1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 32 static struct kmem_cache *btrfs_inode_defrag_cachep; 33 /* 34 * when auto defrag is enabled we 35 * queue up these defrag structs to remember which 36 * inodes need defragging passes 37 */ 38 struct inode_defrag { 39 struct rb_node rb_node; 40 /* objectid */ 41 u64 ino; 42 /* 43 * transid where the defrag was added, we search for 44 * extents newer than this 45 */ 46 u64 transid; 47 48 /* root objectid */ 49 u64 root; 50 51 /* last offset we were able to defrag */ 52 u64 last_offset; 53 54 /* if we've wrapped around back to zero once already */ 55 int cycled; 56 }; 57 58 static int __compare_inode_defrag(struct inode_defrag *defrag1, 59 struct inode_defrag *defrag2) 60 { 61 if (defrag1->root > defrag2->root) 62 return 1; 63 else if (defrag1->root < defrag2->root) 64 return -1; 65 else if (defrag1->ino > defrag2->ino) 66 return 1; 67 else if (defrag1->ino < defrag2->ino) 68 return -1; 69 else 70 return 0; 71 } 72 73 /* pop a record for an inode into the defrag tree. The lock 74 * must be held already 75 * 76 * If you're inserting a record for an older transid than an 77 * existing record, the transid already in the tree is lowered 78 * 79 * If an existing record is found the defrag item you 80 * pass in is freed 81 */ 82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 83 struct inode_defrag *defrag) 84 { 85 struct btrfs_fs_info *fs_info = inode->root->fs_info; 86 struct inode_defrag *entry; 87 struct rb_node **p; 88 struct rb_node *parent = NULL; 89 int ret; 90 91 p = &fs_info->defrag_inodes.rb_node; 92 while (*p) { 93 parent = *p; 94 entry = rb_entry(parent, struct inode_defrag, rb_node); 95 96 ret = __compare_inode_defrag(defrag, entry); 97 if (ret < 0) 98 p = &parent->rb_left; 99 else if (ret > 0) 100 p = &parent->rb_right; 101 else { 102 /* if we're reinserting an entry for 103 * an old defrag run, make sure to 104 * lower the transid of our existing record 105 */ 106 if (defrag->transid < entry->transid) 107 entry->transid = defrag->transid; 108 if (defrag->last_offset > entry->last_offset) 109 entry->last_offset = defrag->last_offset; 110 return -EEXIST; 111 } 112 } 113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 114 rb_link_node(&defrag->rb_node, parent, p); 115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 116 return 0; 117 } 118 119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 120 { 121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 122 return 0; 123 124 if (btrfs_fs_closing(fs_info)) 125 return 0; 126 127 return 1; 128 } 129 130 /* 131 * insert a defrag record for this inode if auto defrag is 132 * enabled 133 */ 134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 135 struct btrfs_inode *inode) 136 { 137 struct btrfs_root *root = inode->root; 138 struct btrfs_fs_info *fs_info = root->fs_info; 139 struct inode_defrag *defrag; 140 u64 transid; 141 int ret; 142 143 if (!__need_auto_defrag(fs_info)) 144 return 0; 145 146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 147 return 0; 148 149 if (trans) 150 transid = trans->transid; 151 else 152 transid = inode->root->last_trans; 153 154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 155 if (!defrag) 156 return -ENOMEM; 157 158 defrag->ino = btrfs_ino(inode); 159 defrag->transid = transid; 160 defrag->root = root->root_key.objectid; 161 162 spin_lock(&fs_info->defrag_inodes_lock); 163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 164 /* 165 * If we set IN_DEFRAG flag and evict the inode from memory, 166 * and then re-read this inode, this new inode doesn't have 167 * IN_DEFRAG flag. At the case, we may find the existed defrag. 168 */ 169 ret = __btrfs_add_inode_defrag(inode, defrag); 170 if (ret) 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } else { 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } 175 spin_unlock(&fs_info->defrag_inodes_lock); 176 return 0; 177 } 178 179 /* 180 * Requeue the defrag object. If there is a defrag object that points to 181 * the same inode in the tree, we will merge them together (by 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 183 */ 184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 185 struct inode_defrag *defrag) 186 { 187 struct btrfs_fs_info *fs_info = inode->root->fs_info; 188 int ret; 189 190 if (!__need_auto_defrag(fs_info)) 191 goto out; 192 193 /* 194 * Here we don't check the IN_DEFRAG flag, because we need merge 195 * them together. 196 */ 197 spin_lock(&fs_info->defrag_inodes_lock); 198 ret = __btrfs_add_inode_defrag(inode, defrag); 199 spin_unlock(&fs_info->defrag_inodes_lock); 200 if (ret) 201 goto out; 202 return; 203 out: 204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 205 } 206 207 /* 208 * pick the defragable inode that we want, if it doesn't exist, we will get 209 * the next one. 210 */ 211 static struct inode_defrag * 212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 213 { 214 struct inode_defrag *entry = NULL; 215 struct inode_defrag tmp; 216 struct rb_node *p; 217 struct rb_node *parent = NULL; 218 int ret; 219 220 tmp.ino = ino; 221 tmp.root = root; 222 223 spin_lock(&fs_info->defrag_inodes_lock); 224 p = fs_info->defrag_inodes.rb_node; 225 while (p) { 226 parent = p; 227 entry = rb_entry(parent, struct inode_defrag, rb_node); 228 229 ret = __compare_inode_defrag(&tmp, entry); 230 if (ret < 0) 231 p = parent->rb_left; 232 else if (ret > 0) 233 p = parent->rb_right; 234 else 235 goto out; 236 } 237 238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 239 parent = rb_next(parent); 240 if (parent) 241 entry = rb_entry(parent, struct inode_defrag, rb_node); 242 else 243 entry = NULL; 244 } 245 out: 246 if (entry) 247 rb_erase(parent, &fs_info->defrag_inodes); 248 spin_unlock(&fs_info->defrag_inodes_lock); 249 return entry; 250 } 251 252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 253 { 254 struct inode_defrag *defrag; 255 struct rb_node *node; 256 257 spin_lock(&fs_info->defrag_inodes_lock); 258 node = rb_first(&fs_info->defrag_inodes); 259 while (node) { 260 rb_erase(node, &fs_info->defrag_inodes); 261 defrag = rb_entry(node, struct inode_defrag, rb_node); 262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 263 264 cond_resched_lock(&fs_info->defrag_inodes_lock); 265 266 node = rb_first(&fs_info->defrag_inodes); 267 } 268 spin_unlock(&fs_info->defrag_inodes_lock); 269 } 270 271 #define BTRFS_DEFRAG_BATCH 1024 272 273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 274 struct inode_defrag *defrag) 275 { 276 struct btrfs_root *inode_root; 277 struct inode *inode; 278 struct btrfs_ioctl_defrag_range_args range; 279 int num_defrag; 280 int ret; 281 282 /* get the inode */ 283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 284 if (IS_ERR(inode_root)) { 285 ret = PTR_ERR(inode_root); 286 goto cleanup; 287 } 288 289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 290 btrfs_put_root(inode_root); 291 if (IS_ERR(inode)) { 292 ret = PTR_ERR(inode); 293 goto cleanup; 294 } 295 296 /* do a chunk of defrag */ 297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 298 memset(&range, 0, sizeof(range)); 299 range.len = (u64)-1; 300 range.start = defrag->last_offset; 301 302 sb_start_write(fs_info->sb); 303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 304 BTRFS_DEFRAG_BATCH); 305 sb_end_write(fs_info->sb); 306 /* 307 * if we filled the whole defrag batch, there 308 * must be more work to do. Queue this defrag 309 * again 310 */ 311 if (num_defrag == BTRFS_DEFRAG_BATCH) { 312 defrag->last_offset = range.start; 313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 314 } else if (defrag->last_offset && !defrag->cycled) { 315 /* 316 * we didn't fill our defrag batch, but 317 * we didn't start at zero. Make sure we loop 318 * around to the start of the file. 319 */ 320 defrag->last_offset = 0; 321 defrag->cycled = 1; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else { 324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 325 } 326 327 iput(inode); 328 return 0; 329 cleanup: 330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 331 return ret; 332 } 333 334 /* 335 * run through the list of inodes in the FS that need 336 * defragging 337 */ 338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 339 { 340 struct inode_defrag *defrag; 341 u64 first_ino = 0; 342 u64 root_objectid = 0; 343 344 atomic_inc(&fs_info->defrag_running); 345 while (1) { 346 /* Pause the auto defragger. */ 347 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 348 &fs_info->fs_state)) 349 break; 350 351 if (!__need_auto_defrag(fs_info)) 352 break; 353 354 /* find an inode to defrag */ 355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 356 first_ino); 357 if (!defrag) { 358 if (root_objectid || first_ino) { 359 root_objectid = 0; 360 first_ino = 0; 361 continue; 362 } else { 363 break; 364 } 365 } 366 367 first_ino = defrag->ino + 1; 368 root_objectid = defrag->root; 369 370 __btrfs_run_defrag_inode(fs_info, defrag); 371 } 372 atomic_dec(&fs_info->defrag_running); 373 374 /* 375 * during unmount, we use the transaction_wait queue to 376 * wait for the defragger to stop 377 */ 378 wake_up(&fs_info->transaction_wait); 379 return 0; 380 } 381 382 /* simple helper to fault in pages and copy. This should go away 383 * and be replaced with calls into generic code. 384 */ 385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 386 struct page **prepared_pages, 387 struct iov_iter *i) 388 { 389 size_t copied = 0; 390 size_t total_copied = 0; 391 int pg = 0; 392 int offset = offset_in_page(pos); 393 394 while (write_bytes > 0) { 395 size_t count = min_t(size_t, 396 PAGE_SIZE - offset, write_bytes); 397 struct page *page = prepared_pages[pg]; 398 /* 399 * Copy data from userspace to the current page 400 */ 401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 402 403 /* Flush processor's dcache for this page */ 404 flush_dcache_page(page); 405 406 /* 407 * if we get a partial write, we can end up with 408 * partially up to date pages. These add 409 * a lot of complexity, so make sure they don't 410 * happen by forcing this copy to be retried. 411 * 412 * The rest of the btrfs_file_write code will fall 413 * back to page at a time copies after we return 0. 414 */ 415 if (!PageUptodate(page) && copied < count) 416 copied = 0; 417 418 iov_iter_advance(i, copied); 419 write_bytes -= copied; 420 total_copied += copied; 421 422 /* Return to btrfs_file_write_iter to fault page */ 423 if (unlikely(copied == 0)) 424 break; 425 426 if (copied < PAGE_SIZE - offset) { 427 offset += copied; 428 } else { 429 pg++; 430 offset = 0; 431 } 432 } 433 return total_copied; 434 } 435 436 /* 437 * unlocks pages after btrfs_file_write is done with them 438 */ 439 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 440 { 441 size_t i; 442 for (i = 0; i < num_pages; i++) { 443 /* page checked is some magic around finding pages that 444 * have been modified without going through btrfs_set_page_dirty 445 * clear it here. There should be no need to mark the pages 446 * accessed as prepare_pages should have marked them accessed 447 * in prepare_pages via find_or_create_page() 448 */ 449 ClearPageChecked(pages[i]); 450 unlock_page(pages[i]); 451 put_page(pages[i]); 452 } 453 } 454 455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 456 const u64 start, 457 const u64 len, 458 struct extent_state **cached_state) 459 { 460 u64 search_start = start; 461 const u64 end = start + len - 1; 462 463 while (search_start < end) { 464 const u64 search_len = end - search_start + 1; 465 struct extent_map *em; 466 u64 em_len; 467 int ret = 0; 468 469 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 470 if (IS_ERR(em)) 471 return PTR_ERR(em); 472 473 if (em->block_start != EXTENT_MAP_HOLE) 474 goto next; 475 476 em_len = em->len; 477 if (em->start < search_start) 478 em_len -= search_start - em->start; 479 if (em_len > search_len) 480 em_len = search_len; 481 482 ret = set_extent_bit(&inode->io_tree, search_start, 483 search_start + em_len - 1, 484 EXTENT_DELALLOC_NEW, 485 NULL, cached_state, GFP_NOFS); 486 next: 487 search_start = extent_map_end(em); 488 free_extent_map(em); 489 if (ret) 490 return ret; 491 } 492 return 0; 493 } 494 495 /* 496 * after copy_from_user, pages need to be dirtied and we need to make 497 * sure holes are created between the current EOF and the start of 498 * any next extents (if required). 499 * 500 * this also makes the decision about creating an inline extent vs 501 * doing real data extents, marking pages dirty and delalloc as required. 