xref: /openbmc/linux/fs/btrfs/file.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 
30 static struct kmem_cache *btrfs_inode_defrag_cachep;
31 /*
32  * when auto defrag is enabled we
33  * queue up these defrag structs to remember which
34  * inodes need defragging passes
35  */
36 struct inode_defrag {
37 	struct rb_node rb_node;
38 	/* objectid */
39 	u64 ino;
40 	/*
41 	 * transid where the defrag was added, we search for
42 	 * extents newer than this
43 	 */
44 	u64 transid;
45 
46 	/* root objectid */
47 	u64 root;
48 
49 	/* last offset we were able to defrag */
50 	u64 last_offset;
51 
52 	/* if we've wrapped around back to zero once already */
53 	int cycled;
54 };
55 
56 static int __compare_inode_defrag(struct inode_defrag *defrag1,
57 				  struct inode_defrag *defrag2)
58 {
59 	if (defrag1->root > defrag2->root)
60 		return 1;
61 	else if (defrag1->root < defrag2->root)
62 		return -1;
63 	else if (defrag1->ino > defrag2->ino)
64 		return 1;
65 	else if (defrag1->ino < defrag2->ino)
66 		return -1;
67 	else
68 		return 0;
69 }
70 
71 /* pop a record for an inode into the defrag tree.  The lock
72  * must be held already
73  *
74  * If you're inserting a record for an older transid than an
75  * existing record, the transid already in the tree is lowered
76  *
77  * If an existing record is found the defrag item you
78  * pass in is freed
79  */
80 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
81 				    struct inode_defrag *defrag)
82 {
83 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
84 	struct inode_defrag *entry;
85 	struct rb_node **p;
86 	struct rb_node *parent = NULL;
87 	int ret;
88 
89 	p = &fs_info->defrag_inodes.rb_node;
90 	while (*p) {
91 		parent = *p;
92 		entry = rb_entry(parent, struct inode_defrag, rb_node);
93 
94 		ret = __compare_inode_defrag(defrag, entry);
95 		if (ret < 0)
96 			p = &parent->rb_left;
97 		else if (ret > 0)
98 			p = &parent->rb_right;
99 		else {
100 			/* if we're reinserting an entry for
101 			 * an old defrag run, make sure to
102 			 * lower the transid of our existing record
103 			 */
104 			if (defrag->transid < entry->transid)
105 				entry->transid = defrag->transid;
106 			if (defrag->last_offset > entry->last_offset)
107 				entry->last_offset = defrag->last_offset;
108 			return -EEXIST;
109 		}
110 	}
111 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
112 	rb_link_node(&defrag->rb_node, parent, p);
113 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
114 	return 0;
115 }
116 
117 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
118 {
119 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
120 		return 0;
121 
122 	if (btrfs_fs_closing(fs_info))
123 		return 0;
124 
125 	return 1;
126 }
127 
128 /*
129  * insert a defrag record for this inode if auto defrag is
130  * enabled
131  */
132 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
133 			   struct btrfs_inode *inode)
134 {
135 	struct btrfs_root *root = inode->root;
136 	struct btrfs_fs_info *fs_info = root->fs_info;
137 	struct inode_defrag *defrag;
138 	u64 transid;
139 	int ret;
140 
141 	if (!__need_auto_defrag(fs_info))
142 		return 0;
143 
144 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
145 		return 0;
146 
147 	if (trans)
148 		transid = trans->transid;
149 	else
150 		transid = inode->root->last_trans;
151 
152 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
153 	if (!defrag)
154 		return -ENOMEM;
155 
156 	defrag->ino = btrfs_ino(inode);
157 	defrag->transid = transid;
158 	defrag->root = root->root_key.objectid;
159 
160 	spin_lock(&fs_info->defrag_inodes_lock);
161 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
162 		/*
163 		 * If we set IN_DEFRAG flag and evict the inode from memory,
164 		 * and then re-read this inode, this new inode doesn't have
165 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
166 		 */
167 		ret = __btrfs_add_inode_defrag(inode, defrag);
168 		if (ret)
169 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
170 	} else {
171 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 	}
173 	spin_unlock(&fs_info->defrag_inodes_lock);
174 	return 0;
175 }
176 
177 /*
178  * Requeue the defrag object. If there is a defrag object that points to
179  * the same inode in the tree, we will merge them together (by
180  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
181  */
182 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
183 				       struct inode_defrag *defrag)
184 {
185 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
186 	int ret;
187 
188 	if (!__need_auto_defrag(fs_info))
189 		goto out;
190 
191 	/*
192 	 * Here we don't check the IN_DEFRAG flag, because we need merge
193 	 * them together.
194 	 */
195 	spin_lock(&fs_info->defrag_inodes_lock);
196 	ret = __btrfs_add_inode_defrag(inode, defrag);
197 	spin_unlock(&fs_info->defrag_inodes_lock);
198 	if (ret)
199 		goto out;
200 	return;
201 out:
202 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
203 }
204 
205 /*
206  * pick the defragable inode that we want, if it doesn't exist, we will get
207  * the next one.
208  */
209 static struct inode_defrag *
210 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
211 {
212 	struct inode_defrag *entry = NULL;
213 	struct inode_defrag tmp;
214 	struct rb_node *p;
215 	struct rb_node *parent = NULL;
216 	int ret;
217 
218 	tmp.ino = ino;
219 	tmp.root = root;
220 
221 	spin_lock(&fs_info->defrag_inodes_lock);
222 	p = fs_info->defrag_inodes.rb_node;
223 	while (p) {
224 		parent = p;
225 		entry = rb_entry(parent, struct inode_defrag, rb_node);
226 
227 		ret = __compare_inode_defrag(&tmp, entry);
228 		if (ret < 0)
229 			p = parent->rb_left;
230 		else if (ret > 0)
231 			p = parent->rb_right;
232 		else
233 			goto out;
234 	}
235 
236 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
237 		parent = rb_next(parent);
238 		if (parent)
239 			entry = rb_entry(parent, struct inode_defrag, rb_node);
240 		else
241 			entry = NULL;
242 	}
243 out:
244 	if (entry)
245 		rb_erase(parent, &fs_info->defrag_inodes);
246 	spin_unlock(&fs_info->defrag_inodes_lock);
247 	return entry;
248 }
249 
250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
251 {
252 	struct inode_defrag *defrag;
253 	struct rb_node *node;
254 
255 	spin_lock(&fs_info->defrag_inodes_lock);
256 	node = rb_first(&fs_info->defrag_inodes);
257 	while (node) {
258 		rb_erase(node, &fs_info->defrag_inodes);
259 		defrag = rb_entry(node, struct inode_defrag, rb_node);
260 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
261 
262 		cond_resched_lock(&fs_info->defrag_inodes_lock);
263 
264 		node = rb_first(&fs_info->defrag_inodes);
265 	}
266 	spin_unlock(&fs_info->defrag_inodes_lock);
267 }
268 
269 #define BTRFS_DEFRAG_BATCH	1024
270 
271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
272 				    struct inode_defrag *defrag)
273 {
274 	struct btrfs_root *inode_root;
275 	struct inode *inode;
276 	struct btrfs_key key;
277 	struct btrfs_ioctl_defrag_range_args range;
278 	int num_defrag;
279 	int index;
280 	int ret;
281 
282 	/* get the inode */
283 	key.objectid = defrag->root;
284 	key.type = BTRFS_ROOT_ITEM_KEY;
285 	key.offset = (u64)-1;
286 
287 	index = srcu_read_lock(&fs_info->subvol_srcu);
288 
289 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
290 	if (IS_ERR(inode_root)) {
291 		ret = PTR_ERR(inode_root);
292 		goto cleanup;
293 	}
294 
295 	key.objectid = defrag->ino;
296 	key.type = BTRFS_INODE_ITEM_KEY;
297 	key.offset = 0;
298 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
299 	if (IS_ERR(inode)) {
300 		ret = PTR_ERR(inode);
301 		goto cleanup;
302 	}
303 	srcu_read_unlock(&fs_info->subvol_srcu, index);
304 
305 	/* do a chunk of defrag */
306 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
307 	memset(&range, 0, sizeof(range));
308 	range.len = (u64)-1;
309 	range.start = defrag->last_offset;
310 
311 	sb_start_write(fs_info->sb);
312 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
313 				       BTRFS_DEFRAG_BATCH);
314 	sb_end_write(fs_info->sb);
315 	/*
316 	 * if we filled the whole defrag batch, there
317 	 * must be more work to do.  Queue this defrag
318 	 * again
319 	 */
320 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
321 		defrag->last_offset = range.start;
322 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 	} else if (defrag->last_offset && !defrag->cycled) {
324 		/*
325 		 * we didn't fill our defrag batch, but
326 		 * we didn't start at zero.  Make sure we loop
327 		 * around to the start of the file.
328 		 */
329 		defrag->last_offset = 0;
330 		defrag->cycled = 1;
331 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
332 	} else {
333 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
334 	}
335 
336 	iput(inode);
337 	return 0;
338 cleanup:
339 	srcu_read_unlock(&fs_info->subvol_srcu, index);
340 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
341 	return ret;
342 }
343 
344 /*
345  * run through the list of inodes in the FS that need
346  * defragging
347  */
348 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
349 {
350 	struct inode_defrag *defrag;
351 	u64 first_ino = 0;
352 	u64 root_objectid = 0;
353 
354 	atomic_inc(&fs_info->defrag_running);
355 	while (1) {
356 		/* Pause the auto defragger. */
357 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
358 			     &fs_info->fs_state))
359 			break;
360 
361 		if (!__need_auto_defrag(fs_info))
362 			break;
363 
364 		/* find an inode to defrag */
365 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
366 						 first_ino);
367 		if (!defrag) {
368 			if (root_objectid || first_ino) {
369 				root_objectid = 0;
370 				first_ino = 0;
371 				continue;
372 			} else {
373 				break;
374 			}
375 		}
376 
377 		first_ino = defrag->ino + 1;
378 		root_objectid = defrag->root;
379 
380 		__btrfs_run_defrag_inode(fs_info, defrag);
381 	}
382 	atomic_dec(&fs_info->defrag_running);
383 
384 	/*
385 	 * during unmount, we use the transaction_wait queue to
386 	 * wait for the defragger to stop
387 	 */
388 	wake_up(&fs_info->transaction_wait);
389 	return 0;
390 }
391 
392 /* simple helper to fault in pages and copy.  This should go away
393  * and be replaced with calls into generic code.
394  */
395 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
396 					 struct page **prepared_pages,
397 					 struct iov_iter *i)
398 {
399 	size_t copied = 0;
400 	size_t total_copied = 0;
401 	int pg = 0;
402 	int offset = pos & (PAGE_SIZE - 1);
403 
404 	while (write_bytes > 0) {
405 		size_t count = min_t(size_t,
406 				     PAGE_SIZE - offset, write_bytes);
407 		struct page *page = prepared_pages[pg];
408 		/*
409 		 * Copy data from userspace to the current page
410 		 */
411 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
412 
413 		/* Flush processor's dcache for this page */
414 		flush_dcache_page(page);
415 
416 		/*
417 		 * if we get a partial write, we can end up with
418 		 * partially up to date pages.  These add
419 		 * a lot of complexity, so make sure they don't
420 		 * happen by forcing this copy to be retried.
421 		 *
422 		 * The rest of the btrfs_file_write code will fall
423 		 * back to page at a time copies after we return 0.
424 		 */
425 		if (!PageUptodate(page) && copied < count)
426 			copied = 0;
427 
428 		iov_iter_advance(i, copied);
429 		write_bytes -= copied;
430 		total_copied += copied;
431 
432 		/* Return to btrfs_file_write_iter to fault page */
433 		if (unlikely(copied == 0))
434 			break;
435 
436 		if (copied < PAGE_SIZE - offset) {
437 			offset += copied;
438 		} else {
439 			pg++;
440 			offset = 0;
441 		}
442 	}
443 	return total_copied;
444 }
445 
446 /*
447  * unlocks pages after btrfs_file_write is done with them
448  */
449 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
450 {
451 	size_t i;
452 	for (i = 0; i < num_pages; i++) {
453 		/* page checked is some magic around finding pages that
454 		 * have been modified without going through btrfs_set_page_dirty
455 		 * clear it here. There should be no need to mark the pages
456 		 * accessed as prepare_pages should have marked them accessed
457 		 * in prepare_pages via find_or_create_page()
458 		 */
459 		ClearPageChecked(pages[i]);
460 		unlock_page(pages[i]);
461 		put_page(pages[i]);
462 	}
463 }
464 
465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
466 					 const u64 start,
467 					 const u64 len,
468 					 struct extent_state **cached_state)
469 {
470 	u64 search_start = start;
471 	const u64 end = start + len - 1;
472 
473 	while (search_start < end) {
474 		const u64 search_len = end - search_start + 1;
475 		struct extent_map *em;
476 		u64 em_len;
477 		int ret = 0;
478 
479 		em = btrfs_get_extent(inode, NULL, 0, search_start,
480 				      search_len, 0);
481 		if (IS_ERR(em))
482 			return PTR_ERR(em);
483 
484 		if (em->block_start != EXTENT_MAP_HOLE)
485 			goto next;
486 
487 		em_len = em->len;
488 		if (em->start < search_start)
489 			em_len -= search_start - em->start;
490 		if (em_len > search_len)
491 			em_len = search_len;
492 
493 		ret = set_extent_bit(&inode->io_tree, search_start,
494 				     search_start + em_len - 1,
495 				     EXTENT_DELALLOC_NEW,
496 				     NULL, cached_state, GFP_NOFS);
497 next:
498 		search_start = extent_map_end(em);
499 		free_extent_map(em);
500 		if (ret)
501 			return ret;
502 	}
503 	return 0;
504 }
505 
506 /*
507  * after copy_from_user, pages need to be dirtied and we need to make
508  * sure holes are created between the current EOF and the start of
509  * any next extents (if required).
