xref: /openbmc/linux/fs/btrfs/file.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39 	struct rb_node rb_node;
40 	/* objectid */
41 	u64 ino;
42 	/*
43 	 * transid where the defrag was added, we search for
44 	 * extents newer than this
45 	 */
46 	u64 transid;
47 
48 	/* root objectid */
49 	u64 root;
50 
51 	/* last offset we were able to defrag */
52 	u64 last_offset;
53 
54 	/* if we've wrapped around back to zero once already */
55 	int cycled;
56 };
57 
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 				  struct inode_defrag *defrag2)
60 {
61 	if (defrag1->root > defrag2->root)
62 		return 1;
63 	else if (defrag1->root < defrag2->root)
64 		return -1;
65 	else if (defrag1->ino > defrag2->ino)
66 		return 1;
67 	else if (defrag1->ino < defrag2->ino)
68 		return -1;
69 	else
70 		return 0;
71 }
72 
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 				    struct inode_defrag *defrag)
84 {
85 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 	struct inode_defrag *entry;
87 	struct rb_node **p;
88 	struct rb_node *parent = NULL;
89 	int ret;
90 
91 	p = &fs_info->defrag_inodes.rb_node;
92 	while (*p) {
93 		parent = *p;
94 		entry = rb_entry(parent, struct inode_defrag, rb_node);
95 
96 		ret = __compare_inode_defrag(defrag, entry);
97 		if (ret < 0)
98 			p = &parent->rb_left;
99 		else if (ret > 0)
100 			p = &parent->rb_right;
101 		else {
102 			/* if we're reinserting an entry for
103 			 * an old defrag run, make sure to
104 			 * lower the transid of our existing record
105 			 */
106 			if (defrag->transid < entry->transid)
107 				entry->transid = defrag->transid;
108 			if (defrag->last_offset > entry->last_offset)
109 				entry->last_offset = defrag->last_offset;
110 			return -EEXIST;
111 		}
112 	}
113 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 	rb_link_node(&defrag->rb_node, parent, p);
115 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 	return 0;
117 }
118 
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 		return 0;
123 
124 	if (btrfs_fs_closing(fs_info))
125 		return 0;
126 
127 	return 1;
128 }
129 
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 			   struct btrfs_inode *inode)
136 {
137 	struct btrfs_root *root = inode->root;
138 	struct btrfs_fs_info *fs_info = root->fs_info;
139 	struct inode_defrag *defrag;
140 	u64 transid;
141 	int ret;
142 
143 	if (!__need_auto_defrag(fs_info))
144 		return 0;
145 
146 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 		return 0;
148 
149 	if (trans)
150 		transid = trans->transid;
151 	else
152 		transid = inode->root->last_trans;
153 
154 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 	if (!defrag)
156 		return -ENOMEM;
157 
158 	defrag->ino = btrfs_ino(inode);
159 	defrag->transid = transid;
160 	defrag->root = root->root_key.objectid;
161 
162 	spin_lock(&fs_info->defrag_inodes_lock);
163 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164 		/*
165 		 * If we set IN_DEFRAG flag and evict the inode from memory,
166 		 * and then re-read this inode, this new inode doesn't have
167 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 		 */
169 		ret = __btrfs_add_inode_defrag(inode, defrag);
170 		if (ret)
171 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 	} else {
173 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 	}
175 	spin_unlock(&fs_info->defrag_inodes_lock);
176 	return 0;
177 }
178 
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 				       struct inode_defrag *defrag)
186 {
187 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 	int ret;
189 
190 	if (!__need_auto_defrag(fs_info))
191 		goto out;
192 
193 	/*
194 	 * Here we don't check the IN_DEFRAG flag, because we need merge
195 	 * them together.
196 	 */
197 	spin_lock(&fs_info->defrag_inodes_lock);
198 	ret = __btrfs_add_inode_defrag(inode, defrag);
199 	spin_unlock(&fs_info->defrag_inodes_lock);
200 	if (ret)
201 		goto out;
202 	return;
203 out:
204 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206 
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214 	struct inode_defrag *entry = NULL;
215 	struct inode_defrag tmp;
216 	struct rb_node *p;
217 	struct rb_node *parent = NULL;
218 	int ret;
219 
220 	tmp.ino = ino;
221 	tmp.root = root;
222 
223 	spin_lock(&fs_info->defrag_inodes_lock);
224 	p = fs_info->defrag_inodes.rb_node;
225 	while (p) {
226 		parent = p;
227 		entry = rb_entry(parent, struct inode_defrag, rb_node);
228 
229 		ret = __compare_inode_defrag(&tmp, entry);
230 		if (ret < 0)
231 			p = parent->rb_left;
232 		else if (ret > 0)
233 			p = parent->rb_right;
234 		else
235 			goto out;
236 	}
237 
238 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 		parent = rb_next(parent);
240 		if (parent)
241 			entry = rb_entry(parent, struct inode_defrag, rb_node);
242 		else
243 			entry = NULL;
244 	}
245 out:
246 	if (entry)
247 		rb_erase(parent, &fs_info->defrag_inodes);
248 	spin_unlock(&fs_info->defrag_inodes_lock);
249 	return entry;
250 }
251 
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254 	struct inode_defrag *defrag;
255 	struct rb_node *node;
256 
257 	spin_lock(&fs_info->defrag_inodes_lock);
258 	node = rb_first(&fs_info->defrag_inodes);
259 	while (node) {
260 		rb_erase(node, &fs_info->defrag_inodes);
261 		defrag = rb_entry(node, struct inode_defrag, rb_node);
262 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263 
264 		cond_resched_lock(&fs_info->defrag_inodes_lock);
265 
266 		node = rb_first(&fs_info->defrag_inodes);
267 	}
268 	spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270 
271 #define BTRFS_DEFRAG_BATCH	1024
272 
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 				    struct inode_defrag *defrag)
275 {
276 	struct btrfs_root *inode_root;
277 	struct inode *inode;
278 	struct btrfs_ioctl_defrag_range_args range;
279 	int num_defrag;
280 	int ret;
281 
282 	/* get the inode */
283 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 	if (IS_ERR(inode_root)) {
285 		ret = PTR_ERR(inode_root);
286 		goto cleanup;
287 	}
288 
289 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 	btrfs_put_root(inode_root);
291 	if (IS_ERR(inode)) {
292 		ret = PTR_ERR(inode);
293 		goto cleanup;
294 	}
295 
296 	/* do a chunk of defrag */
297 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 	memset(&range, 0, sizeof(range));
299 	range.len = (u64)-1;
300 	range.start = defrag->last_offset;
301 
302 	sb_start_write(fs_info->sb);
303 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 				       BTRFS_DEFRAG_BATCH);
305 	sb_end_write(fs_info->sb);
306 	/*
307 	 * if we filled the whole defrag batch, there
308 	 * must be more work to do.  Queue this defrag
309 	 * again
310 	 */
311 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 		defrag->last_offset = range.start;
313 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 	} else if (defrag->last_offset && !defrag->cycled) {
315 		/*
316 		 * we didn't fill our defrag batch, but
317 		 * we didn't start at zero.  Make sure we loop
318 		 * around to the start of the file.
319 		 */
320 		defrag->last_offset = 0;
321 		defrag->cycled = 1;
322 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 	} else {
324 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325 	}
326 
327 	iput(inode);
328 	return 0;
329 cleanup:
330 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 	return ret;
332 }
333 
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340 	struct inode_defrag *defrag;
341 	u64 first_ino = 0;
342 	u64 root_objectid = 0;
343 
344 	atomic_inc(&fs_info->defrag_running);
345 	while (1) {
346 		/* Pause the auto defragger. */
347 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 			     &fs_info->fs_state))
349 			break;
350 
351 		if (!__need_auto_defrag(fs_info))
352 			break;
353 
354 		/* find an inode to defrag */
355 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 						 first_ino);
357 		if (!defrag) {
358 			if (root_objectid || first_ino) {
359 				root_objectid = 0;
360 				first_ino = 0;
361 				continue;
362 			} else {
363 				break;
364 			}
365 		}
366 
367 		first_ino = defrag->ino + 1;
368 		root_objectid = defrag->root;
369 
370 		__btrfs_run_defrag_inode(fs_info, defrag);
371 	}
372 	atomic_dec(&fs_info->defrag_running);
373 
374 	/*
375 	 * during unmount, we use the transaction_wait queue to
376 	 * wait for the defragger to stop
377 	 */
378 	wake_up(&fs_info->transaction_wait);
379 	return 0;
380 }
381 
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 					 struct page **prepared_pages,
387 					 struct iov_iter *i)
388 {
389 	size_t copied = 0;
390 	size_t total_copied = 0;
391 	int pg = 0;
392 	int offset = offset_in_page(pos);
393 
394 	while (write_bytes > 0) {
395 		size_t count = min_t(size_t,
396 				     PAGE_SIZE - offset, write_bytes);
397 		struct page *page = prepared_pages[pg];
398 		/*
399 		 * Copy data from userspace to the current page
400 		 */
401 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402 
403 		/* Flush processor's dcache for this page */
404 		flush_dcache_page(page);
405 
406 		/*
407 		 * if we get a partial write, we can end up with
408 		 * partially up to date pages.  These add
409 		 * a lot of complexity, so make sure they don't
410 		 * happen by forcing this copy to be retried.
411 		 *
412 		 * The rest of the btrfs_file_write code will fall
413 		 * back to page at a time copies after we return 0.
414 		 */
415 		if (!PageUptodate(page) && copied < count)
416 			copied = 0;
417 
418 		iov_iter_advance(i, copied);
419 		write_bytes -= copied;
420 		total_copied += copied;
421 
422 		/* Return to btrfs_file_write_iter to fault page */
423 		if (unlikely(copied == 0))
424 			break;
425 
426 		if (copied < PAGE_SIZE - offset) {
427 			offset += copied;
428 		} else {
429 			pg++;
430 			offset = 0;
431 		}
432 	}
433 	return total_copied;
434 }
435 
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441 	size_t i;
442 	for (i = 0; i < num_pages; i++) {
443 		/* page checked is some magic around finding pages that
444 		 * have been modified without going through btrfs_set_page_dirty
445 		 * clear it here. There should be no need to mark the pages
446 		 * accessed as prepare_pages should have marked them accessed
447 		 * in prepare_pages via find_or_create_page()
448 		 */
449 		ClearPageChecked(pages[i]);
450 		unlock_page(pages[i]);
451 		put_page(pages[i]);
452 	}
453 }
454 
455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
456 					 const u64 start,
457 					 const u64 len,
458 					 struct extent_state **cached_state)
459 {
460 	u64 search_start = start;
461 	const u64 end = start + len - 1;
462 
463 	while (search_start < end) {
464 		const u64 search_len = end - search_start + 1;
465 		struct extent_map *em;
466 		u64 em_len;
467 		int ret = 0;
468 
469 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
470 		if (IS_ERR(em))
471 			return PTR_ERR(em);
472 
473 		if (em->block_start != EXTENT_MAP_HOLE)
474 			goto next;
475 
476 		em_len = em->len;
477 		if (em->start < search_start)
478 			em_len -= search_start - em->start;
479 		if (em_len > search_len)
480 			em_len = search_len;
481 
482 		ret = set_extent_bit(&inode->io_tree, search_start,
483 				     search_start + em_len - 1,
484 				     EXTENT_DELALLOC_NEW,
485 				     NULL, cached_state, GFP_NOFS);
486 next:
487 		search_start = extent_map_end(em);
488 		free_extent_map(em);
489 		if (ret)
490 			return ret;
491 	}
492 	return 0;
493 }
494 
495 /*
496  * after copy_from_user, pages need to be dirtied and we need to make
497  * sure holes are created between the current EOF and the start of
498  * any next extents (if required).
499  *
500  * this also makes the decision about creating an inline extent vs
501  * doing real data extents, marking pages dirty and delalloc as required.
502  */
503 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
504 		      size_t num_pages, loff_t pos, size_t write_bytes,
505 		      struct extent_state **cached)
506 {
507 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
508 	int err = 0;
509 	int i;
510 	u64 num_bytes;
511 	u64 start_pos;
512 	u64 end_of_last_block;
513 	u64 end_pos = pos + write_bytes;
514 	loff_t isize = i_size_read(&inode->vfs_inode);
515 	unsigned int extra_bits = 0;
516 
517 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
518 	num_bytes = round_up(write_bytes + pos - start_pos,
519 			     fs_info->sectorsize);
520 
521 	end_of_last_block = start_pos + num_bytes - 1;
522 
523 	/*
524 	 * The pages may have already been dirty, clear out old accounting so
525 	 * we can set things up properly
526 	 */
527 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
528 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
529 			 0, 0, cached);
530 
531 	if (!btrfs_is_free_space_inode(inode)) {
532 		if (start_pos >= isize &&
533 		    !(inode->flags & BTRFS_INODE_PREALLOC)) {
534 			/*
535 			 * There can't be any extents following eof in this case
536 			 * so just set the delalloc new bit for the range
537 			 * directly.
538 			 */
539 			extra_bits |= EXTENT_DELALLOC_NEW;
540 		} else {
541 			err = btrfs_find_new_delalloc_bytes(inode, start_pos,
542 							    num_bytes, cached);
543 			if (err)
544 				return err;
545 		}
546 	}
547 
548 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
549 					extra_bits, cached);
550 	if (err)
551 		return err;
552 
553 	for (i = 0; i < num_pages; i++) {
554 		struct page *p = pages[i];
555 		SetPageUptodate(p);
556 		ClearPageChecked(p);
557 		set_page_dirty(p);
558 	}
559 
560 	/*
561 	 * we've only changed i_size in ram, and we haven't updated
562 	 * the disk i_size.  There is no need to log the inode
563 	 * at this time.
564 	 */
565 	if (end_pos > isize)
566 		i_size_write(&inode->vfs_inode, end_pos);
567 	return 0;
568 }
569 
570 /*
571  * this drops all the extents in the cache that intersect the range
572  * [start, end].  Existing extents are split as required.
