xref: /openbmc/linux/fs/btrfs/file.c (revision e23feb16)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "compat.h"
43 #include "volumes.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		if (need_resched()) {
277 			spin_unlock(&fs_info->defrag_inodes_lock);
278 			cond_resched();
279 			spin_lock(&fs_info->defrag_inodes_lock);
280 		}
281 
282 		node = rb_first(&fs_info->defrag_inodes);
283 	}
284 	spin_unlock(&fs_info->defrag_inodes_lock);
285 }
286 
287 #define BTRFS_DEFRAG_BATCH	1024
288 
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 				    struct inode_defrag *defrag)
291 {
292 	struct btrfs_root *inode_root;
293 	struct inode *inode;
294 	struct btrfs_key key;
295 	struct btrfs_ioctl_defrag_range_args range;
296 	int num_defrag;
297 	int index;
298 	int ret;
299 
300 	/* get the inode */
301 	key.objectid = defrag->root;
302 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
303 	key.offset = (u64)-1;
304 
305 	index = srcu_read_lock(&fs_info->subvol_srcu);
306 
307 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 	if (IS_ERR(inode_root)) {
309 		ret = PTR_ERR(inode_root);
310 		goto cleanup;
311 	}
312 
313 	key.objectid = defrag->ino;
314 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
315 	key.offset = 0;
316 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 	if (IS_ERR(inode)) {
318 		ret = PTR_ERR(inode);
319 		goto cleanup;
320 	}
321 	srcu_read_unlock(&fs_info->subvol_srcu, index);
322 
323 	/* do a chunk of defrag */
324 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
325 	memset(&range, 0, sizeof(range));
326 	range.len = (u64)-1;
327 	range.start = defrag->last_offset;
328 
329 	sb_start_write(fs_info->sb);
330 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 				       BTRFS_DEFRAG_BATCH);
332 	sb_end_write(fs_info->sb);
333 	/*
334 	 * if we filled the whole defrag batch, there
335 	 * must be more work to do.  Queue this defrag
336 	 * again
337 	 */
338 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
339 		defrag->last_offset = range.start;
340 		btrfs_requeue_inode_defrag(inode, defrag);
341 	} else if (defrag->last_offset && !defrag->cycled) {
342 		/*
343 		 * we didn't fill our defrag batch, but
344 		 * we didn't start at zero.  Make sure we loop
345 		 * around to the start of the file.
346 		 */
347 		defrag->last_offset = 0;
348 		defrag->cycled = 1;
349 		btrfs_requeue_inode_defrag(inode, defrag);
350 	} else {
351 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
352 	}
353 
354 	iput(inode);
355 	return 0;
356 cleanup:
357 	srcu_read_unlock(&fs_info->subvol_srcu, index);
358 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
359 	return ret;
360 }
361 
362 /*
363  * run through the list of inodes in the FS that need
364  * defragging
365  */
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367 {
368 	struct inode_defrag *defrag;
369 	u64 first_ino = 0;
370 	u64 root_objectid = 0;
371 
372 	atomic_inc(&fs_info->defrag_running);
373 	while(1) {
374 		/* Pause the auto defragger. */
375 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376 			     &fs_info->fs_state))
377 			break;
378 
379 		if (!__need_auto_defrag(fs_info->tree_root))
380 			break;
381 
382 		/* find an inode to defrag */
383 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384 						 first_ino);
385 		if (!defrag) {
386 			if (root_objectid || first_ino) {
387 				root_objectid = 0;
388 				first_ino = 0;
389 				continue;
390 			} else {
391 				break;
392 			}
393 		}
394 
395 		first_ino = defrag->ino + 1;
396 		root_objectid = defrag->root;
397 
398 		__btrfs_run_defrag_inode(fs_info, defrag);
399 	}
400 	atomic_dec(&fs_info->defrag_running);
401 
402 	/*
403 	 * during unmount, we use the transaction_wait queue to
404 	 * wait for the defragger to stop
405 	 */
406 	wake_up(&fs_info->transaction_wait);
407 	return 0;
408 }
409 
410 /* simple helper to fault in pages and copy.  This should go away
411  * and be replaced with calls into generic code.
412  */
413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414 					 size_t write_bytes,
415 					 struct page **prepared_pages,
416 					 struct iov_iter *i)
417 {
418 	size_t copied = 0;
419 	size_t total_copied = 0;
420 	int pg = 0;
421 	int offset = pos & (PAGE_CACHE_SIZE - 1);
422 
423 	while (write_bytes > 0) {
424 		size_t count = min_t(size_t,
425 				     PAGE_CACHE_SIZE - offset, write_bytes);
426 		struct page *page = prepared_pages[pg];
427 		/*
428 		 * Copy data from userspace to the current page
429 		 *
430 		 * Disable pagefault to avoid recursive lock since
431 		 * the pages are already locked
432 		 */
433 		pagefault_disable();
434 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
435 		pagefault_enable();
436 
437 		/* Flush processor's dcache for this page */
438 		flush_dcache_page(page);
439 
440 		/*
441 		 * if we get a partial write, we can end up with
442 		 * partially up to date pages.  These add
443 		 * a lot of complexity, so make sure they don't
444 		 * happen by forcing this copy to be retried.
445 		 *
446 		 * The rest of the btrfs_file_write code will fall
447 		 * back to page at a time copies after we return 0.
448 		 */
449 		if (!PageUptodate(page) && copied < count)
450 			copied = 0;
451 
452 		iov_iter_advance(i, copied);
453 		write_bytes -= copied;
454 		total_copied += copied;
455 
456 		/* Return to btrfs_file_aio_write to fault page */
457 		if (unlikely(copied == 0))
458 			break;
459 
460 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
461 			offset += copied;
462 		} else {
463 			pg++;
464 			offset = 0;
465 		}
466 	}
467 	return total_copied;
468 }
469 
470 /*
471  * unlocks pages after btrfs_file_write is done with them
472  */
473 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
474 {
475 	size_t i;
476 	for (i = 0; i < num_pages; i++) {
477 		/* page checked is some magic around finding pages that
478 		 * have been modified without going through btrfs_set_page_dirty
479 		 * clear it here
480 		 */
481 		ClearPageChecked(pages[i]);
482 		unlock_page(pages[i]);
483 		mark_page_accessed(pages[i]);
484 		page_cache_release(pages[i]);
485 	}
486 }
487 
488 /*
489  * after copy_from_user, pages need to be dirtied and we need to make
490  * sure holes are created between the current EOF and the start of
491  * any next extents (if required).
492  *
493  * this also makes the decision about creating an inline extent vs
494  * doing real data extents, marking pages dirty and delalloc as required.
495  */
496 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
497 			     struct page **pages, size_t num_pages,
498 			     loff_t pos, size_t write_bytes,
499 			     struct extent_state **cached)
500 {
501 	int err = 0;
502 	int i;
503 	u64 num_bytes;
504 	u64 start_pos;
505 	u64 end_of_last_block;
506 	u64 end_pos = pos + write_bytes;
507 	loff_t isize = i_size_read(inode);
508 
509 	start_pos = pos & ~((u64)root->sectorsize - 1);
510 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
511 
512 	end_of_last_block = start_pos + num_bytes - 1;
513 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
514 					cached);
515 	if (err)
516 		return err;
517 
518 	for (i = 0; i < num_pages; i++) {
519 		struct page *p = pages[i];
520 		SetPageUptodate(p);
521 		ClearPageChecked(p);
522 		set_page_dirty(p);
523 	}
524 
525 	/*
526 	 * we've only changed i_size in ram, and we haven't updated
527 	 * the disk i_size.  There is no need to log the inode
528 	 * at this time.
529 	 */
530 	if (end_pos > isize)
531 		i_size_write(inode, end_pos);
532 	return 0;
533 }
534 
535 /*
536  * this drops all the extents in the cache that intersect the range
537  * [start, end].  Existing extents are split as required.
