested alignment
1814 		 */
1815 		if (*bytes >= align) {
1816 			tmp = entry->offset - ctl->start + align - 1;
1817 			tmp = div64_u64(tmp, align);
1818 			tmp = tmp * align + ctl->start;
1819 			align_off = tmp - entry->offset;
1820 		} else {
1821 			align_off = 0;
1822 			tmp = entry->offset;
1823 		}
1824 
1825 		if (entry->bytes < *bytes + align_off) {
1826 			if (entry->bytes > *max_extent_size)
1827 				*max_extent_size = entry->bytes;
1828 			continue;
1829 		}
1830 
1831 		if (entry->bitmap) {
1832 			u64 size = *bytes;
1833 
1834 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1835 			if (!ret) {
1836 				*offset = tmp;
1837 				*bytes = size;
1838 				return entry;
1839 			} else if (size > *max_extent_size) {
1840 				*max_extent_size = size;
1841 			}
1842 			continue;
1843 		}
1844 
1845 		*offset = tmp;
1846 		*bytes = entry->bytes - align_off;
1847 		return entry;
1848 	}
1849 out:
1850 	return NULL;
1851 }
1852 
1853 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1854 			   struct btrfs_free_space *info, u64 offset)
1855 {
1856 	info->offset = offset_to_bitmap(ctl, offset);
1857 	info->bytes = 0;
1858 	INIT_LIST_HEAD(&info->list);
1859 	link_free_space(ctl, info);
1860 	ctl->total_bitmaps++;
1861 
1862 	ctl->op->recalc_thresholds(ctl);
1863 }
1864 
1865 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1866 			struct btrfs_free_space *bitmap_info)
1867 {
1868 	unlink_free_space(ctl, bitmap_info);
1869 	kfree(bitmap_info->bitmap);
1870 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1871 	ctl->total_bitmaps--;
1872 	ctl->op->recalc_thresholds(ctl);
1873 }
1874 
1875 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1876 			      struct btrfs_free_space *bitmap_info,
1877 			      u64 *offset, u64 *bytes)
1878 {
1879 	u64 end;
1880 	u64 search_start, search_bytes;
1881 	int ret;
1882 
1883 again:
1884 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1885 
1886 	/*
1887 	 * We need to search for bits in this bitmap.  We could only cover some
1888 	 * of the extent in this bitmap thanks to how we add space, so we need
1889 	 * to search for as much as it as we can and clear that amount, and then
1890 	 * go searching for the next bit.
1891 	 */
1892 	search_start = *offset;
1893 	search_bytes = ctl->unit;
1894 	search_bytes = min(search_bytes, end - search_start + 1);
1895 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1896 			    false);
1897 	if (ret < 0 || search_start != *offset)
1898 		return -EINVAL;
1899 
1900 	/* We may have found more bits than what we need */
1901 	search_bytes = min(search_bytes, *bytes);
1902 
1903 	/* Cannot clear past the end of the bitmap */
1904 	search_bytes = min(search_bytes, end - search_start + 1);
1905 
1906 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1907 	*offset += search_bytes;
1908 	*bytes -= search_bytes;
1909 
1910 	if (*bytes) {
1911 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1912 		if (!bitmap_info->bytes)
1913 			free_bitmap(ctl, bitmap_info);
1914 
1915 		/*
1916 		 * no entry after this bitmap, but we still have bytes to
1917 		 * remove, so something has gone wrong.
1918 		 */
1919 		if (!next)
1920 			return -EINVAL;
1921 
1922 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1923 				       offset_index);
1924 
1925 		/*
1926 		 * if the next entry isn't a bitmap we need to return to let the
1927 		 * extent stuff do its work.
1928 		 */
1929 		if (!bitmap_info->bitmap)
1930 			return -EAGAIN;
1931 
1932 		/*
1933 		 * Ok the next item is a bitmap, but it may not actually hold
1934 		 * the information for the rest of this free space stuff, so
1935 		 * look for it, and if we don't find it return so we can try
1936 		 * everything over again.
1937 		 */
1938 		search_start = *offset;
1939 		search_bytes = ctl->unit;
1940 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1941 				    &search_bytes, false);
1942 		if (ret < 0 || search_start != *offset)
1943 			return -EAGAIN;
1944 
1945 		goto again;
1946 	} else if (!bitmap_info->bytes)
1947 		free_bitmap(ctl, bitmap_info);
1948 
1949 	return 0;
1950 }
1951 
1952 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1953 			       struct btrfs_free_space *info, u64 offset,
1954 			       u64 bytes)
1955 {
1956 	u64 bytes_to_set = 0;
1957 	u64 end;
1958 
1959 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1960 
1961 	bytes_to_set = min(end - offset, bytes);
1962 
1963 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1964 
1965 	/*
1966 	 * We set some bytes, we have no idea what the max extent size is
1967 	 * anymore.
1968 	 */
1969 	info->max_extent_size = 0;
1970 
1971 	return bytes_to_set;
1972 
1973 }
1974 
1975 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1976 		      struct btrfs_free_space *info)
1977 {
1978 	struct btrfs_block_group_cache *block_group = ctl->private;
1979 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1980 	bool forced = false;
1981 
1982 #ifdef CONFIG_BTRFS_DEBUG
1983 	if (btrfs_should_fragment_free_space(block_group))
1984 		forced = true;
1985 #endif
1986 
1987 	/*
1988 	 * If we are below the extents threshold then we can add this as an
1989 	 * extent, and don't have to deal with the bitmap
1990 	 */
1991 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1992 		/*
1993 		 * If this block group has some small extents we don't want to
1994 		 * use up all of our free slots in the cache with them, we want
1995 		 * to reserve them to larger extents, however if we have plenty
1996 		 * of cache left then go ahead an dadd them, no sense in adding
1997 		 * the overhead of a bitmap if we don't have to.
1998 		 */
1999 		if (info->bytes <= fs_info->sectorsize * 4) {
2000 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2001 				return false;
2002 		} else {
2003 			return false;
2004 		}
2005 	}
2006 
2007 	/*
2008 	 * The original block groups from mkfs can be really small, like 8
2009 	 * megabytes, so don't bother with a bitmap for those entries.  However
2010 	 * some block groups can be smaller than what a bitmap would cover but
2011 	 * are still large enough that they could overflow the 32k memory limit,
2012 	 * so allow those block groups to still be allowed to have a bitmap
2013 	 * entry.
2014 	 */
2015 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2016 		return false;
2017 
2018 	return true;
2019 }
2020 
2021 static const struct btrfs_free_space_op free_space_op = {
2022 	.recalc_thresholds	= recalculate_thresholds,
2023 	.use_bitmap		= use_bitmap,
2024 };
2025 
2026 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2027 			      struct btrfs_free_space *info)
2028 {
2029 	struct btrfs_free_space *bitmap_info;
2030 	struct btrfs_block_group_cache *block_group = NULL;
2031 	int added = 0;
2032 	u64 bytes, offset, bytes_added;
2033 	int ret;
2034 
2035 	bytes = info->bytes;
2036 	offset = info->offset;
2037 
2038 	if (!ctl->op->use_bitmap(ctl, info))
2039 		return 0;
2040 
2041 	if (ctl->op == &free_space_op)
2042 		block_group = ctl->private;
2043 again:
2044 	/*
2045 	 * Since we link bitmaps right into the cluster we need to see if we
2046 	 * have a cluster here, and if so and it has our bitmap we need to add
2047 	 * the free space to that bitmap.