510  *
511  * this also makes the decision about creating an inline extent vs
512  * doing real data extents, marking pages dirty and delalloc as required.
513  */
514 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515 		      size_t num_pages, loff_t pos, size_t write_bytes,
516 		      struct extent_state **cached)
517 {
518 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
519 	int err = 0;
520 	int i;
521 	u64 num_bytes;
522 	u64 start_pos;
523 	u64 end_of_last_block;
524 	u64 end_pos = pos + write_bytes;
525 	loff_t isize = i_size_read(inode);
526 	unsigned int extra_bits = 0;
527 
528 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
529 	num_bytes = round_up(write_bytes + pos - start_pos,
530 			     fs_info->sectorsize);
531 
532 	end_of_last_block = start_pos + num_bytes - 1;
533 
534 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
535 		if (start_pos >= isize &&
536 		    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
537 			/*
538 			 * There can't be any extents following eof in this case
539 			 * so just set the delalloc new bit for the range
540 			 * directly.
541 			 */
542 			extra_bits |= EXTENT_DELALLOC_NEW;
543 		} else {
544 			err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
545 							    start_pos,
546 							    num_bytes, cached);
547 			if (err)
548 				return err;
549 		}
550 	}
551 
552 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
553 					extra_bits, cached, 0);
554 	if (err)
555 		return err;
556 
557 	for (i = 0; i < num_pages; i++) {
558 		struct page *p = pages[i];
559 		SetPageUptodate(p);
560 		ClearPageChecked(p);
561 		set_page_dirty(p);
562 	}
563 
564 	/*
565 	 * we've only changed i_size in ram, and we haven't updated
566 	 * the disk i_size.  There is no need to log the inode
567 	 * at this time.
568 	 */
569 	if (end_pos > isize)
570 		i_size_write(inode, end_pos);
571 	return 0;
572 }
573 
574 /*
575  * this drops all the extents in the cache that intersect the range
576  * [start, end].  Existing extents are split as required.
577  */
578 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
579 			     int skip_pinned)
580 {
581 	struct extent_map *em;
582 	struct extent_map *split = NULL;
583 	struct extent_map *split2 = NULL;
584 	struct extent_map_tree *em_tree = &inode->extent_tree;
585 	u64 len = end - start + 1;
586 	u64 gen;
587 	int ret;
588 	int testend = 1;
589 	unsigned long flags;
590 	int compressed = 0;
591 	bool modified;
592 
593 	WARN_ON(end < start);
594 	if (end == (u64)-1) {
595 		len = (u64)-1;
596 		testend = 0;
597 	}
598 	while (1) {
599 		int no_splits = 0;
600 
601 		modified = false;
602 		if (!split)
603 			split = alloc_extent_map();
604 		if (!split2)
605 			split2 = alloc_extent_map();
606 		if (!split || !split2)
607 			no_splits = 1;
608 
609 		write_lock(&em_tree->lock);
610 		em = lookup_extent_mapping(em_tree, start, len);
611 		if (!em) {
612 			write_unlock(&em_tree->lock);
613 			break;
614 		}
615 		flags = em->flags;
616 		gen = em->generation;
617 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
618 			if (testend && em->start + em->len >= start + len) {
619 				free_extent_map(em);
620 				write_unlock(&em_tree->lock);
621 				break;
622 			}
623 			start = em->start + em->len;
624 			if (testend)
625 				len = start + len - (em->start + em->len);
626 			free_extent_map(em);
627 			write_unlock(&em_tree->lock);
628 			continue;
629 		}
630 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
631 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
632 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
633 		modified = !list_empty(&em->list);
634 		if (no_splits)
635 			goto next;
636 
637 		if (em->start < start) {
638 			split->start = em->start;
639 			split->len = start - em->start;
640 
641 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
642 				split->orig_start = em->orig_start;
643 				split->block_start = em->block_start;
644 
645 				if (compressed)
646 					split->block_len = em->block_len;
647 				else
648 					split->block_len = split->len;
649 				split->orig_block_len = max(split->block_len,
650 						em->orig_block_len);
651 				split->ram_bytes = em->ram_bytes;
652 			} else {
653 				split->orig_start = split->start;
654 				split->block_len = 0;
655 				split->block_start = em->block_start;
656 				split->orig_block_len = 0;
657 				split->ram_bytes = split->len;
658 			}
659 
660 			split->generation = gen;
661 			split->bdev = em->bdev;
662 			split->flags = flags;
663 			split->compress_type = em->compress_type;
664 			replace_extent_mapping(em_tree, em, split, modified);
665 			free_extent_map(split);
666 			split = split2;
667 			split2 = NULL;
668 		}
669 		if (testend && em->start + em->len > start + len) {
670 			u64 diff = start + len - em->start;
671 
672 			split->start = start + len;
673 			split->len = em->start + em->len - (start + len);
674 			split->bdev = em->bdev;
675 			split->flags = flags;
676 			split->compress_type = em->compress_type;
677 			split->generation = gen;
678 
679 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
680 				split->orig_block_len = max(em->block_len,
681 						    em->orig_block_len);
682 
683 				split->ram_bytes = em->ram_bytes;
684 				if (compressed) {
685 					split->block_len = em->block_len;
686 					split->block_start = em->block_start;
687 					split->orig_start = em->orig_start;
688 				} else {
689 					split->block_len = split->len;
690 					split->block_start = em->block_start
691 						+ diff;
692 					split->orig_start = em->orig_start;
693 				}
694 			} else {
695 				split->ram_bytes = split->len;
696 				split->orig_start = split->start;
697 				split->block_len = 0;
698 				split->block_start = em->block_start;
699 				split->orig_block_len = 0;
700 			}
701 
702 			if (extent_map_in_tree(em)) {
703 				replace_extent_mapping(em_tree, em, split,
704 						       modified);
705 			} else {
706 				ret = add_extent_mapping(em_tree, split,
707 							 modified);
708 				ASSERT(ret == 0); /* Logic error */
709 			}
710 			free_extent_map(split);
711 			split = NULL;
712 		}
713 next:
714 		if (extent_map_in_tree(em))
715 			remove_extent_mapping(em_tree, em);
716 		write_unlock(&em_tree->lock);
717 
718 		/* once for us */
719 		free_extent_map(em);
720 		/* once for the tree*/
721 		free_extent_map(em);
722 	}
723 	if (split)
724 		free_extent_map(split);
725 	if (split2)
726 		free_extent_map(split2);
727 }
728 
729 /*
730  * this is very complex, but the basic idea is to drop all extents
731  * in the range start - end.  hint_block is filled in with a block number
732  * that would be a good hint to the block allocator for this file.
733  *
734  * If an extent intersects the range but is not entirely inside the range
735  * it is either truncated or split.  Anything entirely inside the range
736  * is deleted from the tree.
737  */
738 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
739 			 struct btrfs_root *root, struct inode *inode,
740 			 struct btrfs_path *path, u64 start, u64 end,
741 			 u64 *drop_end, int drop_cache,
742 			 int replace_extent,
743 			 u32 extent_item_size,
744 			 int *key_inserted)
745 {
746 	struct btrfs_fs_info *fs_info = root->fs_info;
747 	struct extent_buffer *leaf;
748 	struct btrfs_file_extent_item *fi;
749 	struct btrfs_key key;
750 	struct btrfs_key new_key;
751 	u64 ino = btrfs_ino(BTRFS_I(inode));
752 	u64 search_start = start;
753 	u64 disk_bytenr = 0;
754 	u64 num_bytes = 0;
755 	u64 extent_offset = 0;
756 	u64 extent_end = 0;
757 	u64 last_end = start;
758 	int del_nr = 0;
759 	int del_slot = 0;
760 	int extent_type;
761 	int recow;
762 	int ret;
763 	int modify_tree = -1;
764 	int update_refs;
765 	int found = 0;
766 	int leafs_visited = 0;
767 
768 	if (drop_cache)
769 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
770 
771 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
772 		modify_tree = 0;
773 
774 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
775 		       root == fs_info->tree_root);
776 	while (1) {
777 		recow = 0;
778 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
779 					       search_start, modify_tree);
780 		if (ret < 0)
781 			break;
782 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
783 			leaf = path->nodes[0];
784 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
785 			if (key.objectid == ino &&
786 			    key.type == BTRFS_EXTENT_DATA_KEY)
787 				path->slots[0]--;
788 		}
789 		ret = 0;
790 		leafs_visited++;
791 next_slot:
792 		leaf = path->nodes[0];
793 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
794 			BUG_ON(del_nr > 0);
795 			ret = btrfs_next_leaf(root, path);
796 			if (ret < 0)
797 				break;
798 			if (ret > 0) {
799 				ret = 0;
800 				break;
801 			}
802 			leafs_visited++;
803 			leaf = path->nodes[0];
804 			recow = 1;
805 		}
806 
807 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
808 
809 		if (key.objectid > ino)
810 			break;
811 		if (WARN_ON_ONCE(key.objectid < ino) ||
812 		    key.type < BTRFS_EXTENT_DATA_KEY) {
813 			ASSERT(del_nr == 0);
814 			path->slots[0]++;
815 			goto next_slot;
816 		}
817 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
818 			break;
819 
820 		fi = btrfs_item_ptr(leaf, path->slots[0],
821 				    struct btrfs_file_extent_item);
822 		extent_type = btrfs_file_extent_type(leaf, fi);
823 
824 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
825 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
826 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
827 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
828 			extent_offset = btrfs_file_extent_offset(leaf, fi);
829 			extent_end = key.offset +
830 				btrfs_file_extent_num_bytes(leaf, fi);
831 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
832 			extent_end = key.offset +
833 				btrfs_file_extent_ram_bytes(leaf, fi);
834 		} else {
835 			/* can't happen */
836 			BUG();
837 		}
838 
839 		/*
840 		 * Don't skip extent items representing 0 byte lengths. They
841 		 * used to be created (bug) if while punching holes we hit
842 		 * -ENOSPC condition. So if we find one here, just ensure we
843 		 * delete it, otherwise we would insert a new file extent item
844 		 * with the same key (offset) as that 0 bytes length file
845 		 * extent item in the call to setup_items_for_insert() later
846 		 * in this function.
847 		 */
848 		if (extent_end == key.offset && extent_end >= search_start) {
849 			last_end = extent_end;
850 			goto delete_extent_item;
851 		}
852 
853 		if (extent_end <= search_start) {
854 			path->slots[0]++;
855 			goto next_slot;
856 		}
857 
858 		found = 1;
859 		search_start = max(key.offset, start);
860 		if (recow || !modify_tree) {
861 			modify_tree = -1;
862 			btrfs_release_path(path);
863 			continue;
864 		}
865 
866 		/*
867 		 *     | - range to drop - |
868 		 *  | -------- extent -------- |
869 		 */
870 		if (start > key.offset && end < extent_end) {
871 			BUG_ON(del_nr > 0);
872 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
873 				ret = -EOPNOTSUPP;
874 				break;
875 			}
876 
877 			memcpy(&new_key, &key, sizeof(new_key));
878 			new_key.offset = start;
879 			ret = btrfs_duplicate_item(trans, root, path,
880 						   &new_key);
881 			if (ret == -EAGAIN) {
882 				btrfs_release_path(path);
883 				continue;
884 			}
885 			if (ret < 0)
886 				break;
887 
888 			leaf = path->nodes[0];
889 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
890 					    struct btrfs_file_extent_item);
891 			btrfs_set_file_extent_num_bytes(leaf, fi,
892 							start - key.offset);
893 
894 			fi = btrfs_item_ptr(leaf, path->slots[0],
895 					    struct btrfs_file_extent_item);
896 
897 			extent_offset += start - key.offset;
898 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
899 			btrfs_set_file_extent_num_bytes(leaf, fi,
900 							extent_end - start);
901 			btrfs_mark_buffer_dirty(leaf);
902 
903 			if (update_refs && disk_bytenr > 0) {
904 				ret = btrfs_inc_extent_ref(trans, root,
905 						disk_bytenr, num_bytes, 0,
906 						root->root_key.objectid,
907 						new_key.objectid,
908 						start - extent_offset);
909 				BUG_ON(ret); /* -ENOMEM */
910 			}
911 			key.offset = start;
912 		}
913 		/*
914 		 * From here on out we will have actually dropped something, so
915 		 * last_end can be updated.
