xref: /openbmc/linux/fs/btrfs/file.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 
43 
44 /* simple helper to fault in pages and copy.  This should go away
45  * and be replaced with calls into generic code.
46  */
47 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
48 					 int write_bytes,
49 					 struct page **prepared_pages,
50 					 struct iov_iter *i)
51 {
52 	size_t copied = 0;
53 	int pg = 0;
54 	int offset = pos & (PAGE_CACHE_SIZE - 1);
55 	int total_copied = 0;
56 
57 	while (write_bytes > 0) {
58 		size_t count = min_t(size_t,
59 				     PAGE_CACHE_SIZE - offset, write_bytes);
60 		struct page *page = prepared_pages[pg];
61 		/*
62 		 * Copy data from userspace to the current page
63 		 *
64 		 * Disable pagefault to avoid recursive lock since
65 		 * the pages are already locked
66 		 */
67 		pagefault_disable();
68 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
69 		pagefault_enable();
70 
71 		/* Flush processor's dcache for this page */
72 		flush_dcache_page(page);
73 		iov_iter_advance(i, copied);
74 		write_bytes -= copied;
75 		total_copied += copied;
76 
77 		/* Return to btrfs_file_aio_write to fault page */
78 		if (unlikely(copied == 0)) {
79 			break;
80 		}
81 
82 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
83 			offset += copied;
84 		} else {
85 			pg++;
86 			offset = 0;
87 		}
88 	}
89 	return total_copied;
90 }
91 
92 /*
93  * unlocks pages after btrfs_file_write is done with them
94  */
95 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
96 {
97 	size_t i;
98 	for (i = 0; i < num_pages; i++) {
99 		if (!pages[i])
100 			break;
101 		/* page checked is some magic around finding pages that
102 		 * have been modified without going through btrfs_set_page_dirty
103 		 * clear it here
104 		 */
105 		ClearPageChecked(pages[i]);
106 		unlock_page(pages[i]);
107 		mark_page_accessed(pages[i]);
108 		page_cache_release(pages[i]);
109 	}
110 }
111 
112 /*
113  * after copy_from_user, pages need to be dirtied and we need to make
114  * sure holes are created between the current EOF and the start of
115  * any next extents (if required).
116  *
117  * this also makes the decision about creating an inline extent vs
118  * doing real data extents, marking pages dirty and delalloc as required.
119  */
120 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
121 				   struct btrfs_root *root,
122 				   struct file *file,
123 				   struct page **pages,
124 				   size_t num_pages,
125 				   loff_t pos,
126 				   size_t write_bytes)
127 {
128 	int err = 0;
129 	int i;
130 	struct inode *inode = fdentry(file)->d_inode;
131 	u64 num_bytes;
132 	u64 start_pos;
133 	u64 end_of_last_block;
134 	u64 end_pos = pos + write_bytes;
135 	loff_t isize = i_size_read(inode);
136 
137 	start_pos = pos & ~((u64)root->sectorsize - 1);
138 	num_bytes = (write_bytes + pos - start_pos +
139 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
140 
141 	end_of_last_block = start_pos + num_bytes - 1;
142 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
143 					NULL);
144 	BUG_ON(err);
145 
146 	for (i = 0; i < num_pages; i++) {
147 		struct page *p = pages[i];
148 		SetPageUptodate(p);
149 		ClearPageChecked(p);
150 		set_page_dirty(p);
151 	}
152 	if (end_pos > isize) {
153 		i_size_write(inode, end_pos);
154 		/* we've only changed i_size in ram, and we haven't updated
155 		 * the disk i_size.  There is no need to log the inode
156 		 * at this time.
157 		 */
158 	}
159 	return 0;
160 }
161 
162 /*
163  * this drops all the extents in the cache that intersect the range
164  * [start, end].  Existing extents are split as required.
165  */
166 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
167 			    int skip_pinned)
168 {
169 	struct extent_map *em;
170 	struct extent_map *split = NULL;
171 	struct extent_map *split2 = NULL;
172 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
173 	u64 len = end - start + 1;
174 	int ret;
175 	int testend = 1;
176 	unsigned long flags;
177 	int compressed = 0;
178 
179 	WARN_ON(end < start);
180 	if (end == (u64)-1) {
181 		len = (u64)-1;
182 		testend = 0;
183 	}
184 	while (1) {
185 		if (!split)
186 			split = alloc_extent_map(GFP_NOFS);
187 		if (!split2)
188 			split2 = alloc_extent_map(GFP_NOFS);
189 		BUG_ON(!split || !split2);
190 
191 		write_lock(&em_tree->lock);
192 		em = lookup_extent_mapping(em_tree, start, len);
193 		if (!em) {
194 			write_unlock(&em_tree->lock);
195 			break;
196 		}
197 		flags = em->flags;
198 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
199 			if (testend && em->start + em->len >= start + len) {
200 				free_extent_map(em);
201 				write_unlock(&em_tree->lock);
202 				break;
203 			}
204 			start = em->start + em->len;
205 			if (testend)
206 				len = start + len - (em->start + em->len);
207 			free_extent_map(em);
208 			write_unlock(&em_tree->lock);
209 			continue;
210 		}
211 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
212 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
213 		remove_extent_mapping(em_tree, em);
214 
215 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
216 		    em->start < start) {
217 			split->start = em->start;
218 			split->len = start - em->start;
219 			split->orig_start = em->orig_start;
220 			split->block_start = em->block_start;
221 
222 			if (compressed)
223 				split->block_len = em->block_len;
224 			else
225 				split->block_len = split->len;
226 
227 			split->bdev = em->bdev;
228 			split->flags = flags;
229 			split->compress_type = em->compress_type;
230 			ret = add_extent_mapping(em_tree, split);
231 			BUG_ON(ret);
232 			free_extent_map(split);
233 			split = split2;
234 			split2 = NULL;
235 		}
236 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
237 		    testend && em->start + em->len > start + len) {
238 			u64 diff = start + len - em->start;
239 
240 			split->start = start + len;
241 			split->len = em->start + em->len - (start + len);
242 			split->bdev = em->bdev;
243 			split->flags = flags;
244 			split->compress_type = em->compress_type;
245 
246 			if (compressed) {
247 				split->block_len = em->block_len;
248 				split->block_start = em->block_start;
249 				split->orig_start = em->orig_start;
250 			} else {
251 				split->block_len = split->len;
252 				split->block_start = em->block_start + diff;
253 				split->orig_start = split->start;
254 			}
255 
256 			ret = add_extent_mapping(em_tree, split);
257 			BUG_ON(ret);
258 			free_extent_map(split);
259 			split = NULL;
260 		}
261 		write_unlock(&em_tree->lock);
262 
263 		/* once for us */
264 		free_extent_map(em);
265 		/* once for the tree*/
266 		free_extent_map(em);
267 	}
268 	if (split)
269 		free_extent_map(split);
270 	if (split2)
271 		free_extent_map(split2);
272 	return 0;
273 }
274 
275 /*
276  * this is very complex, but the basic idea is to drop all extents
277  * in the range start - end.  hint_block is filled in with a block number
278  * that would be a good hint to the block allocator for this file.
