1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/compat.h> 31 #include <linux/slab.h> 32 #include <linux/btrfs.h> 33 #include <linux/uio.h> 34 #include <linux/iversion.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 #include "compression.h" 45 46 static struct kmem_cache *btrfs_inode_defrag_cachep; 47 /* 48 * when auto defrag is enabled we 49 * queue up these defrag structs to remember which 50 * inodes need defragging passes 51 */ 52 struct inode_defrag { 53 struct rb_node rb_node; 54 /* objectid */ 55 u64 ino; 56 /* 57 * transid where the defrag was added, we search for 58 * extents newer than this 59 */ 60 u64 transid; 61 62 /* root objectid */ 63 u64 root; 64 65 /* last offset we were able to defrag */ 66 u64 last_offset; 67 68 /* if we've wrapped around back to zero once already */ 69 int cycled; 70 }; 71 72 static int __compare_inode_defrag(struct inode_defrag *defrag1, 73 struct inode_defrag *defrag2) 74 { 75 if (defrag1->root > defrag2->root) 76 return 1; 77 else if (defrag1->root < defrag2->root) 78 return -1; 79 else if (defrag1->ino > defrag2->ino) 80 return 1; 81 else if (defrag1->ino < defrag2->ino) 82 return -1; 83 else 84 return 0; 85 } 86 87 /* pop a record for an inode into the defrag tree. The lock 88 * must be held already 89 * 90 * If you're inserting a record for an older transid than an 91 * existing record, the transid already in the tree is lowered 92 * 93 * If an existing record is found the defrag item you 94 * pass in is freed 95 */ 96 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 97 struct inode_defrag *defrag) 98 { 99 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 100 struct inode_defrag *entry; 101 struct rb_node **p; 102 struct rb_node *parent = NULL; 103 int ret; 104 105 p = &fs_info->defrag_inodes.rb_node; 106 while (*p) { 107 parent = *p; 108 entry = rb_entry(parent, struct inode_defrag, rb_node); 109 110 ret = __compare_inode_defrag(defrag, entry); 111 if (ret < 0) 112 p = &parent->rb_left; 113 else if (ret > 0) 114 p = &parent->rb_right; 115 else { 116 /* if we're reinserting an entry for 117 * an old defrag run, make sure to 118 * lower the transid of our existing record 119 */ 120 if (defrag->transid < entry->transid) 121 entry->transid = defrag->transid; 122 if (defrag->last_offset > entry->last_offset) 123 entry->last_offset = defrag->last_offset; 124 return -EEXIST; 125 } 126 } 127 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 128 rb_link_node(&defrag->rb_node, parent, p); 129 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 130 return 0; 131 } 132 133 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 134 { 135 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 136 return 0; 137 138 if (btrfs_fs_closing(fs_info)) 139 return 0; 140 141 return 1; 142 } 143 144 /* 145 * insert a defrag record for this inode if auto defrag is 146 * enabled 147 */ 148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 149 struct btrfs_inode *inode) 150 { 151 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 152 struct btrfs_root *root = inode->root; 153 struct inode_defrag *defrag; 154 u64 transid; 155 int ret; 156 157 if (!__need_auto_defrag(fs_info)) 158 return 0; 159 160 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 161 return 0; 162 163 if (trans) 164 transid = trans->transid; 165 else 166 transid = inode->root->last_trans; 167 168 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 169 if (!defrag) 170 return -ENOMEM; 171 172 defrag->ino = btrfs_ino(inode); 173 defrag->transid = transid; 174 defrag->root = root->root_key.objectid; 175 176 spin_lock(&fs_info->defrag_inodes_lock); 177 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 178 /* 179 * If we set IN_DEFRAG flag and evict the inode from memory, 180 * and then re-read this inode, this new inode doesn't have 181 * IN_DEFRAG flag. At the case, we may find the existed defrag. 182 */ 183 ret = __btrfs_add_inode_defrag(inode, defrag); 184 if (ret) 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } else { 187 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 188 } 189 spin_unlock(&fs_info->defrag_inodes_lock); 190 return 0; 191 } 192 193 /* 194 * Requeue the defrag object. If there is a defrag object that points to 195 * the same inode in the tree, we will merge them together (by 196 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 197 */ 198 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 199 struct inode_defrag *defrag) 200 { 201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 202 int ret; 203 204 if (!__need_auto_defrag(fs_info)) 205 goto out; 206 207 /* 208 * Here we don't check the IN_DEFRAG flag, because we need merge 209 * them together. 210 */ 211 spin_lock(&fs_info->defrag_inodes_lock); 212 ret = __btrfs_add_inode_defrag(inode, defrag); 213 spin_unlock(&fs_info->defrag_inodes_lock); 214 if (ret) 215 goto out; 216 return; 217 out: 218 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 219 } 220 221 /* 222 * pick the defragable inode that we want, if it doesn't exist, we will get 223 * the next one. 224 */ 225 static struct inode_defrag * 226 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 227 { 228 struct inode_defrag *entry = NULL; 229 struct inode_defrag tmp; 230 struct rb_node *p; 231 struct rb_node *parent = NULL; 232 int ret; 233 234 tmp.ino = ino; 235 tmp.root = root; 236 237 spin_lock(&fs_info->defrag_inodes_lock); 238 p = fs_info->defrag_inodes.rb_node; 239 while (p) { 240 parent = p; 241 entry = rb_entry(parent, struct inode_defrag, rb_node); 242 243 ret = __compare_inode_defrag(&tmp, entry); 244 if (ret < 0) 245 p = parent->rb_left; 246 else if (ret > 0) 247 p = parent->rb_right; 248 else 249 goto out; 250 } 251 252 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 253 parent = rb_next(parent); 254 if (parent) 255 entry = rb_entry(parent, struct inode_defrag, rb_node); 256 else 257 entry = NULL; 258 } 259 out: 260 if (entry) 261 rb_erase(parent, &fs_info->defrag_inodes); 262 spin_unlock(&fs_info->defrag_inodes_lock); 263 return entry; 264 } 265 266 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 267 { 268 struct inode_defrag *defrag; 269 struct rb_node *node; 270 271 spin_lock(&fs_info->defrag_inodes_lock); 272 node = rb_first(&fs_info->defrag_inodes); 273 while (node) { 274 rb_erase(node, &fs_info->defrag_inodes); 275 defrag = rb_entry(node, struct inode_defrag, rb_node); 276 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 277 278 cond_resched_lock(&fs_info->defrag_inodes_lock); 279 280 node = rb_first(&fs_info->defrag_inodes); 281 } 282 spin_unlock(&fs_info->defrag_inodes_lock); 283 } 284 285 #define BTRFS_DEFRAG_BATCH 1024 286 287 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 288 struct inode_defrag *defrag) 289 { 290 struct btrfs_root *inode_root; 291 struct inode *inode; 292 struct btrfs_key key; 293 struct btrfs_ioctl_defrag_range_args range; 294 int num_defrag; 295 int index; 296 int ret; 297 298 /* get the inode */ 299 key.objectid = defrag->root; 300 key.type = BTRFS_ROOT_ITEM_KEY; 301 key.offset = (u64)-1; 302 303 index = srcu_read_lock(&fs_info->subvol_srcu); 304 305 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 306 if (IS_ERR(inode_root)) { 307 ret = PTR_ERR(inode_root); 308 goto cleanup; 309 } 310 311 key.objectid = defrag->ino; 312 key.type = BTRFS_INODE_ITEM_KEY; 313 key.offset = 0; 314 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 315 if (IS_ERR(inode)) { 316 ret = PTR_ERR(inode); 317 goto cleanup; 318 } 319 srcu_read_unlock(&fs_info->subvol_srcu, index); 320 321 /* do a chunk of defrag */ 322 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 323 memset(&range, 0, sizeof(range)); 324 range.len = (u64)-1; 325 range.start = defrag->last_offset; 326 327 sb_start_write(fs_info->sb); 328 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 329 BTRFS_DEFRAG_BATCH); 330 sb_end_write(fs_info->sb); 331 /* 332 * if we filled the whole defrag batch, there 333 * must be more work to do. Queue this defrag 334 * again 335 */ 336 if (num_defrag == BTRFS_DEFRAG_BATCH) { 337 defrag->last_offset = range.start; 338 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 339 } else if (defrag->last_offset && !defrag->cycled) { 340 /* 341 * we didn't fill our defrag batch, but 342 * we didn't start at zero. Make sure we loop 343 * around to the start of the file. 344 */ 345 defrag->last_offset = 0; 346 defrag->cycled = 1; 347 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 348 } else { 349 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 350 } 351 352 iput(inode); 353 return 0; 354 cleanup: 355 srcu_read_unlock(&fs_info->subvol_srcu, index); 356 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 357 return ret; 358 } 359 360 /* 361 * run through the list of inodes in the FS that need 362 * defragging 363 */ 364 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 365 { 366 struct inode_defrag *defrag; 367 u64 first_ino = 0; 368 u64 root_objectid = 0; 369 370 atomic_inc(&fs_info->defrag_running); 371 while (1) { 372 /* Pause the auto defragger. */ 373 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 374 &fs_info->fs_state)) 375 break; 376 377 if (!__need_auto_defrag(fs_info)) 378 break; 379 380 /* find an inode to defrag */ 381 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 382 first_ino); 383 if (!defrag) { 384 if (root_objectid || first_ino) { 385 root_objectid = 0; 386 first_ino = 0; 387 continue; 388 } else { 389 break; 390 } 391 } 392 393 first_ino = defrag->ino + 1; 394 root_objectid = defrag->root; 395 396 __btrfs_run_defrag_inode(fs_info, defrag); 397 } 398 atomic_dec(&fs_info->defrag_running); 399 400 /* 401 * during unmount, we use the transaction_wait queue to 402 * wait for the defragger to stop 403 */ 404 wake_up(&fs_info->transaction_wait); 405 return 0; 406 } 407 408 /* simple helper to fault in pages and copy. This should go away 409 * and be replaced with calls into generic code. 410 */ 411 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 412 struct page **prepared_pages, 413 struct iov_iter *i) 414 { 415 size_t copied = 0; 416 size_t total_copied = 0; 417 int pg = 0; 418 int offset = pos & (PAGE_SIZE - 1); 419 420 while (write_bytes > 0) { 421 size_t count = min_t(size_t, 422 PAGE_SIZE - offset, write_bytes); 423 struct page *page = prepared_pages[pg]; 424 /* 425 * Copy data from userspace to the current page 426 */ 427 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 428 429 /* Flush processor's dcache for this page */ 430 flush_dcache_page(page); 431 432 /* 433 * if we get a partial write, we can end up with 434 * partially up to date pages. These add 435 * a lot of complexity, so make sure they don't 436 * happen by forcing this copy to be retried. 437 * 438 * The rest of the btrfs_file_write code will fall 439 * back to page at a time copies after we return 0. 440 */ 441 if (!PageUptodate(page) && copied < count) 442 copied = 0; 443 444 iov_iter_advance(i, copied); 445 write_bytes -= copied; 446 total_copied += copied; 447 448 /* Return to btrfs_file_write_iter to fault page */ 449 if (unlikely(copied == 0)) 450 break; 451 452 if (copied < PAGE_SIZE - offset) { 453 offset += copied; 454 } else { 455 pg++; 456 offset = 0; 457 } 458 } 459 return total_copied; 460 } 461 462 /* 463 * unlocks pages after btrfs_file_write is done with them 464 */ 465 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 466 { 467 size_t i; 468 for (i = 0; i < num_pages; i++) { 469 /* page checked is some magic around finding pages that 470 * have been modified without going through btrfs_set_page_dirty 471 * clear it here. There should be no need to mark the pages 472 * accessed as prepare_pages should have marked them accessed 473 * in prepare_pages via find_or_create_page() 474 */ 475 ClearPageChecked(pages[i]); 476 unlock_page(pages[i]); 477 put_page(pages[i]); 478 } 479 } 480 481 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 482 const u64 start, 483 const u64 len, 484 struct extent_state **cached_state) 485 { 486 u64 search_start = start; 487 const u64 end = start + len - 1; 488 489 while (search_start < end) { 490 const u64 search_len = end - search_start + 1; 491 struct extent_map *em; 492 u64 em_len; 493 int ret = 0; 494 495 em = btrfs_get_extent(inode, NULL, 0, search_start, 496 search_len, 0); 497 if (IS_ERR(em)) 498 return PTR_ERR(em); 499 500 if (em->block_start != EXTENT_MAP_HOLE) 501 goto next; 502 503 em_len = em->len; 504 if (em->start < search_start) 505 em_len -= search_start - em->start; 506 if (em_len > search_len) 507 em_len = search_len; 508 509 ret = set_extent_bit(&inode->io_tree, search_start, 510 search_start + em_len - 1, 511 EXTENT_DELALLOC_NEW, 512 NULL, cached_state, GFP_NOFS); 513 next: 514 search_start = extent_map_end(em); 515 free_extent_map(em); 516 if (ret) 517 return ret; 518 } 519 return 0; 520 } 521 522 /* 523 * after copy_from_user, pages need to be dirtied and we need to make 524 * sure holes are created between the current EOF and the start of 525 * any next extents (if required). 