2048 	 */
2049 	if (block_group && !list_empty(&block_group->cluster_list)) {
2050 		struct btrfs_free_cluster *cluster;
2051 		struct rb_node *node;
2052 		struct btrfs_free_space *entry;
2053 
2054 		cluster = list_entry(block_group->cluster_list.next,
2055 				     struct btrfs_free_cluster,
2056 				     block_group_list);
2057 		spin_lock(&cluster->lock);
2058 		node = rb_first(&cluster->root);
2059 		if (!node) {
2060 			spin_unlock(&cluster->lock);
2061 			goto no_cluster_bitmap;
2062 		}
2063 
2064 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2065 		if (!entry->bitmap) {
2066 			spin_unlock(&cluster->lock);
2067 			goto no_cluster_bitmap;
2068 		}
2069 
2070 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2071 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2072 							  offset, bytes);
2073 			bytes -= bytes_added;
2074 			offset += bytes_added;
2075 		}
2076 		spin_unlock(&cluster->lock);
2077 		if (!bytes) {
2078 			ret = 1;
2079 			goto out;
2080 		}
2081 	}
2082 
2083 no_cluster_bitmap:
2084 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2085 					 1, 0);
2086 	if (!bitmap_info) {
2087 		ASSERT(added == 0);
2088 		goto new_bitmap;
2089 	}
2090 
2091 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2092 	bytes -= bytes_added;
2093 	offset += bytes_added;
2094 	added = 0;
2095 
2096 	if (!bytes) {
2097 		ret = 1;
2098 		goto out;
2099 	} else
2100 		goto again;
2101 
2102 new_bitmap:
2103 	if (info && info->bitmap) {
2104 		add_new_bitmap(ctl, info, offset);
2105 		added = 1;
2106 		info = NULL;
2107 		goto again;
2108 	} else {
2109 		spin_unlock(&ctl->tree_lock);
2110 
2111 		/* no pre-allocated info, allocate a new one */
2112 		if (!info) {
2113 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2114 						 GFP_NOFS);
2115 			if (!info) {
2116 				spin_lock(&ctl->tree_lock);
2117 				ret = -ENOMEM;
2118 				goto out;
2119 			}
2120 		}
2121 
2122 		/* allocate the bitmap */
2123 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2124 		spin_lock(&ctl->tree_lock);
2125 		if (!info->bitmap) {
2126 			ret = -ENOMEM;
2127 			goto out;
2128 		}
2129 		goto again;
2130 	}
2131 
2132 out:
2133 	if (info) {
2134 		if (info->bitmap)
2135 			kfree(info->bitmap);
2136 		kmem_cache_free(btrfs_free_space_cachep, info);
2137 	}
2138 
2139 	return ret;
2140 }
2141 
2142 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2143 			  struct btrfs_free_space *info, bool update_stat)
2144 {
2145 	struct btrfs_free_space *left_info;
2146 	struct btrfs_free_space *right_info;
2147 	bool merged = false;
2148 	u64 offset = info->offset;
2149 	u64 bytes = info->bytes;
2150 
2151 	/*
2152 	 * first we want to see if there is free space adjacent to the range we
2153 	 * are adding, if there is remove that struct and add a new one to
2154 	 * cover the entire range
2155 	 */
2156 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2157 	if (right_info && rb_prev(&right_info->offset_index))
2158 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2159 				     struct btrfs_free_space, offset_index);
2160 	else
2161 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2162 
2163 	if (right_info && !right_info->bitmap) {
2164 		if (update_stat)
2165 			unlink_free_space(ctl, right_info);
2166 		else
2167 			__unlink_free_space(ctl, right_info);
2168 		info->bytes += right_info->bytes;
2169 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2170 		merged = true;
2171 	}
2172 
2173 	if (left_info && !left_info->bitmap &&
2174 	    left_info->offset + left_info->bytes == offset) {
2175 		if (update_stat)
2176 			unlink_free_space(ctl, left_info);
2177 		else
2178 			__unlink_free_space(ctl, left_info);
2179 		info->offset = left_info->offset;
2180 		info->bytes += left_info->bytes;
2181 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2182 		merged = true;
2183 	}
2184 
2185 	return merged;
2186 }
2187 
2188 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2189 				     struct btrfs_free_space *info,
2190 				     bool update_stat)
2191 {
2192 	struct btrfs_free_space *bitmap;
2193 	unsigned long i;
2194 	unsigned long j;
2195 	const u64 end = info->offset + info->bytes;
2196 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2197 	u64 bytes;
2198 
2199 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2200 	if (!bitmap)
2201 		return false;
2202 
2203 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2204 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2205 	if (j == i)
2206 		return false;
2207 	bytes = (j - i) * ctl->unit;
2208 	info->bytes += bytes;
2209 
2210 	if (update_stat)
2211 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2212 	else
2213 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2214 
2215 	if (!bitmap->bytes)
2216 		free_bitmap(ctl, bitmap);
2217 
2218 	return true;
2219 }
2220 
2221 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2222 				       struct btrfs_free_space *info,
2223 				       bool update_stat)
2224 {
2225 	struct btrfs_free_space *bitmap;
2226 	u64 bitmap_offset;
2227 	unsigned long i;
2228 	unsigned long j;
2229 	unsigned long prev_j;
2230 	u64 bytes;
2231 
2232 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2233 	/* If we're on a boundary, try the previous logical bitmap. */
2234 	if (bitmap_offset == info->offset) {
2235 		if (info->offset == 0)
2236 			return false;
2237 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2238 	}
2239 
2240 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2241 	if (!bitmap)
2242 		return false;
2243 
2244 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2245 	j = 0;
2246 	prev_j = (unsigned long)-1;
2247 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2248 		if (j > i)
2249 			break;
2250 		prev_j = j;
2251 	}
2252 	if (prev_j == i)
2253 		return false;
2254 
2255 	if (prev_j == (unsigned long)-1)
2256 		bytes = (i + 1) * ctl->unit;
2257 	else
2258 		bytes = (i - prev_j) * ctl->unit;
2259 
2260 	info->offset -= bytes;
2261 	info->bytes += bytes;
2262 
2263 	if (update_stat)
2264 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2265 	else
2266 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2267 
2268 	if (!bitmap->bytes)
2269 		free_bitmap(ctl, bitmap);
2270 
2271 	return true;
2272 }
2273 
2274 /*
2275  * We prefer always to allocate from extent entries, both for clustered and
2276  * non-clustered allocation requests. So when attempting to add a new extent
2277  * entry, try to see if there's adjacent free space in bitmap entries, and if
2278  * there is, migrate that space from the bitmaps to the extent.
2279  * Like this we get better chances of satisfying space allocation requests
2280  * because we attempt to satisfy them based on a single cache entry, and never
2281  * on 2 or more entries - even if the entries represent a contiguous free space
2282  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2283  * ends).
2284  */
2285 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2286 			      struct btrfs_free_space *info,
2287 			      bool update_stat)
2288 {
2289 	/*
2290 	 * Only work with disconnected entries, as we can change their offset,
2291 	 * and must be extent entries.
