1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* 54 * The extent size threshold for autodefrag. 55 * 56 * This value is different for compressed/non-compressed extents, 57 * thus needs to be passed from higher layer. 58 * (aka, inode_should_defrag()) 59 */ 60 u32 extent_thresh; 61 }; 62 63 static int __compare_inode_defrag(struct inode_defrag *defrag1, 64 struct inode_defrag *defrag2) 65 { 66 if (defrag1->root > defrag2->root) 67 return 1; 68 else if (defrag1->root < defrag2->root) 69 return -1; 70 else if (defrag1->ino > defrag2->ino) 71 return 1; 72 else if (defrag1->ino < defrag2->ino) 73 return -1; 74 else 75 return 0; 76 } 77 78 /* pop a record for an inode into the defrag tree. The lock 79 * must be held already 80 * 81 * If you're inserting a record for an older transid than an 82 * existing record, the transid already in the tree is lowered 83 * 84 * If an existing record is found the defrag item you 85 * pass in is freed 86 */ 87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 88 struct inode_defrag *defrag) 89 { 90 struct btrfs_fs_info *fs_info = inode->root->fs_info; 91 struct inode_defrag *entry; 92 struct rb_node **p; 93 struct rb_node *parent = NULL; 94 int ret; 95 96 p = &fs_info->defrag_inodes.rb_node; 97 while (*p) { 98 parent = *p; 99 entry = rb_entry(parent, struct inode_defrag, rb_node); 100 101 ret = __compare_inode_defrag(defrag, entry); 102 if (ret < 0) 103 p = &parent->rb_left; 104 else if (ret > 0) 105 p = &parent->rb_right; 106 else { 107 /* if we're reinserting an entry for 108 * an old defrag run, make sure to 109 * lower the transid of our existing record 110 */ 111 if (defrag->transid < entry->transid) 112 entry->transid = defrag->transid; 113 entry->extent_thresh = min(defrag->extent_thresh, 114 entry->extent_thresh); 115 return -EEXIST; 116 } 117 } 118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 119 rb_link_node(&defrag->rb_node, parent, p); 120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 121 return 0; 122 } 123 124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 125 { 126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 127 return 0; 128 129 if (btrfs_fs_closing(fs_info)) 130 return 0; 131 132 return 1; 133 } 134 135 /* 136 * insert a defrag record for this inode if auto defrag is 137 * enabled 138 */ 139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 140 struct btrfs_inode *inode, u32 extent_thresh) 141 { 142 struct btrfs_root *root = inode->root; 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct inode_defrag *defrag; 145 u64 transid; 146 int ret; 147 148 if (!__need_auto_defrag(fs_info)) 149 return 0; 150 151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 152 return 0; 153 154 if (trans) 155 transid = trans->transid; 156 else 157 transid = inode->root->last_trans; 158 159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 160 if (!defrag) 161 return -ENOMEM; 162 163 defrag->ino = btrfs_ino(inode); 164 defrag->transid = transid; 165 defrag->root = root->root_key.objectid; 166 defrag->extent_thresh = extent_thresh; 167 168 spin_lock(&fs_info->defrag_inodes_lock); 169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 170 /* 171 * If we set IN_DEFRAG flag and evict the inode from memory, 172 * and then re-read this inode, this new inode doesn't have 173 * IN_DEFRAG flag. At the case, we may find the existed defrag. 174 */ 175 ret = __btrfs_add_inode_defrag(inode, defrag); 176 if (ret) 177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 178 } else { 179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 180 } 181 spin_unlock(&fs_info->defrag_inodes_lock); 182 return 0; 183 } 184 185 /* 186 * pick the defragable inode that we want, if it doesn't exist, we will get 187 * the next one. 188 */ 189 static struct inode_defrag * 190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 191 { 192 struct inode_defrag *entry = NULL; 193 struct inode_defrag tmp; 194 struct rb_node *p; 195 struct rb_node *parent = NULL; 196 int ret; 197 198 tmp.ino = ino; 199 tmp.root = root; 200 201 spin_lock(&fs_info->defrag_inodes_lock); 202 p = fs_info->defrag_inodes.rb_node; 203 while (p) { 204 parent = p; 205 entry = rb_entry(parent, struct inode_defrag, rb_node); 206 207 ret = __compare_inode_defrag(&tmp, entry); 208 if (ret < 0) 209 p = parent->rb_left; 210 else if (ret > 0) 211 p = parent->rb_right; 212 else 213 goto out; 214 } 215 216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 217 parent = rb_next(parent); 218 if (parent) 219 entry = rb_entry(parent, struct inode_defrag, rb_node); 220 else 221 entry = NULL; 222 } 223 out: 224 if (entry) 225 rb_erase(parent, &fs_info->defrag_inodes); 226 spin_unlock(&fs_info->defrag_inodes_lock); 227 return entry; 228 } 229 230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 231 { 232 struct inode_defrag *defrag; 233 struct rb_node *node; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 node = rb_first(&fs_info->defrag_inodes); 237 while (node) { 238 rb_erase(node, &fs_info->defrag_inodes); 239 defrag = rb_entry(node, struct inode_defrag, rb_node); 240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 241 242 cond_resched_lock(&fs_info->defrag_inodes_lock); 243 244 node = rb_first(&fs_info->defrag_inodes); 245 } 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 } 248 249 #define BTRFS_DEFRAG_BATCH 1024 250 251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 252 struct inode_defrag *defrag) 253 { 254 struct btrfs_root *inode_root; 255 struct inode *inode; 256 struct btrfs_ioctl_defrag_range_args range; 257 int ret = 0; 258 u64 cur = 0; 259 260 again: 261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 262 goto cleanup; 263 if (!__need_auto_defrag(fs_info)) 264 goto cleanup; 265 266 /* get the inode */ 267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 268 if (IS_ERR(inode_root)) { 269 ret = PTR_ERR(inode_root); 270 goto cleanup; 271 } 272 273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 274 btrfs_put_root(inode_root); 275 if (IS_ERR(inode)) { 276 ret = PTR_ERR(inode); 277 goto cleanup; 278 } 279 280 if (cur >= i_size_read(inode)) { 281 iput(inode); 282 goto cleanup; 283 } 284 285 /* do a chunk of defrag */ 286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 287 memset(&range, 0, sizeof(range)); 288 range.len = (u64)-1; 289 range.start = cur; 290 range.extent_thresh = defrag->extent_thresh; 291 292 sb_start_write(fs_info->sb); 293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 294 BTRFS_DEFRAG_BATCH); 295 sb_end_write(fs_info->sb); 296 iput(inode); 297 298 if (ret < 0) 299 goto cleanup; 300 301 cur = max(cur + fs_info->sectorsize, range.start); 302 goto again; 303 304 cleanup: 305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 306 return ret; 307 } 308 309 /* 310 * run through the list of inodes in the FS that need 311 * defragging 312 */ 313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 314 { 315 struct inode_defrag *defrag; 316 u64 first_ino = 0; 317 u64 root_objectid = 0; 318 319 atomic_inc(&fs_info->defrag_running); 320 while (1) { 321 /* Pause the auto defragger. */ 322 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 323 &fs_info->fs_state)) 324 break; 325 326 if (!__need_auto_defrag(fs_info)) 327 break; 328 329 /* find an inode to defrag */ 330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 331 first_ino); 332 if (!defrag) { 333 if (root_objectid || first_ino) { 334 root_objectid = 0; 335 first_ino = 0; 336 continue; 337 } else { 338 break; 339 } 340 } 341 342 first_ino = defrag->ino + 1; 343 root_objectid = defrag->root; 344 345 __btrfs_run_defrag_inode(fs_info, defrag); 346 } 347 atomic_dec(&fs_info->defrag_running); 348 349 /* 350 * during unmount, we use the transaction_wait queue to 351 * wait for the defragger to stop 352 */ 353 wake_up(&fs_info->transaction_wait); 354 return 0; 355 } 356 357 /* simple helper to fault in pages and copy. This should go away 358 * and be replaced with calls into generic code. 359 */ 360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 361 struct page **prepared_pages, 362 struct iov_iter *i) 363 { 364 size_t copied = 0; 365 size_t total_copied = 0; 366 int pg = 0; 367 int offset = offset_in_page(pos); 368 369 while (write_bytes > 0) { 370 size_t count = min_t(size_t, 371 PAGE_SIZE - offset, write_bytes); 372 struct page *page = prepared_pages[pg]; 373 /* 374 * Copy data from userspace to the current page 375 */ 376 copied = copy_page_from_iter_atomic(page, offset, count, i); 377 378 /* Flush processor's dcache for this page */ 379 flush_dcache_page(page); 380 381 /* 382 * if we get a partial write, we can end up with 383 * partially up to date pages. These add 384 * a lot of complexity, so make sure they don't 385 * happen by forcing this copy to be retried. 386 * 387 * The rest of the btrfs_file_write code will fall 388 * back to page at a time copies after we return 0. 389 */ 390 if (unlikely(copied < count)) { 391 if (!PageUptodate(page)) { 392 iov_iter_revert(i, copied); 393 copied = 0; 394 } 395 if (!copied) 396 break; 397 } 398 399 write_bytes -= copied; 400 total_copied += copied; 401 offset += copied; 402 if (offset == PAGE_SIZE) { 403 pg++; 404 offset = 0; 405 } 406 } 407 return total_copied; 408 } 409 410 /* 411 * unlocks pages after btrfs_file_write is done with them 412 */ 413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 414 struct page **pages, size_t num_pages, 415 u64 pos, u64 copied) 416 { 417 size_t i; 418 u64 block_start = round_down(pos, fs_info->sectorsize); 419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 420 421 ASSERT(block_len <= U32_MAX); 422 for (i = 0; i < num_pages; i++) { 423 /* page checked is some magic around finding pages that 424 * have been modified without going through btrfs_set_page_dirty 425 * clear it here. There should be no need to mark the pages 426 * accessed as prepare_pages should have marked them accessed 427 * in prepare_pages via find_or_create_page() 428 */ 429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 430 block_len); 431 unlock_page(pages[i]); 432 put_page(pages[i]); 433 } 434 } 435 436 /* 437 * After btrfs_copy_from_user(), update the following things for delalloc: 438 * - Mark newly dirtied pages as DELALLOC in the io tree. 439 * Used to advise which range is to be written back. 440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 441 * - Update inode size for past EOF write 442 */ 443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 444 size_t num_pages, loff_t pos, size_t write_bytes, 445 struct extent_state **cached, bool noreserve) 446 { 447 struct btrfs_fs_info *fs_info = inode->root->fs_info; 448 int err = 0; 449 int i; 450 u64 num_bytes; 451 u64 start_pos; 452 u64 end_of_last_block; 453 u64 end_pos = pos + write_bytes; 454 loff_t isize = i_size_read(&inode->vfs_inode); 455 unsigned int extra_bits = 0; 456 457 if (write_bytes == 0) 458 return 0; 459 460 if (noreserve) 461 extra_bits |= EXTENT_NORESERVE; 462 463 start_pos = round_down(pos, fs_info->sectorsize); 464 num_bytes = round_up(write_bytes + pos - start_pos, 465 fs_info->sectorsize); 466 ASSERT(num_bytes <= U32_MAX); 467 468 end_of_last_block = start_pos + num_bytes - 1; 469 470 /* 471 * The pages may have already been dirty, clear out old accounting so 472 * we can set things up properly 473 */ 474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 476 0, 0, cached); 477 478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 479 extra_bits, cached); 480 if (err) 481 return err; 482 483 for (i = 0; i < num_pages; i++) { 484 struct page *p = pages[i]; 485 486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 489 } 490 491 /* 492 * we've only changed i_size in ram, and we haven't updated 493 * the disk i_size. There is no need to log the inode 494 * at this time. 495 */ 496 if (end_pos > isize) 497 i_size_write(&inode->vfs_inode, end_pos); 498 return 0; 499 } 500 501 /* 502 * this drops all the extents in the cache that intersect the range 503 * [start, end]. Existing extents are split as required. 504 */ 505 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 506 int skip_pinned) 507 { 508 struct extent_map *em; 509 struct extent_map *split = NULL; 510 struct extent_map *split2 = NULL; 511 struct extent_map_tree *em_tree = &inode->extent_tree; 512 u64 len = end - start + 1; 513 u64 gen; 514 int ret; 515 int testend = 1; 516 unsigned long flags; 517 int compressed = 0; 518 bool modified; 519 520 WARN_ON(end < start); 521 if (end == (u64)-1) { 522 len = (u64)-1; 523 testend = 0; 524 } 525 while (1) { 526 int no_splits = 0; 527 528 modified = false; 529 if (!split) 530 split = alloc_extent_map(); 531 if (!split2) 532 split2 = alloc_extent_map(); 533 if (!split || !split2) 534 no_splits = 1; 535 536 write_lock(&em_tree->lock); 537 em = lookup_extent_mapping(em_tree, start, len); 538 if (!em) { 539 write_unlock(&em_tree->lock); 540 break; 541 } 542 flags = em->flags; 543 gen = em->generation; 544 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 545 if (testend && em->start + em->len >= start + len) { 546 free_extent_map(em); 547 write_unlock(&em_tree->lock); 548 break; 549 } 550 start = em->start + em->len; 551 if (testend) 552 len = start + len - (em->start + em->len); 553 free_extent_map(em); 554 write_unlock(&em_tree->lock); 555 continue; 556 } 557 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 558 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 559 clear_bit(EXTENT_FLAG_LOGGING, &flags); 560 modified = !list_empty(&em->list); 561 if (no_splits) 562 goto next; 563 564 if (em->start < start) { 565 split->start = em->start; 566 split->len = start - em->start; 567 568 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 569 split->orig_start = em->orig_start; 570 split->block_start = em->block_start; 571 572 if (compressed) 573 split->block_len = em->block_len; 574 else 575 split->block_len = split->len; 576 split->orig_block_len = max(split->block_len, 577 em->orig_block_len); 578 split->ram_bytes = em->ram_bytes; 579 } else { 580 split->orig_start = split->start; 581 split->block_len = 0; 582 split->block_start = em->block_start; 583 split->orig_block_len = 0; 584 split->ram_bytes = split->len; 585 } 586 587 split->generation = gen; 588 split->flags = flags; 589 split->compress_type = em->compress_type; 590 replace_extent_mapping(em_tree, em, split, modified); 591 free_extent_map(split); 592 split = split2; 593 split2 = NULL; 594 } 595 if (testend && em->start + em->len > start + len) { 596 u64 diff = start + len - em->start; 597 598 split->start = start + len; 599 split->len = em->start + em->len - (start + len); 600 split->flags = flags; 601 split->compress_type = em->compress_type; 602 split->generation = gen; 603 604 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 605 split->orig_block_len = max(em->block_len, 606 em->orig_block_len); 607 608 split->ram_bytes = em->ram_bytes; 609 if (compressed) { 610 split->block_len = em->block_len; 611 split->block_start = em->block_start; 612 split->orig_start = em->orig_start; 613 } else { 614 split->block_len = split->len; 615 split->block_start = em->block_start 616 + diff; 617 split->orig_start = em->orig_start; 618 } 619 } else { 620 split->ram_bytes = split->len; 621 split->orig_start = split->start; 622 split->block_len = 0; 623 split->block_start = em->block_start; 624 split->orig_block_len = 0; 625 } 626 627 if (extent_map_in_tree(em)) { 628 replace_extent_mapping(em_tree, em, split, 629 modified); 630 } else { 631 ret = add_extent_mapping(em_tree, split, 632 modified); 633 ASSERT(ret == 0); /* Logic error */ 634 } 635 free_extent_map(split); 636 split = NULL; 637 } 638 next: 639 if (extent_map_in_tree(em)) 640 remove_extent_mapping(em_tree, em); 641 write_unlock(&em_tree->lock); 642 643 /* once for us */ 644 free_extent_map(em); 645 /* once for the tree*/ 646 free_extent_map(em); 647 } 648 if (split) 649 free_extent_map(split); 650 if (split2) 651 free_extent_map(split2); 652 } 653 654 /* 655 * this is very complex, but the basic idea is to drop all extents 656 * in the range start - end. hint_block is filled in with a block number 657 * that would be a good hint to the block allocator for this file. 658 * 659 * If an extent intersects the range but is not entirely inside the range 660 * it is either truncated or split. Anything entirely inside the range 661 * is deleted from the tree. 662 * 663 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 664 * to deal with that. We set the field 'bytes_found' of the arguments structure 665 * with the number of allocated bytes found in the target range, so that the 666 * caller can update the inode's number of bytes in an atomic way when 667 * replacing extents in a range to avoid races with stat(2). 668 */ 669 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 670 struct btrfs_root *root, struct btrfs_inode *inode, 671 struct btrfs_drop_extents_args *args) 672 { 673 struct btrfs_fs_info *fs_info = root->fs_info; 674 struct extent_buffer *leaf; 675 struct btrfs_file_extent_item *fi; 676 struct btrfs_ref ref = { 0 }; 677 struct btrfs_key key; 678 struct btrfs_key new_key; 679 u64 ino = btrfs_ino(inode); 680 u64 search_start = args->start; 681 u64 disk_bytenr = 0; 682 u64 num_bytes = 0; 683 u64 extent_offset = 0; 684 u64 extent_end = 0; 685 u64 last_end = args->start; 686 int del_nr = 0; 687 int del_slot = 0; 688 int extent_type; 689 int recow; 690 int ret; 691 int modify_tree = -1; 692 int update_refs; 693 int found = 0; 694 struct btrfs_path *path = args->path; 695 696 args->bytes_found = 0; 697 args->extent_inserted = false; 698 699 /* Must always have a path if ->replace_extent is true */ 700 ASSERT(!(args->replace_extent && !args->path)); 701 702 if (!path) { 703 path = btrfs_alloc_path(); 704 if (!path) { 705 ret = -ENOMEM; 706 goto out; 707 } 708 } 709 710 if (args->drop_cache) 711 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 712 713 if (args->start >= inode->disk_i_size && !args->replace_extent) 714 modify_tree = 0; 715 716 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 717 while (1) { 718 recow = 0; 719 ret = btrfs_lookup_file_extent(trans, root, path, ino, 720 search_start, modify_tree); 721 if (ret < 0) 722 break; 723 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 724 leaf = path->nodes[0]; 725 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 726 if (key.objectid == ino && 727 key.type == BTRFS_EXTENT_DATA_KEY) 728 path->slots[0]--; 729 } 730 ret = 0; 731 next_slot: 732 leaf = path->nodes[0]; 733 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 734 BUG_ON(del_nr > 0); 735 ret = btrfs_next_leaf(root, path); 736 if (ret < 0) 737 break; 738 if (ret > 0) { 739 ret = 0; 740 break; 741 } 742 leaf = path->nodes[0]; 743 recow = 1; 744 } 745 746 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 747 748 if (key.objectid > ino) 749 break; 750 if (WARN_ON_ONCE(key.objectid < ino) || 751 key.type < BTRFS_EXTENT_DATA_KEY) { 752 ASSERT(del_nr == 0); 753 path->slots[0]++; 754 goto next_slot; 755 } 756 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 757 break; 758 759 fi = btrfs_item_ptr(leaf, path->slots[0], 760 struct btrfs_file_extent_item); 761 extent_type = btrfs_file_extent_type(leaf, fi); 762 763 if (extent_type == BTRFS_FILE_EXTENT_REG || 764 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 765 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 766 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 767 extent_offset = btrfs_file_extent_offset(leaf, fi); 768 extent_end = key.offset + 769 btrfs_file_extent_num_bytes(leaf, fi); 770 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 771 extent_end = key.offset + 772 btrfs_file_extent_ram_bytes(leaf, fi); 773 } else { 774 /* can't happen */ 775 BUG(); 776 } 777 778 /* 779 * Don't skip extent items representing 0 byte lengths. They 780 * used to be created (bug) if while punching holes we hit 781 * -ENOSPC condition. So if we find one here, just ensure we 782 * delete it, otherwise we would insert a new file extent item 783 * with the same key (offset) as that 0 bytes length file 784 * extent item in the call to setup_items_for_insert() later 785 * in this function. 786 */ 787 if (extent_end == key.offset && extent_end >= search_start) { 788 last_end = extent_end; 789 goto delete_extent_item; 790 } 791 792 if (extent_end <= search_start) { 793 path->slots[0]++; 794 goto next_slot; 795 } 796 797 found = 1; 798 search_start = max(key.offset, args->start); 799 if (recow || !modify_tree) { 800 modify_tree = -1; 801 btrfs_release_path(path); 802 continue; 803 } 804 805 /* 806 * | - range to drop - | 807 * | -------- extent -------- | 808 */ 809 if (args->start > key.offset && args->end < extent_end) { 810 BUG_ON(del_nr > 0); 811 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 812 ret = -EOPNOTSUPP; 813 break; 814 } 815 816 memcpy(&new_key, &key, sizeof(new_key)); 817 new_key.offset = args->start; 818 ret = btrfs_duplicate_item(trans, root, path, 819 &new_key); 820 if (ret == -EAGAIN) { 821 btrfs_release_path(path); 822 continue; 823 } 824 if (ret < 0) 825 break; 826 827 leaf = path->nodes[0]; 828 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 829 struct btrfs_file_extent_item); 830 btrfs_set_file_extent_num_bytes(leaf, fi, 831 args->start - key.offset); 832 833 fi = btrfs_item_ptr(leaf, path->slots[0], 834 struct btrfs_file_extent_item); 835 836 extent_offset += args->start - key.offset; 837 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 838 btrfs_set_file_extent_num_bytes(leaf, fi, 839 extent_end - args->start); 840 btrfs_mark_buffer_dirty(leaf); 841 842 if (update_refs && disk_bytenr > 0) { 843 btrfs_init_generic_ref(&ref, 844 BTRFS_ADD_DELAYED_REF, 845 disk_bytenr, num_bytes, 0); 846 btrfs_init_data_ref(&ref, 847 root->root_key.objectid, 848 new_key.objectid, 849 args->start - extent_offset, 850 0, false); 851 ret = btrfs_inc_extent_ref(trans, &ref); 852 BUG_ON(ret); /* -ENOMEM */ 853 } 854 key.offset = args->start; 855 } 856 /* 857 * From here on out we will have actually dropped something, so 858 * last_end can be updated. 859 */ 860 last_end = extent_end; 861 862 /* 863 * | ---- range to drop ----- | 864 * | -------- extent -------- | 865 */ 866 if (args->start <= key.offset && args->end < extent_end) { 867 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 868 ret = -EOPNOTSUPP; 869 break; 870 } 871 872 memcpy(&new_key, &key, sizeof(new_key)); 873 new_key.offset = args->end; 874 btrfs_set_item_key_safe(fs_info, path, &new_key); 875 876 extent_offset += args->end - key.offset; 877 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 878 btrfs_set_file_extent_num_bytes(leaf, fi, 879 extent_end - args->end); 880 btrfs_mark_buffer_dirty(leaf); 881 if (update_refs && disk_bytenr > 0) 882 args->bytes_found += args->end - key.offset; 883 break; 884 } 885 886 search_start = extent_end; 887 /* 888 * | ---- range to drop ----- | 889 * | -------- extent -------- | 890 */ 891 if (args->start > key.offset && args->end >= extent_end) { 892 BUG_ON(del_nr > 0); 893 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 894 ret = -EOPNOTSUPP; 895 break; 896 } 897 898 btrfs_set_file_extent_num_bytes(leaf, fi, 899 args->start - key.offset); 900 btrfs_mark_buffer_dirty(leaf); 901 if (update_refs && disk_bytenr > 0) 902 args->bytes_found += extent_end - args->start; 903 if (args->end == extent_end) 904 break; 905 906 path->slots[0]++; 907 goto next_slot; 908 } 909 910 /* 911 * | ---- range to drop ----- | 912 * | ------ extent ------ | 913 */ 914 if (args->start <= key.offset && args->end >= extent_end) { 915 delete_extent_item: 916 if (del_nr == 0) { 917 del_slot = path->slots[0]; 918 del_nr = 1; 919 } else { 920 BUG_ON(del_slot + del_nr != path->slots[0]); 921 del_nr++; 922 } 923 924 if (update_refs && 925 extent_type == BTRFS_FILE_EXTENT_INLINE) { 926 args->bytes_found += extent_end - key.offset; 927 extent_end = ALIGN(extent_end, 928 fs_info->sectorsize); 929 } else if (update_refs && disk_bytenr > 0) { 930 btrfs_init_generic_ref(&ref, 931 BTRFS_DROP_DELAYED_REF, 932 disk_bytenr, num_bytes, 0); 933 btrfs_init_data_ref(&ref, 934 root->root_key.objectid, 935 key.objectid, 936 key.offset - extent_offset, 0, 937 false); 938 ret = btrfs_free_extent(trans, &ref); 939 BUG_ON(ret); /* -ENOMEM */ 940 args->bytes_found += extent_end - key.offset; 941 } 942 943 if (args->end == extent_end) 944 break; 945 946 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 947 path->slots[0]++; 948 goto next_slot; 949 } 950 951 ret = btrfs_del_items(trans, root, path, del_slot, 952 del_nr); 953 if (ret) { 954 btrfs_abort_transaction(trans, ret); 955 break; 956 } 957 958 del_nr = 0; 959 del_slot = 0; 960 961 btrfs_release_path(path); 962 continue; 963 } 964 965 BUG(); 966 } 967 968 if (!ret && del_nr > 0) { 969 /* 970 * Set path->slots[0] to first slot, so that after the delete 971 * if items are move off from our leaf to its immediate left or 972 * right neighbor leafs, we end up with a correct and adjusted 973 * path->slots[0] for our insertion (if args->replace_extent). 974 */ 975 path->slots[0] = del_slot; 976 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 977 if (ret) 978 btrfs_abort_transaction(trans, ret); 979 } 980 981 leaf = path->nodes[0]; 982 /* 983 * If btrfs_del_items() was called, it might have deleted a leaf, in 984 * which case it unlocked our path, so check path->locks[0] matches a 985 * write lock. 986 */ 987 if (!ret && args->replace_extent && 988 path->locks[0] == BTRFS_WRITE_LOCK && 989 btrfs_leaf_free_space(leaf) >= 990 sizeof(struct btrfs_item) + args->extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = args->start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 1003 args->extent_inserted = true; 1004 } 1005 1006 if (!args->path) 1007 btrfs_free_path(path); 1008 else if (!args->extent_inserted) 1009 btrfs_release_path(path); 1010 out: 1011 args->drop_end = found ? min(args->end, last_end) : args->end; 1012 1013 return ret; 1014 } 1015 1016 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1017 u64 objectid, u64 bytenr, u64 orig_offset, 1018 u64 *start, u64 *end) 1019 { 1020 struct btrfs_file_extent_item *fi; 1021 struct btrfs_key key; 1022 u64 extent_end; 1023 1024 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1025 return 0; 1026 1027 btrfs_item_key_to_cpu(leaf, &key, slot); 1028 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1029 return 0; 1030 1031 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1032 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1033 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1034 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1035 btrfs_file_extent_compression(leaf, fi) || 1036 btrfs_file_extent_encryption(leaf, fi) || 1037 btrfs_file_extent_other_encoding(leaf, fi)) 1038 return 0; 1039 1040 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1041 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1042 return 0; 1043 1044 *start = key.offset; 1045 *end = extent_end; 1046 return 1; 1047 } 1048 1049 /* 1050 * Mark extent in the range start - end as written. 1051 * 1052 * This changes extent type from 'pre-allocated' to 'regular'. If only 1053 * part of extent is marked as written, the extent will be split into 1054 * two or three. 