526 * 527 * this also makes the decision about creating an inline extent vs 528 * doing real data extents, marking pages dirty and delalloc as required. 529 */ 530 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 531 size_t num_pages, loff_t pos, size_t write_bytes, 532 struct extent_state **cached) 533 { 534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 535 int err = 0; 536 int i; 537 u64 num_bytes; 538 u64 start_pos; 539 u64 end_of_last_block; 540 u64 end_pos = pos + write_bytes; 541 loff_t isize = i_size_read(inode); 542 unsigned int extra_bits = 0; 543 544 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 545 num_bytes = round_up(write_bytes + pos - start_pos, 546 fs_info->sectorsize); 547 548 end_of_last_block = start_pos + num_bytes - 1; 549 550 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 551 if (start_pos >= isize && 552 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 553 /* 554 * There can't be any extents following eof in this case 555 * so just set the delalloc new bit for the range 556 * directly. 557 */ 558 extra_bits |= EXTENT_DELALLOC_NEW; 559 } else { 560 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 561 start_pos, 562 num_bytes, cached); 563 if (err) 564 return err; 565 } 566 } 567 568 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 569 extra_bits, cached, 0); 570 if (err) 571 return err; 572 573 for (i = 0; i < num_pages; i++) { 574 struct page *p = pages[i]; 575 SetPageUptodate(p); 576 ClearPageChecked(p); 577 set_page_dirty(p); 578 } 579 580 /* 581 * we've only changed i_size in ram, and we haven't updated 582 * the disk i_size. There is no need to log the inode 583 * at this time. 584 */ 585 if (end_pos > isize) 586 i_size_write(inode, end_pos); 587 return 0; 588 } 589 590 /* 591 * this drops all the extents in the cache that intersect the range 592 * [start, end]. Existing extents are split as required. 593 */ 594 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 595 int skip_pinned) 596 { 597 struct extent_map *em; 598 struct extent_map *split = NULL; 599 struct extent_map *split2 = NULL; 600 struct extent_map_tree *em_tree = &inode->extent_tree; 601 u64 len = end - start + 1; 602 u64 gen; 603 int ret; 604 int testend = 1; 605 unsigned long flags; 606 int compressed = 0; 607 bool modified; 608 609 WARN_ON(end < start); 610 if (end == (u64)-1) { 611 len = (u64)-1; 612 testend = 0; 613 } 614 while (1) { 615 int no_splits = 0; 616 617 modified = false; 618 if (!split) 619 split = alloc_extent_map(); 620 if (!split2) 621 split2 = alloc_extent_map(); 622 if (!split || !split2) 623 no_splits = 1; 624 625 write_lock(&em_tree->lock); 626 em = lookup_extent_mapping(em_tree, start, len); 627 if (!em) { 628 write_unlock(&em_tree->lock); 629 break; 630 } 631 flags = em->flags; 632 gen = em->generation; 633 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 634 if (testend && em->start + em->len >= start + len) { 635 free_extent_map(em); 636 write_unlock(&em_tree->lock); 637 break; 638 } 639 start = em->start + em->len; 640 if (testend) 641 len = start + len - (em->start + em->len); 642 free_extent_map(em); 643 write_unlock(&em_tree->lock); 644 continue; 645 } 646 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 647 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 648 clear_bit(EXTENT_FLAG_LOGGING, &flags); 649 modified = !list_empty(&em->list); 650 if (no_splits) 651 goto next; 652 653 if (em->start < start) { 654 split->start = em->start; 655 split->len = start - em->start; 656 657 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 658 split->orig_start = em->orig_start; 659 split->block_start = em->block_start; 660 661 if (compressed) 662 split->block_len = em->block_len; 663 else 664 split->block_len = split->len; 665 split->orig_block_len = max(split->block_len, 666 em->orig_block_len); 667 split->ram_bytes = em->ram_bytes; 668 } else { 669 split->orig_start = split->start; 670 split->block_len = 0; 671 split->block_start = em->block_start; 672 split->orig_block_len = 0; 673 split->ram_bytes = split->len; 674 } 675 676 split->generation = gen; 677 split->bdev = em->bdev; 678 split->flags = flags; 679 split->compress_type = em->compress_type; 680 replace_extent_mapping(em_tree, em, split, modified); 681 free_extent_map(split); 682 split = split2; 683 split2 = NULL; 684 } 685 if (testend && em->start + em->len > start + len) { 686 u64 diff = start + len - em->start; 687 688 split->start = start + len; 689 split->len = em->start + em->len - (start + len); 690 split->bdev = em->bdev; 691 split->flags = flags; 692 split->compress_type = em->compress_type; 693 split->generation = gen; 694 695 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 696 split->orig_block_len = max(em->block_len, 697 em->orig_block_len); 698 699 split->ram_bytes = em->ram_bytes; 700 if (compressed) { 701 split->block_len = em->block_len; 702 split->block_start = em->block_start; 703 split->orig_start = em->orig_start; 704 } else { 705 split->block_len = split->len; 706 split->block_start = em->block_start 707 + diff; 708 split->orig_start = em->orig_start; 709 } 710 } else { 711 split->ram_bytes = split->len; 712 split->orig_start = split->start; 713 split->block_len = 0; 714 split->block_start = em->block_start; 715 split->orig_block_len = 0; 716 } 717 718 if (extent_map_in_tree(em)) { 719 replace_extent_mapping(em_tree, em, split, 720 modified); 721 } else { 722 ret = add_extent_mapping(em_tree, split, 723 modified); 724 ASSERT(ret == 0); /* Logic error */ 725 } 726 free_extent_map(split); 727 split = NULL; 728 } 729 next: 730 if (extent_map_in_tree(em)) 731 remove_extent_mapping(em_tree, em); 732 write_unlock(&em_tree->lock); 733 734 /* once for us */ 735 free_extent_map(em); 736 /* once for the tree*/ 737 free_extent_map(em); 738 } 739 if (split) 740 free_extent_map(split); 741 if (split2) 742 free_extent_map(split2); 743 } 744 745 /* 746 * this is very complex, but the basic idea is to drop all extents 747 * in the range start - end. hint_block is filled in with a block number 748 * that would be a good hint to the block allocator for this file. 749 * 750 * If an extent intersects the range but is not entirely inside the range 751 * it is either truncated or split. Anything entirely inside the range 752 * is deleted from the tree. 753 */ 754 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 755 struct btrfs_root *root, struct inode *inode, 756 struct btrfs_path *path, u64 start, u64 end, 757 u64 *drop_end, int drop_cache, 758 int replace_extent, 759 u32 extent_item_size, 760 int *key_inserted) 761 { 762 struct btrfs_fs_info *fs_info = root->fs_info; 763 struct extent_buffer *leaf; 764 struct btrfs_file_extent_item *fi; 765 struct btrfs_key key; 766 struct btrfs_key new_key; 767 u64 ino = btrfs_ino(BTRFS_I(inode)); 768 u64 search_start = start; 769 u64 disk_bytenr = 0; 770 u64 num_bytes = 0; 771 u64 extent_offset = 0; 772 u64 extent_end = 0; 773 u64 last_end = start; 774 int del_nr = 0; 775 int del_slot = 0; 776 int extent_type; 777 int recow; 778 int ret; 779 int modify_tree = -1; 780 int update_refs; 781 int found = 0; 782 int leafs_visited = 0; 783 784 if (drop_cache) 785 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 786 787 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 788 modify_tree = 0; 789 790 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 791 root == fs_info->tree_root); 792 while (1) { 793 recow = 0; 794 ret = btrfs_lookup_file_extent(trans, root, path, ino, 795 search_start, modify_tree); 796 if (ret < 0) 797 break; 798 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 799 leaf = path->nodes[0]; 800 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 801 if (key.objectid == ino && 802 key.type == BTRFS_EXTENT_DATA_KEY) 803 path->slots[0]--; 804 } 805 ret = 0; 806 leafs_visited++; 807 next_slot: 808 leaf = path->nodes[0]; 809 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 810 BUG_ON(del_nr > 0); 811 ret = btrfs_next_leaf(root, path); 812 if (ret < 0) 813 break; 814 if (ret > 0) { 815 ret = 0; 816 break; 817 } 818 leafs_visited++; 819 leaf = path->nodes[0]; 820 recow = 1; 821 } 822 823 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 824 825 if (key.objectid > ino) 826 break; 827 if (WARN_ON_ONCE(key.objectid < ino) || 828 key.type < BTRFS_EXTENT_DATA_KEY) { 829 ASSERT(del_nr == 0); 830 path->slots[0]++; 831 goto next_slot; 832 } 833 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 834 break; 835 836 fi = btrfs_item_ptr(leaf, path->slots[0], 837 struct btrfs_file_extent_item); 838 extent_type = btrfs_file_extent_type(leaf, fi); 839 840 if (extent_type == BTRFS_FILE_EXTENT_REG || 841 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 842 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 843 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 844 extent_offset = btrfs_file_extent_offset(leaf, fi); 845 extent_end = key.offset + 846 btrfs_file_extent_num_bytes(leaf, fi); 847 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 848 extent_end = key.offset + 849 btrfs_file_extent_inline_len(leaf, 850 path->slots[0], fi); 851 } else { 852 /* can't happen */ 853 BUG(); 854 } 855 856 /* 857 * Don't skip extent items representing 0 byte lengths. They 858 * used to be created (bug) if while punching holes we hit 859 * -ENOSPC condition. So if we find one here, just ensure we 860 * delete it, otherwise we would insert a new file extent item 861 * with the same key (offset) as that 0 bytes length file 862 * extent item in the call to setup_items_for_insert() later 863 * in this function. 864 */ 865 if (extent_end == key.offset && extent_end >= search_start) { 866 last_end = extent_end; 867 goto delete_extent_item; 868 } 869 870 if (extent_end <= search_start) { 871 path->slots[0]++; 872 goto next_slot; 873 } 874 875 found = 1; 876 search_start = max(key.offset, start); 877 if (recow || !modify_tree) { 878 modify_tree = -1; 879 btrfs_release_path(path); 880 continue; 881 } 882 883 /* 884 * | - range to drop - | 885 * | -------- extent -------- | 886 */ 887 if (start > key.offset && end < extent_end) { 888 BUG_ON(del_nr > 0); 889 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 890 ret = -EOPNOTSUPP; 891 break; 892 } 893 894 memcpy(&new_key, &key, sizeof(new_key)); 895 new_key.offset = start; 896 ret = btrfs_duplicate_item(trans, root, path, 897 &new_key); 898 if (ret == -EAGAIN) { 899 btrfs_release_path(path); 900 continue; 901 } 902 if (ret < 0) 903 break; 904 905 leaf = path->nodes[0]; 906 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 907 struct btrfs_file_extent_item); 908 btrfs_set_file_extent_num_bytes(leaf, fi, 909 start - key.offset); 910 911 fi = btrfs_item_ptr(leaf, path->slots[0], 912 struct btrfs_file_extent_item); 913 914 extent_offset += start - key.offset; 915 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 916 btrfs_set_file_extent_num_bytes(leaf, fi, 917 extent_end - start); 918 btrfs_mark_buffer_dirty(leaf); 919 920 if (update_refs && disk_bytenr > 0) { 921 ret = btrfs_inc_extent_ref(trans, root, 922 disk_bytenr, num_bytes, 0, 923 root->root_key.objectid, 924 new_key.objectid, 925 start - extent_offset); 926 BUG_ON(ret); /* -ENOMEM */ 927 } 928 key.offset = start; 929 } 930 /* 931 * From here on out we will have actually dropped something, so 932 * last_end can be updated. 