2292 	 */
2293 	ASSERT(!info->bitmap);
2294 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2295 
2296 	if (ctl->total_bitmaps > 0) {
2297 		bool stole_end;
2298 		bool stole_front = false;
2299 
2300 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2301 		if (ctl->total_bitmaps > 0)
2302 			stole_front = steal_from_bitmap_to_front(ctl, info,
2303 								 update_stat);
2304 
2305 		if (stole_end || stole_front)
2306 			try_merge_free_space(ctl, info, update_stat);
2307 	}
2308 }
2309 
2310 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2311 			   struct btrfs_free_space_ctl *ctl,
2312 			   u64 offset, u64 bytes)
2313 {
2314 	struct btrfs_free_space *info;
2315 	int ret = 0;
2316 
2317 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2318 	if (!info)
2319 		return -ENOMEM;
2320 
2321 	info->offset = offset;
2322 	info->bytes = bytes;
2323 	RB_CLEAR_NODE(&info->offset_index);
2324 
2325 	spin_lock(&ctl->tree_lock);
2326 
2327 	if (try_merge_free_space(ctl, info, true))
2328 		goto link;
2329 
2330 	/*
2331 	 * There was no extent directly to the left or right of this new
2332 	 * extent then we know we're going to have to allocate a new extent, so
2333 	 * before we do that see if we need to drop this into a bitmap
2334 	 */
2335 	ret = insert_into_bitmap(ctl, info);
2336 	if (ret < 0) {
2337 		goto out;
2338 	} else if (ret) {
2339 		ret = 0;
2340 		goto out;
2341 	}
2342 link:
2343 	/*
2344 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2345 	 * going to add the new free space to existing bitmap entries - because
2346 	 * that would mean unnecessary work that would be reverted. Therefore
2347 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2348 	 */
2349 	steal_from_bitmap(ctl, info, true);
2350 
2351 	ret = link_free_space(ctl, info);
2352 	if (ret)
2353 		kmem_cache_free(btrfs_free_space_cachep, info);
2354 out:
2355 	spin_unlock(&ctl->tree_lock);
2356 
2357 	if (ret) {
2358 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2359 		ASSERT(ret != -EEXIST);
2360 	}
2361 
2362 	return ret;
2363 }
2364 
2365 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2366 			    u64 offset, u64 bytes)
2367 {
2368 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2369 	struct btrfs_free_space *info;
2370 	int ret;
2371 	bool re_search = false;
2372 
2373 	spin_lock(&ctl->tree_lock);
2374 
2375 again:
2376 	ret = 0;
2377 	if (!bytes)
2378 		goto out_lock;
2379 
2380 	info = tree_search_offset(ctl, offset, 0, 0);
2381 	if (!info) {
2382 		/*
2383 		 * oops didn't find an extent that matched the space we wanted
2384 		 * to remove, look for a bitmap instead
2385 		 */
2386 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2387 					  1, 0);
2388 		if (!info) {
2389 			/*
2390 			 * If we found a partial bit of our free space in a
2391 			 * bitmap but then couldn't find the other part this may
2392 			 * be a problem, so WARN about it.
2393 			 */
2394 			WARN_ON(re_search);
2395 			goto out_lock;
2396 		}
2397 	}
2398 
2399 	re_search = false;
2400 	if (!info->bitmap) {
2401 		unlink_free_space(ctl, info);
2402 		if (offset == info->offset) {
2403 			u64 to_free = min(bytes, info->bytes);
2404 
2405 			info->bytes -= to_free;
2406 			info->offset += to_free;
2407 			if (info->bytes) {
2408 				ret = link_free_space(ctl, info);
2409 				WARN_ON(ret);
2410 			} else {
2411 				kmem_cache_free(btrfs_free_space_cachep, info);
2412 			}
2413 
2414 			offset += to_free;
2415 			bytes -= to_free;
2416 			goto again;
2417 		} else {
2418 			u64 old_end = info->bytes + info->offset;
2419 
2420 			info->bytes = offset - info->offset;
2421 			ret = link_free_space(ctl, info);
2422 			WARN_ON(ret);
2423 			if (ret)
2424 				goto out_lock;
2425 
2426 			/* Not enough bytes in this entry to satisfy us */
2427 			if (old_end < offset + bytes) {
2428 				bytes -= old_end - offset;
2429 				offset = old_end;
2430 				goto again;
2431 			} else if (old_end == offset + bytes) {
2432 				/* all done */
2433 				goto out_lock;
2434 			}
2435 			spin_unlock(&ctl->tree_lock);
2436 
2437 			ret = btrfs_add_free_space(block_group, offset + bytes,
2438 						   old_end - (offset + bytes));
2439 			WARN_ON(ret);
2440 			goto out;
2441 		}
2442 	}
2443 
2444 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2445 	if (ret == -EAGAIN) {
2446 		re_search = true;
2447 		goto again;
2448 	}
2449 out_lock:
2450 	spin_unlock(&ctl->tree_lock);
2451 out:
2452 	return ret;
2453 }
2454 
2455 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2456 			   u64 bytes)
2457 {
2458 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2459 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2460 	struct btrfs_free_space *info;
2461 	struct rb_node *n;
2462 	int count = 0;
2463 
2464 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2465 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2466 		if (info->bytes >= bytes && !block_group->ro)
2467 			count++;
2468 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2469 			   info->offset, info->bytes,
2470 		       (info->bitmap) ? "yes" : "no");
2471 	}
2472 	btrfs_info(fs_info, "block group has cluster?: %s",
2473 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2474 	btrfs_info(fs_info,
2475 		   "%d blocks of free space at or bigger than bytes is", count);
2476 }
2477 
2478 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2479 {
2480 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2481 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2482 
2483 	spin_lock_init(&ctl->tree_lock);
2484 	ctl->unit = fs_info->sectorsize;
2485 	ctl->start = block_group->key.objectid;
2486 	ctl->private = block_group;
2487 	ctl->op = &free_space_op;
2488 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2489 	mutex_init(&ctl->cache_writeout_mutex);
2490 
2491 	/*
2492 	 * we only want to have 32k of ram per block group for keeping
2493 	 * track of free space, and if we pass 1/2 of that we want to
2494 	 * start converting things over to using bitmaps
2495 	 */
2496 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2497 }
2498 
2499 /*
2500  * for a given cluster, put all of its extents back into the free
2501  * space cache.  If the block group passed doesn't match the block group
2502  * pointed to by the cluster, someone else raced in and freed the
2503  * cluster already.  In that case, we just return without changing anything
2504  */
2505 static int
2506 __btrfs_return_cluster_to_free_space(
2507 			     struct btrfs_block_group_cache *block_group,
2508 			     struct btrfs_free_cluster *cluster)
2509 {
2510 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2511 	struct btrfs_free_space *entry;
2512 	struct rb_node *node;
2513 
2514 	spin_lock(&cluster->lock);
2515 	if (cluster->block_group != block_group)
2516 		goto out;
2517 
2518 	cluster->block_group = NULL;
2519 	cluster->window_start = 0;
2520 	list_del_init(&cluster->block_group_list);
2521 
2522 	node = rb_first(&cluster->root);
2523 	while (node) {
2524 		bool bitmap;
2525 
2526 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2527 		node = rb_next(&entry->offset_index);
2528 		rb_erase(&entry->offset_index, &cluster->root);
2529 		RB_CLEAR_NODE(&entry->offset_index);
2530 
2531 		bitmap = (entry->bitmap != NULL);
2532 		if (!bitmap) {
2533 			try_merge_free_space(ctl, entry, false);
2534 			steal_from_bitmap(ctl, entry, false);
2535 		}
2536 		tree_insert_offset(&ctl->free_space_offset,
2537 				   entry->offset, &entry->offset_index, bitmap);
2538 	}
2539 	cluster->root = RB_ROOT;
2540 
2541 out:
2542 	spin_unlock(&cluster->lock);
2543 	btrfs_put_block_group(block_group);
2544 	return 0;
2545 }
2546 
2547 static void __btrfs_remove_free_space_cache_locked(
2548 				struct btrfs_free_space_ctl *ctl)
2549 {
2550 	struct btrfs_free_space *info;
2551 	struct rb_node *node;
2552 
2553 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2554 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2555 		if (!info->bitmap) {