1055 */ 1056 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1057 struct btrfs_inode *inode, u64 start, u64 end) 1058 { 1059 struct btrfs_fs_info *fs_info = trans->fs_info; 1060 struct btrfs_root *root = inode->root; 1061 struct extent_buffer *leaf; 1062 struct btrfs_path *path; 1063 struct btrfs_file_extent_item *fi; 1064 struct btrfs_ref ref = { 0 }; 1065 struct btrfs_key key; 1066 struct btrfs_key new_key; 1067 u64 bytenr; 1068 u64 num_bytes; 1069 u64 extent_end; 1070 u64 orig_offset; 1071 u64 other_start; 1072 u64 other_end; 1073 u64 split; 1074 int del_nr = 0; 1075 int del_slot = 0; 1076 int recow; 1077 int ret = 0; 1078 u64 ino = btrfs_ino(inode); 1079 1080 path = btrfs_alloc_path(); 1081 if (!path) 1082 return -ENOMEM; 1083 again: 1084 recow = 0; 1085 split = start; 1086 key.objectid = ino; 1087 key.type = BTRFS_EXTENT_DATA_KEY; 1088 key.offset = split; 1089 1090 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1091 if (ret < 0) 1092 goto out; 1093 if (ret > 0 && path->slots[0] > 0) 1094 path->slots[0]--; 1095 1096 leaf = path->nodes[0]; 1097 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1098 if (key.objectid != ino || 1099 key.type != BTRFS_EXTENT_DATA_KEY) { 1100 ret = -EINVAL; 1101 btrfs_abort_transaction(trans, ret); 1102 goto out; 1103 } 1104 fi = btrfs_item_ptr(leaf, path->slots[0], 1105 struct btrfs_file_extent_item); 1106 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1107 ret = -EINVAL; 1108 btrfs_abort_transaction(trans, ret); 1109 goto out; 1110 } 1111 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1112 if (key.offset > start || extent_end < end) { 1113 ret = -EINVAL; 1114 btrfs_abort_transaction(trans, ret); 1115 goto out; 1116 } 1117 1118 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1119 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1120 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1121 memcpy(&new_key, &key, sizeof(new_key)); 1122 1123 if (start == key.offset && end < extent_end) { 1124 other_start = 0; 1125 other_end = start; 1126 if (extent_mergeable(leaf, path->slots[0] - 1, 1127 ino, bytenr, orig_offset, 1128 &other_start, &other_end)) { 1129 new_key.offset = end; 1130 btrfs_set_item_key_safe(fs_info, path, &new_key); 1131 fi = btrfs_item_ptr(leaf, path->slots[0], 1132 struct btrfs_file_extent_item); 1133 btrfs_set_file_extent_generation(leaf, fi, 1134 trans->transid); 1135 btrfs_set_file_extent_num_bytes(leaf, fi, 1136 extent_end - end); 1137 btrfs_set_file_extent_offset(leaf, fi, 1138 end - orig_offset); 1139 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1140 struct btrfs_file_extent_item); 1141 btrfs_set_file_extent_generation(leaf, fi, 1142 trans->transid); 1143 btrfs_set_file_extent_num_bytes(leaf, fi, 1144 end - other_start); 1145 btrfs_mark_buffer_dirty(leaf); 1146 goto out; 1147 } 1148 } 1149 1150 if (start > key.offset && end == extent_end) { 1151 other_start = end; 1152 other_end = 0; 1153 if (extent_mergeable(leaf, path->slots[0] + 1, 1154 ino, bytenr, orig_offset, 1155 &other_start, &other_end)) { 1156 fi = btrfs_item_ptr(leaf, path->slots[0], 1157 struct btrfs_file_extent_item); 1158 btrfs_set_file_extent_num_bytes(leaf, fi, 1159 start - key.offset); 1160 btrfs_set_file_extent_generation(leaf, fi, 1161 trans->transid); 1162 path->slots[0]++; 1163 new_key.offset = start; 1164 btrfs_set_item_key_safe(fs_info, path, &new_key); 1165 1166 fi = btrfs_item_ptr(leaf, path->slots[0], 1167 struct btrfs_file_extent_item); 1168 btrfs_set_file_extent_generation(leaf, fi, 1169 trans->transid); 1170 btrfs_set_file_extent_num_bytes(leaf, fi, 1171 other_end - start); 1172 btrfs_set_file_extent_offset(leaf, fi, 1173 start - orig_offset); 1174 btrfs_mark_buffer_dirty(leaf); 1175 goto out; 1176 } 1177 } 1178 1179 while (start > key.offset || end < extent_end) { 1180 if (key.offset == start) 1181 split = end; 1182 1183 new_key.offset = split; 1184 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1185 if (ret == -EAGAIN) { 1186 btrfs_release_path(path); 1187 goto again; 1188 } 1189 if (ret < 0) { 1190 btrfs_abort_transaction(trans, ret); 1191 goto out; 1192 } 1193 1194 leaf = path->nodes[0]; 1195 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1196 struct btrfs_file_extent_item); 1197 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1198 btrfs_set_file_extent_num_bytes(leaf, fi, 1199 split - key.offset); 1200 1201 fi = btrfs_item_ptr(leaf, path->slots[0], 1202 struct btrfs_file_extent_item); 1203 1204 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1205 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1206 btrfs_set_file_extent_num_bytes(leaf, fi, 1207 extent_end - split); 1208 btrfs_mark_buffer_dirty(leaf); 1209 1210 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1211 num_bytes, 0); 1212 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1213 orig_offset, 0, false); 1214 ret = btrfs_inc_extent_ref(trans, &ref); 1215 if (ret) { 1216 btrfs_abort_transaction(trans, ret); 1217 goto out; 1218 } 1219 1220 if (split == start) { 1221 key.offset = start; 1222 } else { 1223 if (start != key.offset) { 1224 ret = -EINVAL; 1225 btrfs_abort_transaction(trans, ret); 1226 goto out; 1227 } 1228 path->slots[0]--; 1229 extent_end = end; 1230 } 1231 recow = 1; 1232 } 1233 1234 other_start = end; 1235 other_end = 0; 1236 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1237 num_bytes, 0); 1238 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 1239 0, false); 1240 if (extent_mergeable(leaf, path->slots[0] + 1, 1241 ino, bytenr, orig_offset, 1242 &other_start, &other_end)) { 1243 if (recow) { 1244 btrfs_release_path(path); 1245 goto again; 1246 } 1247 extent_end = other_end; 1248 del_slot = path->slots[0] + 1; 1249 del_nr++; 1250 ret = btrfs_free_extent(trans, &ref); 1251 if (ret) { 1252 btrfs_abort_transaction(trans, ret); 1253 goto out; 1254 } 1255 } 1256 other_start = 0; 1257 other_end = start; 1258 if (extent_mergeable(leaf, path->slots[0] - 1, 1259 ino, bytenr, orig_offset, 1260 &other_start, &other_end)) { 1261 if (recow) { 1262 btrfs_release_path(path); 1263 goto again; 1264 } 1265 key.offset = other_start; 1266 del_slot = path->slots[0]; 1267 del_nr++; 1268 ret = btrfs_free_extent(trans, &ref); 1269 if (ret) { 1270 btrfs_abort_transaction(trans, ret); 1271 goto out; 1272 } 1273 } 1274 if (del_nr == 0) { 1275 fi = btrfs_item_ptr(leaf, path->slots[0], 1276 struct btrfs_file_extent_item); 1277 btrfs_set_file_extent_type(leaf, fi, 1278 BTRFS_FILE_EXTENT_REG); 1279 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1280 btrfs_mark_buffer_dirty(leaf); 1281 } else { 1282 fi = btrfs_item_ptr(leaf, del_slot - 1, 1283 struct btrfs_file_extent_item); 1284 btrfs_set_file_extent_type(leaf, fi, 1285 BTRFS_FILE_EXTENT_REG); 1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1287 btrfs_set_file_extent_num_bytes(leaf, fi, 1288 extent_end - key.offset); 1289 btrfs_mark_buffer_dirty(leaf); 1290 1291 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1292 if (ret < 0) { 1293 btrfs_abort_transaction(trans, ret); 1294 goto out; 1295 } 1296 } 1297 out: 1298 btrfs_free_path(path); 1299 return ret; 1300 } 1301 1302 /* 1303 * on error we return an unlocked page and the error value 1304 * on success we return a locked page and 0 1305 */ 1306 static int prepare_uptodate_page(struct inode *inode, 1307 struct page *page, u64 pos, 1308 bool force_uptodate) 1309 { 1310 struct folio *folio = page_folio(page); 1311 int ret = 0; 1312 1313 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1314 !PageUptodate(page)) { 1315 ret = btrfs_read_folio(NULL, folio); 1316 if (ret) 1317 return ret; 1318 lock_page(page); 1319 if (!PageUptodate(page)) { 1320 unlock_page(page); 1321 return -EIO; 1322 } 1323 1324 /* 1325 * Since btrfs_read_folio() will unlock the folio before it 1326 * returns, there is a window where btrfs_release_folio() can be 1327 * called to release the page. Here we check both inode 1328 * mapping and PagePrivate() to make sure the page was not 1329 * released. 1330 * 1331 * The private flag check is essential for subpage as we need 1332 * to store extra bitmap using page->private. 1333 */ 1334 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1335 unlock_page(page); 1336 return -EAGAIN; 1337 } 1338 } 1339 return 0; 1340 } 1341 1342 /* 1343 * this just gets pages into the page cache and locks them down. 1344 */ 1345 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1346 size_t num_pages, loff_t pos, 1347 size_t write_bytes, bool force_uptodate) 1348 { 1349 int i; 1350 unsigned long index = pos >> PAGE_SHIFT; 1351 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1352 int err = 0; 1353 int faili; 1354 1355 for (i = 0; i < num_pages; i++) { 1356 again: 1357 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1358 mask | __GFP_WRITE); 1359 if (!pages[i]) { 1360 faili = i - 1; 1361 err = -ENOMEM; 1362 goto fail; 1363 } 1364 1365 err = set_page_extent_mapped(pages[i]); 1366 if (err < 0) { 1367 faili = i; 1368 goto fail; 1369 } 1370 1371 if (i == 0) 1372 err = prepare_uptodate_page(inode, pages[i], pos, 1373 force_uptodate); 1374 if (!err && i == num_pages - 1) 1375 err = prepare_uptodate_page(inode, pages[i], 1376 pos + write_bytes, false); 1377 if (err) { 1378 put_page(pages[i]); 1379 if (err == -EAGAIN) { 1380 err = 0; 1381 goto again; 1382 } 1383 faili = i - 1; 1384 goto fail; 1385 } 1386 wait_on_page_writeback(pages[i]); 1387 } 1388 1389 return 0; 1390 fail: 1391 while (faili >= 0) { 1392 unlock_page(pages[faili]); 1393 put_page(pages[faili]); 1394 faili--; 1395 } 1396 return err; 1397 1398 } 1399 1400 /* 1401 * This function locks the extent and properly waits for data=ordered extents 1402 * to finish before allowing the pages to be modified if need. 1403 * 1404 * The return value: 1405 * 1 - the extent is locked 1406 * 0 - the extent is not locked, and everything is OK 1407 * -EAGAIN - need re-prepare the pages 1408 * the other < 0 number - Something wrong happens 1409 */ 1410 static noinline int 1411 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1412 size_t num_pages, loff_t pos, 1413 size_t write_bytes, 1414 u64 *lockstart, u64 *lockend, 1415 struct extent_state **cached_state) 1416 { 1417 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1418 u64 start_pos; 1419 u64 last_pos; 1420 int i; 1421 int ret = 0; 1422 1423 start_pos = round_down(pos, fs_info->sectorsize); 1424 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1425 1426 if (start_pos < inode->vfs_inode.i_size) { 1427 struct btrfs_ordered_extent *ordered; 1428 1429 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1430 cached_state); 1431 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1432 last_pos - start_pos + 1); 1433 if (ordered && 1434 ordered->file_offset + ordered->num_bytes > start_pos && 1435 ordered->file_offset <= last_pos) { 1436 unlock_extent_cached(&inode->io_tree, start_pos, 1437 last_pos, cached_state); 1438 for (i = 0; i < num_pages; i++) { 1439 unlock_page(pages[i]); 1440 put_page(pages[i]); 1441 } 1442 btrfs_start_ordered_extent(ordered, 1); 1443 btrfs_put_ordered_extent(ordered); 1444 return -EAGAIN; 1445 } 1446 if (ordered) 1447 btrfs_put_ordered_extent(ordered); 1448 1449 *lockstart = start_pos; 1450 *lockend = last_pos; 1451 ret = 1; 1452 } 1453 1454 /* 1455 * We should be called after prepare_pages() which should have locked 1456 * all pages in the range. 1457 */ 1458 for (i = 0; i < num_pages; i++) 1459 WARN_ON(!PageLocked(pages[i])); 1460 1461 return ret; 1462 } 1463 1464 /* 1465 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1466 * 1467 * @pos: File offset. 1468 * @write_bytes: The length to write, will be updated to the nocow writeable 1469 * range. 1470 * 1471 * This function will flush ordered extents in the range to ensure proper 1472 * nocow checks. 1473 * 1474 * Return: 1475 * > 0 If we can nocow, and updates @write_bytes. 1476 * 0 If we can't do a nocow write. 1477 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1478 * root is in progress. 1479 * < 0 If an error happened. 1480 * 1481 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1482 */ 1483 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1484 size_t *write_bytes) 1485 { 1486 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1487 struct btrfs_root *root = inode->root; 1488 u64 lockstart, lockend; 1489 u64 num_bytes; 1490 int ret; 1491 1492 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1493 return 0; 1494 1495 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1496 return -EAGAIN; 1497 1498 lockstart = round_down(pos, fs_info->sectorsize); 1499 lockend = round_up(pos + *write_bytes, 1500 fs_info->sectorsize) - 1; 1501 num_bytes = lockend - lockstart + 1; 1502 1503 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, NULL); 1504 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1505 NULL, NULL, NULL, false); 1506 if (ret <= 0) { 1507 ret = 0; 1508 btrfs_drew_write_unlock(&root->snapshot_lock); 1509 } else { 1510 *write_bytes = min_t(size_t, *write_bytes , 1511 num_bytes - pos + lockstart); 1512 } 1513 unlock_extent(&inode->io_tree, lockstart, lockend); 1514 1515 return ret; 1516 } 1517 1518 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1519 { 1520 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1521 } 1522 1523 static void update_time_for_write(struct inode *inode) 1524 { 1525 struct timespec64 now; 1526 1527 if (IS_NOCMTIME(inode)) 1528 return; 1529 1530 now = current_time(inode); 1531 if (!timespec64_equal(&inode->i_mtime, &now)) 1532 inode->i_mtime = now; 1533 1534 if (!timespec64_equal(&inode->i_ctime, &now)) 1535 inode->i_ctime = now; 1536 1537 if (IS_I_VERSION(inode)) 1538 inode_inc_iversion(inode); 1539 } 1540 1541 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1542 size_t count) 1543 { 1544 struct file *file = iocb->ki_filp; 1545 struct inode *inode = file_inode(file); 1546 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1547 loff_t pos = iocb->ki_pos; 1548 int ret; 1549 loff_t oldsize; 1550 loff_t start_pos; 1551 1552 /* 1553 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1554 * prealloc flags, as without those flags we always have to COW. We will 1555 * later check if we can really COW into the target range (using 1556 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1557 */ 1558 if ((iocb->ki_flags & IOCB_NOWAIT) && 1559 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1560 return -EAGAIN; 1561 1562 current->backing_dev_info = inode_to_bdi(inode); 1563 ret = file_remove_privs(file); 1564 if (ret) 1565 return ret; 1566 1567 /* 1568 * We reserve space for updating the inode when we reserve space for the 1569 * extent we are going to write, so we will enospc out there. We don't 1570 * need to start yet another transaction to update the inode as we will 1571 * update the inode when we finish writing whatever data we write. 