538  */
539 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
540 			     int skip_pinned)
541 {
542 	struct extent_map *em;
543 	struct extent_map *split = NULL;
544 	struct extent_map *split2 = NULL;
545 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
546 	u64 len = end - start + 1;
547 	u64 gen;
548 	int ret;
549 	int testend = 1;
550 	unsigned long flags;
551 	int compressed = 0;
552 	bool modified;
553 
554 	WARN_ON(end < start);
555 	if (end == (u64)-1) {
556 		len = (u64)-1;
557 		testend = 0;
558 	}
559 	while (1) {
560 		int no_splits = 0;
561 
562 		modified = false;
563 		if (!split)
564 			split = alloc_extent_map();
565 		if (!split2)
566 			split2 = alloc_extent_map();
567 		if (!split || !split2)
568 			no_splits = 1;
569 
570 		write_lock(&em_tree->lock);
571 		em = lookup_extent_mapping(em_tree, start, len);
572 		if (!em) {
573 			write_unlock(&em_tree->lock);
574 			break;
575 		}
576 		flags = em->flags;
577 		gen = em->generation;
578 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
579 			if (testend && em->start + em->len >= start + len) {
580 				free_extent_map(em);
581 				write_unlock(&em_tree->lock);
582 				break;
583 			}
584 			start = em->start + em->len;
585 			if (testend)
586 				len = start + len - (em->start + em->len);
587 			free_extent_map(em);
588 			write_unlock(&em_tree->lock);
589 			continue;
590 		}
591 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
592 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
593 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
594 		modified = !list_empty(&em->list);
595 		remove_extent_mapping(em_tree, em);
596 		if (no_splits)
597 			goto next;
598 
599 		if (em->start < start) {
600 			split->start = em->start;
601 			split->len = start - em->start;
602 
603 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
604 				split->orig_start = em->orig_start;
605 				split->block_start = em->block_start;
606 
607 				if (compressed)
608 					split->block_len = em->block_len;
609 				else
610 					split->block_len = split->len;
611 				split->orig_block_len = max(split->block_len,
612 						em->orig_block_len);
613 				split->ram_bytes = em->ram_bytes;
614 			} else {
615 				split->orig_start = split->start;
616 				split->block_len = 0;
617 				split->block_start = em->block_start;
618 				split->orig_block_len = 0;
619 				split->ram_bytes = split->len;
620 			}
621 
622 			split->generation = gen;
623 			split->bdev = em->bdev;
624 			split->flags = flags;
625 			split->compress_type = em->compress_type;
626 			ret = add_extent_mapping(em_tree, split, modified);
627 			BUG_ON(ret); /* Logic error */
628 			free_extent_map(split);
629 			split = split2;
630 			split2 = NULL;
631 		}
632 		if (testend && em->start + em->len > start + len) {
633 			u64 diff = start + len - em->start;
634 
635 			split->start = start + len;
636 			split->len = em->start + em->len - (start + len);
637 			split->bdev = em->bdev;
638 			split->flags = flags;
639 			split->compress_type = em->compress_type;
640 			split->generation = gen;
641 
642 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
643 				split->orig_block_len = max(em->block_len,
644 						    em->orig_block_len);
645 
646 				split->ram_bytes = em->ram_bytes;
647 				if (compressed) {
648 					split->block_len = em->block_len;
649 					split->block_start = em->block_start;
650 					split->orig_start = em->orig_start;
651 				} else {
652 					split->block_len = split->len;
653 					split->block_start = em->block_start
654 						+ diff;
655 					split->orig_start = em->orig_start;
656 				}
657 			} else {
658 				split->ram_bytes = split->len;
659 				split->orig_start = split->start;
660 				split->block_len = 0;
661 				split->block_start = em->block_start;
662 				split->orig_block_len = 0;
663 			}
664 
665 			ret = add_extent_mapping(em_tree, split, modified);
666 			BUG_ON(ret); /* Logic error */
667 			free_extent_map(split);
668 			split = NULL;
669 		}
670 next:
671 		write_unlock(&em_tree->lock);
672 
673 		/* once for us */
674 		free_extent_map(em);
675 		/* once for the tree*/
676 		free_extent_map(em);
677 	}
678 	if (split)
679 		free_extent_map(split);
680 	if (split2)
681 		free_extent_map(split2);
682 }
683 
684 /*
685  * this is very complex, but the basic idea is to drop all extents
686  * in the range start - end.  hint_block is filled in with a block number
687  * that would be a good hint to the block allocator for this file.
688  *
689  * If an extent intersects the range but is not entirely inside the range
690  * it is either truncated or split.  Anything entirely inside the range
691  * is deleted from the tree.
692  */
693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694 			 struct btrfs_root *root, struct inode *inode,
695 			 struct btrfs_path *path, u64 start, u64 end,
696 			 u64 *drop_end, int drop_cache)
697 {
698 	struct extent_buffer *leaf;
699 	struct btrfs_file_extent_item *fi;
700 	struct btrfs_key key;
701 	struct btrfs_key new_key;
702 	u64 ino = btrfs_ino(inode);
703 	u64 search_start = start;
704 	u64 disk_bytenr = 0;
705 	u64 num_bytes = 0;
706 	u64 extent_offset = 0;
707 	u64 extent_end = 0;
708 	int del_nr = 0;
709 	int del_slot = 0;
710 	int extent_type;
711 	int recow;
712 	int ret;
713 	int modify_tree = -1;
714 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
715 	int found = 0;
716 
717 	if (drop_cache)
718 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
719 
720 	if (start >= BTRFS_I(inode)->disk_i_size)
721 		modify_tree = 0;
722 
723 	while (1) {
724 		recow = 0;
725 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
726 					       search_start, modify_tree);
727 		if (ret < 0)
728 			break;
729 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
730 			leaf = path->nodes[0];
731 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
732 			if (key.objectid == ino &&
733 			    key.type == BTRFS_EXTENT_DATA_KEY)
734 				path->slots[0]--;
735 		}
736 		ret = 0;
737 next_slot:
738 		leaf = path->nodes[0];
739 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
740 			BUG_ON(del_nr > 0);
741 			ret = btrfs_next_leaf(root, path);
742 			if (ret < 0)
743 				break;
744 			if (ret > 0) {
745 				ret = 0;
746 				break;
747 			}
748 			leaf = path->nodes[0];
749 			recow = 1;
750 		}
751 
752 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
753 		if (key.objectid > ino ||
754 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
755 			break;
756 
757 		fi = btrfs_item_ptr(leaf, path->slots[0],
758 				    struct btrfs_file_extent_item);
759 		extent_type = btrfs_file_extent_type(leaf, fi);
760 
761 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
762 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
763 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
764 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
765 			extent_offset = btrfs_file_extent_offset(leaf, fi);
766 			extent_end = key.offset +
767 				btrfs_file_extent_num_bytes(leaf, fi);
768 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
769 			extent_end = key.offset +
770 				btrfs_file_extent_inline_len(leaf, fi);
771 		} else {
772 			WARN_ON(1);
773 			extent_end = search_start;
774 		}
775 
776 		if (extent_end <= search_start) {
777 			path->slots[0]++;
778 			goto next_slot;
779 		}
780 
781 		found = 1;
782 		search_start = max(key.offset, start);
783 		if (recow || !modify_tree) {
784 			modify_tree = -1;
785 			btrfs_release_path(path);
786 			continue;
787 		}
788 
789 		/*
790 		 *     | - range to drop - |
791 		 *  | -------- extent -------- |
792 		 */
793 		if (start > key.offset && end < extent_end) {
794 			BUG_ON(del_nr > 0);
795 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
796 
797 			memcpy(&new_key, &key, sizeof(new_key));
798 			new_key.offset = start;
799 			ret = btrfs_duplicate_item(trans, root, path,
800 						   &new_key);
801 			if (ret == -EAGAIN) {
802 				btrfs_release_path(path);
803 				continue;
804 			}
805 			if (ret < 0)
806 				break;
807 
808 			leaf = path->nodes[0];
809 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
810 					    struct btrfs_file_extent_item);
811 			btrfs_set_file_extent_num_bytes(leaf, fi,
812 							start - key.offset);
813 
814 			fi = btrfs_item_ptr(leaf, path->slots[0],
815 					    struct btrfs_file_extent_item);
816 
817 			extent_offset += start - key.offset;
818 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
819 			btrfs_set_file_extent_num_bytes(leaf, fi,
820 							extent_end - start);
821 			btrfs_mark_buffer_dirty(leaf);
822 
823 			if (update_refs && disk_bytenr > 0) {
824 				ret = btrfs_inc_extent_ref(trans, root,
825 						disk_bytenr, num_bytes, 0,
826 						root->root_key.objectid,
827 						new_key.objectid,
828 						start - extent_offset, 0);
829 				BUG_ON(ret); /* -ENOMEM */
830 			}
831 			key.offset = start;
832 		}
833 		/*
834 		 *  | ---- range to drop ----- |
835 		 *      | -------- extent -------- |
836 		 */
837 		if (start <= key.offset && end < extent_end) {
838 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
839 
840 			memcpy(&new_key, &key, sizeof(new_key));
841 			new_key.offset = end;
842 			btrfs_set_item_key_safe(root, path, &new_key);
843 