573  */
574 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
575 			     int skip_pinned)
576 {
577 	struct extent_map *em;
578 	struct extent_map *split = NULL;
579 	struct extent_map *split2 = NULL;
580 	struct extent_map_tree *em_tree = &inode->extent_tree;
581 	u64 len = end - start + 1;
582 	u64 gen;
583 	int ret;
584 	int testend = 1;
585 	unsigned long flags;
586 	int compressed = 0;
587 	bool modified;
588 
589 	WARN_ON(end < start);
590 	if (end == (u64)-1) {
591 		len = (u64)-1;
592 		testend = 0;
593 	}
594 	while (1) {
595 		int no_splits = 0;
596 
597 		modified = false;
598 		if (!split)
599 			split = alloc_extent_map();
600 		if (!split2)
601 			split2 = alloc_extent_map();
602 		if (!split || !split2)
603 			no_splits = 1;
604 
605 		write_lock(&em_tree->lock);
606 		em = lookup_extent_mapping(em_tree, start, len);
607 		if (!em) {
608 			write_unlock(&em_tree->lock);
609 			break;
610 		}
611 		flags = em->flags;
612 		gen = em->generation;
613 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
614 			if (testend && em->start + em->len >= start + len) {
615 				free_extent_map(em);
616 				write_unlock(&em_tree->lock);
617 				break;
618 			}
619 			start = em->start + em->len;
620 			if (testend)
621 				len = start + len - (em->start + em->len);
622 			free_extent_map(em);
623 			write_unlock(&em_tree->lock);
624 			continue;
625 		}
626 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
627 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
628 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
629 		modified = !list_empty(&em->list);
630 		if (no_splits)
631 			goto next;
632 
633 		if (em->start < start) {
634 			split->start = em->start;
635 			split->len = start - em->start;
636 
637 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
638 				split->orig_start = em->orig_start;
639 				split->block_start = em->block_start;
640 
641 				if (compressed)
642 					split->block_len = em->block_len;
643 				else
644 					split->block_len = split->len;
645 				split->orig_block_len = max(split->block_len,
646 						em->orig_block_len);
647 				split->ram_bytes = em->ram_bytes;
648 			} else {
649 				split->orig_start = split->start;
650 				split->block_len = 0;
651 				split->block_start = em->block_start;
652 				split->orig_block_len = 0;
653 				split->ram_bytes = split->len;
654 			}
655 
656 			split->generation = gen;
657 			split->flags = flags;
658 			split->compress_type = em->compress_type;
659 			replace_extent_mapping(em_tree, em, split, modified);
660 			free_extent_map(split);
661 			split = split2;
662 			split2 = NULL;
663 		}
664 		if (testend && em->start + em->len > start + len) {
665 			u64 diff = start + len - em->start;
666 
667 			split->start = start + len;
668 			split->len = em->start + em->len - (start + len);
669 			split->flags = flags;
670 			split->compress_type = em->compress_type;
671 			split->generation = gen;
672 
673 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
674 				split->orig_block_len = max(em->block_len,
675 						    em->orig_block_len);
676 
677 				split->ram_bytes = em->ram_bytes;
678 				if (compressed) {
679 					split->block_len = em->block_len;
680 					split->block_start = em->block_start;
681 					split->orig_start = em->orig_start;
682 				} else {
683 					split->block_len = split->len;
684 					split->block_start = em->block_start
685 						+ diff;
686 					split->orig_start = em->orig_start;
687 				}
688 			} else {
689 				split->ram_bytes = split->len;
690 				split->orig_start = split->start;
691 				split->block_len = 0;
692 				split->block_start = em->block_start;
693 				split->orig_block_len = 0;
694 			}
695 
696 			if (extent_map_in_tree(em)) {
697 				replace_extent_mapping(em_tree, em, split,
698 						       modified);
699 			} else {
700 				ret = add_extent_mapping(em_tree, split,
701 							 modified);
702 				ASSERT(ret == 0); /* Logic error */
703 			}
704 			free_extent_map(split);
705 			split = NULL;
706 		}
707 next:
708 		if (extent_map_in_tree(em))
709 			remove_extent_mapping(em_tree, em);
710 		write_unlock(&em_tree->lock);
711 
712 		/* once for us */
713 		free_extent_map(em);
714 		/* once for the tree*/
715 		free_extent_map(em);
716 	}
717 	if (split)
718 		free_extent_map(split);
719 	if (split2)
720 		free_extent_map(split2);
721 }
722 
723 /*
724  * this is very complex, but the basic idea is to drop all extents
725  * in the range start - end.  hint_block is filled in with a block number
726  * that would be a good hint to the block allocator for this file.
727  *
728  * If an extent intersects the range but is not entirely inside the range
729  * it is either truncated or split.  Anything entirely inside the range
730  * is deleted from the tree.
731  */
732 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
733 			 struct btrfs_root *root, struct btrfs_inode *inode,
734 			 struct btrfs_path *path, u64 start, u64 end,
735 			 u64 *drop_end, int drop_cache,
736 			 int replace_extent,
737 			 u32 extent_item_size,
738 			 int *key_inserted)
739 {
740 	struct btrfs_fs_info *fs_info = root->fs_info;
741 	struct extent_buffer *leaf;
742 	struct btrfs_file_extent_item *fi;
743 	struct btrfs_ref ref = { 0 };
744 	struct btrfs_key key;
745 	struct btrfs_key new_key;
746 	struct inode *vfs_inode = &inode->vfs_inode;
747 	u64 ino = btrfs_ino(inode);
748 	u64 search_start = start;
749 	u64 disk_bytenr = 0;
750 	u64 num_bytes = 0;
751 	u64 extent_offset = 0;
752 	u64 extent_end = 0;
753 	u64 last_end = start;
754 	int del_nr = 0;
755 	int del_slot = 0;
756 	int extent_type;
757 	int recow;
758 	int ret;
759 	int modify_tree = -1;
760 	int update_refs;
761 	int found = 0;
762 	int leafs_visited = 0;
763 
764 	if (drop_cache)
765 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
766 
767 	if (start >= inode->disk_i_size && !replace_extent)
768 		modify_tree = 0;
769 
770 	update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
771 		       root == fs_info->tree_root);
772 	while (1) {
773 		recow = 0;
774 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
775 					       search_start, modify_tree);
776 		if (ret < 0)
777 			break;
778 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
779 			leaf = path->nodes[0];
780 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
781 			if (key.objectid == ino &&
782 			    key.type == BTRFS_EXTENT_DATA_KEY)
783 				path->slots[0]--;
784 		}
785 		ret = 0;
786 		leafs_visited++;
787 next_slot:
788 		leaf = path->nodes[0];
789 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
790 			BUG_ON(del_nr > 0);
791 			ret = btrfs_next_leaf(root, path);
792 			if (ret < 0)
793 				break;
794 			if (ret > 0) {
795 				ret = 0;
796 				break;
797 			}
798 			leafs_visited++;
799 			leaf = path->nodes[0];
800 			recow = 1;
801 		}
802 
803 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
804 
805 		if (key.objectid > ino)
806 			break;
807 		if (WARN_ON_ONCE(key.objectid < ino) ||
808 		    key.type < BTRFS_EXTENT_DATA_KEY) {
809 			ASSERT(del_nr == 0);
810 			path->slots[0]++;
811 			goto next_slot;
812 		}
813 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
814 			break;
815 
816 		fi = btrfs_item_ptr(leaf, path->slots[0],
817 				    struct btrfs_file_extent_item);
818 		extent_type = btrfs_file_extent_type(leaf, fi);
819 
820 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
821 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
822 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
823 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
824 			extent_offset = btrfs_file_extent_offset(leaf, fi);
825 			extent_end = key.offset +
826 				btrfs_file_extent_num_bytes(leaf, fi);
827 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828 			extent_end = key.offset +
829 				btrfs_file_extent_ram_bytes(leaf, fi);
830 		} else {
831 			/* can't happen */
832 			BUG();
833 		}
834 
835 		/*
836 		 * Don't skip extent items representing 0 byte lengths. They
837 		 * used to be created (bug) if while punching holes we hit
838 		 * -ENOSPC condition. So if we find one here, just ensure we
839 		 * delete it, otherwise we would insert a new file extent item
840 		 * with the same key (offset) as that 0 bytes length file
841 		 * extent item in the call to setup_items_for_insert() later
842 		 * in this function.
843 		 */
844 		if (extent_end == key.offset && extent_end >= search_start) {
845 			last_end = extent_end;
846 			goto delete_extent_item;
847 		}
848 
849 		if (extent_end <= search_start) {
850 			path->slots[0]++;
851 			goto next_slot;
852 		}
853 
854 		found = 1;
855 		search_start = max(key.offset, start);
856 		if (recow || !modify_tree) {
857 			modify_tree = -1;
858 			btrfs_release_path(path);
859 			continue;
860 		}
861 
862 		/*
863 		 *     | - range to drop - |
864 		 *  | -------- extent -------- |
865 		 */
866 		if (start > key.offset && end < extent_end) {
867 			BUG_ON(del_nr > 0);
868 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 				ret = -EOPNOTSUPP;
870 				break;
871 			}
872 
873 			memcpy(&new_key, &key, sizeof(new_key));
874 			new_key.offset = start;
875 			ret = btrfs_duplicate_item(trans, root, path,
876 						   &new_key);
877 			if (ret == -EAGAIN) {
878 				btrfs_release_path(path);
879 				continue;
880 			}
881 			if (ret < 0)
882 				break;
883 
884 			leaf = path->nodes[0];
885 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
886 					    struct btrfs_file_extent_item);
887 			btrfs_set_file_extent_num_bytes(leaf, fi,
888 							start - key.offset);
889 
890 			fi = btrfs_item_ptr(leaf, path->slots[0],
891 					    struct btrfs_file_extent_item);
892 
893 			extent_offset += start - key.offset;
894 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
895 			btrfs_set_file_extent_num_bytes(leaf, fi,
896 							extent_end - start);
897 			btrfs_mark_buffer_dirty(leaf);
898 
899 			if (update_refs && disk_bytenr > 0) {
900 				btrfs_init_generic_ref(&ref,
901 						BTRFS_ADD_DELAYED_REF,
902 						disk_bytenr, num_bytes, 0);
903 				btrfs_init_data_ref(&ref,
904 						root->root_key.objectid,
905 						new_key.objectid,
906 						start - extent_offset);
907 				ret = btrfs_inc_extent_ref(trans, &ref);
908 				BUG_ON(ret); /* -ENOMEM */
909 			}
910 			key.offset = start;
911 		}
912 		/*
913 		 * From here on out we will have actually dropped something, so
914 		 * last_end can be updated.
915 		 */
916 		last_end = extent_end;
917 
918 		/*
919 		 *  | ---- range to drop ----- |
920 		 *      | -------- extent -------- |
921 		 */
922 		if (start <= key.offset && end < extent_end) {
923 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
924 				ret = -EOPNOTSUPP;
925 				break;
926 			}
927 
928 			memcpy(&new_key, &key, sizeof(new_key));
929 			new_key.offset = end;
930 			btrfs_set_item_key_safe(fs_info, path, &new_key);
931 
932 			extent_offset += end - key.offset;
933 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
934 			btrfs_set_file_extent_num_bytes(leaf, fi,
935 							extent_end - end);
936 			btrfs_mark_buffer_dirty(leaf);
937 			if (update_refs && disk_bytenr > 0)
938 				inode_sub_bytes(vfs_inode, end - key.offset);
939 			break;
940 		}
941 
942 		search_start = extent_end;
943 		/*
944 		 *       | ---- range to drop ----- |
945 		 *  | -------- extent -------- |
946 		 */
947 		if (start > key.offset && end >= extent_end) {
948 			BUG_ON(del_nr > 0);
949 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
950 				ret = -EOPNOTSUPP;
951 				break;
952 			}
953 
954 			btrfs_set_file_extent_num_bytes(leaf, fi,
955 							start - key.offset);
956 			btrfs_mark_buffer_dirty(leaf);
957 			if (update_refs && disk_bytenr > 0)
958 				inode_sub_bytes(vfs_inode, extent_end - start);
959 			if (end == extent_end)
960 				break;
961 
962 			path->slots[0]++;
963 			goto next_slot;
964 		}
965 
966 		/*
967 		 *  | ---- range to drop ----- |
968 		 *    | ------ extent ------ |
969 		 */
970 		if (start <= key.offset && end >= extent_end) {
971 delete_extent_item:
972 			if (del_nr == 0) {
973 				del_slot = path->slots[0];
974 				del_nr = 1;
975 			} else {
976 				BUG_ON(del_slot + del_nr != path->slots[0]);
977 				del_nr++;
978 			}
979 
980 			if (update_refs &&
981 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
982 				inode_sub_bytes(vfs_inode,
983 						extent_end - key.offset);
984 				extent_end = ALIGN(extent_end,
985 						   fs_info->sectorsize);
986 			} else if (update_refs && disk_bytenr > 0) {
987 				btrfs_init_generic_ref(&ref,
988 						BTRFS_DROP_DELAYED_REF,
989 						disk_bytenr, num_bytes, 0);
990 				btrfs_init_data_ref(&ref,
991 						root->root_key.objectid,
992 						key.objectid,
993 						key.offset - extent_offset);
994 				ret = btrfs_free_extent(trans, &ref);
995 				BUG_ON(ret); /* -ENOMEM */
996 				inode_sub_bytes(vfs_inode,
997 						extent_end - key.offset);
998 			}
999 
1000 			if (end == extent_end)
1001 				break;
1002 
1003 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004 				path->slots[0]++;
1005 				goto next_slot;
1006 			}
1007 
1008 			ret = btrfs_del_items(trans, root, path, del_slot,
1009 					      del_nr);
1010 			if (ret) {
1011 				btrfs_abort_transaction(trans, ret);
1012 				break;
1013 			}
1014 
1015 			del_nr = 0;
1016 			del_slot = 0;
1017 
1018 			btrfs_release_path(path);
1019 			continue;
1020 		}
1021 
1022 		BUG();
1023 	}
1024 
1025 	if (!ret && del_nr > 0) {
1026 		/*
1027 		 * Set path->slots[0] to first slot, so that after the delete
1028 		 * if items are move off from our leaf to its immediate left or
1029 		 * right neighbor leafs, we end up with a correct and adjusted
1030 		 * path->slots[0] for our insertion (if replace_extent != 0).
