xref: /openbmc/linux/fs/btrfs/file.c (revision e0f3d4c2)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "volumes.h"
42 #include "qgroup.h"
43 #include "compression.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133 {
134 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct btrfs_inode *inode)
149 {
150 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 	struct btrfs_root *root = inode->root;
152 	struct inode_defrag *defrag;
153 	u64 transid;
154 	int ret;
155 
156 	if (!__need_auto_defrag(fs_info))
157 		return 0;
158 
159 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160 		return 0;
161 
162 	if (trans)
163 		transid = trans->transid;
164 	else
165 		transid = inode->root->last_trans;
166 
167 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 	if (!defrag)
169 		return -ENOMEM;
170 
171 	defrag->ino = btrfs_ino(inode);
172 	defrag->transid = transid;
173 	defrag->root = root->root_key.objectid;
174 
175 	spin_lock(&fs_info->defrag_inodes_lock);
176 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177 		/*
178 		 * If we set IN_DEFRAG flag and evict the inode from memory,
179 		 * and then re-read this inode, this new inode doesn't have
180 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 		 */
182 		ret = __btrfs_add_inode_defrag(inode, defrag);
183 		if (ret)
184 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 	} else {
186 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 	}
188 	spin_unlock(&fs_info->defrag_inodes_lock);
189 	return 0;
190 }
191 
192 /*
193  * Requeue the defrag object. If there is a defrag object that points to
194  * the same inode in the tree, we will merge them together (by
195  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196  */
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 				       struct inode_defrag *defrag)
199 {
200 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201 	int ret;
202 
203 	if (!__need_auto_defrag(fs_info))
204 		goto out;
205 
206 	/*
207 	 * Here we don't check the IN_DEFRAG flag, because we need merge
208 	 * them together.
209 	 */
210 	spin_lock(&fs_info->defrag_inodes_lock);
211 	ret = __btrfs_add_inode_defrag(inode, defrag);
212 	spin_unlock(&fs_info->defrag_inodes_lock);
213 	if (ret)
214 		goto out;
215 	return;
216 out:
217 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219 
220 /*
221  * pick the defragable inode that we want, if it doesn't exist, we will get
222  * the next one.
223  */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 	struct inode_defrag *entry = NULL;
228 	struct inode_defrag tmp;
229 	struct rb_node *p;
230 	struct rb_node *parent = NULL;
231 	int ret;
232 
233 	tmp.ino = ino;
234 	tmp.root = root;
235 
236 	spin_lock(&fs_info->defrag_inodes_lock);
237 	p = fs_info->defrag_inodes.rb_node;
238 	while (p) {
239 		parent = p;
240 		entry = rb_entry(parent, struct inode_defrag, rb_node);
241 
242 		ret = __compare_inode_defrag(&tmp, entry);
243 		if (ret < 0)
244 			p = parent->rb_left;
245 		else if (ret > 0)
246 			p = parent->rb_right;
247 		else
248 			goto out;
249 	}
250 
251 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 		parent = rb_next(parent);
253 		if (parent)
254 			entry = rb_entry(parent, struct inode_defrag, rb_node);
255 		else
256 			entry = NULL;
257 	}
258 out:
259 	if (entry)
260 		rb_erase(parent, &fs_info->defrag_inodes);
261 	spin_unlock(&fs_info->defrag_inodes_lock);
262 	return entry;
263 }
264 
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 	struct inode_defrag *defrag;
268 	struct rb_node *node;
269 
270 	spin_lock(&fs_info->defrag_inodes_lock);
271 	node = rb_first(&fs_info->defrag_inodes);
272 	while (node) {
273 		rb_erase(node, &fs_info->defrag_inodes);
274 		defrag = rb_entry(node, struct inode_defrag, rb_node);
275 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276 
277 		cond_resched_lock(&fs_info->defrag_inodes_lock);
278 
279 		node = rb_first(&fs_info->defrag_inodes);
280 	}
281 	spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283 
284 #define BTRFS_DEFRAG_BATCH	1024
285 
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 				    struct inode_defrag *defrag)
288 {
289 	struct btrfs_root *inode_root;
290 	struct inode *inode;
291 	struct btrfs_key key;
292 	struct btrfs_ioctl_defrag_range_args range;
293 	int num_defrag;
294 	int index;
295 	int ret;
296 
297 	/* get the inode */
298 	key.objectid = defrag->root;
299 	key.type = BTRFS_ROOT_ITEM_KEY;
300 	key.offset = (u64)-1;
301 
302 	index = srcu_read_lock(&fs_info->subvol_srcu);
303 
304 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 	if (IS_ERR(inode_root)) {
306 		ret = PTR_ERR(inode_root);
307 		goto cleanup;
308 	}
309 
310 	key.objectid = defrag->ino;
311 	key.type = BTRFS_INODE_ITEM_KEY;
312 	key.offset = 0;
313 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 	if (IS_ERR(inode)) {
315 		ret = PTR_ERR(inode);
316 		goto cleanup;
317 	}
318 	srcu_read_unlock(&fs_info->subvol_srcu, index);
319 
320 	/* do a chunk of defrag */
321 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 	memset(&range, 0, sizeof(range));
323 	range.len = (u64)-1;
324 	range.start = defrag->last_offset;
325 
326 	sb_start_write(fs_info->sb);
327 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 				       BTRFS_DEFRAG_BATCH);
329 	sb_end_write(fs_info->sb);
330 	/*
331 	 * if we filled the whole defrag batch, there
332 	 * must be more work to do.  Queue this defrag
333 	 * again
334 	 */
335 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 		defrag->last_offset = range.start;
337 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 	} else if (defrag->last_offset && !defrag->cycled) {
339 		/*
340 		 * we didn't fill our defrag batch, but
341 		 * we didn't start at zero.  Make sure we loop
342 		 * around to the start of the file.
343 		 */
344 		defrag->last_offset = 0;
345 		defrag->cycled = 1;
346 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347 	} else {
348 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 	}
350 
351 	iput(inode);
352 	return 0;
353 cleanup:
354 	srcu_read_unlock(&fs_info->subvol_srcu, index);
355 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 	return ret;
357 }
358 
359 /*
360  * run through the list of inodes in the FS that need
361  * defragging
362  */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 	struct inode_defrag *defrag;
366 	u64 first_ino = 0;
367 	u64 root_objectid = 0;
368 
369 	atomic_inc(&fs_info->defrag_running);
370 	while (1) {
371 		/* Pause the auto defragger. */
372 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 			     &fs_info->fs_state))
374 			break;
375 
376 		if (!__need_auto_defrag(fs_info))
377 			break;
378 
379 		/* find an inode to defrag */
380 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 						 first_ino);
382 		if (!defrag) {
383 			if (root_objectid || first_ino) {
384 				root_objectid = 0;
385 				first_ino = 0;
386 				continue;
387 			} else {
388 				break;
389 			}
390 		}
391 
392 		first_ino = defrag->ino + 1;
393 		root_objectid = defrag->root;
394 
395 		__btrfs_run_defrag_inode(fs_info, defrag);
396 	}
397 	atomic_dec(&fs_info->defrag_running);
398 
399 	/*
400 	 * during unmount, we use the transaction_wait queue to
401 	 * wait for the defragger to stop
402 	 */
403 	wake_up(&fs_info->transaction_wait);
404 	return 0;
405 }
406 
407 /* simple helper to fault in pages and copy.  This should go away
408  * and be replaced with calls into generic code.
409  */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 					 struct page **prepared_pages,
412 					 struct iov_iter *i)
413 {
414 	size_t copied = 0;
415 	size_t total_copied = 0;
416 	int pg = 0;
417 	int offset = pos & (PAGE_SIZE - 1);
418 
419 	while (write_bytes > 0) {
420 		size_t count = min_t(size_t,
421 				     PAGE_SIZE - offset, write_bytes);
422 		struct page *page = prepared_pages[pg];
423 		/*
424 		 * Copy data from userspace to the current page
425 		 */
426 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427 
428 		/* Flush processor's dcache for this page */
429 		flush_dcache_page(page);
430 
431 		/*
432 		 * if we get a partial write, we can end up with
433 		 * partially up to date pages.  These add
434 		 * a lot of complexity, so make sure they don't
435 		 * happen by forcing this copy to be retried.
436 		 *
437 		 * The rest of the btrfs_file_write code will fall
438 		 * back to page at a time copies after we return 0.
439 		 */
440 		if (!PageUptodate(page) && copied < count)
441 			copied = 0;
442 
443 		iov_iter_advance(i, copied);
444 		write_bytes -= copied;
445 		total_copied += copied;
446 
447 		/* Return to btrfs_file_write_iter to fault page */
448 		if (unlikely(copied == 0))
449 			break;
450 
451 		if (copied < PAGE_SIZE - offset) {
452 			offset += copied;
453 		} else {
454 			pg++;
455 			offset = 0;
456 		}
457 	}
458 	return total_copied;
459 }
460 
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 	size_t i;
467 	for (i = 0; i < num_pages; i++) {
468 		/* page checked is some magic around finding pages that
469 		 * have been modified without going through btrfs_set_page_dirty
470 		 * clear it here. There should be no need to mark the pages
471 		 * accessed as prepare_pages should have marked them accessed
472 		 * in prepare_pages via find_or_create_page()
473 		 */
474 		ClearPageChecked(pages[i]);
475 		unlock_page(pages[i]);
476 		put_page(pages[i]);
477 	}
478 }
479 
480 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
481 					 const u64 start,
482 					 const u64 len,
483 					 struct extent_state **cached_state)
484 {
485 	u64 search_start = start;
486 	const u64 end = start + len - 1;
487 
488 	while (search_start < end) {
489 		const u64 search_len = end - search_start + 1;
490 		struct extent_map *em;
491 		u64 em_len;
492 		int ret = 0;
493 
494 		em = btrfs_get_extent(inode, NULL, 0, search_start,
495 				      search_len, 0);
496 		if (IS_ERR(em))
497 			return PTR_ERR(em);
498 
499 		if (em->block_start != EXTENT_MAP_HOLE)
500 			goto next;
501 
502 		em_len = em->len;
503 		if (em->start < search_start)
504 			em_len -= search_start - em->start;
505 		if (em_len > search_len)
506 			em_len = search_len;
507 
508 		ret = set_extent_bit(&inode->io_tree, search_start,
509 				     search_start + em_len - 1,
510 				     EXTENT_DELALLOC_NEW,
511 				     NULL, cached_state, GFP_NOFS);
512 next:
513 		search_start = extent_map_end(em);
514 		free_extent_map(em);
515 		if (ret)
516 			return ret;
517 	}
518 	return 0;
519 }
520 
521 /*
522  * after copy_from_user, pages need to be dirtied and we need to make
523  * sure holes are created between the current EOF and the start of
524  * any next extents (if required).
525  *
526  * this also makes the decision about creating an inline extent vs
527  * doing real data extents, marking pages dirty and delalloc as required.
528  */
529 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
530 		      size_t num_pages, loff_t pos, size_t write_bytes,
531 		      struct extent_state **cached)
532 {
533 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 	int err = 0;
535 	int i;
536 	u64 num_bytes;
537 	u64 start_pos;
538 	u64 end_of_last_block;
539 	u64 end_pos = pos + write_bytes;
540 	loff_t isize = i_size_read(inode);
541 	unsigned int extra_bits = 0;
542 
543 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
544 	num_bytes = round_up(write_bytes + pos - start_pos,
545 			     fs_info->sectorsize);
546 
547 	end_of_last_block = start_pos + num_bytes - 1;
548 
549 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
550 		if (start_pos >= isize &&
551 		    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
552 			/*
553 			 * There can't be any extents following eof in this case
554 			 * so just set the delalloc new bit for the range
555 			 * directly.
556 			 */
557 			extra_bits |= EXTENT_DELALLOC_NEW;
558 		} else {
559 			err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
560 							    start_pos,
561 							    num_bytes, cached);
562 			if (err)
563 				return err;
564 		}
565 	}
566 
567 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
568 					extra_bits, cached, 0);
569 	if (err)
570 		return err;
571 
572 	for (i = 0; i < num_pages; i++) {
573 		struct page *p = pages[i];
574 		SetPageUptodate(p);
575 		ClearPageChecked(p);
576 		set_page_dirty(p);
577 	}
578 
579 	/*
580 	 * we've only changed i_size in ram, and we haven't updated
581 	 * the disk i_size.  There is no need to log the inode
582 	 * at this time.