279  *
280  * If an extent intersects the range but is not entirely inside the range
281  * it is either truncated or split.  Anything entirely inside the range
282  * is deleted from the tree.
283  */
284 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
285 		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
286 {
287 	struct btrfs_root *root = BTRFS_I(inode)->root;
288 	struct extent_buffer *leaf;
289 	struct btrfs_file_extent_item *fi;
290 	struct btrfs_path *path;
291 	struct btrfs_key key;
292 	struct btrfs_key new_key;
293 	u64 search_start = start;
294 	u64 disk_bytenr = 0;
295 	u64 num_bytes = 0;
296 	u64 extent_offset = 0;
297 	u64 extent_end = 0;
298 	int del_nr = 0;
299 	int del_slot = 0;
300 	int extent_type;
301 	int recow;
302 	int ret;
303 
304 	if (drop_cache)
305 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
306 
307 	path = btrfs_alloc_path();
308 	if (!path)
309 		return -ENOMEM;
310 
311 	while (1) {
312 		recow = 0;
313 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
314 					       search_start, -1);
315 		if (ret < 0)
316 			break;
317 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
318 			leaf = path->nodes[0];
319 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
320 			if (key.objectid == inode->i_ino &&
321 			    key.type == BTRFS_EXTENT_DATA_KEY)
322 				path->slots[0]--;
323 		}
324 		ret = 0;
325 next_slot:
326 		leaf = path->nodes[0];
327 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
328 			BUG_ON(del_nr > 0);
329 			ret = btrfs_next_leaf(root, path);
330 			if (ret < 0)
331 				break;
332 			if (ret > 0) {
333 				ret = 0;
334 				break;
335 			}
336 			leaf = path->nodes[0];
337 			recow = 1;
338 		}
339 
340 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
341 		if (key.objectid > inode->i_ino ||
342 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
343 			break;
344 
345 		fi = btrfs_item_ptr(leaf, path->slots[0],
346 				    struct btrfs_file_extent_item);
347 		extent_type = btrfs_file_extent_type(leaf, fi);
348 
349 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
350 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
351 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
352 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
353 			extent_offset = btrfs_file_extent_offset(leaf, fi);
354 			extent_end = key.offset +
355 				btrfs_file_extent_num_bytes(leaf, fi);
356 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
357 			extent_end = key.offset +
358 				btrfs_file_extent_inline_len(leaf, fi);
359 		} else {
360 			WARN_ON(1);
361 			extent_end = search_start;
362 		}
363 
364 		if (extent_end <= search_start) {
365 			path->slots[0]++;
366 			goto next_slot;
367 		}
368 
369 		search_start = max(key.offset, start);
370 		if (recow) {
371 			btrfs_release_path(root, path);
372 			continue;
373 		}
374 
375 		/*
376 		 *     | - range to drop - |
377 		 *  | -------- extent -------- |
378 		 */
379 		if (start > key.offset && end < extent_end) {
380 			BUG_ON(del_nr > 0);
381 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
382 
383 			memcpy(&new_key, &key, sizeof(new_key));
384 			new_key.offset = start;
385 			ret = btrfs_duplicate_item(trans, root, path,
386 						   &new_key);
387 			if (ret == -EAGAIN) {
388 				btrfs_release_path(root, path);
389 				continue;
390 			}
391 			if (ret < 0)
392 				break;
393 
394 			leaf = path->nodes[0];
395 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
396 					    struct btrfs_file_extent_item);
397 			btrfs_set_file_extent_num_bytes(leaf, fi,
398 							start - key.offset);
399 
400 			fi = btrfs_item_ptr(leaf, path->slots[0],
401 					    struct btrfs_file_extent_item);
402 
403 			extent_offset += start - key.offset;
404 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
405 			btrfs_set_file_extent_num_bytes(leaf, fi,
406 							extent_end - start);
407 			btrfs_mark_buffer_dirty(leaf);
408 
409 			if (disk_bytenr > 0) {
410 				ret = btrfs_inc_extent_ref(trans, root,
411 						disk_bytenr, num_bytes, 0,
412 						root->root_key.objectid,
413 						new_key.objectid,
414 						start - extent_offset);
415 				BUG_ON(ret);
416 				*hint_byte = disk_bytenr;