1031 		 */
1032 		path->slots[0] = del_slot;
1033 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1034 		if (ret)
1035 			btrfs_abort_transaction(trans, ret);
1036 	}
1037 
1038 	leaf = path->nodes[0];
1039 	/*
1040 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1041 	 * which case it unlocked our path, so check path->locks[0] matches a
1042 	 * write lock.
1043 	 */
1044 	if (!ret && replace_extent && leafs_visited == 1 &&
1045 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1047 	    btrfs_leaf_free_space(leaf) >=
1048 	    sizeof(struct btrfs_item) + extent_item_size) {
1049 
1050 		key.objectid = ino;
1051 		key.type = BTRFS_EXTENT_DATA_KEY;
1052 		key.offset = start;
1053 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054 			struct btrfs_key slot_key;
1055 
1056 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058 				path->slots[0]++;
1059 		}
1060 		setup_items_for_insert(root, path, &key,
1061 				       &extent_item_size,
1062 				       extent_item_size,
1063 				       sizeof(struct btrfs_item) +
1064 				       extent_item_size, 1);
1065 		*key_inserted = 1;
1066 	}
1067 
1068 	if (!replace_extent || !(*key_inserted))
1069 		btrfs_release_path(path);
1070 	if (drop_end)
1071 		*drop_end = found ? min(end, last_end) : end;
1072 	return ret;
1073 }
1074 
1075 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1076 		       struct btrfs_root *root, struct inode *inode, u64 start,
1077 		       u64 end, int drop_cache)
1078 {
1079 	struct btrfs_path *path;
1080 	int ret;
1081 
1082 	path = btrfs_alloc_path();
1083 	if (!path)
1084 		return -ENOMEM;
1085 	ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1086 				   end, NULL, drop_cache, 0, 0, NULL);
1087 	btrfs_free_path(path);
1088 	return ret;
1089 }
1090 
1091 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1092 			    u64 objectid, u64 bytenr, u64 orig_offset,
1093 			    u64 *start, u64 *end)
1094 {
1095 	struct btrfs_file_extent_item *fi;
1096 	struct btrfs_key key;
1097 	u64 extent_end;
1098 
1099 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1100 		return 0;
1101 
1102 	btrfs_item_key_to_cpu(leaf, &key, slot);
1103 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1104 		return 0;
1105 
1106 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1107 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1108 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1109 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1110 	    btrfs_file_extent_compression(leaf, fi) ||
1111 	    btrfs_file_extent_encryption(leaf, fi) ||
1112 	    btrfs_file_extent_other_encoding(leaf, fi))
1113 		return 0;
1114 
1115 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1116 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1117 		return 0;
1118 
1119 	*start = key.offset;
1120 	*end = extent_end;
1121 	return 1;
1122 }
1123 
1124 /*
1125  * Mark extent in the range start - end as written.
1126  *
1127  * This changes extent type from 'pre-allocated' to 'regular'. If only
1128  * part of extent is marked as written, the extent will be split into
1129  * two or three.
1130  */
1131 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1132 			      struct btrfs_inode *inode, u64 start, u64 end)
1133 {
1134 	struct btrfs_fs_info *fs_info = trans->fs_info;
1135 	struct btrfs_root *root = inode->root;
1136 	struct extent_buffer *leaf;
1137 	struct btrfs_path *path;
1138 	struct btrfs_file_extent_item *fi;
1139 	struct btrfs_ref ref = { 0 };
1140 	struct btrfs_key key;
1141 	struct btrfs_key new_key;
1142 	u64 bytenr;
1143 	u64 num_bytes;
1144 	u64 extent_end;
1145 	u64 orig_offset;
1146 	u64 other_start;
1147 	u64 other_end;
1148 	u64 split;
1149 	int del_nr = 0;
1150 	int del_slot = 0;
1151 	int recow;
1152 	int ret;
1153 	u64 ino = btrfs_ino(inode);
1154 
1155 	path = btrfs_alloc_path();
1156 	if (!path)
1157 		return -ENOMEM;
1158 again:
1159 	recow = 0;
1160 	split = start;
1161 	key.objectid = ino;
1162 	key.type = BTRFS_EXTENT_DATA_KEY;
1163 	key.offset = split;
1164 
1165 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1166 	if (ret < 0)
1167 		goto out;
1168 	if (ret > 0 && path->slots[0] > 0)
1169 		path->slots[0]--;
1170 
1171 	leaf = path->nodes[0];
1172 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1173 	if (key.objectid != ino ||
1174 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1175 		ret = -EINVAL;
1176 		btrfs_abort_transaction(trans, ret);
1177 		goto out;
1178 	}
1179 	fi = btrfs_item_ptr(leaf, path->slots[0],
1180 			    struct btrfs_file_extent_item);
1181 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1182 		ret = -EINVAL;
1183 		btrfs_abort_transaction(trans, ret);
1184 		goto out;
1185 	}
1186 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1187 	if (key.offset > start || extent_end < end) {
1188 		ret = -EINVAL;
1189 		btrfs_abort_transaction(trans, ret);
1190 		goto out;
1191 	}
1192 
1193 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1194 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1195 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1196 	memcpy(&new_key, &key, sizeof(new_key));
1197 
1198 	if (start == key.offset && end < extent_end) {
1199 		other_start = 0;
1200 		other_end = start;
1201 		if (extent_mergeable(leaf, path->slots[0] - 1,
1202 				     ino, bytenr, orig_offset,
1203 				     &other_start, &other_end)) {
1204 			new_key.offset = end;
1205 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1206 			fi = btrfs_item_ptr(leaf, path->slots[0],
1207 					    struct btrfs_file_extent_item);
1208 			btrfs_set_file_extent_generation(leaf, fi,
1209 							 trans->transid);
1210 			btrfs_set_file_extent_num_bytes(leaf, fi,
1211 							extent_end - end);
1212 			btrfs_set_file_extent_offset(leaf, fi,
1213 						     end - orig_offset);
1214 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1215 					    struct btrfs_file_extent_item);
1216 			btrfs_set_file_extent_generation(leaf, fi,
1217 							 trans->transid);
1218 			btrfs_set_file_extent_num_bytes(leaf, fi,
1219 							end - other_start);
1220 			btrfs_mark_buffer_dirty(leaf);
1221 			goto out;
1222 		}
1223 	}
1224 
1225 	if (start > key.offset && end == extent_end) {
1226 		other_start = end;
1227 		other_end = 0;
1228 		if (extent_mergeable(leaf, path->slots[0] + 1,
1229 				     ino, bytenr, orig_offset,
1230 				     &other_start, &other_end)) {
1231 			fi = btrfs_item_ptr(leaf, path->slots[0],
1232 					    struct btrfs_file_extent_item);
1233 			btrfs_set_file_extent_num_bytes(leaf, fi,
1234 							start - key.offset);
1235 			btrfs_set_file_extent_generation(leaf, fi,
1236 							 trans->transid);
1237 			path->slots[0]++;
1238 			new_key.offset = start;
1239 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1240 
1241 			fi = btrfs_item_ptr(leaf, path->slots[0],
1242 					    struct btrfs_file_extent_item);
1243 			btrfs_set_file_extent_generation(leaf, fi,
1244 							 trans->transid);
1245 			btrfs_set_file_extent_num_bytes(leaf, fi,
1246 							other_end - start);
1247 			btrfs_set_file_extent_offset(leaf, fi,
1248 						     start - orig_offset);
1249 			btrfs_mark_buffer_dirty(leaf);
1250 			goto out;
1251 		}
1252 	}
1253 
1254 	while (start > key.offset || end < extent_end) {
1255 		if (key.offset == start)
1256 			split = end;
1257 
1258 		new_key.offset = split;
1259 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1260 		if (ret == -EAGAIN) {
1261 			btrfs_release_path(path);
1262 			goto again;
1263 		}
1264 		if (ret < 0) {
1265 			btrfs_abort_transaction(trans, ret);
1266 			goto out;
1267 		}
1268 
1269 		leaf = path->nodes[0];
1270 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1271 				    struct btrfs_file_extent_item);
1272 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1273 		btrfs_set_file_extent_num_bytes(leaf, fi,
1274 						split - key.offset);
1275 
1276 		fi = btrfs_item_ptr(leaf, path->slots[0],
1277 				    struct btrfs_file_extent_item);
1278 
1279 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1280 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1281 		btrfs_set_file_extent_num_bytes(leaf, fi,
1282 						extent_end - split);
1283 		btrfs_mark_buffer_dirty(leaf);
1284 
1285 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1286 				       num_bytes, 0);
1287 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1288 				    orig_offset);
1289 		ret = btrfs_inc_extent_ref(trans, &ref);
1290 		if (ret) {
1291 			btrfs_abort_transaction(trans, ret);
1292 			goto out;
1293 		}
1294 
1295 		if (split == start) {
1296 			key.offset = start;
1297 		} else {
1298 			if (start != key.offset) {
1299 				ret = -EINVAL;
1300 				btrfs_abort_transaction(trans, ret);
1301 				goto out;
1302 			}
1303 			path->slots[0]--;
1304 			extent_end = end;
1305 		}
1306 		recow = 1;
1307 	}
1308 
1309 	other_start = end;
1310 	other_end = 0;
1311 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1312 			       num_bytes, 0);
1313 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1314 	if (extent_mergeable(leaf, path->slots[0] + 1,
1315 			     ino, bytenr, orig_offset,
1316 			     &other_start, &other_end)) {
1317 		if (recow) {
1318 			btrfs_release_path(path);
1319 			goto again;
1320 		}
1321 		extent_end = other_end;
1322 		del_slot = path->slots[0] + 1;
1323 		del_nr++;
1324 		ret = btrfs_free_extent(trans, &ref);
1325 		if (ret) {
1326 			btrfs_abort_transaction(trans, ret);
1327 			goto out;
1328 		}
1329 	}
1330 	other_start = 0;
1331 	other_end = start;
1332 	if (extent_mergeable(leaf, path->slots[0] - 1,
1333 			     ino, bytenr, orig_offset,
1334 			     &other_start, &other_end)) {
1335 		if (recow) {
1336 			btrfs_release_path(path);
1337 			goto again;
1338 		}
1339 		key.offset = other_start;
1340 		del_slot = path->slots[0];
1341 		del_nr++;
1342 		ret = btrfs_free_extent(trans, &ref);
1343 		if (ret) {
1344 			btrfs_abort_transaction(trans, ret);
1345 			goto out;
1346 		}
1347 	}
1348 	if (del_nr == 0) {
1349 		fi = btrfs_item_ptr(leaf, path->slots[0],
1350 			   struct btrfs_file_extent_item);
1351 		btrfs_set_file_extent_type(leaf, fi,
1352 					   BTRFS_FILE_EXTENT_REG);
1353 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354 		btrfs_mark_buffer_dirty(leaf);
1355 	} else {
1356 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1357 			   struct btrfs_file_extent_item);
1358 		btrfs_set_file_extent_type(leaf, fi,
1359 					   BTRFS_FILE_EXTENT_REG);
1360 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361 		btrfs_set_file_extent_num_bytes(leaf, fi,
1362 						extent_end - key.offset);
1363 		btrfs_mark_buffer_dirty(leaf);
1364 
1365 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366 		if (ret < 0) {
1367 			btrfs_abort_transaction(trans, ret);
1368 			goto out;
1369 		}
1370 	}
1371 out:
1372 	btrfs_free_path(path);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * on error we return an unlocked page and the error value
1378  * on success we return a locked page and 0
1379  */
1380 static int prepare_uptodate_page(struct inode *inode,
1381 				 struct page *page, u64 pos,
1382 				 bool force_uptodate)
1383 {
1384 	int ret = 0;
1385 
1386 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387 	    !PageUptodate(page)) {
1388 		ret = btrfs_readpage(NULL, page);
1389 		if (ret)
1390 			return ret;
1391 		lock_page(page);
1392 		if (!PageUptodate(page)) {
1393 			unlock_page(page);
1394 			return -EIO;
1395 		}
1396 		if (page->mapping != inode->i_mapping) {
1397 			unlock_page(page);
1398 			return -EAGAIN;
1399 		}
1400 	}
1401 	return 0;
1402 }
1403 
1404 /*
1405  * this just gets pages into the page cache and locks them down.
1406  */
1407 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408 				  size_t num_pages, loff_t pos,
1409 				  size_t write_bytes, bool force_uptodate)
1410 {
1411 	int i;
1412 	unsigned long index = pos >> PAGE_SHIFT;
1413 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414 	int err = 0;
1415 	int faili;
1416 
1417 	for (i = 0; i < num_pages; i++) {
1418 again:
1419 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420 					       mask | __GFP_WRITE);
1421 		if (!pages[i]) {
1422 			faili = i - 1;
1423 			err = -ENOMEM;
1424 			goto fail;
1425 		}
1426 
1427 		if (i == 0)
1428 			err = prepare_uptodate_page(inode, pages[i], pos,
1429 						    force_uptodate);
1430 		if (!err && i == num_pages - 1)
1431 			err = prepare_uptodate_page(inode, pages[i],
1432 						    pos + write_bytes, false);
1433 		if (err) {
1434 			put_page(pages[i]);
1435 			if (err == -EAGAIN) {
1436 				err = 0;
1437 				goto again;
1438 			}
1439 			faili = i - 1;
1440 			goto fail;
1441 		}
1442 		wait_on_page_writeback(pages[i]);
1443 	}
1444 
1445 	return 0;
1446 fail:
1447 	while (faili >= 0) {
1448 		unlock_page(pages[faili]);
1449 		put_page(pages[faili]);
1450 		faili--;
1451 	}
1452 	return err;
1453 
1454 }
1455 
1456 /*
1457  * This function locks the extent and properly waits for data=ordered extents
1458  * to finish before allowing the pages to be modified if need.
