xref: /openbmc/linux/fs/btrfs/file.c (revision ee89bd6b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "compat.h"
43 #include "volumes.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		if (need_resched()) {
277 			spin_unlock(&fs_info->defrag_inodes_lock);
278 			cond_resched();
279 			spin_lock(&fs_info->defrag_inodes_lock);
280 		}
281 
282 		node = rb_first(&fs_info->defrag_inodes);
283 	}
284 	spin_unlock(&fs_info->defrag_inodes_lock);
285 }
286 
287 #define BTRFS_DEFRAG_BATCH	1024
288 
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 				    struct inode_defrag *defrag)
291 {
292 	struct btrfs_root *inode_root;
293 	struct inode *inode;
294 	struct btrfs_key key;
295 	struct btrfs_ioctl_defrag_range_args range;
296 	int num_defrag;
297 	int index;
298 	int ret;
299 
300 	/* get the inode */
301 	key.objectid = defrag->root;
302 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
303 	key.offset = (u64)-1;
304 
305 	index = srcu_read_lock(&fs_info->subvol_srcu);
306 
307 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 	if (IS_ERR(inode_root)) {
309 		ret = PTR_ERR(inode_root);
310 		goto cleanup;
311 	}
312 	if (btrfs_root_refs(&inode_root->root_item) == 0) {
313 		ret = -ENOENT;
314 		goto cleanup;
315 	}
316 
317 	key.objectid = defrag->ino;
318 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
319 	key.offset = 0;
320 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
321 	if (IS_ERR(inode)) {
322 		ret = PTR_ERR(inode);
323 		goto cleanup;
324 	}
325 	srcu_read_unlock(&fs_info->subvol_srcu, index);
326 
327 	/* do a chunk of defrag */
328 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
329 	memset(&range, 0, sizeof(range));
330 	range.len = (u64)-1;
331 	range.start = defrag->last_offset;
332 
333 	sb_start_write(fs_info->sb);
334 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
335 				       BTRFS_DEFRAG_BATCH);
336 	sb_end_write(fs_info->sb);
337 	/*
338 	 * if we filled the whole defrag batch, there
339 	 * must be more work to do.  Queue this defrag
340 	 * again
341 	 */
342 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
343 		defrag->last_offset = range.start;
344 		btrfs_requeue_inode_defrag(inode, defrag);
345 	} else if (defrag->last_offset && !defrag->cycled) {
346 		/*
347 		 * we didn't fill our defrag batch, but
348 		 * we didn't start at zero.  Make sure we loop
349 		 * around to the start of the file.
350 		 */
351 		defrag->last_offset = 0;
352 		defrag->cycled = 1;
353 		btrfs_requeue_inode_defrag(inode, defrag);
354 	} else {
355 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 	}
357 
358 	iput(inode);
359 	return 0;
360 cleanup:
361 	srcu_read_unlock(&fs_info->subvol_srcu, index);
362 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
363 	return ret;
364 }
365 
366 /*
367  * run through the list of inodes in the FS that need
368  * defragging
369  */
370 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
371 {
372 	struct inode_defrag *defrag;
373 	u64 first_ino = 0;
374 	u64 root_objectid = 0;
375 
376 	atomic_inc(&fs_info->defrag_running);
377 	while(1) {
378 		/* Pause the auto defragger. */
379 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
380 			     &fs_info->fs_state))
381 			break;
382 
383 		if (!__need_auto_defrag(fs_info->tree_root))
384 			break;
385 
386 		/* find an inode to defrag */
387 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
388 						 first_ino);
389 		if (!defrag) {
390 			if (root_objectid || first_ino) {
391 				root_objectid = 0;
392 				first_ino = 0;
393 				continue;
394 			} else {
395 				break;
396 			}
397 		}
398 
399 		first_ino = defrag->ino + 1;
400 		root_objectid = defrag->root;
401 
402 		__btrfs_run_defrag_inode(fs_info, defrag);
403 	}
404 	atomic_dec(&fs_info->defrag_running);
405 
406 	/*
407 	 * during unmount, we use the transaction_wait queue to
408 	 * wait for the defragger to stop
409 	 */
410 	wake_up(&fs_info->transaction_wait);
411 	return 0;
412 }
413 
414 /* simple helper to fault in pages and copy.  This should go away
415  * and be replaced with calls into generic code.
416  */
417 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
418 					 size_t write_bytes,
419 					 struct page **prepared_pages,
420 					 struct iov_iter *i)
421 {
422 	size_t copied = 0;
423 	size_t total_copied = 0;
424 	int pg = 0;
425 	int offset = pos & (PAGE_CACHE_SIZE - 1);
426 
427 	while (write_bytes > 0) {
428 		size_t count = min_t(size_t,
429 				     PAGE_CACHE_SIZE - offset, write_bytes);
430 		struct page *page = prepared_pages[pg];
431 		/*
432 		 * Copy data from userspace to the current page
433 		 *
434 		 * Disable pagefault to avoid recursive lock since
435 		 * the pages are already locked
436 		 */
437 		pagefault_disable();
438 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
439 		pagefault_enable();
440 
441 		/* Flush processor's dcache for this page */
442 		flush_dcache_page(page);
443 
444 		/*
445 		 * if we get a partial write, we can end up with
446 		 * partially up to date pages.  These add
447 		 * a lot of complexity, so make sure they don't
448 		 * happen by forcing this copy to be retried.
449 		 *
450 		 * The rest of the btrfs_file_write code will fall
451 		 * back to page at a time copies after we return 0.
452 		 */
453 		if (!PageUptodate(page) && copied < count)
454 			copied = 0;
455 
456 		iov_iter_advance(i, copied);
457 		write_bytes -= copied;
458 		total_copied += copied;
459 
460 		/* Return to btrfs_file_aio_write to fault page */
461 		if (unlikely(copied == 0))
462 			break;
463 
464 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
465 			offset += copied;
466 		} else {
467 			pg++;
468 			offset = 0;
469 		}
470 	}
471 	return total_copied;
472 }
473 
474 /*
475  * unlocks pages after btrfs_file_write is done with them
476  */
477 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
478 {
479 	size_t i;
480 	for (i = 0; i < num_pages; i++) {
481 		/* page checked is some magic around finding pages that
482 		 * have been modified without going through btrfs_set_page_dirty
483 		 * clear it here
484 		 */
485 		ClearPageChecked(pages[i]);
486 		unlock_page(pages[i]);
487 		mark_page_accessed(pages[i]);
488 		page_cache_release(pages[i]);
489 	}
490 }
491 
492 /*
493  * after copy_from_user, pages need to be dirtied and we need to make
494  * sure holes are created between the current EOF and the start of
495  * any next extents (if required).
496  *
497  * this also makes the decision about creating an inline extent vs
498  * doing real data extents, marking pages dirty and delalloc as required.
499  */
500 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
501 			     struct page **pages, size_t num_pages,
502 			     loff_t pos, size_t write_bytes,
503 			     struct extent_state **cached)
504 {
505 	int err = 0;
506 	int i;
507 	u64 num_bytes;
508 	u64 start_pos;
509 	u64 end_of_last_block;
510 	u64 end_pos = pos + write_bytes;
511 	loff_t isize = i_size_read(inode);
512 
513 	start_pos = pos & ~((u64)root->sectorsize - 1);
514 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
515 
516 	end_of_last_block = start_pos + num_bytes - 1;
517 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
518 					cached);
519 	if (err)
520 		return err;
521 
522 	for (i = 0; i < num_pages; i++) {
523 		struct page *p = pages[i];
524 		SetPageUptodate(p);
525 		ClearPageChecked(p);
526 		set_page_dirty(p);
527 	}
528 
529 	/*
530 	 * we've only changed i_size in ram, and we haven't updated
531 	 * the disk i_size.  There is no need to log the inode
532 	 * at this time.
533 	 */
534 	if (end_pos > isize)
535 		i_size_write(inode, end_pos);
536 	return 0;
537 }
538 
539 /*
540  * this drops all the extents in the cache that intersect the range
541  * [start, end].  Existing extents are split as required.