583 	 */
584 	if (end_pos > isize)
585 		i_size_write(inode, end_pos);
586 	return 0;
587 }
588 
589 /*
590  * this drops all the extents in the cache that intersect the range
591  * [start, end].  Existing extents are split as required.
592  */
593 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
594 			     int skip_pinned)
595 {
596 	struct extent_map *em;
597 	struct extent_map *split = NULL;
598 	struct extent_map *split2 = NULL;
599 	struct extent_map_tree *em_tree = &inode->extent_tree;
600 	u64 len = end - start + 1;
601 	u64 gen;
602 	int ret;
603 	int testend = 1;
604 	unsigned long flags;
605 	int compressed = 0;
606 	bool modified;
607 
608 	WARN_ON(end < start);
609 	if (end == (u64)-1) {
610 		len = (u64)-1;
611 		testend = 0;
612 	}
613 	while (1) {
614 		int no_splits = 0;
615 
616 		modified = false;
617 		if (!split)
618 			split = alloc_extent_map();
619 		if (!split2)
620 			split2 = alloc_extent_map();
621 		if (!split || !split2)
622 			no_splits = 1;
623 
624 		write_lock(&em_tree->lock);
625 		em = lookup_extent_mapping(em_tree, start, len);
626 		if (!em) {
627 			write_unlock(&em_tree->lock);
628 			break;
629 		}
630 		flags = em->flags;
631 		gen = em->generation;
632 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
633 			if (testend && em->start + em->len >= start + len) {
634 				free_extent_map(em);
635 				write_unlock(&em_tree->lock);
636 				break;
637 			}
638 			start = em->start + em->len;
639 			if (testend)
640 				len = start + len - (em->start + em->len);
641 			free_extent_map(em);
642 			write_unlock(&em_tree->lock);
643 			continue;
644 		}
645 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
646 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
647 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
648 		modified = !list_empty(&em->list);
649 		if (no_splits)
650 			goto next;
651 
652 		if (em->start < start) {
653 			split->start = em->start;
654 			split->len = start - em->start;
655 
656 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
657 				split->orig_start = em->orig_start;
658 				split->block_start = em->block_start;
659 
660 				if (compressed)
661 					split->block_len = em->block_len;
662 				else
663 					split->block_len = split->len;
664 				split->orig_block_len = max(split->block_len,
665 						em->orig_block_len);
666 				split->ram_bytes = em->ram_bytes;
667 			} else {
668 				split->orig_start = split->start;
669 				split->block_len = 0;
670 				split->block_start = em->block_start;
671 				split->orig_block_len = 0;
672 				split->ram_bytes = split->len;
673 			}
674 
675 			split->generation = gen;
676 			split->bdev = em->bdev;
677 			split->flags = flags;
678 			split->compress_type = em->compress_type;
679 			replace_extent_mapping(em_tree, em, split, modified);
680 			free_extent_map(split);
681 			split = split2;
682 			split2 = NULL;
683 		}
684 		if (testend && em->start + em->len > start + len) {
685 			u64 diff = start + len - em->start;
686 
687 			split->start = start + len;
688 			split->len = em->start + em->len - (start + len);
689 			split->bdev = em->bdev;
690 			split->flags = flags;
691 			split->compress_type = em->compress_type;
692 			split->generation = gen;
693 
694 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
695 				split->orig_block_len = max(em->block_len,
696 						    em->orig_block_len);
697 
698 				split->ram_bytes = em->ram_bytes;
699 				if (compressed) {
700 					split->block_len = em->block_len;
701 					split->block_start = em->block_start;
702 					split->orig_start = em->orig_start;
703 				} else {
704 					split->block_len = split->len;
705 					split->block_start = em->block_start
706 						+ diff;
707 					split->orig_start = em->orig_start;
708 				}
709 			} else {
710 				split->ram_bytes = split->len;
711 				split->orig_start = split->start;
712 				split->block_len = 0;
713 				split->block_start = em->block_start;
714 				split->orig_block_len = 0;
715 			}
716 
717 			if (extent_map_in_tree(em)) {
718 				replace_extent_mapping(em_tree, em, split,
719 						       modified);
720 			} else {
721 				ret = add_extent_mapping(em_tree, split,
722 							 modified);
723 				ASSERT(ret == 0); /* Logic error */
724 			}
725 			free_extent_map(split);
726 			split = NULL;
727 		}
728 next:
729 		if (extent_map_in_tree(em))
730 			remove_extent_mapping(em_tree, em);
731 		write_unlock(&em_tree->lock);
732 
733 		/* once for us */
734 		free_extent_map(em);
735 		/* once for the tree*/
736 		free_extent_map(em);
737 	}
738 	if (split)
739 		free_extent_map(split);
740 	if (split2)
741 		free_extent_map(split2);
742 }
743 
744 /*
745  * this is very complex, but the basic idea is to drop all extents
746  * in the range start - end.  hint_block is filled in with a block number
747  * that would be a good hint to the block allocator for this file.
748  *
749  * If an extent intersects the range but is not entirely inside the range
750  * it is either truncated or split.  Anything entirely inside the range
751  * is deleted from the tree.
752  */
753 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
754 			 struct btrfs_root *root, struct inode *inode,
755 			 struct btrfs_path *path, u64 start, u64 end,
756 			 u64 *drop_end, int drop_cache,
757 			 int replace_extent,
758 			 u32 extent_item_size,
759 			 int *key_inserted)
760 {
761 	struct btrfs_fs_info *fs_info = root->fs_info;
762 	struct extent_buffer *leaf;
763 	struct btrfs_file_extent_item *fi;
764 	struct btrfs_key key;
765 	struct btrfs_key new_key;
766 	u64 ino = btrfs_ino(BTRFS_I(inode));
767 	u64 search_start = start;
768 	u64 disk_bytenr = 0;
769 	u64 num_bytes = 0;
770 	u64 extent_offset = 0;
771 	u64 extent_end = 0;
772 	u64 last_end = start;
773 	int del_nr = 0;
774 	int del_slot = 0;
775 	int extent_type;
776 	int recow;
777 	int ret;
778 	int modify_tree = -1;
779 	int update_refs;
780 	int found = 0;
781 	int leafs_visited = 0;
782 
783 	if (drop_cache)
784 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
785 
786 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
787 		modify_tree = 0;
788 
789 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
790 		       root == fs_info->tree_root);
791 	while (1) {
792 		recow = 0;
793 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
794 					       search_start, modify_tree);
795 		if (ret < 0)
796 			break;
797 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
798 			leaf = path->nodes[0];
799 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
800 			if (key.objectid == ino &&
801 			    key.type == BTRFS_EXTENT_DATA_KEY)
802 				path->slots[0]--;
803 		}
804 		ret = 0;
805 		leafs_visited++;
806 next_slot:
807 		leaf = path->nodes[0];
808 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
809 			BUG_ON(del_nr > 0);
810 			ret = btrfs_next_leaf(root, path);
811 			if (ret < 0)
812 				break;
813 			if (ret > 0) {
814 				ret = 0;
815 				break;
816 			}
817 			leafs_visited++;
818 			leaf = path->nodes[0];
819 			recow = 1;
820 		}
821 
822 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
823 
824 		if (key.objectid > ino)
825 			break;
826 		if (WARN_ON_ONCE(key.objectid < ino) ||
827 		    key.type < BTRFS_EXTENT_DATA_KEY) {
828 			ASSERT(del_nr == 0);
829 			path->slots[0]++;
830 			goto next_slot;
831 		}
832 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
833 			break;
834 
835 		fi = btrfs_item_ptr(leaf, path->slots[0],
836 				    struct btrfs_file_extent_item);
837 		extent_type = btrfs_file_extent_type(leaf, fi);
838 
839 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
840 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
841 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
842 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
843 			extent_offset = btrfs_file_extent_offset(leaf, fi);
844 			extent_end = key.offset +
845 				btrfs_file_extent_num_bytes(leaf, fi);
846 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
847 			extent_end = key.offset +
848 				btrfs_file_extent_inline_len(leaf,
849 						     path->slots[0], fi);
850 		} else {
851 			/* can't happen */
852 			BUG();
853 		}
854 
855 		/*
856 		 * Don't skip extent items representing 0 byte lengths. They
857 		 * used to be created (bug) if while punching holes we hit
858 		 * -ENOSPC condition. So if we find one here, just ensure we
859 		 * delete it, otherwise we would insert a new file extent item
860 		 * with the same key (offset) as that 0 bytes length file
861 		 * extent item in the call to setup_items_for_insert() later
862 		 * in this function.
863 		 */
864 		if (extent_end == key.offset && extent_end >= search_start) {
865 			last_end = extent_end;
866 			goto delete_extent_item;
867 		}
868 
869 		if (extent_end <= search_start) {
870 			path->slots[0]++;
871 			goto next_slot;
872 		}
873 
874 		found = 1;
875 		search_start = max(key.offset, start);
876 		if (recow || !modify_tree) {
877 			modify_tree = -1;
878 			btrfs_release_path(path);
879 			continue;
880 		}
881 
882 		/*
883 		 *     | - range to drop - |
884 		 *  | -------- extent -------- |
885 		 */
886 		if (start > key.offset && end < extent_end) {
887 			BUG_ON(del_nr > 0);
888 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
889 				ret = -EOPNOTSUPP;
890 				break;
891 			}
892 
893 			memcpy(&new_key, &key, sizeof(new_key));
894 			new_key.offset = start;
895 			ret = btrfs_duplicate_item(trans, root, path,
896 						   &new_key);
897 			if (ret == -EAGAIN) {
898 				btrfs_release_path(path);
899 				continue;
900 			}
901 			if (ret < 0)
902 				break;
903 
904 			leaf = path->nodes[0];
905 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
906 					    struct btrfs_file_extent_item);
907 			btrfs_set_file_extent_num_bytes(leaf, fi,
908 							start - key.offset);
909 
910 			fi = btrfs_item_ptr(leaf, path->slots[0],
911 					    struct btrfs_file_extent_item);
912 
913 			extent_offset += start - key.offset;
914 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
915 			btrfs_set_file_extent_num_bytes(leaf, fi,
916 							extent_end - start);
917 			btrfs_mark_buffer_dirty(leaf);
918 
919 			if (update_refs && disk_bytenr > 0) {
920 				ret = btrfs_inc_extent_ref(trans, root,
921 						disk_bytenr, num_bytes, 0,
922 						root->root_key.objectid,
923 						new_key.objectid,
924 						start - extent_offset);
925 				BUG_ON(ret); /* -ENOMEM */
926 			}
927 			key.offset = start;
928 		}
929 		/*
930 		 * From here on out we will have actually dropped something, so
931 		 * last_end can be updated.