844 			extent_offset += end - key.offset;
845 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
846 			btrfs_set_file_extent_num_bytes(leaf, fi,
847 							extent_end - end);
848 			btrfs_mark_buffer_dirty(leaf);
849 			if (update_refs && disk_bytenr > 0)
850 				inode_sub_bytes(inode, end - key.offset);
851 			break;
852 		}
853 
854 		search_start = extent_end;
855 		/*
856 		 *       | ---- range to drop ----- |
857 		 *  | -------- extent -------- |
858 		 */
859 		if (start > key.offset && end >= extent_end) {
860 			BUG_ON(del_nr > 0);
861 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
862 
863 			btrfs_set_file_extent_num_bytes(leaf, fi,
864 							start - key.offset);
865 			btrfs_mark_buffer_dirty(leaf);
866 			if (update_refs && disk_bytenr > 0)
867 				inode_sub_bytes(inode, extent_end - start);
868 			if (end == extent_end)
869 				break;
870 
871 			path->slots[0]++;
872 			goto next_slot;
873 		}
874 
875 		/*
876 		 *  | ---- range to drop ----- |
877 		 *    | ------ extent ------ |
878 		 */
879 		if (start <= key.offset && end >= extent_end) {
880 			if (del_nr == 0) {
881 				del_slot = path->slots[0];
882 				del_nr = 1;
883 			} else {
884 				BUG_ON(del_slot + del_nr != path->slots[0]);
885 				del_nr++;
886 			}
887 
888 			if (update_refs &&
889 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
890 				inode_sub_bytes(inode,
891 						extent_end - key.offset);
892 				extent_end = ALIGN(extent_end,
893 						   root->sectorsize);
894 			} else if (update_refs && disk_bytenr > 0) {
895 				ret = btrfs_free_extent(trans, root,
896 						disk_bytenr, num_bytes, 0,
897 						root->root_key.objectid,
898 						key.objectid, key.offset -
899 						extent_offset, 0);
900 				BUG_ON(ret); /* -ENOMEM */
901 				inode_sub_bytes(inode,
902 						extent_end - key.offset);
903 			}
904 
905 			if (end == extent_end)
906 				break;
907 
908 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
909 				path->slots[0]++;
910 				goto next_slot;
911 			}
912 
913 			ret = btrfs_del_items(trans, root, path, del_slot,
914 					      del_nr);
915 			if (ret) {
916 				btrfs_abort_transaction(trans, root, ret);
917 				break;
918 			}
919 
920 			del_nr = 0;
921 			del_slot = 0;
922 
923 			btrfs_release_path(path);
924 			continue;
925 		}
926 
927 		BUG_ON(1);
928 	}
929 
930 	if (!ret && del_nr > 0) {
931 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
932 		if (ret)
933 			btrfs_abort_transaction(trans, root, ret);
934 	}
935 
936 	if (drop_end)
937 		*drop_end = found ? min(end, extent_end) : end;
938 	btrfs_release_path(path);
939 	return ret;
940 }
941 
942 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
943 		       struct btrfs_root *root, struct inode *inode, u64 start,
944 		       u64 end, int drop_cache)
945 {
946 	struct btrfs_path *path;
947 	int ret;
948 
949 	path = btrfs_alloc_path();
950 	if (!path)
951 		return -ENOMEM;
952 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
953 				   drop_cache);
954 	btrfs_free_path(path);
955 	return ret;
956 }
957 
958 static int extent_mergeable(struct extent_buffer *leaf, int slot,
959 			    u64 objectid, u64 bytenr, u64 orig_offset,
960 			    u64 *start, u64 *end)
961 {
962 	struct btrfs_file_extent_item *fi;
963 	struct btrfs_key key;
964 	u64 extent_end;
965 
966 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
967 		return 0;
968 
969 	btrfs_item_key_to_cpu(leaf, &key, slot);
970 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
971 		return 0;
972 
973 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
974 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
975 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
976 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
977 	    btrfs_file_extent_compression(leaf, fi) ||
978 	    btrfs_file_extent_encryption(leaf, fi) ||
979 	    btrfs_file_extent_other_encoding(leaf, fi))
980 		return 0;
981 
982 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
983 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
984 		return 0;
985 
986 	*start = key.offset;
987 	*end = extent_end;
988 	return 1;
989 }
990 
991 /*
992  * Mark extent in the range start - end as written.
993  *
994  * This changes extent type from 'pre-allocated' to 'regular'. If only
995  * part of extent is marked as written, the extent will be split into
996  * two or three.
997  */
998 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
999 			      struct inode *inode, u64 start, u64 end)
1000 {
1001 	struct btrfs_root *root = BTRFS_I(inode)->root;
1002 	struct extent_buffer *leaf;
1003 	struct btrfs_path *path;
1004 	struct btrfs_file_extent_item *fi;
1005 	struct btrfs_key key;
1006 	struct btrfs_key new_key;
1007 	u64 bytenr;
1008 	u64 num_bytes;
1009 	u64 extent_end;
1010 	u64 orig_offset;
1011 	u64 other_start;
1012 	u64 other_end;
1013 	u64 split;
1014 	int del_nr = 0;
1015 	int del_slot = 0;
1016 	int recow;
1017 	int ret;
1018 	u64 ino = btrfs_ino(inode);
1019 
1020 	path = btrfs_alloc_path();
1021 	if (!path)
1022 		return -ENOMEM;
1023 again:
1024 	recow = 0;
1025 	split = start;
1026 	key.objectid = ino;
1027 	key.type = BTRFS_EXTENT_DATA_KEY;
1028 	key.offset = split;
1029 
1030 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1031 	if (ret < 0)
1032 		goto out;
1033 	if (ret > 0 && path->slots[0] > 0)
1034 		path->slots[0]--;
1035 
1036 	leaf = path->nodes[0];
1037 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1038 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1039 	fi = btrfs_item_ptr(leaf, path->slots[0],
1040 			    struct btrfs_file_extent_item);
1041 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1042 	       BTRFS_FILE_EXTENT_PREALLOC);
1043 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1044 	BUG_ON(key.offset > start || extent_end < end);
1045 
1046 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1047 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1048 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1049 	memcpy(&new_key, &key, sizeof(new_key));
1050 
1051 	if (start == key.offset && end < extent_end) {
1052 		other_start = 0;
1053 		other_end = start;
1054 		if (extent_mergeable(leaf, path->slots[0] - 1,
1055 				     ino, bytenr, orig_offset,
1056 				     &other_start, &other_end)) {
1057 			new_key.offset = end;
1058 			btrfs_set_item_key_safe(root, path, &new_key);
1059 			fi = btrfs_item_ptr(leaf, path->slots[0],
1060 					    struct btrfs_file_extent_item);
1061 			btrfs_set_file_extent_generation(leaf, fi,
1062 							 trans->transid);
1063 			btrfs_set_file_extent_num_bytes(leaf, fi,
1064 							extent_end - end);
1065 			btrfs_set_file_extent_offset(leaf, fi,
1066 						     end - orig_offset);
1067 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1068 					    struct btrfs_file_extent_item);
1069 			btrfs_set_file_extent_generation(leaf, fi,
1070 							 trans->transid);
1071 			btrfs_set_file_extent_num_bytes(leaf, fi,
1072 							end - other_start);
1073 			btrfs_mark_buffer_dirty(leaf);
1074 			goto out;
1075 		}
1076 	}
1077 
1078 	if (start > key.offset && end == extent_end) {
1079 		other_start = end;
1080 		other_end = 0;
1081 		if (extent_mergeable(leaf, path->slots[0] + 1,
1082 				     ino, bytenr, orig_offset,
1083 				     &other_start, &other_end)) {
1084 			fi = btrfs_item_ptr(leaf, path->slots[0],
1085 					    struct btrfs_file_extent_item);
1086 			btrfs_set_file_extent_num_bytes(leaf, fi,
1087 							start - key.offset);
1088 			btrfs_set_file_extent_generation(leaf, fi,
1089 							 trans->transid);
1090 			path->slots[0]++;
1091 			new_key.offset = start;
1092 			btrfs_set_item_key_safe(root, path, &new_key);
1093 
1094 			fi = btrfs_item_ptr(leaf, path->slots[0],
1095 					    struct btrfs_file_extent_item);
1096 			btrfs_set_file_extent_generation(leaf, fi,
1097 							 trans->transid);
1098 			btrfs_set_file_extent_num_bytes(leaf, fi,
1099 							other_end - start);
1100 			btrfs_set_file_extent_offset(leaf, fi,
1101 						     start - orig_offset);
1102 			btrfs_mark_buffer_dirty(leaf);
1103 			goto out;
1104 		}
1105 	}
1106 
1107 	while (start > key.offset || end < extent_end) {
1108 		if (key.offset == start)
1109 			split = end;
1110 
1111 		new_key.offset = split;
1112 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1113 		if (ret == -EAGAIN) {
1114 			btrfs_release_path(path);
1115 			goto again;
1116 		}
1117 		if (ret < 0) {
1118 			btrfs_abort_transaction(trans, root, ret);
1119 			goto out;
1120 		}
1121 
1122 		leaf = path->nodes[0];
1123 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1124 				    struct btrfs_file_extent_item);
1125 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1126 		btrfs_set_file_extent_num_bytes(leaf, fi,
1127 						split - key.offset);
1128 
1129 		fi = btrfs_item_ptr(leaf, path->slots[0],
1130 				    struct btrfs_file_extent_item);
1131 
1132 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1133 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1134 		btrfs_set_file_extent_num_bytes(leaf, fi,
1135 						extent_end - split);
1136 		btrfs_mark_buffer_dirty(leaf);
1137 
1138 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1139 					   root->root_key.objectid,
1140 					   ino, orig_offset, 0);