542  */
543 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
544 			     int skip_pinned)
545 {
546 	struct extent_map *em;
547 	struct extent_map *split = NULL;
548 	struct extent_map *split2 = NULL;
549 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
550 	u64 len = end - start + 1;
551 	u64 gen;
552 	int ret;
553 	int testend = 1;
554 	unsigned long flags;
555 	int compressed = 0;
556 	bool modified;
557 
558 	WARN_ON(end < start);
559 	if (end == (u64)-1) {
560 		len = (u64)-1;
561 		testend = 0;
562 	}
563 	while (1) {
564 		int no_splits = 0;
565 
566 		modified = false;
567 		if (!split)
568 			split = alloc_extent_map();
569 		if (!split2)
570 			split2 = alloc_extent_map();
571 		if (!split || !split2)
572 			no_splits = 1;
573 
574 		write_lock(&em_tree->lock);
575 		em = lookup_extent_mapping(em_tree, start, len);
576 		if (!em) {
577 			write_unlock(&em_tree->lock);
578 			break;
579 		}
580 		flags = em->flags;
581 		gen = em->generation;
582 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
583 			if (testend && em->start + em->len >= start + len) {
584 				free_extent_map(em);
585 				write_unlock(&em_tree->lock);
586 				break;
587 			}
588 			start = em->start + em->len;
589 			if (testend)
590 				len = start + len - (em->start + em->len);
591 			free_extent_map(em);
592 			write_unlock(&em_tree->lock);
593 			continue;
594 		}
595 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
596 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
597 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
598 		modified = !list_empty(&em->list);
599 		remove_extent_mapping(em_tree, em);
600 		if (no_splits)
601 			goto next;
602 
603 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
604 		    em->start < start) {
605 			split->start = em->start;
606 			split->len = start - em->start;
607 			split->orig_start = em->orig_start;
608 			split->block_start = em->block_start;
609 
610 			if (compressed)
611 				split->block_len = em->block_len;
612 			else
613 				split->block_len = split->len;
614 			split->ram_bytes = em->ram_bytes;
615 			split->orig_block_len = max(split->block_len,
616 						    em->orig_block_len);
617 			split->generation = gen;
618 			split->bdev = em->bdev;
619 			split->flags = flags;
620 			split->compress_type = em->compress_type;
621 			ret = add_extent_mapping(em_tree, split, modified);
622 			BUG_ON(ret); /* Logic error */
623 			free_extent_map(split);
624 			split = split2;
625 			split2 = NULL;
626 		}
627 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
628 		    testend && em->start + em->len > start + len) {
629 			u64 diff = start + len - em->start;
630 
631 			split->start = start + len;
632 			split->len = em->start + em->len - (start + len);
633 			split->bdev = em->bdev;
634 			split->flags = flags;
635 			split->compress_type = em->compress_type;
636 			split->generation = gen;
637 			split->orig_block_len = max(em->block_len,
638 						    em->orig_block_len);
639 			split->ram_bytes = em->ram_bytes;
640 
641 			if (compressed) {
642 				split->block_len = em->block_len;
643 				split->block_start = em->block_start;
644 				split->orig_start = em->orig_start;
645 			} else {
646 				split->block_len = split->len;
647 				split->block_start = em->block_start + diff;
648 				split->orig_start = em->orig_start;
649 			}
650 
651 			ret = add_extent_mapping(em_tree, split, modified);
652 			BUG_ON(ret); /* Logic error */
653 			free_extent_map(split);
654 			split = NULL;
655 		}
656 next:
657 		write_unlock(&em_tree->lock);
658 
659 		/* once for us */
660 		free_extent_map(em);
661 		/* once for the tree*/
662 		free_extent_map(em);
663 	}
664 	if (split)
665 		free_extent_map(split);
666 	if (split2)
667 		free_extent_map(split2);
668 }
669 
670 /*
671  * this is very complex, but the basic idea is to drop all extents
672  * in the range start - end.  hint_block is filled in with a block number
673  * that would be a good hint to the block allocator for this file.
674  *
675  * If an extent intersects the range but is not entirely inside the range
676  * it is either truncated or split.  Anything entirely inside the range
677  * is deleted from the tree.
678  */
679 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
680 			 struct btrfs_root *root, struct inode *inode,
681 			 struct btrfs_path *path, u64 start, u64 end,
682 			 u64 *drop_end, int drop_cache)
683 {
684 	struct extent_buffer *leaf;
685 	struct btrfs_file_extent_item *fi;
686 	struct btrfs_key key;
687 	struct btrfs_key new_key;
688 	u64 ino = btrfs_ino(inode);
689 	u64 search_start = start;
690 	u64 disk_bytenr = 0;
691 	u64 num_bytes = 0;
692 	u64 extent_offset = 0;
693 	u64 extent_end = 0;
694 	int del_nr = 0;
695 	int del_slot = 0;
696 	int extent_type;
697 	int recow;
698 	int ret;
699 	int modify_tree = -1;
700 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
701 	int found = 0;
702 
703 	if (drop_cache)
704 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
705 
706 	if (start >= BTRFS_I(inode)->disk_i_size)
707 		modify_tree = 0;
708 
709 	while (1) {
710 		recow = 0;
711 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
712 					       search_start, modify_tree);
713 		if (ret < 0)
714 			break;
715 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
716 			leaf = path->nodes[0];
717 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
718 			if (key.objectid == ino &&
719 			    key.type == BTRFS_EXTENT_DATA_KEY)
720 				path->slots[0]--;
721 		}
722 		ret = 0;
723 next_slot:
724 		leaf = path->nodes[0];
725 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
726 			BUG_ON(del_nr > 0);
727 			ret = btrfs_next_leaf(root, path);
728 			if (ret < 0)
729 				break;
730 			if (ret > 0) {
731 				ret = 0;
732 				break;
733 			}
734 			leaf = path->nodes[0];
735 			recow = 1;
736 		}
737 
738 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
739 		if (key.objectid > ino ||
740 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
741 			break;
742 
743 		fi = btrfs_item_ptr(leaf, path->slots[0],
744 				    struct btrfs_file_extent_item);
745 		extent_type = btrfs_file_extent_type(leaf, fi);
746 
747 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
748 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
749 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
750 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
751 			extent_offset = btrfs_file_extent_offset(leaf, fi);
752 			extent_end = key.offset +
753 				btrfs_file_extent_num_bytes(leaf, fi);
754 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
755 			extent_end = key.offset +
756 				btrfs_file_extent_inline_len(leaf, fi);
757 		} else {
758 			WARN_ON(1);
759 			extent_end = search_start;
760 		}
761 
762 		if (extent_end <= search_start) {
763 			path->slots[0]++;
764 			goto next_slot;
765 		}
766 
767 		found = 1;
768 		search_start = max(key.offset, start);
769 		if (recow || !modify_tree) {
770 			modify_tree = -1;
771 			btrfs_release_path(path);
772 			continue;
773 		}
774 
775 		/*
776 		 *     | - range to drop - |
777 		 *  | -------- extent -------- |
778 		 */
779 		if (start > key.offset && end < extent_end) {
780 			BUG_ON(del_nr > 0);
781 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
782 
783 			memcpy(&new_key, &key, sizeof(new_key));
784 			new_key.offset = start;
785 			ret = btrfs_duplicate_item(trans, root, path,
786 						   &new_key);
787 			if (ret == -EAGAIN) {
788 				btrfs_release_path(path);
789 				continue;
790 			}
791 			if (ret < 0)
792 				break;
793 
794 			leaf = path->nodes[0];
795 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
796 					    struct btrfs_file_extent_item);
797 			btrfs_set_file_extent_num_bytes(leaf, fi,
798 							start - key.offset);
799 
800 			fi = btrfs_item_ptr(leaf, path->slots[0],
801 					    struct btrfs_file_extent_item);
802 
803 			extent_offset += start - key.offset;
804 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
805 			btrfs_set_file_extent_num_bytes(leaf, fi,
806 							extent_end - start);
807 			btrfs_mark_buffer_dirty(leaf);
808 
809 			if (update_refs && disk_bytenr > 0) {
810 				ret = btrfs_inc_extent_ref(trans, root,
811 						disk_bytenr, num_bytes, 0,
812 						root->root_key.objectid,
813 						new_key.objectid,
814 						start - extent_offset, 0);
815 				BUG_ON(ret); /* -ENOMEM */
816 			}
817 			key.offset = start;
818 		}
819 		/*
820 		 *  | ---- range to drop ----- |
821 		 *      | -------- extent -------- |
822 		 */
823 		if (start <= key.offset && end < extent_end) {
824 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
825 
826 			memcpy(&new_key, &key, sizeof(new_key));
827 			new_key.offset = end;
828 			btrfs_set_item_key_safe(root, path, &new_key);
829 
830 			extent_offset += end - key.offset;
831 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
832 			btrfs_set_file_extent_num_bytes(leaf, fi,
833 							extent_end - end);