417 			}
418 			key.offset = start;
419 		}
420 		/*
421 		 *  | ---- range to drop ----- |
422 		 *      | -------- extent -------- |
423 		 */
424 		if (start <= key.offset && end < extent_end) {
425 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
426 
427 			memcpy(&new_key, &key, sizeof(new_key));
428 			new_key.offset = end;
429 			btrfs_set_item_key_safe(trans, root, path, &new_key);
430 
431 			extent_offset += end - key.offset;
432 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
433 			btrfs_set_file_extent_num_bytes(leaf, fi,
434 							extent_end - end);
435 			btrfs_mark_buffer_dirty(leaf);
436 			if (disk_bytenr > 0) {
437 				inode_sub_bytes(inode, end - key.offset);
438 				*hint_byte = disk_bytenr;
439 			}
440 			break;
441 		}
442 
443 		search_start = extent_end;
444 		/*
445 		 *       | ---- range to drop ----- |
446 		 *  | -------- extent -------- |
447 		 */
448 		if (start > key.offset && end >= extent_end) {
449 			BUG_ON(del_nr > 0);
450 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
451 
452 			btrfs_set_file_extent_num_bytes(leaf, fi,
453 							start - key.offset);
454 			btrfs_mark_buffer_dirty(leaf);
455 			if (disk_bytenr > 0) {
456 				inode_sub_bytes(inode, extent_end - start);
457 				*hint_byte = disk_bytenr;
458 			}
459 			if (end == extent_end)
460 				break;
461 
462 			path->slots[0]++;
463 			goto next_slot;
464 		}
465 
466 		/*
467 		 *  | ---- range to drop ----- |
468 		 *    | ------ extent ------ |
469 		 */
470 		if (start <= key.offset && end >= extent_end) {
471 			if (del_nr == 0) {
472 				del_slot = path->slots[0];
473 				del_nr = 1;
474 			} else {
475 				BUG_ON(del_slot + del_nr != path->slots[0]);
476 				del_nr++;
477 			}
478 
479 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
480 				inode_sub_bytes(inode,
481 						extent_end - key.offset);
482 				extent_end = ALIGN(extent_end,
483 						   root->sectorsize);
484 			} else if (disk_bytenr > 0) {
485 				ret = btrfs_free_extent(trans, root,
486 						disk_bytenr, num_bytes, 0,
487 						root->root_key.objectid,
488 						key.objectid, key.offset -
489 						extent_offset);
490 				BUG_ON(ret);
491 				inode_sub_bytes(inode,
492 						extent_end - key.offset);
493 				*hint_byte = disk_bytenr;
494 			}
495 
496 			if (end == extent_end)
497 				break;
498 
499 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
500 				path->slots[0]++;
501 				goto next_slot;
502 			}
503 
504 			ret = btrfs_del_items(trans, root, path, del_slot,
505 					      del_nr);
506 			BUG_ON(ret);
507 
508 			del_nr = 0;
509 			del_slot = 0;
510 
511 			btrfs_release_path(root, path);
512 			continue;
513 		}
514 
515 		BUG_ON(1);
516 	}
517 
518 	if (del_nr > 0) {
519 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
520 		BUG_ON(ret);
521 	}
522 
523 	btrfs_free_path(path);
524 	return ret;
525 }
526 
527 static int extent_mergeable(struct extent_buffer *leaf, int slot,
528 			    u64 objectid, u64 bytenr, u64 orig_offset,
529 			    u64 *start, u64 *end)
530 {
531 	struct btrfs_file_extent_item *fi;
532 	struct btrfs_key key;
533 	u64 extent_end;
534 
535 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
536 		return 0;
537 
538 	btrfs_item_key_to_cpu(leaf, &key, slot);
539 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
540 		return 0;
541 
542 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
543 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
544 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
545 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
546 	    btrfs_file_extent_compression(leaf, fi) ||
547 	    btrfs_file_extent_encryption(leaf, fi) ||
548 	    btrfs_file_extent_other_encoding(leaf, fi))
549 		return 0;
550 
551 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
552 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
553 		return 0;
554 
555 	*start = key.offset;
556 	*end = extent_end;
557 	return 1;
558 }
559 
560 /*
561  * Mark extent in the range start - end as written.
562  *
563  * This changes extent type from 'pre-allocated' to 'regular'. If only
564  * part of extent is marked as written, the extent will be split into
565  * two or three.
