1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/aio.h> 28 #include <linux/falloc.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/statfs.h> 32 #include <linux/compat.h> 33 #include <linux/slab.h> 34 #include <linux/btrfs.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "compat.h" 43 #include "volumes.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_root *root) 133 { 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149 { 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189 } 190 191 /* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196 static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198 { 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215 out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217 } 218 219 /* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223 static struct inode_defrag * 224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225 { 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257 out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262 } 263 264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265 { 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 if (need_resched()) { 277 spin_unlock(&fs_info->defrag_inodes_lock); 278 cond_resched(); 279 spin_lock(&fs_info->defrag_inodes_lock); 280 } 281 282 node = rb_first(&fs_info->defrag_inodes); 283 } 284 spin_unlock(&fs_info->defrag_inodes_lock); 285 } 286 287 #define BTRFS_DEFRAG_BATCH 1024 288 289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 290 struct inode_defrag *defrag) 291 { 292 struct btrfs_root *inode_root; 293 struct inode *inode; 294 struct btrfs_key key; 295 struct btrfs_ioctl_defrag_range_args range; 296 int num_defrag; 297 int index; 298 int ret; 299 300 /* get the inode */ 301 key.objectid = defrag->root; 302 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 303 key.offset = (u64)-1; 304 305 index = srcu_read_lock(&fs_info->subvol_srcu); 306 307 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 308 if (IS_ERR(inode_root)) { 309 ret = PTR_ERR(inode_root); 310 goto cleanup; 311 } 312 if (btrfs_root_refs(&inode_root->root_item) == 0) { 313 ret = -ENOENT; 314 goto cleanup; 315 } 316 317 key.objectid = defrag->ino; 318 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 319 key.offset = 0; 320 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 321 if (IS_ERR(inode)) { 322 ret = PTR_ERR(inode); 323 goto cleanup; 324 } 325 srcu_read_unlock(&fs_info->subvol_srcu, index); 326 327 /* do a chunk of defrag */ 328 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 329 memset(&range, 0, sizeof(range)); 330 range.len = (u64)-1; 331 range.start = defrag->last_offset; 332 333 sb_start_write(fs_info->sb); 334 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 335 BTRFS_DEFRAG_BATCH); 336 sb_end_write(fs_info->sb); 337 /* 338 * if we filled the whole defrag batch, there 339 * must be more work to do. Queue this defrag 340 * again 341 */ 342 if (num_defrag == BTRFS_DEFRAG_BATCH) { 343 defrag->last_offset = range.start; 344 btrfs_requeue_inode_defrag(inode, defrag); 345 } else if (defrag->last_offset && !defrag->cycled) { 346 /* 347 * we didn't fill our defrag batch, but 348 * we didn't start at zero. Make sure we loop 349 * around to the start of the file. 350 */ 351 defrag->last_offset = 0; 352 defrag->cycled = 1; 353 btrfs_requeue_inode_defrag(inode, defrag); 354 } else { 355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 356 } 357 358 iput(inode); 359 return 0; 360 cleanup: 361 srcu_read_unlock(&fs_info->subvol_srcu, index); 362 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 363 return ret; 364 } 365 366 /* 367 * run through the list of inodes in the FS that need 368 * defragging 369 */ 370 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 371 { 372 struct inode_defrag *defrag; 373 u64 first_ino = 0; 374 u64 root_objectid = 0; 375 376 atomic_inc(&fs_info->defrag_running); 377 while(1) { 378 /* Pause the auto defragger. */ 379 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 380 &fs_info->fs_state)) 381 break; 382 383 if (!__need_auto_defrag(fs_info->tree_root)) 384 break; 385 386 /* find an inode to defrag */ 387 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 388 first_ino); 389 if (!defrag) { 390 if (root_objectid || first_ino) { 391 root_objectid = 0; 392 first_ino = 0; 393 continue; 394 } else { 395 break; 396 } 397 } 398 399 first_ino = defrag->ino + 1; 400 root_objectid = defrag->root; 401 402 __btrfs_run_defrag_inode(fs_info, defrag); 403 } 404 atomic_dec(&fs_info->defrag_running); 405 406 /* 407 * during unmount, we use the transaction_wait queue to 408 * wait for the defragger to stop 409 */ 410 wake_up(&fs_info->transaction_wait); 411 return 0; 412 } 413 414 /* simple helper to fault in pages and copy. This should go away 415 * and be replaced with calls into generic code. 416 */ 417 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 418 size_t write_bytes, 419 struct page **prepared_pages, 420 struct iov_iter *i) 421 { 422 size_t copied = 0; 423 size_t total_copied = 0; 424 int pg = 0; 425 int offset = pos & (PAGE_CACHE_SIZE - 1); 426 427 while (write_bytes > 0) { 428 size_t count = min_t(size_t, 429 PAGE_CACHE_SIZE - offset, write_bytes); 430 struct page *page = prepared_pages[pg]; 431 /* 432 * Copy data from userspace to the current page 433 * 434 * Disable pagefault to avoid recursive lock since 435 * the pages are already locked 436 */ 437 pagefault_disable(); 438 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 439 pagefault_enable(); 440 441 /* Flush processor's dcache for this page */ 442 flush_dcache_page(page); 443 444 /* 445 * if we get a partial write, we can end up with 446 * partially up to date pages. These add 447 * a lot of complexity, so make sure they don't 448 * happen by forcing this copy to be retried. 449 * 450 * The rest of the btrfs_file_write code will fall 451 * back to page at a time copies after we return 0. 452 */ 453 if (!PageUptodate(page) && copied < count) 454 copied = 0; 455 456 iov_iter_advance(i, copied); 457 write_bytes -= copied; 458 total_copied += copied; 459 460 /* Return to btrfs_file_aio_write to fault page */ 461 if (unlikely(copied == 0)) 462 break; 463 464 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 465 offset += copied; 466 } else { 467 pg++; 468 offset = 0; 469 } 470 } 471 return total_copied; 472 } 473 474 /* 475 * unlocks pages after btrfs_file_write is done with them 476 */ 477 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 478 { 479 size_t i; 480 for (i = 0; i < num_pages; i++) { 481 /* page checked is some magic around finding pages that 482 * have been modified without going through btrfs_set_page_dirty 483 * clear it here 484 */ 485 ClearPageChecked(pages[i]); 486 unlock_page(pages[i]); 487 mark_page_accessed(pages[i]); 488 page_cache_release(pages[i]); 489 } 490 } 491 492 /* 493 * after copy_from_user, pages need to be dirtied and we need to make 494 * sure holes are created between the current EOF and the start of 495 * any next extents (if required). 496 * 497 * this also makes the decision about creating an inline extent vs 498 * doing real data extents, marking pages dirty and delalloc as required. 499 */ 500 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 501 struct page **pages, size_t num_pages, 502 loff_t pos, size_t write_bytes, 503 struct extent_state **cached) 504 { 505 int err = 0; 506 int i; 507 u64 num_bytes; 508 u64 start_pos; 509 u64 end_of_last_block; 510 u64 end_pos = pos + write_bytes; 511 loff_t isize = i_size_read(inode); 512 513 start_pos = pos & ~((u64)root->sectorsize - 1); 514 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 515 516 end_of_last_block = start_pos + num_bytes - 1; 517 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 518 cached); 519 if (err) 520 return err; 521 522 for (i = 0; i < num_pages; i++) { 523 struct page *p = pages[i]; 524 SetPageUptodate(p); 525 ClearPageChecked(p); 526 set_page_dirty(p); 527 } 528 529 /* 530 * we've only changed i_size in ram, and we haven't updated 531 * the disk i_size. There is no need to log the inode 532 * at this time. 533 */ 534 if (end_pos > isize) 535 i_size_write(inode, end_pos); 536 return 0; 537 } 538 539 /* 540 * this drops all the extents in the cache that intersect the range 541 * [start, end]. Existing extents are split as required. 