1141 		BUG_ON(ret); /* -ENOMEM */
1142 
1143 		if (split == start) {
1144 			key.offset = start;
1145 		} else {
1146 			BUG_ON(start != key.offset);
1147 			path->slots[0]--;
1148 			extent_end = end;
1149 		}
1150 		recow = 1;
1151 	}
1152 
1153 	other_start = end;
1154 	other_end = 0;
1155 	if (extent_mergeable(leaf, path->slots[0] + 1,
1156 			     ino, bytenr, orig_offset,
1157 			     &other_start, &other_end)) {
1158 		if (recow) {
1159 			btrfs_release_path(path);
1160 			goto again;
1161 		}
1162 		extent_end = other_end;
1163 		del_slot = path->slots[0] + 1;
1164 		del_nr++;
1165 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1166 					0, root->root_key.objectid,
1167 					ino, orig_offset, 0);
1168 		BUG_ON(ret); /* -ENOMEM */
1169 	}
1170 	other_start = 0;
1171 	other_end = start;
1172 	if (extent_mergeable(leaf, path->slots[0] - 1,
1173 			     ino, bytenr, orig_offset,
1174 			     &other_start, &other_end)) {
1175 		if (recow) {
1176 			btrfs_release_path(path);
1177 			goto again;
1178 		}
1179 		key.offset = other_start;
1180 		del_slot = path->slots[0];
1181 		del_nr++;
1182 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1183 					0, root->root_key.objectid,
1184 					ino, orig_offset, 0);
1185 		BUG_ON(ret); /* -ENOMEM */
1186 	}
1187 	if (del_nr == 0) {
1188 		fi = btrfs_item_ptr(leaf, path->slots[0],
1189 			   struct btrfs_file_extent_item);
1190 		btrfs_set_file_extent_type(leaf, fi,
1191 					   BTRFS_FILE_EXTENT_REG);
1192 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193 		btrfs_mark_buffer_dirty(leaf);
1194 	} else {
1195 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1196 			   struct btrfs_file_extent_item);
1197 		btrfs_set_file_extent_type(leaf, fi,
1198 					   BTRFS_FILE_EXTENT_REG);
1199 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200 		btrfs_set_file_extent_num_bytes(leaf, fi,
1201 						extent_end - key.offset);
1202 		btrfs_mark_buffer_dirty(leaf);
1203 
1204 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1205 		if (ret < 0) {
1206 			btrfs_abort_transaction(trans, root, ret);
1207 			goto out;
1208 		}
1209 	}
1210 out:
1211 	btrfs_free_path(path);
1212 	return 0;
1213 }
1214 
1215 /*
1216  * on error we return an unlocked page and the error value
1217  * on success we return a locked page and 0
1218  */
1219 static int prepare_uptodate_page(struct page *page, u64 pos,
1220 				 bool force_uptodate)
1221 {
1222 	int ret = 0;
1223 
1224 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1225 	    !PageUptodate(page)) {
1226 		ret = btrfs_readpage(NULL, page);
1227 		if (ret)
1228 			return ret;
1229 		lock_page(page);
1230 		if (!PageUptodate(page)) {
1231 			unlock_page(page);
1232 			return -EIO;
1233 		}
1234 	}
1235 	return 0;
1236 }
1237 
1238 /*
1239  * this gets pages into the page cache and locks them down, it also properly
1240  * waits for data=ordered extents to finish before allowing the pages to be
1241  * modified.
1242  */
1243 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1244 			 struct page **pages, size_t num_pages,
1245 			 loff_t pos, unsigned long first_index,
1246 			 size_t write_bytes, bool force_uptodate)
1247 {
1248 	struct extent_state *cached_state = NULL;
1249 	int i;
1250 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1251 	struct inode *inode = file_inode(file);
1252 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1253 	int err = 0;
1254 	int faili = 0;
1255 	u64 start_pos;
1256 	u64 last_pos;
1257 
1258 	start_pos = pos & ~((u64)root->sectorsize - 1);
1259 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1260 
1261 again:
1262 	for (i = 0; i < num_pages; i++) {
1263 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1264 					       mask | __GFP_WRITE);
1265 		if (!pages[i]) {
1266 			faili = i - 1;
1267 			err = -ENOMEM;
1268 			goto fail;
1269 		}
1270 
1271 		if (i == 0)
1272 			err = prepare_uptodate_page(pages[i], pos,
1273 						    force_uptodate);
1274 		if (i == num_pages - 1)
1275 			err = prepare_uptodate_page(pages[i],
1276 						    pos + write_bytes, false);
1277 		if (err) {
1278 			page_cache_release(pages[i]);
1279 			faili = i - 1;
1280 			goto fail;
1281 		}
1282 		wait_on_page_writeback(pages[i]);
1283 	}
1284 	err = 0;
1285 	if (start_pos < inode->i_size) {
1286 		struct btrfs_ordered_extent *ordered;
1287 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1288 				 start_pos, last_pos - 1, 0, &cached_state);
1289 		ordered = btrfs_lookup_first_ordered_extent(inode,
1290 							    last_pos - 1);
1291 		if (ordered &&
1292 		    ordered->file_offset + ordered->len > start_pos &&
1293 		    ordered->file_offset < last_pos) {
1294 			btrfs_put_ordered_extent(ordered);
1295 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296 					     start_pos, last_pos - 1,
1297 					     &cached_state, GFP_NOFS);
1298 			for (i = 0; i < num_pages; i++) {
1299 				unlock_page(pages[i]);
1300 				page_cache_release(pages[i]);
1301 			}
1302 			btrfs_wait_ordered_range(inode, start_pos,
1303 						 last_pos - start_pos);
1304 			goto again;
1305 		}
1306 		if (ordered)
1307 			btrfs_put_ordered_extent(ordered);
1308 
1309 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1310 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1311 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1312 				  0, 0, &cached_state, GFP_NOFS);
1313 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1314 				     start_pos, last_pos - 1, &cached_state,
1315 				     GFP_NOFS);
1316 	}
1317 	for (i = 0; i < num_pages; i++) {
1318 		if (clear_page_dirty_for_io(pages[i]))
1319 			account_page_redirty(pages[i]);
1320 		set_page_extent_mapped(pages[i]);
1321 		WARN_ON(!PageLocked(pages[i]));
1322 	}
1323 	return 0;
1324 fail:
1325 	while (faili >= 0) {
1326 		unlock_page(pages[faili]);
1327 		page_cache_release(pages[faili]);
1328 		faili--;
1329 	}
1330 	return err;
1331 
1332 }
1333 
1334 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1335 				    size_t *write_bytes)
1336 {
1337 	struct btrfs_root *root = BTRFS_I(inode)->root;
1338 	struct btrfs_ordered_extent *ordered;
1339 	u64 lockstart, lockend;
1340 	u64 num_bytes;
1341 	int ret;
1342 
1343 	lockstart = round_down(pos, root->sectorsize);
1344 	lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1345 
1346 	while (1) {
1347 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1348 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1349 						     lockend - lockstart + 1);
1350 		if (!ordered) {
1351 			break;
1352 		}
1353 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1354 		btrfs_start_ordered_extent(inode, ordered, 1);
1355 		btrfs_put_ordered_extent(ordered);
1356 	}
1357 
1358 	num_bytes = lockend - lockstart + 1;
1359 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1360 	if (ret <= 0) {
1361 		ret = 0;
1362 	} else {
1363 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1364 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1365 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1366 				 NULL, GFP_NOFS);
1367 		*write_bytes = min_t(size_t, *write_bytes, num_bytes);
1368 	}
1369 
1370 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1371 
1372 	return ret;
1373 }
1374 
1375 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1376 					       struct iov_iter *i,
1377 					       loff_t pos)
1378 {
1379 	struct inode *inode = file_inode(file);
1380 	struct btrfs_root *root = BTRFS_I(inode)->root;
1381 	struct page **pages = NULL;
1382 	u64 release_bytes = 0;
1383 	unsigned long first_index;
1384 	size_t num_written = 0;
1385 	int nrptrs;
1386 	int ret = 0;
1387 	bool only_release_metadata = false;
1388 	bool force_page_uptodate = false;
1389 
1390 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1391 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1392 		     (sizeof(struct page *)));
1393 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1394 	nrptrs = max(nrptrs, 8);
1395 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1396 	if (!pages)
1397 		return -ENOMEM;
1398 
1399 	first_index = pos >> PAGE_CACHE_SHIFT;
1400 
1401 	while (iov_iter_count(i) > 0) {
1402 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1403 		size_t write_bytes = min(iov_iter_count(i),
1404 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1405 					 offset);
1406 		size_t num_pages = (write_bytes + offset +
1407 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1408 		size_t reserve_bytes;
1409 		size_t dirty_pages;
1410 		size_t copied;
1411 
1412 		WARN_ON(num_pages > nrptrs);
1413 
1414 		/*
1415 		 * Fault pages before locking them in prepare_pages
1416 		 * to avoid recursive lock
1417 		 */
1418 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1419 			ret = -EFAULT;
1420 			break;
1421 		}
1422 
1423 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1424 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1425 		if (ret == -ENOSPC &&
1426 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1427 					      BTRFS_INODE_PREALLOC))) {
1428 			ret = check_can_nocow(inode, pos, &write_bytes);
1429 			if (ret > 0) {
1430 				only_release_metadata = true;
1431 				/*
1432 				 * our prealloc extent may be smaller than
1433 				 * write_bytes, so scale down.