834 			btrfs_mark_buffer_dirty(leaf);
835 			if (update_refs && disk_bytenr > 0)
836 				inode_sub_bytes(inode, end - key.offset);
837 			break;
838 		}
839 
840 		search_start = extent_end;
841 		/*
842 		 *       | ---- range to drop ----- |
843 		 *  | -------- extent -------- |
844 		 */
845 		if (start > key.offset && end >= extent_end) {
846 			BUG_ON(del_nr > 0);
847 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
848 
849 			btrfs_set_file_extent_num_bytes(leaf, fi,
850 							start - key.offset);
851 			btrfs_mark_buffer_dirty(leaf);
852 			if (update_refs && disk_bytenr > 0)
853 				inode_sub_bytes(inode, extent_end - start);
854 			if (end == extent_end)
855 				break;
856 
857 			path->slots[0]++;
858 			goto next_slot;
859 		}
860 
861 		/*
862 		 *  | ---- range to drop ----- |
863 		 *    | ------ extent ------ |
864 		 */
865 		if (start <= key.offset && end >= extent_end) {
866 			if (del_nr == 0) {
867 				del_slot = path->slots[0];
868 				del_nr = 1;
869 			} else {
870 				BUG_ON(del_slot + del_nr != path->slots[0]);
871 				del_nr++;
872 			}
873 
874 			if (update_refs &&
875 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
876 				inode_sub_bytes(inode,
877 						extent_end - key.offset);
878 				extent_end = ALIGN(extent_end,
879 						   root->sectorsize);
880 			} else if (update_refs && disk_bytenr > 0) {
881 				ret = btrfs_free_extent(trans, root,
882 						disk_bytenr, num_bytes, 0,
883 						root->root_key.objectid,
884 						key.objectid, key.offset -
885 						extent_offset, 0);
886 				BUG_ON(ret); /* -ENOMEM */
887 				inode_sub_bytes(inode,
888 						extent_end - key.offset);
889 			}
890 
891 			if (end == extent_end)
892 				break;
893 
894 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
895 				path->slots[0]++;
896 				goto next_slot;
897 			}
898 
899 			ret = btrfs_del_items(trans, root, path, del_slot,
900 					      del_nr);
901 			if (ret) {
902 				btrfs_abort_transaction(trans, root, ret);
903 				break;
904 			}
905 
906 			del_nr = 0;
907 			del_slot = 0;
908 
909 			btrfs_release_path(path);
910 			continue;
911 		}
912 
913 		BUG_ON(1);
914 	}
915 
916 	if (!ret && del_nr > 0) {
917 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
918 		if (ret)
919 			btrfs_abort_transaction(trans, root, ret);
920 	}
921 
922 	if (drop_end)
923 		*drop_end = found ? min(end, extent_end) : end;
924 	btrfs_release_path(path);
925 	return ret;
926 }
927 
928 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
929 		       struct btrfs_root *root, struct inode *inode, u64 start,
930 		       u64 end, int drop_cache)
931 {
932 	struct btrfs_path *path;
933 	int ret;
934 
935 	path = btrfs_alloc_path();
936 	if (!path)
937 		return -ENOMEM;
938 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
939 				   drop_cache);
940 	btrfs_free_path(path);
941 	return ret;
942 }
943 
944 static int extent_mergeable(struct extent_buffer *leaf, int slot,
945 			    u64 objectid, u64 bytenr, u64 orig_offset,
946 			    u64 *start, u64 *end)
947 {
948 	struct btrfs_file_extent_item *fi;
949 	struct btrfs_key key;
950 	u64 extent_end;
951 
952 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
953 		return 0;
954 
955 	btrfs_item_key_to_cpu(leaf, &key, slot);
956 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
957 		return 0;
958 
959 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
960 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
961 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
962 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
963 	    btrfs_file_extent_compression(leaf, fi) ||
964 	    btrfs_file_extent_encryption(leaf, fi) ||
965 	    btrfs_file_extent_other_encoding(leaf, fi))
966 		return 0;
967 
968 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
969 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
970 		return 0;
971 
972 	*start = key.offset;
973 	*end = extent_end;
974 	return 1;
975 }
976 
977 /*
978  * Mark extent in the range start - end as written.
979  *
980  * This changes extent type from 'pre-allocated' to 'regular'. If only
981  * part of extent is marked as written, the extent will be split into
982  * two or three.
983  */
984 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
985 			      struct inode *inode, u64 start, u64 end)
986 {
987 	struct btrfs_root *root = BTRFS_I(inode)->root;
988 	struct extent_buffer *leaf;
989 	struct btrfs_path *path;
990 	struct btrfs_file_extent_item *fi;
991 	struct btrfs_key key;
992 	struct btrfs_key new_key;
993 	u64 bytenr;
994 	u64 num_bytes;
995 	u64 extent_end;
996 	u64 orig_offset;
997 	u64 other_start;
998 	u64 other_end;
999 	u64 split;
1000 	int del_nr = 0;
1001 	int del_slot = 0;
1002 	int recow;
1003 	int ret;
1004 	u64 ino = btrfs_ino(inode);
1005 
1006 	path = btrfs_alloc_path();
1007 	if (!path)
1008 		return -ENOMEM;
1009 again:
1010 	recow = 0;
1011 	split = start;
1012 	key.objectid = ino;
1013 	key.type = BTRFS_EXTENT_DATA_KEY;
1014 	key.offset = split;
1015 
1016 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1017 	if (ret < 0)
1018 		goto out;
1019 	if (ret > 0 && path->slots[0] > 0)
1020 		path->slots[0]--;
1021 
1022 	leaf = path->nodes[0];
1023 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1024 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1025 	fi = btrfs_item_ptr(leaf, path->slots[0],
1026 			    struct btrfs_file_extent_item);
1027 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1028 	       BTRFS_FILE_EXTENT_PREALLOC);
1029 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1030 	BUG_ON(key.offset > start || extent_end < end);
1031 
1032 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1033 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1034 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1035 	memcpy(&new_key, &key, sizeof(new_key));
1036 
1037 	if (start == key.offset && end < extent_end) {
1038 		other_start = 0;
1039 		other_end = start;
1040 		if (extent_mergeable(leaf, path->slots[0] - 1,
1041 				     ino, bytenr, orig_offset,
1042 				     &other_start, &other_end)) {
1043 			new_key.offset = end;
1044 			btrfs_set_item_key_safe(root, path, &new_key);
1045 			fi = btrfs_item_ptr(leaf, path->slots[0],
1046 					    struct btrfs_file_extent_item);
1047 			btrfs_set_file_extent_generation(leaf, fi,
1048 							 trans->transid);
1049 			btrfs_set_file_extent_num_bytes(leaf, fi,
1050 							extent_end - end);
1051 			btrfs_set_file_extent_offset(leaf, fi,
1052 						     end - orig_offset);
1053 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1054 					    struct btrfs_file_extent_item);
1055 			btrfs_set_file_extent_generation(leaf, fi,
1056 							 trans->transid);
1057 			btrfs_set_file_extent_num_bytes(leaf, fi,
1058 							end - other_start);
1059 			btrfs_mark_buffer_dirty(leaf);
1060 			goto out;
1061 		}
1062 	}
1063 
1064 	if (start > key.offset && end == extent_end) {
1065 		other_start = end;
1066 		other_end = 0;
1067 		if (extent_mergeable(leaf, path->slots[0] + 1,
1068 				     ino, bytenr, orig_offset,
1069 				     &other_start, &other_end)) {
1070 			fi = btrfs_item_ptr(leaf, path->slots[0],
1071 					    struct btrfs_file_extent_item);
1072 			btrfs_set_file_extent_num_bytes(leaf, fi,
1073 							start - key.offset);
1074 			btrfs_set_file_extent_generation(leaf, fi,
1075 							 trans->transid);
1076 			path->slots[0]++;
1077 			new_key.offset = start;
1078 			btrfs_set_item_key_safe(root, path, &new_key);
1079 
1080 			fi = btrfs_item_ptr(leaf, path->slots[0],
1081 					    struct btrfs_file_extent_item);
1082 			btrfs_set_file_extent_generation(leaf, fi,
1083 							 trans->transid);
1084 			btrfs_set_file_extent_num_bytes(leaf, fi,
1085 							other_end - start);
1086 			btrfs_set_file_extent_offset(leaf, fi,
1087 						     start - orig_offset);
1088 			btrfs_mark_buffer_dirty(leaf);
1089 			goto out;
1090 		}
1091 	}
1092 
1093 	while (start > key.offset || end < extent_end) {
1094 		if (key.offset == start)
1095 			split = end;
1096 
1097 		new_key.offset = split;
1098 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1099 		if (ret == -EAGAIN) {
1100 			btrfs_release_path(path);
1101 			goto again;
1102 		}
1103 		if (ret < 0) {
1104 			btrfs_abort_transaction(trans, root, ret);
1105 			goto out;
1106 		}
1107 
1108 		leaf = path->nodes[0];
1109 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1110 				    struct btrfs_file_extent_item);
1111 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1112 		btrfs_set_file_extent_num_bytes(leaf, fi,
1113 						split - key.offset);
1114 
1115 		fi = btrfs_item_ptr(leaf, path->slots[0],
1116 				    struct btrfs_file_extent_item);
1117 
1118 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1119 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1120 		btrfs_set_file_extent_num_bytes(leaf, fi,
1121 						extent_end - split);
1122 		btrfs_mark_buffer_dirty(leaf);
1123 