542 */ 543 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 544 int skip_pinned) 545 { 546 struct extent_map *em; 547 struct extent_map *split = NULL; 548 struct extent_map *split2 = NULL; 549 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 550 u64 len = end - start + 1; 551 u64 gen; 552 int ret; 553 int testend = 1; 554 unsigned long flags; 555 int compressed = 0; 556 bool modified; 557 558 WARN_ON(end < start); 559 if (end == (u64)-1) { 560 len = (u64)-1; 561 testend = 0; 562 } 563 while (1) { 564 int no_splits = 0; 565 566 modified = false; 567 if (!split) 568 split = alloc_extent_map(); 569 if (!split2) 570 split2 = alloc_extent_map(); 571 if (!split || !split2) 572 no_splits = 1; 573 574 write_lock(&em_tree->lock); 575 em = lookup_extent_mapping(em_tree, start, len); 576 if (!em) { 577 write_unlock(&em_tree->lock); 578 break; 579 } 580 flags = em->flags; 581 gen = em->generation; 582 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 583 if (testend && em->start + em->len >= start + len) { 584 free_extent_map(em); 585 write_unlock(&em_tree->lock); 586 break; 587 } 588 start = em->start + em->len; 589 if (testend) 590 len = start + len - (em->start + em->len); 591 free_extent_map(em); 592 write_unlock(&em_tree->lock); 593 continue; 594 } 595 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 596 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 597 clear_bit(EXTENT_FLAG_LOGGING, &flags); 598 modified = !list_empty(&em->list); 599 remove_extent_mapping(em_tree, em); 600 if (no_splits) 601 goto next; 602 603 if (em->block_start < EXTENT_MAP_LAST_BYTE && 604 em->start < start) { 605 split->start = em->start; 606 split->len = start - em->start; 607 split->orig_start = em->orig_start; 608 split->block_start = em->block_start; 609 610 if (compressed) 611 split->block_len = em->block_len; 612 else 613 split->block_len = split->len; 614 split->ram_bytes = em->ram_bytes; 615 split->orig_block_len = max(split->block_len, 616 em->orig_block_len); 617 split->generation = gen; 618 split->bdev = em->bdev; 619 split->flags = flags; 620 split->compress_type = em->compress_type; 621 ret = add_extent_mapping(em_tree, split, modified); 622 BUG_ON(ret); /* Logic error */ 623 free_extent_map(split); 624 split = split2; 625 split2 = NULL; 626 } 627 if (em->block_start < EXTENT_MAP_LAST_BYTE && 628 testend && em->start + em->len > start + len) { 629 u64 diff = start + len - em->start; 630 631 split->start = start + len; 632 split->len = em->start + em->len - (start + len); 633 split->bdev = em->bdev; 634 split->flags = flags; 635 split->compress_type = em->compress_type; 636 split->generation = gen; 637 split->orig_block_len = max(em->block_len, 638 em->orig_block_len); 639 split->ram_bytes = em->ram_bytes; 640 641 if (compressed) { 642 split->block_len = em->block_len; 643 split->block_start = em->block_start; 644 split->orig_start = em->orig_start; 645 } else { 646 split->block_len = split->len; 647 split->block_start = em->block_start + diff; 648 split->orig_start = em->orig_start; 649 } 650 651 ret = add_extent_mapping(em_tree, split, modified); 652 BUG_ON(ret); /* Logic error */ 653 free_extent_map(split); 654 split = NULL; 655 } 656 next: 657 write_unlock(&em_tree->lock); 658 659 /* once for us */ 660 free_extent_map(em); 661 /* once for the tree*/ 662 free_extent_map(em); 663 } 664 if (split) 665 free_extent_map(split); 666 if (split2) 667 free_extent_map(split2); 668 } 669 670 /* 671 * this is very complex, but the basic idea is to drop all extents 672 * in the range start - end. hint_block is filled in with a block number 673 * that would be a good hint to the block allocator for this file. 674 * 675 * If an extent intersects the range but is not entirely inside the range 676 * it is either truncated or split. Anything entirely inside the range 677 * is deleted from the tree. 678 */ 679 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 680 struct btrfs_root *root, struct inode *inode, 681 struct btrfs_path *path, u64 start, u64 end, 682 u64 *drop_end, int drop_cache) 683 { 684 struct extent_buffer *leaf; 685 struct btrfs_file_extent_item *fi; 686 struct btrfs_key key; 687 struct btrfs_key new_key; 688 u64 ino = btrfs_ino(inode); 689 u64 search_start = start; 690 u64 disk_bytenr = 0; 691 u64 num_bytes = 0; 692 u64 extent_offset = 0; 693 u64 extent_end = 0; 694 int del_nr = 0; 695 int del_slot = 0; 696 int extent_type; 697 int recow; 698 int ret; 699 int modify_tree = -1; 700 int update_refs = (root->ref_cows || root == root->fs_info->tree_root); 701 int found = 0; 702 703 if (drop_cache) 704 btrfs_drop_extent_cache(inode, start, end - 1, 0); 705 706 if (start >= BTRFS_I(inode)->disk_i_size) 707 modify_tree = 0; 708 709 while (1) { 710 recow = 0; 711 ret = btrfs_lookup_file_extent(trans, root, path, ino, 712 search_start, modify_tree); 713 if (ret < 0) 714 break; 715 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 716 leaf = path->nodes[0]; 717 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 718 if (key.objectid == ino && 719 key.type == BTRFS_EXTENT_DATA_KEY) 720 path->slots[0]--; 721 } 722 ret = 0; 723 next_slot: 724 leaf = path->nodes[0]; 725 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 726 BUG_ON(del_nr > 0); 727 ret = btrfs_next_leaf(root, path); 728 if (ret < 0) 729 break; 730 if (ret > 0) { 731 ret = 0; 732 break; 733 } 734 leaf = path->nodes[0]; 735 recow = 1; 736 } 737 738 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 739 if (key.objectid > ino || 740 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 741 break; 742 743 fi = btrfs_item_ptr(leaf, path->slots[0], 744 struct btrfs_file_extent_item); 745 extent_type = btrfs_file_extent_type(leaf, fi); 746 747 if (extent_type == BTRFS_FILE_EXTENT_REG || 748 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 749 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 750 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 751 extent_offset = btrfs_file_extent_offset(leaf, fi); 752 extent_end = key.offset + 753 btrfs_file_extent_num_bytes(leaf, fi); 754 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 755 extent_end = key.offset + 756 btrfs_file_extent_inline_len(leaf, fi); 757 } else { 758 WARN_ON(1); 759 extent_end = search_start; 760 } 761 762 if (extent_end <= search_start) { 763 path->slots[0]++; 764 goto next_slot; 765 } 766 767 found = 1; 768 search_start = max(key.offset, start); 769 if (recow || !modify_tree) { 770 modify_tree = -1; 771 btrfs_release_path(path); 772 continue; 773 } 774 775 /* 776 * | - range to drop - | 777 * | -------- extent -------- | 778 */ 779 if (start > key.offset && end < extent_end) { 780 BUG_ON(del_nr > 0); 781 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 782 783 memcpy(&new_key, &key, sizeof(new_key)); 784 new_key.offset = start; 785 ret = btrfs_duplicate_item(trans, root, path, 786 &new_key); 787 if (ret == -EAGAIN) { 788 btrfs_release_path(path); 789 continue; 790 } 791 if (ret < 0) 792 break; 793 794 leaf = path->nodes[0]; 795 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 796 struct btrfs_file_extent_item); 797 btrfs_set_file_extent_num_bytes(leaf, fi, 798 start - key.offset); 799 800 fi = btrfs_item_ptr(leaf, path->slots[0], 801 struct btrfs_file_extent_item); 802 803 extent_offset += start - key.offset; 804 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 805 btrfs_set_file_extent_num_bytes(leaf, fi, 806 extent_end - start); 807 btrfs_mark_buffer_dirty(leaf); 808 809 if (update_refs && disk_bytenr > 0) { 810 ret = btrfs_inc_extent_ref(trans, root, 811 