502 */ 503 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 504 size_t num_pages, loff_t pos, size_t write_bytes, 505 struct extent_state **cached) 506 { 507 struct btrfs_fs_info *fs_info = inode->root->fs_info; 508 int err = 0; 509 int i; 510 u64 num_bytes; 511 u64 start_pos; 512 u64 end_of_last_block; 513 u64 end_pos = pos + write_bytes; 514 loff_t isize = i_size_read(&inode->vfs_inode); 515 unsigned int extra_bits = 0; 516 517 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 518 num_bytes = round_up(write_bytes + pos - start_pos, 519 fs_info->sectorsize); 520 521 end_of_last_block = start_pos + num_bytes - 1; 522 523 /* 524 * The pages may have already been dirty, clear out old accounting so 525 * we can set things up properly 526 */ 527 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 528 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 529 0, 0, cached); 530 531 if (!btrfs_is_free_space_inode(inode)) { 532 if (start_pos >= isize && 533 !(inode->flags & BTRFS_INODE_PREALLOC)) { 534 /* 535 * There can't be any extents following eof in this case 536 * so just set the delalloc new bit for the range 537 * directly. 538 */ 539 extra_bits |= EXTENT_DELALLOC_NEW; 540 } else { 541 err = btrfs_find_new_delalloc_bytes(inode, start_pos, 542 num_bytes, cached); 543 if (err) 544 return err; 545 } 546 } 547 548 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 549 extra_bits, cached); 550 if (err) 551 return err; 552 553 for (i = 0; i < num_pages; i++) { 554 struct page *p = pages[i]; 555 SetPageUptodate(p); 556 ClearPageChecked(p); 557 set_page_dirty(p); 558 } 559 560 /* 561 * we've only changed i_size in ram, and we haven't updated 562 * the disk i_size. There is no need to log the inode 563 * at this time. 564 */ 565 if (end_pos > isize) 566 i_size_write(&inode->vfs_inode, end_pos); 567 return 0; 568 } 569 570 /* 571 * this drops all the extents in the cache that intersect the range 572 * [start, end]. Existing extents are split as required. 573 */ 574 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 575 int skip_pinned) 576 { 577 struct extent_map *em; 578 struct extent_map *split = NULL; 579 struct extent_map *split2 = NULL; 580 struct extent_map_tree *em_tree = &inode->extent_tree; 581 u64 len = end - start + 1; 582 u64 gen; 583 int ret; 584 int testend = 1; 585 unsigned long flags; 586 int compressed = 0; 587 bool modified; 588 589 WARN_ON(end < start); 590 if (end == (u64)-1) { 591 len = (u64)-1; 592 testend = 0; 593 } 594 while (1) { 595 int no_splits = 0; 596 597 modified = false; 598 if (!split) 599 split = alloc_extent_map(); 600 if (!split2) 601 split2 = alloc_extent_map(); 602 if (!split || !split2) 603 no_splits = 1; 604 605 write_lock(&em_tree->lock); 606 em = lookup_extent_mapping(em_tree, start, len); 607 if (!em) { 608 write_unlock(&em_tree->lock); 609 break; 610 } 611 flags = em->flags; 612 gen = em->generation; 613 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 614 if (testend && em->start + em->len >= start + len) { 615 free_extent_map(em); 616 write_unlock(&em_tree->lock); 617 break; 618 } 619 start = em->start + em->len; 620 if (testend) 621 len = start + len - (em->start + em->len); 622 free_extent_map(em); 623 write_unlock(&em_tree->lock); 624 continue; 625 } 626 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 627 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 628 clear_bit(EXTENT_FLAG_LOGGING, &flags); 629 modified = !list_empty(&em->list); 630 if (no_splits) 631 goto next; 632 633 if (em->start < start) { 634 split->start = em->start; 635 split->len = start - em->start; 636 637 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 638 split->orig_start = em->orig_start; 639 split->block_start = em->block_start; 640 641 if (compressed) 642 split->block_len = em->block_len; 643 else 644 split->block_len = split->len; 645 split->orig_block_len = max(split->block_len, 646 em->orig_block_len); 647 split->ram_bytes = em->ram_bytes; 648 } else { 649 split->orig_start = split->start; 650 split->block_len = 0; 651 split->block_start = em->block_start; 652 split->orig_block_len = 0; 653 split->ram_bytes = split->len; 654 } 655 656 split->generation = gen; 657 split->flags = flags; 658 split->compress_type = em->compress_type; 659 replace_extent_mapping(em_tree, em, split, modified); 660 free_extent_map(split); 661 split = split2; 662 split2 = NULL; 663 } 664 if (testend && em->start + em->len > start + len) { 665 u64 diff = start + len - em->start; 666 667 split->start = start + len; 668 split->len = em->start + em->len - (start + len); 669 split->flags = flags; 670 split->compress_type = em->compress_type; 671 split->generation = gen; 672 673 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 674 split->orig_block_len = max(em->block_len, 675 em->orig_block_len); 676 677 split->ram_bytes = em->ram_bytes; 678 if (compressed) { 679 split->block_len = em->block_len; 680 split->block_start = em->block_start; 681 split->orig_start = em->orig_start; 682 } else { 683 split->block_len = split->len; 684 split->block_start = em->block_start 685 + diff; 686 split->orig_start = em->orig_start; 687 } 688 } else { 689 split->ram_bytes = split->len; 690 split->orig_start = split->start; 691 split->block_len = 0; 692 split->block_start = em->block_start; 693 split->orig_block_len = 0; 694 } 695 696 if (extent_map_in_tree(em)) { 697 replace_extent_mapping(em_tree, em, split, 698 modified); 699 } else { 700 ret = add_extent_mapping(em_tree, split, 701 modified); 702 ASSERT(ret == 0); /* Logic error */ 703 } 704 free_extent_map(split); 705 split = NULL; 706 } 707 next: 708 if (extent_map_in_tree(em)) 709 remove_extent_mapping(em_tree, em); 710 write_unlock(&em_tree->lock); 711 712 /* once for us */ 713 free_extent_map(em); 714 /* once for the tree*/ 715 free_extent_map(em); 716 } 717 if (split) 718 free_extent_map(split); 719 if (split2) 720 free_extent_map(split2); 721 } 722 723 /* 724 * this is very complex, but the basic idea is to drop all extents 725 * in the range start - end. hint_block is filled in with a block number 726 * that would be a good hint to the block allocator for this file. 727 * 728 * If an extent intersects the range but is not entirely inside the range 729 * it is either truncated or split. Anything entirely inside the range 730 * is deleted from the tree. 731 */ 732 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 733 struct btrfs_root *root, struct btrfs_inode *inode, 734 struct btrfs_path *path, u64 start, u64 end, 735 u64 *drop_end, int drop_cache, 736 int replace_extent, 737 u32 extent_item_size, 738 int *key_inserted) 739 { 740 struct btrfs_fs_info *fs_info = root->fs_info; 741 struct extent_buffer *leaf; 742 struct btrfs_file_extent_item *fi; 743 struct btrfs_ref ref = { 0 }; 744 struct btrfs_key key; 745 struct btrfs_key new_key; 746 struct inode *vfs_inode = &inode->vfs_inode; 747 u64 ino = btrfs_ino(inode); 748 u64 search_start = start; 749 u64 disk_bytenr = 0; 750 u64 num_bytes = 0; 751 u64 extent_offset = 0; 752 u64 extent_end = 0; 753 u64 last_end = start; 754 int del_nr = 0; 755 int del_slot = 0; 756 int extent_type; 757 int recow; 758 int ret; 759 int modify_tree = -1; 760 int update_refs; 761 int found = 0; 762 int leafs_visited = 0; 763 764 if (drop_cache) 765 btrfs_drop_extent_cache(inode, start, end - 1, 0); 766 767 if (start >= inode->disk_i_size && !replace_extent) 768 modify_tree = 0; 769 770 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 771 root == fs_info->tree_root); 772 while (1) { 773 recow = 0; 774 ret = btrfs_lookup_file_extent(trans, root, path, ino, 775 search_start, modify_tree); 776 if (ret < 0) 777 break; 778 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 779 leaf = path->nodes[0]; 780 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 781 if (key.objectid == ino && 782 key.type == BTRFS_EXTENT_DATA_KEY) 783 path->slots[0]--; 784 } 785 ret = 0; 786 leafs_visited++; 787 next_slot: 788 leaf = path->nodes[0]; 789 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 790 BUG_ON(del_nr > 0); 791 ret = btrfs_next_leaf(root, path); 792 if (ret < 0) 793 break; 794 if (ret > 0) { 795 ret = 0; 796 break; 797 } 798 leafs_visited++; 799 leaf = path->nodes[0]; 800 recow = 1; 801 } 802 803 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 804 805 if (key.objectid > ino) 806 break; 807 if (WARN_ON_ONCE(key.objectid < ino) || 808 key.type < BTRFS_EXTENT_DATA_KEY) { 809 ASSERT(del_nr == 0); 810 path->slots[0]++; 811 goto next_slot; 812 } 813 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 814 break; 815 816 fi = btrfs_item_ptr(leaf, path->slots[0], 817 struct btrfs_file_extent_item); 818 extent_type = btrfs_file_extent_type(leaf, fi); 819 820 if (extent_type == BTRFS_FILE_EXTENT_REG || 821 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 822 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 823 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 824 extent_offset = btrfs_file_extent_offset(leaf, fi); 825 extent_end = key.offset + 826 btrfs_file_extent_num_bytes(leaf, fi); 827 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 828 extent_end = key.offset + 829 btrfs_file_extent_ram_bytes(leaf, fi); 830 } else { 831 /* can't happen */ 832 BUG(); 833 } 834 835 /* 836 * Don't skip extent items representing 0 byte lengths. They 837 * used to be created (bug) if while punching holes we hit 838 * -ENOSPC condition. So if we find one here, just ensure we 839 * delete it, otherwise we would insert a new file extent item 840 * with the same key (offset) as that 0 bytes length file 841 * extent item in the call to setup_items_for_insert() later 842 * in this function. 843 */ 844 if (extent_end == key.offset && extent_end >= search_start) { 845 last_end = extent_end; 846 goto delete_extent_item; 847 } 848 849 if (extent_end <= search_start) { 850 path->slots[0]++; 851 goto next_slot; 852 } 853 854 found = 1; 855 search_start = max(key.offset, start); 856 if (recow || !modify_tree) { 857 modify_tree = -1; 858 btrfs_release_path(path); 859 continue; 860 } 861 862 /* 863 * | - range to drop - | 864 * | -------- extent -------- | 865 */ 866 if (start > key.offset && end < extent_end) { 867 BUG_ON(del_nr > 0); 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = start; 875 ret = btrfs_duplicate_item(trans, root, path, 876 &new_key); 877 if (ret == -EAGAIN) { 878 btrfs_release_path(path); 879 continue; 880 } 881 if (ret < 0) 882 break; 883 884 leaf = path->nodes[0]; 885 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 886 struct btrfs_file_extent_item); 887 btrfs_set_file_extent_num_bytes(leaf, fi, 888 start - key.offset); 889 890 fi = btrfs_item_ptr(leaf, path->slots[0], 891 struct btrfs_file_extent_item); 892 893 extent_offset += start - key.offset; 894 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 895 btrfs_set_file_extent_num_bytes(leaf, fi, 896 extent_end - start); 897 btrfs_mark_buffer_dirty(leaf); 898 899 if (update_refs && disk_bytenr > 0) { 900 btrfs_init_generic_ref(&ref, 901 BTRFS_ADD_DELAYED_REF, 902 disk_bytenr, num_bytes, 0); 903 btrfs_init_data_ref(&ref, 904 root->root_key.objectid, 905 new_key.objectid, 906 start - extent_offset); 907 ret = btrfs_inc_extent_ref(trans, &ref); 908 BUG_ON(ret); /* -ENOMEM */ 909 } 910 key.offset = start; 911 } 912 /* 913 * From here on out we will have actually dropped something, so 914 * last_end can be updated. 915 */ 916 last_end = extent_end; 917 918 /* 919 * | ---- range to drop ----- | 920 * | -------- extent -------- | 921 */ 922 if (start <= key.offset && end < extent_end) { 923 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 924 ret = -EOPNOTSUPP; 925 break; 926 } 927 928 memcpy(&new_key, &key, sizeof(new_key)); 929 new_key.offset = end; 930 btrfs_set_item_key_safe(fs_info, path, &new_key); 931 932 extent_offset += end - key.offset; 933 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 934 btrfs_set_file_extent_num_bytes(leaf, fi, 935 extent_end - end); 936 btrfs_mark_buffer_dirty(leaf); 937 if (update_refs && disk_bytenr > 0) 938 inode_sub_bytes(vfs_inode, end - key.offset); 939 break; 940 } 941 942 search_start = extent_end; 943 /* 944 * | ---- range to drop ----- | 945 * | -------- extent -------- | 946 */ 947 if (start > key.offset && end >= extent_end) { 948 BUG_ON(del_nr > 0); 949 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 950 ret = -EOPNOTSUPP; 951 break; 952 } 953 954 btrfs_set_file_extent_num_bytes(leaf, fi, 955 start - key.offset); 956 btrfs_mark_buffer_dirty(leaf); 957 if (update_refs && disk_bytenr > 0) 958 inode_sub_bytes(vfs_inode, extent_end - start); 959 if (end == extent_end) 960 break; 961 962 path->slots[0]++; 963 goto next_slot; 964 } 965 966 /* 967 * | ---- range to drop ----- | 968 * | ------ extent ------ | 969 */ 970 if (start <= key.offset && end >= extent_end) { 971 delete_extent_item: 972 if (del_nr == 0) { 973 del_slot = path->slots[0]; 974 del_nr = 1; 975 } else { 976 BUG_ON(del_slot + del_nr != path->slots[0]); 977 del_nr++; 978 } 979 980 if (update_refs && 981 extent_type == BTRFS_FILE_EXTENT_INLINE) { 982 inode_sub_bytes(vfs_inode, 983 extent_end - key.offset); 984 extent_end = ALIGN(extent_end, 985 fs_info->sectorsize); 986 } else if (update_refs && disk_bytenr > 0) { 987 btrfs_init_generic_ref(&ref, 988 BTRFS_DROP_DELAYED_REF, 989 disk_bytenr, num_bytes, 0); 990 btrfs_init_data_ref(&ref, 991 root->root_key.objectid, 992 key.objectid, 993 key.offset - extent_offset); 994 ret = btrfs_free_extent(trans, &ref); 995 BUG_ON(ret); /* -ENOMEM */ 996 inode_sub_bytes(vfs_inode, 997 extent_end - key.offset); 998 } 999 1000 if (end == extent_end) 1001 break; 1002 1003 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1004 path->slots[0]++; 1005 goto next_slot; 1006 } 1007 1008 ret = btrfs_del_items(trans, root, path, del_slot, 1009 del_nr); 1010 if (ret) { 1011 btrfs_abort_transaction(trans, ret); 1012 break; 1013 } 1014 1015 del_nr = 0; 1016 del_slot = 0; 1017 1018 btrfs_release_path(path); 1019 continue; 1020 } 1021 1022 BUG(); 1023 } 1024 1025 if (!ret && del_nr > 0) { 1026 /* 1027 * Set path->slots[0] to first slot, so that after the delete 1028 * if items are move off from our leaf to its immediate left or 1029 * right neighbor leafs, we end up with a correct and adjusted 1030 * path->slots[0] for our insertion (if replace_extent != 0). 