1572 */ 1573 update_time_for_write(inode); 1574 1575 start_pos = round_down(pos, fs_info->sectorsize); 1576 oldsize = i_size_read(inode); 1577 if (start_pos > oldsize) { 1578 /* Expand hole size to cover write data, preventing empty gap */ 1579 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1580 1581 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1582 if (ret) { 1583 current->backing_dev_info = NULL; 1584 return ret; 1585 } 1586 } 1587 1588 return 0; 1589 } 1590 1591 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1592 struct iov_iter *i) 1593 { 1594 struct file *file = iocb->ki_filp; 1595 loff_t pos; 1596 struct inode *inode = file_inode(file); 1597 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1598 struct page **pages = NULL; 1599 struct extent_changeset *data_reserved = NULL; 1600 u64 release_bytes = 0; 1601 u64 lockstart; 1602 u64 lockend; 1603 size_t num_written = 0; 1604 int nrptrs; 1605 ssize_t ret; 1606 bool only_release_metadata = false; 1607 bool force_page_uptodate = false; 1608 loff_t old_isize = i_size_read(inode); 1609 unsigned int ilock_flags = 0; 1610 1611 if (iocb->ki_flags & IOCB_NOWAIT) 1612 ilock_flags |= BTRFS_ILOCK_TRY; 1613 1614 ret = btrfs_inode_lock(inode, ilock_flags); 1615 if (ret < 0) 1616 return ret; 1617 1618 ret = generic_write_checks(iocb, i); 1619 if (ret <= 0) 1620 goto out; 1621 1622 ret = btrfs_write_check(iocb, i, ret); 1623 if (ret < 0) 1624 goto out; 1625 1626 pos = iocb->ki_pos; 1627 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1628 PAGE_SIZE / (sizeof(struct page *))); 1629 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1630 nrptrs = max(nrptrs, 8); 1631 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1632 if (!pages) { 1633 ret = -ENOMEM; 1634 goto out; 1635 } 1636 1637 while (iov_iter_count(i) > 0) { 1638 struct extent_state *cached_state = NULL; 1639 size_t offset = offset_in_page(pos); 1640 size_t sector_offset; 1641 size_t write_bytes = min(iov_iter_count(i), 1642 nrptrs * (size_t)PAGE_SIZE - 1643 offset); 1644 size_t num_pages; 1645 size_t reserve_bytes; 1646 size_t dirty_pages; 1647 size_t copied; 1648 size_t dirty_sectors; 1649 size_t num_sectors; 1650 int extents_locked; 1651 1652 /* 1653 * Fault pages before locking them in prepare_pages 1654 * to avoid recursive lock 1655 */ 1656 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1657 ret = -EFAULT; 1658 break; 1659 } 1660 1661 only_release_metadata = false; 1662 sector_offset = pos & (fs_info->sectorsize - 1); 1663 1664 extent_changeset_release(data_reserved); 1665 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1666 &data_reserved, pos, 1667 write_bytes); 1668 if (ret < 0) { 1669 /* 1670 * If we don't have to COW at the offset, reserve 1671 * metadata only. write_bytes may get smaller than 1672 * requested here. 1673 */ 1674 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1675 &write_bytes) > 0) 1676 only_release_metadata = true; 1677 else 1678 break; 1679 } 1680 1681 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1682 WARN_ON(num_pages > nrptrs); 1683 reserve_bytes = round_up(write_bytes + sector_offset, 1684 fs_info->sectorsize); 1685 WARN_ON(reserve_bytes == 0); 1686 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1687 reserve_bytes, 1688 reserve_bytes, false); 1689 if (ret) { 1690 if (!only_release_metadata) 1691 btrfs_free_reserved_data_space(BTRFS_I(inode), 1692 data_reserved, pos, 1693 write_bytes); 1694 else 1695 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1696 break; 1697 } 1698 1699 release_bytes = reserve_bytes; 1700 again: 1701 /* 1702 * This is going to setup the pages array with the number of 1703 * pages we want, so we don't really need to worry about the 1704 * contents of pages from loop to loop 1705 */ 1706 ret = prepare_pages(inode, pages, num_pages, 1707 pos, write_bytes, 1708 force_page_uptodate); 1709 if (ret) { 1710 btrfs_delalloc_release_extents(BTRFS_I(inode), 1711 reserve_bytes); 1712 break; 1713 } 1714 1715 extents_locked = lock_and_cleanup_extent_if_need( 1716 BTRFS_I(inode), pages, 1717 num_pages, pos, write_bytes, &lockstart, 1718 &lockend, &cached_state); 1719 if (extents_locked < 0) { 1720 if (extents_locked == -EAGAIN) 1721 goto again; 1722 btrfs_delalloc_release_extents(BTRFS_I(inode), 1723 reserve_bytes); 1724 ret = extents_locked; 1725 break; 1726 } 1727 1728 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1729 1730 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1731 dirty_sectors = round_up(copied + sector_offset, 1732 fs_info->sectorsize); 1733 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1734 1735 /* 1736 * if we have trouble faulting in the pages, fall 1737 * back to one page at a time 1738 */ 1739 if (copied < write_bytes) 1740 nrptrs = 1; 1741 1742 if (copied == 0) { 1743 force_page_uptodate = true; 1744 dirty_sectors = 0; 1745 dirty_pages = 0; 1746 } else { 1747 force_page_uptodate = false; 1748 dirty_pages = DIV_ROUND_UP(copied + offset, 1749 PAGE_SIZE); 1750 } 1751 1752 if (num_sectors > dirty_sectors) { 1753 /* release everything except the sectors we dirtied */ 1754 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1755 if (only_release_metadata) { 1756 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1757 release_bytes, true); 1758 } else { 1759 u64 __pos; 1760 1761 __pos = round_down(pos, 1762 fs_info->sectorsize) + 1763 (dirty_pages << PAGE_SHIFT); 1764 btrfs_delalloc_release_space(BTRFS_I(inode), 1765 data_reserved, __pos, 1766 release_bytes, true); 1767 } 1768 } 1769 1770 release_bytes = round_up(copied + sector_offset, 1771 fs_info->sectorsize); 1772 1773 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1774 dirty_pages, pos, copied, 1775 &cached_state, only_release_metadata); 1776 1777 /* 1778 * If we have not locked the extent range, because the range's 1779 * start offset is >= i_size, we might still have a non-NULL 1780 * cached extent state, acquired while marking the extent range 1781 * as delalloc through btrfs_dirty_pages(). Therefore free any 1782 * possible cached extent state to avoid a memory leak. 1783 */ 1784 if (extents_locked) 1785 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1786 lockstart, lockend, &cached_state); 1787 else 1788 free_extent_state(cached_state); 1789 1790 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1791 if (ret) { 1792 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1793 break; 1794 } 1795 1796 release_bytes = 0; 1797 if (only_release_metadata) 1798 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1799 1800 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1801 1802 cond_resched(); 1803 1804 balance_dirty_pages_ratelimited(inode->i_mapping); 1805 1806 pos += copied; 1807 num_written += copied; 1808 } 1809 1810 kfree(pages); 1811 1812 if (release_bytes) { 1813 if (only_release_metadata) { 1814 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1815 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1816 release_bytes, true); 1817 } else { 1818 btrfs_delalloc_release_space(BTRFS_I(inode), 1819 data_reserved, 1820 round_down(pos, fs_info->sectorsize), 1821 release_bytes, true); 1822 } 1823 } 1824 1825 extent_changeset_free(data_reserved); 1826 if (num_written > 0) { 1827 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1828 iocb->ki_pos += num_written; 1829 } 1830 out: 1831 btrfs_inode_unlock(inode, ilock_flags); 1832 return num_written ? num_written : ret; 1833 } 1834 1835 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1836 const struct iov_iter *iter, loff_t offset) 1837 { 1838 const u32 blocksize_mask = fs_info->sectorsize - 1; 1839 1840 if (offset & blocksize_mask) 1841 return -EINVAL; 1842 1843 if (iov_iter_alignment(iter) & blocksize_mask) 1844 return -EINVAL; 1845 1846 return 0; 1847 } 1848 1849 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1850 { 1851 const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC); 1852 struct file *file = iocb->ki_filp; 1853 struct inode *inode = file_inode(file); 1854 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1855 loff_t pos; 1856 ssize_t written = 0; 1857 ssize_t written_buffered; 1858 size_t prev_left = 0; 1859 loff_t endbyte; 1860 ssize_t err; 1861 unsigned int ilock_flags = 0; 1862 1863 if (iocb->ki_flags & IOCB_NOWAIT) 1864 ilock_flags |= BTRFS_ILOCK_TRY; 1865 1866 /* If the write DIO is within EOF, use a shared lock */ 1867 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1868 ilock_flags |= BTRFS_ILOCK_SHARED; 1869 1870 relock: 1871 err = btrfs_inode_lock(inode, ilock_flags); 1872 if (err < 0) 1873 return err; 1874 1875 err = generic_write_checks(iocb, from); 1876 if (err <= 0) { 1877 btrfs_inode_unlock(inode, ilock_flags); 1878 return err; 1879 } 1880 1881 err = btrfs_write_check(iocb, from, err); 1882 if (err < 0) { 1883 btrfs_inode_unlock(inode, ilock_flags); 1884 goto out; 1885 } 1886 1887 pos = iocb->ki_pos; 1888 /* 1889 * Re-check since file size may have changed just before taking the 1890 * lock or pos may have changed because of O_APPEND in generic_write_check() 1891 */ 1892 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1893 pos + iov_iter_count(from) > i_size_read(inode)) { 1894 btrfs_inode_unlock(inode, ilock_flags); 1895 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1896 goto relock; 1897 } 1898 1899 if (check_direct_IO(fs_info, from, pos)) { 1900 btrfs_inode_unlock(inode, ilock_flags); 1901 goto buffered; 1902 } 1903 1904 /* 1905 * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw() 1906 * calls generic_write_sync() (through iomap_dio_complete()), because 1907 * that results in calling fsync (btrfs_sync_file()) which will try to 1908 * lock the inode in exclusive/write mode. 1909 */ 1910 if (is_sync_write) 1911 iocb->ki_flags &= ~IOCB_DSYNC; 1912 1913 /* 1914 * The iov_iter can be mapped to the same file range we are writing to. 1915 * If that's the case, then we will deadlock in the iomap code, because 1916 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1917 * an ordered extent, and after that it will fault in the pages that the 1918 * iov_iter refers to. During the fault in we end up in the readahead 1919 * pages code (starting at btrfs_readahead()), which will lock the range, 1920 * find that ordered extent and then wait for it to complete (at 1921 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1922 * obviously the ordered extent can never complete as we didn't submit 1923 * yet the respective bio(s). This always happens when the buffer is 1924 * memory mapped to the same file range, since the iomap DIO code always 1925 * invalidates pages in the target file range (after starting and waiting 1926 * for any writeback). 1927 * 1928 * So here we disable page faults in the iov_iter and then retry if we 1929 * got -EFAULT, faulting in the pages before the retry. 1930 */ 1931 again: 1932 from->nofault = true; 1933 err = btrfs_dio_rw(iocb, from, written); 1934 from->nofault = false; 1935 1936 /* No increment (+=) because iomap returns a cumulative value. */ 1937 if (err > 0) 1938 written = err; 1939 1940 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1941 const size_t left = iov_iter_count(from); 1942 /* 1943 * We have more data left to write. Try to fault in as many as 1944 * possible of the remainder pages and retry. We do this without 1945 * releasing and locking again the inode, to prevent races with 1946 * truncate. 1947 * 1948 * Also, in case the iov refers to pages in the file range of the 1949 * file we want to write to (due to a mmap), we could enter an 1950 * infinite loop if we retry after faulting the pages in, since 1951 * iomap will invalidate any pages in the range early on, before 1952 * it tries to fault in the pages of the iov. So we keep track of 1953 * how much was left of iov in the previous EFAULT and fallback 1954 * to buffered IO in case we haven't made any progress. 1955 */ 1956 if (left == prev_left) { 1957 err = -ENOTBLK; 1958 } else { 1959 fault_in_iov_iter_readable(from, left); 1960 prev_left = left; 1961 goto again; 1962 } 1963 } 1964 1965 btrfs_inode_unlock(inode, ilock_flags); 1966 1967 /* 1968 * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do 1969 * the fsync (call generic_write_sync()). 1970 */ 1971 if (is_sync_write) 1972 iocb->ki_flags |= IOCB_DSYNC; 1973 1974 /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */ 1975 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1976 goto out; 1977 1978 buffered: 1979 pos = iocb->ki_pos; 1980 written_buffered = btrfs_buffered_write(iocb, from); 1981 if (written_buffered < 0) { 1982 err = written_buffered; 1983 goto out; 1984 } 1985 /* 1986 * Ensure all data is persisted. We want the next direct IO read to be 1987 * able to read what was just written. 1988 */ 1989 endbyte = pos + written_buffered - 1; 1990 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1991 if (err) 1992 goto out; 1993 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1994 if (err) 1995 goto out; 1996 written += written_buffered; 1997 iocb->ki_pos = pos + written_buffered; 1998 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1999 endbyte >> PAGE_SHIFT); 2000 out: 2001 return err < 0 ? err : written; 2002 } 2003 2004 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 2005 const struct btrfs_ioctl_encoded_io_args *encoded) 2006 { 2007 struct file *file = iocb->ki_filp; 2008 struct inode *inode = file_inode(file); 2009 loff_t count; 2010 ssize_t ret; 2011 2012 btrfs_inode_lock(inode, 0); 2013 count = encoded->len; 2014 ret = generic_write_checks_count(iocb, &count); 2015 if (ret == 0 && count != encoded->len) { 2016 /* 2017 * The write got truncated by generic_write_checks_count(). We 2018 * can't do a partial encoded write. 2019 */ 2020 ret = -EFBIG; 2021 } 2022 if (ret || encoded->len == 0) 2023 goto out; 2024 2025 ret = btrfs_write_check(iocb, from, encoded->len); 2026 if (ret < 0) 2027 goto out; 2028 2029 ret = btrfs_do_encoded_write(iocb, from, encoded); 2030 out: 2031 btrfs_inode_unlock(inode, 0); 2032 return ret; 2033 } 2034 2035 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 2036 const struct btrfs_ioctl_encoded_io_args *encoded) 2037 { 2038 struct file *file = iocb->ki_filp; 2039 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 2040 ssize_t num_written, num_sync; 2041 const bool sync = iocb->ki_flags & IOCB_DSYNC; 2042 2043 /* 2044 * If the fs flips readonly due to some impossible error, although we 2045 * have opened a file as writable, we have to stop this write operation 2046 * to ensure consistency. 