932 		 */
933 		last_end = extent_end;
934 
935 		/*
936 		 *  | ---- range to drop ----- |
937 		 *      | -------- extent -------- |
938 		 */
939 		if (start <= key.offset && end < extent_end) {
940 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
941 				ret = -EOPNOTSUPP;
942 				break;
943 			}
944 
945 			memcpy(&new_key, &key, sizeof(new_key));
946 			new_key.offset = end;
947 			btrfs_set_item_key_safe(fs_info, path, &new_key);
948 
949 			extent_offset += end - key.offset;
950 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
951 			btrfs_set_file_extent_num_bytes(leaf, fi,
952 							extent_end - end);
953 			btrfs_mark_buffer_dirty(leaf);
954 			if (update_refs && disk_bytenr > 0)
955 				inode_sub_bytes(inode, end - key.offset);
956 			break;
957 		}
958 
959 		search_start = extent_end;
960 		/*
961 		 *       | ---- range to drop ----- |
962 		 *  | -------- extent -------- |
963 		 */
964 		if (start > key.offset && end >= extent_end) {
965 			BUG_ON(del_nr > 0);
966 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
967 				ret = -EOPNOTSUPP;
968 				break;
969 			}
970 
971 			btrfs_set_file_extent_num_bytes(leaf, fi,
972 							start - key.offset);
973 			btrfs_mark_buffer_dirty(leaf);
974 			if (update_refs && disk_bytenr > 0)
975 				inode_sub_bytes(inode, extent_end - start);
976 			if (end == extent_end)
977 				break;
978 
979 			path->slots[0]++;
980 			goto next_slot;
981 		}
982 
983 		/*
984 		 *  | ---- range to drop ----- |
985 		 *    | ------ extent ------ |
986 		 */
987 		if (start <= key.offset && end >= extent_end) {
988 delete_extent_item:
989 			if (del_nr == 0) {
990 				del_slot = path->slots[0];
991 				del_nr = 1;
992 			} else {
993 				BUG_ON(del_slot + del_nr != path->slots[0]);
994 				del_nr++;
995 			}
996 
997 			if (update_refs &&
998 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
999 				inode_sub_bytes(inode,
1000 						extent_end - key.offset);
1001 				extent_end = ALIGN(extent_end,
1002 						   fs_info->sectorsize);
1003 			} else if (update_refs && disk_bytenr > 0) {
1004 				ret = btrfs_free_extent(trans, root,
1005 						disk_bytenr, num_bytes, 0,
1006 						root->root_key.objectid,
1007 						key.objectid, key.offset -
1008 						extent_offset);
1009 				BUG_ON(ret); /* -ENOMEM */
1010 				inode_sub_bytes(inode,
1011 						extent_end - key.offset);
1012 			}
1013 
1014 			if (end == extent_end)
1015 				break;
1016 
1017 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018 				path->slots[0]++;
1019 				goto next_slot;
1020 			}
1021 
1022 			ret = btrfs_del_items(trans, root, path, del_slot,
1023 					      del_nr);
1024 			if (ret) {
1025 				btrfs_abort_transaction(trans, ret);
1026 				break;
1027 			}
1028 
1029 			del_nr = 0;
1030 			del_slot = 0;
1031 
1032 			btrfs_release_path(path);
1033 			continue;
1034 		}
1035 
1036 		BUG_ON(1);
1037 	}
1038 
1039 	if (!ret && del_nr > 0) {
1040 		/*
1041 		 * Set path->slots[0] to first slot, so that after the delete
1042 		 * if items are move off from our leaf to its immediate left or
1043 		 * right neighbor leafs, we end up with a correct and adjusted
1044 		 * path->slots[0] for our insertion (if replace_extent != 0).
1045 		 */
1046 		path->slots[0] = del_slot;
1047 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1048 		if (ret)
1049 			btrfs_abort_transaction(trans, ret);
1050 	}
1051 
1052 	leaf = path->nodes[0];
1053 	/*
1054 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1055 	 * which case it unlocked our path, so check path->locks[0] matches a
1056 	 * write lock.
1057 	 */
1058 	if (!ret && replace_extent && leafs_visited == 1 &&
1059 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1061 	    btrfs_leaf_free_space(fs_info, leaf) >=
1062 	    sizeof(struct btrfs_item) + extent_item_size) {
1063 
1064 		key.objectid = ino;
1065 		key.type = BTRFS_EXTENT_DATA_KEY;
1066 		key.offset = start;
1067 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068 			struct btrfs_key slot_key;
1069 
1070 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072 				path->slots[0]++;
1073 		}
1074 		setup_items_for_insert(root, path, &key,
1075 				       &extent_item_size,
1076 				       extent_item_size,
1077 				       sizeof(struct btrfs_item) +
1078 				       extent_item_size, 1);
1079 		*key_inserted = 1;
1080 	}
1081 
1082 	if (!replace_extent || !(*key_inserted))
1083 		btrfs_release_path(path);
1084 	if (drop_end)
1085 		*drop_end = found ? min(end, last_end) : end;
1086 	return ret;
1087 }
1088 
1089 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090 		       struct btrfs_root *root, struct inode *inode, u64 start,
1091 		       u64 end, int drop_cache)
1092 {
1093 	struct btrfs_path *path;
1094 	int ret;
1095 
1096 	path = btrfs_alloc_path();
1097 	if (!path)
1098 		return -ENOMEM;
1099 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1100 				   drop_cache, 0, 0, NULL);
1101 	btrfs_free_path(path);
1102 	return ret;
1103 }
1104 
1105 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1106 			    u64 objectid, u64 bytenr, u64 orig_offset,
1107 			    u64 *start, u64 *end)
1108 {
1109 	struct btrfs_file_extent_item *fi;
1110 	struct btrfs_key key;
1111 	u64 extent_end;
1112 
1113 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114 		return 0;
1115 
1116 	btrfs_item_key_to_cpu(leaf, &key, slot);
1117 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118 		return 0;
1119 
1120 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1123 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1124 	    btrfs_file_extent_compression(leaf, fi) ||
1125 	    btrfs_file_extent_encryption(leaf, fi) ||
1126 	    btrfs_file_extent_other_encoding(leaf, fi))
1127 		return 0;
1128 
1129 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131 		return 0;
1132 
1133 	*start = key.offset;
1134 	*end = extent_end;
1135 	return 1;
1136 }
1137 
1138 /*
1139  * Mark extent in the range start - end as written.
1140  *
1141  * This changes extent type from 'pre-allocated' to 'regular'. If only
1142  * part of extent is marked as written, the extent will be split into
1143  * two or three.
1144  */
1145 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1146 			      struct btrfs_inode *inode, u64 start, u64 end)
1147 {
1148 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1149 	struct btrfs_root *root = inode->root;
1150 	struct extent_buffer *leaf;
1151 	struct btrfs_path *path;
1152 	struct btrfs_file_extent_item *fi;
1153 	struct btrfs_key key;
1154 	struct btrfs_key new_key;
1155 	u64 bytenr;
1156 	u64 num_bytes;
1157 	u64 extent_end;
1158 	u64 orig_offset;
1159 	u64 other_start;
1160 	u64 other_end;
1161 	u64 split;
1162 	int del_nr = 0;
1163 	int del_slot = 0;
1164 	int recow;
1165 	int ret;
1166 	u64 ino = btrfs_ino(inode);
1167 
1168 	path = btrfs_alloc_path();
1169 	if (!path)
1170 		return -ENOMEM;
1171 again:
1172 	recow = 0;
1173 	split = start;
1174 	key.objectid = ino;
1175 	key.type = BTRFS_EXTENT_DATA_KEY;
1176 	key.offset = split;
1177 
1178 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1179 	if (ret < 0)
1180 		goto out;
1181 	if (ret > 0 && path->slots[0] > 0)
1182 		path->slots[0]--;
1183 
1184 	leaf = path->nodes[0];
1185 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1186 	if (key.objectid != ino ||
1187 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1188 		ret = -EINVAL;
1189 		btrfs_abort_transaction(trans, ret);
1190 		goto out;
1191 	}
1192 	fi = btrfs_item_ptr(leaf, path->slots[0],
1193 			    struct btrfs_file_extent_item);
1194 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1195 		ret = -EINVAL;
1196 		btrfs_abort_transaction(trans, ret);
1197 		goto out;
1198 	}
1199 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1200 	if (key.offset > start || extent_end < end) {
1201 		ret = -EINVAL;
1202 		btrfs_abort_transaction(trans, ret);
1203 		goto out;
1204 	}
1205 
1206 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1208 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1209 	memcpy(&new_key, &key, sizeof(new_key));
1210 
1211 	if (start == key.offset && end < extent_end) {
1212 		other_start = 0;
1213 		other_end = start;
1214 		if (extent_mergeable(leaf, path->slots[0] - 1,
1215 				     ino, bytenr, orig_offset,
1216 				     &other_start, &other_end)) {
1217 			new_key.offset = end;
1218 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1219 			fi = btrfs_item_ptr(leaf, path->slots[0],
1220 					    struct btrfs_file_extent_item);
1221 			btrfs_set_file_extent_generation(leaf, fi,
1222 							 trans->transid);
1223 			btrfs_set_file_extent_num_bytes(leaf, fi,
1224 							extent_end - end);
1225 			btrfs_set_file_extent_offset(leaf, fi,
1226 						     end - orig_offset);
1227 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1228 					    struct btrfs_file_extent_item);
1229 			btrfs_set_file_extent_generation(leaf, fi,
1230 							 trans->transid);
1231 			btrfs_set_file_extent_num_bytes(leaf, fi,
1232 							end - other_start);
1233 			btrfs_mark_buffer_dirty(leaf);
1234 			goto out;
1235 		}
1236 	}
1237 
1238 	if (start > key.offset && end == extent_end) {
1239 		other_start = end;
1240 		other_end = 0;
1241 		if (extent_mergeable(leaf, path->slots[0] + 1,
1242 				     ino, bytenr, orig_offset,
1243 				     &other_start, &other_end)) {
1244 			fi = btrfs_item_ptr(leaf, path->slots[0],
1245 					    struct btrfs_file_extent_item);
1246 			btrfs_set_file_extent_num_bytes(leaf, fi,
1247 							start - key.offset);
1248 			btrfs_set_file_extent_generation(leaf, fi,
1249 							 trans->transid);
1250 			path->slots[0]++;
1251 			new_key.offset = start;
1252 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1253 
1254 			fi = btrfs_item_ptr(leaf, path->slots[0],
1255 					    struct btrfs_file_extent_item);
1256 			btrfs_set_file_extent_generation(leaf, fi,
1257 							 trans->transid);
1258 			btrfs_set_file_extent_num_bytes(leaf, fi,
1259 							other_end - start);
1260 			btrfs_set_file_extent_offset(leaf, fi,
1261 						     start - orig_offset);
1262 			btrfs_mark_buffer_dirty(leaf);
1263 			goto out;
1264 		}
1265 	}
1266 
1267 	while (start > key.offset || end < extent_end) {
1268 		if (key.offset == start)
1269 			split = end;
1270 
1271 		new_key.offset = split;
1272 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1273 		if (ret == -EAGAIN) {
1274 			btrfs_release_path(path);
1275 			goto again;
1276 		}
1277 		if (ret < 0) {
1278 			btrfs_abort_transaction(trans, ret);
1279 			goto out;
1280 		}
1281 
1282 		leaf = path->nodes[0];
1283 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1284 				    struct btrfs_file_extent_item);
1285 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1286 		btrfs_set_file_extent_num_bytes(leaf, fi,
1287 						split - key.offset);
1288 
1289 		fi = btrfs_item_ptr(leaf, path->slots[0],
1290 				    struct btrfs_file_extent_item);
1291 
1292 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1294 		btrfs_set_file_extent_num_bytes(leaf, fi,
1295 						extent_end - split);
1296 		btrfs_mark_buffer_dirty(leaf);
1297 
1298 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1299 					   0, root->root_key.objectid,
1300 					   ino, orig_offset);
1301 		if (ret) {
1302 			btrfs_abort_transaction(trans, ret);
1303 			goto out;
1304 		}
1305 
1306 		if (split == start) {
1307 			key.offset = start;
1308 		} else {
1309 			if (start != key.offset) {
1310 				ret = -EINVAL;
1311 				btrfs_abort_transaction(trans, ret);
1312 				goto out;
1313 			}
1314 			path->slots[0]--;
1315 			extent_end = end;
1316 		}
1317 		recow = 1;
1318 	}
1319 
1320 	other_start = end;
1321 	other_end = 0;
1322 	if (extent_mergeable(leaf, path->slots[0] + 1,
1323 			     ino, bytenr, orig_offset,
1324 			     &other_start, &other_end)) {
1325 		if (recow) {
1326 			btrfs_release_path(path);
1327 			goto again;
1328 		}
1329 		extent_end = other_end;
1330 		del_slot = path->slots[0] + 1;
1331 		del_nr++;
1332 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1333 					0, root->root_key.objectid,
1334 					ino, orig_offset);
1335 		if (ret) {
1336 			btrfs_abort_transaction(trans, ret);
1337 			goto out;
1338 		}
1339 	}
1340 	other_start = 0;
1341 	other_end = start;
1342 	if (extent_mergeable(leaf, path->slots[0] - 1,
1343 			     ino, bytenr, orig_offset,
1344 			     &other_start, &other_end)) {
1345 		if (recow) {
1346 			btrfs_release_path(path);
1347 			goto again;
1348 		}
1349 		key.offset = other_start;
1350 		del_slot = path->slots[0];
1351 		del_nr++;
1352 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1353 					0, root->root_key.objectid,
1354 					ino, orig_offset);
1355 		if (ret) {
1356 			btrfs_abort_transaction(trans, ret);
1357 			goto out;
1358 		}
1359 	}
1360 	if (del_nr == 0) {
1361 		fi = btrfs_item_ptr(leaf, path->slots[0],
1362 			   struct btrfs_file_extent_item);
1363 		btrfs_set_file_extent_type(leaf, fi,
1364 					   BTRFS_FILE_EXTENT_REG);
1365 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1366 		btrfs_mark_buffer_dirty(leaf);
1367 	} else {
1368 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1369 			   struct btrfs_file_extent_item);
1370 		btrfs_set_file_extent_type(leaf, fi,
1371 					   BTRFS_FILE_EXTENT_REG);
1372 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1373 		btrfs_set_file_extent_num_bytes(leaf, fi,
1374 						extent_end - key.offset);
1375 		btrfs_mark_buffer_dirty(leaf);
1376 
1377 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1378 		if (ret < 0) {
1379 			btrfs_abort_transaction(trans, ret);
1380 			goto out;
1381 		}
1382 	}
1383 out:
1384 	btrfs_free_path(path);
1385 	return 0;
1386 }
1387 
1388 /*
1389  * on error we return an unlocked page and the error value
1390  * on success we return a locked page and 0
1391  */
1392 static int prepare_uptodate_page(struct inode *inode,
1393 				 struct page *page, u64 pos,
1394 				 bool force_uptodate)
1395 {
1396 	int ret = 0;
1397 
1398 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1399 	    !PageUptodate(page)) {
1400 		ret = btrfs_readpage(NULL, page);
1401 		if (ret)
1402 			return ret;
1403 		lock_page(page);
1404 		if (!PageUptodate(page)) {
1405 			unlock_page(page);
1406 			return -EIO;
1407 		}
1408 		if (page->mapping != inode->i_mapping) {
1409 			unlock_page(page);
1410 			return -EAGAIN;
1411 		}
1412 	}
1413 	return 0;
1414 }
1415 
1416 /*
1417  * this just gets pages into the page cache and locks them down.