933 */ 934 last_end = extent_end; 935 936 /* 937 * | ---- range to drop ----- | 938 * | -------- extent -------- | 939 */ 940 if (start <= key.offset && end < extent_end) { 941 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 942 ret = -EOPNOTSUPP; 943 break; 944 } 945 946 memcpy(&new_key, &key, sizeof(new_key)); 947 new_key.offset = end; 948 btrfs_set_item_key_safe(fs_info, path, &new_key); 949 950 extent_offset += end - key.offset; 951 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 952 btrfs_set_file_extent_num_bytes(leaf, fi, 953 extent_end - end); 954 btrfs_mark_buffer_dirty(leaf); 955 if (update_refs && disk_bytenr > 0) 956 inode_sub_bytes(inode, end - key.offset); 957 break; 958 } 959 960 search_start = extent_end; 961 /* 962 * | ---- range to drop ----- | 963 * | -------- extent -------- | 964 */ 965 if (start > key.offset && end >= extent_end) { 966 BUG_ON(del_nr > 0); 967 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 968 ret = -EOPNOTSUPP; 969 break; 970 } 971 972 btrfs_set_file_extent_num_bytes(leaf, fi, 973 start - key.offset); 974 btrfs_mark_buffer_dirty(leaf); 975 if (update_refs && disk_bytenr > 0) 976 inode_sub_bytes(inode, extent_end - start); 977 if (end == extent_end) 978 break; 979 980 path->slots[0]++; 981 goto next_slot; 982 } 983 984 /* 985 * | ---- range to drop ----- | 986 * | ------ extent ------ | 987 */ 988 if (start <= key.offset && end >= extent_end) { 989 delete_extent_item: 990 if (del_nr == 0) { 991 del_slot = path->slots[0]; 992 del_nr = 1; 993 } else { 994 BUG_ON(del_slot + del_nr != path->slots[0]); 995 del_nr++; 996 } 997 998 if (update_refs && 999 extent_type == BTRFS_FILE_EXTENT_INLINE) { 1000 inode_sub_bytes(inode, 1001 extent_end - key.offset); 1002 extent_end = ALIGN(extent_end, 1003 fs_info->sectorsize); 1004 } else if (update_refs && disk_bytenr > 0) { 1005 ret = btrfs_free_extent(trans, root, 1006 disk_bytenr, num_bytes, 0, 1007 root->root_key.objectid, 1008 key.objectid, key.offset - 1009 extent_offset); 1010 BUG_ON(ret); /* -ENOMEM */ 1011 inode_sub_bytes(inode, 1012 extent_end - key.offset); 1013 } 1014 1015 if (end == extent_end) 1016 break; 1017 1018 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1019 path->slots[0]++; 1020 goto next_slot; 1021 } 1022 1023 ret = btrfs_del_items(trans, root, path, del_slot, 1024 del_nr); 1025 if (ret) { 1026 btrfs_abort_transaction(trans, ret); 1027 break; 1028 } 1029 1030 del_nr = 0; 1031 del_slot = 0; 1032 1033 btrfs_release_path(path); 1034 continue; 1035 } 1036 1037 BUG_ON(1); 1038 } 1039 1040 if (!ret && del_nr > 0) { 1041 /* 1042 * Set path->slots[0] to first slot, so that after the delete 1043 * if items are move off from our leaf to its immediate left or 1044 * right neighbor leafs, we end up with a correct and adjusted 1045 * path->slots[0] for our insertion (if replace_extent != 0). 1046 */ 1047 path->slots[0] = del_slot; 1048 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1049 if (ret) 1050 btrfs_abort_transaction(trans, ret); 1051 } 1052 1053 leaf = path->nodes[0]; 1054 /* 1055 * If btrfs_del_items() was called, it might have deleted a leaf, in 1056 * which case it unlocked our path, so check path->locks[0] matches a 1057 * write lock. 1058 */ 1059 if (!ret && replace_extent && leafs_visited == 1 && 1060 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1061 path->locks[0] == BTRFS_WRITE_LOCK) && 1062 btrfs_leaf_free_space(fs_info, leaf) >= 1063 sizeof(struct btrfs_item) + extent_item_size) { 1064 1065 key.objectid = ino; 1066 key.type = BTRFS_EXTENT_DATA_KEY; 1067 key.offset = start; 1068 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1069 struct btrfs_key slot_key; 1070 1071 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1072 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1073 path->slots[0]++; 1074 } 1075 setup_items_for_insert(root, path, &key, 1076 &extent_item_size, 1077 extent_item_size, 1078 sizeof(struct btrfs_item) + 1079 extent_item_size, 1); 1080 *key_inserted = 1; 1081 } 1082 1083 if (!replace_extent || !(*key_inserted)) 1084 btrfs_release_path(path); 1085 if (drop_end) 1086 *drop_end = found ? min(end, last_end) : end; 1087 return ret; 1088 } 1089 1090 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1091 struct btrfs_root *root, struct inode *inode, u64 start, 1092 u64 end, int drop_cache) 1093 { 1094 struct btrfs_path *path; 1095 int ret; 1096 1097 path = btrfs_alloc_path(); 1098 if (!path) 1099 return -ENOMEM; 1100 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1101 drop_cache, 0, 0, NULL); 1102 btrfs_free_path(path); 1103 return ret; 1104 } 1105 1106 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1107 u64 objectid, u64 bytenr, u64 orig_offset, 1108 u64 *start, u64 *end) 1109 { 1110 struct btrfs_file_extent_item *fi; 1111 struct btrfs_key key; 1112 u64 extent_end; 1113 1114 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1115 return 0; 1116 1117 btrfs_item_key_to_cpu(leaf, &key, slot); 1118 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1119 return 0; 1120 1121 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1122 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1123 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1124 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1125 btrfs_file_extent_compression(leaf, fi) || 1126 btrfs_file_extent_encryption(leaf, fi) || 1127 btrfs_file_extent_other_encoding(leaf, fi)) 1128 return 0; 1129 1130 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1131 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1132 return 0; 1133 1134 *start = key.offset; 1135 *end = extent_end; 1136 return 1; 1137 } 1138 1139 /* 1140 * Mark extent in the range start - end as written. 1141 * 1142 * This changes extent type from 'pre-allocated' to 'regular'. If only 1143 * part of extent is marked as written, the extent will be split into 1144 * two or three. 1145 */ 1146 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1147 struct btrfs_inode *inode, u64 start, u64 end) 1148 { 1149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1150 struct btrfs_root *root = inode->root; 1151 struct extent_buffer *leaf; 1152 struct btrfs_path *path; 1153 struct btrfs_file_extent_item *fi; 1154 struct btrfs_key key; 1155 struct btrfs_key new_key; 1156 u64 bytenr; 1157 u64 num_bytes; 1158 u64 extent_end; 1159 u64 orig_offset; 1160 u64 other_start; 1161 u64 other_end; 1162 u64 split; 1163 int del_nr = 0; 1164 int del_slot = 0; 1165 int recow; 1166 int ret; 1167 u64 ino = btrfs_ino(inode); 1168 1169 path = btrfs_alloc_path(); 1170 if (!path) 1171 return -ENOMEM; 1172 again: 1173 recow = 0; 1174 split = start; 1175 key.objectid = ino; 1176 key.type = BTRFS_EXTENT_DATA_KEY; 1177 key.offset = split; 1178 1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1180 if (ret < 0) 1181 goto out; 1182 if (ret > 0 && path->slots[0] > 0) 1183 path->slots[0]--; 1184 1185 leaf = path->nodes[0]; 1186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1187 if (key.objectid != ino || 1188 key.type != BTRFS_EXTENT_DATA_KEY) { 1189 ret = -EINVAL; 1190 btrfs_abort_transaction(trans, ret); 1191 goto out; 1192 } 1193 fi = btrfs_item_ptr(leaf, path->slots[0], 1194 struct btrfs_file_extent_item); 1195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1196 ret = -EINVAL; 1197 btrfs_abort_transaction(trans, ret); 1198 goto out; 1199 } 1200 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1201 if (key.offset > start || extent_end < end) { 1202 ret = -EINVAL; 1203 btrfs_abort_transaction(trans, ret); 1204 goto out; 1205 } 1206 1207 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1208 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1209 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1210 memcpy(&new_key, &key, sizeof(new_key)); 1211 1212 if (start == key.offset && end < extent_end) { 1213 other_start = 0; 1214 other_end = start; 1215 if (extent_mergeable(leaf, path->slots[0] - 1, 1216 ino, bytenr, orig_offset, 1217 &other_start, &other_end)) { 1218 new_key.offset = end; 1219 btrfs_set_item_key_safe(fs_info, path, &new_key); 1220 fi = btrfs_item_ptr(leaf, path->slots[0], 1221 struct btrfs_file_extent_item); 1222 btrfs_set_file_extent_generation(leaf, fi, 1223 trans->transid); 1224 btrfs_set_file_extent_num_bytes(leaf, fi, 1225 extent_end - end); 1226 btrfs_set_file_extent_offset(leaf, fi, 1227 end - orig_offset); 1228 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1229 struct btrfs_file_extent_item); 1230 btrfs_set_file_extent_generation(leaf, fi, 1231 trans->transid); 1232 btrfs_set_file_extent_num_bytes(leaf, fi, 1233 end - other_start); 1234 btrfs_mark_buffer_dirty(leaf); 1235 goto out; 1236 } 1237 } 1238 1239 if (start > key.offset && end == extent_end) { 1240 other_start = end; 1241 other_end = 0; 1242 if (extent_mergeable(leaf, path->slots[0] + 1, 1243 ino, bytenr, orig_offset, 1244 &other_start, &other_end)) { 1245 fi = btrfs_item_ptr(leaf, path->slots[0], 1246 struct btrfs_file_extent_item); 1247 btrfs_set_file_extent_num_bytes(leaf, fi, 1248 start - key.offset); 1249 btrfs_set_file_extent_generation(leaf, fi, 1250 trans->transid); 1251 path->slots[0]++; 1252 new_key.offset = start; 1253 btrfs_set_item_key_safe(fs_info, path, &new_key); 1254 1255 fi = btrfs_item_ptr(leaf, path->slots[0], 1256 struct btrfs_file_extent_item); 1257 btrfs_set_file_extent_generation(leaf, fi, 1258 trans->transid); 1259 btrfs_set_file_extent_num_bytes(leaf, fi, 1260 other_end - start); 1261 btrfs_set_file_extent_offset(leaf, fi, 1262 start - orig_offset); 1263 btrfs_mark_buffer_dirty(leaf); 1264 goto out; 1265 } 1266 } 1267 1268 while (start > key.offset || end < extent_end) { 1269 if (key.offset == start) 1270 split = end; 1271 1272 new_key.offset = split; 1273 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1274 if (ret == -EAGAIN) { 1275 btrfs_release_path(path); 1276 goto again; 1277 } 1278 if (ret < 0) { 1279 btrfs_abort_transaction(trans, ret); 1280 goto out; 1281 } 1282 1283 leaf = path->nodes[0]; 1284 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1285 struct btrfs_file_extent_item); 1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1287 btrfs_set_file_extent_num_bytes(leaf, fi, 1288 split - key.offset); 1289 1290 fi = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_file_extent_item); 1292 1293 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1294 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1295 btrfs_set_file_extent_num_bytes(leaf, fi, 1296 extent_end - split); 1297 btrfs_mark_buffer_dirty(leaf); 1298 1299 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 1300 0, root->root_key.objectid, 1301 ino, orig_offset); 1302 if (ret) { 1303 btrfs_abort_transaction(trans, ret); 1304 goto out; 1305 } 1306 1307 if (split == start) { 1308 key.offset = start; 1309 } else { 1310 if (start != key.offset) { 1311 ret = -EINVAL; 1312 btrfs_abort_transaction(trans, ret); 1313 goto out; 1314 } 1315 path->slots[0]--; 1316 extent_end = end; 1317 } 1318 recow = 1; 1319 } 1320 1321 other_start = end; 1322 other_end = 0; 1323 if (extent_mergeable(leaf, path->slots[0] + 1, 1324 ino, bytenr, orig_offset, 1325 &other_start, &other_end)) { 1326 if (recow) { 1327 btrfs_release_path(path); 1328 goto again; 1329 } 1330 extent_end = other_end; 1331 del_slot = path->slots[0] + 1; 1332 del_nr++; 1333 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1334 0, root->root_key.objectid, 1335 ino, orig_offset); 1336 if (ret) { 1337 btrfs_abort_transaction(trans, ret); 1338 goto out; 1339 } 1340 } 1341 other_start = 0; 1342 other_end = start; 1343 if (extent_mergeable(leaf, path->slots[0] - 1, 1344 ino, bytenr, orig_offset, 1345 &other_start, &other_end)) { 1346 if (recow) { 1347 btrfs_release_path(path); 1348 goto again; 1349 } 1350 key.offset = other_start; 1351 del_slot = path->slots[0]; 1352 del_nr++; 1353 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1354 0, root->root_key.objectid, 1355 ino, orig_offset); 1356 if (ret) { 1357 btrfs_abort_transaction(trans, ret); 1358 goto out; 1359 } 1360 } 1361 if (del_nr == 0) { 1362 fi = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_file_extent_item); 1364 btrfs_set_file_extent_type(leaf, fi, 1365 BTRFS_FILE_EXTENT_REG); 1366 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1367 btrfs_mark_buffer_dirty(leaf); 1368 } else { 1369 fi = btrfs_item_ptr(leaf, del_slot - 1, 1370 struct btrfs_file_extent_item); 1371 btrfs_set_file_extent_type(leaf, fi, 1372 BTRFS_FILE_EXTENT_REG); 1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1374 btrfs_set_file_extent_num_bytes(leaf, fi, 1375 extent_end - key.offset); 1376 btrfs_mark_buffer_dirty(leaf); 1377 1378 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1379 if (ret < 0) { 1380 btrfs_abort_transaction(trans, ret); 1381 goto out; 