916 		 */
917 		last_end = extent_end;
918 
919 		/*
920 		 *  | ---- range to drop ----- |
921 		 *      | -------- extent -------- |
922 		 */
923 		if (start <= key.offset && end < extent_end) {
924 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
925 				ret = -EOPNOTSUPP;
926 				break;
927 			}
928 
929 			memcpy(&new_key, &key, sizeof(new_key));
930 			new_key.offset = end;
931 			btrfs_set_item_key_safe(fs_info, path, &new_key);
932 
933 			extent_offset += end - key.offset;
934 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
935 			btrfs_set_file_extent_num_bytes(leaf, fi,
936 							extent_end - end);
937 			btrfs_mark_buffer_dirty(leaf);
938 			if (update_refs && disk_bytenr > 0)
939 				inode_sub_bytes(inode, end - key.offset);
940 			break;
941 		}
942 
943 		search_start = extent_end;
944 		/*
945 		 *       | ---- range to drop ----- |
946 		 *  | -------- extent -------- |
947 		 */
948 		if (start > key.offset && end >= extent_end) {
949 			BUG_ON(del_nr > 0);
950 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
951 				ret = -EOPNOTSUPP;
952 				break;
953 			}
954 
955 			btrfs_set_file_extent_num_bytes(leaf, fi,
956 							start - key.offset);
957 			btrfs_mark_buffer_dirty(leaf);
958 			if (update_refs && disk_bytenr > 0)
959 				inode_sub_bytes(inode, extent_end - start);
960 			if (end == extent_end)
961 				break;
962 
963 			path->slots[0]++;
964 			goto next_slot;
965 		}
966 
967 		/*
968 		 *  | ---- range to drop ----- |
969 		 *    | ------ extent ------ |
970 		 */
971 		if (start <= key.offset && end >= extent_end) {
972 delete_extent_item:
973 			if (del_nr == 0) {
974 				del_slot = path->slots[0];
975 				del_nr = 1;
976 			} else {
977 				BUG_ON(del_slot + del_nr != path->slots[0]);
978 				del_nr++;
979 			}
980 
981 			if (update_refs &&
982 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
983 				inode_sub_bytes(inode,
984 						extent_end - key.offset);
985 				extent_end = ALIGN(extent_end,
986 						   fs_info->sectorsize);
987 			} else if (update_refs && disk_bytenr > 0) {
988 				ret = btrfs_free_extent(trans, root,
989 						disk_bytenr, num_bytes, 0,
990 						root->root_key.objectid,
991 						key.objectid, key.offset -
992 						extent_offset);
993 				BUG_ON(ret); /* -ENOMEM */
994 				inode_sub_bytes(inode,
995 						extent_end - key.offset);
996 			}
997 
998 			if (end == extent_end)
999 				break;
1000 
1001 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1002 				path->slots[0]++;
1003 				goto next_slot;
1004 			}
1005 
1006 			ret = btrfs_del_items(trans, root, path, del_slot,
1007 					      del_nr);
1008 			if (ret) {
1009 				btrfs_abort_transaction(trans, ret);
1010 				break;
1011 			}
1012 
1013 			del_nr = 0;
1014 			del_slot = 0;
1015 
1016 			btrfs_release_path(path);
1017 			continue;
1018 		}
1019 
1020 		BUG_ON(1);
1021 	}
1022 
1023 	if (!ret && del_nr > 0) {
1024 		/*
1025 		 * Set path->slots[0] to first slot, so that after the delete
1026 		 * if items are move off from our leaf to its immediate left or
1027 		 * right neighbor leafs, we end up with a correct and adjusted
1028 		 * path->slots[0] for our insertion (if replace_extent != 0).
1029 		 */
1030 		path->slots[0] = del_slot;
1031 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1032 		if (ret)
1033 			btrfs_abort_transaction(trans, ret);
1034 	}
1035 
1036 	leaf = path->nodes[0];
1037 	/*
1038 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1039 	 * which case it unlocked our path, so check path->locks[0] matches a
1040 	 * write lock.
1041 	 */
1042 	if (!ret && replace_extent && leafs_visited == 1 &&
1043 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1044 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1045 	    btrfs_leaf_free_space(fs_info, leaf) >=
1046 	    sizeof(struct btrfs_item) + extent_item_size) {
1047 
1048 		key.objectid = ino;
1049 		key.type = BTRFS_EXTENT_DATA_KEY;
1050 		key.offset = start;
1051 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1052 			struct btrfs_key slot_key;
1053 
1054 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1055 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1056 				path->slots[0]++;
1057 		}
1058 		setup_items_for_insert(root, path, &key,
1059 				       &extent_item_size,
1060 				       extent_item_size,
1061 				       sizeof(struct btrfs_item) +
1062 				       extent_item_size, 1);
1063 		*key_inserted = 1;
1064 	}
1065 
1066 	if (!replace_extent || !(*key_inserted))
1067 		btrfs_release_path(path);
1068 	if (drop_end)
1069 		*drop_end = found ? min(end, last_end) : end;
1070 	return ret;
1071 }
1072 
1073 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1074 		       struct btrfs_root *root, struct inode *inode, u64 start,
1075 		       u64 end, int drop_cache)
1076 {
1077 	struct btrfs_path *path;
1078 	int ret;
1079 
1080 	path = btrfs_alloc_path();
1081 	if (!path)
1082 		return -ENOMEM;
1083 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1084 				   drop_cache, 0, 0, NULL);
1085 	btrfs_free_path(path);
1086 	return ret;
1087 }
1088 
1089 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1090 			    u64 objectid, u64 bytenr, u64 orig_offset,
1091 			    u64 *start, u64 *end)
1092 {
1093 	struct btrfs_file_extent_item *fi;
1094 	struct btrfs_key key;
1095 	u64 extent_end;
1096 
1097 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1098 		return 0;
1099 
1100 	btrfs_item_key_to_cpu(leaf, &key, slot);
1101 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1102 		return 0;
1103 
1104 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1105 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1106 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1107 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1108 	    btrfs_file_extent_compression(leaf, fi) ||
1109 	    btrfs_file_extent_encryption(leaf, fi) ||
1110 	    btrfs_file_extent_other_encoding(leaf, fi))
1111 		return 0;
1112 
1113 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1114 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1115 		return 0;
1116 
1117 	*start = key.offset;
1118 	*end = extent_end;
1119 	return 1;
1120 }
1121 
1122 /*
1123  * Mark extent in the range start - end as written.
1124  *
1125  * This changes extent type from 'pre-allocated' to 'regular'. If only
1126  * part of extent is marked as written, the extent will be split into
1127  * two or three.
1128  */
1129 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1130 			      struct btrfs_inode *inode, u64 start, u64 end)
1131 {
1132 	struct btrfs_fs_info *fs_info = trans->fs_info;
1133 	struct btrfs_root *root = inode->root;
1134 	struct extent_buffer *leaf;
1135 	struct btrfs_path *path;
1136 	struct btrfs_file_extent_item *fi;
1137 	struct btrfs_key key;
1138 	struct btrfs_key new_key;
1139 	u64 bytenr;
1140 	u64 num_bytes;
1141 	u64 extent_end;
1142 	u64 orig_offset;
1143 	u64 other_start;
1144 	u64 other_end;
1145 	u64 split;
1146 	int del_nr = 0;
1147 	int del_slot = 0;
1148 	int recow;
1149 	int ret;
1150 	u64 ino = btrfs_ino(inode);
1151 
1152 	path = btrfs_alloc_path();
1153 	if (!path)
1154 		return -ENOMEM;
1155 again:
1156 	recow = 0;
1157 	split = start;
1158 	key.objectid = ino;
1159 	key.type = BTRFS_EXTENT_DATA_KEY;
1160 	key.offset = split;
1161 
1162 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1163 	if (ret < 0)
1164 		goto out;
1165 	if (ret > 0 && path->slots[0] > 0)
1166 		path->slots[0]--;
1167 
1168 	leaf = path->nodes[0];
1169 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 	if (key.objectid != ino ||
1171 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1172 		ret = -EINVAL;
1173 		btrfs_abort_transaction(trans, ret);
1174 		goto out;
1175 	}
1176 	fi = btrfs_item_ptr(leaf, path->slots[0],
1177 			    struct btrfs_file_extent_item);
1178 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1179 		ret = -EINVAL;
1180 		btrfs_abort_transaction(trans, ret);
1181 		goto out;
1182 	}
1183 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1184 	if (key.offset > start || extent_end < end) {
1185 		ret = -EINVAL;
1186 		btrfs_abort_transaction(trans, ret);
1187 		goto out;
1188 	}
1189 
1190 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1191 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1192 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1193 	memcpy(&new_key, &key, sizeof(new_key));
1194 
1195 	if (start == key.offset && end < extent_end) {
1196 		other_start = 0;
1197 		other_end = start;
1198 		if (extent_mergeable(leaf, path->slots[0] - 1,
1199 				     ino, bytenr, orig_offset,
1200 				     &other_start, &other_end)) {
1201 			new_key.offset = end;
1202 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1203 			fi = btrfs_item_ptr(leaf, path->slots[0],
1204 					    struct btrfs_file_extent_item);
1205 			btrfs_set_file_extent_generation(leaf, fi,
1206 							 trans->transid);
1207 			btrfs_set_file_extent_num_bytes(leaf, fi,
1208 							extent_end - end);
1209 			btrfs_set_file_extent_offset(leaf, fi,
1210 						     end - orig_offset);
1211 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1212 					    struct btrfs_file_extent_item);
1213 			btrfs_set_file_extent_generation(leaf, fi,
1214 							 trans->transid);
1215 			btrfs_set_file_extent_num_bytes(leaf, fi,
1216 							end - other_start);
1217 			btrfs_mark_buffer_dirty(leaf);
1218 			goto out;
1219 		}
1220 	}
1221 
1222 	if (start > key.offset && end == extent_end) {
1223 		other_start = end;
1224 		other_end = 0;
1225 		if (extent_mergeable(leaf, path->slots[0] + 1,
1226 				     ino, bytenr, orig_offset,
1227 				     &other_start, &other_end)) {
1228 			fi = btrfs_item_ptr(leaf, path->slots[0],
1229 					    struct btrfs_file_extent_item);
1230 			btrfs_set_file_extent_num_bytes(leaf, fi,
1231 							start - key.offset);
1232 			btrfs_set_file_extent_generation(leaf, fi,
1233 							 trans->transid);
1234 			path->slots[0]++;
1235 			new_key.offset = start;
1236 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1237 
1238 			fi = btrfs_item_ptr(leaf, path->slots[0],
1239 					    struct btrfs_file_extent_item);
1240 			btrfs_set_file_extent_generation(leaf, fi,
1241 							 trans->transid);
1242 			btrfs_set_file_extent_num_bytes(leaf, fi,
1243 							other_end - start);
1244 			btrfs_set_file_extent_offset(leaf, fi,
1245 						     start - orig_offset);
1246 			btrfs_mark_buffer_dirty(leaf);
1247 			goto out;
1248 		}
1249 	}
1250 
1251 	while (start > key.offset || end < extent_end) {
1252 		if (key.offset == start)
1253 			split = end;
1254 
1255 		new_key.offset = split;
1256 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1257 		if (ret == -EAGAIN) {
1258 			btrfs_release_path(path);
1259 			goto again;
1260 		}
1261 		if (ret < 0) {
1262 			btrfs_abort_transaction(trans, ret);
1263 			goto out;
1264 		}
1265 
1266 		leaf = path->nodes[0];
1267 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1268 				    struct btrfs_file_extent_item);
1269 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1270 		btrfs_set_file_extent_num_bytes(leaf, fi,
1271 						split - key.offset);
1272 
1273 		fi = btrfs_item_ptr(leaf, path->slots[0],
1274 				    struct btrfs_file_extent_item);
1275 
1276 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1277 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1278 		btrfs_set_file_extent_num_bytes(leaf, fi,
1279 						extent_end - split);
1280 		btrfs_mark_buffer_dirty(leaf);
1281 
1282 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1283 					   0, root->root_key.objectid,
1284 					   ino, orig_offset);
1285 		if (ret) {
1286 			btrfs_abort_transaction(trans, ret);
1287 			goto out;
1288 		}
1289 
1290 		if (split == start) {
1291 			key.offset = start;
1292 		} else {
1293 			if (start != key.offset) {
1294 				ret = -EINVAL;
1295 				btrfs_abort_transaction(trans, ret);
1296 				goto out;
1297 			}
1298 			path->slots[0]--;
1299 			extent_end = end;
1300 		}
1301 		recow = 1;
1302 	}
1303 
1304 	other_start = end;
1305 	other_end = 0;
1306 	if (extent_mergeable(leaf, path->slots[0] + 1,
1307 			     ino, bytenr, orig_offset,
1308 			     &other_start, &other_end)) {
1309 		if (recow) {
1310 			btrfs_release_path(path);
1311 			goto again;
1312 		}
1313 		extent_end = other_end;
1314 		del_slot = path->slots[0] + 1;
1315 		del_nr++;
1316 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1317 					0, root->root_key.objectid,
1318 					ino, orig_offset);
1319 		if (ret) {
1320 			btrfs_abort_transaction(trans, ret);
1321 			goto out;
1322 		}
1323 	}
1324 	other_start = 0;
1325 	other_end = start;
1326 	if (extent_mergeable(leaf, path->slots[0] - 1,
1327 			     ino, bytenr, orig_offset,
1328 			     &other_start, &other_end)) {
1329 		if (recow) {
1330 			btrfs_release_path(path);
1331 			goto again;
1332 		}
1333 		key.offset = other_start;
1334 		del_slot = path->slots[0];
1335 		del_nr++;
1336 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1337 					0, root->root_key.objectid,
1338 					ino, orig_offset);
1339 		if (ret) {
1340 			btrfs_abort_transaction(trans, ret);
1341 			goto out;
1342 		}
1343 	}
1344 	if (del_nr == 0) {
1345 		fi = btrfs_item_ptr(leaf, path->slots[0],
1346 			   struct btrfs_file_extent_item);
1347 		btrfs_set_file_extent_type(leaf, fi,
1348 					   BTRFS_FILE_EXTENT_REG);
1349 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1350 		btrfs_mark_buffer_dirty(leaf);
1351 	} else {
1352 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1353 			   struct btrfs_file_extent_item);
1354 		btrfs_set_file_extent_type(leaf, fi,
1355 					   BTRFS_FILE_EXTENT_REG);
1356 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1357 		btrfs_set_file_extent_num_bytes(leaf, fi,
1358 						extent_end - key.offset);
1359 		btrfs_mark_buffer_dirty(leaf);
1360 
1361 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1362 		if (ret < 0) {
1363 			btrfs_abort_transaction(trans, ret);
1364 			goto out;
1365 		}
1366 	}
1367 out:
1368 	btrfs_free_path(path);
1369 	return 0;
1370 }
1371 
1372 /*
1373  * on error we return an unlocked page and the error value
1374  * on success we return a locked page and 0
1375  */
1376 static int prepare_uptodate_page(struct inode *inode,
1377 				 struct page *page, u64 pos,
1378 				 bool force_uptodate)
1379 {
1380 	int ret = 0;
1381 
1382 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1383 	    !PageUptodate(page)) {
1384 		ret = btrfs_readpage(NULL, page);
1385 		if (ret)
1386 			return ret;
1387 		lock_page(page);
1388 		if (!PageUptodate(page)) {
1389 			unlock_page(page);
1390 			return -EIO;
1391 		}
1392 		if (page->mapping != inode->i_mapping) {
1393 			unlock_page(page);
1394 			return -EAGAIN;
1395 		}
1396 	}
1397 	return 0;
1398 }
1399 
1400 /*
1401  * this just gets pages into the page cache and locks them down.