1124 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1125 					   root->root_key.objectid,
1126 					   ino, orig_offset, 0);
1127 		BUG_ON(ret); /* -ENOMEM */
1128 
1129 		if (split == start) {
1130 			key.offset = start;
1131 		} else {
1132 			BUG_ON(start != key.offset);
1133 			path->slots[0]--;
1134 			extent_end = end;
1135 		}
1136 		recow = 1;
1137 	}
1138 
1139 	other_start = end;
1140 	other_end = 0;
1141 	if (extent_mergeable(leaf, path->slots[0] + 1,
1142 			     ino, bytenr, orig_offset,
1143 			     &other_start, &other_end)) {
1144 		if (recow) {
1145 			btrfs_release_path(path);
1146 			goto again;
1147 		}
1148 		extent_end = other_end;
1149 		del_slot = path->slots[0] + 1;
1150 		del_nr++;
1151 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1152 					0, root->root_key.objectid,
1153 					ino, orig_offset, 0);
1154 		BUG_ON(ret); /* -ENOMEM */
1155 	}
1156 	other_start = 0;
1157 	other_end = start;
1158 	if (extent_mergeable(leaf, path->slots[0] - 1,
1159 			     ino, bytenr, orig_offset,
1160 			     &other_start, &other_end)) {
1161 		if (recow) {
1162 			btrfs_release_path(path);
1163 			goto again;
1164 		}
1165 		key.offset = other_start;
1166 		del_slot = path->slots[0];
1167 		del_nr++;
1168 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1169 					0, root->root_key.objectid,
1170 					ino, orig_offset, 0);
1171 		BUG_ON(ret); /* -ENOMEM */
1172 	}
1173 	if (del_nr == 0) {
1174 		fi = btrfs_item_ptr(leaf, path->slots[0],
1175 			   struct btrfs_file_extent_item);
1176 		btrfs_set_file_extent_type(leaf, fi,
1177 					   BTRFS_FILE_EXTENT_REG);
1178 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1179 		btrfs_mark_buffer_dirty(leaf);
1180 	} else {
1181 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1182 			   struct btrfs_file_extent_item);
1183 		btrfs_set_file_extent_type(leaf, fi,
1184 					   BTRFS_FILE_EXTENT_REG);
1185 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1186 		btrfs_set_file_extent_num_bytes(leaf, fi,
1187 						extent_end - key.offset);
1188 		btrfs_mark_buffer_dirty(leaf);
1189 
1190 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1191 		if (ret < 0) {
1192 			btrfs_abort_transaction(trans, root, ret);
1193 			goto out;
1194 		}
1195 	}
1196 out:
1197 	btrfs_free_path(path);
1198 	return 0;
1199 }
1200 
1201 /*
1202  * on error we return an unlocked page and the error value
1203  * on success we return a locked page and 0
1204  */
1205 static int prepare_uptodate_page(struct page *page, u64 pos,
1206 				 bool force_uptodate)
1207 {
1208 	int ret = 0;
1209 
1210 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1211 	    !PageUptodate(page)) {
1212 		ret = btrfs_readpage(NULL, page);
1213 		if (ret)
1214 			return ret;
1215 		lock_page(page);
1216 		if (!PageUptodate(page)) {
1217 			unlock_page(page);
1218 			return -EIO;
1219 		}
1220 	}
1221 	return 0;
1222 }
1223 
1224 /*
1225  * this gets pages into the page cache and locks them down, it also properly
1226  * waits for data=ordered extents to finish before allowing the pages to be
1227  * modified.
1228  */
1229 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1230 			 struct page **pages, size_t num_pages,
1231 			 loff_t pos, unsigned long first_index,
1232 			 size_t write_bytes, bool force_uptodate)
1233 {
1234 	struct extent_state *cached_state = NULL;
1235 	int i;
1236 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1237 	struct inode *inode = file_inode(file);
1238 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1239 	int err = 0;
1240 	int faili = 0;
1241 	u64 start_pos;
1242 	u64 last_pos;
1243 
1244 	start_pos = pos & ~((u64)root->sectorsize - 1);
1245 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1246 
1247 again:
1248 	for (i = 0; i < num_pages; i++) {
1249 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1250 					       mask | __GFP_WRITE);
1251 		if (!pages[i]) {
1252 			faili = i - 1;
1253 			err = -ENOMEM;
1254 			goto fail;
1255 		}
1256 
1257 		if (i == 0)
1258 			err = prepare_uptodate_page(pages[i], pos,
1259 						    force_uptodate);
1260 		if (i == num_pages - 1)
1261 			err = prepare_uptodate_page(pages[i],
1262 						    pos + write_bytes, false);
1263 		if (err) {
1264 			page_cache_release(pages[i]);
1265 			faili = i - 1;
1266 			goto fail;
1267 		}
1268 		wait_on_page_writeback(pages[i]);
1269 	}
1270 	err = 0;
1271 	if (start_pos < inode->i_size) {
1272 		struct btrfs_ordered_extent *ordered;
1273 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1274 				 start_pos, last_pos - 1, 0, &cached_state);
1275 		ordered = btrfs_lookup_first_ordered_extent(inode,
1276 							    last_pos - 1);
1277 		if (ordered &&
1278 		    ordered->file_offset + ordered->len > start_pos &&
1279 		    ordered->file_offset < last_pos) {
1280 			btrfs_put_ordered_extent(ordered);
1281 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1282 					     start_pos, last_pos - 1,
1283 					     &cached_state, GFP_NOFS);
1284 			for (i = 0; i < num_pages; i++) {
1285 				unlock_page(pages[i]);
1286 				page_cache_release(pages[i]);
1287 			}
1288 			btrfs_wait_ordered_range(inode, start_pos,
1289 						 last_pos - start_pos);
1290 			goto again;
1291 		}
1292 		if (ordered)
1293 			btrfs_put_ordered_extent(ordered);
1294 
1295 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1296 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1297 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1298 				  0, 0, &cached_state, GFP_NOFS);
1299 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1300 				     start_pos, last_pos - 1, &cached_state,
1301 				     GFP_NOFS);
1302 	}
1303 	for (i = 0; i < num_pages; i++) {
1304 		if (clear_page_dirty_for_io(pages[i]))
1305 			account_page_redirty(pages[i]);
1306 		set_page_extent_mapped(pages[i]);
1307 		WARN_ON(!PageLocked(pages[i]));
1308 	}
1309 	return 0;
1310 fail:
1311 	while (faili >= 0) {
1312 		unlock_page(pages[faili]);
1313 		page_cache_release(pages[faili]);
1314 		faili--;
1315 	}
1316 	return err;
1317 
1318 }
1319 
1320 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1321 					       struct iov_iter *i,
1322 					       loff_t pos)
1323 {
1324 	struct inode *inode = file_inode(file);
1325 	struct btrfs_root *root = BTRFS_I(inode)->root;
1326 	struct page **pages = NULL;
1327 	unsigned long first_index;
1328 	size_t num_written = 0;
1329 	int nrptrs;
1330 	int ret = 0;
1331 	bool force_page_uptodate = false;
1332 
1333 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1334 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1335 		     (sizeof(struct page *)));
1336 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1337 	nrptrs = max(nrptrs, 8);
1338 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1339 	if (!pages)
1340 		return -ENOMEM;
1341 
1342 	first_index = pos >> PAGE_CACHE_SHIFT;
1343 
1344 	while (iov_iter_count(i) > 0) {
1345 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1346 		size_t write_bytes = min(iov_iter_count(i),
1347 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1348 					 offset);
1349 		size_t num_pages = (write_bytes + offset +
1350 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1351 		size_t dirty_pages;
1352 		size_t copied;
1353 
1354 		WARN_ON(num_pages > nrptrs);
1355 
1356 		/*
1357 		 * Fault pages before locking them in prepare_pages
1358 		 * to avoid recursive lock
1359 		 */
1360 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1361 			ret = -EFAULT;
1362 			break;
1363 		}
1364 
1365 		ret = btrfs_delalloc_reserve_space(inode,
1366 					num_pages << PAGE_CACHE_SHIFT);
1367 		if (ret)
1368 			break;
1369 
1370 		/*
1371 		 * This is going to setup the pages array with the number of
1372 		 * pages we want, so we don't really need to worry about the
1373 		 * contents of pages from loop to loop
1374 		 */
1375 		ret = prepare_pages(root, file, pages, num_pages,
1376 				    pos, first_index, write_bytes,
1377 				    force_page_uptodate);
1378 		if (ret) {
1379 			btrfs_delalloc_release_space(inode,
1380 					num_pages << PAGE_CACHE_SHIFT);
1381 			break;
1382 		}
1383 
1384 		copied = btrfs_copy_from_user(pos, num_pages,
1385 					   write_bytes, pages, i);
1386 
1387 		/*
1388 		 * if we have trouble faulting in the pages, fall
1389 		 * back to one page at a time
1390 		 */
1391 		if (copied < write_bytes)
1392 			nrptrs = 1;
1393 
1394 		if (copied == 0) {
1395 			force_page_uptodate = true;
1396 			dirty_pages = 0;
1397 		} else {
1398 			force_page_uptodate = false;
1399 			dirty_pages = (copied + offset +
1400 				       PAGE_CACHE_SIZE - 1) >>
1401 				       PAGE_CACHE_SHIFT;
1402 		}
1403 
1404 		/*
1405 		 * If we had a short copy we need to release the excess delaloc
1406 		 * bytes we reserved.  We need to increment outstanding_extents
1407 		 * because btrfs_delalloc_release_space will decrement it, but
1408 		 * we still have an outstanding extent for the chunk we actually
1409 		 * managed to copy.