1031 */ 1032 path->slots[0] = del_slot; 1033 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1034 if (ret) 1035 btrfs_abort_transaction(trans, ret); 1036 } 1037 1038 leaf = path->nodes[0]; 1039 /* 1040 * If btrfs_del_items() was called, it might have deleted a leaf, in 1041 * which case it unlocked our path, so check path->locks[0] matches a 1042 * write lock. 1043 */ 1044 if (!ret && replace_extent && leafs_visited == 1 && 1045 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1046 path->locks[0] == BTRFS_WRITE_LOCK) && 1047 btrfs_leaf_free_space(leaf) >= 1048 sizeof(struct btrfs_item) + extent_item_size) { 1049 1050 key.objectid = ino; 1051 key.type = BTRFS_EXTENT_DATA_KEY; 1052 key.offset = start; 1053 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1054 struct btrfs_key slot_key; 1055 1056 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1057 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1058 path->slots[0]++; 1059 } 1060 setup_items_for_insert(root, path, &key, 1061 &extent_item_size, 1062 extent_item_size, 1063 sizeof(struct btrfs_item) + 1064 extent_item_size, 1); 1065 *key_inserted = 1; 1066 } 1067 1068 if (!replace_extent || !(*key_inserted)) 1069 btrfs_release_path(path); 1070 if (drop_end) 1071 *drop_end = found ? min(end, last_end) : end; 1072 return ret; 1073 } 1074 1075 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1076 struct btrfs_root *root, struct inode *inode, u64 start, 1077 u64 end, int drop_cache) 1078 { 1079 struct btrfs_path *path; 1080 int ret; 1081 1082 path = btrfs_alloc_path(); 1083 if (!path) 1084 return -ENOMEM; 1085 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start, 1086 end, NULL, drop_cache, 0, 0, NULL); 1087 btrfs_free_path(path); 1088 return ret; 1089 } 1090 1091 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1092 u64 objectid, u64 bytenr, u64 orig_offset, 1093 u64 *start, u64 *end) 1094 { 1095 struct btrfs_file_extent_item *fi; 1096 struct btrfs_key key; 1097 u64 extent_end; 1098 1099 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1100 return 0; 1101 1102 btrfs_item_key_to_cpu(leaf, &key, slot); 1103 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1104 return 0; 1105 1106 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1107 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1108 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1109 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1110 btrfs_file_extent_compression(leaf, fi) || 1111 btrfs_file_extent_encryption(leaf, fi) || 1112 btrfs_file_extent_other_encoding(leaf, fi)) 1113 return 0; 1114 1115 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1116 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1117 return 0; 1118 1119 *start = key.offset; 1120 *end = extent_end; 1121 return 1; 1122 } 1123 1124 /* 1125 * Mark extent in the range start - end as written. 1126 * 1127 * This changes extent type from 'pre-allocated' to 'regular'. If only 1128 * part of extent is marked as written, the extent will be split into 1129 * two or three. 1130 */ 1131 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1132 struct btrfs_inode *inode, u64 start, u64 end) 1133 { 1134 struct btrfs_fs_info *fs_info = trans->fs_info; 1135 struct btrfs_root *root = inode->root; 1136 struct extent_buffer *leaf; 1137 struct btrfs_path *path; 1138 struct btrfs_file_extent_item *fi; 1139 struct btrfs_ref ref = { 0 }; 1140 struct btrfs_key key; 1141 struct btrfs_key new_key; 1142 u64 bytenr; 1143 u64 num_bytes; 1144 u64 extent_end; 1145 u64 orig_offset; 1146 u64 other_start; 1147 u64 other_end; 1148 u64 split; 1149 int del_nr = 0; 1150 int del_slot = 0; 1151 int recow; 1152 int ret; 1153 u64 ino = btrfs_ino(inode); 1154 1155 path = btrfs_alloc_path(); 1156 if (!path) 1157 return -ENOMEM; 1158 again: 1159 recow = 0; 1160 split = start; 1161 key.objectid = ino; 1162 key.type = BTRFS_EXTENT_DATA_KEY; 1163 key.offset = split; 1164 1165 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1166 if (ret < 0) 1167 goto out; 1168 if (ret > 0 && path->slots[0] > 0) 1169 path->slots[0]--; 1170 1171 leaf = path->nodes[0]; 1172 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1173 if (key.objectid != ino || 1174 key.type != BTRFS_EXTENT_DATA_KEY) { 1175 ret = -EINVAL; 1176 btrfs_abort_transaction(trans, ret); 1177 goto out; 1178 } 1179 fi = btrfs_item_ptr(leaf, path->slots[0], 1180 struct btrfs_file_extent_item); 1181 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1182 ret = -EINVAL; 1183 btrfs_abort_transaction(trans, ret); 1184 goto out; 1185 } 1186 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1187 if (key.offset > start || extent_end < end) { 1188 ret = -EINVAL; 1189 btrfs_abort_transaction(trans, ret); 1190 goto out; 1191 } 1192 1193 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1194 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1195 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1196 memcpy(&new_key, &key, sizeof(new_key)); 1197 1198 if (start == key.offset && end < extent_end) { 1199 other_start = 0; 1200 other_end = start; 1201 if (extent_mergeable(leaf, path->slots[0] - 1, 1202 ino, bytenr, orig_offset, 1203 &other_start, &other_end)) { 1204 new_key.offset = end; 1205 btrfs_set_item_key_safe(fs_info, path, &new_key); 1206 fi = btrfs_item_ptr(leaf, path->slots[0], 1207 struct btrfs_file_extent_item); 1208 btrfs_set_file_extent_generation(leaf, fi, 1209 trans->transid); 1210 btrfs_set_file_extent_num_bytes(leaf, fi, 1211 extent_end - end); 1212 btrfs_set_file_extent_offset(leaf, fi, 1213 end - orig_offset); 1214 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1215 struct btrfs_file_extent_item); 1216 btrfs_set_file_extent_generation(leaf, fi, 1217 trans->transid); 1218 btrfs_set_file_extent_num_bytes(leaf, fi, 1219 end - other_start); 1220 btrfs_mark_buffer_dirty(leaf); 1221 goto out; 1222 } 1223 } 1224 1225 if (start > key.offset && end == extent_end) { 1226 other_start = end; 1227 other_end = 0; 1228 if (extent_mergeable(leaf, path->slots[0] + 1, 1229 ino, bytenr, orig_offset, 1230 &other_start, &other_end)) { 1231 fi = btrfs_item_ptr(leaf, path->slots[0], 1232 struct btrfs_file_extent_item); 1233 btrfs_set_file_extent_num_bytes(leaf, fi, 1234 start - key.offset); 1235 btrfs_set_file_extent_generation(leaf, fi, 1236 trans->transid); 1237 path->slots[0]++; 1238 new_key.offset = start; 1239 btrfs_set_item_key_safe(fs_info, path, &new_key); 1240 1241 fi = btrfs_item_ptr(leaf, path->slots[0], 1242 struct btrfs_file_extent_item); 1243 btrfs_set_file_extent_generation(leaf, fi, 1244 trans->transid); 1245 btrfs_set_file_extent_num_bytes(leaf, fi, 1246 other_end - start); 1247 btrfs_set_file_extent_offset(leaf, fi, 1248 start - orig_offset); 1249 btrfs_mark_buffer_dirty(leaf); 1250 goto out; 1251 } 1252 } 1253 1254 while (start > key.offset || end < extent_end) { 1255 if (key.offset == start) 1256 split = end; 1257 1258 new_key.offset = split; 1259 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1260 if (ret == -EAGAIN) { 1261 btrfs_release_path(path); 1262 goto again; 1263 } 1264 if (ret < 0) { 1265 btrfs_abort_transaction(trans, ret); 1266 goto out; 1267 } 1268 1269 leaf = path->nodes[0]; 1270 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1271 struct btrfs_file_extent_item); 1272 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1273 btrfs_set_file_extent_num_bytes(leaf, fi, 1274 split - key.offset); 1275 1276 fi = btrfs_item_ptr(leaf, path->slots[0], 1277 struct btrfs_file_extent_item); 1278 1279 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1280 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1281 btrfs_set_file_extent_num_bytes(leaf, fi, 1282 extent_end - split); 1283 btrfs_mark_buffer_dirty(leaf); 1284 1285 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1286 num_bytes, 0); 1287 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1288 orig_offset); 1289 ret = btrfs_inc_extent_ref(trans, &ref); 1290 if (ret) { 1291 btrfs_abort_transaction(trans, ret); 1292 goto out; 1293 } 1294 1295 if (split == start) { 1296 key.offset = start; 1297 } else { 1298 if (start != key.offset) { 1299 ret = -EINVAL; 1300 btrfs_abort_transaction(trans, ret); 1301 goto out; 1302 } 1303 path->slots[0]--; 1304 extent_end = end; 1305 } 1306 recow = 1; 1307 } 1308 1309 other_start = end; 1310 other_end = 0; 1311 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1312 num_bytes, 0); 1313 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1314 if (extent_mergeable(leaf, path->slots[0] + 1, 1315 ino, bytenr, orig_offset, 1316 &other_start, &other_end)) { 1317 if (recow) { 1318 btrfs_release_path(path); 1319 goto again; 1320 } 1321 extent_end = other_end; 1322 del_slot = path->slots[0] + 1; 1323 del_nr++; 1324 ret = btrfs_free_extent(trans, &ref); 1325 if (ret) { 1326 btrfs_abort_transaction(trans, ret); 1327 goto out; 1328 } 1329 } 1330 other_start = 0; 1331 other_end = start; 1332 if (extent_mergeable(leaf, path->slots[0] - 1, 1333 ino, bytenr, orig_offset, 1334 &other_start, &other_end)) { 1335 if (recow) { 1336 btrfs_release_path(path); 1337 goto again; 1338 } 1339 key.offset = other_start; 1340 del_slot = path->slots[0]; 1341 del_nr++; 1342 ret = btrfs_free_extent(trans, &ref); 1343 if (ret) { 1344 btrfs_abort_transaction(trans, ret); 1345 goto out; 1346 } 1347 } 1348 if (del_nr == 0) { 1349 fi = btrfs_item_ptr(leaf, path->slots[0], 1350 struct btrfs_file_extent_item); 1351 btrfs_set_file_extent_type(leaf, fi, 1352 BTRFS_FILE_EXTENT_REG); 1353 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1354 btrfs_mark_buffer_dirty(leaf); 1355 } else { 1356 fi = btrfs_item_ptr(leaf, del_slot - 1, 1357 struct btrfs_file_extent_item); 1358 btrfs_set_file_extent_type(leaf, fi, 1359 BTRFS_FILE_EXTENT_REG); 1360 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1361 btrfs_set_file_extent_num_bytes(leaf, fi, 1362 extent_end - key.offset); 1363 btrfs_mark_buffer_dirty(leaf); 1364 1365 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1366 if (ret < 0) { 1367 btrfs_abort_transaction(trans, ret); 1368 goto out; 1369 } 1370 } 1371 out: 1372 btrfs_free_path(path); 1373 return 0; 1374 } 1375 1376 /* 1377 * on error we return an unlocked page and the error value 1378 * on success we return a locked page and 0 1379 */ 1380 static int prepare_uptodate_page(struct inode *inode, 1381 struct page *page, u64 pos, 1382 bool force_uptodate) 1383 { 1384 int ret = 0; 1385 1386 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1387 !PageUptodate(page)) { 1388 ret = btrfs_readpage(NULL, page); 1389 if (ret) 1390 return ret; 1391 lock_page(page); 1392 if (!PageUptodate(page)) { 1393 unlock_page(page); 1394 return -EIO; 1395 } 1396 if (page->mapping != inode->i_mapping) { 1397 unlock_page(page); 1398 return -EAGAIN; 1399 } 1400 } 1401 return 0; 1402 } 1403 1404 /* 1405 * this just gets pages into the page cache and locks them down. 1406 */ 1407 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1408 size_t num_pages, loff_t pos, 1409 size_t write_bytes, bool force_uptodate) 1410 { 1411 int i; 1412 unsigned long index = pos >> PAGE_SHIFT; 1413 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1414 int err = 0; 1415 int faili; 1416 1417 for (i = 0; i < num_pages; i++) { 1418 again: 1419 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1420 mask | __GFP_WRITE); 1421 if (!pages[i]) { 1422 faili = i - 1; 1423 err = -ENOMEM; 1424 goto fail; 1425 } 1426 1427 if (i == 0) 1428 err = prepare_uptodate_page(inode, pages[i], pos, 1429 force_uptodate); 1430 if (!err && i == num_pages - 1) 1431 err = prepare_uptodate_page(inode, pages[i], 1432 pos + write_bytes, false); 1433 if (err) { 1434 put_page(pages[i]); 1435 if (err == -EAGAIN) { 1436 err = 0; 1437 goto again; 1438 } 1439 faili = i - 1; 1440 goto fail; 1441 } 1442 wait_on_page_writeback(pages[i]); 1443 } 1444 1445 return 0; 1446 fail: 1447 while (faili >= 0) { 1448 unlock_page(pages[faili]); 1449 put_page(pages[faili]); 1450 faili--; 1451 } 1452 return err; 1453 1454 } 1455 1456 /* 1457 * This function locks the extent and properly waits for data=ordered