1402  */
1403 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1404 				  size_t num_pages, loff_t pos,
1405 				  size_t write_bytes, bool force_uptodate)
1406 {
1407 	int i;
1408 	unsigned long index = pos >> PAGE_SHIFT;
1409 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1410 	int err = 0;
1411 	int faili;
1412 
1413 	for (i = 0; i < num_pages; i++) {
1414 again:
1415 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1416 					       mask | __GFP_WRITE);
1417 		if (!pages[i]) {
1418 			faili = i - 1;
1419 			err = -ENOMEM;
1420 			goto fail;
1421 		}
1422 
1423 		if (i == 0)
1424 			err = prepare_uptodate_page(inode, pages[i], pos,
1425 						    force_uptodate);
1426 		if (!err && i == num_pages - 1)
1427 			err = prepare_uptodate_page(inode, pages[i],
1428 						    pos + write_bytes, false);
1429 		if (err) {
1430 			put_page(pages[i]);
1431 			if (err == -EAGAIN) {
1432 				err = 0;
1433 				goto again;
1434 			}
1435 			faili = i - 1;
1436 			goto fail;
1437 		}
1438 		wait_on_page_writeback(pages[i]);
1439 	}
1440 
1441 	return 0;
1442 fail:
1443 	while (faili >= 0) {
1444 		unlock_page(pages[faili]);
1445 		put_page(pages[faili]);
1446 		faili--;
1447 	}
1448 	return err;
1449 
1450 }
1451 
1452 /*
1453  * This function locks the extent and properly waits for data=ordered extents
1454  * to finish before allowing the pages to be modified if need.
1455  *
1456  * The return value:
1457  * 1 - the extent is locked
1458  * 0 - the extent is not locked, and everything is OK
1459  * -EAGAIN - need re-prepare the pages
1460  * the other < 0 number - Something wrong happens
1461  */
1462 static noinline int
1463 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1464 				size_t num_pages, loff_t pos,
1465 				size_t write_bytes,
1466 				u64 *lockstart, u64 *lockend,
1467 				struct extent_state **cached_state)
1468 {
1469 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1470 	u64 start_pos;
1471 	u64 last_pos;
1472 	int i;
1473 	int ret = 0;
1474 
1475 	start_pos = round_down(pos, fs_info->sectorsize);
1476 	last_pos = start_pos
1477 		+ round_up(pos + write_bytes - start_pos,
1478 			   fs_info->sectorsize) - 1;
1479 
1480 	if (start_pos < inode->vfs_inode.i_size) {
1481 		struct btrfs_ordered_extent *ordered;
1482 
1483 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1484 				cached_state);
1485 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1486 						     last_pos - start_pos + 1);
1487 		if (ordered &&
1488 		    ordered->file_offset + ordered->len > start_pos &&
1489 		    ordered->file_offset <= last_pos) {
1490 			unlock_extent_cached(&inode->io_tree, start_pos,
1491 					last_pos, cached_state);
1492 			for (i = 0; i < num_pages; i++) {
1493 				unlock_page(pages[i]);
1494 				put_page(pages[i]);
1495 			}
1496 			btrfs_start_ordered_extent(&inode->vfs_inode,
1497 					ordered, 1);
1498 			btrfs_put_ordered_extent(ordered);
1499 			return -EAGAIN;
1500 		}
1501 		if (ordered)
1502 			btrfs_put_ordered_extent(ordered);
1503 		clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1504 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1505 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1506 				 0, 0, cached_state);
1507 		*lockstart = start_pos;
1508 		*lockend = last_pos;
1509 		ret = 1;
1510 	}
1511 
1512 	for (i = 0; i < num_pages; i++) {
1513 		if (clear_page_dirty_for_io(pages[i]))
1514 			account_page_redirty(pages[i]);
1515 		set_page_extent_mapped(pages[i]);
1516 		WARN_ON(!PageLocked(pages[i]));
1517 	}
1518 
1519 	return ret;
1520 }
1521 
1522 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1523 				    size_t *write_bytes)
1524 {
1525 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1526 	struct btrfs_root *root = inode->root;
1527 	struct btrfs_ordered_extent *ordered;
1528 	u64 lockstart, lockend;
1529 	u64 num_bytes;
1530 	int ret;
1531 
1532 	ret = btrfs_start_write_no_snapshotting(root);
1533 	if (!ret)
1534 		return -ENOSPC;
1535 
1536 	lockstart = round_down(pos, fs_info->sectorsize);
1537 	lockend = round_up(pos + *write_bytes,
1538 			   fs_info->sectorsize) - 1;
1539 
1540 	while (1) {
1541 		lock_extent(&inode->io_tree, lockstart, lockend);
1542 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1543 						     lockend - lockstart + 1);
1544 		if (!ordered) {
1545 			break;
1546 		}
1547 		unlock_extent(&inode->io_tree, lockstart, lockend);
1548 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1549 		btrfs_put_ordered_extent(ordered);
1550 	}
1551 
1552 	num_bytes = lockend - lockstart + 1;
1553 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1554 			NULL, NULL, NULL);
1555 	if (ret <= 0) {
1556 		ret = 0;
1557 		btrfs_end_write_no_snapshotting(root);
1558 	} else {
1559 		*write_bytes = min_t(size_t, *write_bytes ,
1560 				     num_bytes - pos + lockstart);
1561 	}
1562 
1563 	unlock_extent(&inode->io_tree, lockstart, lockend);
1564 
1565 	return ret;
1566 }
1567 
1568 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1569 					       struct iov_iter *i)
1570 {
1571 	struct file *file = iocb->ki_filp;
1572 	loff_t pos = iocb->ki_pos;
1573 	struct inode *inode = file_inode(file);
1574 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1575 	struct btrfs_root *root = BTRFS_I(inode)->root;
1576 	struct page **pages = NULL;
1577 	struct extent_state *cached_state = NULL;
1578 	struct extent_changeset *data_reserved = NULL;
1579 	u64 release_bytes = 0;
1580 	u64 lockstart;
1581 	u64 lockend;
1582 	size_t num_written = 0;
1583 	int nrptrs;
1584 	int ret = 0;
1585 	bool only_release_metadata = false;
1586 	bool force_page_uptodate = false;
1587 
1588 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1589 			PAGE_SIZE / (sizeof(struct page *)));
1590 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1591 	nrptrs = max(nrptrs, 8);
1592 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1593 	if (!pages)
1594 		return -ENOMEM;
1595 
1596 	while (iov_iter_count(i) > 0) {
1597 		size_t offset = pos & (PAGE_SIZE - 1);
1598 		size_t sector_offset;
1599 		size_t write_bytes = min(iov_iter_count(i),
1600 					 nrptrs * (size_t)PAGE_SIZE -
1601 					 offset);
1602 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1603 						PAGE_SIZE);
1604 		size_t reserve_bytes;
1605 		size_t dirty_pages;
1606 		size_t copied;
1607 		size_t dirty_sectors;
1608 		size_t num_sectors;
1609 		int extents_locked;
1610 
1611 		WARN_ON(num_pages > nrptrs);
1612 
1613 		/*
1614 		 * Fault pages before locking them in prepare_pages
1615 		 * to avoid recursive lock
1616 		 */
1617 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1618 			ret = -EFAULT;
1619 			break;
1620 		}
1621 
1622 		sector_offset = pos & (fs_info->sectorsize - 1);
1623 		reserve_bytes = round_up(write_bytes + sector_offset,
1624 				fs_info->sectorsize);
1625 
1626 		extent_changeset_release(data_reserved);
1627 		ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1628 						  write_bytes);
1629 		if (ret < 0) {
1630 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1631 						      BTRFS_INODE_PREALLOC)) &&
1632 			    check_can_nocow(BTRFS_I(inode), pos,
1633 					&write_bytes) > 0) {
1634 				/*
1635 				 * For nodata cow case, no need to reserve
1636 				 * data space.
1637 				 */
1638 				only_release_metadata = true;
1639 				/*
1640 				 * our prealloc extent may be smaller than
1641 				 * write_bytes, so scale down.