1410 		 */
1411 		if (num_pages > dirty_pages) {
1412 			if (copied > 0) {
1413 				spin_lock(&BTRFS_I(inode)->lock);
1414 				BTRFS_I(inode)->outstanding_extents++;
1415 				spin_unlock(&BTRFS_I(inode)->lock);
1416 			}
1417 			btrfs_delalloc_release_space(inode,
1418 					(num_pages - dirty_pages) <<
1419 					PAGE_CACHE_SHIFT);
1420 		}
1421 
1422 		if (copied > 0) {
1423 			ret = btrfs_dirty_pages(root, inode, pages,
1424 						dirty_pages, pos, copied,
1425 						NULL);
1426 			if (ret) {
1427 				btrfs_delalloc_release_space(inode,
1428 					dirty_pages << PAGE_CACHE_SHIFT);
1429 				btrfs_drop_pages(pages, num_pages);
1430 				break;
1431 			}
1432 		}
1433 
1434 		btrfs_drop_pages(pages, num_pages);
1435 
1436 		cond_resched();
1437 
1438 		balance_dirty_pages_ratelimited(inode->i_mapping);
1439 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1440 			btrfs_btree_balance_dirty(root);
1441 
1442 		pos += copied;
1443 		num_written += copied;
1444 	}
1445 
1446 	kfree(pages);
1447 
1448 	return num_written ? num_written : ret;
1449 }
1450 
1451 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1452 				    const struct iovec *iov,
1453 				    unsigned long nr_segs, loff_t pos,
1454 				    loff_t *ppos, size_t count, size_t ocount)
1455 {
1456 	struct file *file = iocb->ki_filp;
1457 	struct iov_iter i;
1458 	ssize_t written;
1459 	ssize_t written_buffered;
1460 	loff_t endbyte;
1461 	int err;
1462 
1463 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1464 					    count, ocount);
1465 
1466 	if (written < 0 || written == count)
1467 		return written;
1468 
1469 	pos += written;
1470 	count -= written;
1471 	iov_iter_init(&i, iov, nr_segs, count, written);
1472 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1473 	if (written_buffered < 0) {
1474 		err = written_buffered;
1475 		goto out;
1476 	}
1477 	endbyte = pos + written_buffered - 1;
1478 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1479 	if (err)
1480 		goto out;
1481 	written += written_buffered;
1482 	*ppos = pos + written_buffered;
1483 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1484 				 endbyte >> PAGE_CACHE_SHIFT);
1485 out:
1486 	return written ? written : err;
1487 }
1488 
1489 static void update_time_for_write(struct inode *inode)
1490 {
1491 	struct timespec now;
1492 
1493 	if (IS_NOCMTIME(inode))
1494 		return;
1495 
1496 	now = current_fs_time(inode->i_sb);
1497 	if (!timespec_equal(&inode->i_mtime, &now))
1498 		inode->i_mtime = now;
1499 
1500 	if (!timespec_equal(&inode->i_ctime, &now))
1501 		inode->i_ctime = now;
1502 
1503 	if (IS_I_VERSION(inode))
1504 		inode_inc_iversion(inode);
1505 }
1506 
1507 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1508 				    const struct iovec *iov,
1509 				    unsigned long nr_segs, loff_t pos)
1510 {
1511 	struct file *file = iocb->ki_filp;
1512 	struct inode *inode = file_inode(file);
1513 	struct btrfs_root *root = BTRFS_I(inode)->root;
1514 	loff_t *ppos = &iocb->ki_pos;
1515 	u64 start_pos;
1516 	ssize_t num_written = 0;
1517 	ssize_t err = 0;
1518 	size_t count, ocount;
1519 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1520 
1521 	mutex_lock(&inode->i_mutex);
1522 
1523 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1524 	if (err) {
1525 		mutex_unlock(&inode->i_mutex);
1526 		goto out;
1527 	}
1528 	count = ocount;
1529 
1530 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1531 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1532 	if (err) {
1533 		mutex_unlock(&inode->i_mutex);
1534 		goto out;
1535 	}
1536 
1537 	if (count == 0) {
1538 		mutex_unlock(&inode->i_mutex);
1539 		goto out;
1540 	}
1541 
1542 	err = file_remove_suid(file);
1543 	if (err) {
1544 		mutex_unlock(&inode->i_mutex);
1545 		goto out;
1546 	}
1547 
1548 	/*
1549 	 * If BTRFS flips readonly due to some impossible error
1550 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1551 	 * although we have opened a file as writable, we have
1552 	 * to stop this write operation to ensure FS consistency.
1553 	 */
1554 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1555 		mutex_unlock(&inode->i_mutex);
1556 		err = -EROFS;
1557 		goto out;
1558 	}
1559 
1560 	/*
1561 	 * We reserve space for updating the inode when we reserve space for the
1562 	 * extent we are going to write, so we will enospc out there.  We don't
1563 	 * need to start yet another transaction to update the inode as we will
1564 	 * update the inode when we finish writing whatever data we write.
1565 	 */
1566 	update_time_for_write(inode);
1567 
1568 	start_pos = round_down(pos, root->sectorsize);
1569 	if (start_pos > i_size_read(inode)) {
1570 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1571 		if (err) {
1572 			mutex_unlock(&inode->i_mutex);
1573 			goto out;
1574 		}
1575 	}
1576 
1577 	if (sync)
1578 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1579 
1580 	if (unlikely(file->f_flags & O_DIRECT)) {
1581 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1582 						   pos, ppos, count, ocount);
1583 	} else {
1584 		struct iov_iter i;
1585 
1586 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1587 
1588 		num_written = __btrfs_buffered_write(file, &i, pos);
1589 		if (num_written > 0)
1590 			*ppos = pos + num_written;
1591 	}
1592 
1593 	mutex_unlock(&inode->i_mutex);
1594 
1595 	/*
1596 	 * we want to make sure fsync finds this change
1597 	 * but we haven't joined a transaction running right now.
1598 	 *
1599 	 * Later on, someone is sure to update the inode and get the
1600 	 * real transid recorded.
1601 	 *
1602 	 * We set last_trans now to the fs_info generation + 1,
1603 	 * this will either be one more than the running transaction
1604 	 * or the generation used for the next transaction if there isn't
1605 	 * one running right now.
1606 	 *
1607 	 * We also have to set last_sub_trans to the current log transid,
1608 	 * otherwise subsequent syncs to a file that's been synced in this
1609 	 * transaction will appear to have already occured.
1610 	 */
1611 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1612 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1613 	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1614 		err = generic_write_sync(file, pos, num_written);
1615 		if (err < 0 && num_written > 0)
1616 			num_written = err;
1617 	}
1618 
1619 	if (sync)
1620 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1621 out:
1622 	current->backing_dev_info = NULL;
1623 	return num_written ? num_written : err;
1624 }
1625 
1626 int btrfs_release_file(struct inode *inode, struct file *filp)
1627 {
1628 	/*
1629 	 * ordered_data_close is set by settattr when we are about to truncate
1630 	 * a file from a non-zero size to a zero size.  This tries to
1631 	 * flush down new bytes that may have been written if the
1632 	 * application were using truncate to replace a file in place.
1633 	 */
1634 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1635 			       &BTRFS_I(inode)->runtime_flags)) {
1636 		struct btrfs_trans_handle *trans;
1637 		struct btrfs_root *root = BTRFS_I(inode)->root;
1638 
1639 		/*
1640 		 * We need to block on a committing transaction to keep us from
1641 		 * throwing a ordered operation on to the list and causing
1642 		 * something like sync to deadlock trying to flush out this
1643 		 * inode.
1644 		 */
1645 		trans = btrfs_start_transaction(root, 0);
1646 		if (IS_ERR(trans))
1647 			return PTR_ERR(trans);
1648 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1649 		btrfs_end_transaction(trans, root);
1650 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1651 			filemap_flush(inode->i_mapping);
1652 	}
1653 	if (filp->private_data)
1654 		btrfs_ioctl_trans_end(filp);
1655 	return 0;
1656 }
1657 
1658 /*
1659  * fsync call for both files and directories.  This logs the inode into
1660  * the tree log instead of forcing full commits whenever possible.