2047 */ 2048 if (BTRFS_FS_ERROR(inode->root->fs_info)) 2049 return -EROFS; 2050 2051 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2052 return -EOPNOTSUPP; 2053 2054 if (sync) 2055 atomic_inc(&inode->sync_writers); 2056 2057 if (encoded) { 2058 num_written = btrfs_encoded_write(iocb, from, encoded); 2059 num_sync = encoded->len; 2060 } else if (iocb->ki_flags & IOCB_DIRECT) { 2061 num_written = num_sync = btrfs_direct_write(iocb, from); 2062 } else { 2063 num_written = num_sync = btrfs_buffered_write(iocb, from); 2064 } 2065 2066 btrfs_set_inode_last_sub_trans(inode); 2067 2068 if (num_sync > 0) { 2069 num_sync = generic_write_sync(iocb, num_sync); 2070 if (num_sync < 0) 2071 num_written = num_sync; 2072 } 2073 2074 if (sync) 2075 atomic_dec(&inode->sync_writers); 2076 2077 current->backing_dev_info = NULL; 2078 return num_written; 2079 } 2080 2081 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2082 { 2083 return btrfs_do_write_iter(iocb, from, NULL); 2084 } 2085 2086 int btrfs_release_file(struct inode *inode, struct file *filp) 2087 { 2088 struct btrfs_file_private *private = filp->private_data; 2089 2090 if (private && private->filldir_buf) 2091 kfree(private->filldir_buf); 2092 kfree(private); 2093 filp->private_data = NULL; 2094 2095 /* 2096 * Set by setattr when we are about to truncate a file from a non-zero 2097 * size to a zero size. This tries to flush down new bytes that may 2098 * have been written if the application were using truncate to replace 2099 * a file in place. 2100 */ 2101 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2102 &BTRFS_I(inode)->runtime_flags)) 2103 filemap_flush(inode->i_mapping); 2104 return 0; 2105 } 2106 2107 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2108 { 2109 int ret; 2110 struct blk_plug plug; 2111 2112 /* 2113 * This is only called in fsync, which would do synchronous writes, so 2114 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2115 * multiple disks using raid profile, a large IO can be split to 2116 * several segments of stripe length (currently 64K). 2117 */ 2118 blk_start_plug(&plug); 2119 atomic_inc(&BTRFS_I(inode)->sync_writers); 2120 ret = btrfs_fdatawrite_range(inode, start, end); 2121 atomic_dec(&BTRFS_I(inode)->sync_writers); 2122 blk_finish_plug(&plug); 2123 2124 return ret; 2125 } 2126 2127 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2128 { 2129 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2130 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2131 2132 if (btrfs_inode_in_log(inode, fs_info->generation) && 2133 list_empty(&ctx->ordered_extents)) 2134 return true; 2135 2136 /* 2137 * If we are doing a fast fsync we can not bail out if the inode's 2138 * last_trans is <= then the last committed transaction, because we only 2139 * update the last_trans of the inode during ordered extent completion, 2140 * and for a fast fsync we don't wait for that, we only wait for the 2141 * writeback to complete. 2142 */ 2143 if (inode->last_trans <= fs_info->last_trans_committed && 2144 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2145 list_empty(&ctx->ordered_extents))) 2146 return true; 2147 2148 return false; 2149 } 2150 2151 /* 2152 * fsync call for both files and directories. This logs the inode into 2153 * the tree log instead of forcing full commits whenever possible. 2154 * 2155 * It needs to call filemap_fdatawait so that all ordered extent updates are 2156 * in the metadata btree are up to date for copying to the log. 2157 * 2158 * It drops the inode mutex before doing the tree log commit. This is an 2159 * important optimization for directories because holding the mutex prevents 2160 * new operations on the dir while we write to disk. 2161 */ 2162 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2163 { 2164 struct dentry *dentry = file_dentry(file); 2165 struct inode *inode = d_inode(dentry); 2166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2167 struct btrfs_root *root = BTRFS_I(inode)->root; 2168 struct btrfs_trans_handle *trans; 2169 struct btrfs_log_ctx ctx; 2170 int ret = 0, err; 2171 u64 len; 2172 bool full_sync; 2173 2174 trace_btrfs_sync_file(file, datasync); 2175 2176 btrfs_init_log_ctx(&ctx, inode); 2177 2178 /* 2179 * Always set the range to a full range, otherwise we can get into 2180 * several problems, from missing file extent items to represent holes 2181 * when not using the NO_HOLES feature, to log tree corruption due to 2182 * races between hole detection during logging and completion of ordered 2183 * extents outside the range, to missing checksums due to ordered extents 2184 * for which we flushed only a subset of their pages. 2185 */ 2186 start = 0; 2187 end = LLONG_MAX; 2188 len = (u64)LLONG_MAX + 1; 2189 2190 /* 2191 * We write the dirty pages in the range and wait until they complete 2192 * out of the ->i_mutex. If so, we can flush the dirty pages by 2193 * multi-task, and make the performance up. See 2194 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2195 */ 2196 ret = start_ordered_ops(inode, start, end); 2197 if (ret) 2198 goto out; 2199 2200 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2201 2202 atomic_inc(&root->log_batch); 2203 2204 /* 2205 * Always check for the full sync flag while holding the inode's lock, 2206 * to avoid races with other tasks. The flag must be either set all the 2207 * time during logging or always off all the time while logging. 2208 */ 2209 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2210 &BTRFS_I(inode)->runtime_flags); 2211 2212 /* 2213 * Before we acquired the inode's lock and the mmap lock, someone may 2214 * have dirtied more pages in the target range. We need to make sure 2215 * that writeback for any such pages does not start while we are logging 2216 * the inode, because if it does, any of the following might happen when 2217 * we are not doing a full inode sync: 2218 * 2219 * 1) We log an extent after its writeback finishes but before its 2220 * checksums are added to the csum tree, leading to -EIO errors 2221 * when attempting to read the extent after a log replay. 2222 * 2223 * 2) We can end up logging an extent before its writeback finishes. 2224 * Therefore after the log replay we will have a file extent item 2225 * pointing to an unwritten extent (and no data checksums as well). 2226 * 2227 * So trigger writeback for any eventual new dirty pages and then we 2228 * wait for all ordered extents to complete below. 2229 */ 2230 ret = start_ordered_ops(inode, start, end); 2231 if (ret) { 2232 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2233 goto out; 2234 } 2235 2236 /* 2237 * We have to do this here to avoid the priority inversion of waiting on 2238 * IO of a lower priority task while holding a transaction open. 2239 * 2240 * For a full fsync we wait for the ordered extents to complete while 2241 * for a fast fsync we wait just for writeback to complete, and then 2242 * attach the ordered extents to the transaction so that a transaction 2243 * commit waits for their completion, to avoid data loss if we fsync, 2244 * the current transaction commits before the ordered extents complete 2245 * and a power failure happens right after that. 2246 * 2247 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2248 * logical address recorded in the ordered extent may change. We need 2249 * to wait for the IO to stabilize the logical address. 2250 */ 2251 if (full_sync || btrfs_is_zoned(fs_info)) { 2252 ret = btrfs_wait_ordered_range(inode, start, len); 2253 } else { 2254 /* 2255 * Get our ordered extents as soon as possible to avoid doing 2256 * checksum lookups in the csum tree, and use instead the 2257 * checksums attached to the ordered extents. 2258 */ 2259 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2260 &ctx.ordered_extents); 2261 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2262 } 2263 2264 if (ret) 2265 goto out_release_extents; 2266 2267 atomic_inc(&root->log_batch); 2268 2269 smp_mb(); 2270 if (skip_inode_logging(&ctx)) { 2271 /* 2272 * We've had everything committed since the last time we were 2273 * modified so clear this flag in case it was set for whatever 2274 * reason, it's no longer relevant. 2275 */ 2276 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2277 &BTRFS_I(inode)->runtime_flags); 2278 /* 2279 * An ordered extent might have started before and completed 2280 * already with io errors, in which case the inode was not 2281 * updated and we end up here. So check the inode's mapping 2282 * for any errors that might have happened since we last 2283 * checked called fsync. 2284 */ 2285 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2286 goto out_release_extents; 2287 } 2288 2289 /* 2290 * We use start here because we will need to wait on the IO to complete 2291 * in btrfs_sync_log, which could require joining a transaction (for 2292 * example checking cross references in the nocow path). If we use join 2293 * here we could get into a situation where we're waiting on IO to 2294 * happen that is blocked on a transaction trying to commit. With start 2295 * we inc the extwriter counter, so we wait for all extwriters to exit 2296 * before we start blocking joiners. This comment is to keep somebody 2297 * from thinking they are super smart and changing this to 2298 * btrfs_join_transaction *cough*Josef*cough*. 2299 */ 2300 trans = btrfs_start_transaction(root, 0); 2301 if (IS_ERR(trans)) { 2302 ret = PTR_ERR(trans); 2303 goto out_release_extents; 2304 } 2305 trans->in_fsync = true; 2306 2307 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2308 btrfs_release_log_ctx_extents(&ctx); 2309 if (ret < 0) { 2310 /* Fallthrough and commit/free transaction. */ 2311 ret = 1; 2312 } 2313 2314 /* we've logged all the items and now have a consistent 2315 * version of the file in the log. It is possible that 2316 * someone will come in and modify the file, but that's 2317 * fine because the log is consistent on disk, and we 2318 * have references to all of the file's extents 2319 * 2320 * It is possible that someone will come in and log the 2321 * file again, but that will end up using the synchronization 2322 * inside btrfs_sync_log to keep things safe. 2323 */ 2324 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2325 2326 if (ret == BTRFS_NO_LOG_SYNC) { 2327 ret = btrfs_end_transaction(trans); 2328 goto out; 2329 } 2330 2331 /* We successfully logged the inode, attempt to sync the log. */ 2332 if (!ret) { 2333 ret = btrfs_sync_log(trans, root, &ctx); 2334 if (!ret) { 2335 ret = btrfs_end_transaction(trans); 2336 goto out; 2337 } 2338 } 2339 2340 /* 2341 * At this point we need to commit the transaction because we had 2342 * btrfs_need_log_full_commit() or some other error. 2343 * 2344 * If we didn't do a full sync we have to stop the trans handle, wait on 2345 * the ordered extents, start it again and commit the transaction. If 2346 * we attempt to wait on the ordered extents here we could deadlock with 2347 * something like fallocate() that is holding the extent lock trying to 2348 * start a transaction while some other thread is trying to commit the 2349 * transaction while we (fsync) are currently holding the transaction 2350 * open. 2351 */ 2352 if (!full_sync) { 2353 ret = btrfs_end_transaction(trans); 2354 if (ret) 2355 goto out; 2356 ret = btrfs_wait_ordered_range(inode, start, len); 2357 if (ret) 2358 goto out; 2359 2360 /* 2361 * This is safe to use here because we're only interested in 2362 * making sure the transaction that had the ordered extents is 2363 * committed. We aren't waiting on anything past this point, 2364 * we're purely getting the transaction and committing it. 2365 */ 2366 trans = btrfs_attach_transaction_barrier(root); 2367 if (IS_ERR(trans)) { 2368 ret = PTR_ERR(trans); 2369 2370 /* 2371 * We committed the transaction and there's no currently 2372 * running transaction, this means everything we care 2373 * about made it to disk and we are done. 2374 */ 2375 if (ret == -ENOENT) 2376 ret = 0; 2377 goto out; 2378 } 2379 } 2380 2381 ret = btrfs_commit_transaction(trans); 2382 out: 2383 ASSERT(list_empty(&ctx.list)); 2384 err = file_check_and_advance_wb_err(file); 2385 if (!ret) 2386 ret = err; 2387 return ret > 0 ? -EIO : ret; 2388 2389 out_release_extents: 2390 btrfs_release_log_ctx_extents(&ctx); 2391 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2392 goto out; 2393 } 2394 2395 static const struct vm_operations_struct btrfs_file_vm_ops = { 2396 .fault = filemap_fault, 2397 .map_pages = filemap_map_pages, 2398 .page_mkwrite = btrfs_page_mkwrite, 2399 }; 2400 2401 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2402 { 2403 struct address_space *mapping = filp->f_mapping; 2404 2405 if (!mapping->a_ops->read_folio) 2406 return -ENOEXEC; 2407 2408 file_accessed(filp); 2409 vma->vm_ops = &btrfs_file_vm_ops; 2410 2411 return 0; 2412 } 2413 2414 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2415 int slot, u64 start, u64 end) 2416 { 2417 struct btrfs_file_extent_item *fi; 2418 struct btrfs_key key; 2419 2420 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2421 return 0; 2422 2423 btrfs_item_key_to_cpu(leaf, &key, slot); 2424 if (key.objectid != btrfs_ino(inode) || 2425 key.type != BTRFS_EXTENT_DATA_KEY) 2426 return 0; 2427 2428 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2429 2430 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2431 return 0; 2432 2433 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2434 return 0; 2435 2436 if (key.offset == end) 2437 return 1; 2438 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2439 return 1; 2440 return 0; 2441 } 2442 2443 static int fill_holes(struct btrfs_trans_handle *trans, 2444 struct btrfs_inode *inode, 2445 struct btrfs_path *path, u64 offset, u64 end) 2446 { 2447 struct btrfs_fs_info *fs_info = trans->fs_info; 2448 struct btrfs_root *root = inode->root; 2449 struct extent_buffer *leaf; 2450 struct btrfs_file_extent_item *fi; 2451 struct extent_map *hole_em; 2452 struct extent_map_tree *em_tree = &inode->extent_tree; 2453 struct btrfs_key key; 2454 int ret; 2455 2456 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2457 goto out; 2458 2459 key.objectid = btrfs_ino(inode); 2460 key.type = BTRFS_EXTENT_DATA_KEY; 2461 key.offset = offset; 2462 2463 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2464 if (ret <= 0) { 2465 /* 2466 * We should have dropped this offset, so if we find it then 2467 * something has gone horribly wrong. 