1642 				 */
1643 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1644 							 PAGE_SIZE);
1645 				reserve_bytes = round_up(write_bytes +
1646 							 sector_offset,
1647 							 fs_info->sectorsize);
1648 			} else {
1649 				break;
1650 			}
1651 		}
1652 
1653 		WARN_ON(reserve_bytes == 0);
1654 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1655 				reserve_bytes);
1656 		if (ret) {
1657 			if (!only_release_metadata)
1658 				btrfs_free_reserved_data_space(inode,
1659 						data_reserved, pos,
1660 						write_bytes);
1661 			else
1662 				btrfs_end_write_no_snapshotting(root);
1663 			break;
1664 		}
1665 
1666 		release_bytes = reserve_bytes;
1667 again:
1668 		/*
1669 		 * This is going to setup the pages array with the number of
1670 		 * pages we want, so we don't really need to worry about the
1671 		 * contents of pages from loop to loop
1672 		 */
1673 		ret = prepare_pages(inode, pages, num_pages,
1674 				    pos, write_bytes,
1675 				    force_page_uptodate);
1676 		if (ret) {
1677 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1678 						       reserve_bytes, true);
1679 			break;
1680 		}
1681 
1682 		extents_locked = lock_and_cleanup_extent_if_need(
1683 				BTRFS_I(inode), pages,
1684 				num_pages, pos, write_bytes, &lockstart,
1685 				&lockend, &cached_state);
1686 		if (extents_locked < 0) {
1687 			if (extents_locked == -EAGAIN)
1688 				goto again;
1689 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1690 						       reserve_bytes, true);
1691 			ret = extents_locked;
1692 			break;
1693 		}
1694 
1695 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1696 
1697 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1698 		dirty_sectors = round_up(copied + sector_offset,
1699 					fs_info->sectorsize);
1700 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1701 
1702 		/*
1703 		 * if we have trouble faulting in the pages, fall
1704 		 * back to one page at a time
1705 		 */
1706 		if (copied < write_bytes)
1707 			nrptrs = 1;
1708 
1709 		if (copied == 0) {
1710 			force_page_uptodate = true;
1711 			dirty_sectors = 0;
1712 			dirty_pages = 0;
1713 		} else {
1714 			force_page_uptodate = false;
1715 			dirty_pages = DIV_ROUND_UP(copied + offset,
1716 						   PAGE_SIZE);
1717 		}
1718 
1719 		if (num_sectors > dirty_sectors) {
1720 			/* release everything except the sectors we dirtied */
1721 			release_bytes -= dirty_sectors <<
1722 						fs_info->sb->s_blocksize_bits;
1723 			if (only_release_metadata) {
1724 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1725 							release_bytes, true);
1726 			} else {
1727 				u64 __pos;
1728 
1729 				__pos = round_down(pos,
1730 						   fs_info->sectorsize) +
1731 					(dirty_pages << PAGE_SHIFT);
1732 				btrfs_delalloc_release_space(inode,
1733 						data_reserved, __pos,
1734 						release_bytes, true);
1735 			}
1736 		}
1737 
1738 		release_bytes = round_up(copied + sector_offset,
1739 					fs_info->sectorsize);
1740 
1741 		if (copied > 0)
1742 			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1743 						pos, copied, &cached_state);
1744 		if (extents_locked)
1745 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1746 					     lockstart, lockend, &cached_state);
1747 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1748 					       true);
1749 		if (ret) {
1750 			btrfs_drop_pages(pages, num_pages);
1751 			break;
1752 		}
1753 
1754 		release_bytes = 0;
1755 		if (only_release_metadata)
1756 			btrfs_end_write_no_snapshotting(root);
1757 
1758 		if (only_release_metadata && copied > 0) {
1759 			lockstart = round_down(pos,
1760 					       fs_info->sectorsize);
1761 			lockend = round_up(pos + copied,
1762 					   fs_info->sectorsize) - 1;
1763 
1764 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1765 				       lockend, EXTENT_NORESERVE, NULL,
1766 				       NULL, GFP_NOFS);
1767 			only_release_metadata = false;
1768 		}
1769 
1770 		btrfs_drop_pages(pages, num_pages);
1771 
1772 		cond_resched();
1773 
1774 		balance_dirty_pages_ratelimited(inode->i_mapping);
1775 		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1776 			btrfs_btree_balance_dirty(fs_info);
1777 
1778 		pos += copied;
1779 		num_written += copied;
1780 	}
1781 
1782 	kfree(pages);
1783 
1784 	if (release_bytes) {
1785 		if (only_release_metadata) {
1786 			btrfs_end_write_no_snapshotting(root);
1787 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1788 					release_bytes, true);
1789 		} else {
1790 			btrfs_delalloc_release_space(inode, data_reserved,
1791 					round_down(pos, fs_info->sectorsize),
1792 					release_bytes, true);
1793 		}
1794 	}
1795 
1796 	extent_changeset_free(data_reserved);
1797 	return num_written ? num_written : ret;
1798 }
1799 
1800 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1801 {
1802 	struct file *file = iocb->ki_filp;
1803 	struct inode *inode = file_inode(file);
1804 	loff_t pos;
1805 	ssize_t written;
1806 	ssize_t written_buffered;
1807 	loff_t endbyte;
1808 	int err;
1809 
1810 	written = generic_file_direct_write(iocb, from);
1811 
1812 	if (written < 0 || !iov_iter_count(from))
1813 		return written;
1814 
1815 	pos = iocb->ki_pos;
1816 	written_buffered = btrfs_buffered_write(iocb, from);
1817 	if (written_buffered < 0) {
1818 		err = written_buffered;
1819 		goto out;
1820 	}
1821 	/*
1822 	 * Ensure all data is persisted. We want the next direct IO read to be
1823 	 * able to read what was just written.
1824 	 */
1825 	endbyte = pos + written_buffered - 1;
1826 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1827 	if (err)
1828 		goto out;
1829 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1830 	if (err)
1831 		goto out;
1832 	written += written_buffered;
1833 	iocb->ki_pos = pos + written_buffered;
1834 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1835 				 endbyte >> PAGE_SHIFT);
1836 out:
1837 	return written ? written : err;
1838 }
1839 
1840 static void update_time_for_write(struct inode *inode)
1841 {
1842 	struct timespec64 now;
1843 
1844 	if (IS_NOCMTIME(inode))
1845 		return;
1846 
1847 	now = current_time(inode);
1848 	if (!timespec64_equal(&inode->i_mtime, &now))
1849 		inode->i_mtime = now;
1850 
1851 	if (!timespec64_equal(&inode->i_ctime, &now))
1852 		inode->i_ctime = now;
1853 
1854 	if (IS_I_VERSION(inode))
1855 		inode_inc_iversion(inode);
1856 }
1857 
1858 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1859 				    struct iov_iter *from)
1860 {
1861 	struct file *file = iocb->ki_filp;
1862 	struct inode *inode = file_inode(file);
1863 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1864 	struct btrfs_root *root = BTRFS_I(inode)->root;
1865 	u64 start_pos;
1866 	u64 end_pos;
1867 	ssize_t num_written = 0;
1868 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1869 	ssize_t err;
1870 	loff_t pos;
1871 	size_t count = iov_iter_count(from);
1872 	loff_t oldsize;
1873 	int clean_page = 0;
1874 
1875 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1876 	    (iocb->ki_flags & IOCB_NOWAIT))
1877 		return -EOPNOTSUPP;
1878 
1879 	if (!inode_trylock(inode)) {
1880 		if (iocb->ki_flags & IOCB_NOWAIT)
1881 			return -EAGAIN;
1882 		inode_lock(inode);
1883 	}
1884 
1885 	err = generic_write_checks(iocb, from);
1886 	if (err <= 0) {
1887 		inode_unlock(inode);
1888 		return err;
1889 	}
1890 
1891 	pos = iocb->ki_pos;
1892 	if (iocb->ki_flags & IOCB_NOWAIT) {
1893 		/*
1894 		 * We will allocate space in case nodatacow is not set,
1895 		 * so bail
1896 		 */
1897 		if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1898 					      BTRFS_INODE_PREALLOC)) ||
1899 		    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1900 			inode_unlock(inode);
1901 			return -EAGAIN;
1902 		}
1903 	}
1904 
1905 	current->backing_dev_info = inode_to_bdi(inode);
1906 	err = file_remove_privs(file);
1907 	if (err) {
1908 		inode_unlock(inode);
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * If BTRFS flips readonly due to some impossible error
1914 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1915 	 * although we have opened a file as writable, we have
1916 	 * to stop this write operation to ensure FS consistency.
1917 	 */
1918 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1919 		inode_unlock(inode);
1920 		err = -EROFS;
1921 		goto out;
1922 	}
1923 
1924 	/*
1925 	 * We reserve space for updating the inode when we reserve space for the
1926 	 * extent we are going to write, so we will enospc out there.  We don't
1927 	 * need to start yet another transaction to update the inode as we will
1928 	 * update the inode when we finish writing whatever data we write.
1929 	 */
1930 	update_time_for_write(inode);
1931 
1932 	start_pos = round_down(pos, fs_info->sectorsize);
1933 	oldsize = i_size_read(inode);
1934 	if (start_pos > oldsize) {
1935 		/* Expand hole size to cover write data, preventing empty gap */
1936 		end_pos = round_up(pos + count,
1937 				   fs_info->sectorsize);
1938 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1939 		if (err) {
1940 			inode_unlock(inode);
1941 			goto out;
1942 		}
1943 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1944 			clean_page = 1;
1945 	}
1946 
1947 	if (sync)
1948 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1949 
1950 	if (iocb->ki_flags & IOCB_DIRECT) {
1951 		num_written = __btrfs_direct_write(iocb, from);
1952 	} else {
1953 		num_written = btrfs_buffered_write(iocb, from);
1954 		if (num_written > 0)
1955 			iocb->ki_pos = pos + num_written;
1956 		if (clean_page)
1957 			pagecache_isize_extended(inode, oldsize,
1958 						i_size_read(inode));
1959 	}
1960 
1961 	inode_unlock(inode);
1962 
1963 	/*
1964 	 * We also have to set last_sub_trans to the current log transid,
1965 	 * otherwise subsequent syncs to a file that's been synced in this
1966 	 * transaction will appear to have already occurred.
1967 	 */
1968 	spin_lock(&BTRFS_I(inode)->lock);
1969 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1970 	spin_unlock(&BTRFS_I(inode)->lock);
1971 	if (num_written > 0)
1972 		num_written = generic_write_sync(iocb, num_written);
1973 
1974 	if (sync)
1975 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1976 out:
1977 	current->backing_dev_info = NULL;
1978 	return num_written ? num_written : err;
1979 }
1980 
1981 int btrfs_release_file(struct inode *inode, struct file *filp)
1982 {
1983 	struct btrfs_file_private *private = filp->private_data;
1984 
1985 	if (private && private->filldir_buf)
1986 		kfree(private->filldir_buf);
1987 	kfree(private);
1988 	filp->private_data = NULL;
1989 
1990 	/*
1991 	 * ordered_data_close is set by settattr when we are about to truncate
1992 	 * a file from a non-zero size to a zero size.  This tries to
1993 	 * flush down new bytes that may have been written if the
1994 	 * application were using truncate to replace a file in place.
1995 	 */
1996 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1997 			       &BTRFS_I(inode)->runtime_flags))
1998 			filemap_flush(inode->i_mapping);
1999 	return 0;
2000 }
2001 
2002 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2003 {
2004 	int ret;
2005 	struct blk_plug plug;
2006 
2007 	/*
2008 	 * This is only called in fsync, which would do synchronous writes, so
2009 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2010 	 * multiple disks using raid profile, a large IO can be split to
2011 	 * several segments of stripe length (currently 64K).
2012 	 */
2013 	blk_start_plug(&plug);
2014 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2015 	ret = btrfs_fdatawrite_range(inode, start, end);
2016 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2017 	blk_finish_plug(&plug);
2018 
2019 	return ret;
2020 }
2021 
2022 /*
2023  * fsync call for both files and directories.  This logs the inode into
2024  * the tree log instead of forcing full commits whenever possible.
2025  *
2026  * It needs to call filemap_fdatawait so that all ordered extent updates are
2027  * in the metadata btree are up to date for copying to the log.
2028  *
2029  * It drops the inode mutex before doing the tree log commit.  This is an
2030  * important optimization for directories because holding the mutex prevents
2031  * new operations on the dir while we write to disk.
2032  */
2033 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2034 {
2035 	struct dentry *dentry = file_dentry(file);
2036 	struct inode *inode = d_inode(dentry);
2037 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2038 	struct btrfs_root *root = BTRFS_I(inode)->root;
2039 	struct btrfs_trans_handle *trans;
2040 	struct btrfs_log_ctx ctx;
2041 	int ret = 0, err;
2042 	u64 len;
2043 
2044 	/*
2045 	 * The range length can be represented by u64, we have to do the typecasts
2046 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2047 	 */
2048 	len = (u64)end - (u64)start + 1;
2049 	trace_btrfs_sync_file(file, datasync);
2050 
2051 	btrfs_init_log_ctx(&ctx, inode);
2052 
2053 	/*
2054 	 * We write the dirty pages in the range and wait until they complete
2055 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2056 	 * multi-task, and make the performance up.  See
2057 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2058 	 */
2059 	ret = start_ordered_ops(inode, start, end);
2060 	if (ret)
2061 		goto out;
2062 
2063 	inode_lock(inode);
2064 	atomic_inc(&root->log_batch);
2065 
2066 	/*
2067 	 * We have to do this here to avoid the priority inversion of waiting on
2068 	 * IO of a lower priority task while holding a transaciton open.
2069 	 */
2070 	ret = btrfs_wait_ordered_range(inode, start, len);
2071 	if (ret) {
2072 		inode_unlock(inode);
2073 		goto out;
2074 	}
2075 	atomic_inc(&root->log_batch);
2076 
2077 	smp_mb();
2078 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2079 	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2080 		/*
2081 		 * We've had everything committed since the last time we were
2082 		 * modified so clear this flag in case it was set for whatever
2083 		 * reason, it's no longer relevant.
2084 		 */
2085 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2086 			  &BTRFS_I(inode)->runtime_flags);
2087 		/*
2088 		 * An ordered extent might have started before and completed
2089 		 * already with io errors, in which case the inode was not
2090 		 * updated and we end up here. So check the inode's mapping
2091 		 * for any errors that might have happened since we last
2092 		 * checked called fsync.
2093 		 */
2094 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2095 		inode_unlock(inode);
2096 		goto out;
2097 	}
2098 
2099 	/*
2100 	 * We use start here because we will need to wait on the IO to complete
2101 	 * in btrfs_sync_log, which could require joining a transaction (for
2102 	 * example checking cross references in the nocow path).  If we use join
2103 	 * here we could get into a situation where we're waiting on IO to
2104 	 * happen that is blocked on a transaction trying to commit.  With start
2105 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2106 	 * before we start blocking join'ers.  This comment is to keep somebody
2107 	 * from thinking they are super smart and changing this to
2108 	 * btrfs_join_transaction *cough*Josef*cough*.