1459  *
1460  * The return value:
1461  * 1 - the extent is locked
1462  * 0 - the extent is not locked, and everything is OK
1463  * -EAGAIN - need re-prepare the pages
1464  * the other < 0 number - Something wrong happens
1465  */
1466 static noinline int
1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468 				size_t num_pages, loff_t pos,
1469 				size_t write_bytes,
1470 				u64 *lockstart, u64 *lockend,
1471 				struct extent_state **cached_state)
1472 {
1473 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1474 	u64 start_pos;
1475 	u64 last_pos;
1476 	int i;
1477 	int ret = 0;
1478 
1479 	start_pos = round_down(pos, fs_info->sectorsize);
1480 	last_pos = start_pos
1481 		+ round_up(pos + write_bytes - start_pos,
1482 			   fs_info->sectorsize) - 1;
1483 
1484 	if (start_pos < inode->vfs_inode.i_size) {
1485 		struct btrfs_ordered_extent *ordered;
1486 
1487 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488 				cached_state);
1489 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490 						     last_pos - start_pos + 1);
1491 		if (ordered &&
1492 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1493 		    ordered->file_offset <= last_pos) {
1494 			unlock_extent_cached(&inode->io_tree, start_pos,
1495 					last_pos, cached_state);
1496 			for (i = 0; i < num_pages; i++) {
1497 				unlock_page(pages[i]);
1498 				put_page(pages[i]);
1499 			}
1500 			btrfs_start_ordered_extent(&inode->vfs_inode,
1501 					ordered, 1);
1502 			btrfs_put_ordered_extent(ordered);
1503 			return -EAGAIN;
1504 		}
1505 		if (ordered)
1506 			btrfs_put_ordered_extent(ordered);
1507 
1508 		*lockstart = start_pos;
1509 		*lockend = last_pos;
1510 		ret = 1;
1511 	}
1512 
1513 	/*
1514 	 * It's possible the pages are dirty right now, but we don't want
1515 	 * to clean them yet because copy_from_user may catch a page fault
1516 	 * and we might have to fall back to one page at a time.  If that
1517 	 * happens, we'll unlock these pages and we'd have a window where
1518 	 * reclaim could sneak in and drop the once-dirty page on the floor
1519 	 * without writing it.
1520 	 *
1521 	 * We have the pages locked and the extent range locked, so there's
1522 	 * no way someone can start IO on any dirty pages in this range.
1523 	 *
1524 	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1525 	 * delalloc bits and dirty the pages as required.
1526 	 */
1527 	for (i = 0; i < num_pages; i++) {
1528 		set_page_extent_mapped(pages[i]);
1529 		WARN_ON(!PageLocked(pages[i]));
1530 	}
1531 
1532 	return ret;
1533 }
1534 
1535 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1536 			   size_t *write_bytes, bool nowait)
1537 {
1538 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1539 	struct btrfs_root *root = inode->root;
1540 	u64 lockstart, lockend;
1541 	u64 num_bytes;
1542 	int ret;
1543 
1544 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1545 		return 0;
1546 
1547 	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1548 		return -EAGAIN;
1549 
1550 	lockstart = round_down(pos, fs_info->sectorsize);
1551 	lockend = round_up(pos + *write_bytes,
1552 			   fs_info->sectorsize) - 1;
1553 	num_bytes = lockend - lockstart + 1;
1554 
1555 	if (nowait) {
1556 		struct btrfs_ordered_extent *ordered;
1557 
1558 		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1559 			return -EAGAIN;
1560 
1561 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1562 						     num_bytes);
1563 		if (ordered) {
1564 			btrfs_put_ordered_extent(ordered);
1565 			ret = -EAGAIN;
1566 			goto out_unlock;
1567 		}
1568 	} else {
1569 		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1570 						   lockend, NULL);
1571 	}
1572 
1573 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1574 			NULL, NULL, NULL, false);
1575 	if (ret <= 0) {
1576 		ret = 0;
1577 		if (!nowait)
1578 			btrfs_drew_write_unlock(&root->snapshot_lock);
1579 	} else {
1580 		*write_bytes = min_t(size_t, *write_bytes ,
1581 				     num_bytes - pos + lockstart);
1582 	}
1583 out_unlock:
1584 	unlock_extent(&inode->io_tree, lockstart, lockend);
1585 
1586 	return ret;
1587 }
1588 
1589 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1590 			      size_t *write_bytes)
1591 {
1592 	return check_can_nocow(inode, pos, write_bytes, true);
1593 }
1594 
1595 /*
1596  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1597  *
1598  * @pos:	 File offset
1599  * @write_bytes: The length to write, will be updated to the nocow writeable
1600  *		 range
1601  *
1602  * This function will flush ordered extents in the range to ensure proper
1603  * nocow checks.
1604  *
1605  * Return:
1606  * >0		and update @write_bytes if we can do nocow write
1607  *  0		if we can't do nocow write
1608  * -EAGAIN	if we can't get the needed lock or there are ordered extents
1609  * 		for * (nowait == true) case
1610  * <0		if other error happened
1611  *
1612  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1613  */
1614 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1615 			   size_t *write_bytes)
1616 {
1617 	return check_can_nocow(inode, pos, write_bytes, false);
1618 }
1619 
1620 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1621 {
1622 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1623 }
1624 
1625 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1626 					       struct iov_iter *i)
1627 {
1628 	struct file *file = iocb->ki_filp;
1629 	loff_t pos = iocb->ki_pos;
1630 	struct inode *inode = file_inode(file);
1631 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1632 	struct page **pages = NULL;
1633 	struct extent_changeset *data_reserved = NULL;
1634 	u64 release_bytes = 0;
1635 	u64 lockstart;
1636 	u64 lockend;
1637 	size_t num_written = 0;
1638 	int nrptrs;
1639 	int ret = 0;
1640 	bool only_release_metadata = false;
1641 	bool force_page_uptodate = false;
1642 
1643 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1644 			PAGE_SIZE / (sizeof(struct page *)));
1645 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1646 	nrptrs = max(nrptrs, 8);
1647 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1648 	if (!pages)
1649 		return -ENOMEM;
1650 
1651 	while (iov_iter_count(i) > 0) {
1652 		struct extent_state *cached_state = NULL;
1653 		size_t offset = offset_in_page(pos);
1654 		size_t sector_offset;
1655 		size_t write_bytes = min(iov_iter_count(i),
1656 					 nrptrs * (size_t)PAGE_SIZE -
1657 					 offset);
1658 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1659 						PAGE_SIZE);
1660 		size_t reserve_bytes;
1661 		size_t dirty_pages;
1662 		size_t copied;
1663 		size_t dirty_sectors;
1664 		size_t num_sectors;
1665 		int extents_locked;
1666 
1667 		WARN_ON(num_pages > nrptrs);
1668 
1669 		/*
1670 		 * Fault pages before locking them in prepare_pages
1671 		 * to avoid recursive lock
1672 		 */
1673 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1674 			ret = -EFAULT;
1675 			break;
1676 		}
1677 
1678 		only_release_metadata = false;
1679 		sector_offset = pos & (fs_info->sectorsize - 1);
1680 		reserve_bytes = round_up(write_bytes + sector_offset,
1681 				fs_info->sectorsize);
1682 
1683 		extent_changeset_release(data_reserved);
1684 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1685 						  &data_reserved, pos,
1686 						  write_bytes);
1687 		if (ret < 0) {
1688 			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1689 						   &write_bytes) > 0) {
1690 				/*
1691 				 * For nodata cow case, no need to reserve
1692 				 * data space.
1693 				 */
1694 				only_release_metadata = true;
1695 				/*
1696 				 * our prealloc extent may be smaller than
1697 				 * write_bytes, so scale down.
1698 				 */
1699 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1700 							 PAGE_SIZE);
1701 				reserve_bytes = round_up(write_bytes +
1702 							 sector_offset,
1703 							 fs_info->sectorsize);
1704 			} else {
1705 				break;
1706 			}
1707 		}
1708 
1709 		WARN_ON(reserve_bytes == 0);
1710 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1711 				reserve_bytes);
1712 		if (ret) {
1713 			if (!only_release_metadata)
1714 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1715 						data_reserved, pos,
1716 						write_bytes);
1717 			else
1718 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1719 			break;
1720 		}
1721 
1722 		release_bytes = reserve_bytes;
1723 again:
1724 		/*
1725 		 * This is going to setup the pages array with the number of
1726 		 * pages we want, so we don't really need to worry about the
1727 		 * contents of pages from loop to loop
1728 		 */
1729 		ret = prepare_pages(inode, pages, num_pages,
1730 				    pos, write_bytes,
1731 				    force_page_uptodate);
1732 		if (ret) {
1733 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1734 						       reserve_bytes);
1735 			break;
1736 		}
1737 
1738 		extents_locked = lock_and_cleanup_extent_if_need(
1739 				BTRFS_I(inode), pages,
1740 				num_pages, pos, write_bytes, &lockstart,
1741 				&lockend, &cached_state);
1742 		if (extents_locked < 0) {
1743 			if (extents_locked == -EAGAIN)
1744 				goto again;
1745 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1746 						       reserve_bytes);
1747 			ret = extents_locked;
1748 			break;
1749 		}
1750 
1751 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1752 
1753 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1754 		dirty_sectors = round_up(copied + sector_offset,
1755 					fs_info->sectorsize);
1756 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1757 
1758 		/*
1759 		 * if we have trouble faulting in the pages, fall
1760 		 * back to one page at a time
1761 		 */
1762 		if (copied < write_bytes)
1763 			nrptrs = 1;
1764 
1765 		if (copied == 0) {
1766 			force_page_uptodate = true;
1767 			dirty_sectors = 0;
1768 			dirty_pages = 0;
1769 		} else {
1770 			force_page_uptodate = false;
1771 			dirty_pages = DIV_ROUND_UP(copied + offset,
1772 						   PAGE_SIZE);
1773 		}
1774 
1775 		if (num_sectors > dirty_sectors) {
1776 			/* release everything except the sectors we dirtied */
1777 			release_bytes -= dirty_sectors <<
1778 						fs_info->sb->s_blocksize_bits;
1779 			if (only_release_metadata) {
1780 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1781 							release_bytes, true);
1782 			} else {
1783 				u64 __pos;
1784 
1785 				__pos = round_down(pos,
1786 						   fs_info->sectorsize) +
1787 					(dirty_pages << PAGE_SHIFT);
1788 				btrfs_delalloc_release_space(BTRFS_I(inode),
1789 						data_reserved, __pos,
1790 						release_bytes, true);
1791 			}
1792 		}
1793 
1794 		release_bytes = round_up(copied + sector_offset,
1795 					fs_info->sectorsize);
1796 
1797 		if (copied > 0)
1798 			ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1799 						dirty_pages, pos, copied,
1800 						&cached_state);
1801 
1802 		/*
1803 		 * If we have not locked the extent range, because the range's
1804 		 * start offset is >= i_size, we might still have a non-NULL
1805 		 * cached extent state, acquired while marking the extent range
1806 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1807 		 * possible cached extent state to avoid a memory leak.
1808 		 */
1809 		if (extents_locked)
1810 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1811 					     lockstart, lockend, &cached_state);
1812 		else
1813 			free_extent_state(cached_state);
1814 
1815 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1816 		if (ret) {
1817 			btrfs_drop_pages(pages, num_pages);
1818 			break;
1819 		}
1820 
1821 		release_bytes = 0;
1822 		if (only_release_metadata)
1823 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1824 
1825 		if (only_release_metadata && copied > 0) {
1826 			lockstart = round_down(pos,
1827 					       fs_info->sectorsize);
1828 			lockend = round_up(pos + copied,
1829 					   fs_info->sectorsize) - 1;
1830 
1831 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1832 				       lockend, EXTENT_NORESERVE, NULL,
1833 				       NULL, GFP_NOFS);
1834 		}
1835 
1836 		btrfs_drop_pages(pages, num_pages);
1837 
1838 		cond_resched();
1839 
1840 		balance_dirty_pages_ratelimited(inode->i_mapping);
1841 
1842 		pos += copied;
1843 		num_written += copied;
1844 	}
1845 
1846 	kfree(pages);
1847 
1848 	if (release_bytes) {
1849 		if (only_release_metadata) {
1850 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1851 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1852 					release_bytes, true);
1853 		} else {
1854 			btrfs_delalloc_release_space(BTRFS_I(inode),
1855 					data_reserved,
1856 					round_down(pos, fs_info->sectorsize),
1857 					release_bytes, true);
1858 		}
1859 	}
1860 
1861 	extent_changeset_free(data_reserved);
1862 	return num_written ? num_written : ret;
1863 }
1864 
1865 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1866 {
1867 	struct file *file = iocb->ki_filp;
1868 	struct inode *inode = file_inode(file);
1869 	loff_t pos;
1870 	ssize_t written;
1871 	ssize_t written_buffered;
1872 	loff_t endbyte;
1873 	int err;
1874 
1875 	written = generic_file_direct_write(iocb, from);
1876 
1877 	if (written < 0 || !iov_iter_count(from))
1878 		return written;
1879 
1880 	pos = iocb->ki_pos;
1881 	written_buffered = btrfs_buffered_write(iocb, from);
1882 	if (written_buffered < 0) {
1883 		err = written_buffered;
1884 		goto out;
1885 	}
1886 	/*
1887 	 * Ensure all data is persisted. We want the next direct IO read to be
1888 	 * able to read what was just written.