1382 } 1383 } 1384 out: 1385 btrfs_free_path(path); 1386 return 0; 1387 } 1388 1389 /* 1390 * on error we return an unlocked page and the error value 1391 * on success we return a locked page and 0 1392 */ 1393 static int prepare_uptodate_page(struct inode *inode, 1394 struct page *page, u64 pos, 1395 bool force_uptodate) 1396 { 1397 int ret = 0; 1398 1399 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1400 !PageUptodate(page)) { 1401 ret = btrfs_readpage(NULL, page); 1402 if (ret) 1403 return ret; 1404 lock_page(page); 1405 if (!PageUptodate(page)) { 1406 unlock_page(page); 1407 return -EIO; 1408 } 1409 if (page->mapping != inode->i_mapping) { 1410 unlock_page(page); 1411 return -EAGAIN; 1412 } 1413 } 1414 return 0; 1415 } 1416 1417 /* 1418 * this just gets pages into the page cache and locks them down. 1419 */ 1420 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1421 size_t num_pages, loff_t pos, 1422 size_t write_bytes, bool force_uptodate) 1423 { 1424 int i; 1425 unsigned long index = pos >> PAGE_SHIFT; 1426 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1427 int err = 0; 1428 int faili; 1429 1430 for (i = 0; i < num_pages; i++) { 1431 again: 1432 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1433 mask | __GFP_WRITE); 1434 if (!pages[i]) { 1435 faili = i - 1; 1436 err = -ENOMEM; 1437 goto fail; 1438 } 1439 1440 if (i == 0) 1441 err = prepare_uptodate_page(inode, pages[i], pos, 1442 force_uptodate); 1443 if (!err && i == num_pages - 1) 1444 err = prepare_uptodate_page(inode, pages[i], 1445 pos + write_bytes, false); 1446 if (err) { 1447 put_page(pages[i]); 1448 if (err == -EAGAIN) { 1449 err = 0; 1450 goto again; 1451 } 1452 faili = i - 1; 1453 goto fail; 1454 } 1455 wait_on_page_writeback(pages[i]); 1456 } 1457 1458 return 0; 1459 fail: 1460 while (faili >= 0) { 1461 unlock_page(pages[faili]); 1462 put_page(pages[faili]); 1463 faili--; 1464 } 1465 return err; 1466 1467 } 1468 1469 /* 1470 * This function locks the extent and properly waits for data=ordered extents 1471 * to finish before allowing the pages to be modified if need. 1472 * 1473 * The return value: 1474 * 1 - the extent is locked 1475 * 0 - the extent is not locked, and everything is OK 1476 * -EAGAIN - need re-prepare the pages 1477 * the other < 0 number - Something wrong happens 1478 */ 1479 static noinline int 1480 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1481 size_t num_pages, loff_t pos, 1482 size_t write_bytes, 1483 u64 *lockstart, u64 *lockend, 1484 struct extent_state **cached_state) 1485 { 1486 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1487 u64 start_pos; 1488 u64 last_pos; 1489 int i; 1490 int ret = 0; 1491 1492 start_pos = round_down(pos, fs_info->sectorsize); 1493 last_pos = start_pos 1494 + round_up(pos + write_bytes - start_pos, 1495 fs_info->sectorsize) - 1; 1496 1497 if (start_pos < inode->vfs_inode.i_size) { 1498 struct btrfs_ordered_extent *ordered; 1499 1500 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1501 cached_state); 1502 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1503 last_pos - start_pos + 1); 1504 if (ordered && 1505 ordered->file_offset + ordered->len > start_pos && 1506 ordered->file_offset <= last_pos) { 1507 unlock_extent_cached(&inode->io_tree, start_pos, 1508 last_pos, cached_state); 1509 for (i = 0; i < num_pages; i++) { 1510 unlock_page(pages[i]); 1511 put_page(pages[i]); 1512 } 1513 btrfs_start_ordered_extent(&inode->vfs_inode, 1514 ordered, 1); 1515 btrfs_put_ordered_extent(ordered); 1516 return -EAGAIN; 1517 } 1518 if (ordered) 1519 btrfs_put_ordered_extent(ordered); 1520 clear_extent_bit(&inode->io_tree, start_pos, last_pos, 1521 EXTENT_DIRTY | EXTENT_DELALLOC | 1522 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1523 0, 0, cached_state); 1524 *lockstart = start_pos; 1525 *lockend = last_pos; 1526 ret = 1; 1527 } 1528 1529 for (i = 0; i < num_pages; i++) { 1530 if (clear_page_dirty_for_io(pages[i])) 1531 account_page_redirty(pages[i]); 1532 set_page_extent_mapped(pages[i]); 1533 WARN_ON(!PageLocked(pages[i])); 1534 } 1535 1536 return ret; 1537 } 1538 1539 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1540 size_t *write_bytes) 1541 { 1542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1543 struct btrfs_root *root = inode->root; 1544 struct btrfs_ordered_extent *ordered; 1545 u64 lockstart, lockend; 1546 u64 num_bytes; 1547 int ret; 1548 1549 ret = btrfs_start_write_no_snapshotting(root); 1550 if (!ret) 1551 return -ENOSPC; 1552 1553 lockstart = round_down(pos, fs_info->sectorsize); 1554 lockend = round_up(pos + *write_bytes, 1555 fs_info->sectorsize) - 1; 1556 1557 while (1) { 1558 lock_extent(&inode->io_tree, lockstart, lockend); 1559 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1560 lockend - lockstart + 1); 1561 if (!ordered) { 1562 break; 1563 } 1564 unlock_extent(&inode->io_tree, lockstart, lockend); 1565 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1566 btrfs_put_ordered_extent(ordered); 1567 } 1568 1569 num_bytes = lockend - lockstart + 1; 1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1571 NULL, NULL, NULL); 1572 if (ret <= 0) { 1573 ret = 0; 1574 btrfs_end_write_no_snapshotting(root); 1575 } else { 1576 *write_bytes = min_t(size_t, *write_bytes , 1577 num_bytes - pos + lockstart); 1578 } 1579 1580 unlock_extent(&inode->io_tree, lockstart, lockend); 1581 1582 return ret; 1583 } 1584 1585 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1586 struct iov_iter *i, 1587 loff_t pos) 1588 { 1589 struct inode *inode = file_inode(file); 1590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1591 struct btrfs_root *root = BTRFS_I(inode)->root; 1592 struct page **pages = NULL; 1593 struct extent_state *cached_state = NULL; 1594 struct extent_changeset *data_reserved = NULL; 1595 u64 release_bytes = 0; 1596 u64 lockstart; 1597 u64 lockend; 1598 size_t num_written = 0; 1599 int nrptrs; 1600 int ret = 0; 1601 bool only_release_metadata = false; 1602 bool force_page_uptodate = false; 1603 1604 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1605 PAGE_SIZE / (sizeof(struct page *))); 1606 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1607 nrptrs = max(nrptrs, 8); 1608 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1609 if (!pages) 1610 return -ENOMEM; 1611 1612 while (iov_iter_count(i) > 0) { 1613 size_t offset = pos & (PAGE_SIZE - 1); 1614 size_t sector_offset; 1615 size_t write_bytes = min(iov_iter_count(i), 1616 nrptrs * (size_t)PAGE_SIZE - 1617 offset); 1618 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1619 PAGE_SIZE); 1620 size_t reserve_bytes; 1621 size_t dirty_pages; 1622 size_t copied; 1623 size_t dirty_sectors; 1624 size_t num_sectors; 1625 int extents_locked; 1626 1627 WARN_ON(num_pages > nrptrs); 1628 1629 /* 1630 * Fault pages before locking them in prepare_pages 1631 * to avoid recursive lock 1632 */ 1633 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1634 ret = -EFAULT; 1635 break; 1636 } 1637 1638 sector_offset = pos & (fs_info->sectorsize - 1); 1639 reserve_bytes = round_up(write_bytes + sector_offset, 1640 fs_info->sectorsize); 1641 1642 extent_changeset_release(data_reserved); 1643 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1644 write_bytes); 1645 if (ret < 0) { 1646 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1647 BTRFS_INODE_PREALLOC)) && 1648 check_can_nocow(BTRFS_I(inode), pos, 1649 &write_bytes) > 0) { 1650 /* 1651 * For nodata cow case, no need to reserve 1652 * data space. 1653 */ 1654 only_release_metadata = true; 1655 /* 1656 * our prealloc extent may be smaller than 1657 * write_bytes, so scale down. 1658 */ 1659 num_pages = DIV_ROUND_UP(write_bytes + offset, 1660 PAGE_SIZE); 1661 reserve_bytes = round_up(write_bytes + 1662 sector_offset, 1663 fs_info->sectorsize); 1664 } else { 1665 break; 1666 } 1667 } 1668 1669 WARN_ON(reserve_bytes == 0); 1670 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1671 reserve_bytes); 1672 if (ret) { 1673 if (!only_release_metadata) 1674 btrfs_free_reserved_data_space(inode, 1675 data_reserved, pos, 1676 write_bytes); 1677 else 1678 btrfs_end_write_no_snapshotting(root); 1679 break; 1680 } 1681 1682 release_bytes = reserve_bytes; 1683 again: 1684 /* 1685 * This is going to setup the pages array with the number of 1686 * pages we want, so we don't really need to worry about the 1687 * contents of pages from loop to loop 1688 */ 1689 ret = prepare_pages(inode, pages, num_pages, 1690 pos, write_bytes, 1691 force_page_uptodate); 1692 if (ret) { 1693 btrfs_delalloc_release_extents(BTRFS_I(inode), 1694 reserve_bytes); 1695 break; 1696 } 1697 1698 extents_locked = lock_and_cleanup_extent_if_need( 1699 BTRFS_I(inode), pages, 1700 num_pages, pos, write_bytes, &lockstart, 1701 &lockend, &cached_state); 1702 if (extents_locked < 0) { 1703 if (extents_locked == -EAGAIN) 1704 goto again; 1705 btrfs_delalloc_release_extents(BTRFS_I(inode), 1706 reserve_bytes); 1707 ret = extents_locked; 1708 break; 1709 } 1710 1711 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1712 1713 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1714 dirty_sectors = round_up(copied + sector_offset, 1715 fs_info->sectorsize); 1716 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1717 1718 /* 1719 * if we have trouble faulting in the pages, fall 1720 * back to one page at a time 1721 */ 1722 if (copied < write_bytes) 1723 nrptrs = 1; 1724 1725 if (copied == 0) { 1726 force_page_uptodate = true; 1727 dirty_sectors = 0; 1728 dirty_pages = 0; 1729 } else { 1730 force_page_uptodate = false; 1731 dirty_pages = DIV_ROUND_UP(copied + offset, 1732 PAGE_SIZE); 1733 } 1734 1735 if (num_sectors > dirty_sectors) { 1736 /* release everything except the sectors we dirtied */ 1737 release_bytes -= dirty_sectors << 1738 fs_info->sb->s_blocksize_bits; 1739 if (only_release_metadata) { 1740 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1741 release_bytes); 1742 } else { 1743 u64 __pos; 1744 1745 __pos = round_down(pos, 1746 fs_info->sectorsize) + 1747 (dirty_pages << PAGE_SHIFT); 1748 btrfs_delalloc_release_space(inode, 1749 data_reserved, __pos, 1750 release_bytes); 1751 } 1752 } 1753 1754 release_bytes = round_up(copied + sector_offset, 1755 fs_info->sectorsize); 1756 1757 if (copied > 0) 1758 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1759 pos, copied, &cached_state); 1760 if (extents_locked) 1761 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1762 lockstart, lockend, &cached_state); 1763 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1764 if (ret) { 1765 btrfs_drop_pages(pages, num_pages); 1766 break; 1767 } 1768 1769 release_bytes = 0; 1770 if (only_release_metadata) 1771 btrfs_end_write_no_snapshotting(root); 1772 1773 if (only_release_metadata && copied > 0) { 1774 lockstart = round_down(pos, 1775 fs_info->sectorsize); 1776 lockend = round_up(pos + copied, 1777 fs_info->sectorsize) - 1; 1778 1779 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1780 lockend, EXTENT_NORESERVE, NULL, 1781 NULL, GFP_NOFS); 1782 only_release_metadata = false; 1783 } 1784 1785 btrfs_drop_pages(pages, num_pages); 1786 1787 cond_resched(); 1788 1789 balance_dirty_pages_ratelimited(inode->i_mapping); 1790 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1791 btrfs_btree_balance_dirty(fs_info); 1792 1793 pos += copied; 1794 num_written += copied; 1795 } 1796 1797 kfree(pages); 1798 1799 if (release_bytes) { 1800 if (only_release_metadata) { 1801 btrfs_end_write_no_snapshotting(root); 1802 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1803 release_bytes); 1804 } else { 1805 btrfs_delalloc_release_space(inode, data_reserved, 1806 round_down(pos, fs_info->sectorsize), 1807 release_bytes); 1808 } 1809 } 1810 1811 extent_changeset_free(data_reserved); 1812 return num_written ? num_written : ret; 1813 } 1814 1815 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1816 { 1817 struct file *file = iocb->ki_filp; 1818 struct inode *inode = file_inode(file); 1819 loff_t pos = iocb->ki_pos; 1820 ssize_t written; 1821 ssize_t written_buffered; 1822 loff_t endbyte; 1823 int err; 1824 1825 written = generic_file_direct_write(iocb, from); 1826 1827 if (written < 0 || !iov_iter_count(from)) 1828 return written; 1829 1830 pos += written; 1831 written_buffered = __btrfs_buffered_write(file, from, pos); 1832 if (written_buffered < 0) { 1833 err = written_buffered; 1834 goto out; 1835 } 1836 /* 1837 * Ensure all data is persisted. We want the next direct IO read to be 1838 * able to read what was just written. 