disk_bytenr, num_bytes, 0, 812 root->root_key.objectid, 813 new_key.objectid, 814 start - extent_offset, 0); 815 BUG_ON(ret); /* -ENOMEM */ 816 } 817 key.offset = start; 818 } 819 /* 820 * | ---- range to drop ----- | 821 * | -------- extent -------- | 822 */ 823 if (start <= key.offset && end < extent_end) { 824 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 825 826 memcpy(&new_key, &key, sizeof(new_key)); 827 new_key.offset = end; 828 btrfs_set_item_key_safe(root, path, &new_key); 829 830 extent_offset += end - key.offset; 831 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 832 btrfs_set_file_extent_num_bytes(leaf, fi, 833 extent_end - end); 834 btrfs_mark_buffer_dirty(leaf); 835 if (update_refs && disk_bytenr > 0) 836 inode_sub_bytes(inode, end - key.offset); 837 break; 838 } 839 840 search_start = extent_end; 841 /* 842 * | ---- range to drop ----- | 843 * | -------- extent -------- | 844 */ 845 if (start > key.offset && end >= extent_end) { 846 BUG_ON(del_nr > 0); 847 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 848 849 btrfs_set_file_extent_num_bytes(leaf, fi, 850 start - key.offset); 851 btrfs_mark_buffer_dirty(leaf); 852 if (update_refs && disk_bytenr > 0) 853 inode_sub_bytes(inode, extent_end - start); 854 if (end == extent_end) 855 break; 856 857 path->slots[0]++; 858 goto next_slot; 859 } 860 861 /* 862 * | ---- range to drop ----- | 863 * | ------ extent ------ | 864 */ 865 if (start <= key.offset && end >= extent_end) { 866 if (del_nr == 0) { 867 del_slot = path->slots[0]; 868 del_nr = 1; 869 } else { 870 BUG_ON(del_slot + del_nr != path->slots[0]); 871 del_nr++; 872 } 873 874 if (update_refs && 875 extent_type == BTRFS_FILE_EXTENT_INLINE) { 876 inode_sub_bytes(inode, 877 extent_end - key.offset); 878 extent_end = ALIGN(extent_end, 879 root->sectorsize); 880 } else if (update_refs && disk_bytenr > 0) { 881 ret = btrfs_free_extent(trans, root, 882 disk_bytenr, num_bytes, 0, 883 root->root_key.objectid, 884 key.objectid, key.offset - 885 extent_offset, 0); 886 BUG_ON(ret); /* -ENOMEM */ 887 inode_sub_bytes(inode, 888 extent_end - key.offset); 889 } 890 891 if (end == extent_end) 892 break; 893 894 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 895 path->slots[0]++; 896 goto next_slot; 897 } 898 899 ret = btrfs_del_items(trans, root, path, del_slot, 900 del_nr); 901 if (ret) { 902 btrfs_abort_transaction(trans, root, ret); 903 break; 904 } 905 906 del_nr = 0; 907 del_slot = 0; 908 909 btrfs_release_path(path); 910 continue; 911 } 912 913 BUG_ON(1); 914 } 915 916 if (!ret && del_nr > 0) { 917 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 918 if (ret) 919 btrfs_abort_transaction(trans, root, ret); 920 } 921 922 if (drop_end) 923 *drop_end = found ? min(end, extent_end) : end; 924 btrfs_release_path(path); 925 return ret; 926 } 927 928 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 929 struct btrfs_root *root, struct inode *inode, u64 start, 930 u64 end, int drop_cache) 931 { 932 struct btrfs_path *path; 933 int ret; 934 935 path = btrfs_alloc_path(); 936 if (!path) 937 return -ENOMEM; 938 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 939 drop_cache); 940 btrfs_free_path(path); 941 return ret; 942 } 943 944 static int extent_mergeable(struct extent_buffer *leaf, int slot, 945 u64 objectid, u64 bytenr, u64 orig_offset, 946 u64 *start, u64 *end) 947 { 948 struct btrfs_file_extent_item *fi; 949 struct btrfs_key key; 950 u64 extent_end; 951 952 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 953 return 0; 954 955 btrfs_item_key_to_cpu(leaf, &key, slot); 956 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 957 return 0; 958 959 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 960 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 961 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 962 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 963 btrfs_file_extent_compression(leaf, fi) || 964 btrfs_file_extent_encryption(leaf, fi) || 965 btrfs_file_extent_other_encoding(leaf, fi)) 966 return 0; 967 968 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 969 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 970 return 0; 971 972 *start = key.offset; 973 *end = extent_end; 974 return 1; 975 } 976 977 /* 978 * Mark extent in the range start - end as written. 979 * 980 * This changes extent type from 'pre-allocated' to 'regular'. If only 981 * part of extent is marked as written, the extent will be split into 982 * two or three. 983 */ 984 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 985 struct inode *inode, u64 start, u64 end) 986 { 987 struct btrfs_root *root = BTRFS_I(inode)->root; 988 struct extent_buffer *leaf; 989 struct btrfs_path *path; 990 struct btrfs_file_extent_item *fi; 991 struct btrfs_key key; 992 struct btrfs_key new_key; 993 u64 bytenr; 994 u64 num_bytes; 995 u64 extent_end; 996 u64 orig_offset; 997 u64 other_start; 998 u64 other_end; 999 u64 split; 1000 int del_nr = 0; 1001 int del_slot = 0; 1002 int recow; 1003 int ret; 1004 u64 ino = btrfs_ino(inode); 1005 1006 path = btrfs_alloc_path(); 1007 if (!path) 1008 return -ENOMEM; 1009 again: 1010 recow = 0; 1011 split = start; 1012 key.objectid = ino; 1013 key.type = BTRFS_EXTENT_DATA_KEY; 1014 key.offset = split; 1015 1016 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1017 if (ret < 0) 1018 goto out; 1019 if (ret > 0 && path->slots[0] > 0) 1020 path->slots[0]--; 1021 1022 leaf = path->nodes[0]; 1023 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1024 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1025 fi = btrfs_item_ptr(leaf, path->slots[0], 1026 struct btrfs_file_extent_item); 1027 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1028 BTRFS_FILE_EXTENT_PREALLOC); 1029 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1030 BUG_ON(key.offset > start || extent_end < end); 1031 1032 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1033 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1034 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1035 memcpy(&new_key, &key, sizeof(new_key)); 1036 1037 if (start == key.offset && end < extent_end) { 1038 other_start = 0; 1039 other_end = start; 1040 if (extent_mergeable(leaf, path->slots[0] - 1, 1041 ino, bytenr, orig_offset, 1042 &other_start, &other_end)) { 1043 new_key.offset = end; 1044 btrfs_set_item_key_safe(root, path, &new_key); 1045 fi = btrfs_item_ptr(leaf, path->slots[0], 1046 struct btrfs_file_extent_item); 1047 btrfs_set_file_extent_generation(leaf, fi, 1048 trans->transid); 1049 btrfs_set_file_extent_num_bytes(leaf, fi, 1050 extent_end - end); 1051 btrfs_set_file_extent_offset(leaf, fi, 1052 end - orig_offset); 1053 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1054 struct btrfs_file_extent_item); 1055 btrfs_set_file_extent_generation(leaf, fi, 1056 trans->transid); 1057 btrfs_set_file_extent_num_bytes(leaf, fi, 1058 end - other_start); 1059 btrfs_mark_buffer_dirty(leaf); 1060 goto out; 1061 } 1062 } 1063 1064 if (start > key.offset && end == extent_end) { 1065 other_start = end; 1066 other_end = 0; 1067 if (extent_mergeable(leaf, path->slots[0] + 1, 1068 ino, bytenr, orig_offset, 1069 &other_start, &other_end)) { 1070 fi = btrfs_item_ptr(leaf, path->slots[0], 1071 struct btrfs_file_extent_item); 1072 btrfs_set_file_extent_num_bytes(leaf, fi, 1073 start - key.offset); 1074 btrfs_set_file_extent_generation(leaf, fi, 1075 trans->transid); 1076 path->slots[0]++; 1077 new_key.offset = start; 1078 btrfs_set_item_key_safe(root, path, &new_key); 1079 1080 fi = btrfs_item_ptr(leaf, path->slots[0], 1081 struct btrfs_file_extent_item); 1082 btrfs_set_file_extent_generation(leaf, fi, 1083 trans->transid); 1084 btrfs_set_file_extent_num_bytes(leaf, fi, 1085 other_end - start); 1086 btrfs_set_file_extent_offset(leaf, fi, 1087 start - orig_offset); 1088 btrfs_mark_buffer_dirty(leaf); 1089 goto out; 1090 } 1091 } 1092 1093 while (start > key.offset || end < extent_end) { 1094 if (key.offset == start) 1095 split = end; 1096 1097 new_key.offset = split; 1098 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1099 if (ret == -EAGAIN) { 1100 btrfs_release_path(path); 1101 goto again; 1102 } 1103 if (ret < 0) { 1104 btrfs_abort_transaction(trans, root, ret); 1105 goto out; 1106 } 1107 1108 leaf = path->nodes[0]; 1109 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1110 struct btrfs_file_extent_item); 1111 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1112 btrfs_set_file_extent_num_bytes(leaf, fi, 1113 split - key.offset); 1114 1115 fi = btrfs_item_ptr(leaf, path->slots[0], 1116 struct btrfs_file_extent_item); 1117 1118 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1119 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1120 btrfs_set_file_extent_num_bytes(leaf, fi, 1121 extent_end - split); 1122 btrfs_mark_buffer_dirty(leaf); 1123 1124 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1125 root->root_key.objectid, 1126 ino, orig_offset, 0); 1127 BUG_ON(ret); /* -ENOMEM */ 1128 1129 if (split == start) { 1130 key.offset = start; 1131 } else { 1132 BUG_ON(start != key.offset); 1133 path->slots[0]--; 1134 extent_end = end; 1135 } 1136 recow = 1; 1137 } 1138 1139 other_start = end; 1140 other_end = 0; 1141 if (extent_mergeable(leaf, path->slots[0] + 1, 1142 ino, bytenr, orig_offset, 1143 &other_start, &other_end)) { 1144 if (recow) { 1145 btrfs_release_path(path); 1146 goto again; 1147 } 1148 extent_end = other_end; 1149 del_slot = path->slots[0] + 1; 1150 del_nr++; 1151 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1152 0, root->root_key.objectid, 1153 ino, orig_offset, 0); 1154 BUG_ON(ret); /* -ENOMEM */ 1155 } 1156 other_start = 0; 1157 other_end = start; 1158 if (extent_mergeable(leaf, path->slots[0] - 1, 1159 ino, bytenr, orig_offset, 1160 &other_start, &other_end)) { 1161 if (recow) { 1162 btrfs_release_path(path); 1163 goto again; 1164 } 1165 key.offset = other_start; 1166 del_slot = path->slots[0]; 1167 del_nr++; 1168 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1169 0, root->root_key.objectid, 1170 ino, orig_offset, 0); 1171 BUG_ON(ret); /* -ENOMEM */ 1172 } 1173 if (del_nr == 0) { 1174 fi = btrfs_item_ptr(leaf, path->slots[0], 1175 struct btrfs_file_extent_item); 1176 btrfs_set_file_extent_type(leaf, fi, 1177 BTRFS_FILE_EXTENT_REG); 1178 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1179 btrfs_mark_buffer_dirty(leaf); 1180 } else { 1181 fi = btrfs_item_ptr(leaf, del_slot - 1, 1182 struct btrfs_file_extent_item); 1183 btrfs_set_file_extent_type(leaf, fi, 1184 BTRFS_FILE_EXTENT_REG); 1185 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1186 btrfs_set_file_extent_num_bytes(leaf, fi, 1187 extent_end - key.offset); 1188 btrfs_mark_buffer_dirty(leaf); 1189 1190 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1191 if (ret < 0) { 1192 btrfs_abort_transaction(trans, root, ret); 1193 goto out; 1194 } 1195 } 1196 out: 1197 btrfs_free_path(path); 1198 return 0; 1199 } 1200 1201 /* 1202 * on error we return an unlocked page and the error value 1203 * on success we return a locked page and 0 1204 */ 1205 static int prepare_uptodate_page(struct page *page, u64 pos, 1206 bool force_uptodate) 1207 { 1208 int ret = 0; 1209 1210 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1211 !PageUptodate(page)) { 1212 ret = btrfs_readpage(NULL, page); 1213 if (ret) 1214 return ret; 1215 lock_page(page); 1216 if (!PageUptodate(page)) { 1217 unlock_page(page); 1218 return -EIO; 1219 } 1220 } 1221 return 0; 1222 } 1223 1224 /* 1225 * this gets pages into the page cache and locks them down, it also properly 1226 * waits for data=ordered extents to finish before allowing the pages to be 1227 * modified. 1228 */ 1229 static noinline int prepare_pages(struct btrfs_root *root, struct file *file, 1230 struct page **pages, size_t num_pages, 1231 loff_t pos, unsigned long first_index, 1232 size_t write_bytes, bool force_uptodate) 1233 { 1234 struct extent_state *cached_state = NULL; 1235 int i; 1236 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1237 struct inode *inode = file_inode(file); 1238 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1239 int err = 0; 1240 int faili = 0; 1241 u64 start_pos; 1242 u64 last_pos; 1243 1244 start_pos = pos & ~((u64)root->sectorsize - 1); 1245 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; 1246 1247 again: 1248 for (i = 0; i < num_pages; i++) { 1249 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1250 mask | __GFP_WRITE); 1251 if (!pages[i]) { 1252 faili = i - 1; 1253 err = -ENOMEM; 1254 goto fail; 1255 } 1256 1257 if (i == 0) 1258 err = prepare_uptodate_page(pages[i], pos, 1259 force_uptodate); 1260 if (i == num_pages - 1) 1261 err = prepare_uptodate_page(pages[i], 1262 pos + write_bytes, false); 1263 if (err) { 1264 page_cache_release(pages[i]); 1265 faili = i - 1; 1266 goto fail; 1267 } 1268 wait_on_page_writeback(pages[i]); 1269 } 1270 err = 0; 1271 if (start_pos < inode->i_size) { 1272 struct btrfs_ordered_extent *ordered; 1273 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1274 start_pos, last_pos - 1, 0, &cached_state); 1275 ordered = btrfs_lookup_first_ordered_extent(inode, 1276 last_pos - 1); 1277 if (ordered && 1278 ordered->file_offset + ordered->len > start_pos && 1279 ordered->file_offset < last_pos) { 1280 btrfs_put_ordered_extent(ordered); 1281 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1282 start_pos, last_pos - 1, 1283 &cached_state, GFP_NOFS); 1284 for (i = 0; i < num_pages; i++) { 1285 unlock_page(pages[i]); 1286 page_cache_release(pages[i]); 1287 } 1288 btrfs_wait_ordered_range(inode, start_pos, 1289 last_pos - start_pos); 1290 goto again; 1291 } 1292 if (ordered) 1293 btrfs_put_ordered_extent(ordered); 1294 1295 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1296 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1297 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1298 0, 0, &cached_state, GFP_NOFS); 1299 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1300 start_pos, last_pos - 1, &cached_state, 1301 GFP_NOFS); 1302 } 1303 for (i = 0; i < num_pages; i++) { 1304 if (clear_page_dirty_for_io(pages[i])) 1305 account_page_redirty(pages[i]); 1306 set_page_extent_mapped(pages[i]); 1307 WARN_ON(!PageLocked(pages[i])); 1308 } 1309 return 0; 1310 fail: 1311 while (faili >= 0) { 1312 unlock_page(pages[faili]); 1313 page_cache_release(pages[faili]); 1314 faili--; 1315 } 1316 return err; 1317 1318 } 1319 1320 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1321 struct iov_iter *i, 1322 loff_t pos) 1323 { 1324 struct inode *inode = file_inode(file); 1325 struct btrfs_root *root = BTRFS_I(inode)->root; 1326 struct page **pages = NULL; 1327 unsigned long first_index; 1328 size_t num_written = 0; 1329 int nrptrs; 1330 int ret = 0; 1331 bool force_page_uptodate = false; 1332 1333 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1334 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1335 (sizeof(struct page *))); 1336 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1337 nrptrs = max(nrptrs, 8); 1338 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1339 if (!pages) 1340 return -ENOMEM; 1341 1342 first_index = pos >> PAGE_CACHE_SHIFT; 1343 1344 while (iov_iter_count(i) > 0) { 1345 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1346 size_t write_bytes = min(iov_iter_count(i), 1347 nrptrs * (size_t)PAGE_CACHE_SIZE - 1348 offset); 1349 size_t num_pages = (write_bytes + offset + 1350 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1351 size_t dirty_pages; 1352 size_t copied; 1353 1354 WARN_ON(num_pages > nrptrs); 1355 1356 /* 1357 * Fault pages before locking them in prepare_pages 1358 * to avoid recursive lock 1359 */ 1360 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1361 ret = -EFAULT; 1362 break; 1363 } 1364 1365 ret = btrfs_delalloc_reserve_space(inode, 1366 num_pages << PAGE_CACHE_SHIFT); 1367 if (ret) 1368 break; 1369 1370 /* 1371 * This is