1889 	 */
1890 	endbyte = pos + written_buffered - 1;
1891 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1892 	if (err)
1893 		goto out;
1894 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1895 	if (err)
1896 		goto out;
1897 	written += written_buffered;
1898 	iocb->ki_pos = pos + written_buffered;
1899 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1900 				 endbyte >> PAGE_SHIFT);
1901 out:
1902 	return written ? written : err;
1903 }
1904 
1905 static void update_time_for_write(struct inode *inode)
1906 {
1907 	struct timespec64 now;
1908 
1909 	if (IS_NOCMTIME(inode))
1910 		return;
1911 
1912 	now = current_time(inode);
1913 	if (!timespec64_equal(&inode->i_mtime, &now))
1914 		inode->i_mtime = now;
1915 
1916 	if (!timespec64_equal(&inode->i_ctime, &now))
1917 		inode->i_ctime = now;
1918 
1919 	if (IS_I_VERSION(inode))
1920 		inode_inc_iversion(inode);
1921 }
1922 
1923 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1924 				    struct iov_iter *from)
1925 {
1926 	struct file *file = iocb->ki_filp;
1927 	struct inode *inode = file_inode(file);
1928 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1929 	struct btrfs_root *root = BTRFS_I(inode)->root;
1930 	u64 start_pos;
1931 	u64 end_pos;
1932 	ssize_t num_written = 0;
1933 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1934 	ssize_t err;
1935 	loff_t pos;
1936 	size_t count;
1937 	loff_t oldsize;
1938 	int clean_page = 0;
1939 
1940 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1941 	    (iocb->ki_flags & IOCB_NOWAIT))
1942 		return -EOPNOTSUPP;
1943 
1944 	if (iocb->ki_flags & IOCB_NOWAIT) {
1945 		if (!inode_trylock(inode))
1946 			return -EAGAIN;
1947 	} else {
1948 		inode_lock(inode);
1949 	}
1950 
1951 	err = generic_write_checks(iocb, from);
1952 	if (err <= 0) {
1953 		inode_unlock(inode);
1954 		return err;
1955 	}
1956 
1957 	pos = iocb->ki_pos;
1958 	count = iov_iter_count(from);
1959 	if (iocb->ki_flags & IOCB_NOWAIT) {
1960 		size_t nocow_bytes = count;
1961 
1962 		/*
1963 		 * We will allocate space in case nodatacow is not set,
1964 		 * so bail
1965 		 */
1966 		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1967 		    <= 0) {
1968 			inode_unlock(inode);
1969 			return -EAGAIN;
1970 		}
1971 		/*
1972 		 * There are holes in the range or parts of the range that must
1973 		 * be COWed (shared extents, RO block groups, etc), so just bail
1974 		 * out.
1975 		 */
1976 		if (nocow_bytes < count) {
1977 			inode_unlock(inode);
1978 			return -EAGAIN;
1979 		}
1980 	}
1981 
1982 	current->backing_dev_info = inode_to_bdi(inode);
1983 	err = file_remove_privs(file);
1984 	if (err) {
1985 		inode_unlock(inode);
1986 		goto out;
1987 	}
1988 
1989 	/*
1990 	 * If BTRFS flips readonly due to some impossible error
1991 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1992 	 * although we have opened a file as writable, we have
1993 	 * to stop this write operation to ensure FS consistency.
1994 	 */
1995 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1996 		inode_unlock(inode);
1997 		err = -EROFS;
1998 		goto out;
1999 	}
2000 
2001 	/*
2002 	 * We reserve space for updating the inode when we reserve space for the
2003 	 * extent we are going to write, so we will enospc out there.  We don't
2004 	 * need to start yet another transaction to update the inode as we will
2005 	 * update the inode when we finish writing whatever data we write.
2006 	 */
2007 	update_time_for_write(inode);
2008 
2009 	start_pos = round_down(pos, fs_info->sectorsize);
2010 	oldsize = i_size_read(inode);
2011 	if (start_pos > oldsize) {
2012 		/* Expand hole size to cover write data, preventing empty gap */
2013 		end_pos = round_up(pos + count,
2014 				   fs_info->sectorsize);
2015 		err = btrfs_cont_expand(inode, oldsize, end_pos);
2016 		if (err) {
2017 			inode_unlock(inode);
2018 			goto out;
2019 		}
2020 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
2021 			clean_page = 1;
2022 	}
2023 
2024 	if (sync)
2025 		atomic_inc(&BTRFS_I(inode)->sync_writers);
2026 
2027 	if (iocb->ki_flags & IOCB_DIRECT) {
2028 		num_written = __btrfs_direct_write(iocb, from);
2029 	} else {
2030 		num_written = btrfs_buffered_write(iocb, from);
2031 		if (num_written > 0)
2032 			iocb->ki_pos = pos + num_written;
2033 		if (clean_page)
2034 			pagecache_isize_extended(inode, oldsize,
2035 						i_size_read(inode));
2036 	}
2037 
2038 	inode_unlock(inode);
2039 
2040 	/*
2041 	 * We also have to set last_sub_trans to the current log transid,
2042 	 * otherwise subsequent syncs to a file that's been synced in this
2043 	 * transaction will appear to have already occurred.
2044 	 */
2045 	spin_lock(&BTRFS_I(inode)->lock);
2046 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
2047 	spin_unlock(&BTRFS_I(inode)->lock);
2048 	if (num_written > 0)
2049 		num_written = generic_write_sync(iocb, num_written);
2050 
2051 	if (sync)
2052 		atomic_dec(&BTRFS_I(inode)->sync_writers);
2053 out:
2054 	current->backing_dev_info = NULL;
2055 	return num_written ? num_written : err;
2056 }
2057 
2058 int btrfs_release_file(struct inode *inode, struct file *filp)
2059 {
2060 	struct btrfs_file_private *private = filp->private_data;
2061 
2062 	if (private && private->filldir_buf)
2063 		kfree(private->filldir_buf);
2064 	kfree(private);
2065 	filp->private_data = NULL;
2066 
2067 	/*
2068 	 * ordered_data_close is set by setattr when we are about to truncate
2069 	 * a file from a non-zero size to a zero size.  This tries to
2070 	 * flush down new bytes that may have been written if the
2071 	 * application were using truncate to replace a file in place.
2072 	 */
2073 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2074 			       &BTRFS_I(inode)->runtime_flags))
2075 			filemap_flush(inode->i_mapping);
2076 	return 0;
2077 }
2078 
2079 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2080 {
2081 	int ret;
2082 	struct blk_plug plug;
2083 
2084 	/*
2085 	 * This is only called in fsync, which would do synchronous writes, so
2086 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2087 	 * multiple disks using raid profile, a large IO can be split to
2088 	 * several segments of stripe length (currently 64K).
2089 	 */
2090 	blk_start_plug(&plug);
2091 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2092 	ret = btrfs_fdatawrite_range(inode, start, end);
2093 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2094 	blk_finish_plug(&plug);
2095 
2096 	return ret;
2097 }
2098 
2099 /*
2100  * fsync call for both files and directories.  This logs the inode into
2101  * the tree log instead of forcing full commits whenever possible.
2102  *
2103  * It needs to call filemap_fdatawait so that all ordered extent updates are
2104  * in the metadata btree are up to date for copying to the log.
2105  *
2106  * It drops the inode mutex before doing the tree log commit.  This is an
2107  * important optimization for directories because holding the mutex prevents
2108  * new operations on the dir while we write to disk.
2109  */
2110 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2111 {
2112 	struct dentry *dentry = file_dentry(file);
2113 	struct inode *inode = d_inode(dentry);
2114 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2115 	struct btrfs_root *root = BTRFS_I(inode)->root;
2116 	struct btrfs_trans_handle *trans;
2117 	struct btrfs_log_ctx ctx;
2118 	int ret = 0, err;
2119 
2120 	trace_btrfs_sync_file(file, datasync);
2121 
2122 	btrfs_init_log_ctx(&ctx, inode);
2123 
2124 	/*
2125 	 * Set the range to full if the NO_HOLES feature is not enabled.
2126 	 * This is to avoid missing file extent items representing holes after
2127 	 * replaying the log.
2128 	 */
2129 	if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2130 		start = 0;
2131 		end = LLONG_MAX;
2132 	}
2133 
2134 	/*
2135 	 * We write the dirty pages in the range and wait until they complete
2136 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2137 	 * multi-task, and make the performance up.  See
2138 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2139 	 */
2140 	ret = start_ordered_ops(inode, start, end);
2141 	if (ret)
2142 		goto out;
2143 
2144 	inode_lock(inode);
2145 
2146 	/*
2147 	 * We take the dio_sem here because the tree log stuff can race with
2148 	 * lockless dio writes and get an extent map logged for an extent we
2149 	 * never waited on.  We need it this high up for lockdep reasons.
2150 	 */
2151 	down_write(&BTRFS_I(inode)->dio_sem);
2152 
2153 	atomic_inc(&root->log_batch);
2154 
2155 	/*
2156 	 * If the inode needs a full sync, make sure we use a full range to
2157 	 * avoid log tree corruption, due to hole detection racing with ordered
2158 	 * extent completion for adjacent ranges and races between logging and
2159 	 * completion of ordered extents for adjancent ranges - both races
2160 	 * could lead to file extent items in the log with overlapping ranges.
2161 	 * Do this while holding the inode lock, to avoid races with other
2162 	 * tasks.
2163 	 */
2164 	if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165 		     &BTRFS_I(inode)->runtime_flags)) {
2166 		start = 0;
2167 		end = LLONG_MAX;
2168 	}
2169 
2170 	/*
2171 	 * Before we acquired the inode's lock, someone may have dirtied more
2172 	 * pages in the target range. We need to make sure that writeback for
2173 	 * any such pages does not start while we are logging the inode, because
2174 	 * if it does, any of the following might happen when we are not doing a
2175 	 * full inode sync:
2176 	 *
2177 	 * 1) We log an extent after its writeback finishes but before its
2178 	 *    checksums are added to the csum tree, leading to -EIO errors
2179 	 *    when attempting to read the extent after a log replay.
2180 	 *
2181 	 * 2) We can end up logging an extent before its writeback finishes.
2182 	 *    Therefore after the log replay we will have a file extent item
2183 	 *    pointing to an unwritten extent (and no data checksums as well).
2184 	 *
2185 	 * So trigger writeback for any eventual new dirty pages and then we
2186 	 * wait for all ordered extents to complete below.
2187 	 */
2188 	ret = start_ordered_ops(inode, start, end);
2189 	if (ret) {
2190 		up_write(&BTRFS_I(inode)->dio_sem);
2191 		inode_unlock(inode);
2192 		goto out;
2193 	}
2194 
2195 	/*
2196 	 * We have to do this here to avoid the priority inversion of waiting on
2197 	 * IO of a lower priority task while holding a transaction open.
2198 	 *
2199 	 * Also, the range length can be represented by u64, we have to do the
2200 	 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2201 	 */
2202 	ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2203 	if (ret) {
2204 		up_write(&BTRFS_I(inode)->dio_sem);
2205 		inode_unlock(inode);
2206 		goto out;
2207 	}
2208 	atomic_inc(&root->log_batch);
2209 
2210 	smp_mb();
2211 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2212 	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2213 		/*
2214 		 * We've had everything committed since the last time we were
2215 		 * modified so clear this flag in case it was set for whatever
2216 		 * reason, it's no longer relevant.
2217 		 */
2218 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2219 			  &BTRFS_I(inode)->runtime_flags);
2220 		/*
2221 		 * An ordered extent might have started before and completed
2222 		 * already with io errors, in which case the inode was not
2223 		 * updated and we end up here. So check the inode's mapping
2224 		 * for any errors that might have happened since we last
2225 		 * checked called fsync.
2226 		 */
2227 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2228 		up_write(&BTRFS_I(inode)->dio_sem);
2229 		inode_unlock(inode);
2230 		goto out;
2231 	}
2232 
2233 	/*
2234 	 * We use start here because we will need to wait on the IO to complete
2235 	 * in btrfs_sync_log, which could require joining a transaction (for
2236 	 * example checking cross references in the nocow path).  If we use join
2237 	 * here we could get into a situation where we're waiting on IO to
2238 	 * happen that is blocked on a transaction trying to commit.  With start
2239 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2240 	 * before we start blocking joiners.  This comment is to keep somebody
2241 	 * from thinking they are super smart and changing this to
2242 	 * btrfs_join_transaction *cough*Josef*cough*.
2243 	 */
2244 	trans = btrfs_start_transaction(root, 0);
2245 	if (IS_ERR(trans)) {
2246 		ret = PTR_ERR(trans);
2247 		up_write(&BTRFS_I(inode)->dio_sem);
2248 		inode_unlock(inode);
2249 		goto out;
2250 	}
2251 
2252 	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2253 	if (ret < 0) {
2254 		/* Fallthrough and commit/free transaction. */
2255 		ret = 1;
2256 	}
2257 
2258 	/* we've logged all the items and now have a consistent
2259 	 * version of the file in the log.  It is possible that
2260 	 * someone will come in and modify the file, but that's
2261 	 * fine because the log is consistent on disk, and we
2262 	 * have references to all of the file's extents
2263 	 *
2264 	 * It is possible that someone will come in and log the
2265 	 * file again, but that will end up using the synchronization
2266 	 * inside btrfs_sync_log to keep things safe.