1839 */ 1840 endbyte = pos + written_buffered - 1; 1841 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1842 if (err) 1843 goto out; 1844 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1845 if (err) 1846 goto out; 1847 written += written_buffered; 1848 iocb->ki_pos = pos + written_buffered; 1849 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1850 endbyte >> PAGE_SHIFT); 1851 out: 1852 return written ? written : err; 1853 } 1854 1855 static void update_time_for_write(struct inode *inode) 1856 { 1857 struct timespec now; 1858 1859 if (IS_NOCMTIME(inode)) 1860 return; 1861 1862 now = current_time(inode); 1863 if (!timespec_equal(&inode->i_mtime, &now)) 1864 inode->i_mtime = now; 1865 1866 if (!timespec_equal(&inode->i_ctime, &now)) 1867 inode->i_ctime = now; 1868 1869 if (IS_I_VERSION(inode)) 1870 inode_inc_iversion(inode); 1871 } 1872 1873 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1874 struct iov_iter *from) 1875 { 1876 struct file *file = iocb->ki_filp; 1877 struct inode *inode = file_inode(file); 1878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1879 struct btrfs_root *root = BTRFS_I(inode)->root; 1880 u64 start_pos; 1881 u64 end_pos; 1882 ssize_t num_written = 0; 1883 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1884 ssize_t err; 1885 loff_t pos; 1886 size_t count = iov_iter_count(from); 1887 loff_t oldsize; 1888 int clean_page = 0; 1889 1890 if (!(iocb->ki_flags & IOCB_DIRECT) && 1891 (iocb->ki_flags & IOCB_NOWAIT)) 1892 return -EOPNOTSUPP; 1893 1894 if (!inode_trylock(inode)) { 1895 if (iocb->ki_flags & IOCB_NOWAIT) 1896 return -EAGAIN; 1897 inode_lock(inode); 1898 } 1899 1900 err = generic_write_checks(iocb, from); 1901 if (err <= 0) { 1902 inode_unlock(inode); 1903 return err; 1904 } 1905 1906 pos = iocb->ki_pos; 1907 if (iocb->ki_flags & IOCB_NOWAIT) { 1908 /* 1909 * We will allocate space in case nodatacow is not set, 1910 * so bail 1911 */ 1912 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1913 BTRFS_INODE_PREALLOC)) || 1914 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1915 inode_unlock(inode); 1916 return -EAGAIN; 1917 } 1918 } 1919 1920 current->backing_dev_info = inode_to_bdi(inode); 1921 err = file_remove_privs(file); 1922 if (err) { 1923 inode_unlock(inode); 1924 goto out; 1925 } 1926 1927 /* 1928 * If BTRFS flips readonly due to some impossible error 1929 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1930 * although we have opened a file as writable, we have 1931 * to stop this write operation to ensure FS consistency. 1932 */ 1933 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1934 inode_unlock(inode); 1935 err = -EROFS; 1936 goto out; 1937 } 1938 1939 /* 1940 * We reserve space for updating the inode when we reserve space for the 1941 * extent we are going to write, so we will enospc out there. We don't 1942 * need to start yet another transaction to update the inode as we will 1943 * update the inode when we finish writing whatever data we write. 1944 */ 1945 update_time_for_write(inode); 1946 1947 start_pos = round_down(pos, fs_info->sectorsize); 1948 oldsize = i_size_read(inode); 1949 if (start_pos > oldsize) { 1950 /* Expand hole size to cover write data, preventing empty gap */ 1951 end_pos = round_up(pos + count, 1952 fs_info->sectorsize); 1953 err = btrfs_cont_expand(inode, oldsize, end_pos); 1954 if (err) { 1955 inode_unlock(inode); 1956 goto out; 1957 } 1958 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1959 clean_page = 1; 1960 } 1961 1962 if (sync) 1963 atomic_inc(&BTRFS_I(inode)->sync_writers); 1964 1965 if (iocb->ki_flags & IOCB_DIRECT) { 1966 num_written = __btrfs_direct_write(iocb, from); 1967 } else { 1968 num_written = __btrfs_buffered_write(file, from, pos); 1969 if (num_written > 0) 1970 iocb->ki_pos = pos + num_written; 1971 if (clean_page) 1972 pagecache_isize_extended(inode, oldsize, 1973 i_size_read(inode)); 1974 } 1975 1976 inode_unlock(inode); 1977 1978 /* 1979 * We also have to set last_sub_trans to the current log transid, 1980 * otherwise subsequent syncs to a file that's been synced in this 1981 * transaction will appear to have already occurred. 1982 */ 1983 spin_lock(&BTRFS_I(inode)->lock); 1984 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1985 spin_unlock(&BTRFS_I(inode)->lock); 1986 if (num_written > 0) 1987 num_written = generic_write_sync(iocb, num_written); 1988 1989 if (sync) 1990 atomic_dec(&BTRFS_I(inode)->sync_writers); 1991 out: 1992 current->backing_dev_info = NULL; 1993 return num_written ? num_written : err; 1994 } 1995 1996 int btrfs_release_file(struct inode *inode, struct file *filp) 1997 { 1998 struct btrfs_file_private *private = filp->private_data; 1999 2000 if (private && private->trans) 2001 btrfs_ioctl_trans_end(filp); 2002 if (private && private->filldir_buf) 2003 kfree(private->filldir_buf); 2004 kfree(private); 2005 filp->private_data = NULL; 2006 2007 /* 2008 * ordered_data_close is set by settattr when we are about to truncate 2009 * a file from a non-zero size to a zero size. This tries to 2010 * flush down new bytes that may have been written if the 2011 * application were using truncate to replace a file in place. 2012 */ 2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2014 &BTRFS_I(inode)->runtime_flags)) 2015 filemap_flush(inode->i_mapping); 2016 return 0; 2017 } 2018 2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2020 { 2021 int ret; 2022 struct blk_plug plug; 2023 2024 /* 2025 * This is only called in fsync, which would do synchronous writes, so 2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2027 * multiple disks using raid profile, a large IO can be split to 2028 * several segments of stripe length (currently 64K). 2029 */ 2030 blk_start_plug(&plug); 2031 atomic_inc(&BTRFS_I(inode)->sync_writers); 2032 ret = btrfs_fdatawrite_range(inode, start, end); 2033 atomic_dec(&BTRFS_I(inode)->sync_writers); 2034 blk_finish_plug(&plug); 2035 2036 return ret; 2037 } 2038 2039 /* 2040 * fsync call for both files and directories. This logs the inode into 2041 * the tree log instead of forcing full commits whenever possible. 2042 * 2043 * It needs to call filemap_fdatawait so that all ordered extent updates are 2044 * in the metadata btree are up to date for copying to the log. 2045 * 2046 * It drops the inode mutex before doing the tree log commit. This is an 2047 * important optimization for directories because holding the mutex prevents 2048 * new operations on the dir while we write to disk. 2049 */ 2050 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2051 { 2052 struct dentry *dentry = file_dentry(file); 2053 struct inode *inode = d_inode(dentry); 2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2055 struct btrfs_root *root = BTRFS_I(inode)->root; 2056 struct btrfs_trans_handle *trans; 2057 struct btrfs_log_ctx ctx; 2058 int ret = 0, err; 2059 bool full_sync = false; 2060 u64 len; 2061 2062 /* 2063 * The range length can be represented by u64, we have to do the typecasts 2064 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2065 */ 2066 len = (u64)end - (u64)start + 1; 2067 trace_btrfs_sync_file(file, datasync); 2068 2069 btrfs_init_log_ctx(&ctx, inode); 2070 2071 /* 2072 * We write the dirty pages in the range and wait until they complete 2073 * out of the ->i_mutex. If so, we can flush the dirty pages by 2074 * multi-task, and make the performance up. See 2075 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2076 */ 2077 ret = start_ordered_ops(inode, start, end); 2078 if (ret) 2079 goto out; 2080 2081 inode_lock(inode); 2082 atomic_inc(&root->log_batch); 2083 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2084 &BTRFS_I(inode)->runtime_flags); 2085 /* 2086 * We might have have had more pages made dirty after calling 2087 * start_ordered_ops and before acquiring the inode's i_mutex. 2088 */ 2089 if (full_sync) { 2090 /* 2091 * For a full sync, we need to make sure any ordered operations 2092 * start and finish before we start logging the inode, so that 2093 * all extents are persisted and the respective file extent 2094 * items are in the fs/subvol btree. 2095 */ 2096 ret = btrfs_wait_ordered_range(inode, start, len); 2097 } else { 2098 /* 2099 * Start any new ordered operations before starting to log the 2100 * inode. We will wait for them to finish in btrfs_sync_log(). 2101 * 2102 * Right before acquiring the inode's mutex, we might have new 2103 * writes dirtying pages, which won't immediately start the 2104 * respective ordered operations - that is done through the 2105 * fill_delalloc callbacks invoked from the writepage and 2106 * writepages address space operations. So make sure we start 2107 * all ordered operations before starting to log our inode. Not 2108 * doing this means that while logging the inode, writeback 2109 * could start and invoke writepage/writepages, which would call 2110 * the fill_delalloc callbacks (cow_file_range, 2111 * submit_compressed_extents). These callbacks add first an 2112 * extent map to the modified list of extents and then create 2113 * the respective ordered operation, which means in 2114 * tree-log.c:btrfs_log_inode() we might capture all existing 2115 * ordered operations (with btrfs_get_logged_extents()) before 2116 * the fill_delalloc callback adds its ordered operation, and by 2117 * the time we visit the modified list of extent maps (with 2118 * btrfs_log_changed_extents()), we see and process the extent 2119 * map they created. We then use the extent map to construct a 2120 * file extent item for logging without waiting for the 2121 * respective ordered operation to finish - this file extent 2122 * item points to a disk location that might not have yet been 2123 * written to, containing random data - so after a crash a log 2124 * replay will make our inode have file extent items that point 2125 * to disk locations containing invalid data, as we returned 2126 * success to userspace without waiting for the respective 2127 * ordered operation to finish, because it wasn't captured by 2128 * btrfs_get_logged_extents(). 2129 */ 2130 ret = start_ordered_ops(inode, start, end); 2131 } 2132 if (ret) { 2133 inode_unlock(inode); 2134 goto out; 2135 } 2136 atomic_inc(&root->log_batch); 2137 2138 /* 2139 * If the last transaction that changed this file was before the current 2140 * transaction and we have the full sync flag set in our inode, we can 2141 * bail out now without any syncing. 2142 * 2143 * Note that we can't bail out if the full sync flag isn't set. This is 2144 * because when the full sync flag is set we start all ordered extents 2145 * and wait for them to fully complete - when they complete they update 2146 * the inode's last_trans field through: 2147 * 2148 * btrfs_finish_ordered_io() -> 2149 * btrfs_update_inode_fallback() -> 2150 * btrfs_update_inode() -> 2151 * btrfs_set_inode_last_trans() 2152 * 2153 * So we are sure that last_trans is up to date and can do this check to 2154 * bail out safely. For the fast path, when the full sync flag is not 2155 * set in our inode, we can not do it because we start only our ordered 2156 * extents and don't wait for them to complete (that is when 2157 * btrfs_finish_ordered_io runs), so here at this point their last_trans 2158 * value might be less than or equals to fs_info->last_trans_committed, 2159 * and setting a speculative last_trans for an inode when a buffered 2160 * write is made (such as fs_info->generation + 1 for example) would not 2161 * be reliable since after setting the value and before fsync is called 2162 * any number of transactions can start and commit (transaction kthread 2163 * commits the current transaction periodically), and a transaction 2164 * commit does not start nor waits for ordered extents to complete. 2165 */ 2166 smp_mb(); 2167 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2168 (full_sync && BTRFS_I(inode)->last_trans <= 2169 fs_info->last_trans_committed) || 2170 (!btrfs_have_ordered_extents_in_range(inode, start, len) && 2171 BTRFS_I(inode)->last_trans 2172 <= fs_info->last_trans_committed)) { 2173 /* 2174 * We've had everything committed since the last time we were 2175 * modified so clear this flag in case it was set for whatever 2176 * reason, it's no longer relevant. 