going to setup the pages array with the number of 1372 * pages we want, so we don't really need to worry about the 1373 * contents of pages from loop to loop 1374 */ 1375 ret = prepare_pages(root, file, pages, num_pages, 1376 pos, first_index, write_bytes, 1377 force_page_uptodate); 1378 if (ret) { 1379 btrfs_delalloc_release_space(inode, 1380 num_pages << PAGE_CACHE_SHIFT); 1381 break; 1382 } 1383 1384 copied = btrfs_copy_from_user(pos, num_pages, 1385 write_bytes, pages, i); 1386 1387 /* 1388 * if we have trouble faulting in the pages, fall 1389 * back to one page at a time 1390 */ 1391 if (copied < write_bytes) 1392 nrptrs = 1; 1393 1394 if (copied == 0) { 1395 force_page_uptodate = true; 1396 dirty_pages = 0; 1397 } else { 1398 force_page_uptodate = false; 1399 dirty_pages = (copied + offset + 1400 PAGE_CACHE_SIZE - 1) >> 1401 PAGE_CACHE_SHIFT; 1402 } 1403 1404 /* 1405 * If we had a short copy we need to release the excess delaloc 1406 * bytes we reserved. We need to increment outstanding_extents 1407 * because btrfs_delalloc_release_space will decrement it, but 1408 * we still have an outstanding extent for the chunk we actually 1409 * managed to copy. 1410 */ 1411 if (num_pages > dirty_pages) { 1412 if (copied > 0) { 1413 spin_lock(&BTRFS_I(inode)->lock); 1414 BTRFS_I(inode)->outstanding_extents++; 1415 spin_unlock(&BTRFS_I(inode)->lock); 1416 } 1417 btrfs_delalloc_release_space(inode, 1418 (num_pages - dirty_pages) << 1419 PAGE_CACHE_SHIFT); 1420 } 1421 1422 if (copied > 0) { 1423 ret = btrfs_dirty_pages(root, inode, pages, 1424 dirty_pages, pos, copied, 1425 NULL); 1426 if (ret) { 1427 btrfs_delalloc_release_space(inode, 1428 dirty_pages << PAGE_CACHE_SHIFT); 1429 btrfs_drop_pages(pages, num_pages); 1430 break; 1431 } 1432 } 1433 1434 btrfs_drop_pages(pages, num_pages); 1435 1436 cond_resched(); 1437 1438 balance_dirty_pages_ratelimited(inode->i_mapping); 1439 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1440 btrfs_btree_balance_dirty(root); 1441 1442 pos += copied; 1443 num_written += copied; 1444 } 1445 1446 kfree(pages); 1447 1448 return num_written ? num_written : ret; 1449 } 1450 1451 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1452 const struct iovec *iov, 1453 unsigned long nr_segs, loff_t pos, 1454 loff_t *ppos, size_t count, size_t ocount) 1455 { 1456 struct file *file = iocb->ki_filp; 1457 struct iov_iter i; 1458 ssize_t written; 1459 ssize_t written_buffered; 1460 loff_t endbyte; 1461 int err; 1462 1463 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, 1464 count, ocount); 1465 1466 if (written < 0 || written == count) 1467 return written; 1468 1469 pos += written; 1470 count -= written; 1471 iov_iter_init(&i, iov, nr_segs, count, written); 1472 written_buffered = __btrfs_buffered_write(file, &i, pos); 1473 if (written_buffered < 0) { 1474 err = written_buffered; 1475 goto out; 1476 } 1477 endbyte = pos + written_buffered - 1; 1478 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1479 if (err) 1480 goto out; 1481 written += written_buffered; 1482 *ppos = pos + written_buffered; 1483 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1484 endbyte >> PAGE_CACHE_SHIFT); 1485 out: 1486 return written ? written : err; 1487 } 1488 1489 static void update_time_for_write(struct inode *inode) 1490 { 1491 struct timespec now; 1492 1493 if (IS_NOCMTIME(inode)) 1494 return; 1495 1496 now = current_fs_time(inode->i_sb); 1497 if (!timespec_equal(&inode->i_mtime, &now)) 1498 inode->i_mtime = now; 1499 1500 if (!timespec_equal(&inode->i_ctime, &now)) 1501 inode->i_ctime = now; 1502 1503 if (IS_I_VERSION(inode)) 1504 inode_inc_iversion(inode); 1505 } 1506 1507 static ssize_t btrfs_file_aio_write(struct kiocb *iocb, 1508 const struct iovec *iov, 1509 unsigned long nr_segs, loff_t pos) 1510 { 1511 struct file *file = iocb->ki_filp; 1512 struct inode *inode = file_inode(file); 1513 struct btrfs_root *root = BTRFS_I(inode)->root; 1514 loff_t *ppos = &iocb->ki_pos; 1515 u64 start_pos; 1516 ssize_t num_written = 0; 1517 ssize_t err = 0; 1518 size_t count, ocount; 1519 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1520 1521 mutex_lock(&inode->i_mutex); 1522 1523 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1524 if (err) { 1525 mutex_unlock(&inode->i_mutex); 1526 goto out; 1527 } 1528 count = ocount; 1529 1530 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1531 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1532 if (err) { 1533 mutex_unlock(&inode->i_mutex); 1534 goto out; 1535 } 1536 1537 if (count == 0) { 1538 mutex_unlock(&inode->i_mutex); 1539 goto out; 1540 } 1541 1542 err = file_remove_suid(file); 1543 if (err) { 1544 mutex_unlock(&inode->i_mutex); 1545 goto out; 1546 } 1547 1548 /* 1549 * If BTRFS flips readonly due to some impossible error 1550 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1551 * although we have opened a file as writable, we have 1552 * to stop this write operation to ensure FS consistency. 1553 */ 1554 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1555 mutex_unlock(&inode->i_mutex); 1556 err = -EROFS; 1557 goto out; 1558 } 1559 1560 /* 1561 * We reserve space for updating the inode when we reserve space for the 1562 * extent we are going to write, so we will enospc out there. We don't 1563 * need to start yet another transaction to update the inode as we will 1564 * update the inode when we finish writing whatever data we write. 1565 */ 1566 update_time_for_write(inode); 1567 1568 start_pos = round_down(pos, root->sectorsize); 1569 if (start_pos > i_size_read(inode)) { 1570 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); 1571 if (err) { 1572 mutex_unlock(&inode->i_mutex); 1573 goto out; 1574 } 1575 } 1576 1577 if (sync) 1578 atomic_inc(&BTRFS_I(inode)->sync_writers); 1579 1580 if (unlikely(file->f_flags & O_DIRECT)) { 1581 num_written = __btrfs_direct_write(iocb, iov, nr_segs, 1582 pos, ppos, count, ocount); 1583 } else { 1584 struct iov_iter i; 1585 1586 iov_iter_init(&i, iov, nr_segs, count, num_written); 1587 1588 num_written = __btrfs_buffered_write(file, &i, pos); 1589 if (num_written > 0) 1590 *ppos = pos + num_written; 1591 } 1592 1593 mutex_unlock(&inode->i_mutex); 1594 1595 /* 1596 * we want to make sure fsync finds this change 1597 * but we haven't joined a transaction running right now. 1598 * 1599 * Later on, someone is sure to update the inode and get the 1600 * real transid recorded. 1601 * 1602 * We set last_trans now to the fs_info generation + 1, 1603 * this will either be one more than the running transaction 1604 * or the generation used for the next transaction if there isn't 1605 * one running right now. 1606 * 1607 * We also have to set last_sub_trans to the current log transid, 1608 * otherwise subsequent syncs to a file that's been synced in this 1609 * transaction will appear to have already occured. 1610 */ 1611 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1612 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1613 if (num_written > 0 || num_written == -EIOCBQUEUED) { 1614 err = generic_write_sync(file, pos, num_written); 1615 if (err < 0 && num_written > 0) 1616 num_written = err; 1617 } 1618 1619 if (sync) 1620 atomic_dec(&BTRFS_I(inode)->sync_writers); 1621 out: 1622 current->backing_dev_info = NULL; 1623 return num_written ? num_written : err; 1624 } 1625 1626 int btrfs_release_file(struct inode *inode, struct file *filp) 1627 { 1628 /* 1629 * ordered_data_close is set by settattr when we are about to truncate 1630 * a file from a non-zero size to a zero size. This tries to 1631 * flush down new bytes that may have been written if the 1632 * application were using truncate to replace a file in place. 1633 */ 1634 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1635 &BTRFS_I(inode)->runtime_flags)) { 1636 struct btrfs_trans_handle *trans; 1637 struct btrfs_root *root = BTRFS_I(inode)->root; 1638 1639 /* 1640 * We need to block on a committing transaction to keep us from 1641 * throwing a ordered operation on to the list and causing 1642 * something like sync to deadlock trying to flush out this 1643 * inode. 