extents 1458 * to finish before allowing the pages to be modified if need. 1459 * 1460 * The return value: 1461 * 1 - the extent is locked 1462 * 0 - the extent is not locked, and everything is OK 1463 * -EAGAIN - need re-prepare the pages 1464 * the other < 0 number - Something wrong happens 1465 */ 1466 static noinline int 1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1468 size_t num_pages, loff_t pos, 1469 size_t write_bytes, 1470 u64 *lockstart, u64 *lockend, 1471 struct extent_state **cached_state) 1472 { 1473 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1474 u64 start_pos; 1475 u64 last_pos; 1476 int i; 1477 int ret = 0; 1478 1479 start_pos = round_down(pos, fs_info->sectorsize); 1480 last_pos = start_pos 1481 + round_up(pos + write_bytes - start_pos, 1482 fs_info->sectorsize) - 1; 1483 1484 if (start_pos < inode->vfs_inode.i_size) { 1485 struct btrfs_ordered_extent *ordered; 1486 1487 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1488 cached_state); 1489 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1490 last_pos - start_pos + 1); 1491 if (ordered && 1492 ordered->file_offset + ordered->num_bytes > start_pos && 1493 ordered->file_offset <= last_pos) { 1494 unlock_extent_cached(&inode->io_tree, start_pos, 1495 last_pos, cached_state); 1496 for (i = 0; i < num_pages; i++) { 1497 unlock_page(pages[i]); 1498 put_page(pages[i]); 1499 } 1500 btrfs_start_ordered_extent(&inode->vfs_inode, 1501 ordered, 1); 1502 btrfs_put_ordered_extent(ordered); 1503 return -EAGAIN; 1504 } 1505 if (ordered) 1506 btrfs_put_ordered_extent(ordered); 1507 1508 *lockstart = start_pos; 1509 *lockend = last_pos; 1510 ret = 1; 1511 } 1512 1513 /* 1514 * It's possible the pages are dirty right now, but we don't want 1515 * to clean them yet because copy_from_user may catch a page fault 1516 * and we might have to fall back to one page at a time. If that 1517 * happens, we'll unlock these pages and we'd have a window where 1518 * reclaim could sneak in and drop the once-dirty page on the floor 1519 * without writing it. 1520 * 1521 * We have the pages locked and the extent range locked, so there's 1522 * no way someone can start IO on any dirty pages in this range. 1523 * 1524 * We'll call btrfs_dirty_pages() later on, and that will flip around 1525 * delalloc bits and dirty the pages as required. 1526 */ 1527 for (i = 0; i < num_pages; i++) { 1528 set_page_extent_mapped(pages[i]); 1529 WARN_ON(!PageLocked(pages[i])); 1530 } 1531 1532 return ret; 1533 } 1534 1535 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1536 size_t *write_bytes, bool nowait) 1537 { 1538 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1539 struct btrfs_root *root = inode->root; 1540 u64 lockstart, lockend; 1541 u64 num_bytes; 1542 int ret; 1543 1544 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1545 return 0; 1546 1547 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1548 return -EAGAIN; 1549 1550 lockstart = round_down(pos, fs_info->sectorsize); 1551 lockend = round_up(pos + *write_bytes, 1552 fs_info->sectorsize) - 1; 1553 num_bytes = lockend - lockstart + 1; 1554 1555 if (nowait) { 1556 struct btrfs_ordered_extent *ordered; 1557 1558 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1559 return -EAGAIN; 1560 1561 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1562 num_bytes); 1563 if (ordered) { 1564 btrfs_put_ordered_extent(ordered); 1565 ret = -EAGAIN; 1566 goto out_unlock; 1567 } 1568 } else { 1569 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1570 lockend, NULL); 1571 } 1572 1573 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1574 NULL, NULL, NULL, false); 1575 if (ret <= 0) { 1576 ret = 0; 1577 if (!nowait) 1578 btrfs_drew_write_unlock(&root->snapshot_lock); 1579 } else { 1580 *write_bytes = min_t(size_t, *write_bytes , 1581 num_bytes - pos + lockstart); 1582 } 1583 out_unlock: 1584 unlock_extent(&inode->io_tree, lockstart, lockend); 1585 1586 return ret; 1587 } 1588 1589 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1590 size_t *write_bytes) 1591 { 1592 return check_can_nocow(inode, pos, write_bytes, true); 1593 } 1594 1595 /* 1596 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1597 * 1598 * @pos: File offset 1599 * @write_bytes: The length to write, will be updated to the nocow writeable 1600 * range 1601 * 1602 * This function will flush ordered extents in the range to ensure proper 1603 * nocow checks. 1604 * 1605 * Return: 1606 * >0 and update @write_bytes if we can do nocow write 1607 * 0 if we can't do nocow write 1608 * -EAGAIN if we can't get the needed lock or there are ordered extents 1609 * for * (nowait == true) case 1610 * <0 if other error happened 1611 * 1612 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1613 */ 1614 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1615 size_t *write_bytes) 1616 { 1617 return check_can_nocow(inode, pos, write_bytes, false); 1618 } 1619 1620 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1621 { 1622 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1623 } 1624 1625 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1626 struct iov_iter *i) 1627 { 1628 struct file *file = iocb->ki_filp; 1629 loff_t pos = iocb->ki_pos; 1630 struct inode *inode = file_inode(file); 1631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1632 struct page **pages = NULL; 1633 struct extent_changeset *data_reserved = NULL; 1634 u64 release_bytes = 0; 1635 u64 lockstart; 1636 u64 lockend; 1637 size_t num_written = 0; 1638 int nrptrs; 1639 int ret = 0; 1640 bool only_release_metadata = false; 1641 bool force_page_uptodate = false; 1642 1643 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1644 PAGE_SIZE / (sizeof(struct page *))); 1645 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1646 nrptrs = max(nrptrs, 8); 1647 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1648 if (!pages) 1649 return -ENOMEM; 1650 1651 while (iov_iter_count(i) > 0) { 1652 struct extent_state *cached_state = NULL; 1653 size_t offset = offset_in_page(pos); 1654 size_t sector_offset; 1655 size_t write_bytes = min(iov_iter_count(i), 1656 nrptrs * (size_t)PAGE_SIZE - 1657 offset); 1658 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1659 PAGE_SIZE); 1660 size_t reserve_bytes; 1661 size_t dirty_pages; 1662 size_t copied; 1663 size_t dirty_sectors; 1664 size_t num_sectors; 1665 int extents_locked; 1666 1667 WARN_ON(num_pages > nrptrs); 1668 1669 /* 1670 * Fault pages before locking them in prepare_pages 1671 * to avoid recursive lock 1672 */ 1673 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1674 ret = -EFAULT; 1675 break; 1676 } 1677 1678 only_release_metadata = false; 1679 sector_offset = pos & (fs_info->sectorsize - 1); 1680 reserve_bytes = round_up(write_bytes + sector_offset, 1681 fs_info->sectorsize); 1682 1683 extent_changeset_release(data_reserved); 1684 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1685 &data_reserved, pos, 1686 write_bytes); 1687 if (ret < 0) { 1688 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1689 &write_bytes) > 0) { 1690 /* 1691 * For nodata cow case, no need to reserve 1692 * data space. 1693 */ 1694 only_release_metadata = true; 1695 /* 1696 * our prealloc extent may be smaller than 1697 * write_bytes, so scale down. 1698 */ 1699 num_pages = DIV_ROUND_UP(write_bytes + offset, 1700 PAGE_SIZE); 1701 reserve_bytes = round_up(write_bytes + 1702 sector_offset, 1703 fs_info->sectorsize); 1704 } else { 1705 break; 1706 } 1707 } 1708 1709 WARN_ON(reserve_bytes == 0); 1710 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1711 reserve_bytes); 1712 if (ret) { 1713 if (!only_release_metadata) 1714 btrfs_free_reserved_data_space(BTRFS_I(inode), 1715 data_reserved, pos, 1716 write_bytes); 1717 else 1718 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1719 break; 1720 } 1721 1722 release_bytes = reserve_bytes; 1723 again: 1724 /* 1725 * This is going to setup the pages array with the number of 1726 * pages we want, so we don't really need to worry about the 1727 * contents of pages from loop to loop 1728 */ 1729 ret = prepare_pages(inode, pages, num_pages, 1730 pos, write_bytes, 1731 force_page_uptodate); 1732 if (ret) { 1733 btrfs_delalloc_release_extents(BTRFS_I(inode), 1734 reserve_bytes); 1735 break; 1736 } 1737 1738 extents_locked = lock_and_cleanup_extent_if_need( 1739 BTRFS_I(inode), pages, 1740 num_pages, pos, write_bytes, &lockstart, 1741 &lockend, &cached_state); 1742 if (extents_locked < 0) { 1743 if (extents_locked == -EAGAIN) 1744 goto again; 1745 btrfs_delalloc_release_extents(BTRFS_I(inode), 1746 reserve_bytes); 1747 ret = extents_locked; 1748 break; 1749 } 1750 1751 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1752 1753 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1754 dirty_sectors = round_up(copied + sector_offset, 1755 fs_info->sectorsize); 1756 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1757 1758 /* 1759 * if we have trouble faulting in the pages, fall 1760 * back to one page at a time 1761 */ 1762 if (copied < write_bytes) 1763 nrptrs = 1; 1764 1765 if (copied == 0) { 1766 force_page_uptodate = true; 1767 dirty_sectors = 0; 1768 dirty_pages = 0; 1769 } else { 1770 force_page_uptodate = false; 1771 dirty_pages = DIV_ROUND_UP(copied + offset, 1772 PAGE_SIZE); 1773 } 1774 1775 if (num_sectors > dirty_sectors) { 1776 /* release everything except the sectors we dirtied */ 1777 release_bytes -= dirty_sectors << 1778 fs_info->sb->s_blocksize_bits; 1779 if (only_release_metadata) { 1780 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1781 release_bytes, true); 1782 } else { 1783 u64 __pos; 1784 1785 __pos = round_down(pos, 1786 fs_info->sectorsize) + 1787 (dirty_pages << PAGE_SHIFT); 1788 btrfs_delalloc_release_space(BTRFS_I(inode), 1789 data_reserved, __pos, 1790 release_bytes, true); 1791 } 1792 } 1793 1794 release_bytes = round_up(copied + sector_offset, 1795 fs_info->sectorsize); 1796 1797 if (copied > 0) 1798 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1799 dirty_pages, pos, copied, 1800 &cached_state); 1801 1802 /* 1803 * If we have not locked the extent range, because the range's 1804 * start offset is >= i_size, we might still have a non-NULL 1805 * cached extent state, acquired while marking the extent range 1806 * as delalloc through btrfs_dirty_pages(). Therefore free any 1807 * possible cached extent state to avoid a memory leak. 1808 */ 1809 if (extents_locked) 1810 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1811 lockstart, lockend, &cached_state); 1812 else 1813 free_extent_state(cached_state); 1814 1815 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1816 if (ret) { 1817 btrfs_drop_pages(pages, num_pages); 1818 break; 1819 } 1820 1821 release_bytes = 0; 1822 if (only_release_metadata) 1823 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1824 1825 if (only_release_metadata && copied > 0) { 1826 lockstart = round_down(pos, 1827 fs_info->sectorsize); 1828 lockend = round_up(pos + copied, 1829 fs_info->sectorsize) - 1; 1830 1831 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1832 lockend, EXTENT_NORESERVE, NULL, 1833 NULL, GFP_NOFS); 1834 } 1835 1836 btrfs_drop_pages(pages, num_pages); 1837 1838 cond_resched(); 1839 1840 balance_dirty_pages_ratelimited(inode->i_mapping); 1841 1842 pos += copied; 1843 num_written += copied; 1844 } 1845 1846 kfree(pages); 1847 1848 if (release_bytes) { 1849 if (only_release_metadata) { 1850 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1851 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1852 release_bytes, true); 1853 } else { 1854 btrfs_delalloc_release_space(BTRFS_I(inode), 1855 data_reserved, 1856 round_down(pos, fs_info->sectorsize), 1857 release_bytes, true); 1858 } 1859 } 1860 1861 extent_changeset_free(data_reserved); 1862 return num_written ? num_written : ret; 1863 } 1864 1865 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1866 { 1867 struct file *file = iocb->ki_filp; 1868 struct inode *inode = file_inode(file); 1869 loff_t pos; 1870 ssize_t written; 1871 ssize_t written_buffered; 1872 loff_t endbyte; 1873 int err; 1874 1875 written = generic_file_direct_write(iocb, from); 1876 1877 if (written < 0 || !iov_iter_count(from)) 1878 return written; 1879 1880 pos = iocb->ki_pos; 1881 written_buffered = btrfs_buffered_write(iocb, from); 1882 if (written_buffered < 0) { 1883 err = written_buffered; 1884 goto out; 1885 } 1886 /* 1887 * Ensure all data is persisted. We want the next direct IO read to be 1888 * able to read what was just written. 