2177 */ 2178 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2179 &BTRFS_I(inode)->runtime_flags); 2180 /* 2181 * An ordered extent might have started before and completed 2182 * already with io errors, in which case the inode was not 2183 * updated and we end up here. So check the inode's mapping 2184 * for any errors that might have happened since we last 2185 * checked called fsync. 2186 */ 2187 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2188 inode_unlock(inode); 2189 goto out; 2190 } 2191 2192 /* 2193 * ok we haven't committed the transaction yet, lets do a commit 2194 */ 2195 if (file->private_data) 2196 btrfs_ioctl_trans_end(file); 2197 2198 /* 2199 * We use start here because we will need to wait on the IO to complete 2200 * in btrfs_sync_log, which could require joining a transaction (for 2201 * example checking cross references in the nocow path). If we use join 2202 * here we could get into a situation where we're waiting on IO to 2203 * happen that is blocked on a transaction trying to commit. With start 2204 * we inc the extwriter counter, so we wait for all extwriters to exit 2205 * before we start blocking join'ers. This comment is to keep somebody 2206 * from thinking they are super smart and changing this to 2207 * btrfs_join_transaction *cough*Josef*cough*. 2208 */ 2209 trans = btrfs_start_transaction(root, 0); 2210 if (IS_ERR(trans)) { 2211 ret = PTR_ERR(trans); 2212 inode_unlock(inode); 2213 goto out; 2214 } 2215 trans->sync = true; 2216 2217 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2218 if (ret < 0) { 2219 /* Fallthrough and commit/free transaction. */ 2220 ret = 1; 2221 } 2222 2223 /* we've logged all the items and now have a consistent 2224 * version of the file in the log. It is possible that 2225 * someone will come in and modify the file, but that's 2226 * fine because the log is consistent on disk, and we 2227 * have references to all of the file's extents 2228 * 2229 * It is possible that someone will come in and log the 2230 * file again, but that will end up using the synchronization 2231 * inside btrfs_sync_log to keep things safe. 2232 */ 2233 inode_unlock(inode); 2234 2235 /* 2236 * If any of the ordered extents had an error, just return it to user 2237 * space, so that the application knows some writes didn't succeed and 2238 * can take proper action (retry for e.g.). Blindly committing the 2239 * transaction in this case, would fool userspace that everything was 2240 * successful. And we also want to make sure our log doesn't contain 2241 * file extent items pointing to extents that weren't fully written to - 2242 * just like in the non fast fsync path, where we check for the ordered 2243 * operation's error flag before writing to the log tree and return -EIO 2244 * if any of them had this flag set (btrfs_wait_ordered_range) - 2245 * therefore we need to check for errors in the ordered operations, 2246 * which are indicated by ctx.io_err. 2247 */ 2248 if (ctx.io_err) { 2249 btrfs_end_transaction(trans); 2250 ret = ctx.io_err; 2251 goto out; 2252 } 2253 2254 if (ret != BTRFS_NO_LOG_SYNC) { 2255 if (!ret) { 2256 ret = btrfs_sync_log(trans, root, &ctx); 2257 if (!ret) { 2258 ret = btrfs_end_transaction(trans); 2259 goto out; 2260 } 2261 } 2262 if (!full_sync) { 2263 ret = btrfs_wait_ordered_range(inode, start, len); 2264 if (ret) { 2265 btrfs_end_transaction(trans); 2266 goto out; 2267 } 2268 } 2269 ret = btrfs_commit_transaction(trans); 2270 } else { 2271 ret = btrfs_end_transaction(trans); 2272 } 2273 out: 2274 ASSERT(list_empty(&ctx.list)); 2275 err = file_check_and_advance_wb_err(file); 2276 if (!ret) 2277 ret = err; 2278 return ret > 0 ? -EIO : ret; 2279 } 2280 2281 static const struct vm_operations_struct btrfs_file_vm_ops = { 2282 .fault = filemap_fault, 2283 .map_pages = filemap_map_pages, 2284 .page_mkwrite = btrfs_page_mkwrite, 2285 }; 2286 2287 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2288 { 2289 struct address_space *mapping = filp->f_mapping; 2290 2291 if (!mapping->a_ops->readpage) 2292 return -ENOEXEC; 2293 2294 file_accessed(filp); 2295 vma->vm_ops = &btrfs_file_vm_ops; 2296 2297 return 0; 2298 } 2299 2300 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2301 int slot, u64 start, u64 end) 2302 { 2303 struct btrfs_file_extent_item *fi; 2304 struct btrfs_key key; 2305 2306 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2307 return 0; 2308 2309 btrfs_item_key_to_cpu(leaf, &key, slot); 2310 if (key.objectid != btrfs_ino(inode) || 2311 key.type != BTRFS_EXTENT_DATA_KEY) 2312 return 0; 2313 2314 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2315 2316 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2317 return 0; 2318 2319 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2320 return 0; 2321 2322 if (key.offset == end) 2323 return 1; 2324 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2325 return 1; 2326 return 0; 2327 } 2328 2329 static int fill_holes(struct btrfs_trans_handle *trans, 2330 struct btrfs_inode *inode, 2331 struct btrfs_path *path, u64 offset, u64 end) 2332 { 2333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 2334 struct btrfs_root *root = inode->root; 2335 struct extent_buffer *leaf; 2336 struct btrfs_file_extent_item *fi; 2337 struct extent_map *hole_em; 2338 struct extent_map_tree *em_tree = &inode->extent_tree; 2339 struct btrfs_key key; 2340 int ret; 2341 2342 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2343 goto out; 2344 2345 key.objectid = btrfs_ino(inode); 2346 key.type = BTRFS_EXTENT_DATA_KEY; 2347 key.offset = offset; 2348 2349 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2350 if (ret <= 0) { 2351 /* 2352 * We should have dropped this offset, so if we find it then 2353 * something has gone horribly wrong. 2354 */ 2355 if (ret == 0) 2356 ret = -EINVAL; 2357 return ret; 2358 } 2359 2360 leaf = path->nodes[0]; 2361 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2362 u64 num_bytes; 2363 2364 path->slots[0]--; 2365 fi = btrfs_item_ptr(leaf, path->slots[0], 2366 struct btrfs_file_extent_item); 2367 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2368 end - offset; 2369 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2370 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2371 btrfs_set_file_extent_offset(leaf, fi, 0); 2372 btrfs_mark_buffer_dirty(leaf); 2373 goto out; 2374 } 2375 2376 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2377 u64 num_bytes; 2378 2379 key.offset = offset; 2380 btrfs_set_item_key_safe(fs_info, path, &key); 2381 fi = btrfs_item_ptr(leaf, path->slots[0], 2382 struct btrfs_file_extent_item); 2383 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2384 offset; 2385 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2386 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2387 btrfs_set_file_extent_offset(leaf, fi, 0); 2388 btrfs_mark_buffer_dirty(leaf); 2389 goto out; 2390 } 2391 btrfs_release_path(path); 2392 2393 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2394 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2395 if (ret) 2396 return ret; 2397 2398 out: 2399 btrfs_release_path(path); 2400 2401 hole_em = alloc_extent_map(); 2402 if (!hole_em) { 2403 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2405 } else { 2406 hole_em->start = offset; 2407 hole_em->len = end - offset; 2408 hole_em->ram_bytes = hole_em->len; 2409 hole_em->orig_start = offset; 2410 2411 hole_em->block_start = EXTENT_MAP_HOLE; 2412 hole_em->block_len = 0; 2413 hole_em->orig_block_len = 0; 2414 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2415 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2416 hole_em->generation = trans->transid; 2417 2418 do { 2419 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2420 write_lock(&em_tree->lock); 2421 ret = add_extent_mapping(em_tree, hole_em, 1); 2422 write_unlock(&em_tree->lock); 2423 } while (ret == -EEXIST); 2424 free_extent_map(hole_em); 2425 if (ret) 2426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2427 &inode->runtime_flags); 2428 } 2429 2430 return 0; 2431 } 2432 2433 /* 2434 * Find a hole extent on given inode and change start/len to the end of hole 2435 * extent.(hole/vacuum extent whose em->start <= start && 2436 * em->start + em->len > start) 2437 * When a hole extent is found, return 1 and modify start/len. 2438 */ 2439 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2440 { 2441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2442 struct extent_map *em; 2443 int ret = 0; 2444 2445 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2446 round_down(*start, fs_info->sectorsize), 2447 round_up(*len, fs_info->sectorsize), 0); 2448 if (IS_ERR(em)) 2449 return PTR_ERR(em); 2450 2451 /* Hole or vacuum extent(only exists in no-hole mode) */ 2452 if (em->block_start == EXTENT_MAP_HOLE) { 2453 ret = 1; 2454 *len = em->start + em->len > *start + *len ? 2455 0 : *start + *len - em->start - em->len; 2456 *start = em->start + em->len; 2457 } 2458 free_extent_map(em); 2459 return ret; 2460 } 2461 2462 static int btrfs_punch_hole_lock_range(struct inode *inode, 2463 const u64 lockstart, 2464 const u64 lockend, 2465 struct extent_state **cached_state) 2466 { 2467 while (1) { 2468 struct btrfs_ordered_extent *ordered; 2469 int ret; 2470 2471 truncate_pagecache_range(inode, lockstart, lockend); 2472 2473 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2474 cached_state); 2475 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2476 2477 /* 2478 * We need to make sure we have no ordered extents in this range 2479 * and nobody raced in and read a page in this range, if we did 2480 * we need to try again. 2481 */ 2482 if ((!ordered || 2483 (ordered->file_offset + ordered->len <= lockstart || 2484 ordered->file_offset > lockend)) && 2485 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2486 if (ordered) 2487 btrfs_put_ordered_extent(ordered); 2488 break; 2489 } 2490 if (ordered) 2491 btrfs_put_ordered_extent(ordered); 2492 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2493 lockend, cached_state); 2494 ret = btrfs_wait_ordered_range(inode, lockstart, 2495 lockend - lockstart + 1); 2496 if (ret) 2497 return ret; 2498 } 2499 return 0; 2500 } 2501 2502 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2503 { 2504 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2505 struct btrfs_root *root = BTRFS_I(inode)->root; 2506 struct extent_state *cached_state = NULL; 2507 struct btrfs_path *path; 2508 struct btrfs_block_rsv *rsv; 2509 struct btrfs_trans_handle *trans; 2510 u64 lockstart; 2511 u64 lockend; 2512 u64 tail_start; 2513 u64 tail_len; 2514 u64 orig_start = offset; 2515 u64 cur_offset; 2516 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2517 u64 drop_end; 2518 int ret = 0; 2519 int err = 0; 2520 unsigned int rsv_count; 2521 bool same_block; 2522 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2523 u64 ino_size; 2524 bool truncated_block = false; 2525 bool updated_inode = false; 2526 2527 ret = btrfs_wait_ordered_range(inode, offset, len); 2528 if (ret) 2529 return ret; 2530 2531 inode_lock(inode); 2532 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2533 ret = find_first_non_hole(inode, &offset, &len); 2534 if (ret < 0) 2535 goto out_only_mutex; 2536 if (ret && !len) { 2537 /* Already in a large hole */ 2538 ret = 0; 2539 goto out_only_mutex; 2540 } 2541 2542 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2543 lockend = round_down(offset + len, 2544 btrfs_inode_sectorsize(inode)) - 1; 2545 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2546 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2547 /* 2548 * We needn't truncate any block which is beyond the end of the file 2549 * because we are sure there is no data there. 2550 */ 2551 /* 2552 * Only do this if we are in the same block and we aren't doing the 2553 * entire block. 