1644 */ 1645 trans = btrfs_start_transaction(root, 0); 1646 if (IS_ERR(trans)) 1647 return PTR_ERR(trans); 1648 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode); 1649 btrfs_end_transaction(trans, root); 1650 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1651 filemap_flush(inode->i_mapping); 1652 } 1653 if (filp->private_data) 1654 btrfs_ioctl_trans_end(filp); 1655 return 0; 1656 } 1657 1658 /* 1659 * fsync call for both files and directories. This logs the inode into 1660 * the tree log instead of forcing full commits whenever possible. 1661 * 1662 * It needs to call filemap_fdatawait so that all ordered extent updates are 1663 * in the metadata btree are up to date for copying to the log. 1664 * 1665 * It drops the inode mutex before doing the tree log commit. This is an 1666 * important optimization for directories because holding the mutex prevents 1667 * new operations on the dir while we write to disk. 1668 */ 1669 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1670 { 1671 struct dentry *dentry = file->f_path.dentry; 1672 struct inode *inode = dentry->d_inode; 1673 struct btrfs_root *root = BTRFS_I(inode)->root; 1674 int ret = 0; 1675 struct btrfs_trans_handle *trans; 1676 bool full_sync = 0; 1677 1678 trace_btrfs_sync_file(file, datasync); 1679 1680 /* 1681 * We write the dirty pages in the range and wait until they complete 1682 * out of the ->i_mutex. If so, we can flush the dirty pages by 1683 * multi-task, and make the performance up. See 1684 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1685 */ 1686 atomic_inc(&BTRFS_I(inode)->sync_writers); 1687 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1688 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1689 &BTRFS_I(inode)->runtime_flags)) 1690 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1691 atomic_dec(&BTRFS_I(inode)->sync_writers); 1692 if (ret) 1693 return ret; 1694 1695 mutex_lock(&inode->i_mutex); 1696 1697 /* 1698 * We flush the dirty pages again to avoid some dirty pages in the 1699 * range being left. 1700 */ 1701 atomic_inc(&root->log_batch); 1702 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1703 &BTRFS_I(inode)->runtime_flags); 1704 if (full_sync) 1705 btrfs_wait_ordered_range(inode, start, end - start + 1); 1706 atomic_inc(&root->log_batch); 1707 1708 /* 1709 * check the transaction that last modified this inode 1710 * and see if its already been committed 1711 */ 1712 if (!BTRFS_I(inode)->last_trans) { 1713 mutex_unlock(&inode->i_mutex); 1714 goto out; 1715 } 1716 1717 /* 1718 * if the last transaction that changed this file was before 1719 * the current transaction, we can bail out now without any 1720 * syncing 1721 */ 1722 smp_mb(); 1723 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1724 BTRFS_I(inode)->last_trans <= 1725 root->fs_info->last_trans_committed) { 1726 BTRFS_I(inode)->last_trans = 0; 1727 1728 /* 1729 * We'v had everything committed since the last time we were 1730 * modified so clear this flag in case it was set for whatever 1731 * reason, it's no longer relevant. 1732 */ 1733 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1734 &BTRFS_I(inode)->runtime_flags); 1735 mutex_unlock(&inode->i_mutex); 1736 goto out; 1737 } 1738 1739 /* 1740 * ok we haven't committed the transaction yet, lets do a commit 1741 */ 1742 if (file->private_data) 1743 btrfs_ioctl_trans_end(file); 1744 1745 trans = btrfs_start_transaction(root, 0); 1746 if (IS_ERR(trans)) { 1747 ret = PTR_ERR(trans); 1748 mutex_unlock(&inode->i_mutex); 1749 goto out; 1750 } 1751 1752 ret = btrfs_log_dentry_safe(trans, root, dentry); 1753 if (ret < 0) { 1754 mutex_unlock(&inode->i_mutex); 1755 goto out; 1756 } 1757 1758 /* we've logged all the items and now have a consistent 1759 * version of the file in the log. It is possible that 1760 * someone will come in and modify the file, but that's 1761 * fine because the log is consistent on disk, and we 1762 * have references to all of the file's extents 1763 * 1764 * It is possible that someone will come in and log the 1765 * file again, but that will end up using the synchronization 1766 * inside btrfs_sync_log to keep things safe. 1767 */ 1768 mutex_unlock(&inode->i_mutex); 1769 1770 if (ret != BTRFS_NO_LOG_SYNC) { 1771 if (ret > 0) { 1772 /* 1773 * If we didn't already wait for ordered extents we need 1774 * to do that now. 1775 */ 1776 if (!full_sync) 1777 btrfs_wait_ordered_range(inode, start, 1778 end - start + 1); 1779 ret = btrfs_commit_transaction(trans, root); 1780 } else { 1781 ret = btrfs_sync_log(trans, root); 1782 if (ret == 0) { 1783 ret = btrfs_end_transaction(trans, root); 1784 } else { 1785 if (!full_sync) 1786 btrfs_wait_ordered_range(inode, start, 1787 end - 1788 start + 1); 1789 ret = btrfs_commit_transaction(trans, root); 1790 } 1791 } 1792 } else { 1793 ret = btrfs_end_transaction(trans, root); 1794 } 1795 out: 1796 return ret > 0 ? -EIO : ret; 1797 } 1798 1799 static const struct vm_operations_struct btrfs_file_vm_ops = { 1800 .fault = filemap_fault, 1801 .page_mkwrite = btrfs_page_mkwrite, 1802 .remap_pages = generic_file_remap_pages, 1803 }; 1804 1805 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1806 { 1807 struct address_space *mapping = filp->f_mapping; 1808 1809 if (!mapping->a_ops->readpage) 1810 return -ENOEXEC; 1811 1812 file_accessed(filp); 1813 vma->vm_ops = &btrfs_file_vm_ops; 1814 1815 return 0; 1816 } 1817 1818 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 1819 int slot, u64 start, u64 end) 1820 { 1821 struct btrfs_file_extent_item *fi; 1822 struct btrfs_key key; 1823 1824 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1825 return 0; 1826 1827 btrfs_item_key_to_cpu(leaf, &key, slot); 1828 if (key.objectid != btrfs_ino(inode) || 1829 key.type != BTRFS_EXTENT_DATA_KEY) 1830 return 0; 1831 1832 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1833 1834 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1835 return 0; 1836 1837 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1838 return 0; 1839 1840 if (key.offset == end) 1841 return 1; 1842 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1843 return 1; 1844 return 0; 1845 } 1846 1847 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 1848 struct btrfs_path *path, u64 offset, u64 end) 1849 { 1850 struct btrfs_root *root = BTRFS_I(inode)->root; 1851 struct extent_buffer *leaf; 1852 struct btrfs_file_extent_item *fi; 1853 struct extent_map *hole_em; 1854 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1855 struct btrfs_key key; 1856 int ret; 1857 1858 key.objectid = btrfs_ino(inode); 1859 key.type = BTRFS_EXTENT_DATA_KEY; 1860 key.offset = offset; 1861 1862 1863 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1864 if (ret < 0) 1865 return ret; 1866 BUG_ON(!ret); 1867 1868 leaf = path->nodes[0]; 1869 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 1870 u64 num_bytes; 1871 1872 path->slots[0]--; 1873 fi = btrfs_item_ptr(leaf, path->slots[0], 1874 struct btrfs_file_extent_item); 1875 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 1876 end - offset; 1877 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1878 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1879 btrfs_set_file_extent_offset(leaf, fi, 0); 1880 btrfs_mark_buffer_dirty(leaf); 1881 goto out; 1882 } 1883 1884 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 1885 u64 num_bytes; 1886 1887 path->slots[0]++; 1888 key.offset = offset; 1889 btrfs_set_item_key_safe(root, path, &key); 1890 fi = btrfs_item_ptr(leaf, path->slots[0], 1891 struct btrfs_file_extent_item); 1892 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 1893 offset; 1894 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1895 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1896 btrfs_set_file_extent_offset(leaf, fi, 0); 1897 btrfs_mark_buffer_dirty(leaf); 