1418  */
1419 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1420 				  size_t num_pages, loff_t pos,
1421 				  size_t write_bytes, bool force_uptodate)
1422 {
1423 	int i;
1424 	unsigned long index = pos >> PAGE_SHIFT;
1425 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1426 	int err = 0;
1427 	int faili;
1428 
1429 	for (i = 0; i < num_pages; i++) {
1430 again:
1431 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1432 					       mask | __GFP_WRITE);
1433 		if (!pages[i]) {
1434 			faili = i - 1;
1435 			err = -ENOMEM;
1436 			goto fail;
1437 		}
1438 
1439 		if (i == 0)
1440 			err = prepare_uptodate_page(inode, pages[i], pos,
1441 						    force_uptodate);
1442 		if (!err && i == num_pages - 1)
1443 			err = prepare_uptodate_page(inode, pages[i],
1444 						    pos + write_bytes, false);
1445 		if (err) {
1446 			put_page(pages[i]);
1447 			if (err == -EAGAIN) {
1448 				err = 0;
1449 				goto again;
1450 			}
1451 			faili = i - 1;
1452 			goto fail;
1453 		}
1454 		wait_on_page_writeback(pages[i]);
1455 	}
1456 
1457 	return 0;
1458 fail:
1459 	while (faili >= 0) {
1460 		unlock_page(pages[faili]);
1461 		put_page(pages[faili]);
1462 		faili--;
1463 	}
1464 	return err;
1465 
1466 }
1467 
1468 /*
1469  * This function locks the extent and properly waits for data=ordered extents
1470  * to finish before allowing the pages to be modified if need.
1471  *
1472  * The return value:
1473  * 1 - the extent is locked
1474  * 0 - the extent is not locked, and everything is OK
1475  * -EAGAIN - need re-prepare the pages
1476  * the other < 0 number - Something wrong happens
1477  */
1478 static noinline int
1479 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1480 				size_t num_pages, loff_t pos,
1481 				size_t write_bytes,
1482 				u64 *lockstart, u64 *lockend,
1483 				struct extent_state **cached_state)
1484 {
1485 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1486 	u64 start_pos;
1487 	u64 last_pos;
1488 	int i;
1489 	int ret = 0;
1490 
1491 	start_pos = round_down(pos, fs_info->sectorsize);
1492 	last_pos = start_pos
1493 		+ round_up(pos + write_bytes - start_pos,
1494 			   fs_info->sectorsize) - 1;
1495 
1496 	if (start_pos < inode->vfs_inode.i_size) {
1497 		struct btrfs_ordered_extent *ordered;
1498 
1499 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1500 				cached_state);
1501 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1502 						     last_pos - start_pos + 1);
1503 		if (ordered &&
1504 		    ordered->file_offset + ordered->len > start_pos &&
1505 		    ordered->file_offset <= last_pos) {
1506 			unlock_extent_cached(&inode->io_tree, start_pos,
1507 					last_pos, cached_state, GFP_NOFS);
1508 			for (i = 0; i < num_pages; i++) {
1509 				unlock_page(pages[i]);
1510 				put_page(pages[i]);
1511 			}
1512 			btrfs_start_ordered_extent(&inode->vfs_inode,
1513 					ordered, 1);
1514 			btrfs_put_ordered_extent(ordered);
1515 			return -EAGAIN;
1516 		}
1517 		if (ordered)
1518 			btrfs_put_ordered_extent(ordered);
1519 		clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1520 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1521 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1522 				 0, 0, cached_state, GFP_NOFS);
1523 		*lockstart = start_pos;
1524 		*lockend = last_pos;
1525 		ret = 1;
1526 	}
1527 
1528 	for (i = 0; i < num_pages; i++) {
1529 		if (clear_page_dirty_for_io(pages[i]))
1530 			account_page_redirty(pages[i]);
1531 		set_page_extent_mapped(pages[i]);
1532 		WARN_ON(!PageLocked(pages[i]));
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1539 				    size_t *write_bytes)
1540 {
1541 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1542 	struct btrfs_root *root = inode->root;
1543 	struct btrfs_ordered_extent *ordered;
1544 	u64 lockstart, lockend;
1545 	u64 num_bytes;
1546 	int ret;
1547 
1548 	ret = btrfs_start_write_no_snapshotting(root);
1549 	if (!ret)
1550 		return -ENOSPC;
1551 
1552 	lockstart = round_down(pos, fs_info->sectorsize);
1553 	lockend = round_up(pos + *write_bytes,
1554 			   fs_info->sectorsize) - 1;
1555 
1556 	while (1) {
1557 		lock_extent(&inode->io_tree, lockstart, lockend);
1558 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1559 						     lockend - lockstart + 1);
1560 		if (!ordered) {
1561 			break;
1562 		}
1563 		unlock_extent(&inode->io_tree, lockstart, lockend);
1564 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1565 		btrfs_put_ordered_extent(ordered);
1566 	}
1567 
1568 	num_bytes = lockend - lockstart + 1;
1569 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1570 			NULL, NULL, NULL);
1571 	if (ret <= 0) {
1572 		ret = 0;
1573 		btrfs_end_write_no_snapshotting(root);
1574 	} else {
1575 		*write_bytes = min_t(size_t, *write_bytes ,
1576 				     num_bytes - pos + lockstart);
1577 	}
1578 
1579 	unlock_extent(&inode->io_tree, lockstart, lockend);
1580 
1581 	return ret;
1582 }
1583 
1584 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1585 					       struct iov_iter *i,
1586 					       loff_t pos)
1587 {
1588 	struct inode *inode = file_inode(file);
1589 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1590 	struct btrfs_root *root = BTRFS_I(inode)->root;
1591 	struct page **pages = NULL;
1592 	struct extent_state *cached_state = NULL;
1593 	struct extent_changeset *data_reserved = NULL;
1594 	u64 release_bytes = 0;
1595 	u64 lockstart;
1596 	u64 lockend;
1597 	size_t num_written = 0;
1598 	int nrptrs;
1599 	int ret = 0;
1600 	bool only_release_metadata = false;
1601 	bool force_page_uptodate = false;
1602 
1603 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1604 			PAGE_SIZE / (sizeof(struct page *)));
1605 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1606 	nrptrs = max(nrptrs, 8);
1607 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1608 	if (!pages)
1609 		return -ENOMEM;
1610 
1611 	while (iov_iter_count(i) > 0) {
1612 		size_t offset = pos & (PAGE_SIZE - 1);
1613 		size_t sector_offset;
1614 		size_t write_bytes = min(iov_iter_count(i),
1615 					 nrptrs * (size_t)PAGE_SIZE -
1616 					 offset);
1617 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1618 						PAGE_SIZE);
1619 		size_t reserve_bytes;
1620 		size_t dirty_pages;
1621 		size_t copied;
1622 		size_t dirty_sectors;
1623 		size_t num_sectors;
1624 		int extents_locked;
1625 
1626 		WARN_ON(num_pages > nrptrs);
1627 
1628 		/*
1629 		 * Fault pages before locking them in prepare_pages
1630 		 * to avoid recursive lock
1631 		 */
1632 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1633 			ret = -EFAULT;
1634 			break;
1635 		}
1636 
1637 		sector_offset = pos & (fs_info->sectorsize - 1);
1638 		reserve_bytes = round_up(write_bytes + sector_offset,
1639 				fs_info->sectorsize);
1640 
1641 		extent_changeset_release(data_reserved);
1642 		ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1643 						  write_bytes);
1644 		if (ret < 0) {
1645 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1646 						      BTRFS_INODE_PREALLOC)) &&
1647 			    check_can_nocow(BTRFS_I(inode), pos,
1648 					&write_bytes) > 0) {
1649 				/*
1650 				 * For nodata cow case, no need to reserve
1651 				 * data space.
1652 				 */
1653 				only_release_metadata = true;
1654 				/*
1655 				 * our prealloc extent may be smaller than
1656 				 * write_bytes, so scale down.