2556 			unlink_free_space(ctl, info);
2557 			kmem_cache_free(btrfs_free_space_cachep, info);
2558 		} else {
2559 			free_bitmap(ctl, info);
2560 		}
2561 
2562 		cond_resched_lock(&ctl->tree_lock);
2563 	}
2564 }
2565 
2566 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2567 {
2568 	spin_lock(&ctl->tree_lock);
2569 	__btrfs_remove_free_space_cache_locked(ctl);
2570 	spin_unlock(&ctl->tree_lock);
2571 }
2572 
2573 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2574 {
2575 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2576 	struct btrfs_free_cluster *cluster;
2577 	struct list_head *head;
2578 
2579 	spin_lock(&ctl->tree_lock);
2580 	while ((head = block_group->cluster_list.next) !=
2581 	       &block_group->cluster_list) {
2582 		cluster = list_entry(head, struct btrfs_free_cluster,
2583 				     block_group_list);
2584 
2585 		WARN_ON(cluster->block_group != block_group);
2586 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2587 
2588 		cond_resched_lock(&ctl->tree_lock);
2589 	}
2590 	__btrfs_remove_free_space_cache_locked(ctl);
2591 	spin_unlock(&ctl->tree_lock);
2592 
2593 }
2594 
2595 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2596 			       u64 offset, u64 bytes, u64 empty_size,
2597 			       u64 *max_extent_size)
2598 {
2599 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2600 	struct btrfs_free_space *entry = NULL;
2601 	u64 bytes_search = bytes + empty_size;
2602 	u64 ret = 0;
2603 	u64 align_gap = 0;
2604 	u64 align_gap_len = 0;
2605 
2606 	spin_lock(&ctl->tree_lock);
2607 	entry = find_free_space(ctl, &offset, &bytes_search,
2608 				block_group->full_stripe_len, max_extent_size);
2609 	if (!entry)
2610 		goto out;
2611 
2612 	ret = offset;
2613 	if (entry->bitmap) {
2614 		bitmap_clear_bits(ctl, entry, offset, bytes);
2615 		if (!entry->bytes)
2616 			free_bitmap(ctl, entry);
2617 	} else {
2618 		unlink_free_space(ctl, entry);
2619 		align_gap_len = offset - entry->offset;
2620 		align_gap = entry->offset;
2621 
2622 		entry->offset = offset + bytes;
2623 		WARN_ON(entry->bytes < bytes + align_gap_len);
2624 
2625 		entry->bytes -= bytes + align_gap_len;
2626 		if (!entry->bytes)
2627 			kmem_cache_free(btrfs_free_space_cachep, entry);
2628 		else
2629 			link_free_space(ctl, entry);
2630 	}
2631 out:
2632 	spin_unlock(&ctl->tree_lock);
2633 
2634 	if (align_gap_len)
2635 		__btrfs_add_free_space(block_group->fs_info, ctl,
2636 				       align_gap, align_gap_len);
2637 	return ret;
2638 }
2639 
2640 /*
2641  * given a cluster, put all of its extents back into the free space
2642  * cache.  If a block group is passed, this function will only free
2643  * a cluster that belongs to the passed block group.
2644  *
2645  * Otherwise, it'll get a reference on the block group pointed to by the
2646  * cluster and remove the cluster from it.
2647  */
2648 int btrfs_return_cluster_to_free_space(
2649 			       struct btrfs_block_group_cache *block_group,
2650 			       struct btrfs_free_cluster *cluster)
2651 {
2652 	struct btrfs_free_space_ctl *ctl;
2653 	int ret;
2654 
2655 	/* first, get a safe pointer to the block group */
2656 	spin_lock(&cluster->lock);
2657 	if (!block_group) {
2658 		block_group = cluster->block_group;
2659 		if (!block_group) {
2660 			spin_unlock(&cluster->lock);
2661 			return 0;
2662 		}
2663 	} else if (cluster->block_group != block_group) {
2664 		/* someone else has already freed it don't redo their work */
2665 		spin_unlock(&cluster->lock);
2666 		return 0;
2667 	}
2668 	atomic_inc(&block_group->count);
2669 	spin_unlock(&cluster->lock);
2670 
2671 	ctl = block_group->free_space_ctl;
2672 
2673 	/* now return any extents the cluster had on it */
2674 	spin_lock(&ctl->tree_lock);
2675 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2676 	spin_unlock(&ctl->tree_lock);
2677 
2678 	/* finally drop our ref */
2679 	btrfs_put_block_group(block_group);
2680 	return ret;
2681 }
2682 
2683 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2684 				   struct btrfs_free_cluster *cluster,
2685 				   struct btrfs_free_space *entry,
2686 				   u64 bytes, u64 min_start,
2687 				   u64 *max_extent_size)
2688 {
2689 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2690 	int err;
2691 	u64 search_start = cluster->window_start;
2692 	u64 search_bytes = bytes;
2693 	u64 ret = 0;
2694 
2695 	search_start = min_start;
2696 	search_bytes = bytes;
2697 
2698 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2699 	if (err) {
2700 		if (search_bytes > *max_extent_size)
2701 			*max_extent_size = search_bytes;
2702 		return 0;
2703 	}
2704 
2705 	ret = search_start;
2706 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2707 
2708 	return ret;
2709 }
2710 
2711 /*
2712  * given a cluster, try to allocate 'bytes' from it, returns 0
2713  * if it couldn't find anything suitably large, or a logical disk offset
2714  * if things worked out
2715  */
2716 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2717 			     struct btrfs_free_cluster *cluster, u64 bytes,
2718 			     u64 min_start, u64 *max_extent_size)
2719 {
2720 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2721 	struct btrfs_free_space *entry = NULL;
2722 	struct rb_node *node;
2723 	u64 ret = 0;
2724 
2725 	spin_lock(&cluster->lock);
2726 	if (bytes > cluster->max_size)
2727 		goto out;
2728 
2729 	if (cluster->block_group != block_group)
2730 		goto out;
2731 
2732 	node = rb_first(&cluster->root);
2733 	if (!node)
2734 		goto out;
2735 
2736 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2737 	while (1) {
2738 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2739 			*max_extent_size = entry->bytes;
2740 
2741 		if (entry->bytes < bytes ||
2742 		    (!entry->bitmap && entry->offset < min_start)) {
2743 			node = rb_next(&entry->offset_index);
2744 			if (!node)
2745 				break;
2746 			entry = rb_entry(node, struct btrfs_free_space,
2747 					 offset_index);
2748 			continue;
2749 		}
2750 
2751 		if (entry->bitmap) {
2752 			ret = btrfs_alloc_from_bitmap(block_group,
2753 						      cluster, entry, bytes,
2754 						      cluster->window_start,
2755 						      max_extent_size);
2756 			if (ret == 0) {
2757 				node = rb_next(&entry->offset_index);
2758 				if (!node)
2759 					break;
2760 				entry = rb_entry(node, struct btrfs_free_space,
2761 						 offset_index);
2762 				continue;
2763 			}
2764 			cluster->window_start += bytes;
2765 		} else {
2766 			ret = entry->offset;
2767 
2768 			entry->offset += bytes;
2769 			entry->bytes -= bytes;
2770 		}
2771 
2772 		if (entry->bytes == 0)
2773 			rb_erase(&entry->offset_index, &cluster->root);
2774 		break;
2775 	}
2776 out:
2777 	spin_unlock(&cluster->lock);
2778 
2779 	if (!ret)
2780 		return 0;
2781 
2782 	spin_lock(&ctl->tree_lock);
2783 
2784 	ctl->free_space -= bytes;
2785 	if (entry->bytes == 0) {
2786 		ctl->free_extents--;
2787 		if (entry->bitmap) {
2788 			kfree(entry->bitmap);
2789 			ctl->total_bitmaps--;
2790 			ctl->op->recalc_thresholds(ctl);
2791 		}
2792 		kmem_cache_free(btrfs_free_space_cachep, entry);
2793 	}
2794 
2795 	spin_unlock(&ctl->tree_lock);
2796 
2797 	return ret;
2798 }
2799 
2800 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2801 				struct btrfs_free_space *entry,
2802 				struct btrfs_free_cluster *cluster,
2803 				u64 offset, u64 bytes,
2804 				u64 cont1_bytes, u64 min_bytes)
2805 {
2806 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2807 	unsigned long next_zero;
2808 	unsigned long i;
2809 	unsigned long want_bits;
2810 	unsigned long min_bits;
2811 	unsigned long found_bits;
2812 	unsigned long max_bits = 0;
2813 	unsigned long start = 0;
2814 	unsigned long total_found = 0;
2815 	int ret;
2816 
2817 	i = offset_to_bit(entry->offset, ctl->unit,
2818 			  max_t(u64, offset, entry->offset));
2819 	want_bits = bytes_to_bits(bytes, ctl->unit);
2820 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2821 
2822 	/*
2823 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2824 	 * fragmented.