1889 */ 1890 endbyte = pos + written_buffered - 1; 1891 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1892 if (err) 1893 goto out; 1894 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1895 if (err) 1896 goto out; 1897 written += written_buffered; 1898 iocb->ki_pos = pos + written_buffered; 1899 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1900 endbyte >> PAGE_SHIFT); 1901 out: 1902 return written ? written : err; 1903 } 1904 1905 static void update_time_for_write(struct inode *inode) 1906 { 1907 struct timespec64 now; 1908 1909 if (IS_NOCMTIME(inode)) 1910 return; 1911 1912 now = current_time(inode); 1913 if (!timespec64_equal(&inode->i_mtime, &now)) 1914 inode->i_mtime = now; 1915 1916 if (!timespec64_equal(&inode->i_ctime, &now)) 1917 inode->i_ctime = now; 1918 1919 if (IS_I_VERSION(inode)) 1920 inode_inc_iversion(inode); 1921 } 1922 1923 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1924 struct iov_iter *from) 1925 { 1926 struct file *file = iocb->ki_filp; 1927 struct inode *inode = file_inode(file); 1928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1929 struct btrfs_root *root = BTRFS_I(inode)->root; 1930 u64 start_pos; 1931 u64 end_pos; 1932 ssize_t num_written = 0; 1933 const bool sync = iocb->ki_flags & IOCB_DSYNC; 1934 ssize_t err; 1935 loff_t pos; 1936 size_t count; 1937 loff_t oldsize; 1938 int clean_page = 0; 1939 1940 if (!(iocb->ki_flags & IOCB_DIRECT) && 1941 (iocb->ki_flags & IOCB_NOWAIT)) 1942 return -EOPNOTSUPP; 1943 1944 if (iocb->ki_flags & IOCB_NOWAIT) { 1945 if (!inode_trylock(inode)) 1946 return -EAGAIN; 1947 } else { 1948 inode_lock(inode); 1949 } 1950 1951 err = generic_write_checks(iocb, from); 1952 if (err <= 0) { 1953 inode_unlock(inode); 1954 return err; 1955 } 1956 1957 pos = iocb->ki_pos; 1958 count = iov_iter_count(from); 1959 if (iocb->ki_flags & IOCB_NOWAIT) { 1960 size_t nocow_bytes = count; 1961 1962 /* 1963 * We will allocate space in case nodatacow is not set, 1964 * so bail 1965 */ 1966 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) 1967 <= 0) { 1968 inode_unlock(inode); 1969 return -EAGAIN; 1970 } 1971 /* 1972 * There are holes in the range or parts of the range that must 1973 * be COWed (shared extents, RO block groups, etc), so just bail 1974 * out. 1975 */ 1976 if (nocow_bytes < count) { 1977 inode_unlock(inode); 1978 return -EAGAIN; 1979 } 1980 } 1981 1982 current->backing_dev_info = inode_to_bdi(inode); 1983 err = file_remove_privs(file); 1984 if (err) { 1985 inode_unlock(inode); 1986 goto out; 1987 } 1988 1989 /* 1990 * If BTRFS flips readonly due to some impossible error 1991 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1992 * although we have opened a file as writable, we have 1993 * to stop this write operation to ensure FS consistency. 1994 */ 1995 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1996 inode_unlock(inode); 1997 err = -EROFS; 1998 goto out; 1999 } 2000 2001 /* 2002 * We reserve space for updating the inode when we reserve space for the 2003 * extent we are going to write, so we will enospc out there. We don't 2004 * need to start yet another transaction to update the inode as we will 2005 * update the inode when we finish writing whatever data we write. 2006 */ 2007 update_time_for_write(inode); 2008 2009 start_pos = round_down(pos, fs_info->sectorsize); 2010 oldsize = i_size_read(inode); 2011 if (start_pos > oldsize) { 2012 /* Expand hole size to cover write data, preventing empty gap */ 2013 end_pos = round_up(pos + count, 2014 fs_info->sectorsize); 2015 err = btrfs_cont_expand(inode, oldsize, end_pos); 2016 if (err) { 2017 inode_unlock(inode); 2018 goto out; 2019 } 2020 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 2021 clean_page = 1; 2022 } 2023 2024 if (sync) 2025 atomic_inc(&BTRFS_I(inode)->sync_writers); 2026 2027 if (iocb->ki_flags & IOCB_DIRECT) { 2028 num_written = __btrfs_direct_write(iocb, from); 2029 } else { 2030 num_written = btrfs_buffered_write(iocb, from); 2031 if (num_written > 0) 2032 iocb->ki_pos = pos + num_written; 2033 if (clean_page) 2034 pagecache_isize_extended(inode, oldsize, 2035 i_size_read(inode)); 2036 } 2037 2038 inode_unlock(inode); 2039 2040 /* 2041 * We also have to set last_sub_trans to the current log transid, 2042 * otherwise subsequent syncs to a file that's been synced in this 2043 * transaction will appear to have already occurred. 2044 */ 2045 spin_lock(&BTRFS_I(inode)->lock); 2046 BTRFS_I(inode)->last_sub_trans = root->log_transid; 2047 spin_unlock(&BTRFS_I(inode)->lock); 2048 if (num_written > 0) 2049 num_written = generic_write_sync(iocb, num_written); 2050 2051 if (sync) 2052 atomic_dec(&BTRFS_I(inode)->sync_writers); 2053 out: 2054 current->backing_dev_info = NULL; 2055 return num_written ? num_written : err; 2056 } 2057 2058 int btrfs_release_file(struct inode *inode, struct file *filp) 2059 { 2060 struct btrfs_file_private *private = filp->private_data; 2061 2062 if (private && private->filldir_buf) 2063 kfree(private->filldir_buf); 2064 kfree(private); 2065 filp->private_data = NULL; 2066 2067 /* 2068 * ordered_data_close is set by setattr when we are about to truncate 2069 * a file from a non-zero size to a zero size. This tries to 2070 * flush down new bytes that may have been written if the 2071 * application were using truncate to replace a file in place. 2072 */ 2073 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2074 &BTRFS_I(inode)->runtime_flags)) 2075 filemap_flush(inode->i_mapping); 2076 return 0; 2077 } 2078 2079 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2080 { 2081 int ret; 2082 struct blk_plug plug; 2083 2084 /* 2085 * This is only called in fsync, which would do synchronous writes, so 2086 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2087 * multiple disks using raid profile, a large IO can be split to 2088 * several segments of stripe length (currently 64K). 2089 */ 2090 blk_start_plug(&plug); 2091 atomic_inc(&BTRFS_I(inode)->sync_writers); 2092 ret = btrfs_fdatawrite_range(inode, start, end); 2093 atomic_dec(&BTRFS_I(inode)->sync_writers); 2094 blk_finish_plug(&plug); 2095 2096 return ret; 2097 } 2098 2099 /* 2100 * fsync call for both files and directories. This logs the inode into 2101 * the tree log instead of forcing full commits whenever possible. 2102 * 2103 * It needs to call filemap_fdatawait so that all ordered extent updates are 2104 * in the metadata btree are up to date for copying to the log. 2105 * 2106 * It drops the inode mutex before doing the tree log commit. This is an 2107 * important optimization for directories because holding the mutex prevents 2108 * new operations on the dir while we write to disk. 2109 */ 2110 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2111 { 2112 struct dentry *dentry = file_dentry(file); 2113 struct inode *inode = d_inode(dentry); 2114 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2115 struct btrfs_root *root = BTRFS_I(inode)->root; 2116 struct btrfs_trans_handle *trans; 2117 struct btrfs_log_ctx ctx; 2118 int ret = 0, err; 2119 2120 trace_btrfs_sync_file(file, datasync); 2121 2122 btrfs_init_log_ctx(&ctx, inode); 2123 2124 /* 2125 * Set the range to full if the NO_HOLES feature is not enabled. 2126 * This is to avoid missing file extent items representing holes after 2127 * replaying the log. 2128 */ 2129 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) { 2130 start = 0; 2131 end = LLONG_MAX; 2132 } 2133 2134 /* 2135 * We write the dirty pages in the range and wait until they complete 2136 * out of the ->i_mutex. If so, we can flush the dirty pages by 2137 * multi-task, and make the performance up. See 2138 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2139 */ 2140 ret = start_ordered_ops(inode, start, end); 2141 if (ret) 2142 goto out; 2143 2144 inode_lock(inode); 2145 2146 /* 2147 * We take the dio_sem here because the tree log stuff can race with 2148 * lockless dio writes and get an extent map logged for an extent we 2149 * never waited on. We need it this high up for lockdep reasons. 2150 */ 2151 down_write(&BTRFS_I(inode)->dio_sem); 2152 2153 atomic_inc(&root->log_batch); 2154 2155 /* 2156 * If the inode needs a full sync, make sure we use a full range to 2157 * avoid log tree corruption, due to hole detection racing with ordered 2158 * extent completion for adjacent ranges and races between logging and 2159 * completion of ordered extents for adjancent ranges - both races 2160 * could lead to file extent items in the log with overlapping ranges. 2161 * Do this while holding the inode lock, to avoid races with other 2162 * tasks. 2163 */ 2164 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2165 &BTRFS_I(inode)->runtime_flags)) { 2166 start = 0; 2167 end = LLONG_MAX; 2168 } 2169 2170 /* 2171 * Before we acquired the inode's lock, someone may have dirtied more 2172 * pages in the target range. We need to make sure that writeback for 2173 * any such pages does not start while we are logging the inode, because 2174 * if it does, any of the following might happen when we are not doing a 2175 * full inode sync: 2176 * 2177 * 1) We log an extent after its writeback finishes but before its 2178 * checksums are added to the csum tree, leading to -EIO errors 2179 * when attempting to read the extent after a log replay. 2180 * 2181 * 2) We can end up logging an extent before its writeback finishes. 2182 * Therefore after the log replay we will have a file extent item 2183 * pointing to an unwritten extent (and no data checksums as well). 2184 * 2185 * So trigger writeback for any eventual new dirty pages and then we 2186 * wait for all ordered extents to complete below. 2187 */ 2188 ret = start_ordered_ops(inode, start, end); 2189 if (ret) { 2190 up_write(&BTRFS_I(inode)->dio_sem); 2191 inode_unlock(inode); 2192 goto out; 2193 } 2194 2195 /* 2196 * We have to do this here to avoid the priority inversion of waiting on 2197 * IO of a lower priority task while holding a transaction open. 2198 * 2199 * Also, the range length can be represented by u64, we have to do the 2200 * typecasts to avoid signed overflow if it's [0, LLONG_MAX]. 2201 */ 2202 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1); 2203 if (ret) { 2204 up_write(&BTRFS_I(inode)->dio_sem); 2205 inode_unlock(inode); 2206 goto out; 2207 } 2208 atomic_inc(&root->log_batch); 2209 2210 smp_mb(); 2211 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2212 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2213 /* 2214 * We've had everything committed since the last time we were 2215 * modified so clear this flag in case it was set for whatever 2216 * reason, it's no longer relevant. 2217 */ 2218 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2219 &BTRFS_I(inode)->runtime_flags); 2220 /* 2221 * An ordered extent might have started before and completed 2222 * already with io errors, in which case the inode was not 2223 * updated and we end up here. So check the inode's mapping 2224 * for any errors that might have happened since we last 2225 * checked called fsync. 2226 */ 2227 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2228 up_write(&BTRFS_I(inode)->dio_sem); 2229 inode_unlock(inode); 2230 goto out; 2231 } 2232 2233 /* 2234 * We use start here because we will need to wait on the IO to complete 2235 * in btrfs_sync_log, which could require joining a transaction (for 2236 * example checking cross references in the nocow path). If we use join 2237 * here we could get into a situation where we're waiting on IO to 2238 * happen that is blocked on a transaction trying to commit. With start 2239 * we inc the extwriter counter, so we wait for all extwriters to exit 2240 * before we start blocking joiners. This comment is to keep somebody 2241 * from thinking they are super smart and changing this to 2242 * btrfs_join_transaction *cough*Josef*cough*. 