1898 goto out; 1899 } 1900 btrfs_release_path(path); 1901 1902 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 1903 0, 0, end - offset, 0, end - offset, 1904 0, 0, 0); 1905 if (ret) 1906 return ret; 1907 1908 out: 1909 btrfs_release_path(path); 1910 1911 hole_em = alloc_extent_map(); 1912 if (!hole_em) { 1913 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 1914 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1915 &BTRFS_I(inode)->runtime_flags); 1916 } else { 1917 hole_em->start = offset; 1918 hole_em->len = end - offset; 1919 hole_em->ram_bytes = hole_em->len; 1920 hole_em->orig_start = offset; 1921 1922 hole_em->block_start = EXTENT_MAP_HOLE; 1923 hole_em->block_len = 0; 1924 hole_em->orig_block_len = 0; 1925 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 1926 hole_em->compress_type = BTRFS_COMPRESS_NONE; 1927 hole_em->generation = trans->transid; 1928 1929 do { 1930 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 1931 write_lock(&em_tree->lock); 1932 ret = add_extent_mapping(em_tree, hole_em, 1); 1933 write_unlock(&em_tree->lock); 1934 } while (ret == -EEXIST); 1935 free_extent_map(hole_em); 1936 if (ret) 1937 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1938 &BTRFS_I(inode)->runtime_flags); 1939 } 1940 1941 return 0; 1942 } 1943 1944 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1945 { 1946 struct btrfs_root *root = BTRFS_I(inode)->root; 1947 struct extent_state *cached_state = NULL; 1948 struct btrfs_path *path; 1949 struct btrfs_block_rsv *rsv; 1950 struct btrfs_trans_handle *trans; 1951 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 1952 u64 lockend = round_down(offset + len, 1953 BTRFS_I(inode)->root->sectorsize) - 1; 1954 u64 cur_offset = lockstart; 1955 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 1956 u64 drop_end; 1957 int ret = 0; 1958 int err = 0; 1959 bool same_page = ((offset >> PAGE_CACHE_SHIFT) == 1960 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 1961 1962 btrfs_wait_ordered_range(inode, offset, len); 1963 1964 mutex_lock(&inode->i_mutex); 1965 /* 1966 * We needn't truncate any page which is beyond the end of the file 1967 * because we are sure there is no data there. 1968 */ 1969 /* 1970 * Only do this if we are in the same page and we aren't doing the 1971 * entire page. 1972 */ 1973 if (same_page && len < PAGE_CACHE_SIZE) { 1974 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) 1975 ret = btrfs_truncate_page(inode, offset, len, 0); 1976 mutex_unlock(&inode->i_mutex); 1977 return ret; 1978 } 1979 1980 /* zero back part of the first page */ 1981 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 1982 ret = btrfs_truncate_page(inode, offset, 0, 0); 1983 if (ret) { 1984 mutex_unlock(&inode->i_mutex); 1985 return ret; 1986 } 1987 } 1988 1989 /* zero the front end of the last page */ 1990 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 1991 ret = btrfs_truncate_page(inode, offset + len, 0, 1); 1992 if (ret) { 1993 mutex_unlock(&inode->i_mutex); 1994 return ret; 1995 } 1996 } 1997 1998 if (lockend < lockstart) { 1999 mutex_unlock(&inode->i_mutex); 2000 return 0; 2001 } 2002 2003 while (1) { 2004 struct btrfs_ordered_extent *ordered; 2005 2006 truncate_pagecache_range(inode, lockstart, lockend); 2007 2008 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2009 0, &cached_state); 2010 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2011 2012 /* 2013 * We need to make sure we have no ordered extents in this range 2014 * and nobody raced in and read a page in this range, if we did 2015 * we need to try again. 2016 */ 2017 if ((!ordered || 2018 (ordered->file_offset + ordered->len < lockstart || 2019 ordered->file_offset > lockend)) && 2020 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, 2021 lockend, EXTENT_UPTODATE, 0, 2022 cached_state)) { 2023 if (ordered) 2024 btrfs_put_ordered_extent(ordered); 2025 break; 2026 } 2027 if (ordered) 2028 btrfs_put_ordered_extent(ordered); 2029 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2030 lockend, &cached_state, GFP_NOFS); 2031 btrfs_wait_ordered_range(inode, lockstart, 2032 lockend - lockstart + 1); 2033 } 2034 2035 path = btrfs_alloc_path(); 2036 if (!path) { 2037 ret = -ENOMEM; 2038 goto out; 2039 } 2040 2041 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2042 if (!rsv) { 2043 ret = -ENOMEM; 2044 goto out_free; 2045 } 2046 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2047 rsv->failfast = 1; 2048 2049 /* 2050 * 1 - update the inode 2051 * 1 - removing the extents in the range 2052 * 1 - adding the hole extent 2053 */ 2054 trans = btrfs_start_transaction(root, 3); 2055 if (IS_ERR(trans)) { 2056 err = PTR_ERR(trans); 2057 goto out_free; 2058 } 2059 2060 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2061 min_size); 2062 BUG_ON(ret); 2063 trans->block_rsv = rsv; 2064 2065 while (cur_offset < lockend) { 2066 ret = __btrfs_drop_extents(trans, root, inode, path, 2067 cur_offset, lockend + 1, 2068 &drop_end, 1); 2069 if (ret != -ENOSPC) 2070 break; 2071 2072 trans->block_rsv = &root->fs_info->trans_block_rsv; 2073 2074 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2075 if (ret) { 2076 err = ret; 2077 break; 2078 } 2079 2080 cur_offset = drop_end; 2081 2082 ret = btrfs_update_inode(trans, root, inode); 2083 if (ret) { 2084 err = ret; 2085 break; 2086 } 2087 2088 btrfs_end_transaction(trans, root); 2089 btrfs_btree_balance_dirty(root); 2090 2091 trans = btrfs_start_transaction(root, 3); 2092 if (IS_ERR(trans)) { 2093 ret = PTR_ERR(trans); 2094 trans = NULL; 2095 break; 2096 } 2097 2098 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2099 rsv, min_size); 2100 BUG_ON(ret); /* shouldn't happen */ 2101 trans->block_rsv = rsv; 2102 } 2103 2104 if (ret) { 2105 err = ret; 2106 goto out_trans; 2107 } 2108 2109 trans->block_rsv = &root->fs_info->trans_block_rsv; 2110 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2111 if (ret) { 2112 err = ret; 2113 goto out_trans; 2114 } 2115 2116 out_trans: 2117 if (!trans) 2118 goto out_free; 2119 2120 inode_inc_iversion(inode); 2121 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2122 2123 trans->block_rsv = &root->fs_info->trans_block_rsv; 2124 ret = btrfs_update_inode(trans, root, inode); 2125 btrfs_end_transaction(trans, root); 2126 btrfs_btree_balance_dirty(root); 2127 out_free: 2128 btrfs_free_path(path); 2129 btrfs_free_block_rsv(root, rsv); 2130 out: 2131 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2132 &cached_state, GFP_NOFS); 2133 mutex_unlock(&inode->i_mutex); 2134 if (ret && !err) 2135 err = ret; 2136 return err; 2137 } 2138 2139 static long btrfs_fallocate(struct file *file, int mode, 2140 loff_t offset, loff_t len) 2141 { 2142 struct inode *inode = file_inode(file); 2143 struct extent_state *cached_state = NULL; 2144 struct btrfs_root *root = BTRFS_I(inode)->root; 2145 u64 cur_offset; 2146 u64 last_byte; 2147 u64 alloc_start; 2148 u64 alloc_end; 2149 u64 alloc_hint = 0; 2150 u64 locked_end; 2151 struct extent_map *em; 2152 int blocksize = BTRFS_I(inode)->root->sectorsize; 2153 int ret; 2154 2155 alloc_start = round_down(offset, blocksize); 2156 alloc_end = round_up(offset + len, blocksize); 2157 2158 /* Make sure we aren't being give some crap mode */ 2159 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2160 return -EOPNOTSUPP; 2161 2162 if (mode & FALLOC_FL_PUNCH_HOLE) 2163 return btrfs_punch_hole(inode, offset, len); 2164 2165 /* 2166 * Make sure we have enough space before we do the 2167 * allocation. 