1657 				 */
1658 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1659 							 PAGE_SIZE);
1660 				reserve_bytes = round_up(write_bytes +
1661 							 sector_offset,
1662 							 fs_info->sectorsize);
1663 			} else {
1664 				break;
1665 			}
1666 		}
1667 
1668 		WARN_ON(reserve_bytes == 0);
1669 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1670 				reserve_bytes);
1671 		if (ret) {
1672 			if (!only_release_metadata)
1673 				btrfs_free_reserved_data_space(inode,
1674 						data_reserved, pos,
1675 						write_bytes);
1676 			else
1677 				btrfs_end_write_no_snapshotting(root);
1678 			break;
1679 		}
1680 
1681 		release_bytes = reserve_bytes;
1682 again:
1683 		/*
1684 		 * This is going to setup the pages array with the number of
1685 		 * pages we want, so we don't really need to worry about the
1686 		 * contents of pages from loop to loop
1687 		 */
1688 		ret = prepare_pages(inode, pages, num_pages,
1689 				    pos, write_bytes,
1690 				    force_page_uptodate);
1691 		if (ret) {
1692 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1693 						       reserve_bytes);
1694 			break;
1695 		}
1696 
1697 		extents_locked = lock_and_cleanup_extent_if_need(
1698 				BTRFS_I(inode), pages,
1699 				num_pages, pos, write_bytes, &lockstart,
1700 				&lockend, &cached_state);
1701 		if (extents_locked < 0) {
1702 			if (extents_locked == -EAGAIN)
1703 				goto again;
1704 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1705 						       reserve_bytes);
1706 			ret = extents_locked;
1707 			break;
1708 		}
1709 
1710 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1711 
1712 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1713 		dirty_sectors = round_up(copied + sector_offset,
1714 					fs_info->sectorsize);
1715 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1716 
1717 		/*
1718 		 * if we have trouble faulting in the pages, fall
1719 		 * back to one page at a time
1720 		 */
1721 		if (copied < write_bytes)
1722 			nrptrs = 1;
1723 
1724 		if (copied == 0) {
1725 			force_page_uptodate = true;
1726 			dirty_sectors = 0;
1727 			dirty_pages = 0;
1728 		} else {
1729 			force_page_uptodate = false;
1730 			dirty_pages = DIV_ROUND_UP(copied + offset,
1731 						   PAGE_SIZE);
1732 		}
1733 
1734 		if (num_sectors > dirty_sectors) {
1735 			/* release everything except the sectors we dirtied */
1736 			release_bytes -= dirty_sectors <<
1737 						fs_info->sb->s_blocksize_bits;
1738 			if (only_release_metadata) {
1739 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1740 								release_bytes);
1741 			} else {
1742 				u64 __pos;
1743 
1744 				__pos = round_down(pos,
1745 						   fs_info->sectorsize) +
1746 					(dirty_pages << PAGE_SHIFT);
1747 				btrfs_delalloc_release_space(inode,
1748 						data_reserved, __pos,
1749 						release_bytes);
1750 			}
1751 		}
1752 
1753 		release_bytes = round_up(copied + sector_offset,
1754 					fs_info->sectorsize);
1755 
1756 		if (copied > 0)
1757 			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1758 						pos, copied, NULL);
1759 		if (extents_locked)
1760 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1761 					     lockstart, lockend, &cached_state,
1762 					     GFP_NOFS);
1763 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1764 		if (ret) {
1765 			btrfs_drop_pages(pages, num_pages);
1766 			break;
1767 		}
1768 
1769 		release_bytes = 0;
1770 		if (only_release_metadata)
1771 			btrfs_end_write_no_snapshotting(root);
1772 
1773 		if (only_release_metadata && copied > 0) {
1774 			lockstart = round_down(pos,
1775 					       fs_info->sectorsize);
1776 			lockend = round_up(pos + copied,
1777 					   fs_info->sectorsize) - 1;
1778 
1779 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1780 				       lockend, EXTENT_NORESERVE, NULL,
1781 				       NULL, GFP_NOFS);
1782 			only_release_metadata = false;
1783 		}
1784 
1785 		btrfs_drop_pages(pages, num_pages);
1786 
1787 		cond_resched();
1788 
1789 		balance_dirty_pages_ratelimited(inode->i_mapping);
1790 		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1791 			btrfs_btree_balance_dirty(fs_info);
1792 
1793 		pos += copied;
1794 		num_written += copied;
1795 	}
1796 
1797 	kfree(pages);
1798 
1799 	if (release_bytes) {
1800 		if (only_release_metadata) {
1801 			btrfs_end_write_no_snapshotting(root);
1802 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1803 					release_bytes);
1804 		} else {
1805 			btrfs_delalloc_release_space(inode, data_reserved,
1806 					round_down(pos, fs_info->sectorsize),
1807 					release_bytes);
1808 		}
1809 	}
1810 
1811 	extent_changeset_free(data_reserved);
1812 	return num_written ? num_written : ret;
1813 }
1814 
1815 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1816 {
1817 	struct file *file = iocb->ki_filp;
1818 	struct inode *inode = file_inode(file);
1819 	loff_t pos = iocb->ki_pos;
1820 	ssize_t written;
1821 	ssize_t written_buffered;
1822 	loff_t endbyte;
1823 	int err;
1824 
1825 	written = generic_file_direct_write(iocb, from);
1826 
1827 	if (written < 0 || !iov_iter_count(from))
1828 		return written;
1829 
1830 	pos += written;
1831 	written_buffered = __btrfs_buffered_write(file, from, pos);
1832 	if (written_buffered < 0) {
1833 		err = written_buffered;
1834 		goto out;
1835 	}
1836 	/*
1837 	 * Ensure all data is persisted. We want the next direct IO read to be
1838 	 * able to read what was just written.
1839 	 */
1840 	endbyte = pos + written_buffered - 1;
1841 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1842 	if (err)
1843 		goto out;
1844 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1845 	if (err)
1846 		goto out;
1847 	written += written_buffered;
1848 	iocb->ki_pos = pos + written_buffered;
1849 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1850 				 endbyte >> PAGE_SHIFT);
1851 out:
1852 	return written ? written : err;
1853 }
1854 
1855 static void update_time_for_write(struct inode *inode)
1856 {
1857 	struct timespec now;
1858 
1859 	if (IS_NOCMTIME(inode))
1860 		return;
1861 
1862 	now = current_time(inode);
1863 	if (!timespec_equal(&inode->i_mtime, &now))
1864 		inode->i_mtime = now;
1865 
1866 	if (!timespec_equal(&inode->i_ctime, &now))
1867 		inode->i_ctime = now;
1868 
1869 	if (IS_I_VERSION(inode))
1870 		inode_inc_iversion(inode);
1871 }
1872 
1873 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1874 				    struct iov_iter *from)
1875 {
1876 	struct file *file = iocb->ki_filp;
1877 	struct inode *inode = file_inode(file);
1878 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1879 	struct btrfs_root *root = BTRFS_I(inode)->root;
1880 	u64 start_pos;
1881 	u64 end_pos;
1882 	ssize_t num_written = 0;
1883 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1884 	ssize_t err;
1885 	loff_t pos;
1886 	size_t count = iov_iter_count(from);
1887 	loff_t oldsize;
1888 	int clean_page = 0;
1889 
1890 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1891 	    (iocb->ki_flags & IOCB_NOWAIT))
1892 		return -EOPNOTSUPP;
1893 
1894 	if (!inode_trylock(inode)) {
1895 		if (iocb->ki_flags & IOCB_NOWAIT)
1896 			return -EAGAIN;
1897 		inode_lock(inode);
1898 	}
1899 
1900 	err = generic_write_checks(iocb, from);
1901 	if (err <= 0) {
1902 		inode_unlock(inode);
1903 		return err;
1904 	}
1905 
1906 	pos = iocb->ki_pos;
1907 	if (iocb->ki_flags & IOCB_NOWAIT) {
1908 		/*
1909 		 * We will allocate space in case nodatacow is not set,
1910 		 * so bail
1911 		 */
1912 		if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1913 					      BTRFS_INODE_PREALLOC)) ||
1914 		    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1915 			inode_unlock(inode);
1916 			return -EAGAIN;
1917 		}
1918 	}
1919 
1920 	current->backing_dev_info = inode_to_bdi(inode);
1921 	err = file_remove_privs(file);
1922 	if (err) {
1923 		inode_unlock(inode);
1924 		goto out;
1925 	}
1926 
1927 	/*
1928 	 * If BTRFS flips readonly due to some impossible error
1929 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930 	 * although we have opened a file as writable, we have
1931 	 * to stop this write operation to ensure FS consistency.
1932 	 */
1933 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1934 		inode_unlock(inode);
1935 		err = -EROFS;
1936 		goto out;
1937 	}
1938 
1939 	/*
1940 	 * We reserve space for updating the inode when we reserve space for the
1941 	 * extent we are going to write, so we will enospc out there.  We don't
1942 	 * need to start yet another transaction to update the inode as we will
1943 	 * update the inode when we finish writing whatever data we write.
1944 	 */
1945 	update_time_for_write(inode);
1946 
1947 	start_pos = round_down(pos, fs_info->sectorsize);
1948 	oldsize = i_size_read(inode);
1949 	if (start_pos > oldsize) {
1950 		/* Expand hole size to cover write data, preventing empty gap */
1951 		end_pos = round_up(pos + count,
1952 				   fs_info->sectorsize);
1953 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1954 		if (err) {
1955 			inode_unlock(inode);
1956 			goto out;
1957 		}
1958 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1959 			clean_page = 1;
1960 	}
1961 
1962 	if (sync)
1963 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1964 
1965 	if (iocb->ki_flags & IOCB_DIRECT) {
1966 		num_written = __btrfs_direct_write(iocb, from);
1967 	} else {
1968 		num_written = __btrfs_buffered_write(file, from, pos);
1969 		if (num_written > 0)
1970 			iocb->ki_pos = pos + num_written;
1971 		if (clean_page)
1972 			pagecache_isize_extended(inode, oldsize,
1973 						i_size_read(inode));
1974 	}
1975 
1976 	inode_unlock(inode);
1977 
1978 	/*
1979 	 * We also have to set last_sub_trans to the current log transid,
1980 	 * otherwise subsequent syncs to a file that's been synced in this
1981 	 * transaction will appear to have already occurred.
1982 	 */
1983 	spin_lock(&BTRFS_I(inode)->lock);
1984 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1985 	spin_unlock(&BTRFS_I(inode)->lock);
1986 	if (num_written > 0)
1987 		num_written = generic_write_sync(iocb, num_written);
1988 
1989 	if (sync)
1990 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1991 out:
1992 	current->backing_dev_info = NULL;
1993 	return num_written ? num_written : err;
1994 }
1995 
1996 int btrfs_release_file(struct inode *inode, struct file *filp)
1997 {
1998 	struct btrfs_file_private *private = filp->private_data;
1999 
2000 	if (private && private->trans)
2001 		btrfs_ioctl_trans_end(filp);
2002 	if (private && private->filldir_buf)
2003 		kfree(private->filldir_buf);
2004 	kfree(private);
2005 	filp->private_data = NULL;
2006 
2007 	/*
2008 	 * ordered_data_close is set by settattr when we are about to truncate
2009 	 * a file from a non-zero size to a zero size.  This tries to
2010 	 * flush down new bytes that may have been written if the
2011 	 * application were using truncate to replace a file in place.
2012 	 */
2013 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014 			       &BTRFS_I(inode)->runtime_flags))
2015 			filemap_flush(inode->i_mapping);
2016 	return 0;
2017 }
2018 
2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020 {
2021 	int ret;
2022 
2023 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2024 	ret = btrfs_fdatawrite_range(inode, start, end);
2025 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2026 
2027 	return ret;
2028 }
2029 
2030 /*
2031  * fsync call for both files and directories.  This logs the inode into
2032  * the tree log instead of forcing full commits whenever possible.
2033  *
2034  * It needs to call filemap_fdatawait so that all ordered extent updates are
2035  * in the metadata btree are up to date for copying to the log.
2036  *
2037  * It drops the inode mutex before doing the tree log commit.  This is an
2038  * important optimization for directories because holding the mutex prevents
2039  * new operations on the dir while we write to disk.
2040  */
2041 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2042 {
2043 	struct dentry *dentry = file_dentry(file);
2044 	struct inode *inode = d_inode(dentry);
2045 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2046 	struct btrfs_root *root = BTRFS_I(inode)->root;
2047 	struct btrfs_trans_handle *trans;
2048 	struct btrfs_log_ctx ctx;
2049 	int ret = 0, err;
2050 	bool full_sync = false;
2051 	u64 len;
2052 
2053 	/*
2054 	 * The range length can be represented by u64, we have to do the typecasts
2055 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2056 	 */
2057 	len = (u64)end - (u64)start + 1;
2058 	trace_btrfs_sync_file(file, datasync);
2059 
2060 	btrfs_init_log_ctx(&ctx, inode);
2061 
2062 	/*
2063 	 * We write the dirty pages in the range and wait until they complete
2064 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2065 	 * multi-task, and make the performance up.  See
2066 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2067 	 */
2068 	ret = start_ordered_ops(inode, start, end);
2069 	if (ret)
2070 		goto out;
2071 
2072 	inode_lock(inode);
2073 	atomic_inc(&root->log_batch);
2074 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2075 			     &BTRFS_I(inode)->runtime_flags);
2076 	/*
2077 	 * We might have have had more pages made dirty after calling
2078 	 * start_ordered_ops and before acquiring the inode's i_mutex.
2079 	 */
2080 	if (full_sync) {
2081 		/*
2082 		 * For a full sync, we need to make sure any ordered operations
2083 		 * start and finish before we start logging the inode, so that
2084 		 * all extents are persisted and the respective file extent
2085 		 * items are in the fs/subvol btree.
2086 		 */
2087 		ret = btrfs_wait_ordered_range(inode, start, len);
2088 	} else {
2089 		/*
2090 		 * Start any new ordered operations before starting to log the
2091 		 * inode. We will wait for them to finish in btrfs_sync_log().