1434 				 */
1435 				num_pages = (write_bytes + offset +
1436 					     PAGE_CACHE_SIZE - 1) >>
1437 					PAGE_CACHE_SHIFT;
1438 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1439 				ret = 0;
1440 			} else {
1441 				ret = -ENOSPC;
1442 			}
1443 		}
1444 
1445 		if (ret)
1446 			break;
1447 
1448 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1449 		if (ret) {
1450 			if (!only_release_metadata)
1451 				btrfs_free_reserved_data_space(inode,
1452 							       reserve_bytes);
1453 			break;
1454 		}
1455 
1456 		release_bytes = reserve_bytes;
1457 
1458 		/*
1459 		 * This is going to setup the pages array with the number of
1460 		 * pages we want, so we don't really need to worry about the
1461 		 * contents of pages from loop to loop
1462 		 */
1463 		ret = prepare_pages(root, file, pages, num_pages,
1464 				    pos, first_index, write_bytes,
1465 				    force_page_uptodate);
1466 		if (ret)
1467 			break;
1468 
1469 		copied = btrfs_copy_from_user(pos, num_pages,
1470 					   write_bytes, pages, i);
1471 
1472 		/*
1473 		 * if we have trouble faulting in the pages, fall
1474 		 * back to one page at a time
1475 		 */
1476 		if (copied < write_bytes)
1477 			nrptrs = 1;
1478 
1479 		if (copied == 0) {
1480 			force_page_uptodate = true;
1481 			dirty_pages = 0;
1482 		} else {
1483 			force_page_uptodate = false;
1484 			dirty_pages = (copied + offset +
1485 				       PAGE_CACHE_SIZE - 1) >>
1486 				       PAGE_CACHE_SHIFT;
1487 		}
1488 
1489 		/*
1490 		 * If we had a short copy we need to release the excess delaloc
1491 		 * bytes we reserved.  We need to increment outstanding_extents
1492 		 * because btrfs_delalloc_release_space will decrement it, but
1493 		 * we still have an outstanding extent for the chunk we actually
1494 		 * managed to copy.
1495 		 */
1496 		if (num_pages > dirty_pages) {
1497 			release_bytes = (num_pages - dirty_pages) <<
1498 				PAGE_CACHE_SHIFT;
1499 			if (copied > 0) {
1500 				spin_lock(&BTRFS_I(inode)->lock);
1501 				BTRFS_I(inode)->outstanding_extents++;
1502 				spin_unlock(&BTRFS_I(inode)->lock);
1503 			}
1504 			if (only_release_metadata)
1505 				btrfs_delalloc_release_metadata(inode,
1506 								release_bytes);
1507 			else
1508 				btrfs_delalloc_release_space(inode,
1509 							     release_bytes);
1510 		}
1511 
1512 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1513 		if (copied > 0) {
1514 			ret = btrfs_dirty_pages(root, inode, pages,
1515 						dirty_pages, pos, copied,
1516 						NULL);
1517 			if (ret) {
1518 				btrfs_drop_pages(pages, num_pages);
1519 				break;
1520 			}
1521 		}
1522 
1523 		release_bytes = 0;
1524 		btrfs_drop_pages(pages, num_pages);
1525 
1526 		if (only_release_metadata && copied > 0) {
1527 			u64 lockstart = round_down(pos, root->sectorsize);
1528 			u64 lockend = lockstart +
1529 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1530 
1531 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1532 				       lockend, EXTENT_NORESERVE, NULL,
1533 				       NULL, GFP_NOFS);
1534 			only_release_metadata = false;
1535 		}
1536 
1537 		cond_resched();
1538 
1539 		balance_dirty_pages_ratelimited(inode->i_mapping);
1540 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1541 			btrfs_btree_balance_dirty(root);
1542 
1543 		pos += copied;
1544 		num_written += copied;
1545 	}
1546 
1547 	kfree(pages);
1548 
1549 	if (release_bytes) {
1550 		if (only_release_metadata)
1551 			btrfs_delalloc_release_metadata(inode, release_bytes);
1552 		else
1553 			btrfs_delalloc_release_space(inode, release_bytes);
1554 	}
1555 
1556 	return num_written ? num_written : ret;
1557 }
1558 
1559 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1560 				    const struct iovec *iov,
1561 				    unsigned long nr_segs, loff_t pos,
1562 				    loff_t *ppos, size_t count, size_t ocount)
1563 {
1564 	struct file *file = iocb->ki_filp;
1565 	struct iov_iter i;
1566 	ssize_t written;
1567 	ssize_t written_buffered;
1568 	loff_t endbyte;
1569 	int err;
1570 
1571 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1572 					    count, ocount);
1573 
1574 	if (written < 0 || written == count)
1575 		return written;
1576 
1577 	pos += written;
1578 	count -= written;
1579 	iov_iter_init(&i, iov, nr_segs, count, written);
1580 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1581 	if (written_buffered < 0) {
1582 		err = written_buffered;
1583 		goto out;
1584 	}
1585 	endbyte = pos + written_buffered - 1;
1586 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1587 	if (err)
1588 		goto out;
1589 	written += written_buffered;
1590 	*ppos = pos + written_buffered;
1591 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1592 				 endbyte >> PAGE_CACHE_SHIFT);
1593 out:
1594 	return written ? written : err;
1595 }
1596 
1597 static void update_time_for_write(struct inode *inode)
1598 {
1599 	struct timespec now;
1600 
1601 	if (IS_NOCMTIME(inode))
1602 		return;
1603 
1604 	now = current_fs_time(inode->i_sb);
1605 	if (!timespec_equal(&inode->i_mtime, &now))
1606 		inode->i_mtime = now;
1607 
1608 	if (!timespec_equal(&inode->i_ctime, &now))
1609 		inode->i_ctime = now;
1610 
1611 	if (IS_I_VERSION(inode))
1612 		inode_inc_iversion(inode);
1613 }
1614 
1615 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1616 				    const struct iovec *iov,
1617 				    unsigned long nr_segs, loff_t pos)
1618 {
1619 	struct file *file = iocb->ki_filp;
1620 	struct inode *inode = file_inode(file);
1621 	struct btrfs_root *root = BTRFS_I(inode)->root;
1622 	loff_t *ppos = &iocb->ki_pos;
1623 	u64 start_pos;
1624 	ssize_t num_written = 0;
1625 	ssize_t err = 0;
1626 	size_t count, ocount;
1627 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1628 
1629 	mutex_lock(&inode->i_mutex);
1630 
1631 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1632 	if (err) {
1633 		mutex_unlock(&inode->i_mutex);
1634 		goto out;
1635 	}
1636 	count = ocount;
1637 
1638 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1639 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1640 	if (err) {
1641 		mutex_unlock(&inode->i_mutex);
1642 		goto out;
1643 	}
1644 
1645 	if (count == 0) {
1646 		mutex_unlock(&inode->i_mutex);
1647 		goto out;
1648 	}
1649 
1650 	err = file_remove_suid(file);
1651 	if (err) {
1652 		mutex_unlock(&inode->i_mutex);
1653 		goto out;
1654 	}
1655 
1656 	/*
1657 	 * If BTRFS flips readonly due to some impossible error
1658 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1659 	 * although we have opened a file as writable, we have
1660 	 * to stop this write operation to ensure FS consistency.
1661 	 */
1662 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1663 		mutex_unlock(&inode->i_mutex);
1664 		err = -EROFS;
1665 		goto out;
1666 	}
1667 
1668 	/*
1669 	 * We reserve space for updating the inode when we reserve space for the
1670 	 * extent we are going to write, so we will enospc out there.  We don't
1671 	 * need to start yet another transaction to update the inode as we will
1672 	 * update the inode when we finish writing whatever data we write.
1673 	 */
1674 	update_time_for_write(inode);
1675 
1676 	start_pos = round_down(pos, root->sectorsize);
1677 	if (start_pos > i_size_read(inode)) {
1678 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1679 		if (err) {
1680 			mutex_unlock(&inode->i_mutex);
1681 			goto out;
1682 		}
1683 	}
1684 
1685 	if (sync)
1686 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1687 
1688 	if (unlikely(file->f_flags & O_DIRECT)) {
1689 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1690 						   pos, ppos, count, ocount);
1691 	} else {
1692 		struct iov_iter i;
1693 
1694 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1695 
1696 		num_written = __btrfs_buffered_write(file, &i, pos);
1697 		if (num_written > 0)
1698 			*ppos = pos + num_written;
1699 	}
1700 
1701 	mutex_unlock(&inode->i_mutex);
1702 
1703 	/*
1704 	 * we want to make sure fsync finds this change
1705 	 * but we haven't joined a transaction running right now.
1706 	 *
1707 	 * Later on, someone is sure to update the inode and get the
1708 	 * real transid recorded.
1709 	 *
1710 	 * We set last_trans now to the fs_info generation + 1,
1711 	 * this will either be one more than the running transaction
1712 	 * or the generation used for the next transaction if there isn't
1713 	 * one running right now.
1714 	 *
1715 	 * We also have to set last_sub_trans to the current log transid,
1716 	 * otherwise subsequent syncs to a file that's been synced in this
1717 	 * transaction will appear to have already occured.