2243 */ 2244 trans = btrfs_start_transaction(root, 0); 2245 if (IS_ERR(trans)) { 2246 ret = PTR_ERR(trans); 2247 up_write(&BTRFS_I(inode)->dio_sem); 2248 inode_unlock(inode); 2249 goto out; 2250 } 2251 2252 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2253 if (ret < 0) { 2254 /* Fallthrough and commit/free transaction. */ 2255 ret = 1; 2256 } 2257 2258 /* we've logged all the items and now have a consistent 2259 * version of the file in the log. It is possible that 2260 * someone will come in and modify the file, but that's 2261 * fine because the log is consistent on disk, and we 2262 * have references to all of the file's extents 2263 * 2264 * It is possible that someone will come in and log the 2265 * file again, but that will end up using the synchronization 2266 * inside btrfs_sync_log to keep things safe. 2267 */ 2268 up_write(&BTRFS_I(inode)->dio_sem); 2269 inode_unlock(inode); 2270 2271 if (ret != BTRFS_NO_LOG_SYNC) { 2272 if (!ret) { 2273 ret = btrfs_sync_log(trans, root, &ctx); 2274 if (!ret) { 2275 ret = btrfs_end_transaction(trans); 2276 goto out; 2277 } 2278 } 2279 ret = btrfs_commit_transaction(trans); 2280 } else { 2281 ret = btrfs_end_transaction(trans); 2282 } 2283 out: 2284 ASSERT(list_empty(&ctx.list)); 2285 err = file_check_and_advance_wb_err(file); 2286 if (!ret) 2287 ret = err; 2288 return ret > 0 ? -EIO : ret; 2289 } 2290 2291 static const struct vm_operations_struct btrfs_file_vm_ops = { 2292 .fault = filemap_fault, 2293 .map_pages = filemap_map_pages, 2294 .page_mkwrite = btrfs_page_mkwrite, 2295 }; 2296 2297 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2298 { 2299 struct address_space *mapping = filp->f_mapping; 2300 2301 if (!mapping->a_ops->readpage) 2302 return -ENOEXEC; 2303 2304 file_accessed(filp); 2305 vma->vm_ops = &btrfs_file_vm_ops; 2306 2307 return 0; 2308 } 2309 2310 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2311 int slot, u64 start, u64 end) 2312 { 2313 struct btrfs_file_extent_item *fi; 2314 struct btrfs_key key; 2315 2316 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2317 return 0; 2318 2319 btrfs_item_key_to_cpu(leaf, &key, slot); 2320 if (key.objectid != btrfs_ino(inode) || 2321 key.type != BTRFS_EXTENT_DATA_KEY) 2322 return 0; 2323 2324 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2325 2326 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2327 return 0; 2328 2329 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2330 return 0; 2331 2332 if (key.offset == end) 2333 return 1; 2334 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2335 return 1; 2336 return 0; 2337 } 2338 2339 static int fill_holes(struct btrfs_trans_handle *trans, 2340 struct btrfs_inode *inode, 2341 struct btrfs_path *path, u64 offset, u64 end) 2342 { 2343 struct btrfs_fs_info *fs_info = trans->fs_info; 2344 struct btrfs_root *root = inode->root; 2345 struct extent_buffer *leaf; 2346 struct btrfs_file_extent_item *fi; 2347 struct extent_map *hole_em; 2348 struct extent_map_tree *em_tree = &inode->extent_tree; 2349 struct btrfs_key key; 2350 int ret; 2351 2352 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2353 goto out; 2354 2355 key.objectid = btrfs_ino(inode); 2356 key.type = BTRFS_EXTENT_DATA_KEY; 2357 key.offset = offset; 2358 2359 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2360 if (ret <= 0) { 2361 /* 2362 * We should have dropped this offset, so if we find it then 2363 * something has gone horribly wrong. 2364 */ 2365 if (ret == 0) 2366 ret = -EINVAL; 2367 return ret; 2368 } 2369 2370 leaf = path->nodes[0]; 2371 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2372 u64 num_bytes; 2373 2374 path->slots[0]--; 2375 fi = btrfs_item_ptr(leaf, path->slots[0], 2376 struct btrfs_file_extent_item); 2377 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2378 end - offset; 2379 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2380 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2381 btrfs_set_file_extent_offset(leaf, fi, 0); 2382 btrfs_mark_buffer_dirty(leaf); 2383 goto out; 2384 } 2385 2386 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2387 u64 num_bytes; 2388 2389 key.offset = offset; 2390 btrfs_set_item_key_safe(fs_info, path, &key); 2391 fi = btrfs_item_ptr(leaf, path->slots[0], 2392 struct btrfs_file_extent_item); 2393 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2394 offset; 2395 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2396 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2397 btrfs_set_file_extent_offset(leaf, fi, 0); 2398 btrfs_mark_buffer_dirty(leaf); 2399 goto out; 2400 } 2401 btrfs_release_path(path); 2402 2403 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2404 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2405 if (ret) 2406 return ret; 2407 2408 out: 2409 btrfs_release_path(path); 2410 2411 hole_em = alloc_extent_map(); 2412 if (!hole_em) { 2413 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2414 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2415 } else { 2416 hole_em->start = offset; 2417 hole_em->len = end - offset; 2418 hole_em->ram_bytes = hole_em->len; 2419 hole_em->orig_start = offset; 2420 2421 hole_em->block_start = EXTENT_MAP_HOLE; 2422 hole_em->block_len = 0; 2423 hole_em->orig_block_len = 0; 2424 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2425 hole_em->generation = trans->transid; 2426 2427 do { 2428 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2429 write_lock(&em_tree->lock); 2430 ret = add_extent_mapping(em_tree, hole_em, 1); 2431 write_unlock(&em_tree->lock); 2432 } while (ret == -EEXIST); 2433 free_extent_map(hole_em); 2434 if (ret) 2435 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2436 &inode->runtime_flags); 2437 } 2438 2439 return 0; 2440 } 2441 2442 /* 2443 * Find a hole extent on given inode and change start/len to the end of hole 2444 * extent.(hole/vacuum extent whose em->start <= start && 2445 * em->start + em->len > start) 2446 * When a hole extent is found, return 1 and modify start/len. 2447 */ 2448 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2449 { 2450 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2451 struct extent_map *em; 2452 int ret = 0; 2453 2454 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2455 round_down(*start, fs_info->sectorsize), 2456 round_up(*len, fs_info->sectorsize)); 2457 if (IS_ERR(em)) 2458 return PTR_ERR(em); 2459 2460 /* Hole or vacuum extent(only exists in no-hole mode) */ 2461 if (em->block_start == EXTENT_MAP_HOLE) { 2462 ret = 1; 2463 *len = em->start + em->len > *start + *len ? 2464 0 : *start + *len - em->start - em->len; 2465 *start = em->start + em->len; 2466 } 2467 free_extent_map(em); 2468 return ret; 2469 } 2470 2471 static int btrfs_punch_hole_lock_range(struct inode *inode, 2472 const u64 lockstart, 2473 const u64 lockend, 2474 struct extent_state **cached_state) 2475 { 2476 while (1) { 2477 struct btrfs_ordered_extent *ordered; 2478 int ret; 2479 2480 truncate_pagecache_range(inode, lockstart, lockend); 2481 2482 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2483 cached_state); 2484 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2485 2486 /* 2487 * We need to make sure we have no ordered extents in this range 2488 * and nobody raced in and read a page in this range, if we did 2489 * we need to try again. 2490 */ 2491 if ((!ordered || 2492 (ordered->file_offset + ordered->num_bytes <= lockstart || 2493 ordered->file_offset > lockend)) && 2494 !filemap_range_has_page(inode->i_mapping, 2495 lockstart, lockend)) { 2496 if (ordered) 2497 btrfs_put_ordered_extent(ordered); 2498 break; 2499 } 2500 if (ordered) 2501 btrfs_put_ordered_extent(ordered); 2502 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2503 lockend, cached_state); 2504 ret = btrfs_wait_ordered_range(inode, lockstart, 2505 lockend - lockstart + 1); 2506 if (ret) 2507 return ret; 2508 } 2509 return 0; 2510 } 2511 2512 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans, 2513 struct inode *inode, 2514 struct btrfs_path *path, 2515 struct btrfs_clone_extent_info *clone_info, 2516 const u64 clone_len) 2517 { 2518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2519 struct btrfs_root *root = BTRFS_I(inode)->root; 2520 struct btrfs_file_extent_item *extent; 2521 struct extent_buffer *leaf; 2522 struct btrfs_key key; 2523 int slot; 2524 struct btrfs_ref ref = { 0 }; 2525 u64 ref_offset; 2526 int ret; 2527 2528 if (clone_len == 0) 2529 return 0; 2530 2531 if (clone_info->disk_offset == 0 && 2532 btrfs_fs_incompat(fs_info, NO_HOLES)) 2533 return 0; 2534 2535 key.objectid = btrfs_ino(BTRFS_I(inode)); 2536 key.type = BTRFS_EXTENT_DATA_KEY; 2537 key.offset = clone_info->file_offset; 2538 ret = btrfs_insert_empty_item(trans, root, path, &key, 2539 clone_info->item_size); 2540 if (ret) 2541 return ret; 2542 leaf = path->nodes[0]; 2543 slot = path->slots[0]; 2544 write_extent_buffer(leaf, clone_info->extent_buf, 2545 btrfs_item_ptr_offset(leaf, slot), 2546 clone_info->item_size); 2547 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2548 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset); 2549 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len); 2550 btrfs_mark_buffer_dirty(leaf); 2551 btrfs_release_path(path); 2552 2553 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 2554 clone_info->file_offset, clone_len); 2555 if (ret) 2556 return ret; 2557 2558 /* If it's a hole, nothing more needs to be done. */ 2559 if (clone_info->disk_offset == 0) 2560 return 0; 2561 2562 inode_add_bytes(inode, clone_len); 2563 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2564 clone_info->disk_offset, 2565 clone_info->disk_len, 0); 2566 ref_offset = clone_info->file_offset - clone_info->data_offset; 2567 btrfs_init_data_ref(&ref, root->root_key.objectid, 2568 btrfs_ino(BTRFS_I(inode)), ref_offset); 2569 ret = btrfs_inc_extent_ref(trans, &ref); 2570 2571 return ret; 2572 } 2573 2574 /* 2575 * The respective range must have been previously locked, as well as the inode. 2576 * The end offset is inclusive (last byte of the range). 2577 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent 2578 * cloning. 2579 * When cloning, we don't want to end up in a state where we dropped extents 2580 * without inserting a new one, so we must abort the transaction to avoid a 2581 * corruption. 2582 */ 2583 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path, 2584 const u64 start, const u64 end, 2585 struct btrfs_clone_extent_info *clone_info, 2586 struct btrfs_trans_handle **trans_out) 2587 { 2588 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2589 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2590 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2591 struct btrfs_root *root = BTRFS_I(inode)->root; 2592 struct btrfs_trans_handle *trans = NULL; 2593 struct btrfs_block_rsv *rsv; 2594 unsigned int rsv_count; 2595 u64 cur_offset; 2596 u64 drop_end; 2597 u64 len = end - start; 2598 int ret = 0; 2599 2600 if (end <= start) 2601 return -EINVAL; 2602 2603 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2604 if (!rsv) { 2605 ret = -ENOMEM; 2606 goto out; 2607 } 2608 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2609 rsv->failfast = 1; 2610 2611 /* 2612 * 1 - update the inode 2613 * 1 - removing the extents in the range 2614 * 1 - adding the hole extent if no_holes isn't set or if we are cloning 2615 * an extent 2616 */ 2617 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info) 2618 rsv_count = 3; 2619 else 2620 rsv_count = 2; 2621 2622 trans = btrfs_start_transaction(root, rsv_count); 2623 if (IS_ERR(trans)) { 2624 ret = PTR_ERR(trans); 2625 trans = NULL; 2626 goto out_free; 2627 } 2628 2629 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2630 min_size, false); 2631 BUG_ON(ret); 2632 trans->block_rsv = rsv; 2633 2634 cur_offset = start; 2635 while (cur_offset < end) { 2636 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, 2637 cur_offset, end + 1, &drop_end, 2638 1, 0, 0, NULL); 2639 if (ret != -ENOSPC) { 2640 /* 2641 * When cloning we want to avoid transaction aborts when 2642 * nothing was done and we are attempting to clone parts 2643 * of inline extents, in such cases -EOPNOTSUPP is 2644 * returned by __btrfs_drop_extents() without having 2645 * changed anything in the file. 2646 */ 2647 if (clone_info && ret && ret != -EOPNOTSUPP) 2648 btrfs_abort_transaction(trans, ret); 2649 break; 2650 } 2651 2652 trans->block_rsv = &fs_info->trans_block_rsv; 2653 2654 if (!clone_info && cur_offset < drop_end && 2655 cur_offset < ino_size) { 2656 ret = fill_holes(trans, BTRFS_I(inode), path, 2657 cur_offset, drop_end); 2658 if (ret) { 2659 /* 2660 * If we failed then we didn't insert our hole 2661 * entries for the area we dropped, so now the 2662 * fs is corrupted, so we must abort the 2663 * transaction. 2664 */ 2665 btrfs_abort_transaction(trans, ret); 2666 break; 2667 } 2668 } else if (!clone_info && cur_offset < drop_end) { 2669 /* 2670 * We are past the i_size here, but since we didn't 2671 * insert holes we need to clear the mapped area so we 2672 * know to not set disk_i_size in this area until a new 2673 * file extent is inserted here. 2674 */ 2675 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2676 cur_offset, drop_end - cur_offset); 2677 if (ret) { 2678 /* 2679 * We couldn't clear our area, so we could 2680 * presumably adjust up and corrupt the fs, so 2681 * we need to abort. 2682 */ 2683 btrfs_abort_transaction(trans, ret); 2684 break; 2685 } 2686 } 2687 2688 if (clone_info && drop_end > clone_info->file_offset) { 2689 u64 clone_len = drop_end - clone_info->file_offset; 2690 2691 ret = btrfs_insert_clone_extent(trans, inode, path, 2692 clone_info, clone_len); 2693 if (ret) { 2694 btrfs_abort_transaction(trans, ret); 2695 break; 2696 } 2697 clone_info->data_len -= clone_len; 2698 clone_info->data_offset += clone_len; 2699 clone_info->file_offset += clone_len; 2700 } 2701 2702 cur_offset = drop_end; 2703 2704 ret = btrfs_update_inode(trans, root, inode); 2705 if (ret) 2706 break; 2707 2708 btrfs_end_transaction(trans); 2709 btrfs_btree_balance_dirty(fs_info); 2710 2711 trans = btrfs_start_transaction(root, rsv_count); 2712 if (IS_ERR(trans)) { 2713 ret = PTR_ERR(trans); 2714 trans = NULL; 2715 break; 2716 } 2717 2718 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2719 rsv, min_size, false); 2720 BUG_ON(ret); /* shouldn't happen */ 2721 trans->block_rsv = rsv; 2722 2723 if (!clone_info) { 2724 ret = find_first_non_hole(inode, &cur_offset, &len); 2725 if (unlikely(ret < 0)) 2726 break; 2727 if (ret && !len) { 2728 ret = 0; 2729 break; 2730 } 2731 } 2732 } 2733 2734 /* 2735 * If we were cloning, force the next fsync to be a full one since we 2736 * we replaced (or just dropped in the case of cloning holes when 2737 * NO_HOLES is enabled) extents and extent maps. 2738 * This is for the sake of simplicity, and cloning into files larger 2739 * than 16Mb would force the full fsync any way (when 2740 * try_release_extent_mapping() is invoked during page cache truncation. 