2109 	 */
2110 	trans = btrfs_start_transaction(root, 0);
2111 	if (IS_ERR(trans)) {
2112 		ret = PTR_ERR(trans);
2113 		inode_unlock(inode);
2114 		goto out;
2115 	}
2116 	trans->sync = true;
2117 
2118 	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2119 	if (ret < 0) {
2120 		/* Fallthrough and commit/free transaction. */
2121 		ret = 1;
2122 	}
2123 
2124 	/* we've logged all the items and now have a consistent
2125 	 * version of the file in the log.  It is possible that
2126 	 * someone will come in and modify the file, but that's
2127 	 * fine because the log is consistent on disk, and we
2128 	 * have references to all of the file's extents
2129 	 *
2130 	 * It is possible that someone will come in and log the
2131 	 * file again, but that will end up using the synchronization
2132 	 * inside btrfs_sync_log to keep things safe.
2133 	 */
2134 	inode_unlock(inode);
2135 
2136 	/*
2137 	 * If any of the ordered extents had an error, just return it to user
2138 	 * space, so that the application knows some writes didn't succeed and
2139 	 * can take proper action (retry for e.g.). Blindly committing the
2140 	 * transaction in this case, would fool userspace that everything was
2141 	 * successful. And we also want to make sure our log doesn't contain
2142 	 * file extent items pointing to extents that weren't fully written to -
2143 	 * just like in the non fast fsync path, where we check for the ordered
2144 	 * operation's error flag before writing to the log tree and return -EIO
2145 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2146 	 * therefore we need to check for errors in the ordered operations,
2147 	 * which are indicated by ctx.io_err.
2148 	 */
2149 	if (ctx.io_err) {
2150 		btrfs_end_transaction(trans);
2151 		ret = ctx.io_err;
2152 		goto out;
2153 	}
2154 
2155 	if (ret != BTRFS_NO_LOG_SYNC) {
2156 		if (!ret) {
2157 			ret = btrfs_sync_log(trans, root, &ctx);
2158 			if (!ret) {
2159 				ret = btrfs_end_transaction(trans);
2160 				goto out;
2161 			}
2162 		}
2163 		ret = btrfs_commit_transaction(trans);
2164 	} else {
2165 		ret = btrfs_end_transaction(trans);
2166 	}
2167 out:
2168 	ASSERT(list_empty(&ctx.list));
2169 	err = file_check_and_advance_wb_err(file);
2170 	if (!ret)
2171 		ret = err;
2172 	return ret > 0 ? -EIO : ret;
2173 }
2174 
2175 static const struct vm_operations_struct btrfs_file_vm_ops = {
2176 	.fault		= filemap_fault,
2177 	.map_pages	= filemap_map_pages,
2178 	.page_mkwrite	= btrfs_page_mkwrite,
2179 };
2180 
2181 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2182 {
2183 	struct address_space *mapping = filp->f_mapping;
2184 
2185 	if (!mapping->a_ops->readpage)
2186 		return -ENOEXEC;
2187 
2188 	file_accessed(filp);
2189 	vma->vm_ops = &btrfs_file_vm_ops;
2190 
2191 	return 0;
2192 }
2193 
2194 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2195 			  int slot, u64 start, u64 end)
2196 {
2197 	struct btrfs_file_extent_item *fi;
2198 	struct btrfs_key key;
2199 
2200 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2201 		return 0;
2202 
2203 	btrfs_item_key_to_cpu(leaf, &key, slot);
2204 	if (key.objectid != btrfs_ino(inode) ||
2205 	    key.type != BTRFS_EXTENT_DATA_KEY)
2206 		return 0;
2207 
2208 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2209 
2210 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2211 		return 0;
2212 
2213 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2214 		return 0;
2215 
2216 	if (key.offset == end)
2217 		return 1;
2218 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2219 		return 1;
2220 	return 0;
2221 }
2222 
2223 static int fill_holes(struct btrfs_trans_handle *trans,
2224 		struct btrfs_inode *inode,
2225 		struct btrfs_path *path, u64 offset, u64 end)
2226 {
2227 	struct btrfs_fs_info *fs_info = trans->fs_info;
2228 	struct btrfs_root *root = inode->root;
2229 	struct extent_buffer *leaf;
2230 	struct btrfs_file_extent_item *fi;
2231 	struct extent_map *hole_em;
2232 	struct extent_map_tree *em_tree = &inode->extent_tree;
2233 	struct btrfs_key key;
2234 	int ret;
2235 
2236 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2237 		goto out;
2238 
2239 	key.objectid = btrfs_ino(inode);
2240 	key.type = BTRFS_EXTENT_DATA_KEY;
2241 	key.offset = offset;
2242 
2243 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2244 	if (ret <= 0) {
2245 		/*
2246 		 * We should have dropped this offset, so if we find it then
2247 		 * something has gone horribly wrong.
2248 		 */
2249 		if (ret == 0)
2250 			ret = -EINVAL;
2251 		return ret;
2252 	}
2253 
2254 	leaf = path->nodes[0];
2255 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2256 		u64 num_bytes;
2257 
2258 		path->slots[0]--;
2259 		fi = btrfs_item_ptr(leaf, path->slots[0],
2260 				    struct btrfs_file_extent_item);
2261 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2262 			end - offset;
2263 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2264 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2265 		btrfs_set_file_extent_offset(leaf, fi, 0);
2266 		btrfs_mark_buffer_dirty(leaf);
2267 		goto out;
2268 	}
2269 
2270 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2271 		u64 num_bytes;
2272 
2273 		key.offset = offset;
2274 		btrfs_set_item_key_safe(fs_info, path, &key);
2275 		fi = btrfs_item_ptr(leaf, path->slots[0],
2276 				    struct btrfs_file_extent_item);
2277 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2278 			offset;
2279 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2280 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2281 		btrfs_set_file_extent_offset(leaf, fi, 0);
2282 		btrfs_mark_buffer_dirty(leaf);
2283 		goto out;
2284 	}
2285 	btrfs_release_path(path);
2286 
2287 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2288 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2289 	if (ret)
2290 		return ret;
2291 
2292 out:
2293 	btrfs_release_path(path);
2294 
2295 	hole_em = alloc_extent_map();
2296 	if (!hole_em) {
2297 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2298 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2299 	} else {
2300 		hole_em->start = offset;
2301 		hole_em->len = end - offset;
2302 		hole_em->ram_bytes = hole_em->len;
2303 		hole_em->orig_start = offset;
2304 
2305 		hole_em->block_start = EXTENT_MAP_HOLE;
2306 		hole_em->block_len = 0;
2307 		hole_em->orig_block_len = 0;
2308 		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2309 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2310 		hole_em->generation = trans->transid;
2311 
2312 		do {
2313 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2314 			write_lock(&em_tree->lock);
2315 			ret = add_extent_mapping(em_tree, hole_em, 1);
2316 			write_unlock(&em_tree->lock);
2317 		} while (ret == -EEXIST);
2318 		free_extent_map(hole_em);
2319 		if (ret)
2320 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2321 					&inode->runtime_flags);
2322 	}
2323 
2324 	return 0;
2325 }
2326 
2327 /*
2328  * Find a hole extent on given inode and change start/len to the end of hole
2329  * extent.(hole/vacuum extent whose em->start <= start &&
2330  *	   em->start + em->len > start)
2331  * When a hole extent is found, return 1 and modify start/len.
2332  */
2333 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2334 {
2335 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2336 	struct extent_map *em;
2337 	int ret = 0;
2338 
2339 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2340 			      round_down(*start, fs_info->sectorsize),
2341 			      round_up(*len, fs_info->sectorsize), 0);
2342 	if (IS_ERR(em))
2343 		return PTR_ERR(em);
2344 
2345 	/* Hole or vacuum extent(only exists in no-hole mode) */
2346 	if (em->block_start == EXTENT_MAP_HOLE) {
2347 		ret = 1;
2348 		*len = em->start + em->len > *start + *len ?
2349 		       0 : *start + *len - em->start - em->len;
2350 		*start = em->start + em->len;
2351 	}
2352 	free_extent_map(em);
2353 	return ret;
2354 }
2355 
2356 static int btrfs_punch_hole_lock_range(struct inode *inode,
2357 				       const u64 lockstart,
2358 				       const u64 lockend,
2359 				       struct extent_state **cached_state)
2360 {
2361 	while (1) {
2362 		struct btrfs_ordered_extent *ordered;
2363 		int ret;
2364 
2365 		truncate_pagecache_range(inode, lockstart, lockend);
2366 
2367 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2368 				 cached_state);
2369 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2370 
2371 		/*
2372 		 * We need to make sure we have no ordered extents in this range
2373 		 * and nobody raced in and read a page in this range, if we did
2374 		 * we need to try again.
2375 		 */
2376 		if ((!ordered ||
2377 		    (ordered->file_offset + ordered->len <= lockstart ||
2378 		     ordered->file_offset > lockend)) &&
2379 		     !filemap_range_has_page(inode->i_mapping,
2380 					     lockstart, lockend)) {
2381 			if (ordered)
2382 				btrfs_put_ordered_extent(ordered);
2383 			break;
2384 		}
2385 		if (ordered)
2386 			btrfs_put_ordered_extent(ordered);
2387 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2388 				     lockend, cached_state);
2389 		ret = btrfs_wait_ordered_range(inode, lockstart,
2390 					       lockend - lockstart + 1);
2391 		if (ret)
2392 			return ret;
2393 	}
2394 	return 0;
2395 }
2396 
2397 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2398 {
2399 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2400 	struct btrfs_root *root = BTRFS_I(inode)->root;
2401 	struct extent_state *cached_state = NULL;
2402 	struct btrfs_path *path;
2403 	struct btrfs_block_rsv *rsv;
2404 	struct btrfs_trans_handle *trans;
2405 	u64 lockstart;
2406 	u64 lockend;
2407 	u64 tail_start;
2408 	u64 tail_len;
2409 	u64 orig_start = offset;
2410 	u64 cur_offset;
2411 	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2412 	u64 drop_end;
2413 	int ret = 0;
2414 	int err = 0;
2415 	unsigned int rsv_count;
2416 	bool same_block;
2417 	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2418 	u64 ino_size;
2419 	bool truncated_block = false;
2420 	bool updated_inode = false;
2421 
2422 	ret = btrfs_wait_ordered_range(inode, offset, len);
2423 	if (ret)
2424 		return ret;
2425 
2426 	inode_lock(inode);
2427 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2428 	ret = find_first_non_hole(inode, &offset, &len);
2429 	if (ret < 0)
2430 		goto out_only_mutex;
2431 	if (ret && !len) {
2432 		/* Already in a large hole */
2433 		ret = 0;
2434 		goto out_only_mutex;
2435 	}
2436 
2437 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2438 	lockend = round_down(offset + len,
2439 			     btrfs_inode_sectorsize(inode)) - 1;
2440 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2441 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2442 	/*
2443 	 * We needn't truncate any block which is beyond the end of the file
2444 	 * because we are sure there is no data there.
2445 	 */
2446 	/*
2447 	 * Only do this if we are in the same block and we aren't doing the
2448 	 * entire block.
2449 	 */
2450 	if (same_block && len < fs_info->sectorsize) {
2451 		if (offset < ino_size) {
2452 			truncated_block = true;
2453 			ret = btrfs_truncate_block(inode, offset, len, 0);
2454 		} else {
2455 			ret = 0;
2456 		}
2457 		goto out_only_mutex;
2458 	}
2459 
2460 	/* zero back part of the first block */
2461 	if (offset < ino_size) {
2462 		truncated_block = true;
2463 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2464 		if (ret) {
2465 			inode_unlock(inode);
2466 			return ret;
2467 		}
2468 	}
2469 
2470 	/* Check the aligned pages after the first unaligned page,
2471 	 * if offset != orig_start, which means the first unaligned page
2472 	 * including several following pages are already in holes,
2473 	 * the extra check can be skipped */
2474 	if (offset == orig_start) {
2475 		/* after truncate page, check hole again */
2476 		len = offset + len - lockstart;
2477 		offset = lockstart;
2478 		ret = find_first_non_hole(inode, &offset, &len);
2479 		if (ret < 0)
2480 			goto out_only_mutex;
2481 		if (ret && !len) {
2482 			ret = 0;
2483 			goto out_only_mutex;
2484 		}
2485 		lockstart = offset;
2486 	}
2487 
2488 	/* Check the tail unaligned part is in a hole */
2489 	tail_start = lockend + 1;
2490 	tail_len = offset + len - tail_start;
2491 	if (tail_len) {
2492 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2493 		if (unlikely(ret < 0))
2494 			goto out_only_mutex;
2495 		if (!ret) {
2496 			/* zero the front end of the last page */
2497 			if (tail_start + tail_len < ino_size) {
2498 				truncated_block = true;
2499 				ret = btrfs_truncate_block(inode,
2500 							tail_start + tail_len,
2501 							0, 1);
2502 				if (ret)
2503 					goto out_only_mutex;
2504 			}
2505 		}
2506 	}
2507 
2508 	if (lockend < lockstart) {
2509 		ret = 0;
2510 		goto out_only_mutex;
2511 	}
2512 
2513 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2514 					  &cached_state);
2515 	if (ret) {
2516 		inode_unlock(inode);
2517 		goto out_only_mutex;
2518 	}
2519 
2520 	path = btrfs_alloc_path();
2521 	if (!path) {
2522 		ret = -ENOMEM;
2523 		goto out;
2524 	}
2525 
2526 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2527 	if (!rsv) {
2528 		ret = -ENOMEM;
2529 		goto out_free;
2530 	}
2531 	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2532 	rsv->failfast = 1;
2533 
2534 	/*
2535 	 * 1 - update the inode
2536 	 * 1 - removing the extents in the range
2537 	 * 1 - adding the hole extent if no_holes isn't set
2538 	 */
2539 	rsv_count = no_holes ? 2 : 3;
2540 	trans = btrfs_start_transaction(root, rsv_count);
2541 	if (IS_ERR(trans)) {
2542 		err = PTR_ERR(trans);
2543 		goto out_free;
2544 	}
2545 
2546 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2547 				      min_size, 0);
2548 	BUG_ON(ret);
2549 	trans->block_rsv = rsv;
2550 
2551 	cur_offset = lockstart;
2552 	len = lockend - cur_offset;
2553 	while (cur_offset < lockend) {
2554 		ret = __btrfs_drop_extents(trans, root, inode, path,
2555 					   cur_offset, lockend + 1,
2556 					   &drop_end, 1, 0, 0, NULL);
2557 		if (ret != -ENOSPC)
2558 			break;
2559 
2560 		trans->block_rsv = &fs_info->trans_block_rsv;
2561 
2562 		if (cur_offset < drop_end && cur_offset < ino_size) {
2563 			ret = fill_holes(trans, BTRFS_I(inode), path,
2564 					cur_offset, drop_end);
2565 			if (ret) {
2566 				/*
2567 				 * If we failed then we didn't insert our hole
2568 				 * entries for the area we dropped, so now the
2569 				 * fs is corrupted, so we must abort the
2570 				 * transaction.