1718 	 */
1719 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1720 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1721 	if (num_written > 0) {
1722 		err = generic_write_sync(file, pos, num_written);
1723 		if (err < 0 && num_written > 0)
1724 			num_written = err;
1725 	}
1726 
1727 	if (sync)
1728 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1729 out:
1730 	current->backing_dev_info = NULL;
1731 	return num_written ? num_written : err;
1732 }
1733 
1734 int btrfs_release_file(struct inode *inode, struct file *filp)
1735 {
1736 	/*
1737 	 * ordered_data_close is set by settattr when we are about to truncate
1738 	 * a file from a non-zero size to a zero size.  This tries to
1739 	 * flush down new bytes that may have been written if the
1740 	 * application were using truncate to replace a file in place.
1741 	 */
1742 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1743 			       &BTRFS_I(inode)->runtime_flags)) {
1744 		struct btrfs_trans_handle *trans;
1745 		struct btrfs_root *root = BTRFS_I(inode)->root;
1746 
1747 		/*
1748 		 * We need to block on a committing transaction to keep us from
1749 		 * throwing a ordered operation on to the list and causing
1750 		 * something like sync to deadlock trying to flush out this
1751 		 * inode.
1752 		 */
1753 		trans = btrfs_start_transaction(root, 0);
1754 		if (IS_ERR(trans))
1755 			return PTR_ERR(trans);
1756 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1757 		btrfs_end_transaction(trans, root);
1758 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1759 			filemap_flush(inode->i_mapping);
1760 	}
1761 	if (filp->private_data)
1762 		btrfs_ioctl_trans_end(filp);
1763 	return 0;
1764 }
1765 
1766 /*
1767  * fsync call for both files and directories.  This logs the inode into
1768  * the tree log instead of forcing full commits whenever possible.
1769  *
1770  * It needs to call filemap_fdatawait so that all ordered extent updates are
1771  * in the metadata btree are up to date for copying to the log.
1772  *
1773  * It drops the inode mutex before doing the tree log commit.  This is an
1774  * important optimization for directories because holding the mutex prevents
1775  * new operations on the dir while we write to disk.
1776  */
1777 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1778 {
1779 	struct dentry *dentry = file->f_path.dentry;
1780 	struct inode *inode = dentry->d_inode;
1781 	struct btrfs_root *root = BTRFS_I(inode)->root;
1782 	int ret = 0;
1783 	struct btrfs_trans_handle *trans;
1784 	bool full_sync = 0;
1785 
1786 	trace_btrfs_sync_file(file, datasync);
1787 
1788 	/*
1789 	 * We write the dirty pages in the range and wait until they complete
1790 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1791 	 * multi-task, and make the performance up.  See
1792 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1793 	 */
1794 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1795 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1796 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1797 			     &BTRFS_I(inode)->runtime_flags))
1798 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1799 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1800 	if (ret)
1801 		return ret;
1802 
1803 	mutex_lock(&inode->i_mutex);
1804 
1805 	/*
1806 	 * We flush the dirty pages again to avoid some dirty pages in the
1807 	 * range being left.
1808 	 */
1809 	atomic_inc(&root->log_batch);
1810 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1811 			     &BTRFS_I(inode)->runtime_flags);
1812 	if (full_sync)
1813 		btrfs_wait_ordered_range(inode, start, end - start + 1);
1814 	atomic_inc(&root->log_batch);
1815 
1816 	/*
1817 	 * check the transaction that last modified this inode
1818 	 * and see if its already been committed
1819 	 */
1820 	if (!BTRFS_I(inode)->last_trans) {
1821 		mutex_unlock(&inode->i_mutex);
1822 		goto out;
1823 	}
1824 
1825 	/*
1826 	 * if the last transaction that changed this file was before
1827 	 * the current transaction, we can bail out now without any
1828 	 * syncing
1829 	 */
1830 	smp_mb();
1831 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1832 	    BTRFS_I(inode)->last_trans <=
1833 	    root->fs_info->last_trans_committed) {
1834 		BTRFS_I(inode)->last_trans = 0;
1835 
1836 		/*
1837 		 * We'v had everything committed since the last time we were
1838 		 * modified so clear this flag in case it was set for whatever
1839 		 * reason, it's no longer relevant.
1840 		 */
1841 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1842 			  &BTRFS_I(inode)->runtime_flags);
1843 		mutex_unlock(&inode->i_mutex);
1844 		goto out;
1845 	}
1846 
1847 	/*
1848 	 * ok we haven't committed the transaction yet, lets do a commit
1849 	 */
1850 	if (file->private_data)
1851 		btrfs_ioctl_trans_end(file);
1852 
1853 	trans = btrfs_start_transaction(root, 0);
1854 	if (IS_ERR(trans)) {
1855 		ret = PTR_ERR(trans);
1856 		mutex_unlock(&inode->i_mutex);
1857 		goto out;
1858 	}
1859 
1860 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1861 	if (ret < 0) {
1862 		/* Fallthrough and commit/free transaction. */
1863 		ret = 1;
1864 	}
1865 
1866 	/* we've logged all the items and now have a consistent
1867 	 * version of the file in the log.  It is possible that
1868 	 * someone will come in and modify the file, but that's
1869 	 * fine because the log is consistent on disk, and we
1870 	 * have references to all of the file's extents
1871 	 *
1872 	 * It is possible that someone will come in and log the
1873 	 * file again, but that will end up using the synchronization
1874 	 * inside btrfs_sync_log to keep things safe.
1875 	 */
1876 	mutex_unlock(&inode->i_mutex);
1877 
1878 	if (ret != BTRFS_NO_LOG_SYNC) {
1879 		if (ret > 0) {
1880 			/*
1881 			 * If we didn't already wait for ordered extents we need
1882 			 * to do that now.
1883 			 */
1884 			if (!full_sync)
1885 				btrfs_wait_ordered_range(inode, start,
1886 							 end - start + 1);
1887 			ret = btrfs_commit_transaction(trans, root);
1888 		} else {
1889 			ret = btrfs_sync_log(trans, root);
1890 			if (ret == 0) {
1891 				ret = btrfs_end_transaction(trans, root);
1892 			} else {
1893 				if (!full_sync)
1894 					btrfs_wait_ordered_range(inode, start,
1895 								 end -
1896 								 start + 1);
1897 				ret = btrfs_commit_transaction(trans, root);
1898 			}
1899 		}
1900 	} else {
1901 		ret = btrfs_end_transaction(trans, root);
1902 	}
1903 out:
1904 	return ret > 0 ? -EIO : ret;
1905 }
1906 
1907 static const struct vm_operations_struct btrfs_file_vm_ops = {
1908 	.fault		= filemap_fault,
1909 	.page_mkwrite	= btrfs_page_mkwrite,
1910 	.remap_pages	= generic_file_remap_pages,
1911 };
1912 
1913 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1914 {
1915 	struct address_space *mapping = filp->f_mapping;
1916 
1917 	if (!mapping->a_ops->readpage)
1918 		return -ENOEXEC;
1919 
1920 	file_accessed(filp);
1921 	vma->vm_ops = &btrfs_file_vm_ops;
1922 
1923 	return 0;
1924 }
1925 
1926 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1927 			  int slot, u64 start, u64 end)
1928 {
1929 	struct btrfs_file_extent_item *fi;
1930 	struct btrfs_key key;
1931 
1932 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1933 		return 0;
1934 
1935 	btrfs_item_key_to_cpu(leaf, &key, slot);
1936 	if (key.objectid != btrfs_ino(inode) ||
1937 	    key.type != BTRFS_EXTENT_DATA_KEY)
1938 		return 0;
1939 
1940 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1941 
1942 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1943 		return 0;
1944 
1945 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1946 		return 0;
1947 
1948 	if (key.offset == end)
1949 		return 1;
1950 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1951 		return 1;
1952 	return 0;
1953 }
1954 
1955 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1956 		      struct btrfs_path *path, u64 offset, u64 end)
1957 {
1958 	struct btrfs_root *root = BTRFS_I(inode)->root;
1959 	struct extent_buffer *leaf;
1960 	struct btrfs_file_extent_item *fi;
1961 	struct extent_map *hole_em;
1962 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1963 	struct btrfs_key key;
1964 	int ret;
1965 
1966 	key.objectid = btrfs_ino(inode);
1967 	key.type = BTRFS_EXTENT_DATA_KEY;
1968 	key.offset = offset;
1969 
1970 
1971 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1972 	if (ret < 0)
1973 		return ret;
1974 	BUG_ON(!ret);
1975 
1976 	leaf = path->nodes[0];
1977 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1978 		u64 num_bytes;
1979 
1980 		path->slots[0]--;
1981 		fi = btrfs_item_ptr(leaf, path->slots[0],
1982 				    struct btrfs_file_extent_item);
1983 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1984 			end - offset;
1985 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1986 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1987 		btrfs_set_file_extent_offset(leaf, fi, 0);
1988 		btrfs_mark_buffer_dirty(leaf);
1989 		goto out;
1990 	}
1991 
1992 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1993 		u64 num_bytes;
1994 
1995 		path->slots[0]++;
1996 		key.offset = offset;
1997 		btrfs_set_item_key_safe(root, path, &key);
1998 		fi = btrfs_item_ptr(leaf, path->slots[0],
1999 				    struct btrfs_file_extent_item);
2000 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2001 			offset;
2002 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2003 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2004 		btrfs_set_file_extent_offset(leaf, fi, 0);
2005 		btrfs_mark_buffer_dirty(leaf);
2006 		goto out;
2007 	}
2008 	btrfs_release_path(path);
2009 
2010 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2011 				       0, 0, end - offset, 0, end - offset,
2012 				       0, 0, 0);
2013 	if (ret)
2014 		return ret;
2015 
2016 out:
2017 	btrfs_release_path(path);
2018 
2019 	hole_em = alloc_extent_map();
2020 	if (!hole_em) {
2021 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2022 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2023 			&BTRFS_I(inode)->runtime_flags);
2024 	} else {
2025 		hole_em->start = offset;
2026 		hole_em->len = end - offset;
2027 		hole_em->ram_bytes = hole_em->len;
2028 		hole_em->orig_start = offset;
2029 
2030 		hole_em->block_start = EXTENT_MAP_HOLE;
2031 		hole_em->block_len = 0;
2032 		hole_em->orig_block_len = 0;
2033 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2034 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2035 		hole_em->generation = trans->transid;
2036 
2037 		do {
2038 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2039 			write_lock(&em_tree->lock);
2040 			ret = add_extent_mapping(em_tree, hole_em, 1);
2041 			write_unlock(&em_tree->lock);
2042 		} while (ret == -EEXIST);
2043 		free_extent_map(hole_em);
2044 		if (ret)
2045 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2046 				&BTRFS_I(inode)->runtime_flags);
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2053 {
2054 	struct btrfs_root *root = BTRFS_I(inode)->root;
2055 	struct extent_state *cached_state = NULL;
2056 	struct btrfs_path *path;
2057 	struct btrfs_block_rsv *rsv;
2058 	struct btrfs_trans_handle *trans;
2059 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2060 	u64 lockend = round_down(offset + len,
2061 				 BTRFS_I(inode)->root->sectorsize) - 1;
2062 	u64 cur_offset = lockstart;
2063 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2064 	u64 drop_end;
2065 	int ret = 0;
2066 	int err = 0;
2067 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2068 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2069 
2070 	btrfs_wait_ordered_range(inode, offset, len);
2071 
2072 	mutex_lock(&inode->i_mutex);
2073 	/*
2074 	 * We needn't truncate any page which is beyond the end of the file
2075 	 * because we are sure there is no data there.