1661  *
1662  * It needs to call filemap_fdatawait so that all ordered extent updates are
1663  * in the metadata btree are up to date for copying to the log.
1664  *
1665  * It drops the inode mutex before doing the tree log commit.  This is an
1666  * important optimization for directories because holding the mutex prevents
1667  * new operations on the dir while we write to disk.
1668  */
1669 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1670 {
1671 	struct dentry *dentry = file->f_path.dentry;
1672 	struct inode *inode = dentry->d_inode;
1673 	struct btrfs_root *root = BTRFS_I(inode)->root;
1674 	int ret = 0;
1675 	struct btrfs_trans_handle *trans;
1676 	bool full_sync = 0;
1677 
1678 	trace_btrfs_sync_file(file, datasync);
1679 
1680 	/*
1681 	 * We write the dirty pages in the range and wait until they complete
1682 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1683 	 * multi-task, and make the performance up.  See
1684 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1685 	 */
1686 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1687 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1688 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1689 			     &BTRFS_I(inode)->runtime_flags))
1690 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1691 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1692 	if (ret)
1693 		return ret;
1694 
1695 	mutex_lock(&inode->i_mutex);
1696 
1697 	/*
1698 	 * We flush the dirty pages again to avoid some dirty pages in the
1699 	 * range being left.
1700 	 */
1701 	atomic_inc(&root->log_batch);
1702 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1703 			     &BTRFS_I(inode)->runtime_flags);
1704 	if (full_sync)
1705 		btrfs_wait_ordered_range(inode, start, end - start + 1);
1706 	atomic_inc(&root->log_batch);
1707 
1708 	/*
1709 	 * check the transaction that last modified this inode
1710 	 * and see if its already been committed
1711 	 */
1712 	if (!BTRFS_I(inode)->last_trans) {
1713 		mutex_unlock(&inode->i_mutex);
1714 		goto out;
1715 	}
1716 
1717 	/*
1718 	 * if the last transaction that changed this file was before
1719 	 * the current transaction, we can bail out now without any
1720 	 * syncing
1721 	 */
1722 	smp_mb();
1723 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1724 	    BTRFS_I(inode)->last_trans <=
1725 	    root->fs_info->last_trans_committed) {
1726 		BTRFS_I(inode)->last_trans = 0;
1727 
1728 		/*
1729 		 * We'v had everything committed since the last time we were
1730 		 * modified so clear this flag in case it was set for whatever
1731 		 * reason, it's no longer relevant.
1732 		 */
1733 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1734 			  &BTRFS_I(inode)->runtime_flags);
1735 		mutex_unlock(&inode->i_mutex);
1736 		goto out;
1737 	}
1738 
1739 	/*
1740 	 * ok we haven't committed the transaction yet, lets do a commit
1741 	 */
1742 	if (file->private_data)
1743 		btrfs_ioctl_trans_end(file);
1744 
1745 	trans = btrfs_start_transaction(root, 0);
1746 	if (IS_ERR(trans)) {
1747 		ret = PTR_ERR(trans);
1748 		mutex_unlock(&inode->i_mutex);
1749 		goto out;
1750 	}
1751 
1752 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1753 	if (ret < 0) {
1754 		mutex_unlock(&inode->i_mutex);
1755 		goto out;
1756 	}
1757 
1758 	/* we've logged all the items and now have a consistent
1759 	 * version of the file in the log.  It is possible that
1760 	 * someone will come in and modify the file, but that's
1761 	 * fine because the log is consistent on disk, and we
1762 	 * have references to all of the file's extents
1763 	 *
1764 	 * It is possible that someone will come in and log the
1765 	 * file again, but that will end up using the synchronization
1766 	 * inside btrfs_sync_log to keep things safe.
1767 	 */
1768 	mutex_unlock(&inode->i_mutex);
1769 
1770 	if (ret != BTRFS_NO_LOG_SYNC) {
1771 		if (ret > 0) {
1772 			/*
1773 			 * If we didn't already wait for ordered extents we need
1774 			 * to do that now.
1775 			 */
1776 			if (!full_sync)
1777 				btrfs_wait_ordered_range(inode, start,
1778 							 end - start + 1);
1779 			ret = btrfs_commit_transaction(trans, root);
1780 		} else {
1781 			ret = btrfs_sync_log(trans, root);
1782 			if (ret == 0) {
1783 				ret = btrfs_end_transaction(trans, root);
1784 			} else {
1785 				if (!full_sync)
1786 					btrfs_wait_ordered_range(inode, start,
1787 								 end -
1788 								 start + 1);
1789 				ret = btrfs_commit_transaction(trans, root);
1790 			}
1791 		}
1792 	} else {
1793 		ret = btrfs_end_transaction(trans, root);
1794 	}
1795 out:
1796 	return ret > 0 ? -EIO : ret;
1797 }
1798 
1799 static const struct vm_operations_struct btrfs_file_vm_ops = {
1800 	.fault		= filemap_fault,
1801 	.page_mkwrite	= btrfs_page_mkwrite,
1802 	.remap_pages	= generic_file_remap_pages,
1803 };
1804 
1805 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1806 {
1807 	struct address_space *mapping = filp->f_mapping;
1808 
1809 	if (!mapping->a_ops->readpage)
1810 		return -ENOEXEC;
1811 
1812 	file_accessed(filp);
1813 	vma->vm_ops = &btrfs_file_vm_ops;
1814 
1815 	return 0;
1816 }
1817 
1818 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1819 			  int slot, u64 start, u64 end)
1820 {
1821 	struct btrfs_file_extent_item *fi;
1822 	struct btrfs_key key;
1823 
1824 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1825 		return 0;
1826 
1827 	btrfs_item_key_to_cpu(leaf, &key, slot);
1828 	if (key.objectid != btrfs_ino(inode) ||
1829 	    key.type != BTRFS_EXTENT_DATA_KEY)
1830 		return 0;
1831 
1832 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1833 
1834 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1835 		return 0;
1836 
1837 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1838 		return 0;
1839 
1840 	if (key.offset == end)
1841 		return 1;
1842 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1843 		return 1;
1844 	return 0;
1845 }
1846 
1847 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1848 		      struct btrfs_path *path, u64 offset, u64 end)
1849 {
1850 	struct btrfs_root *root = BTRFS_I(inode)->root;
1851 	struct extent_buffer *leaf;
1852 	struct btrfs_file_extent_item *fi;
1853 	struct extent_map *hole_em;
1854 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1855 	struct btrfs_key key;
1856 	int ret;
1857 
1858 	key.objectid = btrfs_ino(inode);
1859 	key.type = BTRFS_EXTENT_DATA_KEY;
1860 	key.offset = offset;
1861 
1862 
1863 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1864 	if (ret < 0)
1865 		return ret;
1866 	BUG_ON(!ret);
1867 
1868 	leaf = path->nodes[0];
1869 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1870 		u64 num_bytes;
1871 
1872 		path->slots[0]--;
1873 		fi = btrfs_item_ptr(leaf, path->slots[0],
1874 				    struct btrfs_file_extent_item);
1875 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1876 			end - offset;
1877 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1878 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1879 		btrfs_set_file_extent_offset(leaf, fi, 0);
1880 		btrfs_mark_buffer_dirty(leaf);
1881 		goto out;
1882 	}
1883 
1884 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1885 		u64 num_bytes;
1886 
1887 		path->slots[0]++;
1888 		key.offset = offset;
1889 		btrfs_set_item_key_safe(root, path, &key);
1890 		fi = btrfs_item_ptr(leaf, path->slots[0],
1891 				    struct btrfs_file_extent_item);
1892 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1893 			offset;
1894 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1895 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1896 		btrfs_set_file_extent_offset(leaf, fi, 0);
1897 		btrfs_mark_buffer_dirty(leaf);
1898 		goto out;
1899 	}
1900 	btrfs_release_path(path);
1901 
1902 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1903 				       0, 0, end - offset, 0, end - offset,
1904 				       0, 0, 0);
1905 	if (ret)
1906 		return ret;
1907 
1908 out:
1909 	btrfs_release_path(path);
1910 
1911 	hole_em = alloc_extent_map();
1912 	if (!hole_em) {
1913 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1914 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1915 			&BTRFS_I(inode)->runtime_flags);
1916 	} else {
1917 		hole_em->start = offset;
1918 		hole_em->len = end - offset;
1919 		hole_em->ram_bytes = hole_em->len;
1920 		hole_em->orig_start = offset;
1921 
1922 		hole_em->block_start = EXTENT_MAP_HOLE;
1923 		hole_em->block_len = 0;
1924 		hole_em->orig_block_len = 0;
1925 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1926 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
1927 		hole_em->generation = trans->transid;
1928 
1929 		do {
1930 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1931 			write_lock(&em_tree->lock);
1932 			ret = add_extent_mapping(em_tree, hole_em, 1);
1933 			write_unlock(&em_tree->lock);
1934 		} while (ret == -EEXIST);
1935 		free_extent_map(hole_em);
1936 		if (ret)
1937 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1938 				&BTRFS_I(inode)->runtime_flags);
1939 	}
1940 
1941 	return 0;
1942 }
1943 
1944 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1945 {
1946 	struct btrfs_root *root = BTRFS_I(inode)->root;
1947 	struct extent_state *cached_state = NULL;
1948 	struct btrfs_path *path;
1949 	struct btrfs_block_rsv *rsv;
1950 	struct btrfs_trans_handle *trans;
1951 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1952 	u64 lockend = round_down(offset + len,
1953 				 BTRFS_I(inode)->root->sectorsize) - 1;
1954 	u64 cur_offset = lockstart;
1955 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1956 	u64 drop_end;
1957 	int ret = 0;
1958 	int err = 0;
1959 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1960 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
1961 
1962 	btrfs_wait_ordered_range(inode, offset, len);
1963 
1964 	mutex_lock(&inode->i_mutex);
1965 	/*
1966 	 * We needn't truncate any page which is beyond the end of the file
1967 	 * because we are sure there is no data there.