2825 	 */
2826 	if (entry->max_extent_size &&
2827 	    entry->max_extent_size < cont1_bytes)
2828 		return -ENOSPC;
2829 again:
2830 	found_bits = 0;
2831 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2832 		next_zero = find_next_zero_bit(entry->bitmap,
2833 					       BITS_PER_BITMAP, i);
2834 		if (next_zero - i >= min_bits) {
2835 			found_bits = next_zero - i;
2836 			if (found_bits > max_bits)
2837 				max_bits = found_bits;
2838 			break;
2839 		}
2840 		if (next_zero - i > max_bits)
2841 			max_bits = next_zero - i;
2842 		i = next_zero;
2843 	}
2844 
2845 	if (!found_bits) {
2846 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2847 		return -ENOSPC;
2848 	}
2849 
2850 	if (!total_found) {
2851 		start = i;
2852 		cluster->max_size = 0;
2853 	}
2854 
2855 	total_found += found_bits;
2856 
2857 	if (cluster->max_size < found_bits * ctl->unit)
2858 		cluster->max_size = found_bits * ctl->unit;
2859 
2860 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2861 		i = next_zero + 1;
2862 		goto again;
2863 	}
2864 
2865 	cluster->window_start = start * ctl->unit + entry->offset;
2866 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2867 	ret = tree_insert_offset(&cluster->root, entry->offset,
2868 				 &entry->offset_index, 1);
2869 	ASSERT(!ret); /* -EEXIST; Logic error */
2870 
2871 	trace_btrfs_setup_cluster(block_group, cluster,
2872 				  total_found * ctl->unit, 1);
2873 	return 0;
2874 }
2875 
2876 /*
2877  * This searches the block group for just extents to fill the cluster with.
2878  * Try to find a cluster with at least bytes total bytes, at least one
2879  * extent of cont1_bytes, and other clusters of at least min_bytes.
2880  */
2881 static noinline int
2882 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2883 			struct btrfs_free_cluster *cluster,
2884 			struct list_head *bitmaps, u64 offset, u64 bytes,
2885 			u64 cont1_bytes, u64 min_bytes)
2886 {
2887 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2888 	struct btrfs_free_space *first = NULL;
2889 	struct btrfs_free_space *entry = NULL;
2890 	struct btrfs_free_space *last;
2891 	struct rb_node *node;
2892 	u64 window_free;
2893 	u64 max_extent;
2894 	u64 total_size = 0;
2895 
2896 	entry = tree_search_offset(ctl, offset, 0, 1);
2897 	if (!entry)
2898 		return -ENOSPC;
2899 
2900 	/*
2901 	 * We don't want bitmaps, so just move along until we find a normal
2902 	 * extent entry.
2903 	 */
2904 	while (entry->bitmap || entry->bytes < min_bytes) {
2905 		if (entry->bitmap && list_empty(&entry->list))
2906 			list_add_tail(&entry->list, bitmaps);
2907 		node = rb_next(&entry->offset_index);
2908 		if (!node)
2909 			return -ENOSPC;
2910 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2911 	}
2912 
2913 	window_free = entry->bytes;
2914 	max_extent = entry->bytes;
2915 	first = entry;
2916 	last = entry;
2917 
2918 	for (node = rb_next(&entry->offset_index); node;
2919 	     node = rb_next(&entry->offset_index)) {
2920 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2921 
2922 		if (entry->bitmap) {
2923 			if (list_empty(&entry->list))
2924 				list_add_tail(&entry->list, bitmaps);
2925 			continue;
2926 		}
2927 
2928 		if (entry->bytes < min_bytes)
2929 			continue;
2930 
2931 		last = entry;
2932 		window_free += entry->bytes;
2933 		if (entry->bytes > max_extent)
2934 			max_extent = entry->bytes;
2935 	}
2936 
2937 	if (window_free < bytes || max_extent < cont1_bytes)
2938 		return -ENOSPC;
2939 
2940 	cluster->window_start = first->offset;
2941 
2942 	node = &first->offset_index;
2943 
2944 	/*
2945 	 * now we've found our entries, pull them out of the free space
2946 	 * cache and put them into the cluster rbtree
2947 	 */
2948 	do {
2949 		int ret;
2950 
2951 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2952 		node = rb_next(&entry->offset_index);
2953 		if (entry->bitmap || entry->bytes < min_bytes)
2954 			continue;
2955 
2956 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2957 		ret = tree_insert_offset(&cluster->root, entry->offset,
2958 					 &entry->offset_index, 0);
2959 		total_size += entry->bytes;
2960 		ASSERT(!ret); /* -EEXIST; Logic error */
2961 	} while (node && entry != last);
2962 
2963 	cluster->max_size = max_extent;
2964 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2965 	return 0;
2966 }
2967 
2968 /*
2969  * This specifically looks for bitmaps that may work in the cluster, we assume
2970  * that we have already failed to find extents that will work.
2971  */
2972 static noinline int
2973 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2974 		     struct btrfs_free_cluster *cluster,
2975 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2976 		     u64 cont1_bytes, u64 min_bytes)
2977 {
2978 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979 	struct btrfs_free_space *entry = NULL;
2980 	int ret = -ENOSPC;
2981 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2982 
2983 	if (ctl->total_bitmaps == 0)
2984 		return -ENOSPC;
2985 
2986 	/*
2987 	 * The bitmap that covers offset won't be in the list unless offset
2988 	 * is just its start offset.