2076 	 */
2077 	/*
2078 	 * Only do this if we are in the same page and we aren't doing the
2079 	 * entire page.
2080 	 */
2081 	if (same_page && len < PAGE_CACHE_SIZE) {
2082 		if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2083 			ret = btrfs_truncate_page(inode, offset, len, 0);
2084 		mutex_unlock(&inode->i_mutex);
2085 		return ret;
2086 	}
2087 
2088 	/* zero back part of the first page */
2089 	if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2090 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2091 		if (ret) {
2092 			mutex_unlock(&inode->i_mutex);
2093 			return ret;
2094 		}
2095 	}
2096 
2097 	/* zero the front end of the last page */
2098 	if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2099 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2100 		if (ret) {
2101 			mutex_unlock(&inode->i_mutex);
2102 			return ret;
2103 		}
2104 	}
2105 
2106 	if (lockend < lockstart) {
2107 		mutex_unlock(&inode->i_mutex);
2108 		return 0;
2109 	}
2110 
2111 	while (1) {
2112 		struct btrfs_ordered_extent *ordered;
2113 
2114 		truncate_pagecache_range(inode, lockstart, lockend);
2115 
2116 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2117 				 0, &cached_state);
2118 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2119 
2120 		/*
2121 		 * We need to make sure we have no ordered extents in this range
2122 		 * and nobody raced in and read a page in this range, if we did
2123 		 * we need to try again.
2124 		 */
2125 		if ((!ordered ||
2126 		    (ordered->file_offset + ordered->len < lockstart ||
2127 		     ordered->file_offset > lockend)) &&
2128 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2129 				     lockend, EXTENT_UPTODATE, 0,
2130 				     cached_state)) {
2131 			if (ordered)
2132 				btrfs_put_ordered_extent(ordered);
2133 			break;
2134 		}
2135 		if (ordered)
2136 			btrfs_put_ordered_extent(ordered);
2137 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2138 				     lockend, &cached_state, GFP_NOFS);
2139 		btrfs_wait_ordered_range(inode, lockstart,
2140 					 lockend - lockstart + 1);
2141 	}
2142 
2143 	path = btrfs_alloc_path();
2144 	if (!path) {
2145 		ret = -ENOMEM;
2146 		goto out;
2147 	}
2148 
2149 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2150 	if (!rsv) {
2151 		ret = -ENOMEM;
2152 		goto out_free;
2153 	}
2154 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2155 	rsv->failfast = 1;
2156 
2157 	/*
2158 	 * 1 - update the inode
2159 	 * 1 - removing the extents in the range
2160 	 * 1 - adding the hole extent
2161 	 */
2162 	trans = btrfs_start_transaction(root, 3);
2163 	if (IS_ERR(trans)) {
2164 		err = PTR_ERR(trans);
2165 		goto out_free;
2166 	}
2167 
2168 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2169 				      min_size);
2170 	BUG_ON(ret);
2171 	trans->block_rsv = rsv;
2172 
2173 	while (cur_offset < lockend) {
2174 		ret = __btrfs_drop_extents(trans, root, inode, path,
2175 					   cur_offset, lockend + 1,
2176 					   &drop_end, 1);
2177 		if (ret != -ENOSPC)
2178 			break;
2179 
2180 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2181 
2182 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2183 		if (ret) {
2184 			err = ret;
2185 			break;
2186 		}
2187 
2188 		cur_offset = drop_end;
2189 
2190 		ret = btrfs_update_inode(trans, root, inode);
2191 		if (ret) {
2192 			err = ret;
2193 			break;
2194 		}
2195 
2196 		btrfs_end_transaction(trans, root);
2197 		btrfs_btree_balance_dirty(root);
2198 
2199 		trans = btrfs_start_transaction(root, 3);
2200 		if (IS_ERR(trans)) {
2201 			ret = PTR_ERR(trans);
2202 			trans = NULL;
2203 			break;
2204 		}
2205 
2206 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2207 					      rsv, min_size);
2208 		BUG_ON(ret);	/* shouldn't happen */
2209 		trans->block_rsv = rsv;
2210 	}
2211 
2212 	if (ret) {
2213 		err = ret;
2214 		goto out_trans;
2215 	}
2216 
2217 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2218 	ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2219 	if (ret) {
2220 		err = ret;
2221 		goto out_trans;
2222 	}
2223 
2224 out_trans:
2225 	if (!trans)
2226 		goto out_free;
2227 
2228 	inode_inc_iversion(inode);
2229 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2230 
2231 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2232 	ret = btrfs_update_inode(trans, root, inode);
2233 	btrfs_end_transaction(trans, root);
2234 	btrfs_btree_balance_dirty(root);
2235 out_free:
2236 	btrfs_free_path(path);
2237 	btrfs_free_block_rsv(root, rsv);
2238 out:
2239 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2240 			     &cached_state, GFP_NOFS);
2241 	mutex_unlock(&inode->i_mutex);
2242 	if (ret && !err)
2243 		err = ret;
2244 	return err;
2245 }
2246 
2247 static long btrfs_fallocate(struct file *file, int mode,
2248 			    loff_t offset, loff_t len)
2249 {
2250 	struct inode *inode = file_inode(file);
2251 	struct extent_state *cached_state = NULL;
2252 	struct btrfs_root *root = BTRFS_I(inode)->root;
2253 	u64 cur_offset;
2254 	u64 last_byte;
2255 	u64 alloc_start;
2256 	u64 alloc_end;
2257 	u64 alloc_hint = 0;
2258 	u64 locked_end;
2259 	struct extent_map *em;
2260 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2261 	int ret;
2262 
2263 	alloc_start = round_down(offset, blocksize);
2264 	alloc_end = round_up(offset + len, blocksize);
2265 
2266 	/* Make sure we aren't being give some crap mode */
2267 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2268 		return -EOPNOTSUPP;
2269 
2270 	if (mode & FALLOC_FL_PUNCH_HOLE)
2271 		return btrfs_punch_hole(inode, offset, len);
2272 
2273 	/*
2274 	 * Make sure we have enough space before we do the
2275 	 * allocation.
2276 	 */
2277 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2278 	if (ret)
2279 		return ret;
2280 	if (root->fs_info->quota_enabled) {
2281 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2282 		if (ret)
2283 			goto out_reserve_fail;
2284 	}
2285 
2286 	mutex_lock(&inode->i_mutex);
2287 	ret = inode_newsize_ok(inode, alloc_end);
2288 	if (ret)
2289 		goto out;
2290 
2291 	if (alloc_start > inode->i_size) {
2292 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2293 					alloc_start);
2294 		if (ret)
2295 			goto out;
2296 	} else {
2297 		/*
2298 		 * If we are fallocating from the end of the file onward we
2299 		 * need to zero out the end of the page if i_size lands in the
2300 		 * middle of a page.