566  */
567 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
568 			      struct inode *inode, u64 start, u64 end)
569 {
570 	struct btrfs_root *root = BTRFS_I(inode)->root;
571 	struct extent_buffer *leaf;
572 	struct btrfs_path *path;
573 	struct btrfs_file_extent_item *fi;
574 	struct btrfs_key key;
575 	struct btrfs_key new_key;
576 	u64 bytenr;
577 	u64 num_bytes;
578 	u64 extent_end;
579 	u64 orig_offset;
580 	u64 other_start;
581 	u64 other_end;
582 	u64 split;
583 	int del_nr = 0;
584 	int del_slot = 0;
585 	int recow;
586 	int ret;
587 
588 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
589 
590 	path = btrfs_alloc_path();
591 	BUG_ON(!path);
592 again:
593 	recow = 0;
594 	split = start;
595 	key.objectid = inode->i_ino;
596 	key.type = BTRFS_EXTENT_DATA_KEY;
597 	key.offset = split;
598 
599 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
600 	if (ret > 0 && path->slots[0] > 0)
601 		path->slots[0]--;
602 
603 	leaf = path->nodes[0];
604 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
605 	BUG_ON(key.objectid != inode->i_ino ||
606 	       key.type != BTRFS_EXTENT_DATA_KEY);
607 	fi = btrfs_item_ptr(leaf, path->slots[0],
608 			    struct btrfs_file_extent_item);
609 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
610 	       BTRFS_FILE_EXTENT_PREALLOC);
611 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
612 	BUG_ON(key.offset > start || extent_end < end);
613 
614 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
615 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
616 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
617 	memcpy(&new_key, &key, sizeof(new_key));
618 
619 	if (start == key.offset && end < extent_end) {
620 		other_start = 0;
621 		other_end = start;
622 		if (extent_mergeable(leaf, path->slots[0] - 1,
623 				     inode->i_ino, bytenr, orig_offset,
624 				     &other_start, &other_end)) {
625 			new_key.offset = end;
626 			btrfs_set_item_key_safe(trans, root, path, &new_key);
627 			fi = btrfs_item_ptr(leaf, path->slots[0],
628 					    struct btrfs_file_extent_item);
629 			btrfs_set_file_extent_num_bytes(leaf, fi,
630 							extent_end - end);
631 			btrfs_set_file_extent_offset(leaf, fi,
632 						     end - orig_offset);
633 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
634 					    struct btrfs_file_extent_item);
635 			btrfs_set_file_extent_num_bytes(leaf, fi,
636 							end - other_start);
637 			btrfs_mark_buffer_dirty(leaf);
638 			goto out;
639 		}
640 	}
641 
642 	if (start > key.offset && end == extent_end) {
643 		other_start = end;
644 		other_end = 0;
645 		if (extent_mergeable(leaf, path->slots[0] + 1,
646 				     inode->i_ino, bytenr, orig_offset,
647 				     &other_start, &other_end)) {
648 			fi = btrfs_item_ptr(leaf, path->slots[0],
649 					    struct btrfs_file_extent_item);
650 			btrfs_set_file_extent_num_bytes(leaf, fi,
651 							start - key.offset);
652 			path->slots[0]++;
653 			new_key.offset = start;
654 			btrfs_set_item_key_safe(trans, root, path, &new_key);
655 
656 			fi = btrfs_item_ptr(leaf, path->slots[0],
657 					    struct btrfs_file_extent_item);
658 			btrfs_set_file_extent_num_bytes(leaf, fi,
659 							other_end - start);
660 			btrfs_set_file_extent_offset(leaf, fi,
661 						     start - orig_offset);
662 			btrfs_mark_buffer_dirty(leaf);
663 			goto out;
664 		}
665 	}
666 
667 	while (start > key.offset || end < extent_end) {
668 		if (key.offset == start)
669 			split = end;
670 
671 		new_key.offset = split;
672 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
673 		if (ret == -EAGAIN) {
674 			btrfs_release_path(root, path);
675 			goto again;
676 		}
677 		BUG_ON(ret < 0);
678 
679 		leaf = path->nodes[0];
680 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
681 				    struct btrfs_file_extent_item);
682 		btrfs_set_file_extent_num_bytes(leaf, fi,
683 						split - key.offset);
684 
685 		fi = btrfs_item_ptr(leaf, path->slots[0],
686 				    struct btrfs_file_extent_item);
687 
688 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
689 		btrfs_set_file_extent_num_bytes(leaf, fi,
690 						extent_end - split);
691 		btrfs_mark_buffer_dirty(leaf);
692 
693 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
694 					   root->root_key.objectid,
695 					   inode->i_ino, orig_offset);
696 		BUG_ON(ret);
697 
698 		if (split == start) {
699 			key.offset = start;
700 		} else {
701 			BUG_ON(start != key.offset);
702 			path->slots[0]--;
703 			extent_end = end;
704 		}
705 		recow = 1;
706 	}
707 
708 	other_start = end;
709 	other_end = 0;
710 	if (extent_mergeable(leaf, path->slots[0] + 1,
711 			     inode->i_ino, bytenr, orig_offset,
712 			     &other_start, &other_end)) {
713 		if (recow) {
714 			btrfs_release_path(root, path);
715 			goto again;
716 		}
717 		extent_end = other_end;
718 		del_slot = path->slots[0] + 1;
719 		del_nr++;
720 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
721 					0, root->root_key.objectid,
722 					inode->i_ino, orig_offset);
723 		BUG_ON(ret);
724 	}
725 	other_start = 0;
726 	other_end = start;
727 	if (extent_mergeable(leaf, path->slots[0] - 1,
728 			     inode->i_ino, bytenr, orig_offset,
729 			     &other_start, &other_end)) {
730 		if (recow) {
731 			btrfs_release_path(root, path);
732 			goto again;
733 		}
734 		key.offset = other_start;
735 		del_slot = path->slots[0];
736 		del_nr++;
737 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
738 					0, root->root_key.objectid,
739 					inode->i_ino, orig_offset);
740 		BUG_ON(ret);
741 	}
742 	if (del_nr == 0) {
743 		fi = btrfs_item_ptr(leaf, path->slots[0],
744 			   struct btrfs_file_extent_item);
745 		btrfs_set_file_extent_type(leaf, fi,
746 					   BTRFS_FILE_EXTENT_REG);
747 		btrfs_mark_buffer_dirty(leaf);
748 	} else {
749 		fi = btrfs_item_ptr(leaf, del_slot - 1,
750 			   struct btrfs_file_extent_item);
751 		btrfs_set_file_extent_type(leaf, fi,
752 					   BTRFS_FILE_EXTENT_REG);
753 		btrfs_set_file_extent_num_bytes(leaf, fi,
754 						extent_end - key.offset);
755 		btrfs_mark_buffer_dirty(leaf);
756 
757 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
758 		BUG_ON(ret);
759 	}
760 out:
761 	btrfs_free_path(path);
762 	return 0;
763 }
764 
765 /*
766  * this gets pages into the page cache and locks them down, it also properly
767  * waits for data=ordered extents to finish before allowing the pages to be
768  * modified.