2571 				 */
2572 				btrfs_abort_transaction(trans, ret);
2573 				err = ret;
2574 				break;
2575 			}
2576 		}
2577 
2578 		cur_offset = drop_end;
2579 
2580 		ret = btrfs_update_inode(trans, root, inode);
2581 		if (ret) {
2582 			err = ret;
2583 			break;
2584 		}
2585 
2586 		btrfs_end_transaction(trans);
2587 		btrfs_btree_balance_dirty(fs_info);
2588 
2589 		trans = btrfs_start_transaction(root, rsv_count);
2590 		if (IS_ERR(trans)) {
2591 			ret = PTR_ERR(trans);
2592 			trans = NULL;
2593 			break;
2594 		}
2595 
2596 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2597 					      rsv, min_size, 0);
2598 		BUG_ON(ret);	/* shouldn't happen */
2599 		trans->block_rsv = rsv;
2600 
2601 		ret = find_first_non_hole(inode, &cur_offset, &len);
2602 		if (unlikely(ret < 0))
2603 			break;
2604 		if (ret && !len) {
2605 			ret = 0;
2606 			break;
2607 		}
2608 	}
2609 
2610 	if (ret) {
2611 		err = ret;
2612 		goto out_trans;
2613 	}
2614 
2615 	trans->block_rsv = &fs_info->trans_block_rsv;
2616 	/*
2617 	 * If we are using the NO_HOLES feature we might have had already an
2618 	 * hole that overlaps a part of the region [lockstart, lockend] and
2619 	 * ends at (or beyond) lockend. Since we have no file extent items to
2620 	 * represent holes, drop_end can be less than lockend and so we must
2621 	 * make sure we have an extent map representing the existing hole (the
2622 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2623 	 * map representing the existing hole), otherwise the fast fsync path
2624 	 * will not record the existence of the hole region
2625 	 * [existing_hole_start, lockend].
2626 	 */
2627 	if (drop_end <= lockend)
2628 		drop_end = lockend + 1;
2629 	/*
2630 	 * Don't insert file hole extent item if it's for a range beyond eof
2631 	 * (because it's useless) or if it represents a 0 bytes range (when
2632 	 * cur_offset == drop_end).
2633 	 */
2634 	if (cur_offset < ino_size && cur_offset < drop_end) {
2635 		ret = fill_holes(trans, BTRFS_I(inode), path,
2636 				cur_offset, drop_end);
2637 		if (ret) {
2638 			/* Same comment as above. */
2639 			btrfs_abort_transaction(trans, ret);
2640 			err = ret;
2641 			goto out_trans;
2642 		}
2643 	}
2644 
2645 out_trans:
2646 	if (!trans)
2647 		goto out_free;
2648 
2649 	inode_inc_iversion(inode);
2650 	inode->i_mtime = inode->i_ctime = current_time(inode);
2651 
2652 	trans->block_rsv = &fs_info->trans_block_rsv;
2653 	ret = btrfs_update_inode(trans, root, inode);
2654 	updated_inode = true;
2655 	btrfs_end_transaction(trans);
2656 	btrfs_btree_balance_dirty(fs_info);
2657 out_free:
2658 	btrfs_free_path(path);
2659 	btrfs_free_block_rsv(fs_info, rsv);
2660 out:
2661 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2662 			     &cached_state);
2663 out_only_mutex:
2664 	if (!updated_inode && truncated_block && !ret && !err) {
2665 		/*
2666 		 * If we only end up zeroing part of a page, we still need to
2667 		 * update the inode item, so that all the time fields are
2668 		 * updated as well as the necessary btrfs inode in memory fields
2669 		 * for detecting, at fsync time, if the inode isn't yet in the
2670 		 * log tree or it's there but not up to date.
2671 		 */
2672 		trans = btrfs_start_transaction(root, 1);
2673 		if (IS_ERR(trans)) {
2674 			err = PTR_ERR(trans);
2675 		} else {
2676 			err = btrfs_update_inode(trans, root, inode);
2677 			ret = btrfs_end_transaction(trans);
2678 		}
2679 	}
2680 	inode_unlock(inode);
2681 	if (ret && !err)
2682 		err = ret;
2683 	return err;
2684 }
2685 
2686 /* Helper structure to record which range is already reserved */
2687 struct falloc_range {
2688 	struct list_head list;
2689 	u64 start;
2690 	u64 len;
2691 };
2692 
2693 /*
2694  * Helper function to add falloc range
2695  *
2696  * Caller should have locked the larger range of extent containing
2697  * [start, len)
2698  */
2699 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2700 {
2701 	struct falloc_range *prev = NULL;
2702 	struct falloc_range *range = NULL;
2703 
2704 	if (list_empty(head))
2705 		goto insert;
2706 
2707 	/*
2708 	 * As fallocate iterate by bytenr order, we only need to check
2709 	 * the last range.
2710 	 */
2711 	prev = list_entry(head->prev, struct falloc_range, list);
2712 	if (prev->start + prev->len == start) {
2713 		prev->len += len;
2714 		return 0;
2715 	}
2716 insert:
2717 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2718 	if (!range)
2719 		return -ENOMEM;
2720 	range->start = start;
2721 	range->len = len;
2722 	list_add_tail(&range->list, head);
2723 	return 0;
2724 }
2725 
2726 static int btrfs_fallocate_update_isize(struct inode *inode,
2727 					const u64 end,
2728 					const int mode)
2729 {
2730 	struct btrfs_trans_handle *trans;
2731 	struct btrfs_root *root = BTRFS_I(inode)->root;
2732 	int ret;
2733 	int ret2;
2734 
2735 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2736 		return 0;
2737 
2738 	trans = btrfs_start_transaction(root, 1);
2739 	if (IS_ERR(trans))
2740 		return PTR_ERR(trans);
2741 
2742 	inode->i_ctime = current_time(inode);
2743 	i_size_write(inode, end);
2744 	btrfs_ordered_update_i_size(inode, end, NULL);
2745 	ret = btrfs_update_inode(trans, root, inode);
2746 	ret2 = btrfs_end_transaction(trans);
2747 
2748 	return ret ? ret : ret2;
2749 }
2750 
2751 enum {
2752 	RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2753 	RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2754 	RANGE_BOUNDARY_HOLE = 2,
2755 };
2756 
2757 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2758 						 u64 offset)
2759 {
2760 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2761 	struct extent_map *em;
2762 	int ret;
2763 
2764 	offset = round_down(offset, sectorsize);
2765 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2766 	if (IS_ERR(em))
2767 		return PTR_ERR(em);
2768 
2769 	if (em->block_start == EXTENT_MAP_HOLE)
2770 		ret = RANGE_BOUNDARY_HOLE;
2771 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2772 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2773 	else
2774 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2775 
2776 	free_extent_map(em);
2777 	return ret;
2778 }
2779 
2780 static int btrfs_zero_range(struct inode *inode,
2781 			    loff_t offset,
2782 			    loff_t len,
2783 			    const int mode)
2784 {
2785 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2786 	struct extent_map *em;
2787 	struct extent_changeset *data_reserved = NULL;
2788 	int ret;
2789 	u64 alloc_hint = 0;
2790 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2791 	u64 alloc_start = round_down(offset, sectorsize);
2792 	u64 alloc_end = round_up(offset + len, sectorsize);
2793 	u64 bytes_to_reserve = 0;
2794 	bool space_reserved = false;
2795 
2796 	inode_dio_wait(inode);
2797 
2798 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2799 			      alloc_start, alloc_end - alloc_start, 0);
2800 	if (IS_ERR(em)) {
2801 		ret = PTR_ERR(em);
2802 		goto out;
2803 	}
2804 
2805 	/*
2806 	 * Avoid hole punching and extent allocation for some cases. More cases
2807 	 * could be considered, but these are unlikely common and we keep things
2808 	 * as simple as possible for now. Also, intentionally, if the target
2809 	 * range contains one or more prealloc extents together with regular
2810 	 * extents and holes, we drop all the existing extents and allocate a
2811 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2812 	 */
2813 	if (em->start <= alloc_start &&
2814 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2815 		const u64 em_end = em->start + em->len;
2816 
2817 		if (em_end >= offset + len) {
2818 			/*
2819 			 * The whole range is already a prealloc extent,
2820 			 * do nothing except updating the inode's i_size if
2821 			 * needed.
2822 			 */
2823 			free_extent_map(em);
2824 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2825 							   mode);
2826 			goto out;
2827 		}
2828 		/*
2829 		 * Part of the range is already a prealloc extent, so operate
2830 		 * only on the remaining part of the range.
2831 		 */
2832 		alloc_start = em_end;
2833 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2834 		len = offset + len - alloc_start;
2835 		offset = alloc_start;
2836 		alloc_hint = em->block_start + em->len;
2837 	}
2838 	free_extent_map(em);
2839 
2840 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2841 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2842 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2843 				      alloc_start, sectorsize, 0);
2844 		if (IS_ERR(em)) {
2845 			ret = PTR_ERR(em);
2846 			goto out;
2847 		}
2848 
2849 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2850 			free_extent_map(em);
2851 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2852 							   mode);
2853 			goto out;
2854 		}
2855 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2856 			free_extent_map(em);
2857 			ret = btrfs_truncate_block(inode, offset, len, 0);
2858 			if (!ret)
2859 				ret = btrfs_fallocate_update_isize(inode,
2860 								   offset + len,
2861 								   mode);
2862 			return ret;
2863 		}
2864 		free_extent_map(em);
2865 		alloc_start = round_down(offset, sectorsize);
2866 		alloc_end = alloc_start + sectorsize;
2867 		goto reserve_space;
2868 	}
2869 
2870 	alloc_start = round_up(offset, sectorsize);
2871 	alloc_end = round_down(offset + len, sectorsize);
2872 
2873 	/*
2874 	 * For unaligned ranges, check the pages at the boundaries, they might
2875 	 * map to an extent, in which case we need to partially zero them, or
2876 	 * they might map to a hole, in which case we need our allocation range
2877 	 * to cover them.