2267 	 */
2268 	up_write(&BTRFS_I(inode)->dio_sem);
2269 	inode_unlock(inode);
2270 
2271 	if (ret != BTRFS_NO_LOG_SYNC) {
2272 		if (!ret) {
2273 			ret = btrfs_sync_log(trans, root, &ctx);
2274 			if (!ret) {
2275 				ret = btrfs_end_transaction(trans);
2276 				goto out;
2277 			}
2278 		}
2279 		ret = btrfs_commit_transaction(trans);
2280 	} else {
2281 		ret = btrfs_end_transaction(trans);
2282 	}
2283 out:
2284 	ASSERT(list_empty(&ctx.list));
2285 	err = file_check_and_advance_wb_err(file);
2286 	if (!ret)
2287 		ret = err;
2288 	return ret > 0 ? -EIO : ret;
2289 }
2290 
2291 static const struct vm_operations_struct btrfs_file_vm_ops = {
2292 	.fault		= filemap_fault,
2293 	.map_pages	= filemap_map_pages,
2294 	.page_mkwrite	= btrfs_page_mkwrite,
2295 };
2296 
2297 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2298 {
2299 	struct address_space *mapping = filp->f_mapping;
2300 
2301 	if (!mapping->a_ops->readpage)
2302 		return -ENOEXEC;
2303 
2304 	file_accessed(filp);
2305 	vma->vm_ops = &btrfs_file_vm_ops;
2306 
2307 	return 0;
2308 }
2309 
2310 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2311 			  int slot, u64 start, u64 end)
2312 {
2313 	struct btrfs_file_extent_item *fi;
2314 	struct btrfs_key key;
2315 
2316 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2317 		return 0;
2318 
2319 	btrfs_item_key_to_cpu(leaf, &key, slot);
2320 	if (key.objectid != btrfs_ino(inode) ||
2321 	    key.type != BTRFS_EXTENT_DATA_KEY)
2322 		return 0;
2323 
2324 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2325 
2326 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2327 		return 0;
2328 
2329 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2330 		return 0;
2331 
2332 	if (key.offset == end)
2333 		return 1;
2334 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2335 		return 1;
2336 	return 0;
2337 }
2338 
2339 static int fill_holes(struct btrfs_trans_handle *trans,
2340 		struct btrfs_inode *inode,
2341 		struct btrfs_path *path, u64 offset, u64 end)
2342 {
2343 	struct btrfs_fs_info *fs_info = trans->fs_info;
2344 	struct btrfs_root *root = inode->root;
2345 	struct extent_buffer *leaf;
2346 	struct btrfs_file_extent_item *fi;
2347 	struct extent_map *hole_em;
2348 	struct extent_map_tree *em_tree = &inode->extent_tree;
2349 	struct btrfs_key key;
2350 	int ret;
2351 
2352 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2353 		goto out;
2354 
2355 	key.objectid = btrfs_ino(inode);
2356 	key.type = BTRFS_EXTENT_DATA_KEY;
2357 	key.offset = offset;
2358 
2359 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360 	if (ret <= 0) {
2361 		/*
2362 		 * We should have dropped this offset, so if we find it then
2363 		 * something has gone horribly wrong.
2364 		 */
2365 		if (ret == 0)
2366 			ret = -EINVAL;
2367 		return ret;
2368 	}
2369 
2370 	leaf = path->nodes[0];
2371 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2372 		u64 num_bytes;
2373 
2374 		path->slots[0]--;
2375 		fi = btrfs_item_ptr(leaf, path->slots[0],
2376 				    struct btrfs_file_extent_item);
2377 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2378 			end - offset;
2379 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2380 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2381 		btrfs_set_file_extent_offset(leaf, fi, 0);
2382 		btrfs_mark_buffer_dirty(leaf);
2383 		goto out;
2384 	}
2385 
2386 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2387 		u64 num_bytes;
2388 
2389 		key.offset = offset;
2390 		btrfs_set_item_key_safe(fs_info, path, &key);
2391 		fi = btrfs_item_ptr(leaf, path->slots[0],
2392 				    struct btrfs_file_extent_item);
2393 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2394 			offset;
2395 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2396 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2397 		btrfs_set_file_extent_offset(leaf, fi, 0);
2398 		btrfs_mark_buffer_dirty(leaf);
2399 		goto out;
2400 	}
2401 	btrfs_release_path(path);
2402 
2403 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2404 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2405 	if (ret)
2406 		return ret;
2407 
2408 out:
2409 	btrfs_release_path(path);
2410 
2411 	hole_em = alloc_extent_map();
2412 	if (!hole_em) {
2413 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2414 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2415 	} else {
2416 		hole_em->start = offset;
2417 		hole_em->len = end - offset;
2418 		hole_em->ram_bytes = hole_em->len;
2419 		hole_em->orig_start = offset;
2420 
2421 		hole_em->block_start = EXTENT_MAP_HOLE;
2422 		hole_em->block_len = 0;
2423 		hole_em->orig_block_len = 0;
2424 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2425 		hole_em->generation = trans->transid;
2426 
2427 		do {
2428 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2429 			write_lock(&em_tree->lock);
2430 			ret = add_extent_mapping(em_tree, hole_em, 1);
2431 			write_unlock(&em_tree->lock);
2432 		} while (ret == -EEXIST);
2433 		free_extent_map(hole_em);
2434 		if (ret)
2435 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2436 					&inode->runtime_flags);
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 /*
2443  * Find a hole extent on given inode and change start/len to the end of hole
2444  * extent.(hole/vacuum extent whose em->start <= start &&
2445  *	   em->start + em->len > start)
2446  * When a hole extent is found, return 1 and modify start/len.
2447  */
2448 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2449 {
2450 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2451 	struct extent_map *em;
2452 	int ret = 0;
2453 
2454 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2455 			      round_down(*start, fs_info->sectorsize),
2456 			      round_up(*len, fs_info->sectorsize));
2457 	if (IS_ERR(em))
2458 		return PTR_ERR(em);
2459 
2460 	/* Hole or vacuum extent(only exists in no-hole mode) */
2461 	if (em->block_start == EXTENT_MAP_HOLE) {
2462 		ret = 1;
2463 		*len = em->start + em->len > *start + *len ?
2464 		       0 : *start + *len - em->start - em->len;
2465 		*start = em->start + em->len;
2466 	}
2467 	free_extent_map(em);
2468 	return ret;
2469 }
2470 
2471 static int btrfs_punch_hole_lock_range(struct inode *inode,
2472 				       const u64 lockstart,
2473 				       const u64 lockend,
2474 				       struct extent_state **cached_state)
2475 {
2476 	while (1) {
2477 		struct btrfs_ordered_extent *ordered;
2478 		int ret;
2479 
2480 		truncate_pagecache_range(inode, lockstart, lockend);
2481 
2482 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2483 				 cached_state);
2484 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2485 
2486 		/*
2487 		 * We need to make sure we have no ordered extents in this range
2488 		 * and nobody raced in and read a page in this range, if we did
2489 		 * we need to try again.
2490 		 */
2491 		if ((!ordered ||
2492 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2493 		     ordered->file_offset > lockend)) &&
2494 		     !filemap_range_has_page(inode->i_mapping,
2495 					     lockstart, lockend)) {
2496 			if (ordered)
2497 				btrfs_put_ordered_extent(ordered);
2498 			break;
2499 		}
2500 		if (ordered)
2501 			btrfs_put_ordered_extent(ordered);
2502 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2503 				     lockend, cached_state);
2504 		ret = btrfs_wait_ordered_range(inode, lockstart,
2505 					       lockend - lockstart + 1);
2506 		if (ret)
2507 			return ret;
2508 	}
2509 	return 0;
2510 }
2511 
2512 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2513 				     struct inode *inode,
2514 				     struct btrfs_path *path,
2515 				     struct btrfs_clone_extent_info *clone_info,
2516 				     const u64 clone_len)
2517 {
2518 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2519 	struct btrfs_root *root = BTRFS_I(inode)->root;
2520 	struct btrfs_file_extent_item *extent;
2521 	struct extent_buffer *leaf;
2522 	struct btrfs_key key;
2523 	int slot;
2524 	struct btrfs_ref ref = { 0 };
2525 	u64 ref_offset;
2526 	int ret;
2527 
2528 	if (clone_len == 0)
2529 		return 0;
2530 
2531 	if (clone_info->disk_offset == 0 &&
2532 	    btrfs_fs_incompat(fs_info, NO_HOLES))
2533 		return 0;
2534 
2535 	key.objectid = btrfs_ino(BTRFS_I(inode));
2536 	key.type = BTRFS_EXTENT_DATA_KEY;
2537 	key.offset = clone_info->file_offset;
2538 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2539 				      clone_info->item_size);
2540 	if (ret)
2541 		return ret;
2542 	leaf = path->nodes[0];
2543 	slot = path->slots[0];
2544 	write_extent_buffer(leaf, clone_info->extent_buf,
2545 			    btrfs_item_ptr_offset(leaf, slot),
2546 			    clone_info->item_size);
2547 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2548 	btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2549 	btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2550 	btrfs_mark_buffer_dirty(leaf);
2551 	btrfs_release_path(path);
2552 
2553 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2554 			clone_info->file_offset, clone_len);
2555 	if (ret)
2556 		return ret;
2557 
2558 	/* If it's a hole, nothing more needs to be done. */
2559 	if (clone_info->disk_offset == 0)
2560 		return 0;
2561 
2562 	inode_add_bytes(inode, clone_len);
2563 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2564 			       clone_info->disk_offset,
2565 			       clone_info->disk_len, 0);
2566 	ref_offset = clone_info->file_offset - clone_info->data_offset;
2567 	btrfs_init_data_ref(&ref, root->root_key.objectid,
2568 			    btrfs_ino(BTRFS_I(inode)), ref_offset);
2569 	ret = btrfs_inc_extent_ref(trans, &ref);
2570 
2571 	return ret;
2572 }
2573 
2574 /*
2575  * The respective range must have been previously locked, as well as the inode.
2576  * The end offset is inclusive (last byte of the range).
2577  * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2578  * cloning.
2579  * When cloning, we don't want to end up in a state where we dropped extents
2580  * without inserting a new one, so we must abort the transaction to avoid a
2581  * corruption.
2582  */
2583 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2584 			   const u64 start, const u64 end,
2585 			   struct btrfs_clone_extent_info *clone_info,
2586 			   struct btrfs_trans_handle **trans_out)
2587 {
2588 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2589 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2590 	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2591 	struct btrfs_root *root = BTRFS_I(inode)->root;
2592 	struct btrfs_trans_handle *trans = NULL;
2593 	struct btrfs_block_rsv *rsv;
2594 	unsigned int rsv_count;
2595 	u64 cur_offset;
2596 	u64 drop_end;
2597 	u64 len = end - start;
2598 	int ret = 0;
2599 
2600 	if (end <= start)
2601 		return -EINVAL;
2602 
2603 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2604 	if (!rsv) {
2605 		ret = -ENOMEM;
2606 		goto out;
2607 	}
2608 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2609 	rsv->failfast = 1;
2610 
2611 	/*
2612 	 * 1 - update the inode
2613 	 * 1 - removing the extents in the range
2614 	 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2615 	 *     an extent
2616 	 */
2617 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2618 		rsv_count = 3;
2619 	else
2620 		rsv_count = 2;
2621 
2622 	trans = btrfs_start_transaction(root, rsv_count);
2623 	if (IS_ERR(trans)) {
2624 		ret = PTR_ERR(trans);
2625 		trans = NULL;
2626 		goto out_free;
2627 	}
2628 
2629 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2630 				      min_size, false);
2631 	BUG_ON(ret);
2632 	trans->block_rsv = rsv;
2633 
2634 	cur_offset = start;
2635 	while (cur_offset < end) {
2636 		ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2637 					   cur_offset, end + 1, &drop_end,
2638 					   1, 0, 0, NULL);
2639 		if (ret != -ENOSPC) {
2640 			/*
2641 			 * When cloning we want to avoid transaction aborts when
2642 			 * nothing was done and we are attempting to clone parts
2643 			 * of inline extents, in such cases -EOPNOTSUPP is
2644 			 * returned by __btrfs_drop_extents() without having
2645 			 * changed anything in the file.
2646 			 */
2647 			if (clone_info && ret && ret != -EOPNOTSUPP)
2648 				btrfs_abort_transaction(trans, ret);
2649 			break;
2650 		}
2651 
2652 		trans->block_rsv = &fs_info->trans_block_rsv;
2653 
2654 		if (!clone_info && cur_offset < drop_end &&
2655 		    cur_offset < ino_size) {
2656 			ret = fill_holes(trans, BTRFS_I(inode), path,
2657 					cur_offset, drop_end);
2658 			if (ret) {
2659 				/*
2660 				 * If we failed then we didn't insert our hole
2661 				 * entries for the area we dropped, so now the
2662 				 * fs is corrupted, so we must abort the
2663 				 * transaction.
2664 				 */
2665 				btrfs_abort_transaction(trans, ret);
2666 				break;
2667 			}
2668 		} else if (!clone_info && cur_offset < drop_end) {
2669 			/*
2670 			 * We are past the i_size here, but since we didn't
2671 			 * insert holes we need to clear the mapped area so we
2672 			 * know to not set disk_i_size in this area until a new
2673 			 * file extent is inserted here.
2674 			 */
2675 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2676 					cur_offset, drop_end - cur_offset);
2677 			if (ret) {
2678 				/*
2679 				 * We couldn't clear our area, so we could
2680 				 * presumably adjust up and corrupt the fs, so
2681 				 * we need to abort.
2682 				 */
2683 				btrfs_abort_transaction(trans, ret);
2684 				break;
2685 			}
2686 		}
2687 
2688 		if (clone_info && drop_end > clone_info->file_offset) {
2689 			u64 clone_len = drop_end - clone_info->file_offset;
2690 
2691 			ret = btrfs_insert_clone_extent(trans, inode, path,
2692 							clone_info, clone_len);
2693 			if (ret) {
2694 				btrfs_abort_transaction(trans, ret);
2695 				break;
2696 			}
2697 			clone_info->data_len -= clone_len;
2698 			clone_info->data_offset += clone_len;
2699 			clone_info->file_offset += clone_len;
2700 		}
2701 
2702 		cur_offset = drop_end;
2703 
2704 		ret = btrfs_update_inode(trans, root, inode);
2705 		if (ret)
2706 			break;
2707 
2708 		btrfs_end_transaction(trans);
2709 		btrfs_btree_balance_dirty(fs_info);
2710 
2711 		trans = btrfs_start_transaction(root, rsv_count);
2712 		if (IS_ERR(trans)) {
2713 			ret = PTR_ERR(trans);
2714 			trans = NULL;
2715 			break;
2716 		}
2717 
2718 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2719 					      rsv, min_size, false);
2720 		BUG_ON(ret);	/* shouldn't happen */
2721 		trans->block_rsv = rsv;
2722 
2723 		if (!clone_info) {
2724 			ret = find_first_non_hole(inode, &cur_offset, &len);
2725 			if (unlikely(ret < 0))
2726 				break;
2727 			if (ret && !len) {
2728 				ret = 0;
2729 				break;
2730 			}
2731 		}
2732 	}
2733 
2734 	/*
2735 	 * If we were cloning, force the next fsync to be a full one since we
2736 	 * we replaced (or just dropped in the case of cloning holes when
2737 	 * NO_HOLES is enabled) extents and extent maps.