2989 	 */
2990 	if (!list_empty(bitmaps))
2991 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2992 
2993 	if (!entry || entry->offset != bitmap_offset) {
2994 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2995 		if (entry && list_empty(&entry->list))
2996 			list_add(&entry->list, bitmaps);
2997 	}
2998 
2999 	list_for_each_entry(entry, bitmaps, list) {
3000 		if (entry->bytes < bytes)
3001 			continue;
3002 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3003 					   bytes, cont1_bytes, min_bytes);
3004 		if (!ret)
3005 			return 0;
3006 	}
3007 
3008 	/*
3009 	 * The bitmaps list has all the bitmaps that record free space
3010 	 * starting after offset, so no more search is required.
3011 	 */
3012 	return -ENOSPC;
3013 }
3014 
3015 /*
3016  * here we try to find a cluster of blocks in a block group.  The goal
3017  * is to find at least bytes+empty_size.
3018  * We might not find them all in one contiguous area.
3019  *
3020  * returns zero and sets up cluster if things worked out, otherwise
3021  * it returns -enospc
3022  */
3023 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3024 			     struct btrfs_block_group_cache *block_group,
3025 			     struct btrfs_free_cluster *cluster,
3026 			     u64 offset, u64 bytes, u64 empty_size)
3027 {
3028 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3029 	struct btrfs_free_space *entry, *tmp;
3030 	LIST_HEAD(bitmaps);
3031 	u64 min_bytes;
3032 	u64 cont1_bytes;
3033 	int ret;
3034 
3035 	/*
3036 	 * Choose the minimum extent size we'll require for this
3037 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3038 	 * For metadata, allow allocates with smaller extents.  For
3039 	 * data, keep it dense.
3040 	 */
3041 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3042 		cont1_bytes = min_bytes = bytes + empty_size;
3043 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3044 		cont1_bytes = bytes;
3045 		min_bytes = fs_info->sectorsize;
3046 	} else {
3047 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3048 		min_bytes = fs_info->sectorsize;
3049 	}
3050 
3051 	spin_lock(&ctl->tree_lock);
3052 
3053 	/*
3054 	 * If we know we don't have enough space to make a cluster don't even
3055 	 * bother doing all the work to try and find one.
3056 	 */
3057 	if (ctl->free_space < bytes) {
3058 		spin_unlock(&ctl->tree_lock);
3059 		return -ENOSPC;
3060 	}
3061 
3062 	spin_lock(&cluster->lock);
3063 
3064 	/* someone already found a cluster, hooray */
3065 	if (cluster->block_group) {
3066 		ret = 0;
3067 		goto out;
3068 	}
3069 
3070 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3071 				 min_bytes);
3072 
3073 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3074 				      bytes + empty_size,
3075 				      cont1_bytes, min_bytes);
3076 	if (ret)
3077 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3078 					   offset, bytes + empty_size,
3079 					   cont1_bytes, min_bytes);
3080 
3081 	/* Clear our temporary list */
3082 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3083 		list_del_init(&entry->list);
3084 
3085 	if (!ret) {
3086 		atomic_inc(&block_group->count);
3087 		list_add_tail(&cluster->block_group_list,
3088 			      &block_group->cluster_list);
3089 		cluster->block_group = block_group;
3090 	} else {
3091 		trace_btrfs_failed_cluster_setup(block_group);
3092 	}
3093 out:
3094 	spin_unlock(&cluster->lock);
3095 	spin_unlock(&ctl->tree_lock);
3096 
3097 	return ret;
3098 }
3099 
3100 /*
3101  * simple code to zero out a cluster
3102  */
3103 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3104 {
3105 	spin_lock_init(&cluster->lock);
3106 	spin_lock_init(&cluster->refill_lock);
3107 	cluster->root = RB_ROOT;
3108 	cluster->max_size = 0;
3109 	cluster->fragmented = false;
3110 	INIT_LIST_HEAD(&cluster->block_group_list);
3111 	cluster->block_group = NULL;
3112 }
3113 
3114 static int do_trimming(struct btrfs_block_group_cache *block_group,
3115 		       u64 *total_trimmed, u64 start, u64 bytes,
3116 		       u64 reserved_start, u64 reserved_bytes,
3117 		       struct btrfs_trim_range *trim_entry)
3118 {
3119 	struct btrfs_space_info *space_info = block_group->space_info;
3120 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3121 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3122 	int ret;
3123 	int update = 0;
3124 	u64 trimmed = 0;
3125 
3126 	spin_lock(&space_info->lock);
3127 	spin_lock(&block_group->lock);
3128 	if (!block_group->ro) {
3129 		block_group->reserved += reserved_bytes;
3130 		space_info->bytes_reserved += reserved_bytes;
3131 		update = 1;
3132 	}
3133 	spin_unlock(&block_group->lock);
3134 	spin_unlock(&space_info->lock);
3135 
3136 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3137 	if (!ret)
3138 		*total_trimmed += trimmed;
3139 
3140 	mutex_lock(&ctl->cache_writeout_mutex);
3141 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3142 	list_del(&trim_entry->list);
3143 	mutex_unlock(&ctl->cache_writeout_mutex);
3144 
3145 	if (update) {
3146 		spin_lock(&space_info->lock);
3147 		spin_lock(&block_group->lock);
3148 		if (block_group->ro)
3149 			space_info->bytes_readonly += reserved_bytes;
3150 		block_group->reserved -= reserved_bytes;
3151 		space_info->bytes_reserved -= reserved_bytes;
3152 		spin_unlock(&space_info->lock);
3153 		spin_unlock(&block_group->lock);
3154 	}
3155 
3156 	return ret;
3157 }
3158 
3159 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3160 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3161 {
3162 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3163 	struct btrfs_free_space *entry;
3164 	struct rb_node *node;
3165 	int ret = 0;
3166 	u64 extent_start;
3167 	u64 extent_bytes;
3168 	u64 bytes;
3169 
3170 	while (start < end) {
3171 		struct btrfs_trim_range trim_entry;
3172 
3173 		mutex_lock(&ctl->cache_writeout_mutex);
3174 		spin_lock(&ctl->tree_lock);
3175 
3176 		if (ctl->free_space < minlen) {
3177 			spin_unlock(&ctl->tree_lock);
3178 			mutex_unlock(&ctl->cache_writeout_mutex);
3179 			break;
3180 		}
3181 
3182 		entry = tree_search_offset(ctl, start, 0, 1);
3183 		if (!entry) {
3184 			spin_unlock(&ctl->tree_lock);
3185 			mutex_unlock(&ctl->cache_writeout_mutex);
3186 			break;
3187 		}
3188 
3189 		/* skip bitmaps */
3190 		while (entry->bitmap) {
3191 			node = rb_next(&entry->offset_index);
3192 			if (!node) {
3193 				spin_unlock(&ctl->tree_lock);
3194 				mutex_unlock(&ctl->cache_writeout_mutex);
3195 				goto out;
3196 			}
3197 			entry = rb_entry(node, struct btrfs_free_space,
3198 					 offset_index);
3199 		}
3200 
3201 		if (entry->offset >= end) {
3202 			spin_unlock(&ctl->tree_lock);
3203 			mutex_unlock(&ctl->cache_writeout_mutex);
3204 			break;
3205 		}
3206 
3207 		extent_start = entry->offset;
3208 		extent_bytes = entry->bytes;
3209 		start = max(start, extent_start);
3210 		bytes = min(extent_start + extent_bytes, end) - start;
3211 		if (bytes < minlen) {
3212 			spin_unlock(&ctl->tree_lock);
3213 			mutex_unlock(&ctl->cache_writeout_mutex);
3214 			goto next;
3215 		}
3216 
3217 		unlink_free_space(ctl, entry);
3218 		kmem_cache_free(btrfs_free_space_cachep, entry);
3219 
3220 		spin_unlock(&ctl->tree_lock);
3221 		trim_entry.start = extent_start;
3222 		trim_entry.bytes = extent_bytes;
3223 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3224 		mutex_unlock(&ctl->cache_writeout_mutex);
3225 
3226 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3227 				  extent_start, extent_bytes, &trim_entry);