2168 */ 2169 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2170 if (ret) 2171 return ret; 2172 if (root->fs_info->quota_enabled) { 2173 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); 2174 if (ret) 2175 goto out_reserve_fail; 2176 } 2177 2178 /* 2179 * wait for ordered IO before we have any locks. We'll loop again 2180 * below with the locks held. 2181 */ 2182 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 2183 2184 mutex_lock(&inode->i_mutex); 2185 ret = inode_newsize_ok(inode, alloc_end); 2186 if (ret) 2187 goto out; 2188 2189 if (alloc_start > inode->i_size) { 2190 ret = btrfs_cont_expand(inode, i_size_read(inode), 2191 alloc_start); 2192 if (ret) 2193 goto out; 2194 } 2195 2196 locked_end = alloc_end - 1; 2197 while (1) { 2198 struct btrfs_ordered_extent *ordered; 2199 2200 /* the extent lock is ordered inside the running 2201 * transaction 2202 */ 2203 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2204 locked_end, 0, &cached_state); 2205 ordered = btrfs_lookup_first_ordered_extent(inode, 2206 alloc_end - 1); 2207 if (ordered && 2208 ordered->file_offset + ordered->len > alloc_start && 2209 ordered->file_offset < alloc_end) { 2210 btrfs_put_ordered_extent(ordered); 2211 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2212 alloc_start, locked_end, 2213 &cached_state, GFP_NOFS); 2214 /* 2215 * we can't wait on the range with the transaction 2216 * running or with the extent lock held 2217 */ 2218 btrfs_wait_ordered_range(inode, alloc_start, 2219 alloc_end - alloc_start); 2220 } else { 2221 if (ordered) 2222 btrfs_put_ordered_extent(ordered); 2223 break; 2224 } 2225 } 2226 2227 cur_offset = alloc_start; 2228 while (1) { 2229 u64 actual_end; 2230 2231 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2232 alloc_end - cur_offset, 0); 2233 if (IS_ERR_OR_NULL(em)) { 2234 if (!em) 2235 ret = -ENOMEM; 2236 else 2237 ret = PTR_ERR(em); 2238 break; 2239 } 2240 last_byte = min(extent_map_end(em), alloc_end); 2241 actual_end = min_t(u64, extent_map_end(em), offset + len); 2242 last_byte = ALIGN(last_byte, blocksize); 2243 2244 if (em->block_start == EXTENT_MAP_HOLE || 2245 (cur_offset >= inode->i_size && 2246 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2247 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2248 last_byte - cur_offset, 2249 1 << inode->i_blkbits, 2250 offset + len, 2251 &alloc_hint); 2252 2253 if (ret < 0) { 2254 free_extent_map(em); 2255 break; 2256 } 2257 } else if (actual_end > inode->i_size && 2258 !(mode & FALLOC_FL_KEEP_SIZE)) { 2259 /* 2260 * We didn't need to allocate any more space, but we 2261 * still extended the size of the file so we need to 2262 * update i_size. 2263 */ 2264 inode->i_ctime = CURRENT_TIME; 2265 i_size_write(inode, actual_end); 2266 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2267 } 2268 free_extent_map(em); 2269 2270 cur_offset = last_byte; 2271 if (cur_offset >= alloc_end) { 2272 ret = 0; 2273 break; 2274 } 2275 } 2276 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2277 &cached_state, GFP_NOFS); 2278 out: 2279 mutex_unlock(&inode->i_mutex); 2280 if (root->fs_info->quota_enabled) 2281 btrfs_qgroup_free(root, alloc_end - alloc_start); 2282 out_reserve_fail: 2283 /* Let go of our reservation. */ 2284 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2285 return ret; 2286 } 2287 2288 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2289 { 2290 struct btrfs_root *root = BTRFS_I(inode)->root; 2291 struct extent_map *em; 2292 struct extent_state *cached_state = NULL; 2293 u64 lockstart = *offset; 2294 u64 lockend = i_size_read(inode); 2295 u64 start = *offset; 2296 u64 orig_start = *offset; 2297 u64 len = i_size_read(inode); 2298 u64 last_end = 0; 2299 int ret = 0; 2300 2301 lockend = max_t(u64, root->sectorsize, lockend); 2302 if (lockend <= lockstart) 2303 lockend = lockstart + root->sectorsize; 2304 2305 lockend--; 2306 len = lockend - lockstart + 1; 2307 2308 len = max_t(u64, len, root->sectorsize); 2309 if (inode->i_size == 0) 2310 return -ENXIO; 2311 2312 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2313 &cached_state); 2314 2315 /* 2316 * Delalloc is such a pain. If we have a hole and we have pending 2317 * delalloc for a portion of the hole we will get back a hole that 2318 * exists for the entire range since it hasn't been actually written 2319 * yet. So to take care of this case we need to look for an extent just 2320 * before the position we want in case there is outstanding delalloc 2321 * going on here. 2322 */ 2323 if (whence == SEEK_HOLE && start != 0) { 2324 if (start <= root->sectorsize) 2325 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0, 2326 root->sectorsize, 0); 2327 else 2328 em = btrfs_get_extent_fiemap(inode, NULL, 0, 2329 start - root->sectorsize, 2330 root->sectorsize, 0); 2331 if (IS_ERR(em)) { 2332 ret = PTR_ERR(em); 2333 goto out; 2334 } 2335 last_end = em->start + em->len; 2336 if (em->block_start == EXTENT_MAP_DELALLOC) 2337 last_end = min_t(u64, last_end, inode->i_size); 2338 free_extent_map(em); 2339 } 2340 2341 while (1) { 2342 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2343 if (IS_ERR(em)) { 2344 ret = PTR_ERR(em); 2345 break; 2346 } 2347 2348 if (em->block_start == EXTENT_MAP_HOLE) { 2349 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2350 if (last_end <= orig_start) { 2351 free_extent_map(em); 2352 ret = -ENXIO; 2353 break; 2354 } 2355 } 2356 2357 if (whence == SEEK_HOLE) { 2358 *offset = start; 2359 free_extent_map(em); 2360 break; 2361 } 2362 } else { 2363 if (whence == SEEK_DATA) { 2364 if (em->block_start == EXTENT_MAP_DELALLOC) { 2365 if (start >= inode->i_size) { 2366 free_extent_map(em); 2367 ret = -ENXIO; 2368 break; 2369 } 2370 } 2371 2372 if (!test_bit(EXTENT_FLAG_PREALLOC, 2373 &em->flags)) { 2374 *offset = start; 2375 free_extent_map(em); 2376 break; 2377 } 2378 } 2379 } 2380 2381 start = em->start + em->len; 2382 last_end = em->start + em->len; 2383 2384 if (em->block_start == EXTENT_MAP_DELALLOC) 2385 last_end = min_t(u64, last_end, inode->i_size); 2386 2387 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2388 free_extent_map(em); 2389 ret = -ENXIO; 2390 break; 2391 } 2392 free_extent_map(em); 2393 cond_resched(); 2394 } 2395 if (!ret) 2396 *offset = min(*offset, inode->i_size); 2397 out: 2398 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2399 &cached_state, GFP_NOFS); 2400 return ret; 2401 } 2402 2403 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2404 { 2405 struct inode *inode = file->f_mapping->host; 2406 int ret; 2407 2408 mutex_lock(&inode->i_mutex); 2409 switch (whence) { 2410 case SEEK_END: 2411 case SEEK_CUR: 2412 offset = generic_file_llseek(file, offset, whence); 2413 goto out; 2414 case SEEK_DATA: 2415 case SEEK_HOLE: 2416 if (offset >= i_size_read(inode)) { 2417 mutex_unlock(&inode->i_mutex); 2418 return -ENXIO; 2419 } 2420 2421 ret = find_desired_extent(inode, &offset, whence); 2422 if (ret) { 2423 mutex_unlock(&inode->i_mutex); 2424 return ret; 2425 } 2426 } 2427 2428 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) { 2429 offset = -EINVAL; 2430 goto out; 2431 } 2432 if (offset > inode->i_sb->s_maxbytes) { 2433 offset = -EINVAL; 2434 goto out; 2435 } 2436 2437 /* Special lock needed here? */ 2438 if (offset != file->f_pos) { 2439 file->f_pos = offset; 2440 file->f_version = 0; 2441 } 2442 out: 2443 mutex_unlock(&inode->i_mutex); 2444 return offset; 2445 } 2446 2447 const struct file_operations btrfs_file_operations = { 2448 .llseek = btrfs_file_llseek, 2449 .read = do_sync_read, 2450 .write = do_sync_write, 2451 .aio_read = generic_file_aio_read, 2452 .splice_read = generic_file_splice_read, 2453 .aio_write = btrfs_file_aio_write, 2454 .mmap = btrfs_file_mmap, 2455 .open = generic_file_open, 2456 .release = btrfs_release_file, 2457 .fsync = btrfs_sync_file, 2458 .fallocate = btrfs_fallocate, 2459 .unlocked_ioctl = btrfs_ioctl, 2460 #ifdef CONFIG_COMPAT 2461 .compat_ioctl = btrfs_ioctl, 2462 #endif 2463 }; 2464 2465 void btrfs_auto_defrag_exit(void) 2466 { 2467 if (btrfs_inode_defrag_cachep) 2468 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2469 } 2470 2471 int btrfs_auto_defrag_init(void) 2472 { 2473 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2474 sizeof(struct inode_defrag), 0, 2475 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2476 NULL); 2477 if (!btrfs_inode_defrag_cachep) 2478 return -ENOMEM; 2479 2480 return 0; 2481 } 2482