2092 		 *
2093 		 * Right before acquiring the inode's mutex, we might have new
2094 		 * writes dirtying pages, which won't immediately start the
2095 		 * respective ordered operations - that is done through the
2096 		 * fill_delalloc callbacks invoked from the writepage and
2097 		 * writepages address space operations. So make sure we start
2098 		 * all ordered operations before starting to log our inode. Not
2099 		 * doing this means that while logging the inode, writeback
2100 		 * could start and invoke writepage/writepages, which would call
2101 		 * the fill_delalloc callbacks (cow_file_range,
2102 		 * submit_compressed_extents). These callbacks add first an
2103 		 * extent map to the modified list of extents and then create
2104 		 * the respective ordered operation, which means in
2105 		 * tree-log.c:btrfs_log_inode() we might capture all existing
2106 		 * ordered operations (with btrfs_get_logged_extents()) before
2107 		 * the fill_delalloc callback adds its ordered operation, and by
2108 		 * the time we visit the modified list of extent maps (with
2109 		 * btrfs_log_changed_extents()), we see and process the extent
2110 		 * map they created. We then use the extent map to construct a
2111 		 * file extent item for logging without waiting for the
2112 		 * respective ordered operation to finish - this file extent
2113 		 * item points to a disk location that might not have yet been
2114 		 * written to, containing random data - so after a crash a log
2115 		 * replay will make our inode have file extent items that point
2116 		 * to disk locations containing invalid data, as we returned
2117 		 * success to userspace without waiting for the respective
2118 		 * ordered operation to finish, because it wasn't captured by
2119 		 * btrfs_get_logged_extents().
2120 		 */
2121 		ret = start_ordered_ops(inode, start, end);
2122 	}
2123 	if (ret) {
2124 		inode_unlock(inode);
2125 		goto out;
2126 	}
2127 	atomic_inc(&root->log_batch);
2128 
2129 	/*
2130 	 * If the last transaction that changed this file was before the current
2131 	 * transaction and we have the full sync flag set in our inode, we can
2132 	 * bail out now without any syncing.
2133 	 *
2134 	 * Note that we can't bail out if the full sync flag isn't set. This is
2135 	 * because when the full sync flag is set we start all ordered extents
2136 	 * and wait for them to fully complete - when they complete they update
2137 	 * the inode's last_trans field through:
2138 	 *
2139 	 *     btrfs_finish_ordered_io() ->
2140 	 *         btrfs_update_inode_fallback() ->
2141 	 *             btrfs_update_inode() ->
2142 	 *                 btrfs_set_inode_last_trans()
2143 	 *
2144 	 * So we are sure that last_trans is up to date and can do this check to
2145 	 * bail out safely. For the fast path, when the full sync flag is not
2146 	 * set in our inode, we can not do it because we start only our ordered
2147 	 * extents and don't wait for them to complete (that is when
2148 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2149 	 * value might be less than or equals to fs_info->last_trans_committed,
2150 	 * and setting a speculative last_trans for an inode when a buffered
2151 	 * write is made (such as fs_info->generation + 1 for example) would not
2152 	 * be reliable since after setting the value and before fsync is called
2153 	 * any number of transactions can start and commit (transaction kthread
2154 	 * commits the current transaction periodically), and a transaction
2155 	 * commit does not start nor waits for ordered extents to complete.
2156 	 */
2157 	smp_mb();
2158 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2159 	    (full_sync && BTRFS_I(inode)->last_trans <=
2160 	     fs_info->last_trans_committed) ||
2161 	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2162 	     BTRFS_I(inode)->last_trans
2163 	     <= fs_info->last_trans_committed)) {
2164 		/*
2165 		 * We've had everything committed since the last time we were
2166 		 * modified so clear this flag in case it was set for whatever
2167 		 * reason, it's no longer relevant.
2168 		 */
2169 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2170 			  &BTRFS_I(inode)->runtime_flags);
2171 		/*
2172 		 * An ordered extent might have started before and completed
2173 		 * already with io errors, in which case the inode was not
2174 		 * updated and we end up here. So check the inode's mapping
2175 		 * for any errors that might have happened since we last
2176 		 * checked called fsync.
2177 		 */
2178 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2179 		inode_unlock(inode);
2180 		goto out;
2181 	}
2182 
2183 	/*
2184 	 * ok we haven't committed the transaction yet, lets do a commit
2185 	 */
2186 	if (file->private_data)
2187 		btrfs_ioctl_trans_end(file);
2188 
2189 	/*
2190 	 * We use start here because we will need to wait on the IO to complete
2191 	 * in btrfs_sync_log, which could require joining a transaction (for
2192 	 * example checking cross references in the nocow path).  If we use join
2193 	 * here we could get into a situation where we're waiting on IO to
2194 	 * happen that is blocked on a transaction trying to commit.  With start
2195 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2196 	 * before we start blocking join'ers.  This comment is to keep somebody
2197 	 * from thinking they are super smart and changing this to
2198 	 * btrfs_join_transaction *cough*Josef*cough*.
2199 	 */
2200 	trans = btrfs_start_transaction(root, 0);
2201 	if (IS_ERR(trans)) {
2202 		ret = PTR_ERR(trans);
2203 		inode_unlock(inode);
2204 		goto out;
2205 	}
2206 	trans->sync = true;
2207 
2208 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2209 	if (ret < 0) {
2210 		/* Fallthrough and commit/free transaction. */
2211 		ret = 1;
2212 	}
2213 
2214 	/* we've logged all the items and now have a consistent
2215 	 * version of the file in the log.  It is possible that
2216 	 * someone will come in and modify the file, but that's
2217 	 * fine because the log is consistent on disk, and we
2218 	 * have references to all of the file's extents
2219 	 *
2220 	 * It is possible that someone will come in and log the
2221 	 * file again, but that will end up using the synchronization
2222 	 * inside btrfs_sync_log to keep things safe.
2223 	 */
2224 	inode_unlock(inode);
2225 
2226 	/*
2227 	 * If any of the ordered extents had an error, just return it to user
2228 	 * space, so that the application knows some writes didn't succeed and
2229 	 * can take proper action (retry for e.g.). Blindly committing the
2230 	 * transaction in this case, would fool userspace that everything was
2231 	 * successful. And we also want to make sure our log doesn't contain
2232 	 * file extent items pointing to extents that weren't fully written to -
2233 	 * just like in the non fast fsync path, where we check for the ordered
2234 	 * operation's error flag before writing to the log tree and return -EIO
2235 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2236 	 * therefore we need to check for errors in the ordered operations,
2237 	 * which are indicated by ctx.io_err.
2238 	 */
2239 	if (ctx.io_err) {
2240 		btrfs_end_transaction(trans);
2241 		ret = ctx.io_err;
2242 		goto out;
2243 	}
2244 
2245 	if (ret != BTRFS_NO_LOG_SYNC) {
2246 		if (!ret) {
2247 			ret = btrfs_sync_log(trans, root, &ctx);
2248 			if (!ret) {
2249 				ret = btrfs_end_transaction(trans);
2250 				goto out;
2251 			}
2252 		}
2253 		if (!full_sync) {
2254 			ret = btrfs_wait_ordered_range(inode, start, len);
2255 			if (ret) {
2256 				btrfs_end_transaction(trans);
2257 				goto out;
2258 			}
2259 		}
2260 		ret = btrfs_commit_transaction(trans);
2261 	} else {
2262 		ret = btrfs_end_transaction(trans);
2263 	}
2264 out:
2265 	ASSERT(list_empty(&ctx.list));
2266 	err = file_check_and_advance_wb_err(file);
2267 	if (!ret)
2268 		ret = err;
2269 	return ret > 0 ? -EIO : ret;
2270 }
2271 
2272 static const struct vm_operations_struct btrfs_file_vm_ops = {
2273 	.fault		= filemap_fault,
2274 	.map_pages	= filemap_map_pages,
2275 	.page_mkwrite	= btrfs_page_mkwrite,
2276 };
2277 
2278 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2279 {
2280 	struct address_space *mapping = filp->f_mapping;
2281 
2282 	if (!mapping->a_ops->readpage)
2283 		return -ENOEXEC;
2284 
2285 	file_accessed(filp);
2286 	vma->vm_ops = &btrfs_file_vm_ops;
2287 
2288 	return 0;
2289 }
2290 
2291 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2292 			  int slot, u64 start, u64 end)
2293 {
2294 	struct btrfs_file_extent_item *fi;
2295 	struct btrfs_key key;
2296 
2297 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2298 		return 0;
2299 
2300 	btrfs_item_key_to_cpu(leaf, &key, slot);
2301 	if (key.objectid != btrfs_ino(inode) ||
2302 	    key.type != BTRFS_EXTENT_DATA_KEY)
2303 		return 0;
2304 
2305 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2306 
2307 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2308 		return 0;
2309 
2310 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2311 		return 0;
2312 
2313 	if (key.offset == end)
2314 		return 1;
2315 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2316 		return 1;
2317 	return 0;
2318 }
2319 
2320 static int fill_holes(struct btrfs_trans_handle *trans,
2321 		struct btrfs_inode *inode,
2322 		struct btrfs_path *path, u64 offset, u64 end)
2323 {
2324 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2325 	struct btrfs_root *root = inode->root;
2326 	struct extent_buffer *leaf;
2327 	struct btrfs_file_extent_item *fi;
2328 	struct extent_map *hole_em;
2329 	struct extent_map_tree *em_tree = &inode->extent_tree;
2330 	struct btrfs_key key;
2331 	int ret;
2332 
2333 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2334 		goto out;
2335 
2336 	key.objectid = btrfs_ino(inode);
2337 	key.type = BTRFS_EXTENT_DATA_KEY;
2338 	key.offset = offset;
2339 
2340 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2341 	if (ret <= 0) {
2342 		/*
2343 		 * We should have dropped this offset, so if we find it then
2344 		 * something has gone horribly wrong.
2345 		 */
2346 		if (ret == 0)
2347 			ret = -EINVAL;
2348 		return ret;
2349 	}
2350 
2351 	leaf = path->nodes[0];
2352 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2353 		u64 num_bytes;
2354 
2355 		path->slots[0]--;
2356 		fi = btrfs_item_ptr(leaf, path->slots[0],
2357 				    struct btrfs_file_extent_item);
2358 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2359 			end - offset;
2360 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2361 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2362 		btrfs_set_file_extent_offset(leaf, fi, 0);
2363 		btrfs_mark_buffer_dirty(leaf);
2364 		goto out;
2365 	}
2366 
2367 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2368 		u64 num_bytes;
2369 
2370 		key.offset = offset;
2371 		btrfs_set_item_key_safe(fs_info, path, &key);
2372 		fi = btrfs_item_ptr(leaf, path->slots[0],
2373 				    struct btrfs_file_extent_item);
2374 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2375 			offset;
2376 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2377 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2378 		btrfs_set_file_extent_offset(leaf, fi, 0);
2379 		btrfs_mark_buffer_dirty(leaf);
2380 		goto out;
2381 	}
2382 	btrfs_release_path(path);
2383 
2384 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2385 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2386 	if (ret)
2387 		return ret;
2388 
2389 out:
2390 	btrfs_release_path(path);
2391 
2392 	hole_em = alloc_extent_map();
2393 	if (!hole_em) {
2394 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2395 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2396 	} else {
2397 		hole_em->start = offset;
2398 		hole_em->len = end - offset;
2399 		hole_em->ram_bytes = hole_em->len;
2400 		hole_em->orig_start = offset;
2401 
2402 		hole_em->block_start = EXTENT_MAP_HOLE;
2403 		hole_em->block_len = 0;
2404 		hole_em->orig_block_len = 0;
2405 		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2406 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2407 		hole_em->generation = trans->transid;
2408 
2409 		do {
2410 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2411 			write_lock(&em_tree->lock);
2412 			ret = add_extent_mapping(em_tree, hole_em, 1);
2413 			write_unlock(&em_tree->lock);
2414 		} while (ret == -EEXIST);
2415 		free_extent_map(hole_em);
2416 		if (ret)
2417 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2418 					&inode->runtime_flags);
2419 	}
2420 
2421 	return 0;
2422 }
2423 
2424 /*
2425  * Find a hole extent on given inode and change start/len to the end of hole
2426  * extent.(hole/vacuum extent whose em->start <= start &&
2427  *	   em->start + em->len > start)
2428  * When a hole extent is found, return 1 and modify start/len.
2429  */
2430 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2431 {
2432 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2433 	struct extent_map *em;
2434 	int ret = 0;
2435 
2436 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2437 			      round_down(*start, fs_info->sectorsize),
2438 			      round_up(*len, fs_info->sectorsize), 0);
2439 	if (IS_ERR(em))
2440 		return PTR_ERR(em);
2441 
2442 	/* Hole or vacuum extent(only exists in no-hole mode) */
2443 	if (em->block_start == EXTENT_MAP_HOLE) {
2444 		ret = 1;
2445 		*len = em->start + em->len > *start + *len ?