2468 */ 2469 if (ret == 0) 2470 ret = -EINVAL; 2471 return ret; 2472 } 2473 2474 leaf = path->nodes[0]; 2475 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2476 u64 num_bytes; 2477 2478 path->slots[0]--; 2479 fi = btrfs_item_ptr(leaf, path->slots[0], 2480 struct btrfs_file_extent_item); 2481 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2482 end - offset; 2483 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2484 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2485 btrfs_set_file_extent_offset(leaf, fi, 0); 2486 btrfs_mark_buffer_dirty(leaf); 2487 goto out; 2488 } 2489 2490 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2491 u64 num_bytes; 2492 2493 key.offset = offset; 2494 btrfs_set_item_key_safe(fs_info, path, &key); 2495 fi = btrfs_item_ptr(leaf, path->slots[0], 2496 struct btrfs_file_extent_item); 2497 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2498 offset; 2499 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2500 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2501 btrfs_set_file_extent_offset(leaf, fi, 0); 2502 btrfs_mark_buffer_dirty(leaf); 2503 goto out; 2504 } 2505 btrfs_release_path(path); 2506 2507 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2508 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2509 if (ret) 2510 return ret; 2511 2512 out: 2513 btrfs_release_path(path); 2514 2515 hole_em = alloc_extent_map(); 2516 if (!hole_em) { 2517 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2518 btrfs_set_inode_full_sync(inode); 2519 } else { 2520 hole_em->start = offset; 2521 hole_em->len = end - offset; 2522 hole_em->ram_bytes = hole_em->len; 2523 hole_em->orig_start = offset; 2524 2525 hole_em->block_start = EXTENT_MAP_HOLE; 2526 hole_em->block_len = 0; 2527 hole_em->orig_block_len = 0; 2528 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2529 hole_em->generation = trans->transid; 2530 2531 do { 2532 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2533 write_lock(&em_tree->lock); 2534 ret = add_extent_mapping(em_tree, hole_em, 1); 2535 write_unlock(&em_tree->lock); 2536 } while (ret == -EEXIST); 2537 free_extent_map(hole_em); 2538 if (ret) 2539 btrfs_set_inode_full_sync(inode); 2540 } 2541 2542 return 0; 2543 } 2544 2545 /* 2546 * Find a hole extent on given inode and change start/len to the end of hole 2547 * extent.(hole/vacuum extent whose em->start <= start && 2548 * em->start + em->len > start) 2549 * When a hole extent is found, return 1 and modify start/len. 2550 */ 2551 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2552 { 2553 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2554 struct extent_map *em; 2555 int ret = 0; 2556 2557 em = btrfs_get_extent(inode, NULL, 0, 2558 round_down(*start, fs_info->sectorsize), 2559 round_up(*len, fs_info->sectorsize)); 2560 if (IS_ERR(em)) 2561 return PTR_ERR(em); 2562 2563 /* Hole or vacuum extent(only exists in no-hole mode) */ 2564 if (em->block_start == EXTENT_MAP_HOLE) { 2565 ret = 1; 2566 *len = em->start + em->len > *start + *len ? 2567 0 : *start + *len - em->start - em->len; 2568 *start = em->start + em->len; 2569 } 2570 free_extent_map(em); 2571 return ret; 2572 } 2573 2574 static void btrfs_punch_hole_lock_range(struct inode *inode, 2575 const u64 lockstart, 2576 const u64 lockend, 2577 struct extent_state **cached_state) 2578 { 2579 /* 2580 * For subpage case, if the range is not at page boundary, we could 2581 * have pages at the leading/tailing part of the range. 2582 * This could lead to dead loop since filemap_range_has_page() 2583 * will always return true. 2584 * So here we need to do extra page alignment for 2585 * filemap_range_has_page(). 2586 */ 2587 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2588 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2589 2590 while (1) { 2591 truncate_pagecache_range(inode, lockstart, lockend); 2592 2593 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2594 cached_state); 2595 /* 2596 * We can't have ordered extents in the range, nor dirty/writeback 2597 * pages, because we have locked the inode's VFS lock in exclusive 2598 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2599 * we have flushed all delalloc in the range and we have waited 2600 * for any ordered extents in the range to complete. 2601 * We can race with anyone reading pages from this range, so after 2602 * locking the range check if we have pages in the range, and if 2603 * we do, unlock the range and retry. 2604 */ 2605 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2606 page_lockend)) 2607 break; 2608 2609 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2610 lockend, cached_state); 2611 } 2612 2613 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2614 } 2615 2616 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2617 struct btrfs_inode *inode, 2618 struct btrfs_path *path, 2619 struct btrfs_replace_extent_info *extent_info, 2620 const u64 replace_len, 2621 const u64 bytes_to_drop) 2622 { 2623 struct btrfs_fs_info *fs_info = trans->fs_info; 2624 struct btrfs_root *root = inode->root; 2625 struct btrfs_file_extent_item *extent; 2626 struct extent_buffer *leaf; 2627 struct btrfs_key key; 2628 int slot; 2629 struct btrfs_ref ref = { 0 }; 2630 int ret; 2631 2632 if (replace_len == 0) 2633 return 0; 2634 2635 if (extent_info->disk_offset == 0 && 2636 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2637 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2638 return 0; 2639 } 2640 2641 key.objectid = btrfs_ino(inode); 2642 key.type = BTRFS_EXTENT_DATA_KEY; 2643 key.offset = extent_info->file_offset; 2644 ret = btrfs_insert_empty_item(trans, root, path, &key, 2645 sizeof(struct btrfs_file_extent_item)); 2646 if (ret) 2647 return ret; 2648 leaf = path->nodes[0]; 2649 slot = path->slots[0]; 2650 write_extent_buffer(leaf, extent_info->extent_buf, 2651 btrfs_item_ptr_offset(leaf, slot), 2652 sizeof(struct btrfs_file_extent_item)); 2653 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2654 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2655 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2656 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2657 if (extent_info->is_new_extent) 2658 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2659 btrfs_mark_buffer_dirty(leaf); 2660 btrfs_release_path(path); 2661 2662 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2663 replace_len); 2664 if (ret) 2665 return ret; 2666 2667 /* If it's a hole, nothing more needs to be done. */ 2668 if (extent_info->disk_offset == 0) { 2669 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2670 return 0; 2671 } 2672 2673 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2674 2675 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2676 key.objectid = extent_info->disk_offset; 2677 key.type = BTRFS_EXTENT_ITEM_KEY; 2678 key.offset = extent_info->disk_len; 2679 ret = btrfs_alloc_reserved_file_extent(trans, root, 2680 btrfs_ino(inode), 2681 extent_info->file_offset, 2682 extent_info->qgroup_reserved, 2683 &key); 2684 } else { 2685 u64 ref_offset; 2686 2687 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2688 extent_info->disk_offset, 2689 extent_info->disk_len, 0); 2690 ref_offset = extent_info->file_offset - extent_info->data_offset; 2691 btrfs_init_data_ref(&ref, root->root_key.objectid, 2692 btrfs_ino(inode), ref_offset, 0, false); 2693 ret = btrfs_inc_extent_ref(trans, &ref); 2694 } 2695 2696 extent_info->insertions++; 2697 2698 return ret; 2699 } 2700 2701 /* 2702 * The respective range must have been previously locked, as well as the inode. 2703 * The end offset is inclusive (last byte of the range). 2704 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2705 * the file range with an extent. 2706 * When not punching a hole, we don't want to end up in a state where we dropped 2707 * extents without inserting a new one, so we must abort the transaction to avoid 2708 * a corruption. 2709 */ 2710 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2711 struct btrfs_path *path, const u64 start, 2712 const u64 end, 2713 struct btrfs_replace_extent_info *extent_info, 2714 struct btrfs_trans_handle **trans_out) 2715 { 2716 struct btrfs_drop_extents_args drop_args = { 0 }; 2717 struct btrfs_root *root = inode->root; 2718 struct btrfs_fs_info *fs_info = root->fs_info; 2719 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2720 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2721 struct btrfs_trans_handle *trans = NULL; 2722 struct btrfs_block_rsv *rsv; 2723 unsigned int rsv_count; 2724 u64 cur_offset; 2725 u64 len = end - start; 2726 int ret = 0; 2727 2728 if (end <= start) 2729 return -EINVAL; 2730 2731 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2732 if (!rsv) { 2733 ret = -ENOMEM; 2734 goto out; 2735 } 2736 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2737 rsv->failfast = 1; 2738 2739 /* 2740 * 1 - update the inode 2741 * 1 - removing the extents in the range 2742 * 1 - adding the hole extent if no_holes isn't set or if we are 2743 * replacing the range with a new extent 2744 */ 2745 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2746 rsv_count = 3; 2747 else 2748 rsv_count = 2; 2749 2750 trans = btrfs_start_transaction(root, rsv_count); 2751 if (IS_ERR(trans)) { 2752 ret = PTR_ERR(trans); 2753 trans = NULL; 2754 goto out_free; 2755 } 2756 2757 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2758 min_size, false); 2759 if (WARN_ON(ret)) 2760 goto out_trans; 2761 trans->block_rsv = rsv; 2762 2763 cur_offset = start; 2764 drop_args.path = path; 2765 drop_args.end = end + 1; 2766 drop_args.drop_cache = true; 2767 while (cur_offset < end) { 2768 drop_args.start = cur_offset; 2769 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2770 /* If we are punching a hole decrement the inode's byte count */ 2771 if (!extent_info) 2772 btrfs_update_inode_bytes(inode, 0, 2773 drop_args.bytes_found); 2774 if (ret != -ENOSPC) { 2775 /* 2776 * The only time we don't want to abort is if we are 2777 * attempting to clone a partial inline extent, in which 2778 * case we'll get EOPNOTSUPP. However if we aren't 2779 * clone we need to abort no matter what, because if we 2780 * got EOPNOTSUPP via prealloc then we messed up and 2781 * need to abort. 2782 */ 2783 if (ret && 2784 (ret != -EOPNOTSUPP || 2785 (extent_info && extent_info->is_new_extent))) 2786 btrfs_abort_transaction(trans, ret); 2787 break; 2788 } 2789 2790 trans->block_rsv = &fs_info->trans_block_rsv; 2791 2792 if (!extent_info && cur_offset < drop_args.drop_end && 2793 cur_offset < ino_size) { 2794 ret = fill_holes(trans, inode, path, cur_offset, 2795 drop_args.drop_end); 2796 if (ret) { 2797 /* 2798 * If we failed then we didn't insert our hole 2799 * entries for the area we dropped, so now the 2800 * fs is corrupted, so we must abort the 2801 * transaction. 2802 */ 2803 btrfs_abort_transaction(trans, ret); 2804 break; 2805 } 2806 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2807 /* 2808 * We are past the i_size here, but since we didn't 2809 * insert holes we need to clear the mapped area so we 2810 * know to not set disk_i_size in this area until a new 2811 * file extent is inserted here. 2812 */ 2813 ret = btrfs_inode_clear_file_extent_range(inode, 2814 cur_offset, 2815 drop_args.drop_end - cur_offset); 2816 if (ret) { 2817 /* 2818 * We couldn't clear our area, so we could 2819 * presumably adjust up and corrupt the fs, so 2820 * we need to abort. 2821 */ 2822 btrfs_abort_transaction(trans, ret); 2823 break; 2824 } 2825 } 2826 2827 if (extent_info && 2828 drop_args.drop_end > extent_info->file_offset) { 2829 u64 replace_len = drop_args.drop_end - 2830 extent_info->file_offset; 2831 2832 ret = btrfs_insert_replace_extent(trans, inode, path, 2833 extent_info, replace_len, 2834 drop_args.bytes_found); 2835 if (ret) { 2836 btrfs_abort_transaction(trans, ret); 2837 break; 2838 } 2839 extent_info->data_len -= replace_len; 2840 extent_info->data_offset += replace_len; 2841 extent_info->file_offset += replace_len; 2842 } 2843 2844 /* 2845 * We are releasing our handle on the transaction, balance the 2846 * dirty pages of the btree inode and flush delayed items, and 2847 * then get a new transaction handle, which may now point to a 2848 * new transaction in case someone else may have committed the 2849 * transaction we used to replace/drop file extent items. So 2850 * bump the inode's iversion and update mtime and ctime except 2851 * if we are called from a dedupe context. This is because a 2852 * power failure/crash may happen after the transaction is 2853 * committed and before we finish replacing/dropping all the 2854 * file extent items we need. 2855 */ 2856 inode_inc_iversion(&inode->vfs_inode); 2857 2858 if (!extent_info || extent_info->update_times) { 2859 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode); 2860 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime; 2861 } 2862 2863 ret = btrfs_update_inode(trans, root, inode); 2864 if (ret) 2865 break; 2866 2867 btrfs_end_transaction(trans); 2868 btrfs_btree_balance_dirty(fs_info); 2869 2870 trans = btrfs_start_transaction(root, rsv_count); 2871 if (IS_ERR(trans)) { 2872 ret = PTR_ERR(trans); 2873 trans = NULL; 2874 break; 2875 } 2876 2877 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2878 rsv, min_size, false); 2879 if (WARN_ON(ret)) 2880 break; 2881 trans->block_rsv = rsv; 2882 2883 cur_offset = drop_args.drop_end; 2884 len = end - cur_offset; 2885 if (!extent_info && len) { 2886 ret = find_first_non_hole(inode, &cur_offset, &len); 2887 if (unlikely(ret < 0)) 2888 break; 2889 if (ret && !len) { 2890 ret = 0; 2891 break; 2892 } 2893 } 2894 } 2895 2896 /* 2897 * If we were cloning, force the next fsync to be a full one since we 2898 * we replaced (or just dropped in the case of cloning holes when 2899 * NO_HOLES is enabled) file extent items and did not setup new extent 2900 * maps for the replacement extents (or holes). 2901 */ 2902 if (extent_info && !extent_info->is_new_extent) 2903 btrfs_set_inode_full_sync(inode); 2904 2905 if (ret) 2906 goto out_trans; 2907 2908 trans->block_rsv = &fs_info->trans_block_rsv; 2909 /* 2910 * If we are using the NO_HOLES feature we might have had already an 2911 * hole that overlaps a part of the region [lockstart, lockend] and 2912 * ends at (or beyond) lockend. Since we have no file extent items to 2913 * represent holes, drop_end can be less than lockend and so we must 2914 * make sure we have an extent map representing the existing hole (the 2915 * call to __btrfs_drop_extents() might have dropped the existing extent 2916 * map representing the existing hole), otherwise the fast fsync path 2917 * will not record the existence of the hole region 2918 * [existing_hole_start, lockend]. 