2741 */ 2742 if (clone_info) 2743 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2744 &BTRFS_I(inode)->runtime_flags); 2745 2746 if (ret) 2747 goto out_trans; 2748 2749 trans->block_rsv = &fs_info->trans_block_rsv; 2750 /* 2751 * If we are using the NO_HOLES feature we might have had already an 2752 * hole that overlaps a part of the region [lockstart, lockend] and 2753 * ends at (or beyond) lockend. Since we have no file extent items to 2754 * represent holes, drop_end can be less than lockend and so we must 2755 * make sure we have an extent map representing the existing hole (the 2756 * call to __btrfs_drop_extents() might have dropped the existing extent 2757 * map representing the existing hole), otherwise the fast fsync path 2758 * will not record the existence of the hole region 2759 * [existing_hole_start, lockend]. 2760 */ 2761 if (drop_end <= end) 2762 drop_end = end + 1; 2763 /* 2764 * Don't insert file hole extent item if it's for a range beyond eof 2765 * (because it's useless) or if it represents a 0 bytes range (when 2766 * cur_offset == drop_end). 2767 */ 2768 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) { 2769 ret = fill_holes(trans, BTRFS_I(inode), path, 2770 cur_offset, drop_end); 2771 if (ret) { 2772 /* Same comment as above. */ 2773 btrfs_abort_transaction(trans, ret); 2774 goto out_trans; 2775 } 2776 } else if (!clone_info && cur_offset < drop_end) { 2777 /* See the comment in the loop above for the reasoning here. */ 2778 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2779 cur_offset, drop_end - cur_offset); 2780 if (ret) { 2781 btrfs_abort_transaction(trans, ret); 2782 goto out_trans; 2783 } 2784 2785 } 2786 if (clone_info) { 2787 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info, 2788 clone_info->data_len); 2789 if (ret) { 2790 btrfs_abort_transaction(trans, ret); 2791 goto out_trans; 2792 } 2793 } 2794 2795 out_trans: 2796 if (!trans) 2797 goto out_free; 2798 2799 trans->block_rsv = &fs_info->trans_block_rsv; 2800 if (ret) 2801 btrfs_end_transaction(trans); 2802 else 2803 *trans_out = trans; 2804 out_free: 2805 btrfs_free_block_rsv(fs_info, rsv); 2806 out: 2807 return ret; 2808 } 2809 2810 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2811 { 2812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2813 struct btrfs_root *root = BTRFS_I(inode)->root; 2814 struct extent_state *cached_state = NULL; 2815 struct btrfs_path *path; 2816 struct btrfs_trans_handle *trans = NULL; 2817 u64 lockstart; 2818 u64 lockend; 2819 u64 tail_start; 2820 u64 tail_len; 2821 u64 orig_start = offset; 2822 int ret = 0; 2823 bool same_block; 2824 u64 ino_size; 2825 bool truncated_block = false; 2826 bool updated_inode = false; 2827 2828 ret = btrfs_wait_ordered_range(inode, offset, len); 2829 if (ret) 2830 return ret; 2831 2832 inode_lock(inode); 2833 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2834 ret = find_first_non_hole(inode, &offset, &len); 2835 if (ret < 0) 2836 goto out_only_mutex; 2837 if (ret && !len) { 2838 /* Already in a large hole */ 2839 ret = 0; 2840 goto out_only_mutex; 2841 } 2842 2843 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2844 lockend = round_down(offset + len, 2845 btrfs_inode_sectorsize(inode)) - 1; 2846 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2847 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2848 /* 2849 * We needn't truncate any block which is beyond the end of the file 2850 * because we are sure there is no data there. 2851 */ 2852 /* 2853 * Only do this if we are in the same block and we aren't doing the 2854 * entire block. 2855 */ 2856 if (same_block && len < fs_info->sectorsize) { 2857 if (offset < ino_size) { 2858 truncated_block = true; 2859 ret = btrfs_truncate_block(inode, offset, len, 0); 2860 } else { 2861 ret = 0; 2862 } 2863 goto out_only_mutex; 2864 } 2865 2866 /* zero back part of the first block */ 2867 if (offset < ino_size) { 2868 truncated_block = true; 2869 ret = btrfs_truncate_block(inode, offset, 0, 0); 2870 if (ret) { 2871 inode_unlock(inode); 2872 return ret; 2873 } 2874 } 2875 2876 /* Check the aligned pages after the first unaligned page, 2877 * if offset != orig_start, which means the first unaligned page 2878 * including several following pages are already in holes, 2879 * the extra check can be skipped */ 2880 if (offset == orig_start) { 2881 /* after truncate page, check hole again */ 2882 len = offset + len - lockstart; 2883 offset = lockstart; 2884 ret = find_first_non_hole(inode, &offset, &len); 2885 if (ret < 0) 2886 goto out_only_mutex; 2887 if (ret && !len) { 2888 ret = 0; 2889 goto out_only_mutex; 2890 } 2891 lockstart = offset; 2892 } 2893 2894 /* Check the tail unaligned part is in a hole */ 2895 tail_start = lockend + 1; 2896 tail_len = offset + len - tail_start; 2897 if (tail_len) { 2898 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2899 if (unlikely(ret < 0)) 2900 goto out_only_mutex; 2901 if (!ret) { 2902 /* zero the front end of the last page */ 2903 if (tail_start + tail_len < ino_size) { 2904 truncated_block = true; 2905 ret = btrfs_truncate_block(inode, 2906 tail_start + tail_len, 2907 0, 1); 2908 if (ret) 2909 goto out_only_mutex; 2910 } 2911 } 2912 } 2913 2914 if (lockend < lockstart) { 2915 ret = 0; 2916 goto out_only_mutex; 2917 } 2918 2919 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2920 &cached_state); 2921 if (ret) 2922 goto out_only_mutex; 2923 2924 path = btrfs_alloc_path(); 2925 if (!path) { 2926 ret = -ENOMEM; 2927 goto out; 2928 } 2929 2930 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL, 2931 &trans); 2932 btrfs_free_path(path); 2933 if (ret) 2934 goto out; 2935 2936 ASSERT(trans != NULL); 2937 inode_inc_iversion(inode); 2938 inode->i_mtime = inode->i_ctime = current_time(inode); 2939 ret = btrfs_update_inode(trans, root, inode); 2940 updated_inode = true; 2941 btrfs_end_transaction(trans); 2942 btrfs_btree_balance_dirty(fs_info); 2943 out: 2944 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2945 &cached_state); 2946 out_only_mutex: 2947 if (!updated_inode && truncated_block && !ret) { 2948 /* 2949 * If we only end up zeroing part of a page, we still need to 2950 * update the inode item, so that all the time fields are 2951 * updated as well as the necessary btrfs inode in memory fields 2952 * for detecting, at fsync time, if the inode isn't yet in the 2953 * log tree or it's there but not up to date. 2954 */ 2955 struct timespec64 now = current_time(inode); 2956 2957 inode_inc_iversion(inode); 2958 inode->i_mtime = now; 2959 inode->i_ctime = now; 2960 trans = btrfs_start_transaction(root, 1); 2961 if (IS_ERR(trans)) { 2962 ret = PTR_ERR(trans); 2963 } else { 2964 int ret2; 2965 2966 ret = btrfs_update_inode(trans, root, inode); 2967 ret2 = btrfs_end_transaction(trans); 2968 if (!ret) 2969 ret = ret2; 2970 } 2971 } 2972 inode_unlock(inode); 2973 return ret; 2974 } 2975 2976 /* Helper structure to record which range is already reserved */ 2977 struct falloc_range { 2978 struct list_head list; 2979 u64 start; 2980 u64 len; 2981 }; 2982 2983 /* 2984 * Helper function to add falloc range 2985 * 2986 * Caller should have locked the larger range of extent containing 2987 * [start, len) 2988 */ 2989 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2990 { 2991 struct falloc_range *prev = NULL; 2992 struct falloc_range *range = NULL; 2993 2994 if (list_empty(head)) 2995 goto insert; 2996 2997 /* 2998 * As fallocate iterate by bytenr order, we only need to check 2999 * the last range. 3000 */ 3001 prev = list_entry(head->prev, struct falloc_range, list); 3002 if (prev->start + prev->len == start) { 3003 prev->len += len; 3004 return 0; 3005 } 3006 insert: 3007 range = kmalloc(sizeof(*range), GFP_KERNEL); 3008 if (!range) 3009 return -ENOMEM; 3010 range->start = start; 3011 range->len = len; 3012 list_add_tail(&range->list, head); 3013 return 0; 3014 } 3015 3016 static int btrfs_fallocate_update_isize(struct inode *inode, 3017 const u64 end, 3018 const int mode) 3019 { 3020 struct btrfs_trans_handle *trans; 3021 struct btrfs_root *root = BTRFS_I(inode)->root; 3022 int ret; 3023 int ret2; 3024 3025 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3026 return 0; 3027 3028 trans = btrfs_start_transaction(root, 1); 3029 if (IS_ERR(trans)) 3030 return PTR_ERR(trans); 3031 3032 inode->i_ctime = current_time(inode); 3033 i_size_write(inode, end); 3034 btrfs_inode_safe_disk_i_size_write(inode, 0); 3035 ret = btrfs_update_inode(trans, root, inode); 3036 ret2 = btrfs_end_transaction(trans); 3037 3038 return ret ? ret : ret2; 3039 } 3040 3041 enum { 3042 RANGE_BOUNDARY_WRITTEN_EXTENT, 3043 RANGE_BOUNDARY_PREALLOC_EXTENT, 3044 RANGE_BOUNDARY_HOLE, 3045 }; 3046 3047 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 3048 u64 offset) 3049 { 3050 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3051 struct extent_map *em; 3052 int ret; 3053 3054 offset = round_down(offset, sectorsize); 3055 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize); 3056 if (IS_ERR(em)) 3057 return PTR_ERR(em); 3058 3059 if (em->block_start == EXTENT_MAP_HOLE) 3060 ret = RANGE_BOUNDARY_HOLE; 3061 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3062 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3063 else 3064 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3065 3066 free_extent_map(em); 3067 return ret; 3068 } 3069 3070 static int btrfs_zero_range(struct inode *inode, 3071 loff_t offset, 3072 loff_t len, 3073 const int mode) 3074 { 3075 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3076 struct extent_map *em; 3077 struct extent_changeset *data_reserved = NULL; 3078 int ret; 3079 u64 alloc_hint = 0; 3080 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3081 u64 alloc_start = round_down(offset, sectorsize); 3082 u64 alloc_end = round_up(offset + len, sectorsize); 3083 u64 bytes_to_reserve = 0; 3084 bool space_reserved = false; 3085 3086 inode_dio_wait(inode); 3087 3088 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3089 alloc_end - alloc_start); 3090 if (IS_ERR(em)) { 3091 ret = PTR_ERR(em); 3092 goto out; 3093 } 3094 3095 /* 3096 * Avoid hole punching and extent allocation for some cases. More cases 3097 * could be considered, but these are unlikely common and we keep things 3098 * as simple as possible for now. Also, intentionally, if the target 3099 * range contains one or more prealloc extents together with regular 3100 * extents and holes, we drop all the existing extents and allocate a 3101 * new prealloc extent, so that we get a larger contiguous disk extent. 3102 */ 3103 if (em->start <= alloc_start && 3104 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3105 const u64 em_end = em->start + em->len; 3106 3107 if (em_end >= offset + len) { 3108 /* 3109 * The whole range is already a prealloc extent, 3110 * do nothing except updating the inode's i_size if 3111 * needed. 3112 */ 3113 free_extent_map(em); 3114 ret = btrfs_fallocate_update_isize(inode, offset + len, 3115 mode); 3116 goto out; 3117 } 3118 /* 3119 * Part of the range is already a prealloc extent, so operate 3120 * only on the remaining part of the range. 