769  */
770 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
771 			 struct page **pages, size_t num_pages,
772 			 loff_t pos, unsigned long first_index,
773 			 unsigned long last_index, size_t write_bytes)
774 {
775 	struct extent_state *cached_state = NULL;
776 	int i;
777 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
778 	struct inode *inode = fdentry(file)->d_inode;
779 	int err = 0;
780 	u64 start_pos;
781 	u64 last_pos;
782 
783 	start_pos = pos & ~((u64)root->sectorsize - 1);
784 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
785 
786 	if (start_pos > inode->i_size) {
787 		err = btrfs_cont_expand(inode, start_pos);
788 		if (err)
789 			return err;
790 	}
791 
792 	memset(pages, 0, num_pages * sizeof(struct page *));
793 again:
794 	for (i = 0; i < num_pages; i++) {
795 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
796 		if (!pages[i]) {
797 			int c;
798 			for (c = i - 1; c >= 0; c--) {
799 				unlock_page(pages[c]);
800 				page_cache_release(pages[c]);
801 			}
802 			return -ENOMEM;
803 		}
804 		wait_on_page_writeback(pages[i]);
805 	}
806 	if (start_pos < inode->i_size) {
807 		struct btrfs_ordered_extent *ordered;
808 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
809 				 start_pos, last_pos - 1, 0, &cached_state,
810 				 GFP_NOFS);
811 		ordered = btrfs_lookup_first_ordered_extent(inode,
812 							    last_pos - 1);
813 		if (ordered &&
814 		    ordered->file_offset + ordered->len > start_pos &&
815 		    ordered->file_offset < last_pos) {
816 			btrfs_put_ordered_extent(ordered);
817 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
818 					     start_pos, last_pos - 1,
819 					     &cached_state, GFP_NOFS);
820 			for (i = 0; i < num_pages; i++) {
821 				unlock_page(pages[i]);
822 				page_cache_release(pages[i]);
823 			}
824 			btrfs_wait_ordered_range(inode, start_pos,
825 						 last_pos - start_pos);
826 			goto again;
827 		}
828 		if (ordered)
829 			btrfs_put_ordered_extent(ordered);
830 
831 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
832 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
833 				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
834 				  GFP_NOFS);
835 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
836 				     start_pos, last_pos - 1, &cached_state,
837 				     GFP_NOFS);
838 	}
839 	for (i = 0; i < num_pages; i++) {
840 		clear_page_dirty_for_io(pages[i]);
841 		set_page_extent_mapped(pages[i]);
842 		WARN_ON(!PageLocked(pages[i]));
843 	}
844 	return 0;
845 }
846 
847 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
848 				    const struct iovec *iov,
849 				    unsigned long nr_segs, loff_t pos)
850 {
851 	struct file *file = iocb->ki_filp;
852 	struct inode *inode = fdentry(file)->d_inode;
853 	struct btrfs_root *root = BTRFS_I(inode)->root;
854 	struct page *pinned[2];
855 	struct page **pages = NULL;
856 	struct iov_iter i;
857 	loff_t *ppos = &iocb->ki_pos;
858 	loff_t start_pos;
859 	ssize_t num_written = 0;
860 	ssize_t err = 0;
861 	size_t count;
862 	size_t ocount;
863 	int ret = 0;
864 	int nrptrs;
865 	unsigned long first_index;
866 	unsigned long last_index;
867 	int will_write;
868 	int buffered = 0;
869 	int copied = 0;
870 	int dirty_pages = 0;
871 
872 	will_write = ((file->f_flags & O_DSYNC) || IS_SYNC(inode) ||
873 		      (file->f_flags & O_DIRECT));
874 
875 	pinned[0] = NULL;
876 	pinned[1] = NULL;
877 
878 	start_pos = pos;
879 
880 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
881 
882 	mutex_lock(&inode->i_mutex);
883 
884 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
885 	if (err)
886 		goto out;
887 	count = ocount;
888 
889 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
890 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
891 	if (err)
892 		goto out;
893 
894 	if (count == 0)
895 		goto out;
896 
897 	err = file_remove_suid(file);
898 	if (err)
899 		goto out;
900 
901 	/*
902 	 * If BTRFS flips readonly due to some impossible error
903 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
904 	 * although we have opened a file as writable, we have
905 	 * to stop this write operation to ensure FS consistency.
906 	 */
907 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
908 		err = -EROFS;
909 		goto out;
910 	}
911 
912 	file_update_time(file);
913 	BTRFS_I(inode)->sequence++;
914 
915 	if (unlikely(file->f_flags & O_DIRECT)) {
916 		num_written = generic_file_direct_write(iocb, iov, &nr_segs,
917 							pos, ppos, count,
918 							ocount);
919 		/*
920 		 * the generic O_DIRECT will update in-memory i_size after the
921 		 * DIOs are done.  But our endio handlers that update the on
922 		 * disk i_size never update past the in memory i_size.  So we
923 		 * need one more update here to catch any additions to the
924 		 * file
925 		 */
926 		if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
927 			btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
928 			mark_inode_dirty(inode);
929 		}
930 
931 		if (num_written < 0) {
932 			ret = num_written;
933 			num_written = 0;
934 			goto out;
935 		} else if (num_written == count) {
936 			/* pick up pos changes done by the generic code */
937 			pos = *ppos;
938 			goto out;
939 		}
940 		/*
941 		 * We are going to do buffered for the rest of the range, so we
942 		 * need to make sure to invalidate the buffered pages when we're
943 		 * done.