2919 */ 2920 if (drop_args.drop_end <= end) 2921 drop_args.drop_end = end + 1; 2922 /* 2923 * Don't insert file hole extent item if it's for a range beyond eof 2924 * (because it's useless) or if it represents a 0 bytes range (when 2925 * cur_offset == drop_end). 2926 */ 2927 if (!extent_info && cur_offset < ino_size && 2928 cur_offset < drop_args.drop_end) { 2929 ret = fill_holes(trans, inode, path, cur_offset, 2930 drop_args.drop_end); 2931 if (ret) { 2932 /* Same comment as above. */ 2933 btrfs_abort_transaction(trans, ret); 2934 goto out_trans; 2935 } 2936 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2937 /* See the comment in the loop above for the reasoning here. */ 2938 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2939 drop_args.drop_end - cur_offset); 2940 if (ret) { 2941 btrfs_abort_transaction(trans, ret); 2942 goto out_trans; 2943 } 2944 2945 } 2946 if (extent_info) { 2947 ret = btrfs_insert_replace_extent(trans, inode, path, 2948 extent_info, extent_info->data_len, 2949 drop_args.bytes_found); 2950 if (ret) { 2951 btrfs_abort_transaction(trans, ret); 2952 goto out_trans; 2953 } 2954 } 2955 2956 out_trans: 2957 if (!trans) 2958 goto out_free; 2959 2960 trans->block_rsv = &fs_info->trans_block_rsv; 2961 if (ret) 2962 btrfs_end_transaction(trans); 2963 else 2964 *trans_out = trans; 2965 out_free: 2966 btrfs_free_block_rsv(fs_info, rsv); 2967 out: 2968 return ret; 2969 } 2970 2971 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2972 { 2973 struct inode *inode = file_inode(file); 2974 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2975 struct btrfs_root *root = BTRFS_I(inode)->root; 2976 struct extent_state *cached_state = NULL; 2977 struct btrfs_path *path; 2978 struct btrfs_trans_handle *trans = NULL; 2979 u64 lockstart; 2980 u64 lockend; 2981 u64 tail_start; 2982 u64 tail_len; 2983 u64 orig_start = offset; 2984 int ret = 0; 2985 bool same_block; 2986 u64 ino_size; 2987 bool truncated_block = false; 2988 bool updated_inode = false; 2989 2990 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2991 2992 ret = btrfs_wait_ordered_range(inode, offset, len); 2993 if (ret) 2994 goto out_only_mutex; 2995 2996 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2997 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2998 if (ret < 0) 2999 goto out_only_mutex; 3000 if (ret && !len) { 3001 /* Already in a large hole */ 3002 ret = 0; 3003 goto out_only_mutex; 3004 } 3005 3006 ret = file_modified(file); 3007 if (ret) 3008 goto out_only_mutex; 3009 3010 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 3011 lockend = round_down(offset + len, 3012 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 3013 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 3014 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 3015 /* 3016 * We needn't truncate any block which is beyond the end of the file 3017 * because we are sure there is no data there. 3018 */ 3019 /* 3020 * Only do this if we are in the same block and we aren't doing the 3021 * entire block. 3022 */ 3023 if (same_block && len < fs_info->sectorsize) { 3024 if (offset < ino_size) { 3025 truncated_block = true; 3026 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3027 0); 3028 } else { 3029 ret = 0; 3030 } 3031 goto out_only_mutex; 3032 } 3033 3034 /* zero back part of the first block */ 3035 if (offset < ino_size) { 3036 truncated_block = true; 3037 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3038 if (ret) { 3039 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3040 return ret; 3041 } 3042 } 3043 3044 /* Check the aligned pages after the first unaligned page, 3045 * if offset != orig_start, which means the first unaligned page 3046 * including several following pages are already in holes, 3047 * the extra check can be skipped */ 3048 if (offset == orig_start) { 3049 /* after truncate page, check hole again */ 3050 len = offset + len - lockstart; 3051 offset = lockstart; 3052 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 3053 if (ret < 0) 3054 goto out_only_mutex; 3055 if (ret && !len) { 3056 ret = 0; 3057 goto out_only_mutex; 3058 } 3059 lockstart = offset; 3060 } 3061 3062 /* Check the tail unaligned part is in a hole */ 3063 tail_start = lockend + 1; 3064 tail_len = offset + len - tail_start; 3065 if (tail_len) { 3066 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 3067 if (unlikely(ret < 0)) 3068 goto out_only_mutex; 3069 if (!ret) { 3070 /* zero the front end of the last page */ 3071 if (tail_start + tail_len < ino_size) { 3072 truncated_block = true; 3073 ret = btrfs_truncate_block(BTRFS_I(inode), 3074 tail_start + tail_len, 3075 0, 1); 3076 if (ret) 3077 goto out_only_mutex; 3078 } 3079 } 3080 } 3081 3082 if (lockend < lockstart) { 3083 ret = 0; 3084 goto out_only_mutex; 3085 } 3086 3087 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 3088 3089 path = btrfs_alloc_path(); 3090 if (!path) { 3091 ret = -ENOMEM; 3092 goto out; 3093 } 3094 3095 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3096 lockend, NULL, &trans); 3097 btrfs_free_path(path); 3098 if (ret) 3099 goto out; 3100 3101 ASSERT(trans != NULL); 3102 inode_inc_iversion(inode); 3103 inode->i_mtime = inode->i_ctime = current_time(inode); 3104 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3105 updated_inode = true; 3106 btrfs_end_transaction(trans); 3107 btrfs_btree_balance_dirty(fs_info); 3108 out: 3109 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3110 &cached_state); 3111 out_only_mutex: 3112 if (!updated_inode && truncated_block && !ret) { 3113 /* 3114 * If we only end up zeroing part of a page, we still need to 3115 * update the inode item, so that all the time fields are 3116 * updated as well as the necessary btrfs inode in memory fields 3117 * for detecting, at fsync time, if the inode isn't yet in the 3118 * log tree or it's there but not up to date. 3119 */ 3120 struct timespec64 now = current_time(inode); 3121 3122 inode_inc_iversion(inode); 3123 inode->i_mtime = now; 3124 inode->i_ctime = now; 3125 trans = btrfs_start_transaction(root, 1); 3126 if (IS_ERR(trans)) { 3127 ret = PTR_ERR(trans); 3128 } else { 3129 int ret2; 3130 3131 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3132 ret2 = btrfs_end_transaction(trans); 3133 if (!ret) 3134 ret = ret2; 3135 } 3136 } 3137 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3138 return ret; 3139 } 3140 3141 /* Helper structure to record which range is already reserved */ 3142 struct falloc_range { 3143 struct list_head list; 3144 u64 start; 3145 u64 len; 3146 }; 3147 3148 /* 3149 * Helper function to add falloc range 3150 * 3151 * Caller should have locked the larger range of extent containing 3152 * [start, len) 3153 */ 3154 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3155 { 3156 struct falloc_range *range = NULL; 3157 3158 if (!list_empty(head)) { 3159 /* 3160 * As fallocate iterates by bytenr order, we only need to check 3161 * the last range. 3162 */ 3163 range = list_last_entry(head, struct falloc_range, list); 3164 if (range->start + range->len == start) { 3165 range->len += len; 3166 return 0; 3167 } 3168 } 3169 3170 range = kmalloc(sizeof(*range), GFP_KERNEL); 3171 if (!range) 3172 return -ENOMEM; 3173 range->start = start; 3174 range->len = len; 3175 list_add_tail(&range->list, head); 3176 return 0; 3177 } 3178 3179 static int btrfs_fallocate_update_isize(struct inode *inode, 3180 const u64 end, 3181 const int mode) 3182 { 3183 struct btrfs_trans_handle *trans; 3184 struct btrfs_root *root = BTRFS_I(inode)->root; 3185 int ret; 3186 int ret2; 3187 3188 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3189 return 0; 3190 3191 trans = btrfs_start_transaction(root, 1); 3192 if (IS_ERR(trans)) 3193 return PTR_ERR(trans); 3194 3195 inode->i_ctime = current_time(inode); 3196 i_size_write(inode, end); 3197 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3198 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3199 ret2 = btrfs_end_transaction(trans); 3200 3201 return ret ? ret : ret2; 3202 } 3203 3204 enum { 3205 RANGE_BOUNDARY_WRITTEN_EXTENT, 3206 RANGE_BOUNDARY_PREALLOC_EXTENT, 3207 RANGE_BOUNDARY_HOLE, 3208 }; 3209 3210 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3211 u64 offset) 3212 { 3213 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3214 struct extent_map *em; 3215 int ret; 3216 3217 offset = round_down(offset, sectorsize); 3218 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3219 if (IS_ERR(em)) 3220 return PTR_ERR(em); 3221 3222 if (em->block_start == EXTENT_MAP_HOLE) 3223 ret = RANGE_BOUNDARY_HOLE; 3224 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3225 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3226 else 3227 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3228 3229 free_extent_map(em); 3230 return ret; 3231 } 3232 3233 static int btrfs_zero_range(struct inode *inode, 3234 loff_t offset, 3235 loff_t len, 3236 const int mode) 3237 { 3238 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3239 struct extent_map *em; 3240 struct extent_changeset *data_reserved = NULL; 3241 int ret; 3242 u64 alloc_hint = 0; 3243 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3244 u64 alloc_start = round_down(offset, sectorsize); 3245 u64 alloc_end = round_up(offset + len, sectorsize); 3246 u64 bytes_to_reserve = 0; 3247 bool space_reserved = false; 3248 3249 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3250 alloc_end - alloc_start); 3251 if (IS_ERR(em)) { 3252 ret = PTR_ERR(em); 3253 goto out; 3254 } 3255 3256 /* 3257 * Avoid hole punching and extent allocation for some cases. More cases 3258 * could be considered, but these are unlikely common and we keep things 3259 * as simple as possible for now. Also, intentionally, if the target 3260 * range contains one or more prealloc extents together with regular 3261 * extents and holes, we drop all the existing extents and allocate a 3262 * new prealloc extent, so that we get a larger contiguous disk extent. 3263 */ 3264 if (em->start <= alloc_start && 3265 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3266 const u64 em_end = em->start + em->len; 3267 3268 if (em_end >= offset + len) { 3269 /* 3270 * The whole range is already a prealloc extent, 3271 * do nothing except updating the inode's i_size if 3272 * needed. 3273 */ 3274 free_extent_map(em); 3275 ret = btrfs_fallocate_update_isize(inode, offset + len, 3276 mode); 3277 goto out; 3278 } 3279 /* 3280 * Part of the range is already a prealloc extent, so operate 3281 * only on the remaining part of the range. 3282 */ 3283 alloc_start = em_end; 3284 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3285 len = offset + len - alloc_start; 3286 offset = alloc_start; 3287 alloc_hint = em->block_start + em->len; 3288 } 3289 free_extent_map(em); 3290 3291 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3292 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3293 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3294 sectorsize); 3295 if (IS_ERR(em)) { 3296 ret = PTR_ERR(em); 3297 goto out; 3298 } 3299 3300 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3301 free_extent_map(em); 3302 ret = btrfs_fallocate_update_isize(inode, offset + len, 3303 mode); 3304 goto out; 3305 } 3306 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3307 free_extent_map(em); 3308 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3309 0); 3310 if (!ret) 3311 ret = btrfs_fallocate_update_isize(inode, 3312 offset + len, 3313 mode); 3314 return ret; 3315 } 3316 free_extent_map(em); 3317 alloc_start = round_down(offset, sectorsize); 3318 alloc_end = alloc_start + sectorsize; 3319 goto reserve_space; 3320 } 3321 3322 alloc_start = round_up(offset, sectorsize); 3323 alloc_end = round_down(offset + len, sectorsize); 3324 3325 /* 3326 * For unaligned ranges, check the pages at the boundaries, they might 3327 * map to an extent, in which case we need to partially zero them, or 3328 * they might map to a hole, in which case we need our allocation range 3329 * to cover them. 3330 */ 3331 if (!IS_ALIGNED(offset, sectorsize)) { 3332 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3333 offset); 3334 if (ret < 0) 3335 goto out; 3336 if (ret == RANGE_BOUNDARY_HOLE) { 3337 alloc_start = round_down(offset, sectorsize); 3338 ret = 0; 3339 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3340 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3341 if (ret) 3342 goto out; 3343 } else { 3344 ret = 0; 3345 } 3346 } 3347 3348 if (!IS_ALIGNED(offset + len, sectorsize)) { 3349 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3350 offset + len); 3351 if (ret < 0) 3352 goto out; 3353 if (ret == RANGE_BOUNDARY_HOLE) { 3354 alloc_end = round_up(offset + len, sectorsize); 3355 ret = 0; 3356 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3357 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3358 0, 1); 3359 if (ret) 3360 goto out; 3361 } else { 3362 ret = 0; 3363 } 3364 } 3365 3366 reserve_space: 3367 if (alloc_start < alloc_end) { 3368 struct extent_state *cached_state = NULL; 3369 const u64 lockstart = alloc_start; 3370 const u64 lockend = alloc_end - 1; 3371 3372 bytes_to_reserve = alloc_end - alloc_start; 3373 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3374 bytes_to_reserve); 3375 if (ret < 0) 3376 goto out; 3377 space_reserved = true; 3378 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3379 &cached_state); 3380 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3381 alloc_start, bytes_to_reserve); 3382 if (ret) { 3383 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3384 lockend, &cached_state); 3385 goto out; 3386 } 3387 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3388 alloc_end - alloc_start, 3389 i_blocksize(inode), 3390 offset + len, &alloc_hint); 3391 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3392 lockend, &cached_state); 3393 /* btrfs_prealloc_file_range releases reserved space on error */ 3394 if (ret) { 3395 space_reserved = false; 3396 goto out; 3397 } 3398 } 3399 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3400 out: 3401 if (ret && space_reserved) 3402 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3403 alloc_start, bytes_to_reserve); 3404 extent_changeset_free(data_reserved); 3405 3406 return ret; 3407 } 3408 3409 static long btrfs_fallocate(struct file *file, int mode, 3410 loff_t offset, loff_t len) 3411 { 3412 struct inode *inode = file_inode(file); 3413 struct extent_state *cached_state = NULL; 3414 struct extent_changeset *data_reserved = NULL; 3415 struct falloc_range *range; 3416 struct falloc_range *tmp; 3417 struct list_head reserve_list; 3418 u64 cur_offset; 3419 u64 last_byte; 3420 u64 alloc_start; 3421 u64 alloc_end; 3422 u64 alloc_hint = 0; 3423 u64 locked_end; 3424 u64 actual_end = 0; 3425 u64 data_space_needed = 0; 3426 u64 data_space_reserved = 0; 3427 u64 qgroup_reserved = 0; 3428 struct extent_map *em; 3429 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3430 int ret; 3431 3432 /* Do not allow fallocate in ZONED mode */ 3433 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3434 return -EOPNOTSUPP; 3435 3436 alloc_start = round_down(offset, blocksize); 3437 alloc_end = round_up(offset + len, blocksize); 3438 cur_offset = alloc_start; 3439 3440 /* Make sure we aren't being give some crap mode */ 3441 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3442 FALLOC_FL_ZERO_RANGE)) 3443 return -EOPNOTSUPP; 3444 3445 if (mode & FALLOC_FL_PUNCH_HOLE) 3446 return btrfs_punch_hole(file, offset, len); 3447 3448 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3449 3450 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3451 ret = inode_newsize_ok(inode, offset + len); 3452 if (ret) 3453 goto out; 3454 } 3455 3456 ret = file_modified(file); 3457 if (ret) 3458 goto out; 3459 3460 /* 3461 * TODO: Move these two operations after we have checked 3462 * accurate reserved space, or fallocate can still fail but 3463 * with page truncated or size expanded. 