2446 		       0 : *start + *len - em->start - em->len;
2447 		*start = em->start + em->len;
2448 	}
2449 	free_extent_map(em);
2450 	return ret;
2451 }
2452 
2453 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2454 {
2455 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2456 	struct btrfs_root *root = BTRFS_I(inode)->root;
2457 	struct extent_state *cached_state = NULL;
2458 	struct btrfs_path *path;
2459 	struct btrfs_block_rsv *rsv;
2460 	struct btrfs_trans_handle *trans;
2461 	u64 lockstart;
2462 	u64 lockend;
2463 	u64 tail_start;
2464 	u64 tail_len;
2465 	u64 orig_start = offset;
2466 	u64 cur_offset;
2467 	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2468 	u64 drop_end;
2469 	int ret = 0;
2470 	int err = 0;
2471 	unsigned int rsv_count;
2472 	bool same_block;
2473 	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2474 	u64 ino_size;
2475 	bool truncated_block = false;
2476 	bool updated_inode = false;
2477 
2478 	ret = btrfs_wait_ordered_range(inode, offset, len);
2479 	if (ret)
2480 		return ret;
2481 
2482 	inode_lock(inode);
2483 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2484 	ret = find_first_non_hole(inode, &offset, &len);
2485 	if (ret < 0)
2486 		goto out_only_mutex;
2487 	if (ret && !len) {
2488 		/* Already in a large hole */
2489 		ret = 0;
2490 		goto out_only_mutex;
2491 	}
2492 
2493 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2494 	lockend = round_down(offset + len,
2495 			     btrfs_inode_sectorsize(inode)) - 1;
2496 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2497 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2498 	/*
2499 	 * We needn't truncate any block which is beyond the end of the file
2500 	 * because we are sure there is no data there.
2501 	 */
2502 	/*
2503 	 * Only do this if we are in the same block and we aren't doing the
2504 	 * entire block.
2505 	 */
2506 	if (same_block && len < fs_info->sectorsize) {
2507 		if (offset < ino_size) {
2508 			truncated_block = true;
2509 			ret = btrfs_truncate_block(inode, offset, len, 0);
2510 		} else {
2511 			ret = 0;
2512 		}
2513 		goto out_only_mutex;
2514 	}
2515 
2516 	/* zero back part of the first block */
2517 	if (offset < ino_size) {
2518 		truncated_block = true;
2519 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2520 		if (ret) {
2521 			inode_unlock(inode);
2522 			return ret;
2523 		}
2524 	}
2525 
2526 	/* Check the aligned pages after the first unaligned page,
2527 	 * if offset != orig_start, which means the first unaligned page
2528 	 * including several following pages are already in holes,
2529 	 * the extra check can be skipped */
2530 	if (offset == orig_start) {
2531 		/* after truncate page, check hole again */
2532 		len = offset + len - lockstart;
2533 		offset = lockstart;
2534 		ret = find_first_non_hole(inode, &offset, &len);
2535 		if (ret < 0)
2536 			goto out_only_mutex;
2537 		if (ret && !len) {
2538 			ret = 0;
2539 			goto out_only_mutex;
2540 		}
2541 		lockstart = offset;
2542 	}
2543 
2544 	/* Check the tail unaligned part is in a hole */
2545 	tail_start = lockend + 1;
2546 	tail_len = offset + len - tail_start;
2547 	if (tail_len) {
2548 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2549 		if (unlikely(ret < 0))
2550 			goto out_only_mutex;
2551 		if (!ret) {
2552 			/* zero the front end of the last page */
2553 			if (tail_start + tail_len < ino_size) {
2554 				truncated_block = true;
2555 				ret = btrfs_truncate_block(inode,
2556 							tail_start + tail_len,
2557 							0, 1);
2558 				if (ret)
2559 					goto out_only_mutex;
2560 			}
2561 		}
2562 	}
2563 
2564 	if (lockend < lockstart) {
2565 		ret = 0;
2566 		goto out_only_mutex;
2567 	}
2568 
2569 	while (1) {
2570 		struct btrfs_ordered_extent *ordered;
2571 
2572 		truncate_pagecache_range(inode, lockstart, lockend);
2573 
2574 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2575 				 &cached_state);
2576 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2577 
2578 		/*
2579 		 * We need to make sure we have no ordered extents in this range
2580 		 * and nobody raced in and read a page in this range, if we did
2581 		 * we need to try again.
2582 		 */
2583 		if ((!ordered ||
2584 		    (ordered->file_offset + ordered->len <= lockstart ||
2585 		     ordered->file_offset > lockend)) &&
2586 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2587 			if (ordered)
2588 				btrfs_put_ordered_extent(ordered);
2589 			break;
2590 		}
2591 		if (ordered)
2592 			btrfs_put_ordered_extent(ordered);
2593 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2594 				     lockend, &cached_state, GFP_NOFS);
2595 		ret = btrfs_wait_ordered_range(inode, lockstart,
2596 					       lockend - lockstart + 1);
2597 		if (ret) {
2598 			inode_unlock(inode);
2599 			return ret;
2600 		}
2601 	}
2602 
2603 	path = btrfs_alloc_path();
2604 	if (!path) {
2605 		ret = -ENOMEM;
2606 		goto out;
2607 	}
2608 
2609 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2610 	if (!rsv) {
2611 		ret = -ENOMEM;
2612 		goto out_free;
2613 	}
2614 	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2615 	rsv->failfast = 1;
2616 
2617 	/*
2618 	 * 1 - update the inode
2619 	 * 1 - removing the extents in the range
2620 	 * 1 - adding the hole extent if no_holes isn't set
2621 	 */
2622 	rsv_count = no_holes ? 2 : 3;
2623 	trans = btrfs_start_transaction(root, rsv_count);
2624 	if (IS_ERR(trans)) {
2625 		err = PTR_ERR(trans);
2626 		goto out_free;
2627 	}
2628 
2629 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2630 				      min_size, 0);
2631 	BUG_ON(ret);
2632 	trans->block_rsv = rsv;
2633 
2634 	cur_offset = lockstart;
2635 	len = lockend - cur_offset;
2636 	while (cur_offset < lockend) {
2637 		ret = __btrfs_drop_extents(trans, root, inode, path,
2638 					   cur_offset, lockend + 1,
2639 					   &drop_end, 1, 0, 0, NULL);
2640 		if (ret != -ENOSPC)
2641 			break;
2642 
2643 		trans->block_rsv = &fs_info->trans_block_rsv;
2644 
2645 		if (cur_offset < drop_end && cur_offset < ino_size) {
2646 			ret = fill_holes(trans, BTRFS_I(inode), path,
2647 					cur_offset, drop_end);
2648 			if (ret) {
2649 				/*
2650 				 * If we failed then we didn't insert our hole
2651 				 * entries for the area we dropped, so now the
2652 				 * fs is corrupted, so we must abort the
2653 				 * transaction.
2654 				 */
2655 				btrfs_abort_transaction(trans, ret);
2656 				err = ret;
2657 				break;
2658 			}
2659 		}
2660 
2661 		cur_offset = drop_end;
2662 
2663 		ret = btrfs_update_inode(trans, root, inode);
2664 		if (ret) {
2665 			err = ret;
2666 			break;
2667 		}
2668 
2669 		btrfs_end_transaction(trans);
2670 		btrfs_btree_balance_dirty(fs_info);
2671 
2672 		trans = btrfs_start_transaction(root, rsv_count);
2673 		if (IS_ERR(trans)) {
2674 			ret = PTR_ERR(trans);
2675 			trans = NULL;
2676 			break;
2677 		}
2678 
2679 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2680 					      rsv, min_size, 0);
2681 		BUG_ON(ret);	/* shouldn't happen */
2682 		trans->block_rsv = rsv;
2683 
2684 		ret = find_first_non_hole(inode, &cur_offset, &len);
2685 		if (unlikely(ret < 0))
2686 			break;
2687 		if (ret && !len) {
2688 			ret = 0;
2689 			break;
2690 		}
2691 	}
2692 
2693 	if (ret) {
2694 		err = ret;
2695 		goto out_trans;
2696 	}
2697 
2698 	trans->block_rsv = &fs_info->trans_block_rsv;
2699 	/*
2700 	 * If we are using the NO_HOLES feature we might have had already an
2701 	 * hole that overlaps a part of the region [lockstart, lockend] and
2702 	 * ends at (or beyond) lockend. Since we have no file extent items to
2703 	 * represent holes, drop_end can be less than lockend and so we must
2704 	 * make sure we have an extent map representing the existing hole (the
2705 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2706 	 * map representing the existing hole), otherwise the fast fsync path
2707 	 * will not record the existence of the hole region
2708 	 * [existing_hole_start, lockend].
2709 	 */
2710 	if (drop_end <= lockend)
2711 		drop_end = lockend + 1;
2712 	/*
2713 	 * Don't insert file hole extent item if it's for a range beyond eof
2714 	 * (because it's useless) or if it represents a 0 bytes range (when
2715 	 * cur_offset == drop_end).
2716 	 */
2717 	if (cur_offset < ino_size && cur_offset < drop_end) {
2718 		ret = fill_holes(trans, BTRFS_I(inode), path,
2719 				cur_offset, drop_end);
2720 		if (ret) {
2721 			/* Same comment as above. */
2722 			btrfs_abort_transaction(trans, ret);
2723 			err = ret;
2724 			goto out_trans;
2725 		}
2726 	}
2727 
2728 out_trans:
2729 	if (!trans)
2730 		goto out_free;
2731 
2732 	inode_inc_iversion(inode);
2733 	inode->i_mtime = inode->i_ctime = current_time(inode);
2734 
2735 	trans->block_rsv = &fs_info->trans_block_rsv;
2736 	ret = btrfs_update_inode(trans, root, inode);
2737 	updated_inode = true;
2738 	btrfs_end_transaction(trans);
2739 	btrfs_btree_balance_dirty(fs_info);
2740 out_free:
2741 	btrfs_free_path(path);
2742 	btrfs_free_block_rsv(fs_info, rsv);
2743 out:
2744 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2745 			     &cached_state, GFP_NOFS);
2746 out_only_mutex:
2747 	if (!updated_inode && truncated_block && !ret && !err) {
2748 		/*
2749 		 * If we only end up zeroing part of a page, we still need to
2750 		 * update the inode item, so that all the time fields are
2751 		 * updated as well as the necessary btrfs inode in memory fields
2752 		 * for detecting, at fsync time, if the inode isn't yet in the
2753 		 * log tree or it's there but not up to date.
2754 		 */
2755 		trans = btrfs_start_transaction(root, 1);
2756 		if (IS_ERR(trans)) {
2757 			err = PTR_ERR(trans);
2758 		} else {
2759 			err = btrfs_update_inode(trans, root, inode);
2760 			ret = btrfs_end_transaction(trans);
2761 		}
2762 	}
2763 	inode_unlock(inode);
2764 	if (ret && !err)
2765 		err = ret;
2766 	return err;
2767 }
2768 
2769 /* Helper structure to record which range is already reserved */
2770 struct falloc_range {
2771 	struct list_head list;
2772 	u64 start;
2773 	u64 len;
2774 };
2775 
2776 /*
2777  * Helper function to add falloc range
2778  *
2779  * Caller should have locked the larger range of extent containing
2780  * [start, len)
2781  */
2782 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2783 {
2784 	struct falloc_range *prev = NULL;
2785 	struct falloc_range *range = NULL;
2786 
2787 	if (list_empty(head))
2788 		goto insert;
2789 
2790 	/*
2791 	 * As fallocate iterate by bytenr order, we only need to check
2792 	 * the last range.