944 		 */
945 		buffered = 1;
946 		pos += num_written;
947 	}
948 
949 	iov_iter_init(&i, iov, nr_segs, count, num_written);
950 	nrptrs = min((iov_iter_count(&i) + PAGE_CACHE_SIZE - 1) /
951 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
952 		     (sizeof(struct page *)));
953 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
954 	if (!pages) {
955 		ret = -ENOMEM;
956 		goto out;
957 	}
958 
959 	/* generic_write_checks can change our pos */
960 	start_pos = pos;
961 
962 	first_index = pos >> PAGE_CACHE_SHIFT;
963 	last_index = (pos + iov_iter_count(&i)) >> PAGE_CACHE_SHIFT;
964 
965 	/*
966 	 * there are lots of better ways to do this, but this code
967 	 * makes sure the first and last page in the file range are
968 	 * up to date and ready for cow
969 	 */
970 	if ((pos & (PAGE_CACHE_SIZE - 1))) {
971 		pinned[0] = grab_cache_page(inode->i_mapping, first_index);
972 		if (!PageUptodate(pinned[0])) {
973 			ret = btrfs_readpage(NULL, pinned[0]);
974 			BUG_ON(ret);
975 			wait_on_page_locked(pinned[0]);
976 		} else {
977 			unlock_page(pinned[0]);
978 		}
979 	}
980 	if ((pos + iov_iter_count(&i)) & (PAGE_CACHE_SIZE - 1)) {
981 		pinned[1] = grab_cache_page(inode->i_mapping, last_index);
982 		if (!PageUptodate(pinned[1])) {
983 			ret = btrfs_readpage(NULL, pinned[1]);
984 			BUG_ON(ret);
985 			wait_on_page_locked(pinned[1]);
986 		} else {
987 			unlock_page(pinned[1]);
988 		}
989 	}
990 
991 	while (iov_iter_count(&i) > 0) {
992 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
993 		size_t write_bytes = min(iov_iter_count(&i),
994 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
995 					 offset);
996 		size_t num_pages = (write_bytes + offset +
997 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
998 
999 		WARN_ON(num_pages > nrptrs);
1000 		memset(pages, 0, sizeof(struct page *) * nrptrs);
1001 
1002 		/*
1003 		 * Fault pages before locking them in prepare_pages
1004 		 * to avoid recursive lock
1005 		 */
1006 		if (unlikely(iov_iter_fault_in_readable(&i, write_bytes))) {
1007 			ret = -EFAULT;
1008 			goto out;
1009 		}
1010 
1011 		ret = btrfs_delalloc_reserve_space(inode,
1012 					num_pages << PAGE_CACHE_SHIFT);
1013 		if (ret)
1014 			goto out;
1015 
1016 		ret = prepare_pages(root, file, pages, num_pages,
1017 				    pos, first_index, last_index,
1018 				    write_bytes);
1019 		if (ret) {
1020 			btrfs_delalloc_release_space(inode,
1021 					num_pages << PAGE_CACHE_SHIFT);
1022 			goto out;
1023 		}
1024 
1025 		copied = btrfs_copy_from_user(pos, num_pages,
1026 					   write_bytes, pages, &i);
1027 		dirty_pages = (copied + offset + PAGE_CACHE_SIZE - 1) >>
1028 				PAGE_CACHE_SHIFT;
1029 
1030 		if (num_pages > dirty_pages) {
1031 			if (copied > 0)
1032 				atomic_inc(
1033 					&BTRFS_I(inode)->outstanding_extents);
1034 			btrfs_delalloc_release_space(inode,
1035 					(num_pages - dirty_pages) <<
1036 					PAGE_CACHE_SHIFT);
1037 		}
1038 
1039 		if (copied > 0) {
1040 			dirty_and_release_pages(NULL, root, file, pages,
1041 						dirty_pages, pos, copied);
1042 		}
1043 
1044 		btrfs_drop_pages(pages, num_pages);
1045 
1046 		if (copied > 0) {
1047 			if (will_write) {
1048 				filemap_fdatawrite_range(inode->i_mapping, pos,
1049 							 pos + copied - 1);
1050 			} else {
1051 				balance_dirty_pages_ratelimited_nr(
1052 							inode->i_mapping,
1053 							dirty_pages);
1054 				if (dirty_pages <
1055 				(root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1056 					btrfs_btree_balance_dirty(root, 1);
1057 				btrfs_throttle(root);
1058 			}
1059 		}
1060 
1061 		pos += copied;
1062 		num_written += copied;
1063 
1064 		cond_resched();
1065 	}
1066 out:
1067 	mutex_unlock(&inode->i_mutex);
1068 	if (ret)
1069 		err = ret;
1070 
1071 	kfree(pages);
1072 	if (pinned[0])
1073 		page_cache_release(pinned[0]);
1074 	if (pinned[1])
1075 		page_cache_release(pinned[1]);
1076 	*ppos = pos;
1077 
1078 	/*
1079 	 * we want to make sure fsync finds this change
1080 	 * but we haven't joined a transaction running right now.
1081 	 *
1082 	 * Later on, someone is sure to update the inode and get the
1083 	 * real transid recorded.