3121 */ 3122 alloc_start = em_end; 3123 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3124 len = offset + len - alloc_start; 3125 offset = alloc_start; 3126 alloc_hint = em->block_start + em->len; 3127 } 3128 free_extent_map(em); 3129 3130 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3131 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3132 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3133 sectorsize); 3134 if (IS_ERR(em)) { 3135 ret = PTR_ERR(em); 3136 goto out; 3137 } 3138 3139 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3140 free_extent_map(em); 3141 ret = btrfs_fallocate_update_isize(inode, offset + len, 3142 mode); 3143 goto out; 3144 } 3145 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3146 free_extent_map(em); 3147 ret = btrfs_truncate_block(inode, offset, len, 0); 3148 if (!ret) 3149 ret = btrfs_fallocate_update_isize(inode, 3150 offset + len, 3151 mode); 3152 return ret; 3153 } 3154 free_extent_map(em); 3155 alloc_start = round_down(offset, sectorsize); 3156 alloc_end = alloc_start + sectorsize; 3157 goto reserve_space; 3158 } 3159 3160 alloc_start = round_up(offset, sectorsize); 3161 alloc_end = round_down(offset + len, sectorsize); 3162 3163 /* 3164 * For unaligned ranges, check the pages at the boundaries, they might 3165 * map to an extent, in which case we need to partially zero them, or 3166 * they might map to a hole, in which case we need our allocation range 3167 * to cover them. 3168 */ 3169 if (!IS_ALIGNED(offset, sectorsize)) { 3170 ret = btrfs_zero_range_check_range_boundary(inode, offset); 3171 if (ret < 0) 3172 goto out; 3173 if (ret == RANGE_BOUNDARY_HOLE) { 3174 alloc_start = round_down(offset, sectorsize); 3175 ret = 0; 3176 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3177 ret = btrfs_truncate_block(inode, offset, 0, 0); 3178 if (ret) 3179 goto out; 3180 } else { 3181 ret = 0; 3182 } 3183 } 3184 3185 if (!IS_ALIGNED(offset + len, sectorsize)) { 3186 ret = btrfs_zero_range_check_range_boundary(inode, 3187 offset + len); 3188 if (ret < 0) 3189 goto out; 3190 if (ret == RANGE_BOUNDARY_HOLE) { 3191 alloc_end = round_up(offset + len, sectorsize); 3192 ret = 0; 3193 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3194 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3195 if (ret) 3196 goto out; 3197 } else { 3198 ret = 0; 3199 } 3200 } 3201 3202 reserve_space: 3203 if (alloc_start < alloc_end) { 3204 struct extent_state *cached_state = NULL; 3205 const u64 lockstart = alloc_start; 3206 const u64 lockend = alloc_end - 1; 3207 3208 bytes_to_reserve = alloc_end - alloc_start; 3209 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3210 bytes_to_reserve); 3211 if (ret < 0) 3212 goto out; 3213 space_reserved = true; 3214 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3215 &cached_state); 3216 if (ret) 3217 goto out; 3218 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3219 alloc_start, bytes_to_reserve); 3220 if (ret) 3221 goto out; 3222 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3223 alloc_end - alloc_start, 3224 i_blocksize(inode), 3225 offset + len, &alloc_hint); 3226 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3227 lockend, &cached_state); 3228 /* btrfs_prealloc_file_range releases reserved space on error */ 3229 if (ret) { 3230 space_reserved = false; 3231 goto out; 3232 } 3233 } 3234 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3235 out: 3236 if (ret && space_reserved) 3237 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3238 alloc_start, bytes_to_reserve); 3239 extent_changeset_free(data_reserved); 3240 3241 return ret; 3242 } 3243 3244 static long btrfs_fallocate(struct file *file, int mode, 3245 loff_t offset, loff_t len) 3246 { 3247 struct inode *inode = file_inode(file); 3248 struct extent_state *cached_state = NULL; 3249 struct extent_changeset *data_reserved = NULL; 3250 struct falloc_range *range; 3251 struct falloc_range *tmp; 3252 struct list_head reserve_list; 3253 u64 cur_offset; 3254 u64 last_byte; 3255 u64 alloc_start; 3256 u64 alloc_end; 3257 u64 alloc_hint = 0; 3258 u64 locked_end; 3259 u64 actual_end = 0; 3260 struct extent_map *em; 3261 int blocksize = btrfs_inode_sectorsize(inode); 3262 int ret; 3263 3264 alloc_start = round_down(offset, blocksize); 3265 alloc_end = round_up(offset + len, blocksize); 3266 cur_offset = alloc_start; 3267 3268 /* Make sure we aren't being give some crap mode */ 3269 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3270 FALLOC_FL_ZERO_RANGE)) 3271 return -EOPNOTSUPP; 3272 3273 if (mode & FALLOC_FL_PUNCH_HOLE) 3274 return btrfs_punch_hole(inode, offset, len); 3275 3276 /* 3277 * Only trigger disk allocation, don't trigger qgroup reserve 3278 * 3279 * For qgroup space, it will be checked later. 3280 */ 3281 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3282 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3283 alloc_end - alloc_start); 3284 if (ret < 0) 3285 return ret; 3286 } 3287 3288 inode_lock(inode); 3289 3290 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3291 ret = inode_newsize_ok(inode, offset + len); 3292 if (ret) 3293 goto out; 3294 } 3295 3296 /* 3297 * TODO: Move these two operations after we have checked 3298 * accurate reserved space, or fallocate can still fail but 3299 * with page truncated or size expanded. 3300 * 3301 * But that's a minor problem and won't do much harm BTW. 3302 */ 3303 if (alloc_start > inode->i_size) { 3304 ret = btrfs_cont_expand(inode, i_size_read(inode), 3305 alloc_start); 3306 if (ret) 3307 goto out; 3308 } else if (offset + len > inode->i_size) { 3309 /* 3310 * If we are fallocating from the end of the file onward we 3311 * need to zero out the end of the block if i_size lands in the 3312 * middle of a block. 3313 */ 3314 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3315 if (ret) 3316 goto out; 3317 } 3318 3319 /* 3320 * wait for ordered IO before we have any locks. We'll loop again 3321 * below with the locks held. 3322 */ 3323 ret = btrfs_wait_ordered_range(inode, alloc_start, 3324 alloc_end - alloc_start); 3325 if (ret) 3326 goto out; 3327 3328 if (mode & FALLOC_FL_ZERO_RANGE) { 3329 ret = btrfs_zero_range(inode, offset, len, mode); 3330 inode_unlock(inode); 3331 return ret; 3332 } 3333 3334 locked_end = alloc_end - 1; 3335 while (1) { 3336 struct btrfs_ordered_extent *ordered; 3337 3338 /* the extent lock is ordered inside the running 3339 * transaction 3340 */ 3341 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3342 locked_end, &cached_state); 3343 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3344 3345 if (ordered && 3346 ordered->file_offset + ordered->num_bytes > alloc_start && 3347 ordered->file_offset < alloc_end) { 3348 btrfs_put_ordered_extent(ordered); 3349 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3350 alloc_start, locked_end, 3351 &cached_state); 3352 /* 3353 * we can't wait on the range with the transaction 3354 * running or with the extent lock held 3355 */ 3356 ret = btrfs_wait_ordered_range(inode, alloc_start, 3357 alloc_end - alloc_start); 3358 if (ret) 3359 goto out; 3360 } else { 3361 if (ordered) 3362 btrfs_put_ordered_extent(ordered); 3363 break; 3364 } 3365 } 3366 3367 /* First, check if we exceed the qgroup limit */ 3368 INIT_LIST_HEAD(&reserve_list); 3369 while (cur_offset < alloc_end) { 3370 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3371 alloc_end - cur_offset); 3372 if (IS_ERR(em)) { 3373 ret = PTR_ERR(em); 3374 break; 3375 } 3376 last_byte = min(extent_map_end(em), alloc_end); 3377 actual_end = min_t(u64, extent_map_end(em), offset + len); 3378 last_byte = ALIGN(last_byte, blocksize); 3379 if (em->block_start == EXTENT_MAP_HOLE || 3380 (cur_offset >= inode->i_size && 3381 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3382 ret = add_falloc_range(&reserve_list, cur_offset, 3383 last_byte - cur_offset); 3384 if (ret < 0) { 3385 free_extent_map(em); 3386 break; 3387 } 3388 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3389 &data_reserved, cur_offset, 3390 last_byte - cur_offset); 3391 if (ret < 0) { 3392 cur_offset = last_byte; 3393 free_extent_map(em); 3394 break; 3395 } 3396 } else { 3397 /* 3398 * Do not need to reserve unwritten extent for this 3399 * range, free reserved data space first, otherwise 3400 * it'll result in false ENOSPC error. 3401 */ 3402 btrfs_free_reserved_data_space(BTRFS_I(inode), 3403 data_reserved, cur_offset, 3404 last_byte - cur_offset); 3405 } 3406 free_extent_map(em); 3407 cur_offset = last_byte; 3408 } 3409 3410 /* 3411 * If ret is still 0, means we're OK to fallocate. 3412 * Or just cleanup the list and exit. 3413 */ 3414 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3415 if (!ret) 3416 ret = btrfs_prealloc_file_range(inode, mode, 3417 range->start, 3418 range->len, i_blocksize(inode), 3419 offset + len, &alloc_hint); 3420 else 3421 btrfs_free_reserved_data_space(BTRFS_I(inode), 3422 data_reserved, range->start, 3423 range->len); 3424 list_del(&range->list); 3425 kfree(range); 3426 } 3427 if (ret < 0) 3428 goto out_unlock; 3429 3430 /* 3431 * We didn't need to allocate any more space, but we still extended the 3432 * size of the file so we need to update i_size and the inode item. 3433 */ 3434 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3435 out_unlock: 3436 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3437 &cached_state); 3438 out: 3439 inode_unlock(inode); 3440 /* Let go of our reservation. */ 3441 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3442 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3443 cur_offset, alloc_end - cur_offset); 3444 extent_changeset_free(data_reserved); 3445 return ret; 3446 } 3447 3448 static loff_t find_desired_extent(struct inode *inode, loff_t offset, 3449 int whence) 3450 { 3451 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3452 struct extent_map *em = NULL; 3453 struct extent_state *cached_state = NULL; 3454 loff_t i_size = inode->i_size; 3455 u64 lockstart; 3456 u64 lockend; 3457 u64 start; 3458 u64 len; 3459 int ret = 0; 3460 3461 if (i_size == 0 || offset >= i_size) 3462 return -ENXIO; 3463 3464 /* 3465 * offset can be negative, in this case we start finding DATA/HOLE from 3466 * the very start of the file. 3467 */ 3468 start = max_t(loff_t, 0, offset); 3469 3470 lockstart = round_down(start, fs_info->sectorsize); 3471 lockend = round_up(i_size, fs_info->sectorsize); 3472 if (lockend <= lockstart) 3473 lockend = lockstart + fs_info->sectorsize; 3474 lockend--; 3475 len = lockend - lockstart + 1; 3476 3477 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3478 &cached_state); 3479 3480 while (start < i_size) { 3481 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3482 if (IS_ERR(em)) { 3483 ret = PTR_ERR(em); 3484 em = NULL; 3485 break; 3486 } 3487 3488 if (whence == SEEK_HOLE && 3489 (em->block_start == EXTENT_MAP_HOLE || 3490 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3491 break; 3492 else if (whence == SEEK_DATA && 3493 (em->block_start != EXTENT_MAP_HOLE && 3494 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3495 break; 3496 3497 start = em->start + em->len; 3498 free_extent_map(em); 3499 em = NULL; 3500 cond_resched(); 3501 } 3502 free_extent_map(em); 3503 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3504 &cached_state); 3505 if (ret) { 3506 offset = ret; 3507 } else { 3508 if (whence == SEEK_DATA && start >= i_size) 3509 offset = -ENXIO; 3510 else 3511 offset = min_t(loff_t, start, i_size); 3512 } 3513 3514 return offset; 3515 } 3516 3517 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3518 { 3519 struct inode *inode = file->f_mapping->host; 3520 3521 switch (whence) { 3522 default: 3523 return generic_file_llseek(file, offset, whence); 3524 case SEEK_DATA: 3525 case SEEK_HOLE: 3526 inode_lock_shared(inode); 3527 offset = find_desired_extent(inode, offset, whence); 3528 inode_unlock_shared(inode); 3529 break; 3530 } 3531 3532 if (offset < 0) 3533 return offset; 3534 3535 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3536 } 3537 3538 static int btrfs_file_open(struct inode *inode, struct file *filp) 3539 { 3540 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3541 return generic_file_open(inode, filp); 3542 } 3543 3544 const struct file_operations btrfs_file_operations = { 3545 .llseek = btrfs_file_llseek, 3546 .read_iter = generic_file_read_iter, 3547 .splice_read = generic_file_splice_read, 3548 .write_iter = btrfs_file_write_iter, 3549 .splice_write = iter_file_splice_write, 3550 .mmap = btrfs_file_mmap, 3551 .open = btrfs_file_open, 3552 .release = btrfs_release_file, 3553 .fsync = btrfs_sync_file, 3554 .fallocate = btrfs_fallocate, 3555 .unlocked_ioctl = btrfs_ioctl, 3556 #ifdef CONFIG_COMPAT 3557 .compat_ioctl = btrfs_compat_ioctl, 3558 #endif 3559 .remap_file_range = btrfs_remap_file_range, 3560 }; 3561 3562 void __cold btrfs_auto_defrag_exit(void) 3563 { 3564 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3565 } 3566 3567 int __init btrfs_auto_defrag_init(void) 3568 { 3569 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3570 sizeof(struct inode_defrag), 0, 3571 SLAB_MEM_SPREAD, 3572 NULL); 3573 if (!btrfs_inode_defrag_cachep) 3574 return -ENOMEM; 3575 3576 return 0; 3577 } 3578 3579 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3580 { 3581 int ret; 3582 3583 /* 3584 * So with compression we will find and lock a dirty page and clear the 3585 * first one as dirty, setup an async extent, and immediately return 3586 * with the entire range locked but with nobody actually marked with 3587 * writeback. So we can't just filemap_write_and_wait_range() and 3588 * expect it to work since it will just kick off a thread to do the 3589 * actual work. So we need to call filemap_fdatawrite_range _again_ 3590 * since it will wait on the page lock, which won't be unlocked until 3591 * after the pages have been marked as writeback and so we're good to go 3592 * from there. We have to do this otherwise we'll miss the ordered 3593 * extents and that results in badness. Please Josef, do not think you 3594 * know better and pull this out at some point in the future, it is 3595 * right and you are wrong. 3596 */ 3597 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3598 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3599 &BTRFS_I(inode)->runtime_flags)) 3600 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3601 3602 return ret; 3603 } 3604