1968 	 */
1969 	/*
1970 	 * Only do this if we are in the same page and we aren't doing the
1971 	 * entire page.
1972 	 */
1973 	if (same_page && len < PAGE_CACHE_SIZE) {
1974 		if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1975 			ret = btrfs_truncate_page(inode, offset, len, 0);
1976 		mutex_unlock(&inode->i_mutex);
1977 		return ret;
1978 	}
1979 
1980 	/* zero back part of the first page */
1981 	if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1982 		ret = btrfs_truncate_page(inode, offset, 0, 0);
1983 		if (ret) {
1984 			mutex_unlock(&inode->i_mutex);
1985 			return ret;
1986 		}
1987 	}
1988 
1989 	/* zero the front end of the last page */
1990 	if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1991 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1992 		if (ret) {
1993 			mutex_unlock(&inode->i_mutex);
1994 			return ret;
1995 		}
1996 	}
1997 
1998 	if (lockend < lockstart) {
1999 		mutex_unlock(&inode->i_mutex);
2000 		return 0;
2001 	}
2002 
2003 	while (1) {
2004 		struct btrfs_ordered_extent *ordered;
2005 
2006 		truncate_pagecache_range(inode, lockstart, lockend);
2007 
2008 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2009 				 0, &cached_state);
2010 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2011 
2012 		/*
2013 		 * We need to make sure we have no ordered extents in this range
2014 		 * and nobody raced in and read a page in this range, if we did
2015 		 * we need to try again.
2016 		 */
2017 		if ((!ordered ||
2018 		    (ordered->file_offset + ordered->len < lockstart ||
2019 		     ordered->file_offset > lockend)) &&
2020 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2021 				     lockend, EXTENT_UPTODATE, 0,
2022 				     cached_state)) {
2023 			if (ordered)
2024 				btrfs_put_ordered_extent(ordered);
2025 			break;
2026 		}
2027 		if (ordered)
2028 			btrfs_put_ordered_extent(ordered);
2029 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2030 				     lockend, &cached_state, GFP_NOFS);
2031 		btrfs_wait_ordered_range(inode, lockstart,
2032 					 lockend - lockstart + 1);
2033 	}
2034 
2035 	path = btrfs_alloc_path();
2036 	if (!path) {
2037 		ret = -ENOMEM;
2038 		goto out;
2039 	}
2040 
2041 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2042 	if (!rsv) {
2043 		ret = -ENOMEM;
2044 		goto out_free;
2045 	}
2046 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2047 	rsv->failfast = 1;
2048 
2049 	/*
2050 	 * 1 - update the inode
2051 	 * 1 - removing the extents in the range
2052 	 * 1 - adding the hole extent
2053 	 */
2054 	trans = btrfs_start_transaction(root, 3);
2055 	if (IS_ERR(trans)) {
2056 		err = PTR_ERR(trans);
2057 		goto out_free;
2058 	}
2059 
2060 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2061 				      min_size);
2062 	BUG_ON(ret);
2063 	trans->block_rsv = rsv;
2064 
2065 	while (cur_offset < lockend) {
2066 		ret = __btrfs_drop_extents(trans, root, inode, path,
2067 					   cur_offset, lockend + 1,
2068 					   &drop_end, 1);
2069 		if (ret != -ENOSPC)
2070 			break;
2071 
2072 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2073 
2074 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2075 		if (ret) {
2076 			err = ret;
2077 			break;
2078 		}
2079 
2080 		cur_offset = drop_end;
2081 
2082 		ret = btrfs_update_inode(trans, root, inode);
2083 		if (ret) {
2084 			err = ret;
2085 			break;
2086 		}
2087 
2088 		btrfs_end_transaction(trans, root);
2089 		btrfs_btree_balance_dirty(root);
2090 
2091 		trans = btrfs_start_transaction(root, 3);
2092 		if (IS_ERR(trans)) {
2093 			ret = PTR_ERR(trans);
2094 			trans = NULL;
2095 			break;
2096 		}
2097 
2098 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2099 					      rsv, min_size);
2100 		BUG_ON(ret);	/* shouldn't happen */
2101 		trans->block_rsv = rsv;
2102 	}
2103 
2104 	if (ret) {
2105 		err = ret;
2106 		goto out_trans;
2107 	}
2108 
2109 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2110 	ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2111 	if (ret) {
2112 		err = ret;
2113 		goto out_trans;
2114 	}
2115 
2116 out_trans:
2117 	if (!trans)
2118 		goto out_free;
2119 
2120 	inode_inc_iversion(inode);
2121 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2122 
2123 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2124 	ret = btrfs_update_inode(trans, root, inode);
2125 	btrfs_end_transaction(trans, root);
2126 	btrfs_btree_balance_dirty(root);
2127 out_free:
2128 	btrfs_free_path(path);
2129 	btrfs_free_block_rsv(root, rsv);
2130 out:
2131 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2132 			     &cached_state, GFP_NOFS);
2133 	mutex_unlock(&inode->i_mutex);
2134 	if (ret && !err)
2135 		err = ret;
2136 	return err;
2137 }
2138 
2139 static long btrfs_fallocate(struct file *file, int mode,
2140 			    loff_t offset, loff_t len)
2141 {
2142 	struct inode *inode = file_inode(file);
2143 	struct extent_state *cached_state = NULL;
2144 	struct btrfs_root *root = BTRFS_I(inode)->root;
2145 	u64 cur_offset;
2146 	u64 last_byte;
2147 	u64 alloc_start;
2148 	u64 alloc_end;
2149 	u64 alloc_hint = 0;
2150 	u64 locked_end;
2151 	struct extent_map *em;
2152 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2153 	int ret;
2154 
2155 	alloc_start = round_down(offset, blocksize);
2156 	alloc_end = round_up(offset + len, blocksize);
2157 
2158 	/* Make sure we aren't being give some crap mode */
2159 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2160 		return -EOPNOTSUPP;
2161 
2162 	if (mode & FALLOC_FL_PUNCH_HOLE)
2163 		return btrfs_punch_hole(inode, offset, len);
2164 
2165 	/*
2166 	 * Make sure we have enough space before we do the
2167 	 * allocation.
2168 	 */
2169 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2170 	if (ret)
2171 		return ret;
2172 	if (root->fs_info->quota_enabled) {
2173 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2174 		if (ret)
2175 			goto out_reserve_fail;
2176 	}
2177 
2178 	/*
2179 	 * wait for ordered IO before we have any locks.  We'll loop again
2180 	 * below with the locks held.