1084 	 *
1085 	 * We set last_trans now to the fs_info generation + 1,
1086 	 * this will either be one more than the running transaction
1087 	 * or the generation used for the next transaction if there isn't
1088 	 * one running right now.
1089 	 */
1090 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1091 
1092 	if (num_written > 0 && will_write) {
1093 		struct btrfs_trans_handle *trans;
1094 
1095 		err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1096 		if (err)
1097 			num_written = err;
1098 
1099 		if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
1100 			trans = btrfs_start_transaction(root, 0);
1101 			if (IS_ERR(trans)) {
1102 				num_written = PTR_ERR(trans);
1103 				goto done;
1104 			}
1105 			mutex_lock(&inode->i_mutex);
1106 			ret = btrfs_log_dentry_safe(trans, root,
1107 						    file->f_dentry);
1108 			mutex_unlock(&inode->i_mutex);
1109 			if (ret == 0) {
1110 				ret = btrfs_sync_log(trans, root);
1111 				if (ret == 0)
1112 					btrfs_end_transaction(trans, root);
1113 				else
1114 					btrfs_commit_transaction(trans, root);
1115 			} else if (ret != BTRFS_NO_LOG_SYNC) {
1116 				btrfs_commit_transaction(trans, root);
1117 			} else {
1118 				btrfs_end_transaction(trans, root);
1119 			}
1120 		}
1121 		if (file->f_flags & O_DIRECT && buffered) {
1122 			invalidate_mapping_pages(inode->i_mapping,
1123 			      start_pos >> PAGE_CACHE_SHIFT,
1124 			     (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1125 		}
1126 	}
1127 done:
1128 	current->backing_dev_info = NULL;
1129 	return num_written ? num_written : err;
1130 }
1131 
1132 int btrfs_release_file(struct inode *inode, struct file *filp)
1133 {
1134 	/*
1135 	 * ordered_data_close is set by settattr when we are about to truncate
1136 	 * a file from a non-zero size to a zero size.  This tries to
1137 	 * flush down new bytes that may have been written if the
1138 	 * application were using truncate to replace a file in place.
1139 	 */
1140 	if (BTRFS_I(inode)->ordered_data_close) {
1141 		BTRFS_I(inode)->ordered_data_close = 0;
1142 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1143 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1144 			filemap_flush(inode->i_mapping);
1145 	}
1146 	if (filp->private_data)
1147 		btrfs_ioctl_trans_end(filp);
1148 	return 0;
1149 }
1150 
1151 /*
1152  * fsync call for both files and directories.  This logs the inode into
1153  * the tree log instead of forcing full commits whenever possible.
1154  *
1155  * It needs to call filemap_fdatawait so that all ordered extent updates are
1156  * in the metadata btree are up to date for copying to the log.
1157  *
1158  * It drops the inode mutex before doing the tree log commit.  This is an
1159  * important optimization for directories because holding the mutex prevents
1160  * new operations on the dir while we write to disk.
1161  */
1162 int btrfs_sync_file(struct file *file, int datasync)
1163 {
1164 	struct dentry *dentry = file->f_path.dentry;
1165 	struct inode *inode = dentry->d_inode;
1166 	struct btrfs_root *root = BTRFS_I(inode)->root;
1167 	int ret = 0;
1168 	struct btrfs_trans_handle *trans;
1169 
1170 
1171 	/* we wait first, since the writeback may change the inode */
1172 	root->log_batch++;
1173 	/* the VFS called filemap_fdatawrite for us */
1174 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1175 	root->log_batch++;
1176 
1177 	/*
1178 	 * check the transaction that last modified this inode
1179 	 * and see if its already been committed
1180 	 */
1181 	if (!BTRFS_I(inode)->last_trans)
1182 		goto out;
1183 
1184 	/*
1185 	 * if the last transaction that changed this file was before
1186 	 * the current transaction, we can bail out now without any
1187 	 * syncing
1188 	 */
1189 	mutex_lock(&root->fs_info->trans_mutex);
1190 	if (BTRFS_I(inode)->last_trans <=
1191 	    root->fs_info->last_trans_committed) {
1192 		BTRFS_I(inode)->last_trans = 0;
1193 		mutex_unlock(&root->fs_info->trans_mutex);
1194 		goto out;
1195 	}
1196 	mutex_unlock(&root->fs_info->trans_mutex);
1197 
1198 	/*
1199 	 * ok we haven't committed the transaction yet, lets do a commit
1200 	 */
1201 	if (file->private_data)
1202 		btrfs_ioctl_trans_end(file);
1203 
1204 	trans = btrfs_start_transaction(root, 0);
1205 	if (IS_ERR(trans)) {
1206 		ret = PTR_ERR(trans);
1207 		goto out;
1208 	}
1209 
1210 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1211 	if (ret < 0)
1212 		goto out;
1213 
1214 	/* we've logged all the items and now have a consistent
1215 	 * version of the file in the log.  It is possible that
1216 	 * someone will come in and modify the file, but that's
1217 	 * fine because the log is consistent on disk, and we
1218 	 * have references to all of the file's extents
1219 	 *
1220 	 * It is possible that someone will come in and log the
1221 	 * file again, but that will end up using the synchronization
1222 	 * inside btrfs_sync_log to keep things safe.