2793 	 */
2794 	prev = list_entry(head->prev, struct falloc_range, list);
2795 	if (prev->start + prev->len == start) {
2796 		prev->len += len;
2797 		return 0;
2798 	}
2799 insert:
2800 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2801 	if (!range)
2802 		return -ENOMEM;
2803 	range->start = start;
2804 	range->len = len;
2805 	list_add_tail(&range->list, head);
2806 	return 0;
2807 }
2808 
2809 static long btrfs_fallocate(struct file *file, int mode,
2810 			    loff_t offset, loff_t len)
2811 {
2812 	struct inode *inode = file_inode(file);
2813 	struct extent_state *cached_state = NULL;
2814 	struct extent_changeset *data_reserved = NULL;
2815 	struct falloc_range *range;
2816 	struct falloc_range *tmp;
2817 	struct list_head reserve_list;
2818 	u64 cur_offset;
2819 	u64 last_byte;
2820 	u64 alloc_start;
2821 	u64 alloc_end;
2822 	u64 alloc_hint = 0;
2823 	u64 locked_end;
2824 	u64 actual_end = 0;
2825 	struct extent_map *em;
2826 	int blocksize = btrfs_inode_sectorsize(inode);
2827 	int ret;
2828 
2829 	alloc_start = round_down(offset, blocksize);
2830 	alloc_end = round_up(offset + len, blocksize);
2831 	cur_offset = alloc_start;
2832 
2833 	/* Make sure we aren't being give some crap mode */
2834 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2835 		return -EOPNOTSUPP;
2836 
2837 	if (mode & FALLOC_FL_PUNCH_HOLE)
2838 		return btrfs_punch_hole(inode, offset, len);
2839 
2840 	/*
2841 	 * Only trigger disk allocation, don't trigger qgroup reserve
2842 	 *
2843 	 * For qgroup space, it will be checked later.
2844 	 */
2845 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2846 			alloc_end - alloc_start);
2847 	if (ret < 0)
2848 		return ret;
2849 
2850 	inode_lock(inode);
2851 
2852 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2853 		ret = inode_newsize_ok(inode, offset + len);
2854 		if (ret)
2855 			goto out;
2856 	}
2857 
2858 	/*
2859 	 * TODO: Move these two operations after we have checked
2860 	 * accurate reserved space, or fallocate can still fail but
2861 	 * with page truncated or size expanded.
2862 	 *
2863 	 * But that's a minor problem and won't do much harm BTW.
2864 	 */
2865 	if (alloc_start > inode->i_size) {
2866 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2867 					alloc_start);
2868 		if (ret)
2869 			goto out;
2870 	} else if (offset + len > inode->i_size) {
2871 		/*
2872 		 * If we are fallocating from the end of the file onward we
2873 		 * need to zero out the end of the block if i_size lands in the
2874 		 * middle of a block.
2875 		 */
2876 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2877 		if (ret)
2878 			goto out;
2879 	}
2880 
2881 	/*
2882 	 * wait for ordered IO before we have any locks.  We'll loop again
2883 	 * below with the locks held.
2884 	 */
2885 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2886 				       alloc_end - alloc_start);
2887 	if (ret)
2888 		goto out;
2889 
2890 	locked_end = alloc_end - 1;
2891 	while (1) {
2892 		struct btrfs_ordered_extent *ordered;
2893 
2894 		/* the extent lock is ordered inside the running
2895 		 * transaction
2896 		 */
2897 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2898 				 locked_end, &cached_state);
2899 		ordered = btrfs_lookup_first_ordered_extent(inode,
2900 							    alloc_end - 1);
2901 		if (ordered &&
2902 		    ordered->file_offset + ordered->len > alloc_start &&
2903 		    ordered->file_offset < alloc_end) {
2904 			btrfs_put_ordered_extent(ordered);
2905 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2906 					     alloc_start, locked_end,
2907 					     &cached_state, GFP_KERNEL);
2908 			/*
2909 			 * we can't wait on the range with the transaction
2910 			 * running or with the extent lock held
2911 			 */
2912 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2913 						       alloc_end - alloc_start);
2914 			if (ret)
2915 				goto out;
2916 		} else {
2917 			if (ordered)
2918 				btrfs_put_ordered_extent(ordered);
2919 			break;
2920 		}
2921 	}
2922 
2923 	/* First, check if we exceed the qgroup limit */
2924 	INIT_LIST_HEAD(&reserve_list);
2925 	while (1) {
2926 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2927 				      alloc_end - cur_offset, 0);
2928 		if (IS_ERR(em)) {
2929 			ret = PTR_ERR(em);
2930 			break;
2931 		}
2932 		last_byte = min(extent_map_end(em), alloc_end);
2933 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2934 		last_byte = ALIGN(last_byte, blocksize);
2935 		if (em->block_start == EXTENT_MAP_HOLE ||
2936 		    (cur_offset >= inode->i_size &&
2937 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2938 			ret = add_falloc_range(&reserve_list, cur_offset,
2939 					       last_byte - cur_offset);
2940 			if (ret < 0) {
2941 				free_extent_map(em);
2942 				break;
2943 			}
2944 			ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2945 					cur_offset, last_byte - cur_offset);
2946 			if (ret < 0) {
2947 				free_extent_map(em);
2948 				break;
2949 			}
2950 		} else {
2951 			/*
2952 			 * Do not need to reserve unwritten extent for this
2953 			 * range, free reserved data space first, otherwise
2954 			 * it'll result in false ENOSPC error.
2955 			 */
2956 			btrfs_free_reserved_data_space(inode, data_reserved,
2957 					cur_offset, last_byte - cur_offset);
2958 		}
2959 		free_extent_map(em);
2960 		cur_offset = last_byte;
2961 		if (cur_offset >= alloc_end)
2962 			break;
2963 	}
2964 
2965 	/*
2966 	 * If ret is still 0, means we're OK to fallocate.
2967 	 * Or just cleanup the list and exit.
2968 	 */
2969 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2970 		if (!ret)
2971 			ret = btrfs_prealloc_file_range(inode, mode,
2972 					range->start,
2973 					range->len, i_blocksize(inode),
2974 					offset + len, &alloc_hint);
2975 		else
2976 			btrfs_free_reserved_data_space(inode,
2977 					data_reserved, range->start,
2978 					range->len);
2979 		list_del(&range->list);
2980 		kfree(range);
2981 	}
2982 	if (ret < 0)
2983 		goto out_unlock;
2984 
2985 	if (actual_end > inode->i_size &&
2986 	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2987 		struct btrfs_trans_handle *trans;
2988 		struct btrfs_root *root = BTRFS_I(inode)->root;
2989 
2990 		/*
2991 		 * We didn't need to allocate any more space, but we
2992 		 * still extended the size of the file so we need to
2993 		 * update i_size and the inode item.
2994 		 */
2995 		trans = btrfs_start_transaction(root, 1);
2996 		if (IS_ERR(trans)) {
2997 			ret = PTR_ERR(trans);
2998 		} else {
2999 			inode->i_ctime = current_time(inode);
3000 			i_size_write(inode, actual_end);
3001 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
3002 			ret = btrfs_update_inode(trans, root, inode);
3003 			if (ret)
3004 				btrfs_end_transaction(trans);
3005 			else
3006 				ret = btrfs_end_transaction(trans);
3007 		}
3008 	}
3009 out_unlock:
3010 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3011 			     &cached_state, GFP_KERNEL);
3012 out:
3013 	inode_unlock(inode);
3014 	/* Let go of our reservation. */
3015 	if (ret != 0)
3016 		btrfs_free_reserved_data_space(inode, data_reserved,
3017 				alloc_start, alloc_end - cur_offset);
3018 	extent_changeset_free(data_reserved);
3019 	return ret;
3020 }
3021 
3022 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3023 {
3024 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3025 	struct extent_map *em = NULL;
3026 	struct extent_state *cached_state = NULL;
3027 	u64 lockstart;
3028 	u64 lockend;
3029 	u64 start;
3030 	u64 len;
3031 	int ret = 0;
3032 
3033 	if (inode->i_size == 0)
3034 		return -ENXIO;
3035 
3036 	/*
3037 	 * *offset can be negative, in this case we start finding DATA/HOLE from
3038 	 * the very start of the file.
3039 	 */
3040 	start = max_t(loff_t, 0, *offset);
3041 
3042 	lockstart = round_down(start, fs_info->sectorsize);
3043 	lockend = round_up(i_size_read(inode),
3044 			   fs_info->sectorsize);
3045 	if (lockend <= lockstart)
3046 		lockend = lockstart + fs_info->sectorsize;
3047 	lockend--;
3048 	len = lockend - lockstart + 1;
3049 
3050 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3051 			 &cached_state);
3052 
3053 	while (start < inode->i_size) {
3054 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3055 				start, len, 0);
3056 		if (IS_ERR(em)) {
3057 			ret = PTR_ERR(em);
3058 			em = NULL;
3059 			break;
3060 		}
3061 
3062 		if (whence == SEEK_HOLE &&
3063 		    (em->block_start == EXTENT_MAP_HOLE ||
3064 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3065 			break;
3066 		else if (whence == SEEK_DATA &&
3067 			   (em->block_start != EXTENT_MAP_HOLE &&
3068 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3069 			break;
3070 
3071 		start = em->start + em->len;
3072 		free_extent_map(em);
3073 		em = NULL;
3074 		cond_resched();
3075 	}
3076 	free_extent_map(em);
3077 	if (!ret) {
3078 		if (whence == SEEK_DATA && start >= inode->i_size)
3079 			ret = -ENXIO;
3080 		else
3081 			*offset = min_t(loff_t, start, inode->i_size);
3082 	}
3083 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3084 			     &cached_state, GFP_NOFS);
3085 	return ret;
3086 }
3087 
3088 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3089 {
3090 	struct inode *inode = file->f_mapping->host;
3091 	int ret;
3092 
3093 	inode_lock(inode);
3094 	switch (whence) {
3095 	case SEEK_END:
3096 	case SEEK_CUR:
3097 		offset = generic_file_llseek(file, offset, whence);
3098 		goto out;
3099 	case SEEK_DATA:
3100 	case SEEK_HOLE:
3101 		if (offset >= i_size_read(inode)) {
3102 			inode_unlock(inode);
3103 			return -ENXIO;
3104 		}
3105 
3106 		ret = find_desired_extent(inode, &offset, whence);
3107 		if (ret) {
3108 			inode_unlock(inode);
3109 			return ret;
3110 		}
3111 	}
3112 
3113 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3114 out:
3115 	inode_unlock(inode);
3116 	return offset;
3117 }
3118 
3119 static int btrfs_file_open(struct inode *inode, struct file *filp)
3120 {
3121 	filp->f_mode |= FMODE_NOWAIT;
3122 	return generic_file_open(inode, filp);
3123 }
3124 
3125 const struct file_operations btrfs_file_operations = {
3126 	.llseek		= btrfs_file_llseek,
3127 	.read_iter      = generic_file_read_iter,
3128 	.splice_read	= generic_file_splice_read,
3129 	.write_iter	= btrfs_file_write_iter,
3130 	.mmap		= btrfs_file_mmap,
3131 	.open		= btrfs_file_open,
3132 	.release	= btrfs_release_file,
3133 	.fsync		= btrfs_sync_file,
3134 	.fallocate	= btrfs_fallocate,
3135 	.unlocked_ioctl	= btrfs_ioctl,
3136 #ifdef CONFIG_COMPAT
3137 	.compat_ioctl	= btrfs_compat_ioctl,
3138 #endif
3139 	.clone_file_range = btrfs_clone_file_range,
3140 	.dedupe_file_range = btrfs_dedupe_file_range,
3141 };
3142 
3143 void btrfs_auto_defrag_exit(void)
3144 {
3145 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3146 }
3147 
3148 int btrfs_auto_defrag_init(void)
3149 {
3150 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3151 					sizeof(struct inode_defrag), 0,
3152 					SLAB_MEM_SPREAD,
3153 					NULL);
3154 	if (!btrfs_inode_defrag_cachep)
3155 		return -ENOMEM;
3156 
3157 	return 0;
3158 }
3159 
3160 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3161 {
3162 	int ret;
3163 
3164 	/*
3165 	 * So with compression we will find and lock a dirty page and clear the
3166 	 * first one as dirty, setup an async extent, and immediately return
3167 	 * with the entire range locked but with nobody actually marked with
3168 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3169 	 * expect it to work since it will just kick off a thread to do the
3170 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3171 	 * since it will wait on the page lock, which won't be unlocked until
3172 	 * after the pages have been marked as writeback and so we're good to go
3173 	 * from there.  We have to do this otherwise we'll miss the ordered
3174 	 * extents and that results in badness.  Please Josef, do not think you
3175 	 * know better and pull this out at some point in the future, it is
3176 	 * right and you are wrong.
3177 	 */
3178 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3179 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3180 			     &BTRFS_I(inode)->runtime_flags))
3181 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3182 
3183 	return ret;
3184 }
3185