2554 */ 2555 if (same_block && len < fs_info->sectorsize) { 2556 if (offset < ino_size) { 2557 truncated_block = true; 2558 ret = btrfs_truncate_block(inode, offset, len, 0); 2559 } else { 2560 ret = 0; 2561 } 2562 goto out_only_mutex; 2563 } 2564 2565 /* zero back part of the first block */ 2566 if (offset < ino_size) { 2567 truncated_block = true; 2568 ret = btrfs_truncate_block(inode, offset, 0, 0); 2569 if (ret) { 2570 inode_unlock(inode); 2571 return ret; 2572 } 2573 } 2574 2575 /* Check the aligned pages after the first unaligned page, 2576 * if offset != orig_start, which means the first unaligned page 2577 * including several following pages are already in holes, 2578 * the extra check can be skipped */ 2579 if (offset == orig_start) { 2580 /* after truncate page, check hole again */ 2581 len = offset + len - lockstart; 2582 offset = lockstart; 2583 ret = find_first_non_hole(inode, &offset, &len); 2584 if (ret < 0) 2585 goto out_only_mutex; 2586 if (ret && !len) { 2587 ret = 0; 2588 goto out_only_mutex; 2589 } 2590 lockstart = offset; 2591 } 2592 2593 /* Check the tail unaligned part is in a hole */ 2594 tail_start = lockend + 1; 2595 tail_len = offset + len - tail_start; 2596 if (tail_len) { 2597 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2598 if (unlikely(ret < 0)) 2599 goto out_only_mutex; 2600 if (!ret) { 2601 /* zero the front end of the last page */ 2602 if (tail_start + tail_len < ino_size) { 2603 truncated_block = true; 2604 ret = btrfs_truncate_block(inode, 2605 tail_start + tail_len, 2606 0, 1); 2607 if (ret) 2608 goto out_only_mutex; 2609 } 2610 } 2611 } 2612 2613 if (lockend < lockstart) { 2614 ret = 0; 2615 goto out_only_mutex; 2616 } 2617 2618 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2619 &cached_state); 2620 if (ret) { 2621 inode_unlock(inode); 2622 goto out_only_mutex; 2623 } 2624 2625 path = btrfs_alloc_path(); 2626 if (!path) { 2627 ret = -ENOMEM; 2628 goto out; 2629 } 2630 2631 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2632 if (!rsv) { 2633 ret = -ENOMEM; 2634 goto out_free; 2635 } 2636 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2637 rsv->failfast = 1; 2638 2639 /* 2640 * 1 - update the inode 2641 * 1 - removing the extents in the range 2642 * 1 - adding the hole extent if no_holes isn't set 2643 */ 2644 rsv_count = no_holes ? 2 : 3; 2645 trans = btrfs_start_transaction(root, rsv_count); 2646 if (IS_ERR(trans)) { 2647 err = PTR_ERR(trans); 2648 goto out_free; 2649 } 2650 2651 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2652 min_size, 0); 2653 BUG_ON(ret); 2654 trans->block_rsv = rsv; 2655 2656 cur_offset = lockstart; 2657 len = lockend - cur_offset; 2658 while (cur_offset < lockend) { 2659 ret = __btrfs_drop_extents(trans, root, inode, path, 2660 cur_offset, lockend + 1, 2661 &drop_end, 1, 0, 0, NULL); 2662 if (ret != -ENOSPC) 2663 break; 2664 2665 trans->block_rsv = &fs_info->trans_block_rsv; 2666 2667 if (cur_offset < drop_end && cur_offset < ino_size) { 2668 ret = fill_holes(trans, BTRFS_I(inode), path, 2669 cur_offset, drop_end); 2670 if (ret) { 2671 /* 2672 * If we failed then we didn't insert our hole 2673 * entries for the area we dropped, so now the 2674 * fs is corrupted, so we must abort the 2675 * transaction. 2676 */ 2677 btrfs_abort_transaction(trans, ret); 2678 err = ret; 2679 break; 2680 } 2681 } 2682 2683 cur_offset = drop_end; 2684 2685 ret = btrfs_update_inode(trans, root, inode); 2686 if (ret) { 2687 err = ret; 2688 break; 2689 } 2690 2691 btrfs_end_transaction(trans); 2692 btrfs_btree_balance_dirty(fs_info); 2693 2694 trans = btrfs_start_transaction(root, rsv_count); 2695 if (IS_ERR(trans)) { 2696 ret = PTR_ERR(trans); 2697 trans = NULL; 2698 break; 2699 } 2700 2701 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2702 rsv, min_size, 0); 2703 BUG_ON(ret); /* shouldn't happen */ 2704 trans->block_rsv = rsv; 2705 2706 ret = find_first_non_hole(inode, &cur_offset, &len); 2707 if (unlikely(ret < 0)) 2708 break; 2709 if (ret && !len) { 2710 ret = 0; 2711 break; 2712 } 2713 } 2714 2715 if (ret) { 2716 err = ret; 2717 goto out_trans; 2718 } 2719 2720 trans->block_rsv = &fs_info->trans_block_rsv; 2721 /* 2722 * If we are using the NO_HOLES feature we might have had already an 2723 * hole that overlaps a part of the region [lockstart, lockend] and 2724 * ends at (or beyond) lockend. Since we have no file extent items to 2725 * represent holes, drop_end can be less than lockend and so we must 2726 * make sure we have an extent map representing the existing hole (the 2727 * call to __btrfs_drop_extents() might have dropped the existing extent 2728 * map representing the existing hole), otherwise the fast fsync path 2729 * will not record the existence of the hole region 2730 * [existing_hole_start, lockend]. 2731 */ 2732 if (drop_end <= lockend) 2733 drop_end = lockend + 1; 2734 /* 2735 * Don't insert file hole extent item if it's for a range beyond eof 2736 * (because it's useless) or if it represents a 0 bytes range (when 2737 * cur_offset == drop_end). 2738 */ 2739 if (cur_offset < ino_size && cur_offset < drop_end) { 2740 ret = fill_holes(trans, BTRFS_I(inode), path, 2741 cur_offset, drop_end); 2742 if (ret) { 2743 /* Same comment as above. */ 2744 btrfs_abort_transaction(trans, ret); 2745 err = ret; 2746 goto out_trans; 2747 } 2748 } 2749 2750 out_trans: 2751 if (!trans) 2752 goto out_free; 2753 2754 inode_inc_iversion(inode); 2755 inode->i_mtime = inode->i_ctime = current_time(inode); 2756 2757 trans->block_rsv = &fs_info->trans_block_rsv; 2758 ret = btrfs_update_inode(trans, root, inode); 2759 updated_inode = true; 2760 btrfs_end_transaction(trans); 2761 btrfs_btree_balance_dirty(fs_info); 2762 out_free: 2763 btrfs_free_path(path); 2764 btrfs_free_block_rsv(fs_info, rsv); 2765 out: 2766 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2767 &cached_state); 2768 out_only_mutex: 2769 if (!updated_inode && truncated_block && !ret && !err) { 2770 /* 2771 * If we only end up zeroing part of a page, we still need to 2772 * update the inode item, so that all the time fields are 2773 * updated as well as the necessary btrfs inode in memory fields 2774 * for detecting, at fsync time, if the inode isn't yet in the 2775 * log tree or it's there but not up to date. 2776 */ 2777 trans = btrfs_start_transaction(root, 1); 2778 if (IS_ERR(trans)) { 2779 err = PTR_ERR(trans); 2780 } else { 2781 err = btrfs_update_inode(trans, root, inode); 2782 ret = btrfs_end_transaction(trans); 2783 } 2784 } 2785 inode_unlock(inode); 2786 if (ret && !err) 2787 err = ret; 2788 return err; 2789 } 2790 2791 /* Helper structure to record which range is already reserved */ 2792 struct falloc_range { 2793 struct list_head list; 2794 u64 start; 2795 u64 len; 2796 }; 2797 2798 /* 2799 * Helper function to add falloc range 2800 * 2801 * Caller should have locked the larger range of extent containing 2802 * [start, len) 2803 */ 2804 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2805 { 2806 struct falloc_range *prev = NULL; 2807 struct falloc_range *range = NULL; 2808 2809 if (list_empty(head)) 2810 goto insert; 2811 2812 /* 2813 * As fallocate iterate by bytenr order, we only need to check 2814 * the last range. 2815 */ 2816 prev = list_entry(head->prev, struct falloc_range, list); 2817 if (prev->start + prev->len == start) { 2818 prev->len += len; 2819 return 0; 2820 } 2821 insert: 2822 range = kmalloc(sizeof(*range), GFP_KERNEL); 2823 if (!range) 2824 return -ENOMEM; 2825 range->start = start; 2826 range->len = len; 2827 list_add_tail(&range->list, head); 2828 return 0; 2829 } 2830 2831 static int btrfs_fallocate_update_isize(struct inode *inode, 2832 const u64 end, 2833 const int mode) 2834 { 2835 struct btrfs_trans_handle *trans; 2836 struct btrfs_root *root = BTRFS_I(inode)->root; 2837 int ret; 2838 int ret2; 2839 2840 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2841 return 0; 2842 2843 trans = btrfs_start_transaction(root, 1); 2844 if (IS_ERR(trans)) 2845 return PTR_ERR(trans); 2846 2847 inode->i_ctime = current_time(inode); 2848 i_size_write(inode, end); 2849 btrfs_ordered_update_i_size(inode, end, NULL); 2850 ret = btrfs_update_inode(trans, root, inode); 2851 ret2 = btrfs_end_transaction(trans); 2852 2853 return ret ? ret : ret2; 2854 } 2855 2856 enum { 2857 RANGE_BOUNDARY_WRITTEN_EXTENT = 0, 2858 RANGE_BOUNDARY_PREALLOC_EXTENT = 1, 2859 RANGE_BOUNDARY_HOLE = 2, 2860 }; 2861 2862 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2863 u64 offset) 2864 { 2865 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2866 struct extent_map *em; 2867 int ret; 2868 2869 offset = round_down(offset, sectorsize); 2870 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2871 if (IS_ERR(em)) 2872 return PTR_ERR(em); 2873 2874 if (em->block_start == EXTENT_MAP_HOLE) 2875 ret = RANGE_BOUNDARY_HOLE; 2876 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2877 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2878 else 2879 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2880 2881 free_extent_map(em); 2882 return ret; 2883 } 2884 2885 static int btrfs_zero_range(struct inode *inode, 2886 loff_t offset, 2887 loff_t len, 2888 const int mode) 2889 { 2890 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2891 struct extent_map *em; 2892 struct extent_changeset *data_reserved = NULL; 2893 int ret; 2894 u64 alloc_hint = 0; 2895 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2896 u64 alloc_start = round_down(offset, sectorsize); 2897 u64 alloc_end = round_up(offset + len, sectorsize); 2898 u64 bytes_to_reserve = 0; 2899 bool space_reserved = false; 2900 2901 inode_dio_wait(inode); 2902 2903 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2904 alloc_start, alloc_end - alloc_start, 0); 2905 if (IS_ERR(em)) { 2906 ret = PTR_ERR(em); 2907 goto out; 2908 } 2909 2910 /* 2911 * Avoid hole punching and extent allocation for some cases. More cases 2912 * could be considered, but these are unlikely common and we keep things 2913 * as simple as possible for now. Also, intentionally, if the target 2914 * range contains one or more prealloc extents together with regular 2915 * extents and holes, we drop all the existing extents and allocate a 2916 * new prealloc extent, so that we get a larger contiguous disk extent. 2917 */ 2918 if (em->start <= alloc_start && 2919 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2920 const u64 em_end = em->start + em->len; 2921 2922 if (em_end >= offset + len) { 2923 /* 2924 * The whole range is already a prealloc extent, 2925 * do nothing except updating the inode's i_size if 2926 * needed. 2927 */ 2928 free_extent_map(em); 2929 ret = btrfs_fallocate_update_isize(inode, offset + len, 2930 mode); 2931 goto out; 2932 } 2933 /* 2934 * Part of the range is already a prealloc extent, so operate 2935 * only on the remaining part of the range. 2936 */ 2937 alloc_start = em_end; 2938 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2939 len = offset + len - alloc_start; 2940 offset = alloc_start; 2941 alloc_hint = em->block_start + em->len; 2942 } 2943 free_extent_map(em); 2944 2945 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2946 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2947 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2948 alloc_start, sectorsize, 0); 2949 if (IS_ERR(em)) { 2950 ret = PTR_ERR(em); 2951 goto out; 2952 } 2953 2954 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2955 free_extent_map(em); 2956 ret = btrfs_fallocate_update_isize(inode, offset + len, 2957 mode); 2958 goto out; 2959 } 2960 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2961 free_extent_map(em); 2962 ret = btrfs_truncate_block(inode, offset, len, 0); 2963 if (!ret) 2964 ret = btrfs_fallocate_update_isize(inode, 2965 offset + len, 2966 mode); 2967 return ret; 2968 } 2969 free_extent_map(em); 2970 alloc_start = round_down(offset, sectorsize); 2971 alloc_end = alloc_start + sectorsize; 2972 goto reserve_space; 2973 } 2974 2975 alloc_start = round_up(offset, sectorsize); 2976 alloc_end = round_down(offset + len, sectorsize); 2977 2978 /* 2979 * For unaligned ranges, check the pages at the boundaries, they might 2980 * map to an extent, in which case we need to partially zero them, or 2981 * they might map to a hole, in which case we need our allocation range 2982 * to cover them. 2983 */ 2984 if (!IS_ALIGNED(offset, sectorsize)) { 2985 ret = btrfs_zero_range_check_range_boundary(inode, offset); 2986 if (ret < 0) 2987 goto out; 2988 if (ret == RANGE_BOUNDARY_HOLE) { 2989 alloc_start = round_down(offset, sectorsize); 2990 ret = 0; 2991 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2992 ret = btrfs_truncate_block(inode, offset, 0, 0); 2993 if (ret) 2994 goto out; 2995 } else { 2996 ret = 0; 2997 } 2998 } 2999 3000 if (!IS_ALIGNED(offset + len, sectorsize)) { 3001 ret = btrfs_zero_range_check_range_boundary(inode, 3002 offset + len); 3003 if (ret < 0) 3004 goto out; 3005 if (ret == RANGE_BOUNDARY_HOLE) { 3006 alloc_end = round_up(offset + len, sectorsize); 3007 ret = 0; 3008 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3009 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3010 if (ret) 3011 goto out; 3012 } else { 3013 ret = 0; 3014 } 3015 } 3016 3017 reserve_space: 3018 if (alloc_start < alloc_end) { 3019 struct extent_state *cached_state = NULL; 3020 const u64 lockstart = alloc_start; 3021 const u64 lockend = alloc_end - 1; 3022 3023 bytes_to_reserve = alloc_end - alloc_start; 3024 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3025 bytes_to_reserve); 3026 if (ret < 0) 3027 goto out; 3028 space_reserved = true; 3029 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3030 alloc_start, bytes_to_reserve); 3031 if (ret) 3032 goto out; 3033 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3034 &cached_state); 3035 if (ret) 3036 goto out; 3037 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3038 alloc_end - alloc_start, 3039 i_blocksize(inode), 3040 offset + len, &alloc_hint); 3041 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3042 lockend, &cached_state); 3043 /* btrfs_prealloc_file_range releases reserved space on error */ 3044 if (ret) { 3045 space_reserved = false; 3046 goto out; 3047 } 3048 } 3049 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3050 out: 3051 if (ret && space_reserved) 3052 btrfs_free_reserved_data_space(inode, data_reserved, 3053 alloc_start, bytes_to_reserve); 3054 extent_changeset_free(data_reserved); 3055 3056 return ret; 3057 } 3058 3059 static long btrfs_fallocate(struct file *file, int mode, 3060 loff_t offset, loff_t len) 3061 { 3062 struct inode *inode = file_inode(file); 3063 struct extent_state *cached_state = NULL; 3064 struct extent_changeset *data_reserved = NULL; 3065 struct falloc_range *range; 3066 struct falloc_range *tmp; 3067 struct list_head reserve_list; 3068 u64 cur_offset; 3069 u64 last_byte; 3070 u64 alloc_start; 3071 u64 alloc_end; 3072 u64 alloc_hint = 0; 3073 u64 locked_end; 3074 u64 actual_end = 0; 3075 struct extent_map *em; 3076 int blocksize = btrfs_inode_sectorsize(inode); 3077 int ret; 3078 3079 alloc_start = round_down(offset, blocksize); 3080 alloc_end = round_up(offset + len, blocksize); 3081 cur_offset = alloc_start; 3082 3083 /* Make sure we aren't being give some crap mode */ 3084 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3085 FALLOC_FL_ZERO_RANGE)) 3086 return -EOPNOTSUPP; 3087 3088 if (mode & FALLOC_FL_PUNCH_HOLE) 3089 return btrfs_punch_hole(inode, offset, len); 3090 3091 /* 3092 * Only trigger disk allocation, don't trigger qgroup reserve 3093 * 3094 * For qgroup space, it will be checked later. 3095 */ 3096 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3097 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3098 alloc_end - alloc_start); 3099 if (ret < 0) 3100 return ret; 3101 } 3102 3103 inode_lock(inode); 3104 3105 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3106 ret = inode_newsize_ok(inode, offset + len); 3107 if (ret) 3108 goto out; 3109 } 3110 3111 /* 3112 * TODO: Move these two operations after we have checked 3113 * accurate reserved space, or fallocate can still fail but 3114 * with page truncated or size expanded. 3115 * 3116 * But that's a minor problem and won't do much harm BTW. 3117 */ 3118 if (alloc_start > inode->i_size) { 3119 ret = btrfs_cont_expand(inode, i_size_read(inode), 3120 alloc_start); 3121 if (ret) 3122 goto out; 3123 } else if (offset + len > inode->i_size) { 3124 /* 3125 * If we are fallocating from the end of the file onward we 3126 * need to zero out the end of the block if i_size lands in the 3127 * middle of a block. 3128 */ 3129 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3130 if (ret) 3131 goto out; 3132 } 3133 3134 /* 3135 * wait for ordered IO before we have any locks. We'll loop again 3136 * below with the locks held. 3137 */ 3138 ret = btrfs_wait_ordered_range(inode, alloc_start, 3139 alloc_end - alloc_start); 3140 if (ret) 3141 goto out; 3142 3143 if (mode & FALLOC_FL_ZERO_RANGE) { 3144 ret = btrfs_zero_range(inode, offset, len, mode); 3145 inode_unlock(inode); 3146 return ret; 3147 } 3148 3149 locked_end = alloc_end - 1; 3150 while (1) { 3151 struct btrfs_ordered_extent *ordered; 3152 3153 /* the extent lock is ordered inside the running 3154 * transaction 3155 */ 3156 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3157 locked_end, &cached_state); 3158 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3159 3160 if (ordered && 3161 ordered->file_offset + ordered->len > alloc_start && 3162 ordered->file_offset < alloc_end) { 3163 btrfs_put_ordered_extent(ordered); 3164 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3165 alloc_start, locked_end, 3166 &cached_state); 3167 /* 3168 * we can't wait on the range with the transaction 3169 * running or with the extent lock held 3170 */ 3171 ret = btrfs_wait_ordered_range(inode, alloc_start, 3172 alloc_end - alloc_start); 3173 if (ret) 3174 goto out; 3175 } else { 3176 if (ordered) 3177 btrfs_put_ordered_extent(ordered); 3178 break; 3179 } 3180 } 3181 3182 /* First, check if we exceed the qgroup limit */ 3183 INIT_LIST_HEAD(&reserve_list); 3184 while (cur_offset < alloc_end) { 3185 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3186 alloc_end - cur_offset, 0); 3187 if (IS_ERR(em)) { 3188 ret = PTR_ERR(em); 3189 break; 3190 } 3191 last_byte = min(extent_map_end(em), alloc_end); 3192 actual_end = min_t(u64, extent_map_end(em), offset + len); 3193 last_byte = ALIGN(last_byte, blocksize); 3194 if (em->block_start == EXTENT_MAP_HOLE || 3195 (cur_offset >= inode->i_size && 3196 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3197 ret = add_falloc_range(&reserve_list, cur_offset, 3198 last_byte - cur_offset); 3199 if (ret < 0) { 3200 free_extent_map(em); 3201 break; 3202 } 3203 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3204 cur_offset, last_byte - cur_offset); 3205 if (ret < 0) { 3206 free_extent_map(em); 3207 break; 3208 } 3209 } else { 3210 /* 3211 * Do not need to reserve unwritten extent for this 3212 * range, free reserved data space first, otherwise 3213 * it'll result in false ENOSPC error. 3214 */ 3215 btrfs_free_reserved_data_space(inode, data_reserved, 3216 cur_offset, last_byte - cur_offset); 3217 } 3218 free_extent_map(em); 3219 cur_offset = last_byte; 3220 } 3221 3222 /* 3223 * If ret is still 0, means we're OK to fallocate. 3224 * Or just cleanup the list and exit. 3225 */ 3226 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3227 if (!ret) 3228 ret = btrfs_prealloc_file_range(inode, mode, 3229 range->start, 3230 range->len, i_blocksize(inode), 3231 offset + len, &alloc_hint); 3232 else 3233 btrfs_free_reserved_data_space(inode, 3234 data_reserved, range->start, 3235 range->len); 3236 list_del(&range->list); 3237 kfree(range); 3238 } 3239 if (ret < 0) 3240 goto out_unlock; 3241 3242 /* 3243 * We didn't need to allocate any more space, but we still extended the 3244 * size of the file so we need to update i_size and the inode item. 3245 */ 3246 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3247 out_unlock: 3248 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3249 &cached_state); 3250 out: 3251 inode_unlock(inode); 3252 /* Let go of our reservation. */ 3253 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3254 btrfs_free_reserved_data_space(inode, data_reserved, 3255 alloc_start, alloc_end - cur_offset); 3256 extent_changeset_free(data_reserved); 3257 return ret; 3258 } 3259 3260 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3261 { 3262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3263 struct extent_map *em = NULL; 3264 struct extent_state *cached_state = NULL; 3265 u64 lockstart; 3266 u64 lockend; 3267 u64 start; 3268 u64 len; 3269 int ret = 0; 3270 3271 if (inode->i_size == 0) 3272 return -ENXIO; 3273 3274 /* 3275 * *offset can be negative, in this case we start finding DATA/HOLE from 3276 * the very start of the file. 3277 */ 3278 start = max_t(loff_t, 0, *offset); 3279 3280 lockstart = round_down(start, fs_info->sectorsize); 3281 lockend = round_up(i_size_read(inode), 3282 fs_info->sectorsize); 3283 if (lockend <= lockstart) 3284 lockend = lockstart + fs_info->sectorsize; 3285 lockend--; 3286 len = lockend - lockstart + 1; 3287 3288 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3289 &cached_state); 3290 3291 while (start < inode->i_size) { 3292 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, 3293 start, len, 0); 3294 if (IS_ERR(em)) { 3295 ret = PTR_ERR(em); 3296 em = NULL; 3297 break; 3298 } 3299 3300 if (whence == SEEK_HOLE && 3301 (em->block_start == EXTENT_MAP_HOLE || 3302 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3303 break; 3304 else if (whence == SEEK_DATA && 3305 (em->block_start != EXTENT_MAP_HOLE && 3306 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3307 break; 3308 3309 start = em->start + em->len; 3310 free_extent_map(em); 3311 em = NULL; 3312 cond_resched(); 3313 } 3314 free_extent_map(em); 3315 if (!ret) { 3316 if (whence == SEEK_DATA && start >= inode->i_size) 3317 ret = -ENXIO; 3318 else 3319 *offset = min_t(loff_t, start, inode->i_size); 3320 } 3321 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3322 &cached_state); 3323 return ret; 3324 } 3325 3326 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3327 { 3328 struct inode *inode = file->f_mapping->host; 3329 int ret; 3330 3331 inode_lock(inode); 3332 switch (whence) { 3333 case SEEK_END: 3334 case SEEK_CUR: 3335 offset = generic_file_llseek(file, offset, whence); 3336 goto out; 3337 case SEEK_DATA: 3338 case SEEK_HOLE: 3339 if (offset >= i_size_read(inode)) { 3340 inode_unlock(inode); 3341 return -ENXIO; 3342 } 3343 3344 ret = find_desired_extent(inode, &offset, whence); 3345 if (ret) { 3346 inode_unlock(inode); 3347 return ret; 3348 } 3349 } 3350 3351 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3352 out: 3353 inode_unlock(inode); 3354 return offset; 3355 } 3356 3357 static int btrfs_file_open(struct inode *inode, struct file *filp) 3358 { 3359 filp->f_mode |= FMODE_NOWAIT; 3360 return generic_file_open(inode, filp); 3361 } 3362 3363 const struct file_operations btrfs_file_operations = { 3364 .llseek = btrfs_file_llseek, 3365 .read_iter = generic_file_read_iter, 3366 .splice_read = generic_file_splice_read, 3367 .write_iter = btrfs_file_write_iter, 3368 .mmap = btrfs_file_mmap, 3369 .open = btrfs_file_open, 3370 .release = btrfs_release_file, 3371 .fsync = btrfs_sync_file, 3372 .fallocate = btrfs_fallocate, 3373 .unlocked_ioctl = btrfs_ioctl, 3374 #ifdef CONFIG_COMPAT 3375 .compat_ioctl = btrfs_compat_ioctl, 3376 #endif 3377 .clone_file_range = btrfs_clone_file_range, 3378 .dedupe_file_range = btrfs_dedupe_file_range, 3379 }; 3380 3381 void btrfs_auto_defrag_exit(void) 3382 { 3383 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3384 } 3385 3386 int __init btrfs_auto_defrag_init(void) 3387 { 3388 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3389 sizeof(struct inode_defrag), 0, 3390 SLAB_MEM_SPREAD, 3391 NULL); 3392 if (!btrfs_inode_defrag_cachep) 3393 return -ENOMEM; 3394 3395 return 0; 3396 } 3397 3398 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3399 { 3400 int ret; 3401 3402 /* 3403 * So with compression we will find and lock a dirty page and clear the 3404 * first one as dirty, setup an async extent, and immediately return 3405 * with the entire range locked but with nobody actually marked with 3406 * writeback. So we can't just filemap_write_and_wait_range() and 3407 * expect it to work since it will just kick off a thread to do the 3408 * actual work. So we need to call filemap_fdatawrite_range _again_ 3409 * since it will wait on the page lock, which won't be unlocked until 3410 * after the pages have been marked as writeback and so we're good to go 3411 * from there. We have to do this otherwise we'll miss the ordered 3412 * extents and that results in badness. Please Josef, do not think you 3413 * know better and pull this out at some point in the future, it is 3414 * right and you are wrong. 3415 */ 3416 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3417 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3418 &BTRFS_I(inode)->runtime_flags)) 3419 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3420 3421 return ret; 3422 } 3423