1223 	 */
1224 	mutex_unlock(&dentry->d_inode->i_mutex);
1225 
1226 	if (ret != BTRFS_NO_LOG_SYNC) {
1227 		if (ret > 0) {
1228 			ret = btrfs_commit_transaction(trans, root);
1229 		} else {
1230 			ret = btrfs_sync_log(trans, root);
1231 			if (ret == 0)
1232 				ret = btrfs_end_transaction(trans, root);
1233 			else
1234 				ret = btrfs_commit_transaction(trans, root);
1235 		}
1236 	} else {
1237 		ret = btrfs_end_transaction(trans, root);
1238 	}
1239 	mutex_lock(&dentry->d_inode->i_mutex);
1240 out:
1241 	return ret > 0 ? -EIO : ret;
1242 }
1243 
1244 static const struct vm_operations_struct btrfs_file_vm_ops = {
1245 	.fault		= filemap_fault,
1246 	.page_mkwrite	= btrfs_page_mkwrite,
1247 };
1248 
1249 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1250 {
1251 	struct address_space *mapping = filp->f_mapping;
1252 
1253 	if (!mapping->a_ops->readpage)
1254 		return -ENOEXEC;
1255 
1256 	file_accessed(filp);
1257 	vma->vm_ops = &btrfs_file_vm_ops;
1258 	vma->vm_flags |= VM_CAN_NONLINEAR;
1259 
1260 	return 0;
1261 }
1262 
1263 static long btrfs_fallocate(struct file *file, int mode,
1264 			    loff_t offset, loff_t len)
1265 {
1266 	struct inode *inode = file->f_path.dentry->d_inode;
1267 	struct extent_state *cached_state = NULL;
1268 	u64 cur_offset;
1269 	u64 last_byte;
1270 	u64 alloc_start;
1271 	u64 alloc_end;
1272 	u64 alloc_hint = 0;
1273 	u64 locked_end;
1274 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1275 	struct extent_map *em;
1276 	int ret;
1277 
1278 	alloc_start = offset & ~mask;
1279 	alloc_end =  (offset + len + mask) & ~mask;
1280 
1281 	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1282 	if (mode & ~FALLOC_FL_KEEP_SIZE)
1283 		return -EOPNOTSUPP;
1284 
1285 	/*
1286 	 * wait for ordered IO before we have any locks.  We'll loop again
1287 	 * below with the locks held.
1288 	 */
1289 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1290 
1291 	mutex_lock(&inode->i_mutex);
1292 	ret = inode_newsize_ok(inode, alloc_end);
1293 	if (ret)
1294 		goto out;
1295 
1296 	if (alloc_start > inode->i_size) {
1297 		ret = btrfs_cont_expand(inode, alloc_start);
1298 		if (ret)
1299 			goto out;
1300 	}
1301 
1302 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1303 	if (ret)
1304 		goto out;
1305 
1306 	locked_end = alloc_end - 1;
1307 	while (1) {
1308 		struct btrfs_ordered_extent *ordered;
1309 
1310 		/* the extent lock is ordered inside the running
1311 		 * transaction
1312 		 */
1313 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1314 				 locked_end, 0, &cached_state, GFP_NOFS);
1315 		ordered = btrfs_lookup_first_ordered_extent(inode,
1316 							    alloc_end - 1);
1317 		if (ordered &&
1318 		    ordered->file_offset + ordered->len > alloc_start &&
1319 		    ordered->file_offset < alloc_end) {
1320 			btrfs_put_ordered_extent(ordered);
1321 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1322 					     alloc_start, locked_end,
1323 					     &cached_state, GFP_NOFS);
1324 			/*
1325 			 * we can't wait on the range with the transaction
1326 			 * running or with the extent lock held
1327 			 */
1328 			btrfs_wait_ordered_range(inode, alloc_start,
1329 						 alloc_end - alloc_start);
1330 		} else {
1331 			if (ordered)
1332 				btrfs_put_ordered_extent(ordered);
1333 			break;
1334 		}
1335 	}
1336 
1337 	cur_offset = alloc_start;
1338 	while (1) {
1339 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1340 				      alloc_end - cur_offset, 0);
1341 		BUG_ON(IS_ERR(em) || !em);
1342 		last_byte = min(extent_map_end(em), alloc_end);
1343 		last_byte = (last_byte + mask) & ~mask;
1344 		if (em->block_start == EXTENT_MAP_HOLE ||
1345 		    (cur_offset >= inode->i_size &&
1346 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1347 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1348 							last_byte - cur_offset,
1349 							1 << inode->i_blkbits,
1350 							offset + len,
1351 							&alloc_hint);
1352 			if (ret < 0) {
1353 				free_extent_map(em);
1354 				break;
1355 			}
1356 		}
1357 		free_extent_map(em);
1358 
1359 		cur_offset = last_byte;
1360 		if (cur_offset >= alloc_end) {
1361 			ret = 0;
1362 			break;
1363 		}
1364 	}
1365 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1366 			     &cached_state, GFP_NOFS);
1367 
1368 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1369 out:
1370 	mutex_unlock(&inode->i_mutex);
1371 	return ret;
1372 }
1373 
1374 const struct file_operations btrfs_file_operations = {
1375 	.llseek		= generic_file_llseek,
1376 	.read		= do_sync_read,
1377 	.write		= do_sync_write,
1378 	.aio_read       = generic_file_aio_read,
1379 	.splice_read	= generic_file_splice_read,
1380 	.aio_write	= btrfs_file_aio_write,
1381 	.mmap		= btrfs_file_mmap,
1382 	.open		= generic_file_open,
1383 	.release	= btrfs_release_file,
1384 	.fsync		= btrfs_sync_file,
1385 	.fallocate	= btrfs_fallocate,
1386 	.unlocked_ioctl	= btrfs_ioctl,
1387 #ifdef CONFIG_COMPAT
1388 	.compat_ioctl	= btrfs_ioctl,
1389 #endif
1390 };
1391