2738 	 * This is for the sake of simplicity, and cloning into files larger
2739 	 * than 16Mb would force the full fsync any way (when
2740 	 * try_release_extent_mapping() is invoked during page cache truncation.
2741 	 */
2742 	if (clone_info)
2743 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2744 			&BTRFS_I(inode)->runtime_flags);
2745 
2746 	if (ret)
2747 		goto out_trans;
2748 
2749 	trans->block_rsv = &fs_info->trans_block_rsv;
2750 	/*
2751 	 * If we are using the NO_HOLES feature we might have had already an
2752 	 * hole that overlaps a part of the region [lockstart, lockend] and
2753 	 * ends at (or beyond) lockend. Since we have no file extent items to
2754 	 * represent holes, drop_end can be less than lockend and so we must
2755 	 * make sure we have an extent map representing the existing hole (the
2756 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2757 	 * map representing the existing hole), otherwise the fast fsync path
2758 	 * will not record the existence of the hole region
2759 	 * [existing_hole_start, lockend].
2760 	 */
2761 	if (drop_end <= end)
2762 		drop_end = end + 1;
2763 	/*
2764 	 * Don't insert file hole extent item if it's for a range beyond eof
2765 	 * (because it's useless) or if it represents a 0 bytes range (when
2766 	 * cur_offset == drop_end).
2767 	 */
2768 	if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2769 		ret = fill_holes(trans, BTRFS_I(inode), path,
2770 				cur_offset, drop_end);
2771 		if (ret) {
2772 			/* Same comment as above. */
2773 			btrfs_abort_transaction(trans, ret);
2774 			goto out_trans;
2775 		}
2776 	} else if (!clone_info && cur_offset < drop_end) {
2777 		/* See the comment in the loop above for the reasoning here. */
2778 		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2779 					cur_offset, drop_end - cur_offset);
2780 		if (ret) {
2781 			btrfs_abort_transaction(trans, ret);
2782 			goto out_trans;
2783 		}
2784 
2785 	}
2786 	if (clone_info) {
2787 		ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2788 						clone_info->data_len);
2789 		if (ret) {
2790 			btrfs_abort_transaction(trans, ret);
2791 			goto out_trans;
2792 		}
2793 	}
2794 
2795 out_trans:
2796 	if (!trans)
2797 		goto out_free;
2798 
2799 	trans->block_rsv = &fs_info->trans_block_rsv;
2800 	if (ret)
2801 		btrfs_end_transaction(trans);
2802 	else
2803 		*trans_out = trans;
2804 out_free:
2805 	btrfs_free_block_rsv(fs_info, rsv);
2806 out:
2807 	return ret;
2808 }
2809 
2810 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2811 {
2812 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2813 	struct btrfs_root *root = BTRFS_I(inode)->root;
2814 	struct extent_state *cached_state = NULL;
2815 	struct btrfs_path *path;
2816 	struct btrfs_trans_handle *trans = NULL;
2817 	u64 lockstart;
2818 	u64 lockend;
2819 	u64 tail_start;
2820 	u64 tail_len;
2821 	u64 orig_start = offset;
2822 	int ret = 0;
2823 	bool same_block;
2824 	u64 ino_size;
2825 	bool truncated_block = false;
2826 	bool updated_inode = false;
2827 
2828 	ret = btrfs_wait_ordered_range(inode, offset, len);
2829 	if (ret)
2830 		return ret;
2831 
2832 	inode_lock(inode);
2833 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2834 	ret = find_first_non_hole(inode, &offset, &len);
2835 	if (ret < 0)
2836 		goto out_only_mutex;
2837 	if (ret && !len) {
2838 		/* Already in a large hole */
2839 		ret = 0;
2840 		goto out_only_mutex;
2841 	}
2842 
2843 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2844 	lockend = round_down(offset + len,
2845 			     btrfs_inode_sectorsize(inode)) - 1;
2846 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2847 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2848 	/*
2849 	 * We needn't truncate any block which is beyond the end of the file
2850 	 * because we are sure there is no data there.
2851 	 */
2852 	/*
2853 	 * Only do this if we are in the same block and we aren't doing the
2854 	 * entire block.
2855 	 */
2856 	if (same_block && len < fs_info->sectorsize) {
2857 		if (offset < ino_size) {
2858 			truncated_block = true;
2859 			ret = btrfs_truncate_block(inode, offset, len, 0);
2860 		} else {
2861 			ret = 0;
2862 		}
2863 		goto out_only_mutex;
2864 	}
2865 
2866 	/* zero back part of the first block */
2867 	if (offset < ino_size) {
2868 		truncated_block = true;
2869 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2870 		if (ret) {
2871 			inode_unlock(inode);
2872 			return ret;
2873 		}
2874 	}
2875 
2876 	/* Check the aligned pages after the first unaligned page,
2877 	 * if offset != orig_start, which means the first unaligned page
2878 	 * including several following pages are already in holes,
2879 	 * the extra check can be skipped */
2880 	if (offset == orig_start) {
2881 		/* after truncate page, check hole again */
2882 		len = offset + len - lockstart;
2883 		offset = lockstart;
2884 		ret = find_first_non_hole(inode, &offset, &len);
2885 		if (ret < 0)
2886 			goto out_only_mutex;
2887 		if (ret && !len) {
2888 			ret = 0;
2889 			goto out_only_mutex;
2890 		}
2891 		lockstart = offset;
2892 	}
2893 
2894 	/* Check the tail unaligned part is in a hole */
2895 	tail_start = lockend + 1;
2896 	tail_len = offset + len - tail_start;
2897 	if (tail_len) {
2898 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2899 		if (unlikely(ret < 0))
2900 			goto out_only_mutex;
2901 		if (!ret) {
2902 			/* zero the front end of the last page */
2903 			if (tail_start + tail_len < ino_size) {
2904 				truncated_block = true;
2905 				ret = btrfs_truncate_block(inode,
2906 							tail_start + tail_len,
2907 							0, 1);
2908 				if (ret)
2909 					goto out_only_mutex;
2910 			}
2911 		}
2912 	}
2913 
2914 	if (lockend < lockstart) {
2915 		ret = 0;
2916 		goto out_only_mutex;
2917 	}
2918 
2919 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2920 					  &cached_state);
2921 	if (ret)
2922 		goto out_only_mutex;
2923 
2924 	path = btrfs_alloc_path();
2925 	if (!path) {
2926 		ret = -ENOMEM;
2927 		goto out;
2928 	}
2929 
2930 	ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2931 				     &trans);
2932 	btrfs_free_path(path);
2933 	if (ret)
2934 		goto out;
2935 
2936 	ASSERT(trans != NULL);
2937 	inode_inc_iversion(inode);
2938 	inode->i_mtime = inode->i_ctime = current_time(inode);
2939 	ret = btrfs_update_inode(trans, root, inode);
2940 	updated_inode = true;
2941 	btrfs_end_transaction(trans);
2942 	btrfs_btree_balance_dirty(fs_info);
2943 out:
2944 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2945 			     &cached_state);
2946 out_only_mutex:
2947 	if (!updated_inode && truncated_block && !ret) {
2948 		/*
2949 		 * If we only end up zeroing part of a page, we still need to
2950 		 * update the inode item, so that all the time fields are
2951 		 * updated as well as the necessary btrfs inode in memory fields
2952 		 * for detecting, at fsync time, if the inode isn't yet in the
2953 		 * log tree or it's there but not up to date.
2954 		 */
2955 		struct timespec64 now = current_time(inode);
2956 
2957 		inode_inc_iversion(inode);
2958 		inode->i_mtime = now;
2959 		inode->i_ctime = now;
2960 		trans = btrfs_start_transaction(root, 1);
2961 		if (IS_ERR(trans)) {
2962 			ret = PTR_ERR(trans);
2963 		} else {
2964 			int ret2;
2965 
2966 			ret = btrfs_update_inode(trans, root, inode);
2967 			ret2 = btrfs_end_transaction(trans);
2968 			if (!ret)
2969 				ret = ret2;
2970 		}
2971 	}
2972 	inode_unlock(inode);
2973 	return ret;
2974 }
2975 
2976 /* Helper structure to record which range is already reserved */
2977 struct falloc_range {
2978 	struct list_head list;
2979 	u64 start;
2980 	u64 len;
2981 };
2982 
2983 /*
2984  * Helper function to add falloc range
2985  *
2986  * Caller should have locked the larger range of extent containing
2987  * [start, len)
2988  */
2989 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2990 {
2991 	struct falloc_range *prev = NULL;
2992 	struct falloc_range *range = NULL;
2993 
2994 	if (list_empty(head))
2995 		goto insert;
2996 
2997 	/*
2998 	 * As fallocate iterate by bytenr order, we only need to check
2999 	 * the last range.
3000 	 */
3001 	prev = list_entry(head->prev, struct falloc_range, list);
3002 	if (prev->start + prev->len == start) {
3003 		prev->len += len;
3004 		return 0;
3005 	}
3006 insert:
3007 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3008 	if (!range)
3009 		return -ENOMEM;
3010 	range->start = start;
3011 	range->len = len;
3012 	list_add_tail(&range->list, head);
3013 	return 0;
3014 }
3015 
3016 static int btrfs_fallocate_update_isize(struct inode *inode,
3017 					const u64 end,
3018 					const int mode)
3019 {
3020 	struct btrfs_trans_handle *trans;
3021 	struct btrfs_root *root = BTRFS_I(inode)->root;
3022 	int ret;
3023 	int ret2;
3024 
3025 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3026 		return 0;
3027 
3028 	trans = btrfs_start_transaction(root, 1);
3029 	if (IS_ERR(trans))
3030 		return PTR_ERR(trans);
3031 
3032 	inode->i_ctime = current_time(inode);
3033 	i_size_write(inode, end);
3034 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3035 	ret = btrfs_update_inode(trans, root, inode);
3036 	ret2 = btrfs_end_transaction(trans);
3037 
3038 	return ret ? ret : ret2;
3039 }
3040 
3041 enum {
3042 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3043 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3044 	RANGE_BOUNDARY_HOLE,
3045 };
3046 
3047 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
3048 						 u64 offset)
3049 {
3050 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3051 	struct extent_map *em;
3052 	int ret;
3053 
3054 	offset = round_down(offset, sectorsize);
3055 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
3056 	if (IS_ERR(em))
3057 		return PTR_ERR(em);
3058 
3059 	if (em->block_start == EXTENT_MAP_HOLE)
3060 		ret = RANGE_BOUNDARY_HOLE;
3061 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3062 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3063 	else
3064 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3065 
3066 	free_extent_map(em);
3067 	return ret;
3068 }
3069 
3070 static int btrfs_zero_range(struct inode *inode,
3071 			    loff_t offset,
3072 			    loff_t len,
3073 			    const int mode)
3074 {
3075 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3076 	struct extent_map *em;
3077 	struct extent_changeset *data_reserved = NULL;
3078 	int ret;
3079 	u64 alloc_hint = 0;
3080 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3081 	u64 alloc_start = round_down(offset, sectorsize);
3082 	u64 alloc_end = round_up(offset + len, sectorsize);
3083 	u64 bytes_to_reserve = 0;
3084 	bool space_reserved = false;
3085 
3086 	inode_dio_wait(inode);
3087 
3088 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3089 			      alloc_end - alloc_start);
3090 	if (IS_ERR(em)) {
3091 		ret = PTR_ERR(em);
3092 		goto out;
3093 	}
3094 
3095 	/*
3096 	 * Avoid hole punching and extent allocation for some cases. More cases
3097 	 * could be considered, but these are unlikely common and we keep things
3098 	 * as simple as possible for now. Also, intentionally, if the target
3099 	 * range contains one or more prealloc extents together with regular
3100 	 * extents and holes, we drop all the existing extents and allocate a
3101 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3102 	 */
3103 	if (em->start <= alloc_start &&
3104 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3105 		const u64 em_end = em->start + em->len;
3106 
3107 		if (em_end >= offset + len) {
3108 			/*
3109 			 * The whole range is already a prealloc extent,
3110 			 * do nothing except updating the inode's i_size if
3111 			 * needed.
3112 			 */
3113 			free_extent_map(em);
3114 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3115 							   mode);
3116 			goto out;
3117 		}
3118 		/*
3119 		 * Part of the range is already a prealloc extent, so operate
3120 		 * only on the remaining part of the range.
3121 		 */
3122 		alloc_start = em_end;
3123 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3124 		len = offset + len - alloc_start;
3125 		offset = alloc_start;
3126 		alloc_hint = em->block_start + em->len;
3127 	}
3128 	free_extent_map(em);
3129 
3130 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3131 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3132 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3133 				      sectorsize);
3134 		if (IS_ERR(em)) {
3135 			ret = PTR_ERR(em);
3136 			goto out;
3137 		}
3138 
3139 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3140 			free_extent_map(em);
3141 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3142 							   mode);
3143 			goto out;
3144 		}
3145 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3146 			free_extent_map(em);
3147 			ret = btrfs_truncate_block(inode, offset, len, 0);
3148 			if (!ret)
3149 				ret = btrfs_fallocate_update_isize(inode,
3150 								   offset + len,
3151 								   mode);
3152 			return ret;
3153 		}
3154 		free_extent_map(em);
3155 		alloc_start = round_down(offset, sectorsize);
3156 		alloc_end = alloc_start + sectorsize;
3157 		goto reserve_space;
3158 	}
3159 
3160 	alloc_start = round_up(offset, sectorsize);
3161 	alloc_end = round_down(offset + len, sectorsize);
3162 
3163 	/*
3164 	 * For unaligned ranges, check the pages at the boundaries, they might
3165 	 * map to an extent, in which case we need to partially zero them, or
3166 	 * they might map to a hole, in which case we need our allocation range
3167 	 * to cover them.