3228 		if (ret)
3229 			break;
3230 next:
3231 		start += bytes;
3232 
3233 		if (fatal_signal_pending(current)) {
3234 			ret = -ERESTARTSYS;
3235 			break;
3236 		}
3237 
3238 		cond_resched();
3239 	}
3240 out:
3241 	return ret;
3242 }
3243 
3244 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3245 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3246 {
3247 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3248 	struct btrfs_free_space *entry;
3249 	int ret = 0;
3250 	int ret2;
3251 	u64 bytes;
3252 	u64 offset = offset_to_bitmap(ctl, start);
3253 
3254 	while (offset < end) {
3255 		bool next_bitmap = false;
3256 		struct btrfs_trim_range trim_entry;
3257 
3258 		mutex_lock(&ctl->cache_writeout_mutex);
3259 		spin_lock(&ctl->tree_lock);
3260 
3261 		if (ctl->free_space < minlen) {
3262 			spin_unlock(&ctl->tree_lock);
3263 			mutex_unlock(&ctl->cache_writeout_mutex);
3264 			break;
3265 		}
3266 
3267 		entry = tree_search_offset(ctl, offset, 1, 0);
3268 		if (!entry) {
3269 			spin_unlock(&ctl->tree_lock);
3270 			mutex_unlock(&ctl->cache_writeout_mutex);
3271 			next_bitmap = true;
3272 			goto next;
3273 		}
3274 
3275 		bytes = minlen;
3276 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3277 		if (ret2 || start >= end) {
3278 			spin_unlock(&ctl->tree_lock);
3279 			mutex_unlock(&ctl->cache_writeout_mutex);
3280 			next_bitmap = true;
3281 			goto next;
3282 		}
3283 
3284 		bytes = min(bytes, end - start);
3285 		if (bytes < minlen) {
3286 			spin_unlock(&ctl->tree_lock);
3287 			mutex_unlock(&ctl->cache_writeout_mutex);
3288 			goto next;
3289 		}
3290 
3291 		bitmap_clear_bits(ctl, entry, start, bytes);
3292 		if (entry->bytes == 0)
3293 			free_bitmap(ctl, entry);
3294 
3295 		spin_unlock(&ctl->tree_lock);
3296 		trim_entry.start = start;
3297 		trim_entry.bytes = bytes;
3298 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3299 		mutex_unlock(&ctl->cache_writeout_mutex);
3300 
3301 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3302 				  start, bytes, &trim_entry);
3303 		if (ret)
3304 			break;
3305 next:
3306 		if (next_bitmap) {
3307 			offset += BITS_PER_BITMAP * ctl->unit;
3308 		} else {
3309 			start += bytes;
3310 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3311 				offset += BITS_PER_BITMAP * ctl->unit;
3312 		}
3313 
3314 		if (fatal_signal_pending(current)) {
3315 			ret = -ERESTARTSYS;
3316 			break;
3317 		}
3318 
3319 		cond_resched();
3320 	}
3321 
3322 	return ret;
3323 }
3324 
3325 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3326 {
3327 	atomic_inc(&cache->trimming);
3328 }
3329 
3330 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3331 {
3332 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3333 	struct extent_map_tree *em_tree;
3334 	struct extent_map *em;
3335 	bool cleanup;
3336 
3337 	spin_lock(&block_group->lock);
3338 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3339 		   block_group->removed);
3340 	spin_unlock(&block_group->lock);
3341 
3342 	if (cleanup) {
3343 		mutex_lock(&fs_info->chunk_mutex);
3344 		em_tree = &fs_info->mapping_tree.map_tree;
3345 		write_lock(&em_tree->lock);
3346 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3347 					   1);
3348 		BUG_ON(!em); /* logic error, can't happen */
3349 		/*
3350 		 * remove_extent_mapping() will delete us from the pinned_chunks
3351 		 * list, which is protected by the chunk mutex.
3352 		 */
3353 		remove_extent_mapping(em_tree, em);
3354 		write_unlock(&em_tree->lock);
3355 		mutex_unlock(&fs_info->chunk_mutex);
3356 
3357 		/* once for us and once for the tree */
3358 		free_extent_map(em);
3359 		free_extent_map(em);
3360 
3361 		/*
3362 		 * We've left one free space entry and other tasks trimming
3363 		 * this block group have left 1 entry each one. Free them.
3364 		 */
3365 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3366 	}
3367 }
3368 
3369 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3370 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3371 {
3372 	int ret;
3373 
3374 	*trimmed = 0;
3375 
3376 	spin_lock(&block_group->lock);
3377 	if (block_group->removed) {
3378 		spin_unlock(&block_group->lock);
3379 		return 0;
3380 	}
3381 	btrfs_get_block_group_trimming(block_group);
3382 	spin_unlock(&block_group->lock);
3383 
3384 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3385 	if (ret)
3386 		goto out;
3387 
3388 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3389 out:
3390 	btrfs_put_block_group_trimming(block_group);
3391 	return ret;
3392 }
3393 
3394 /*
3395  * Find the left-most item in the cache tree, and then return the
3396  * smallest inode number in the item.
3397  *
3398  * Note: the returned inode number may not be the smallest one in
3399  * the tree, if the left-most item is a bitmap.
3400  */
3401 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3402 {
3403 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3404 	struct btrfs_free_space *entry = NULL;
3405 	u64 ino = 0;
3406 
3407 	spin_lock(&ctl->tree_lock);
3408 
3409 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3410 		goto out;
3411 
3412 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3413 			 struct btrfs_free_space, offset_index);
3414 
3415 	if (!entry->bitmap) {
3416 		ino = entry->offset;
3417 
3418 		unlink_free_space(ctl, entry);
3419 		entry->offset++;
3420 		entry->bytes--;
3421 		if (!entry->bytes)
3422 			kmem_cache_free(btrfs_free_space_cachep, entry);
3423 		else
3424 			link_free_space(ctl, entry);
3425 	} else {
3426 		u64 offset = 0;
3427 		u64 count = 1;
3428 		int ret;
3429 
3430 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3431 		/* Logic error; Should be empty if it can't find anything */
3432 		ASSERT(!ret);
3433 
3434 		ino = offset;
3435 		bitmap_clear_bits(ctl, entry, offset, 1);
3436 		if (entry->bytes == 0)
3437 			free_bitmap(ctl, entry);
3438 	}
3439 out:
3440 	spin_unlock(&ctl->tree_lock);
3441 
3442 	return ino;
3443 }
3444 
3445 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3446 				    struct btrfs_path *path)
3447 {
3448 	struct inode *inode = NULL;
3449 
3450 	spin_lock(&root->ino_cache_lock);
3451 	if (root->ino_cache_inode)
3452 		inode = igrab(root->ino_cache_inode);
3453 	spin_unlock(&root->ino_cache_lock);
3454 	if (inode)
3455 		return inode;
3456 
3457 	inode = __lookup_free_space_inode(root, path, 0);
3458 	if (IS_ERR(inode))
3459 		return inode;
3460 
3461 	spin_lock(&root->ino_cache_lock);
3462 	if (!btrfs_fs_closing(root->fs_info))
3463 		root->ino_cache_inode = igrab(inode);
3464 	spin_unlock(&root->ino_cache_lock);
3465 
3466 	return inode;
3467 }
3468 
3469 int create_free_ino_inode(struct btrfs_root *root,
3470 			  struct btrfs_trans_handle *trans,
3471 			  struct btrfs_path *path)
3472 {
3473 	return __create_free_space_inode(root, trans, path,
3474 					 BTRFS_FREE_INO_OBJECTID, 0);
3475 }
3476 
3477 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3478 {
3479 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3480 	struct btrfs_path *path;
3481 	struct inode *inode;
3482 	int ret = 0;
3483 	u64 root_gen = btrfs_root_generation(&root->root_item);
3484 
3485 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3486 		return 0;
3487 
3488 	/*
3489 	 * If we're unmounting then just return, since this does a search on the
3490 	 * normal root and not the commit root and we could deadlock.