2301 		 */
2302 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2303 		if (ret)
2304 			goto out;
2305 	}
2306 
2307 	/*
2308 	 * wait for ordered IO before we have any locks.  We'll loop again
2309 	 * below with the locks held.
2310 	 */
2311 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2312 
2313 	locked_end = alloc_end - 1;
2314 	while (1) {
2315 		struct btrfs_ordered_extent *ordered;
2316 
2317 		/* the extent lock is ordered inside the running
2318 		 * transaction
2319 		 */
2320 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2321 				 locked_end, 0, &cached_state);
2322 		ordered = btrfs_lookup_first_ordered_extent(inode,
2323 							    alloc_end - 1);
2324 		if (ordered &&
2325 		    ordered->file_offset + ordered->len > alloc_start &&
2326 		    ordered->file_offset < alloc_end) {
2327 			btrfs_put_ordered_extent(ordered);
2328 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2329 					     alloc_start, locked_end,
2330 					     &cached_state, GFP_NOFS);
2331 			/*
2332 			 * we can't wait on the range with the transaction
2333 			 * running or with the extent lock held
2334 			 */
2335 			btrfs_wait_ordered_range(inode, alloc_start,
2336 						 alloc_end - alloc_start);
2337 		} else {
2338 			if (ordered)
2339 				btrfs_put_ordered_extent(ordered);
2340 			break;
2341 		}
2342 	}
2343 
2344 	cur_offset = alloc_start;
2345 	while (1) {
2346 		u64 actual_end;
2347 
2348 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2349 				      alloc_end - cur_offset, 0);
2350 		if (IS_ERR_OR_NULL(em)) {
2351 			if (!em)
2352 				ret = -ENOMEM;
2353 			else
2354 				ret = PTR_ERR(em);
2355 			break;
2356 		}
2357 		last_byte = min(extent_map_end(em), alloc_end);
2358 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2359 		last_byte = ALIGN(last_byte, blocksize);
2360 
2361 		if (em->block_start == EXTENT_MAP_HOLE ||
2362 		    (cur_offset >= inode->i_size &&
2363 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2364 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2365 							last_byte - cur_offset,
2366 							1 << inode->i_blkbits,
2367 							offset + len,
2368 							&alloc_hint);
2369 
2370 			if (ret < 0) {
2371 				free_extent_map(em);
2372 				break;
2373 			}
2374 		} else if (actual_end > inode->i_size &&
2375 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2376 			/*
2377 			 * We didn't need to allocate any more space, but we
2378 			 * still extended the size of the file so we need to
2379 			 * update i_size.
2380 			 */
2381 			inode->i_ctime = CURRENT_TIME;
2382 			i_size_write(inode, actual_end);
2383 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2384 		}
2385 		free_extent_map(em);
2386 
2387 		cur_offset = last_byte;
2388 		if (cur_offset >= alloc_end) {
2389 			ret = 0;
2390 			break;
2391 		}
2392 	}
2393 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2394 			     &cached_state, GFP_NOFS);
2395 out:
2396 	mutex_unlock(&inode->i_mutex);
2397 	if (root->fs_info->quota_enabled)
2398 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2399 out_reserve_fail:
2400 	/* Let go of our reservation. */
2401 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2402 	return ret;
2403 }
2404 
2405 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2406 {
2407 	struct btrfs_root *root = BTRFS_I(inode)->root;
2408 	struct extent_map *em;
2409 	struct extent_state *cached_state = NULL;
2410 	u64 lockstart = *offset;
2411 	u64 lockend = i_size_read(inode);
2412 	u64 start = *offset;
2413 	u64 orig_start = *offset;
2414 	u64 len = i_size_read(inode);
2415 	u64 last_end = 0;
2416 	int ret = 0;
2417 
2418 	lockend = max_t(u64, root->sectorsize, lockend);
2419 	if (lockend <= lockstart)
2420 		lockend = lockstart + root->sectorsize;
2421 
2422 	lockend--;
2423 	len = lockend - lockstart + 1;
2424 
2425 	len = max_t(u64, len, root->sectorsize);
2426 	if (inode->i_size == 0)
2427 		return -ENXIO;
2428 
2429 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2430 			 &cached_state);
2431 
2432 	/*
2433 	 * Delalloc is such a pain.  If we have a hole and we have pending
2434 	 * delalloc for a portion of the hole we will get back a hole that
2435 	 * exists for the entire range since it hasn't been actually written
2436 	 * yet.  So to take care of this case we need to look for an extent just
2437 	 * before the position we want in case there is outstanding delalloc
2438 	 * going on here.
2439 	 */
2440 	if (whence == SEEK_HOLE && start != 0) {
2441 		if (start <= root->sectorsize)
2442 			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2443 						     root->sectorsize, 0);
2444 		else
2445 			em = btrfs_get_extent_fiemap(inode, NULL, 0,
2446 						     start - root->sectorsize,
2447 						     root->sectorsize, 0);
2448 		if (IS_ERR(em)) {
2449 			ret = PTR_ERR(em);
2450 			goto out;
2451 		}
2452 		last_end = em->start + em->len;
2453 		if (em->block_start == EXTENT_MAP_DELALLOC)
2454 			last_end = min_t(u64, last_end, inode->i_size);
2455 		free_extent_map(em);
2456 	}
2457 
2458 	while (1) {
2459 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2460 		if (IS_ERR(em)) {
2461 			ret = PTR_ERR(em);
2462 			break;
2463 		}
2464 
2465 		if (em->block_start == EXTENT_MAP_HOLE) {
2466 			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2467 				if (last_end <= orig_start) {
2468 					free_extent_map(em);
2469 					ret = -ENXIO;
2470 					break;
2471 				}
2472 			}
2473 
2474 			if (whence == SEEK_HOLE) {
2475 				*offset = start;
2476 				free_extent_map(em);
2477 				break;
2478 			}
2479 		} else {
2480 			if (whence == SEEK_DATA) {
2481 				if (em->block_start == EXTENT_MAP_DELALLOC) {
2482 					if (start >= inode->i_size) {
2483 						free_extent_map(em);
2484 						ret = -ENXIO;
2485 						break;
2486 					}
2487 				}
2488 
2489 				if (!test_bit(EXTENT_FLAG_PREALLOC,
2490 					      &em->flags)) {
2491 					*offset = start;
2492 					free_extent_map(em);
2493 					break;
2494 				}
2495 			}
2496 		}
2497 
2498 		start = em->start + em->len;
2499 		last_end = em->start + em->len;
2500 
2501 		if (em->block_start == EXTENT_MAP_DELALLOC)
2502 			last_end = min_t(u64, last_end, inode->i_size);
2503 
2504 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2505 			free_extent_map(em);
2506 			ret = -ENXIO;
2507 			break;
2508 		}
2509 		free_extent_map(em);
2510 		cond_resched();
2511 	}
2512 	if (!ret)
2513 		*offset = min(*offset, inode->i_size);
2514 out:
2515 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2516 			     &cached_state, GFP_NOFS);
2517 	return ret;
2518 }
2519 
2520 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2521 {
2522 	struct inode *inode = file->f_mapping->host;
2523 	int ret;
2524 
2525 	mutex_lock(&inode->i_mutex);
2526 	switch (whence) {
2527 	case SEEK_END:
2528 	case SEEK_CUR:
2529 		offset = generic_file_llseek(file, offset, whence);
2530 		goto out;
2531 	case SEEK_DATA:
2532 	case SEEK_HOLE:
2533 		if (offset >= i_size_read(inode)) {
2534 			mutex_unlock(&inode->i_mutex);
2535 			return -ENXIO;
2536 		}
2537 
2538 		ret = find_desired_extent(inode, &offset, whence);
2539 		if (ret) {
2540 			mutex_unlock(&inode->i_mutex);
2541 			return ret;
2542 		}
2543 	}
2544 
2545 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2546 out:
2547 	mutex_unlock(&inode->i_mutex);
2548 	return offset;
2549 }
2550 
2551 const struct file_operations btrfs_file_operations = {
2552 	.llseek		= btrfs_file_llseek,
2553 	.read		= do_sync_read,
2554 	.write		= do_sync_write,
2555 	.aio_read       = generic_file_aio_read,
2556 	.splice_read	= generic_file_splice_read,
2557 	.aio_write	= btrfs_file_aio_write,
2558 	.mmap		= btrfs_file_mmap,
2559 	.open		= generic_file_open,
2560 	.release	= btrfs_release_file,
2561 	.fsync		= btrfs_sync_file,
2562 	.fallocate	= btrfs_fallocate,
2563 	.unlocked_ioctl	= btrfs_ioctl,
2564 #ifdef CONFIG_COMPAT
2565 	.compat_ioctl	= btrfs_ioctl,
2566 #endif
2567 };
2568 
2569 void btrfs_auto_defrag_exit(void)
2570 {
2571 	if (btrfs_inode_defrag_cachep)
2572 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2573 }
2574 
2575 int btrfs_auto_defrag_init(void)
2576 {
2577 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2578 					sizeof(struct inode_defrag), 0,
2579 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2580 					NULL);
2581 	if (!btrfs_inode_defrag_cachep)
2582 		return -ENOMEM;
2583 
2584 	return 0;
2585 }
2586