2878 	 */
2879 	if (!IS_ALIGNED(offset, sectorsize)) {
2880 		ret = btrfs_zero_range_check_range_boundary(inode, offset);
2881 		if (ret < 0)
2882 			goto out;
2883 		if (ret == RANGE_BOUNDARY_HOLE) {
2884 			alloc_start = round_down(offset, sectorsize);
2885 			ret = 0;
2886 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2887 			ret = btrfs_truncate_block(inode, offset, 0, 0);
2888 			if (ret)
2889 				goto out;
2890 		} else {
2891 			ret = 0;
2892 		}
2893 	}
2894 
2895 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2896 		ret = btrfs_zero_range_check_range_boundary(inode,
2897 							    offset + len);
2898 		if (ret < 0)
2899 			goto out;
2900 		if (ret == RANGE_BOUNDARY_HOLE) {
2901 			alloc_end = round_up(offset + len, sectorsize);
2902 			ret = 0;
2903 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2904 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2905 			if (ret)
2906 				goto out;
2907 		} else {
2908 			ret = 0;
2909 		}
2910 	}
2911 
2912 reserve_space:
2913 	if (alloc_start < alloc_end) {
2914 		struct extent_state *cached_state = NULL;
2915 		const u64 lockstart = alloc_start;
2916 		const u64 lockend = alloc_end - 1;
2917 
2918 		bytes_to_reserve = alloc_end - alloc_start;
2919 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2920 						      bytes_to_reserve);
2921 		if (ret < 0)
2922 			goto out;
2923 		space_reserved = true;
2924 		ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2925 						alloc_start, bytes_to_reserve);
2926 		if (ret)
2927 			goto out;
2928 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2929 						  &cached_state);
2930 		if (ret)
2931 			goto out;
2932 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2933 						alloc_end - alloc_start,
2934 						i_blocksize(inode),
2935 						offset + len, &alloc_hint);
2936 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2937 				     lockend, &cached_state);
2938 		/* btrfs_prealloc_file_range releases reserved space on error */
2939 		if (ret) {
2940 			space_reserved = false;
2941 			goto out;
2942 		}
2943 	}
2944 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2945  out:
2946 	if (ret && space_reserved)
2947 		btrfs_free_reserved_data_space(inode, data_reserved,
2948 					       alloc_start, bytes_to_reserve);
2949 	extent_changeset_free(data_reserved);
2950 
2951 	return ret;
2952 }
2953 
2954 static long btrfs_fallocate(struct file *file, int mode,
2955 			    loff_t offset, loff_t len)
2956 {
2957 	struct inode *inode = file_inode(file);
2958 	struct extent_state *cached_state = NULL;
2959 	struct extent_changeset *data_reserved = NULL;
2960 	struct falloc_range *range;
2961 	struct falloc_range *tmp;
2962 	struct list_head reserve_list;
2963 	u64 cur_offset;
2964 	u64 last_byte;
2965 	u64 alloc_start;
2966 	u64 alloc_end;
2967 	u64 alloc_hint = 0;
2968 	u64 locked_end;
2969 	u64 actual_end = 0;
2970 	struct extent_map *em;
2971 	int blocksize = btrfs_inode_sectorsize(inode);
2972 	int ret;
2973 
2974 	alloc_start = round_down(offset, blocksize);
2975 	alloc_end = round_up(offset + len, blocksize);
2976 	cur_offset = alloc_start;
2977 
2978 	/* Make sure we aren't being give some crap mode */
2979 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2980 		     FALLOC_FL_ZERO_RANGE))
2981 		return -EOPNOTSUPP;
2982 
2983 	if (mode & FALLOC_FL_PUNCH_HOLE)
2984 		return btrfs_punch_hole(inode, offset, len);
2985 
2986 	/*
2987 	 * Only trigger disk allocation, don't trigger qgroup reserve
2988 	 *
2989 	 * For qgroup space, it will be checked later.
2990 	 */
2991 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
2992 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2993 						      alloc_end - alloc_start);
2994 		if (ret < 0)
2995 			return ret;
2996 	}
2997 
2998 	inode_lock(inode);
2999 
3000 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3001 		ret = inode_newsize_ok(inode, offset + len);
3002 		if (ret)
3003 			goto out;
3004 	}
3005 
3006 	/*
3007 	 * TODO: Move these two operations after we have checked
3008 	 * accurate reserved space, or fallocate can still fail but
3009 	 * with page truncated or size expanded.
3010 	 *
3011 	 * But that's a minor problem and won't do much harm BTW.
3012 	 */
3013 	if (alloc_start > inode->i_size) {
3014 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3015 					alloc_start);
3016 		if (ret)
3017 			goto out;
3018 	} else if (offset + len > inode->i_size) {
3019 		/*
3020 		 * If we are fallocating from the end of the file onward we
3021 		 * need to zero out the end of the block if i_size lands in the
3022 		 * middle of a block.
3023 		 */
3024 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3025 		if (ret)
3026 			goto out;
3027 	}
3028 
3029 	/*
3030 	 * wait for ordered IO before we have any locks.  We'll loop again
3031 	 * below with the locks held.
3032 	 */
3033 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3034 				       alloc_end - alloc_start);
3035 	if (ret)
3036 		goto out;
3037 
3038 	if (mode & FALLOC_FL_ZERO_RANGE) {
3039 		ret = btrfs_zero_range(inode, offset, len, mode);
3040 		inode_unlock(inode);
3041 		return ret;
3042 	}
3043 
3044 	locked_end = alloc_end - 1;
3045 	while (1) {
3046 		struct btrfs_ordered_extent *ordered;
3047 
3048 		/* the extent lock is ordered inside the running
3049 		 * transaction
3050 		 */
3051 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3052 				 locked_end, &cached_state);
3053 		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3054 
3055 		if (ordered &&
3056 		    ordered->file_offset + ordered->len > alloc_start &&
3057 		    ordered->file_offset < alloc_end) {
3058 			btrfs_put_ordered_extent(ordered);
3059 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3060 					     alloc_start, locked_end,
3061 					     &cached_state);
3062 			/*
3063 			 * we can't wait on the range with the transaction
3064 			 * running or with the extent lock held
3065 			 */
3066 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3067 						       alloc_end - alloc_start);
3068 			if (ret)
3069 				goto out;
3070 		} else {
3071 			if (ordered)
3072 				btrfs_put_ordered_extent(ordered);
3073 			break;
3074 		}
3075 	}
3076 
3077 	/* First, check if we exceed the qgroup limit */
3078 	INIT_LIST_HEAD(&reserve_list);
3079 	while (cur_offset < alloc_end) {
3080 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3081 				      alloc_end - cur_offset, 0);
3082 		if (IS_ERR(em)) {
3083 			ret = PTR_ERR(em);
3084 			break;
3085 		}
3086 		last_byte = min(extent_map_end(em), alloc_end);
3087 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3088 		last_byte = ALIGN(last_byte, blocksize);
3089 		if (em->block_start == EXTENT_MAP_HOLE ||
3090 		    (cur_offset >= inode->i_size &&
3091 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3092 			ret = add_falloc_range(&reserve_list, cur_offset,
3093 					       last_byte - cur_offset);
3094 			if (ret < 0) {
3095 				free_extent_map(em);
3096 				break;
3097 			}
3098 			ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3099 					cur_offset, last_byte - cur_offset);
3100 			if (ret < 0) {
3101 				free_extent_map(em);
3102 				break;
3103 			}
3104 		} else {
3105 			/*
3106 			 * Do not need to reserve unwritten extent for this
3107 			 * range, free reserved data space first, otherwise
3108 			 * it'll result in false ENOSPC error.
3109 			 */
3110 			btrfs_free_reserved_data_space(inode, data_reserved,
3111 					cur_offset, last_byte - cur_offset);
3112 		}
3113 		free_extent_map(em);
3114 		cur_offset = last_byte;
3115 	}
3116 
3117 	/*
3118 	 * If ret is still 0, means we're OK to fallocate.
3119 	 * Or just cleanup the list and exit.
3120 	 */
3121 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3122 		if (!ret)
3123 			ret = btrfs_prealloc_file_range(inode, mode,
3124 					range->start,
3125 					range->len, i_blocksize(inode),
3126 					offset + len, &alloc_hint);
3127 		else
3128 			btrfs_free_reserved_data_space(inode,
3129 					data_reserved, range->start,
3130 					range->len);
3131 		list_del(&range->list);
3132 		kfree(range);
3133 	}
3134 	if (ret < 0)
3135 		goto out_unlock;
3136 
3137 	/*
3138 	 * We didn't need to allocate any more space, but we still extended the
3139 	 * size of the file so we need to update i_size and the inode item.
3140 	 */
3141 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3142 out_unlock:
3143 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3144 			     &cached_state);
3145 out:
3146 	inode_unlock(inode);
3147 	/* Let go of our reservation. */
3148 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3149 		btrfs_free_reserved_data_space(inode, data_reserved,
3150 				alloc_start, alloc_end - cur_offset);
3151 	extent_changeset_free(data_reserved);
3152 	return ret;
3153 }
3154 
3155 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3156 {
3157 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3158 	struct extent_map *em = NULL;
3159 	struct extent_state *cached_state = NULL;
3160 	u64 lockstart;
3161 	u64 lockend;
3162 	u64 start;
3163 	u64 len;
3164 	int ret = 0;
3165 
3166 	if (inode->i_size == 0)
3167 		return -ENXIO;
3168 
3169 	/*
3170 	 * *offset can be negative, in this case we start finding DATA/HOLE from
3171 	 * the very start of the file.
3172 	 */
3173 	start = max_t(loff_t, 0, *offset);
3174 
3175 	lockstart = round_down(start, fs_info->sectorsize);
3176 	lockend = round_up(i_size_read(inode),
3177 			   fs_info->sectorsize);
3178 	if (lockend <= lockstart)
3179 		lockend = lockstart + fs_info->sectorsize;
3180 	lockend--;
3181 	len = lockend - lockstart + 1;
3182 
3183 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3184 			 &cached_state);
3185 
3186 	while (start < inode->i_size) {
3187 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3188 				start, len, 0);
3189 		if (IS_ERR(em)) {
3190 			ret = PTR_ERR(em);
3191 			em = NULL;
3192 			break;
3193 		}
3194 
3195 		if (whence == SEEK_HOLE &&
3196 		    (em->block_start == EXTENT_MAP_HOLE ||
3197 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3198 			break;
3199 		else if (whence == SEEK_DATA &&
3200 			   (em->block_start != EXTENT_MAP_HOLE &&
3201 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3202 			break;
3203 
3204 		start = em->start + em->len;
3205 		free_extent_map(em);
3206 		em = NULL;
3207 		cond_resched();
3208 	}
3209 	free_extent_map(em);
3210 	if (!ret) {
3211 		if (whence == SEEK_DATA && start >= inode->i_size)
3212 			ret = -ENXIO;
3213 		else
3214 			*offset = min_t(loff_t, start, inode->i_size);
3215 	}
3216 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3217 			     &cached_state);
3218 	return ret;
3219 }
3220 
3221 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3222 {
3223 	struct inode *inode = file->f_mapping->host;
3224 	int ret;
3225 
3226 	inode_lock(inode);
3227 	switch (whence) {
3228 	case SEEK_END:
3229 	case SEEK_CUR:
3230 		offset = generic_file_llseek(file, offset, whence);
3231 		goto out;
3232 	case SEEK_DATA:
3233 	case SEEK_HOLE:
3234 		if (offset >= i_size_read(inode)) {
3235 			inode_unlock(inode);
3236 			return -ENXIO;
3237 		}
3238 
3239 		ret = find_desired_extent(inode, &offset, whence);
3240 		if (ret) {
3241 			inode_unlock(inode);
3242 			return ret;
3243 		}
3244 	}
3245 
3246 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3247 out:
3248 	inode_unlock(inode);
3249 	return offset;
3250 }
3251 
3252 static int btrfs_file_open(struct inode *inode, struct file *filp)
3253 {
3254 	filp->f_mode |= FMODE_NOWAIT;
3255 	return generic_file_open(inode, filp);
3256 }
3257 
3258 const struct file_operations btrfs_file_operations = {
3259 	.llseek		= btrfs_file_llseek,
3260 	.read_iter      = generic_file_read_iter,
3261 	.splice_read	= generic_file_splice_read,
3262 	.write_iter	= btrfs_file_write_iter,
3263 	.mmap		= btrfs_file_mmap,
3264 	.open		= btrfs_file_open,
3265 	.release	= btrfs_release_file,
3266 	.fsync		= btrfs_sync_file,
3267 	.fallocate	= btrfs_fallocate,
3268 	.unlocked_ioctl	= btrfs_ioctl,
3269 #ifdef CONFIG_COMPAT
3270 	.compat_ioctl	= btrfs_compat_ioctl,
3271 #endif
3272 	.clone_file_range = btrfs_clone_file_range,
3273 	.dedupe_file_range = btrfs_dedupe_file_range,
3274 };
3275 
3276 void __cold btrfs_auto_defrag_exit(void)
3277 {
3278 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3279 }
3280 
3281 int __init btrfs_auto_defrag_init(void)
3282 {
3283 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3284 					sizeof(struct inode_defrag), 0,
3285 					SLAB_MEM_SPREAD,
3286 					NULL);
3287 	if (!btrfs_inode_defrag_cachep)
3288 		return -ENOMEM;
3289 
3290 	return 0;
3291 }
3292 
3293 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3294 {
3295 	int ret;
3296 
3297 	/*
3298 	 * So with compression we will find and lock a dirty page and clear the
3299 	 * first one as dirty, setup an async extent, and immediately return
3300 	 * with the entire range locked but with nobody actually marked with
3301 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3302 	 * expect it to work since it will just kick off a thread to do the
3303 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3304 	 * since it will wait on the page lock, which won't be unlocked until
3305 	 * after the pages have been marked as writeback and so we're good to go
3306 	 * from there.  We have to do this otherwise we'll miss the ordered
3307 	 * extents and that results in badness.  Please Josef, do not think you
3308 	 * know better and pull this out at some point in the future, it is
3309 	 * right and you are wrong.
3310 	 */
3311 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3312 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3313 			     &BTRFS_I(inode)->runtime_flags))
3314 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3315 
3316 	return ret;
3317 }
3318