3491 	 */
3492 	if (btrfs_fs_closing(fs_info))
3493 		return 0;
3494 
3495 	path = btrfs_alloc_path();
3496 	if (!path)
3497 		return 0;
3498 
3499 	inode = lookup_free_ino_inode(root, path);
3500 	if (IS_ERR(inode))
3501 		goto out;
3502 
3503 	if (root_gen != BTRFS_I(inode)->generation)
3504 		goto out_put;
3505 
3506 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3507 
3508 	if (ret < 0)
3509 		btrfs_err(fs_info,
3510 			"failed to load free ino cache for root %llu",
3511 			root->root_key.objectid);
3512 out_put:
3513 	iput(inode);
3514 out:
3515 	btrfs_free_path(path);
3516 	return ret;
3517 }
3518 
3519 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3520 			      struct btrfs_trans_handle *trans,
3521 			      struct btrfs_path *path,
3522 			      struct inode *inode)
3523 {
3524 	struct btrfs_fs_info *fs_info = root->fs_info;
3525 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3526 	int ret;
3527 	struct btrfs_io_ctl io_ctl;
3528 	bool release_metadata = true;
3529 
3530 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3531 		return 0;
3532 
3533 	memset(&io_ctl, 0, sizeof(io_ctl));
3534 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3535 	if (!ret) {
3536 		/*
3537 		 * At this point writepages() didn't error out, so our metadata
3538 		 * reservation is released when the writeback finishes, at
3539 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3540 		 * with or without an error.
3541 		 */
3542 		release_metadata = false;
3543 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3544 	}
3545 
3546 	if (ret) {
3547 		if (release_metadata)
3548 			btrfs_delalloc_release_metadata(inode, inode->i_size);
3549 #ifdef DEBUG
3550 		btrfs_err(fs_info,
3551 			  "failed to write free ino cache for root %llu",
3552 			  root->root_key.objectid);
3553 #endif
3554 	}
3555 
3556 	return ret;
3557 }
3558 
3559 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3560 /*
3561  * Use this if you need to make a bitmap or extent entry specifically, it
3562  * doesn't do any of the merging that add_free_space does, this acts a lot like
3563  * how the free space cache loading stuff works, so you can get really weird
3564  * configurations.
3565  */
3566 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3567 			      u64 offset, u64 bytes, bool bitmap)
3568 {
3569 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3570 	struct btrfs_free_space *info = NULL, *bitmap_info;
3571 	void *map = NULL;
3572 	u64 bytes_added;
3573 	int ret;
3574 
3575 again:
3576 	if (!info) {
3577 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3578 		if (!info)
3579 			return -ENOMEM;
3580 	}
3581 
3582 	if (!bitmap) {
3583 		spin_lock(&ctl->tree_lock);
3584 		info->offset = offset;
3585 		info->bytes = bytes;
3586 		info->max_extent_size = 0;
3587 		ret = link_free_space(ctl, info);
3588 		spin_unlock(&ctl->tree_lock);
3589 		if (ret)
3590 			kmem_cache_free(btrfs_free_space_cachep, info);
3591 		return ret;
3592 	}
3593 
3594 	if (!map) {
3595 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3596 		if (!map) {
3597 			kmem_cache_free(btrfs_free_space_cachep, info);
3598 			return -ENOMEM;
3599 		}
3600 	}
3601 
3602 	spin_lock(&ctl->tree_lock);
3603 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3604 					 1, 0);
3605 	if (!bitmap_info) {
3606 		info->bitmap = map;
3607 		map = NULL;
3608 		add_new_bitmap(ctl, info, offset);
3609 		bitmap_info = info;
3610 		info = NULL;
3611 	}
3612 
3613 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3614 
3615 	bytes -= bytes_added;
3616 	offset += bytes_added;
3617 	spin_unlock(&ctl->tree_lock);
3618 
3619 	if (bytes)
3620 		goto again;
3621 
3622 	if (info)
3623 		kmem_cache_free(btrfs_free_space_cachep, info);
3624 	if (map)
3625 		kfree(map);
3626 	return 0;
3627 }
3628 
3629 /*
3630  * Checks to see if the given range is in the free space cache.  This is really
3631  * just used to check the absence of space, so if there is free space in the
3632  * range at all we will return 1.
3633  */
3634 int test_check_exists(struct btrfs_block_group_cache *cache,
3635 		      u64 offset, u64 bytes)
3636 {
3637 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3638 	struct btrfs_free_space *info;
3639 	int ret = 0;
3640 
3641 	spin_lock(&ctl->tree_lock);
3642 	info = tree_search_offset(ctl, offset, 0, 0);
3643 	if (!info) {
3644 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3645 					  1, 0);
3646 		if (!info)
3647 			goto out;
3648 	}
3649 
3650 have_info:
3651 	if (info->bitmap) {
3652 		u64 bit_off, bit_bytes;
3653 		struct rb_node *n;
3654 		struct btrfs_free_space *tmp;
3655 
3656 		bit_off = offset;
3657 		bit_bytes = ctl->unit;
3658 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3659 		if (!ret) {
3660 			if (bit_off == offset) {
3661 				ret = 1;
3662 				goto out;
3663 			} else if (bit_off > offset &&
3664 				   offset + bytes > bit_off) {
3665 				ret = 1;
3666 				goto out;
3667 			}
3668 		}
3669 
3670 		n = rb_prev(&info->offset_index);
3671 		while (n) {
3672 			tmp = rb_entry(n, struct btrfs_free_space,
3673 				       offset_index);
3674 			if (tmp->offset + tmp->bytes < offset)
3675 				break;
3676 			if (offset + bytes < tmp->offset) {
3677 				n = rb_prev(&tmp->offset_index);
3678 				continue;
3679 			}
3680 			info = tmp;
3681 			goto have_info;
3682 		}
3683 
3684 		n = rb_next(&info->offset_index);
3685 		while (n) {
3686 			tmp = rb_entry(n, struct btrfs_free_space,
3687 				       offset_index);
3688 			if (offset + bytes < tmp->offset)
3689 				break;
3690 			if (tmp->offset + tmp->bytes < offset) {
3691 				n = rb_next(&tmp->offset_index);
3692 				continue;
3693 			}
3694 			info = tmp;
3695 			goto have_info;
3696 		}
3697 
3698 		ret = 0;
3699 		goto out;
3700 	}
3701 
3702 	if (info->offset == offset) {
3703 		ret = 1;
3704 		goto out;
3705 	}
3706 
3707 	if (offset > info->offset && offset < info->offset + info->bytes)
3708 		ret = 1;
3709 out:
3710 	spin_unlock(&ctl->tree_lock);
3711 	return ret;
3712 }
3713 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3714