2181 	 */
2182 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2183 
2184 	mutex_lock(&inode->i_mutex);
2185 	ret = inode_newsize_ok(inode, alloc_end);
2186 	if (ret)
2187 		goto out;
2188 
2189 	if (alloc_start > inode->i_size) {
2190 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2191 					alloc_start);
2192 		if (ret)
2193 			goto out;
2194 	}
2195 
2196 	locked_end = alloc_end - 1;
2197 	while (1) {
2198 		struct btrfs_ordered_extent *ordered;
2199 
2200 		/* the extent lock is ordered inside the running
2201 		 * transaction
2202 		 */
2203 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2204 				 locked_end, 0, &cached_state);
2205 		ordered = btrfs_lookup_first_ordered_extent(inode,
2206 							    alloc_end - 1);
2207 		if (ordered &&
2208 		    ordered->file_offset + ordered->len > alloc_start &&
2209 		    ordered->file_offset < alloc_end) {
2210 			btrfs_put_ordered_extent(ordered);
2211 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2212 					     alloc_start, locked_end,
2213 					     &cached_state, GFP_NOFS);
2214 			/*
2215 			 * we can't wait on the range with the transaction
2216 			 * running or with the extent lock held
2217 			 */
2218 			btrfs_wait_ordered_range(inode, alloc_start,
2219 						 alloc_end - alloc_start);
2220 		} else {
2221 			if (ordered)
2222 				btrfs_put_ordered_extent(ordered);
2223 			break;
2224 		}
2225 	}
2226 
2227 	cur_offset = alloc_start;
2228 	while (1) {
2229 		u64 actual_end;
2230 
2231 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2232 				      alloc_end - cur_offset, 0);
2233 		if (IS_ERR_OR_NULL(em)) {
2234 			if (!em)
2235 				ret = -ENOMEM;
2236 			else
2237 				ret = PTR_ERR(em);
2238 			break;
2239 		}
2240 		last_byte = min(extent_map_end(em), alloc_end);
2241 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2242 		last_byte = ALIGN(last_byte, blocksize);
2243 
2244 		if (em->block_start == EXTENT_MAP_HOLE ||
2245 		    (cur_offset >= inode->i_size &&
2246 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2247 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2248 							last_byte - cur_offset,
2249 							1 << inode->i_blkbits,
2250 							offset + len,
2251 							&alloc_hint);
2252 
2253 			if (ret < 0) {
2254 				free_extent_map(em);
2255 				break;
2256 			}
2257 		} else if (actual_end > inode->i_size &&
2258 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2259 			/*
2260 			 * We didn't need to allocate any more space, but we
2261 			 * still extended the size of the file so we need to
2262 			 * update i_size.
2263 			 */
2264 			inode->i_ctime = CURRENT_TIME;
2265 			i_size_write(inode, actual_end);
2266 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2267 		}
2268 		free_extent_map(em);
2269 
2270 		cur_offset = last_byte;
2271 		if (cur_offset >= alloc_end) {
2272 			ret = 0;
2273 			break;
2274 		}
2275 	}
2276 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2277 			     &cached_state, GFP_NOFS);
2278 out:
2279 	mutex_unlock(&inode->i_mutex);
2280 	if (root->fs_info->quota_enabled)
2281 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2282 out_reserve_fail:
2283 	/* Let go of our reservation. */
2284 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2285 	return ret;
2286 }
2287 
2288 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2289 {
2290 	struct btrfs_root *root = BTRFS_I(inode)->root;
2291 	struct extent_map *em;
2292 	struct extent_state *cached_state = NULL;
2293 	u64 lockstart = *offset;
2294 	u64 lockend = i_size_read(inode);
2295 	u64 start = *offset;
2296 	u64 orig_start = *offset;
2297 	u64 len = i_size_read(inode);
2298 	u64 last_end = 0;
2299 	int ret = 0;
2300 
2301 	lockend = max_t(u64, root->sectorsize, lockend);
2302 	if (lockend <= lockstart)
2303 		lockend = lockstart + root->sectorsize;
2304 
2305 	lockend--;
2306 	len = lockend - lockstart + 1;
2307 
2308 	len = max_t(u64, len, root->sectorsize);
2309 	if (inode->i_size == 0)
2310 		return -ENXIO;
2311 
2312 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2313 			 &cached_state);
2314 
2315 	/*
2316 	 * Delalloc is such a pain.  If we have a hole and we have pending
2317 	 * delalloc for a portion of the hole we will get back a hole that
2318 	 * exists for the entire range since it hasn't been actually written
2319 	 * yet.  So to take care of this case we need to look for an extent just
2320 	 * before the position we want in case there is outstanding delalloc
2321 	 * going on here.
2322 	 */
2323 	if (whence == SEEK_HOLE && start != 0) {
2324 		if (start <= root->sectorsize)
2325 			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2326 						     root->sectorsize, 0);
2327 		else
2328 			em = btrfs_get_extent_fiemap(inode, NULL, 0,
2329 						     start - root->sectorsize,
2330 						     root->sectorsize, 0);
2331 		if (IS_ERR(em)) {
2332 			ret = PTR_ERR(em);
2333 			goto out;
2334 		}
2335 		last_end = em->start + em->len;
2336 		if (em->block_start == EXTENT_MAP_DELALLOC)
2337 			last_end = min_t(u64, last_end, inode->i_size);
2338 		free_extent_map(em);
2339 	}
2340 
2341 	while (1) {
2342 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2343 		if (IS_ERR(em)) {
2344 			ret = PTR_ERR(em);
2345 			break;
2346 		}
2347 
2348 		if (em->block_start == EXTENT_MAP_HOLE) {
2349 			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2350 				if (last_end <= orig_start) {
2351 					free_extent_map(em);
2352 					ret = -ENXIO;
2353 					break;
2354 				}
2355 			}
2356 
2357 			if (whence == SEEK_HOLE) {
2358 				*offset = start;
2359 				free_extent_map(em);
2360 				break;
2361 			}
2362 		} else {
2363 			if (whence == SEEK_DATA) {
2364 				if (em->block_start == EXTENT_MAP_DELALLOC) {
2365 					if (start >= inode->i_size) {
2366 						free_extent_map(em);
2367 						ret = -ENXIO;
2368 						break;
2369 					}
2370 				}
2371 
2372 				if (!test_bit(EXTENT_FLAG_PREALLOC,
2373 					      &em->flags)) {
2374 					*offset = start;
2375 					free_extent_map(em);
2376 					break;
2377 				}
2378 			}
2379 		}
2380 
2381 		start = em->start + em->len;
2382 		last_end = em->start + em->len;
2383 
2384 		if (em->block_start == EXTENT_MAP_DELALLOC)
2385 			last_end = min_t(u64, last_end, inode->i_size);
2386 
2387 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2388 			free_extent_map(em);
2389 			ret = -ENXIO;
2390 			break;
2391 		}
2392 		free_extent_map(em);
2393 		cond_resched();
2394 	}
2395 	if (!ret)
2396 		*offset = min(*offset, inode->i_size);
2397 out:
2398 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2399 			     &cached_state, GFP_NOFS);
2400 	return ret;
2401 }
2402 
2403 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2404 {
2405 	struct inode *inode = file->f_mapping->host;
2406 	int ret;
2407 
2408 	mutex_lock(&inode->i_mutex);
2409 	switch (whence) {
2410 	case SEEK_END:
2411 	case SEEK_CUR:
2412 		offset = generic_file_llseek(file, offset, whence);
2413 		goto out;
2414 	case SEEK_DATA:
2415 	case SEEK_HOLE:
2416 		if (offset >= i_size_read(inode)) {
2417 			mutex_unlock(&inode->i_mutex);
2418 			return -ENXIO;
2419 		}
2420 
2421 		ret = find_desired_extent(inode, &offset, whence);
2422 		if (ret) {
2423 			mutex_unlock(&inode->i_mutex);
2424 			return ret;
2425 		}
2426 	}
2427 
2428 	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2429 		offset = -EINVAL;
2430 		goto out;
2431 	}
2432 	if (offset > inode->i_sb->s_maxbytes) {
2433 		offset = -EINVAL;
2434 		goto out;
2435 	}
2436 
2437 	/* Special lock needed here? */
2438 	if (offset != file->f_pos) {
2439 		file->f_pos = offset;
2440 		file->f_version = 0;
2441 	}
2442 out:
2443 	mutex_unlock(&inode->i_mutex);
2444 	return offset;
2445 }
2446 
2447 const struct file_operations btrfs_file_operations = {
2448 	.llseek		= btrfs_file_llseek,
2449 	.read		= do_sync_read,
2450 	.write		= do_sync_write,
2451 	.aio_read       = generic_file_aio_read,
2452 	.splice_read	= generic_file_splice_read,
2453 	.aio_write	= btrfs_file_aio_write,
2454 	.mmap		= btrfs_file_mmap,
2455 	.open		= generic_file_open,
2456 	.release	= btrfs_release_file,
2457 	.fsync		= btrfs_sync_file,
2458 	.fallocate	= btrfs_fallocate,
2459 	.unlocked_ioctl	= btrfs_ioctl,
2460 #ifdef CONFIG_COMPAT
2461 	.compat_ioctl	= btrfs_ioctl,
2462 #endif
2463 };
2464 
2465 void btrfs_auto_defrag_exit(void)
2466 {
2467 	if (btrfs_inode_defrag_cachep)
2468 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2469 }
2470 
2471 int btrfs_auto_defrag_init(void)
2472 {
2473 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2474 					sizeof(struct inode_defrag), 0,
2475 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2476 					NULL);
2477 	if (!btrfs_inode_defrag_cachep)
2478 		return -ENOMEM;
2479 
2480 	return 0;
2481 }
2482