3168 	 */
3169 	if (!IS_ALIGNED(offset, sectorsize)) {
3170 		ret = btrfs_zero_range_check_range_boundary(inode, offset);
3171 		if (ret < 0)
3172 			goto out;
3173 		if (ret == RANGE_BOUNDARY_HOLE) {
3174 			alloc_start = round_down(offset, sectorsize);
3175 			ret = 0;
3176 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3177 			ret = btrfs_truncate_block(inode, offset, 0, 0);
3178 			if (ret)
3179 				goto out;
3180 		} else {
3181 			ret = 0;
3182 		}
3183 	}
3184 
3185 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3186 		ret = btrfs_zero_range_check_range_boundary(inode,
3187 							    offset + len);
3188 		if (ret < 0)
3189 			goto out;
3190 		if (ret == RANGE_BOUNDARY_HOLE) {
3191 			alloc_end = round_up(offset + len, sectorsize);
3192 			ret = 0;
3193 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3194 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3195 			if (ret)
3196 				goto out;
3197 		} else {
3198 			ret = 0;
3199 		}
3200 	}
3201 
3202 reserve_space:
3203 	if (alloc_start < alloc_end) {
3204 		struct extent_state *cached_state = NULL;
3205 		const u64 lockstart = alloc_start;
3206 		const u64 lockend = alloc_end - 1;
3207 
3208 		bytes_to_reserve = alloc_end - alloc_start;
3209 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3210 						      bytes_to_reserve);
3211 		if (ret < 0)
3212 			goto out;
3213 		space_reserved = true;
3214 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3215 						  &cached_state);
3216 		if (ret)
3217 			goto out;
3218 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3219 						alloc_start, bytes_to_reserve);
3220 		if (ret)
3221 			goto out;
3222 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3223 						alloc_end - alloc_start,
3224 						i_blocksize(inode),
3225 						offset + len, &alloc_hint);
3226 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3227 				     lockend, &cached_state);
3228 		/* btrfs_prealloc_file_range releases reserved space on error */
3229 		if (ret) {
3230 			space_reserved = false;
3231 			goto out;
3232 		}
3233 	}
3234 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3235  out:
3236 	if (ret && space_reserved)
3237 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3238 					       alloc_start, bytes_to_reserve);
3239 	extent_changeset_free(data_reserved);
3240 
3241 	return ret;
3242 }
3243 
3244 static long btrfs_fallocate(struct file *file, int mode,
3245 			    loff_t offset, loff_t len)
3246 {
3247 	struct inode *inode = file_inode(file);
3248 	struct extent_state *cached_state = NULL;
3249 	struct extent_changeset *data_reserved = NULL;
3250 	struct falloc_range *range;
3251 	struct falloc_range *tmp;
3252 	struct list_head reserve_list;
3253 	u64 cur_offset;
3254 	u64 last_byte;
3255 	u64 alloc_start;
3256 	u64 alloc_end;
3257 	u64 alloc_hint = 0;
3258 	u64 locked_end;
3259 	u64 actual_end = 0;
3260 	struct extent_map *em;
3261 	int blocksize = btrfs_inode_sectorsize(inode);
3262 	int ret;
3263 
3264 	alloc_start = round_down(offset, blocksize);
3265 	alloc_end = round_up(offset + len, blocksize);
3266 	cur_offset = alloc_start;
3267 
3268 	/* Make sure we aren't being give some crap mode */
3269 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3270 		     FALLOC_FL_ZERO_RANGE))
3271 		return -EOPNOTSUPP;
3272 
3273 	if (mode & FALLOC_FL_PUNCH_HOLE)
3274 		return btrfs_punch_hole(inode, offset, len);
3275 
3276 	/*
3277 	 * Only trigger disk allocation, don't trigger qgroup reserve
3278 	 *
3279 	 * For qgroup space, it will be checked later.
3280 	 */
3281 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3282 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3283 						      alloc_end - alloc_start);
3284 		if (ret < 0)
3285 			return ret;
3286 	}
3287 
3288 	inode_lock(inode);
3289 
3290 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3291 		ret = inode_newsize_ok(inode, offset + len);
3292 		if (ret)
3293 			goto out;
3294 	}
3295 
3296 	/*
3297 	 * TODO: Move these two operations after we have checked
3298 	 * accurate reserved space, or fallocate can still fail but
3299 	 * with page truncated or size expanded.
3300 	 *
3301 	 * But that's a minor problem and won't do much harm BTW.
3302 	 */
3303 	if (alloc_start > inode->i_size) {
3304 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3305 					alloc_start);
3306 		if (ret)
3307 			goto out;
3308 	} else if (offset + len > inode->i_size) {
3309 		/*
3310 		 * If we are fallocating from the end of the file onward we
3311 		 * need to zero out the end of the block if i_size lands in the
3312 		 * middle of a block.
3313 		 */
3314 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3315 		if (ret)
3316 			goto out;
3317 	}
3318 
3319 	/*
3320 	 * wait for ordered IO before we have any locks.  We'll loop again
3321 	 * below with the locks held.
3322 	 */
3323 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3324 				       alloc_end - alloc_start);
3325 	if (ret)
3326 		goto out;
3327 
3328 	if (mode & FALLOC_FL_ZERO_RANGE) {
3329 		ret = btrfs_zero_range(inode, offset, len, mode);
3330 		inode_unlock(inode);
3331 		return ret;
3332 	}
3333 
3334 	locked_end = alloc_end - 1;
3335 	while (1) {
3336 		struct btrfs_ordered_extent *ordered;
3337 
3338 		/* the extent lock is ordered inside the running
3339 		 * transaction
3340 		 */
3341 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3342 				 locked_end, &cached_state);
3343 		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3344 
3345 		if (ordered &&
3346 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3347 		    ordered->file_offset < alloc_end) {
3348 			btrfs_put_ordered_extent(ordered);
3349 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3350 					     alloc_start, locked_end,
3351 					     &cached_state);
3352 			/*
3353 			 * we can't wait on the range with the transaction
3354 			 * running or with the extent lock held
3355 			 */
3356 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3357 						       alloc_end - alloc_start);
3358 			if (ret)
3359 				goto out;
3360 		} else {
3361 			if (ordered)
3362 				btrfs_put_ordered_extent(ordered);
3363 			break;
3364 		}
3365 	}
3366 
3367 	/* First, check if we exceed the qgroup limit */
3368 	INIT_LIST_HEAD(&reserve_list);
3369 	while (cur_offset < alloc_end) {
3370 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3371 				      alloc_end - cur_offset);
3372 		if (IS_ERR(em)) {
3373 			ret = PTR_ERR(em);
3374 			break;
3375 		}
3376 		last_byte = min(extent_map_end(em), alloc_end);
3377 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3378 		last_byte = ALIGN(last_byte, blocksize);
3379 		if (em->block_start == EXTENT_MAP_HOLE ||
3380 		    (cur_offset >= inode->i_size &&
3381 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3382 			ret = add_falloc_range(&reserve_list, cur_offset,
3383 					       last_byte - cur_offset);
3384 			if (ret < 0) {
3385 				free_extent_map(em);
3386 				break;
3387 			}
3388 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3389 					&data_reserved, cur_offset,
3390 					last_byte - cur_offset);
3391 			if (ret < 0) {
3392 				cur_offset = last_byte;
3393 				free_extent_map(em);
3394 				break;
3395 			}
3396 		} else {
3397 			/*
3398 			 * Do not need to reserve unwritten extent for this
3399 			 * range, free reserved data space first, otherwise
3400 			 * it'll result in false ENOSPC error.
3401 			 */
3402 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3403 				data_reserved, cur_offset,
3404 				last_byte - cur_offset);
3405 		}
3406 		free_extent_map(em);
3407 		cur_offset = last_byte;
3408 	}
3409 
3410 	/*
3411 	 * If ret is still 0, means we're OK to fallocate.
3412 	 * Or just cleanup the list and exit.
3413 	 */
3414 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3415 		if (!ret)
3416 			ret = btrfs_prealloc_file_range(inode, mode,
3417 					range->start,
3418 					range->len, i_blocksize(inode),
3419 					offset + len, &alloc_hint);
3420 		else
3421 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3422 					data_reserved, range->start,
3423 					range->len);
3424 		list_del(&range->list);
3425 		kfree(range);
3426 	}
3427 	if (ret < 0)
3428 		goto out_unlock;
3429 
3430 	/*
3431 	 * We didn't need to allocate any more space, but we still extended the
3432 	 * size of the file so we need to update i_size and the inode item.
3433 	 */
3434 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3435 out_unlock:
3436 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3437 			     &cached_state);
3438 out:
3439 	inode_unlock(inode);
3440 	/* Let go of our reservation. */
3441 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3442 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3443 				cur_offset, alloc_end - cur_offset);
3444 	extent_changeset_free(data_reserved);
3445 	return ret;
3446 }
3447 
3448 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3449 				  int whence)
3450 {
3451 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3452 	struct extent_map *em = NULL;
3453 	struct extent_state *cached_state = NULL;
3454 	loff_t i_size = inode->i_size;
3455 	u64 lockstart;
3456 	u64 lockend;
3457 	u64 start;
3458 	u64 len;
3459 	int ret = 0;
3460 
3461 	if (i_size == 0 || offset >= i_size)
3462 		return -ENXIO;
3463 
3464 	/*
3465 	 * offset can be negative, in this case we start finding DATA/HOLE from
3466 	 * the very start of the file.
3467 	 */
3468 	start = max_t(loff_t, 0, offset);
3469 
3470 	lockstart = round_down(start, fs_info->sectorsize);
3471 	lockend = round_up(i_size, fs_info->sectorsize);
3472 	if (lockend <= lockstart)
3473 		lockend = lockstart + fs_info->sectorsize;
3474 	lockend--;
3475 	len = lockend - lockstart + 1;
3476 
3477 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3478 			 &cached_state);
3479 
3480 	while (start < i_size) {
3481 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3482 		if (IS_ERR(em)) {
3483 			ret = PTR_ERR(em);
3484 			em = NULL;
3485 			break;
3486 		}
3487 
3488 		if (whence == SEEK_HOLE &&
3489 		    (em->block_start == EXTENT_MAP_HOLE ||
3490 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3491 			break;
3492 		else if (whence == SEEK_DATA &&
3493 			   (em->block_start != EXTENT_MAP_HOLE &&
3494 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3495 			break;
3496 
3497 		start = em->start + em->len;
3498 		free_extent_map(em);
3499 		em = NULL;
3500 		cond_resched();
3501 	}
3502 	free_extent_map(em);
3503 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3504 			     &cached_state);
3505 	if (ret) {
3506 		offset = ret;
3507 	} else {
3508 		if (whence == SEEK_DATA && start >= i_size)
3509 			offset = -ENXIO;
3510 		else
3511 			offset = min_t(loff_t, start, i_size);
3512 	}
3513 
3514 	return offset;
3515 }
3516 
3517 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3518 {
3519 	struct inode *inode = file->f_mapping->host;
3520 
3521 	switch (whence) {
3522 	default:
3523 		return generic_file_llseek(file, offset, whence);
3524 	case SEEK_DATA:
3525 	case SEEK_HOLE:
3526 		inode_lock_shared(inode);
3527 		offset = find_desired_extent(inode, offset, whence);
3528 		inode_unlock_shared(inode);
3529 		break;
3530 	}
3531 
3532 	if (offset < 0)
3533 		return offset;
3534 
3535 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3536 }
3537 
3538 static int btrfs_file_open(struct inode *inode, struct file *filp)
3539 {
3540 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3541 	return generic_file_open(inode, filp);
3542 }
3543 
3544 const struct file_operations btrfs_file_operations = {
3545 	.llseek		= btrfs_file_llseek,
3546 	.read_iter      = generic_file_read_iter,
3547 	.splice_read	= generic_file_splice_read,
3548 	.write_iter	= btrfs_file_write_iter,
3549 	.splice_write	= iter_file_splice_write,
3550 	.mmap		= btrfs_file_mmap,
3551 	.open		= btrfs_file_open,
3552 	.release	= btrfs_release_file,
3553 	.fsync		= btrfs_sync_file,
3554 	.fallocate	= btrfs_fallocate,
3555 	.unlocked_ioctl	= btrfs_ioctl,
3556 #ifdef CONFIG_COMPAT
3557 	.compat_ioctl	= btrfs_compat_ioctl,
3558 #endif
3559 	.remap_file_range = btrfs_remap_file_range,
3560 };
3561 
3562 void __cold btrfs_auto_defrag_exit(void)
3563 {
3564 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3565 }
3566 
3567 int __init btrfs_auto_defrag_init(void)
3568 {
3569 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3570 					sizeof(struct inode_defrag), 0,
3571 					SLAB_MEM_SPREAD,
3572 					NULL);
3573 	if (!btrfs_inode_defrag_cachep)
3574 		return -ENOMEM;
3575 
3576 	return 0;
3577 }
3578 
3579 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3580 {
3581 	int ret;
3582 
3583 	/*
3584 	 * So with compression we will find and lock a dirty page and clear the
3585 	 * first one as dirty, setup an async extent, and immediately return
3586 	 * with the entire range locked but with nobody actually marked with
3587 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3588 	 * expect it to work since it will just kick off a thread to do the
3589 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3590 	 * since it will wait on the page lock, which won't be unlocked until
3591 	 * after the pages have been marked as writeback and so we're good to go
3592 	 * from there.  We have to do this otherwise we'll miss the ordered
3593 	 * extents and that results in badness.  Please Josef, do not think you
3594 	 * know better and pull this out at some point in the future, it is
3595 	 * right and you are wrong.
3596 	 */
3597 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3598 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3599 			     &BTRFS_I(inode)->runtime_flags))
3600 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3601 
3602 	return ret;
3603 }
3604