3464 * 3465 * But that's a minor problem and won't do much harm BTW. 3466 */ 3467 if (alloc_start > inode->i_size) { 3468 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3469 alloc_start); 3470 if (ret) 3471 goto out; 3472 } else if (offset + len > inode->i_size) { 3473 /* 3474 * If we are fallocating from the end of the file onward we 3475 * need to zero out the end of the block if i_size lands in the 3476 * middle of a block. 3477 */ 3478 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3479 if (ret) 3480 goto out; 3481 } 3482 3483 /* 3484 * We have locked the inode at the VFS level (in exclusive mode) and we 3485 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3486 * locking the file range, flush all dealloc in the range and wait for 3487 * all ordered extents in the range to complete. After this we can lock 3488 * the file range and, due to the previous locking we did, we know there 3489 * can't be more delalloc or ordered extents in the range. 3490 */ 3491 ret = btrfs_wait_ordered_range(inode, alloc_start, 3492 alloc_end - alloc_start); 3493 if (ret) 3494 goto out; 3495 3496 if (mode & FALLOC_FL_ZERO_RANGE) { 3497 ret = btrfs_zero_range(inode, offset, len, mode); 3498 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3499 return ret; 3500 } 3501 3502 locked_end = alloc_end - 1; 3503 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3504 &cached_state); 3505 3506 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3507 3508 /* First, check if we exceed the qgroup limit */ 3509 INIT_LIST_HEAD(&reserve_list); 3510 while (cur_offset < alloc_end) { 3511 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3512 alloc_end - cur_offset); 3513 if (IS_ERR(em)) { 3514 ret = PTR_ERR(em); 3515 break; 3516 } 3517 last_byte = min(extent_map_end(em), alloc_end); 3518 actual_end = min_t(u64, extent_map_end(em), offset + len); 3519 last_byte = ALIGN(last_byte, blocksize); 3520 if (em->block_start == EXTENT_MAP_HOLE || 3521 (cur_offset >= inode->i_size && 3522 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3523 const u64 range_len = last_byte - cur_offset; 3524 3525 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3526 if (ret < 0) { 3527 free_extent_map(em); 3528 break; 3529 } 3530 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3531 &data_reserved, cur_offset, range_len); 3532 if (ret < 0) { 3533 free_extent_map(em); 3534 break; 3535 } 3536 qgroup_reserved += range_len; 3537 data_space_needed += range_len; 3538 } 3539 free_extent_map(em); 3540 cur_offset = last_byte; 3541 } 3542 3543 if (!ret && data_space_needed > 0) { 3544 /* 3545 * We are safe to reserve space here as we can't have delalloc 3546 * in the range, see above. 3547 */ 3548 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3549 data_space_needed); 3550 if (!ret) 3551 data_space_reserved = data_space_needed; 3552 } 3553 3554 /* 3555 * If ret is still 0, means we're OK to fallocate. 3556 * Or just cleanup the list and exit. 3557 */ 3558 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3559 if (!ret) { 3560 ret = btrfs_prealloc_file_range(inode, mode, 3561 range->start, 3562 range->len, i_blocksize(inode), 3563 offset + len, &alloc_hint); 3564 /* 3565 * btrfs_prealloc_file_range() releases space even 3566 * if it returns an error. 3567 */ 3568 data_space_reserved -= range->len; 3569 qgroup_reserved -= range->len; 3570 } else if (data_space_reserved > 0) { 3571 btrfs_free_reserved_data_space(BTRFS_I(inode), 3572 data_reserved, range->start, 3573 range->len); 3574 data_space_reserved -= range->len; 3575 qgroup_reserved -= range->len; 3576 } else if (qgroup_reserved > 0) { 3577 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3578 range->start, range->len); 3579 qgroup_reserved -= range->len; 3580 } 3581 list_del(&range->list); 3582 kfree(range); 3583 } 3584 if (ret < 0) 3585 goto out_unlock; 3586 3587 /* 3588 * We didn't need to allocate any more space, but we still extended the 3589 * size of the file so we need to update i_size and the inode item. 3590 */ 3591 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3592 out_unlock: 3593 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3594 &cached_state); 3595 out: 3596 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3597 extent_changeset_free(data_reserved); 3598 return ret; 3599 } 3600 3601 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3602 int whence) 3603 { 3604 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3605 struct extent_map *em = NULL; 3606 struct extent_state *cached_state = NULL; 3607 loff_t i_size = inode->vfs_inode.i_size; 3608 u64 lockstart; 3609 u64 lockend; 3610 u64 start; 3611 u64 len; 3612 int ret = 0; 3613 3614 if (i_size == 0 || offset >= i_size) 3615 return -ENXIO; 3616 3617 /* 3618 * offset can be negative, in this case we start finding DATA/HOLE from 3619 * the very start of the file. 3620 */ 3621 start = max_t(loff_t, 0, offset); 3622 3623 lockstart = round_down(start, fs_info->sectorsize); 3624 lockend = round_up(i_size, fs_info->sectorsize); 3625 if (lockend <= lockstart) 3626 lockend = lockstart + fs_info->sectorsize; 3627 lockend--; 3628 len = lockend - lockstart + 1; 3629 3630 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state); 3631 3632 while (start < i_size) { 3633 em = btrfs_get_extent_fiemap(inode, start, len); 3634 if (IS_ERR(em)) { 3635 ret = PTR_ERR(em); 3636 em = NULL; 3637 break; 3638 } 3639 3640 if (whence == SEEK_HOLE && 3641 (em->block_start == EXTENT_MAP_HOLE || 3642 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3643 break; 3644 else if (whence == SEEK_DATA && 3645 (em->block_start != EXTENT_MAP_HOLE && 3646 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3647 break; 3648 3649 start = em->start + em->len; 3650 free_extent_map(em); 3651 em = NULL; 3652 cond_resched(); 3653 } 3654 free_extent_map(em); 3655 unlock_extent_cached(&inode->io_tree, lockstart, lockend, 3656 &cached_state); 3657 if (ret) { 3658 offset = ret; 3659 } else { 3660 if (whence == SEEK_DATA && start >= i_size) 3661 offset = -ENXIO; 3662 else 3663 offset = min_t(loff_t, start, i_size); 3664 } 3665 3666 return offset; 3667 } 3668 3669 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3670 { 3671 struct inode *inode = file->f_mapping->host; 3672 3673 switch (whence) { 3674 default: 3675 return generic_file_llseek(file, offset, whence); 3676 case SEEK_DATA: 3677 case SEEK_HOLE: 3678 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3679 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3680 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3681 break; 3682 } 3683 3684 if (offset < 0) 3685 return offset; 3686 3687 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3688 } 3689 3690 static int btrfs_file_open(struct inode *inode, struct file *filp) 3691 { 3692 int ret; 3693 3694 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3695 3696 ret = fsverity_file_open(inode, filp); 3697 if (ret) 3698 return ret; 3699 return generic_file_open(inode, filp); 3700 } 3701 3702 static int check_direct_read(struct btrfs_fs_info *fs_info, 3703 const struct iov_iter *iter, loff_t offset) 3704 { 3705 int ret; 3706 int i, seg; 3707 3708 ret = check_direct_IO(fs_info, iter, offset); 3709 if (ret < 0) 3710 return ret; 3711 3712 if (!iter_is_iovec(iter)) 3713 return 0; 3714 3715 for (seg = 0; seg < iter->nr_segs; seg++) 3716 for (i = seg + 1; i < iter->nr_segs; i++) 3717 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3718 return -EINVAL; 3719 return 0; 3720 } 3721 3722 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3723 { 3724 struct inode *inode = file_inode(iocb->ki_filp); 3725 size_t prev_left = 0; 3726 ssize_t read = 0; 3727 ssize_t ret; 3728 3729 if (fsverity_active(inode)) 3730 return 0; 3731 3732 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3733 return 0; 3734 3735 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3736 again: 3737 /* 3738 * This is similar to what we do for direct IO writes, see the comment 3739 * at btrfs_direct_write(), but we also disable page faults in addition 3740 * to disabling them only at the iov_iter level. This is because when 3741 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3742 * which can still trigger page fault ins despite having set ->nofault 3743 * to true of our 'to' iov_iter. 3744 * 3745 * The difference to direct IO writes is that we deadlock when trying 3746 * to lock the extent range in the inode's tree during he page reads 3747 * triggered by the fault in (while for writes it is due to waiting for 3748 * our own ordered extent). This is because for direct IO reads, 3749 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3750 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3751 */ 3752 pagefault_disable(); 3753 to->nofault = true; 3754 ret = btrfs_dio_rw(iocb, to, read); 3755 to->nofault = false; 3756 pagefault_enable(); 3757 3758 /* No increment (+=) because iomap returns a cumulative value. */ 3759 if (ret > 0) 3760 read = ret; 3761 3762 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3763 const size_t left = iov_iter_count(to); 3764 3765 if (left == prev_left) { 3766 /* 3767 * We didn't make any progress since the last attempt, 3768 * fallback to a buffered read for the remainder of the 3769 * range. This is just to avoid any possibility of looping 3770 * for too long. 3771 */ 3772 ret = read; 3773 } else { 3774 /* 3775 * We made some progress since the last retry or this is 3776 * the first time we are retrying. Fault in as many pages 3777 * as possible and retry. 3778 */ 3779 fault_in_iov_iter_writeable(to, left); 3780 prev_left = left; 3781 goto again; 3782 } 3783 } 3784 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3785 return ret < 0 ? ret : read; 3786 } 3787 3788 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3789 { 3790 ssize_t ret = 0; 3791 3792 if (iocb->ki_flags & IOCB_DIRECT) { 3793 ret = btrfs_direct_read(iocb, to); 3794 if (ret < 0 || !iov_iter_count(to) || 3795 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3796 return ret; 3797 } 3798 3799 return filemap_read(iocb, to, ret); 3800 } 3801 3802 const struct file_operations btrfs_file_operations = { 3803 .llseek = btrfs_file_llseek, 3804 .read_iter = btrfs_file_read_iter, 3805 .splice_read = generic_file_splice_read, 3806 .write_iter = btrfs_file_write_iter, 3807 .splice_write = iter_file_splice_write, 3808 .mmap = btrfs_file_mmap, 3809 .open = btrfs_file_open, 3810 .release = btrfs_release_file, 3811 .fsync = btrfs_sync_file, 3812 .fallocate = btrfs_fallocate, 3813 .unlocked_ioctl = btrfs_ioctl, 3814 #ifdef CONFIG_COMPAT 3815 .compat_ioctl = btrfs_compat_ioctl, 3816 #endif 3817 .remap_file_range = btrfs_remap_file_range, 3818 }; 3819 3820 void __cold btrfs_auto_defrag_exit(void) 3821 { 3822 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3823 } 3824 3825 int __init btrfs_auto_defrag_init(void) 3826 { 3827 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3828 sizeof(struct inode_defrag), 0, 3829 SLAB_MEM_SPREAD, 3830 NULL); 3831 if (!btrfs_inode_defrag_cachep) 3832 return -ENOMEM; 3833 3834 return 0; 3835 } 3836 3837 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3838 { 3839 int ret; 3840 3841 /* 3842 * So with compression we will find and lock a dirty page and clear the 3843 * first one as dirty, setup an async extent, and immediately return 3844 * with the entire range locked but with nobody actually marked with 3845 * writeback. So we can't just filemap_write_and_wait_range() and 3846 * expect it to work since it will just kick off a thread to do the 3847 * actual work. So we need to call filemap_fdatawrite_range _again_ 3848 * since it will wait on the page lock, which won't be unlocked until 3849 * after the pages have been marked as writeback and so we're good to go 3850 * from there. We have to do this otherwise we'll miss the ordered 3851 * extents and that results in badness. Please Josef, do not think you 3852 * know better and pull this out at some point in the future, it is 3853 * right and you are wrong. 3854 */ 3855 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3856 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3857 &BTRFS_I(inode)->runtime_flags)) 3858 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3859 3860 return ret; 3861 } 3862